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Abstract. We study optimal transportation with the quadratic cost function
in geodesic metric spaces satisfying suitable non-branching assumptions. We
introduce and study the notions of slope along curves and along geodesics and
we apply the latter to prove suitable generalizations of Brenier’s theorem of
existence of optimal maps.

1. Introduction

The problem of finding an optimal way to transport mass has a long history,
starting from Monge’s seminal paper [14]. The optimality of a transport can be
measured in many ways, depending on the choice of the cost function. In this
paper we focus on the case when the cost is the square of the distance.

Given two positive and finite measures µ and ν on some metric space (X, d)
with the same total mass, which we may normalize to 1, our task is then to study
whether the infimum

inf

∫

X

d2(x, T (x))dµ(x), (1.1)

over all possible µ-measurable maps T : X → X which send the measure µ to
ν, is attained. If such a minimizing map exists, we call it an optimal transport
map between µ and ν. Existence of optimal maps or even of admissible ones is
problematic, for instance no admissible map exists when µ is a Dirac mass and ν
is not a Dirac mass.

Kantorovich’s relaxed [9, 10] formulation of the optimal transport problem con-
sists in finding the infimum

inf

∫

X×X

d2(x, y)π(x, y) (1.2)

over all possible transport plans, i.e. probability measures π on X×X which have
µ and ν as marginals. Again, if there is a measure which attains the infimum, it
is called an optimal transport plan between µ and ν. Notice that transport plans
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can split measure, and so they avoid the problem faced by transport maps. In
fact, not only the Kantorovich formulation of the problem is well-posed, but the
infimum is attained (possibly infinite) under the only assumption that (X, d) is
complete and separable. Since we will be dealing with geodesic metric spaces, we
will mostly work with the equivalent formulation in terms of geodesic transport
plans, i.e. probability measures in the space Geo(X) of constant speed geodesics
parameterized on [0, 1], with marginal conditions at t = 0 and t = 1.

In general, it seems to be a difficult problem to find necessary and sufficient
conditions under which Monge’s problem has a solution, but by now several suffi-
cient conditions are known. For the quadratic cost in the Euclidean setting it was
proved independently by Brenier [6] and Smith and Knott [16] that there exists a
unique optimal map T , given by the gradient of a convex function, provided that
µ is absolutely continuous with respect to the Lebesgue measure. This result was
generalized to Riemannian manifolds by McCann [13], to Alexandrov spaces by
Bertrand [5] to the Heisenberg group by Ambrosio and Rigot [4] and, very recently,
to non-branching metric spaces with Ricci curvature bounded from below (in the
sense of Lott, Sturm and Villani) by Gigli [8]. Notice that in all these results a
reference measure m (Lebesgue measure, Riemannian volume, Haar measure, etc.)
plays a role, so the proper setting for this question is the family of metric measure
spaces (X, d,m).

In another recent paper [1], a metric Brenier theorem is proved under mild
assumptions on (X, d,m), see Theorem 10.3 and Remark 10.7 therein. In the case
when (X, d) has bounded diameter and m is a finite measure, the main assumption
is the existence of bounds on the relative entropy along geodesics (a condition
weaker than the CD(K,∞) condition of Lott, Sturm and Villani) and the metric
Brenier theorem states that, for any optimal geodesic plans π, it holds

|∇+ϕ|(γ0) = d(γ0, γ1) π-a.e. in Geo(X) (1.3)

(here ϕ is any Kantorovich potential and |∇+ϕ| is its ascending slope). In other
words, the transportation distance depends µ-a.e. only on the initial point.

This result raises some questions that we plan to investigate in this paper:
the first one is to understand under which additional assumptions one can really
recover an optimal map, the second one is about the differentiability of ϕ along
geodesics used by the optimal plan.

In connection with the first question we start from this heuristic idea more or less
implicit in many proofs: under appropriate structural assumptions on the space,
(1.3) identifies the “initial velocity” of the geodesic. Indeed, assuming suitable
non-branching assumptions on the space and on its tangent metric spaces we can
perform a suitable blow-up analysis that leads to the existence of optimal maps.
The proof of this result requires a detailed analysis of the proof of the metric
Brenier theorem in [1] and the introduction of a sharper notion of ascending slope,
namely the ascending slope |∇+

g ϕ| along geodesics. Since we believe that this
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concept has an independent interest we compare this slope to the usual one and to
the slope along curves, we provide an example and we raise some open problems.
Coming back to the existence of optimal maps, our result covers as a particular case
the Euclidean, the Riemannian and the Alexandrov case, see also the paragraph
immediately after Theorem 4.3 for a more detailed discussion.

In connection with the second question, it has already been proved in Theo-
rem 10.4 of [1] a “differentiability in mean”, namely

lim
t↓0

ϕ(γ0)− ϕ(γt)

d(γ0, γt)
= |∇+ϕ|(γ0) in L2(π). (1.4)

This weak differentiability property plays an important role in the subsequent
paper [2], for the computation of the derivative of the entropy along geodesics.
Here, under an additional doubling assumption on m, we are able to improve (1.4)
to a pointwise differentiability property, so that

ϕ(γt) = ϕ(γ0)− t|∇+ϕ|2(γ0) + o(t)

for π-a.e. γ ∈ Geo(X).
Acknowledgement. The authors acknowledge the support of the ERC ADG
GeMeThNES. The second author also acknowledges the support of the Academy
of Finland, project no. 137528.

2. Non-branching metric spaces

Let us start by laying out the definitions for the metric spaces that will be
used in this paper. First of all, we will be working exclusively in metric spaces
(X, d) which are complete and separable. Second, by measure in (X, d) we mean
a nonnegative Borel measure, finite on bounded sets. We will mainly consider
metric spaces X equipped with a doubling measure m meaning that there exists a
constant 0 < C <∞ so that for all 0 < r < diam(X) and x ∈ X we have

m(B(x, 2r)) ≤ Cm(B(x, r)).

A related notion for metric spaces where the measure has not been specified is
that of a doubling metric space, which means that there exists an integer N ≥ 1 so
that, for all 0 < r < ∞, any ball of radius 2r can be covered by N balls of radius
r. It is obvious that if there exists a doubling measure on X then the space X has
to be doubling as well. The converse is also true for complete metric space, see for
example [12] and [11].

We call any absolutely continuous map γ : [a, b] → X a curve and use the ab-
breviation γs = γ(s). The length of the curve γ is defined as

l(γ) = sup

{

N
∑

i=1

d(γti, γti−1
) : a ≤ t0 < t1 < · · · < tN ≤ b, N ∈ N

}

.
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We call the curve γ : [a, b] → X a geodesic if l(γ) = d(γa, γb). The metric space X
itself is called geodesic if any two points x, y ∈ X can be connected with a geodesic,
i.e. there exists a geodesic γ : [a, b] → X with γa = x and γb = y. Sometimes, when
there is no danger of confusion, we also call the image of a geodesic a geodesic.

The speed of a curve γ is given by

|γ̇|(t) = lim
s→t

d(γs, γt)

|s− t|

whenever the limit exists. It is not hard to prove, see for instance Theorem 1.1.2
in [3], that it indeed exists at L 1-almost every point t ∈ [a, b], where L 1 is the

Lebesgue measure on R, and that l(γ) =
∫ b

a
|γ̇|(t)dt.

We denote by Geo(X) the set of all constant speed geodesics in X which are
parametrized by [0, 1], namely d(γs, γt) = |t− s|d(γ0, γ1) for all s, t ∈ [0, 1]. By a
reparameterization argument, constant speed geodesics connecting any two given
points exist in any geodesic space. We equip the space Geo(X) with the distance

d∗(γ, γ̃) = max
t∈[0,1]

d(γt, γ̃t)

and note that (Geo(X), d∗) is also complete and separable since the underlying
metric space is. We will also use the convenient notation of evaluation map

et : Geo(X) → X , defined as et(γ) = γt for all t ∈ [0, 1].
With the basic notation related to geodesics now fixed we are ready to introduce

the two definitions of non-branching which play a crucial role in our results.

Definition 2.1. We call a geodesic metric space (X, d) non-branching if for any
two constant speed geodesics γ, γ′ : [0, 1] → X with γ0 = γ′0 and γs = γ′s for some
s ∈ (0, 1) we have γt = γ′t for all t ∈ [0, 1].

We would like to use non-branching on the level of the tangent spaces. However,
two distinct geodesics of a metric space can collapse into a single geodesic of the
tangent space in the blow-up. To control such collapsing we will assume a stronger
version of non-branching.

Definition 2.2. We call a geodesic metric space (X, d) strongly non-branching if
for any two constant speed geodesics γ, γ′ : [0, 1] → X with γ0 = γ′0, γ1 6= γ′1 and
d(γ0, γ1) > 0, we have

lim inf
t↓0

d(γt, γ
′
t)

d(γ0, γt)
> 0. (2.1)

In our main theorem, Theorem 4.3, we assume that the space is strongly non-
branching and that at almost every point we have some non-branching tangent
space. Before defining what we mean by tangent space we recall the definitions
of Hausdorff- and Gromov-Hausdorff-distance. The Hausdorff-distance between
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closed sets A, B ⊂ X is defined as

dH(A,B) = max

{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}

.

Using the Hausdorff-distance, the Gromov-Hausdorff-distance between two metric
spaces (X, dX) and (Y, dY ) is then defined as

dGH(X, Y ) = inf dH(f(X), g(Y )),

where the infimum is taken over all metric spaces (Z, dZ) and isometries f : X → Z,
g : Y → Z. Finally, a sequence (Xn, dn, xn)

∞
n=1 of metric spaces (Xn, dn) and points

xn ∈ Xn is said to converge to (X, d, x) in the pointed Gromov-Hausdorff sense if

lim
n→∞

dGH(BXn
(xn, r), BX(x, r)) = 0 ∀r > 0,

where by B we denote the closed ball. Given a metric space (X, d) and a scaling
factor r > 0, we define a rescaled metric dr on X by setting

dr(x, y) =
1

r
d(x, y)

for all x, y ∈ X .

Definition 2.3. Let (X, d) be a metric space. We call a metric space (Y, ρ) tangent
to (X, d) at x ∈ X if there exist a sequence (rn) ↓ 0 and y ∈ Y so that

(X, drn, x) −→
n→∞

(Y, ρ, y)

in the pointed Gromov-Hausdorff convergence.

Notice that our definition of a tangent space is weaker than Gromov’s original
notion. He required the tangent space to be the full limit of the spaces (X, dr, x) as
r ↓ 0, whereas in our definition we only require convergence along a subsequence.
As a consequence, with our definition the space (X, d) can in principle have a huge
collection of different tangent spaces at a single point.

We will use the following well-known result (see for instance [2, Proposition 2.7])
which allows us to move from the Gromov-Hausdorff convergence to Hausdorff-
convergence. Recall that a sequence (Xn, dn) of metric space is equi-compact if for
any ǫ > 0 there exists N ∈ N such that any of the spaces (Xn) can be covered by
at most N balls with radius ǫ.

Theorem 2.4. If (Xn, dn) → (X, d) in the Gromov-Hausdorff convergence then

there exist a space (Z, dZ) and isometric embeddings

in : (Xn, dn) → (Z, dZ), i : (X, d) → (Z, dZ)

so that in(Xn) → i(X) in the Hausdorff convergence.

In addition, if (Xn, dn) are equi-compact, then (Z, dZ) can be taken to be a compact

metric space.



6 LUIGI AMBROSIO AND TAPIO RAJALA

3. Gradients along geodesics

Let us recall some basic definitions in measure theory. The collection of univer-
sally measurable sets of the space X , denoted by B∗(X), is the σ-algebra of the
sets which are µ-measurable for all finite nonnegative Borel measure µ of (X, d).
The collection of all Borel sets of (X, d) will be denoted by B(X).

Now we turn to our next set of definitions that concern metric differentials.

Definition 3.1. Given a function f : X → R we define the lower ascending slope

along geodesics of f at x ∈ X as

|∇+
g f |(x) = sup

γ
lim inf

s↓0

[f(γs)− f(x)]+

d(γs, x)
,

where + denotes the positive part and the supremum is taken over all nonconstant
geodesics in X that start from the point x.

Here ascending refers to the fact that we are taking the positive part of the
difference quotient and lower refers to the fact that we are taking the lim inf,
rather than the lim sup.

Proposition 3.2. Suppose that f : X → R is continuous. Then |∇+
g f | is univer-

sally measurable.

Proof. Let T ∈ R and consider the sublevel set {|∇+
g f | > T} ⊂ X . For the

universal measurability it is sufficient to show that this set is Suslin. Because X is
complete and separable, so are Geo(X) and X×Geo(X). Therefore {|∇+

g f | > T},
being the projection of the set

{

(x, γ) : γ0 = x, lim inf
s↓0

[f(γs)− f(x)]+

d(γs, x)
> T

}

⊂ X ×Geo(X)

to the space X , is indeed Suslin since the projected set can be written as

⋂

t∈Q∩(0,1)

⋃

s∈Q∩(0,t)

{

(x, γ) : γ0 = x,
[f(γs)− f(x)]+

d(γs, x)
> T

}

and so it is Borel (countable intersection of countable unions of open sets). �

Definition 3.3. A function g : X → [0,∞] is an upper gradient along geodesics of
a function f : X → R if for any γ ∈ Geo(X) we have

|f(γ0)− f(γ1)| ≤

∫

γ

g, (3.1)

where the integral along γ is understood as
∫

γ

g = l(γ)

∫ 1

0

g(γs)ds.



SLOPES AND OPTIMAL MAPS 7

The almost everywhere differentiability of Lipschitz functions on the real line
implies that ascending slopes are upper gradients for Lipschitz functions. We
include the easy proof of this fact here for the convenience of the reader. Recall
that a function f : X → R is called Lipschitz if there exists a constant 0 ≤ L <∞
so that for any two points x, y ∈ X we have

|f(x)− f(y)| ≤ Ld(x, y).

Proposition 3.4. Let f : X → R be Lipschitz. Then the lower ascending slope

along geodesics is an upper gradient along geodesics.

Proof. By Proposition 3.2 the function |∇+
g f | is universally measurable, and it

is easily seen that this implies the L 1-measurability of |∇+
g f | ◦ γ (just consider

the push forward under L 1 of γ), see also [1, Lemma 2.4]. Take γ ∈ Geo(X).
The function f ◦ γ : [0, 1] → R is Lipschitz and therefore differentiable L

1-almost
everywhere. In particular, |(f ◦ γ)′(t)| ≤ l(γ)|∇+

g f |(γt) holds and both sides of the

inequality are well defined at L
1-almost every point t ∈ [0, 1]. Thus

|f(γ0)− f(γ1)| =

∣

∣

∣

∣

∫ 1

0

(f ◦ γ)′(s)ds

∣

∣

∣

∣

≤

∫ 1

0

|(f ◦ γ)′(s)|ds ≤ l(γ)

∫ 1

0

|∇+
g f |(γs)ds.

�

It is interesting to compare the ascending slope and the upper gradient defined
along geodesics to the more commonly used versions. First of all, it is immediate
that we always have

|∇+
g f |(x) ≤ |∇+

c f |(x) ≤ |∇+f |(x), (3.2)

where the usual ascending slope |∇+f |(x) of f at a point x is defined as

|∇+f |(x) = lim sup
y→x

[f(y)− f(x)]+

d(y, x)

and the lower ascending slope along curves as

|∇+
c f |(x) = sup

γ
lim inf

s↓0

[f(γs)− f(x)]+

d(γs, x)

with the supremum taken over all curves (recall that by convention all curves we
consider are absolutely continuous). Moreover, the inequalities in (3.2) can be
strict. Notice also that the choice of the lower concept (i.e. with the lim infs) is
justifed by the fact that the upper concept is easily seen to coincide with |∇+f |).

Recall that we have the usual notion of an upper gradient g : X → [0,∞] of
a function f : X → R if we require the inequality (3.1) to hold along all curves

on [0, 1], where this time
∫

γ
g is understood as

∫ 1

0
g(γs)|γ̇s|ds. It is not difficult

to show, following the same proof given in Proposition 3.2, that ascending slopes
along curves are universally measurable. Moreover, as in Proposition 3.4, one
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can prove that ascending slopes along curves are upper gradients for Lipschitz
functions.

Ascending slopes along geodesics could be thought, identifying geodesics to the
tangent space as in the theory of Alexandrov spaces, as directional one-sided
derivatives. Hence, it is natural to ask if ascending slopes along geodesics are
also upper gradients (in the usual sense) for Lipschitz functions. This is not true
in general, as we will see in the next example.

Example 3.5. There exist a separable complete geodesic metric space (X, d) and a
Lipschitz function f : X → R so that |∇+

g f | is not an upper gradient of f .
Let us first construct the metric space (X, d). We start the construction by

taking a unit line-segment, which we simply denote by [0, 1]. This line-segment
will eventually have length 2 with the distance we construct. Next for all n ∈ N

and 0 ≤ k < 2n we connect the points k2−n and (k + 1)2−n in [0, 1] with an arc
An,k of length (2 − 2−n)2−n. In Figure 1 the arcs An,k are drawn as half-circles.
The space X is then the disjoint union of the arcs An,k and the initial line-segment
[0, 1].

We define the distance d between two points x, y ∈ X as

d(x, y) = inf
∑

i

l(Ei),

where the infimum is taken over all collections of Ei’s that connect the points x
and y, Ei are subsets of the arcs and l(Ei) is the length of the piece determined
by the length of the arc. This way on each arc An,k the distance is given by the
natural distance determined by the length of the arc. See the left part of Figure 1
for an illustration of the space.

Let us check that (X, d) is geodesic. Let x, y ∈ X be two distinct points. If it
happens that x and y lie on the same arc then the segment of the arc joining the
points is our geodesic. We may then assume that the points are not on the same
arc. We may also assume that x, y ∈ [0, 1]. If this is not the case, for example
x /∈ [0, 1], we simply notice that any curve connecting the points x and y must go
via one of the end-points x′ and x′′ of the arc in which x lies in and that

d(x, y) = min{d(x, x′) + d(x′, y), d(x, x′′) + d(x′′, y)}.

We can now find the geodesic between the points x and y with the following
procedure. Let (γi)∞i=0 be a sequence of curves joining x to y so that limi→∞ l(γi) =
d(x, y). Because the lengths of the arcs are chosen so that the shortest curve
between points k2−n and (k + 1)2−n is the arc An,k, there exists i0 ∈ N so that
each γi, i ≥ i0, contains some An,k with

n ≤

⌊

log |x− y|

log 2

⌋

+ 1 (3.3)

and with some k. So, taking a subsequence of (γi) we may assume that all the
curves contain the same arc An,k. Continuing inductively in the same way with
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Figure 1. On the left is an illustration of the space (X, d). The
lengths of the curves are chosen so that the geodesics between two
points on the interval prefer going along the longest curves. On the
right is the graph of the Lipschitz function f drawn along a part
of the interval and along a couple of the construction curves joining
the points of the interval.

the end-points of this arc and the points x and y, and finally using a diagonal
argument, we obtain the geodesic.

We define the Lipschitz function f : X → R first on [0, 1] by setting f |[0,1](x) = x.
This fixes the function on the end-points of all the arcs. We continue it inside the
arcs by defining for all n ∈ N and 0 ≤ k < 2n

f(γt) =

{

k2−n − 2−n+1t, for t ∈ [0, 1/2];

(k − 3)2−n + 2−n+2t, for t ∈ [1/2, 1],

where γ : [0, 1] → X is the constant speed geodesic joining k2−n to (k + 1)2−n in
An,k. See the right part of Figure 1 for the graph of the function along a couple of
the arcs and the line [0, 1].

Let us now show that |∇+
g f |(x) = 0 for all x ∈ [0, 1]. To see this take a geodesic

γ starting from a point x ∈ [0, 1]. If γ near the point x consists only of one piece
of an arc the equality

lim inf
s↓0

[f(γs)− f(x)]+

d(γs, x)
= 0

is immediate. Suppose then that for every ǫ > 0 there exists a point y ∈ [0, 1]
which is in the considered geodesic γ and 0 < d(x, y) < ǫ. As we have noted before,
the part of γ that connects x to y must contain an arc An,k with n bounded as in
(3.3) and with some k. Moreover, we can take such an An,k that x > (k − 1)2−n.
Let z be the middle point of An,k. Now f(z) = (k − 1)2−n < f(x), and so indeed
|∇+

g f |(x) = 0.
On the other hand, the constant speed curve γ : [0, 1] → [0, 1] has length 2 and

is therefore an admissible test curve for the upper gradient property.
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It is easy to see that the space X in our previous example is not doubling and
that it is extremely branching. In light of the example one could still hope many
natural conjectures to be true.

Question 3.6. Which assumptions are needed on the metric space (X, d) and on
the measure m to ensure for any Lipschitz function f : X → R that

(i) the equality |∇+
g f |(x) = |∇+

c f |(x) holds at m-almost every point x ∈ X?
(ii) the function |∇+

g f |(x) is an upper gradient of f?

Notice that if we assume that if m is a doubling measure on (X, d) then |∇±f | =
|∇f | m-a.e. in X (see [1, Proposition 2.5] for the simple proof of this fact) for any
Lipschitz function f .

In addition, if (X, d,m) supports a (1, 1)-Poincaré inequality, then we can apply
Cheeger’s theory to obtain |∇f | ≤ g m-a.e. in X for any (weak) upper gradient
of f . Choosing g = |∇+

c f | yields

|∇+
c f | = |∇+f | = |∇f | m-a.e. in X .

For the same reason, under the same doubling and Poincaré assumptions, a positive
answer to question (ii) implies a positive answer to question (i): indeed, choosing
g = |∇+

g f | one obtains

|∇+
g f | = |∇+

c f | = |∇+f | = |∇f | m-a.e. in X .

4. Mass transportation in metric spaces

Before stating and proving our main results we briefly discuss in the next subsec-
tion the basic properties of transport plans and maps in the general metric space
setting. A comprehensive treatment of the theory can be found for example in [3]
and [17].

4.1. Basic properties of transport plans. Let P(X) denote the set of all
Borel probability measures on X . The Wasserstein distance between two measures
µ, ν ∈ P(X) is defined as

W2(µ, ν) =

(

inf
γ

∫

X×X

d2(x, y)dγ(x, y)

)1/2

, (4.1)

where the infimum is taken over all transport plans γ between µ and ν, i.e. mea-
sures γ ∈ P(X ×X) for which p

1
#γ = µ and p

2
#γ = ν. Here the mappings p1 and

p
2 denote the projections to the first and second coordinate respectively. The nota-

tion f#µ for a measure µ ∈ P(X) and a µ-measurable mapping f : X → Y means
the push-forward measure defined as f#µ(A) = µ(f−1(A)) for all A ∈ B(Y ). No-
tice that in generalW2(µ, ν) might be infinite. We call a transport plan γ0 between
two measures µ, ν ∈ P(X), for which W2(µ, ν) < ∞, optimal if the infimum in
(4.1) is attained at γ = γ0.



SLOPES AND OPTIMAL MAPS 11

Since we are dealing with geodesic spaces, we can equivalently consider geodesic
transport plans. We define the set of geodesic plans between µ and ν as the set
of all π ∈ P(Geo(X)) for which (e0)#π = µ, (e1)#π = ν. We say that a geodesic
plan is optimal, and write π ∈ GeoOpt(µ, ν), if

∫

Geo(X)

d2(γ0, γ1)dπ(γ) = W 2
2 (µ, ν) <∞.

Given an optimal geodesic plan π ∈ GeoOpt(µ, ν), it is clear that (e0, e1)#π is
an optimal plan. Conversely, making a measurable selection of constant speed
geodesics γxy from x to y and considering the law of (x, y) 7→ γxy under γ, any
optimal plan can be “lifted” to an optimal geodesic plan with the same cost.

The Kantorovich formulation of the transportation problem has also a very
useful dual formulation: The minimum in (1.2) is equal to

2 sup

{
∫

X

ϕ(x)dµ(x) +

∫

X

ψ(y)dν(y)

}

,

where the supremum is taken among all pairs (ϕ, ψ) ∈ C0
b (X)× C0

b (X) satisfying
ϕ(x) + ψ(y) ≤ 1

2
d2(x, y).

We define the c-transform of a function ϕ : X → R ∪ {−∞} as

ϕc(x) = inf
y∈X

{

d2(x, y)

2
− ϕ(y)

}

.

A function ψ is called c-concave if ψ = ϕc for some function ϕ. This terminology
(c-transform, c-concavity) refers to a general cost function c. Here and in the
sequel the cost function c is given by the halved square of the distance.

Definition 4.1. Given an optimal geodesic plan π ∈ GeoOpt(µ, ν) we call a Borel
function ϕ : X → R ∪ {−∞} a Kantorovich potential (relative to the optimal
geodesic plan π) if it is c-concave and

ϕ(γ0) + ϕc(γ1) =
d2(γ0, γ1)

2
for π-a.e. γ ∈ Geo(X).

Notice that because the Kantorovich potential ϕ is c-concave we have ϕ = (ϕc)c

and that we make no integrability assumption on ϕ and ϕc.
A set Γ ⊂ X ×X is called cyclically monotone if

n
∑

i=1

d2(xi, yi) ≤

n
∑

i=1

d2(xi, yσ(i))

for any (x1, y1), . . . , (xn, yn) ∈ Γ and permutation σ of {1, . . . , n}.
Suppose that W2(µ, ν) < ∞ and π ∈ GeoOpt(µ, ν). Then (e0, e1)#π is sup-

ported on a cyclically monotone set and a Kantorovich potential relative to π
exists.
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4.2. Brenier theorem in metric spaces. As a starting point we prove the
following result which originates from [1, Theorem 10.3]. The difference compared
to the original result is in the definition of the ascending slope, here replaced by
the lower ascending slope. Also, we like to repeat the proof in our situation for
the convenience of the reader.

Proposition 4.2. Suppose that m is a finite measure on a bounded space (X, d)
and µ = ρm ∈ P(X), ν ∈ P(X). Take π ∈ GeoOpt(µ, ν) and let ϕ : X →
R ∪ {−∞} be a Kantorovich potential relative to π. If there exists s̄ ∈ (0, 1)
satisfying (es)#π = ρsm for all s ∈ (0, s̄) and

lim sup
s↓0

∫

X

ρs log ρsdm <∞, (4.2)

then

|∇+
g ϕ|(γ0) = d(γ0, γ1) for π-a.e. γ ∈ Geo(X).

Proof. By the very definition of the Kantorovich potential we have

ϕ(γ0) =
d2(γ0, γ1)

2
− ϕc(γ1) (4.3)

for π-a.e. γ ∈ Geo(X). On the other hand, for any z ∈ X we have

ϕ(z) ≤
d2(z, γ1)

2
− ϕc(γ1). (4.4)

Thus combining these two we get that for π-a.e. γ it holds

|∇+
g ϕ|(γ0) ≤ lim sup

z→γ0

[ϕ(z)− ϕ(γ0)]
+

d(z, γ0)
≤ lim sup

z→γ0

[d2(z, γ1)− d2(γ0, γ1)]
+

2d(z, γ0)

≤ lim sup
z→γ0

d2(z, γ0) + 2d(γ0, γ1)d(z, γ0)

2d(z, γ0)
= d(γ0, γ1).

Let us now prove the converse inequality in an integral form. Taking z = γt in
(4.4) and combining it with (4.3) we obtain

ϕ(γ0)− ϕ(γt) ≥
d2(γ0, γ1)

2
−
d2(γt, γ1)

2
=

2t− t2

2
d2(γ0, γ1). (4.5)

Because X is bounded, ϕ is Lipschitz and so by Proposition 3.4 the function |∇+
g ϕ|

is an upper gradient of ϕ along geodesics. Thus we have

(ϕ(γ0)− ϕ(γt))
2 ≤

(
∫ t

0

|∇+
g ϕ|(γs)d(γ0, γ1)ds

)2

≤ td2(γ0, γ1)

∫ t

0

|∇+
g ϕ|

2(γs)ds.
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Dividing this by d2(γ0, γt) and integrating over Geo(X) yields

1

t

∫ t

0

∫

X

|∇+
g ϕ|

2(x)ρsdm(x)ds =
1

t

∫ t

0

∫

Geo(X)

|∇+
g ϕ|

2(γs)dπ(γ)ds

≥

∫

Geo(X)

(

ϕ(γ0)− ϕ(γt)

d(γ0, γt)

)2

dπ(γ) ≥
2− t

2

∫

Geo(X)

d2(γ0, γ1)dπ(γ)

Recall that m is finite. From the assumption (4.2) we know by the Dunford-
Pettis theorem that ρs converges to ρ weakly in L1(X,m) and so

∫

X

gρsdm→

∫

X

gρdm as s ↓ 0 for all g ∈ L∞(X,m).

Since |∇+
g ϕ| is bounded this holds also for g = |∇+

g ϕ|
2. Therefore

∫

X

|∇+
g ϕ|

2dµ = lim
t↓0

1

t

∫ t

0

∫

X

|∇+
g ϕ|

2(x)ρsdm(x)ds

≥ lim
t↓0

2− t

2

∫

Geo(X)

d2(γ0, γ1)dπ(γ).

�

With the help of the Proposition 4.2 we are now able to prove a Brenier-type
theorem in strongly non-branching metric spaces.

Theorem 4.3. Assume that (X, d) is a strongly non-branching geodesic metric

space equipped with a doubling measure m, and that µ = ρm ∈ P(X), ν ∈ P(X)
satisfy W2(µ, ν) <∞. Assume also that:

(a) for m-almost every point x ∈ X the space X has a non-branching tangent

space at x;
(b) there exists a transport plan π ∈ GeoOpt(µ, ν) such that for all s ∈ [0, 1)

sufficiently small we have (es)#π ≪ m and the densities ρs satisfy

lim sup
s↓0

∫

X

ρs log ρsdm <∞.

Then the optimal geodesic plan π is given by a mapping T : X → X, i.e. γ1 = T (γ0)
for π-a.e. γ ∈ Geo(X).

Proof. Suppose that there is no such T . If we then fix a point x0 ∈ X and consider
the restricted and rescaled measures

πr =
π|A(r)

π(A(r))
, where A(r) = {γ ∈ Geo(X), γt ∈ B(x0, r) for all t ∈ [0, 1]},

we notice that for large enough r > 0 the assumptions of the theorem are satisfied
and still there exists no such T . Therefore we may assume the space X to be
bounded.
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Let ϕ be the Kantorovich potential relative to π. Let x ∈ X be a point where
the space X has a non-branching tangent. Suppose that there are two geodesics
γ, γ̃ ∈ Geo(X) so that γ0 = γ̃0 = x,

|∇+
g ϕ|(x) = d(x, γ1) = d(x, γ̃1) (4.6)

and

ϕc(γ̃1) = ϕc(γ1) =
d2(x, γ1)

2
− ϕ(x).

Let (Y, dY ) be a non-branching tangent space to X at x and rn ↓ 0 a sequence
so that

(X, drn , x) → (Y, dY , 0)

in the pointed Gromov-Hausdorff convergence as n → ∞. Since we assumed
(X, d,m) to be doubling, the spaces (B(X,drn )(x, 1), drn) are easily seen to be equi-
compact. Indeed, for any ǫ > 0 we can find a maximal disjoint family of balls of
radius rnǫ/2 contained in B(x, rn), so that the family of balls with doubled radius
covers B(x, 1), and use the doubling inequality

µ(Br(y)) ≥ C

(

r

R

)α

µ(BR(x)) whenever Br(y) ⊂ BR(x)

(here C > 0 and α > 0 depend on the doubling constant only) with r = rnǫ/2 and
R = rn to estimate the number of these balls with a constant depending only on
C, α and ǫ. We can then apply Theorem 2.4 to obtain a compact space (Z, dZ)
and isometric embeddings

in : (B(X,drn )(x, 1), drn) → (Z, dZ), i : (B(Y,dY )(0, 1), dY ) → (Z, dZ)

so that in(B(X,drn )(x, 1)) → i(B(Y,dY )(0, 1)) in the Hausdorff convergence.
From (4.6) we get for every n ∈ N a constant speed geodesic γn with γn0 = x

and a radius Rn > 0 so that

(ϕ(γns )− ϕ(x))+

d(γns , x)
> |∇+

g ϕ|(x)−
1

n

for every s ∈ (0, 1) for which d(γns , x) < Rn.
Now, possibly taking a subsequence of (rn)

∞
n=1 so that rn < Rn, we get a sequence

of points (yn)
∞
n=1 ⊂ X with d(yn, x) = rn and

(ϕ(yn)− ϕ(x))+

d(yn, x)
> |∇+

g ϕ|(x)−
1

n
= d(x, γ1)−

1

n
. (4.7)

Notice also that for any y ∈ X we have

ϕ(y) ≤
d2(y, γ1)

2
− ϕc(γ1) =

d2(y, γ1)− d2(x, γ1)

2
+ ϕ(x). (4.8)

Writing zn = γs for the s for which d(γs, x) = rn, triangle inequality and geodesic
property yield

d(yn, γ1)− d(yn, zn) ≤ d(zn, γ1) = d(x, γ1)− d(x, zn). (4.9)
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Hence, using first (4.9), then (4.8) and eventually (4.7) we have

0 ≤ d(yn, x) + d(x, zn)− d(yn, zn) ≤ d(yn, x) + d(x, γ1)− d(yn, γ1)

= d(yn, x) +
d2(x, γ1)− d2(yn, γ1)

d(x, γ1) + d(yn, γ1)

= d(yn, x) +
1

2

d2(x, γ1)− d2(yn, γ1)

d(yn, x)

2d(yn, x)

d(x, γ1) + d(yn, γ1)

≤ d(yn, x)−
ϕ(yn)− ϕ(x)

d(yn, x)

2d(yn, x)

d(x, γ1) + d(yn, γ1)

<

(

1−
2(d(x, γ1)−

1
n
)

d(x, γ1) + d(yn, γ1)

)

d(yn, x) = o(rn).

By taking a subsequence we find points y, z ∈ Y so that

in(yn) → i(y) and in(zn) → i(z).

In particular

dY (y, z)− dY (y, 0)− dY (0, z) = lim
n→∞

d(yn, zn)− d(yn, x)− d(x, zn)

rn
= 0

and so 0 lies on some constant speed geodesic η in Y joining y to z (obtained by
the concatenation of the geodesics joining y to 0 and 0 to z).

With a similar argument we can show that 0 lies on some constant speed geodesic
η̃ in Y joining y to z̃, where z̃ is obtained as the limit in(z̃n) → i(z̃) of the points
z̃n which are taken from the geodesic γ̃ so that d(z̃n, x) = rn. Note that we might
have to go to yet another subsequence to achieve the convergence to z̃.

Because the space X is strongly non-branching we have

dY (z, z̃) ≥ lim inf
n→∞

d(zn, z̃n)

rn
> 0

and so the geodesics η and η̃ contradict the assumption that Y is non-branching.
This means that our assumptions on the geodesics γ and γ̃ can not be satisfied.

Therefore there exists a set A ⊂ Geo(X) so that π(Geo(X) \A) = 0 and for every
x ∈ X there is at most one γ ∈ A with x = γ0. Using the set A we can define the
transport map T as

T (x) =

{

γ1, when x = γ0 for some γ ∈ A

x, otherwise.

�

Remark 4.4. One could prove Theorem 4.3 also under slightly different assump-
tions. Namely by weakening the definition of strongly non-branching metric space
by replacing the liminf in (2.1) to limsup, and then assuming that at almost every
point all the tangent spaces to X are non-branching. This modified theorem is
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achieved by letting the sequence of radii in the blow-up be dictated by the weak-
ened form of strong non-branching property, namely choosing rn in such a way
that d(x, zn) = d(x, z̃n) = rn and limn d(zn, z̃n)/rn > 0.

Theorem 4.3 applies, for example, when the space (X, d) is a finite dimensional
Alexandrov space and m is the corresponding volume measure on X . The estimate
(4.2) on the relative entropy follows in this case from the result of Petrunin [15]
which shows that in Alexandrov spaces the functional

µ 7→

∫

X

ρ1−
1
N dm (4.10)

is concave along Wasserstein geodesics. Notice that a different proof for the Brenier
theorem in Alexandrov spaces was already given by Bertrand in [5].

Brenier theorem has been recently established by Gigli [8] in non-branching
spaces with Ricci-curvature bounded from below. This generalizes the previous
result by Bertrand and it covers for example the case where the functional (4.10)
is concave along geodesics in the Wasserstein space (P(X),W2) of a non-branching
space (X, d). Whereas our proof of Theorem 4.3 is based on the behaviour of blow-
ups and the Kantorovich potential, the proof by Gigli relies on the concavity of the
functional and does not use the Kantorovich potential at all. Notice that because
of the different techniques used in the proofs our geometric assumptions on the
metric space X differ from those assumed by Gigli and hence the two theorems
cover different collection of metric spaces.

It is also important to notice that our Theorem 4.3 by no means covers all
the cases where the Brenier theorem is known to hold. For example the Brenier
theorem holds in the Heisenberg group [4], but it is not difficult to see that the
Heisenberg group is not strongly non-branching.

We end this paper with an improvement of [1, Theorem 10.4.] in the case
where the reference measure m is doubling. In [1] it was shown that without the
assumption that m is doubling we have the conclusion

lim
t↓0

ϕ(γ0)− ϕ(γt)

d(γ0, γt)
= d(γ0, γ1) in L2(Geo(X), π)

in the following theorem. Because our Proposition 4.2 was proved in the case
where the space X is bounded, we will make the same boundedness assumption
here. As in many of the results in [1] we could remove this assumption by requiring
the density of the initial measure µ with respect to m to be uniformly bounded
away from zero.

Theorem 4.5. Let m be a doubling measure on a bounded metric space X and

µ = ρm ∈ P(X), with ρ > 0 m-a.e. in X and ν ∈ P(X). Let π ∈ GeoOpt(µ, ν)
and ϕ : X → R ∪ {−∞} be a Kantorovich potential relative to π satisfying

|∇+
g ϕ|(γ0) = d(γ0, γ1) π-a.e. in Geo(X). (4.11)
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Further assume that there exists s̄ ∈ (0, 1] such that for all s ∈ [0, s̄) we have

(es)#π ≪ m. Then for π-a.e. γ ∈ Geo(X) we have

lim
t↓0

ϕ(γ0)− ϕ(γt)

d(γ0, γt)
= d(γ0, γ1).

Proof. If the lower ascending slope along geodesics of the Kantorovich potential
were continuous, the theorem would follow immediately from the fact that the
lower ascending slope is an upper gradient. This is not true in general, but what
we can prove using density points and cyclical monotonicity is that for π-almost
every geodesic the lower ascending slope is continuous along the geodesic at its
starting point.

As we have seen in the proof of Proposition 4.2, in (4.5), the inequality

lim inf
t↓0

ϕ(γ0)− ϕ(γt)

d(γ0, γt)
≥ d(γ0, γ1)

holds for π-a.e. γ ∈ Geo(X).
On the other hand, by Proposition 3.4 we know that |∇+

g ϕ| is an upper gradient
of ϕ along geodesics and so for all γ ∈ Geo(X) the estimate

ϕ(γ0)− ϕ(γt)

d(γ0, γt)
≤

1

d(γ0, γt)

∫

γ|[0,t]

|∇+
g ϕ|

holds for all t ∈ (0, 1). So, our claim follows if we can show with any δ > 0 that
for π-a.e. γ ∈ Geo(X)

|∇gϕ
+|(γs) ≤ (1 + δ)d(γ0, γ1) for L

1-a.e. s ∈ (0, t) (4.12)

when t > 0 (depending on δ and γ) is small enough.
Because ρ > 0, we know from (4.11) that for m-a.e. x ∈ X there exists γx ∈

Geo(X) with γx0 = x and |∇+
g ϕ|(x) = d(γx0 , γ

x
1 ). When we combine this with the

assumption (es)#π ≪ m, for any s ∈ (0, s̄), we get for π-a.e. γ ∈ Geo(X) a curve
γ̂ ∈ Geo(X) so that γs = γ̂0 and

|∇+
g ϕ|(γ̂0) = d(γ̂0, γ̂1).

Hence, by Fubini’s theorem we know that for π-a.e. γ ∈ Geo(X) a curve γ̂ ∈
Geo(X) with the above properties exists for L 1-a.e. s ∈ (0, s̄).

Our task is now to estimate d(γ̂0, γ̂1) from above. Because m is doubling, it is
enough to prove this for γ ∈ Geo(X) for which γ0 is a Lebesgue point of |∇+

g ϕ|.
Let ǫ > 0 and take t ∈ (0, 1) so small that for every 0 < s < t and x ∈ B(γ0, rs),
where rs = 2sd(γ0, γ1), there exists γ̃ ∈ Geo(X) with γ̃0 ∈ B(x, ǫrs) and

d(γ̃0, γ̃1) = |∇+
g ϕ|(γ̃0) < (1 + ǫ)|∇+

g ϕ|(γ0) = (1 + ǫ)d(γ0, γ1). (4.13)

Define q = sd(γ0, γ1)/d(γ̂0, γ̂1) and let x = γ̂q ∈ B(γ0, rs). With this choice of x
let γ̃ ∈ Geo(X) be as above. Notice that we may assume q < s, as otherwise the



18 LUIGI AMBROSIO AND TAPIO RAJALA

γ̂q

γ0 γ1γ̂0 = γs

γ̂1

γ̃0

γ̃1rs

ǫrs

Figure 2. The three curves γ, γ̂ and γ̃ which are used in the proof.

upper bound on d(γ̂0, γ̂1) immediately follows. The selected curves are illustrated
in Figure 2.

Now we are ready to estimate d(γ̂0, γ̂1) from above. For this we use cyclical
monotonicity:

d2(γ̂0, γ̂1) + d2(γ̃0, γ̃1) ≤ d2(γ̃0, γ̂1) + d2(γ̂0, γ̃1)

≤ (d(γ̃0, γ̂q) + d(γ̂q, γ̂1))
2 + (d(γ̂0, γ̂q) + d(γ̂q, γ̃0) + d(γ̃0, γ̃1))

2

= d2(γ̃0, γ̂q) + 2d(γ̃0, γ̂q)d(γ̂q, γ̂1) + d2(γ̂q, γ̂1) + d2(γ̂0, γ̂q) + 2d(γ̂0, γ̂q)d(γ̂q, γ̃0)

+ 2d(γ̂0, γ̂q)d(γ̃0, γ̃1) + d2(γ̂q, γ̃0) + 2d(γ̂q, γ̃0)d(γ̃0, γ̃1) + d2(γ̃0, γ̃1).

Now, using the inequalities d(γ̃0, γ̂q) < ǫrs and d(γ0, γ̂q) < rs we get that d
2(γ̂0, γ̂1)+

d2(γ̃0, γ̃1) is bounded from above by

ǫ2r2s + 2ǫrs(1− q)d(γ̂0, γ̂1) + (1− q)2d2(γ̂0, γ̂1) + q2d2(γ̂0, γ̂1)

+2qǫrsd(γ̂0, γ̂1) + 2qd(γ̂0, γ̂1)d(γ̃0, γ̃1) + ǫ2r2s + 2ǫrsd(γ̃0, γ̃1) + d2(γ̃0, γ̃1)

= 2ǫrs (ǫrs + d(γ̂0, γ̂1) + d(γ̃0, γ̃1)) + d2(γ̂0, γ̂1) + d2(γ̃0, γ̃1)

+2qd(γ̂0, γ̂1)d(γ̃0, γ̃1) + 2(q − 1)qd2(γ̂0, γ̂1)

= 2ǫrs (ǫrs + d(γ̂0, γ̂1) + d(γ̃0, γ̃1)) + d2(γ̂0, γ̂1) + d2(γ̃0, γ̃1)

+rsd(γ̃0, γ̃1) + (q − 1)rsd(γ̂0, γ̂1).

It follows that 2ǫrs (ǫrs + d(γ̂0, γ̂1) + d(γ̃0, γ̃1))+rsd(γ̃0, γ̃1)+(q−1)rsd(γ̂0, γ̂1) ≥ 0,
so that dividing by rs and using (4.13) yields

d(γ̂0, γ̂1) ≤
(1 + 2ǫ)d(γ̃0, γ̃1) + 2ǫ2rs

1− q − 2ǫ
≤

(1 + 2ǫ)(1 + ǫ) + 4ǫ2s

1− s− 2ǫ
d(γ0, γ1).
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Choosing s and ǫ small enough, depending on δ, we achieve (4.12) and conclude
the proof. �
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second ed., 2008.

[4] L. Ambrosio and S. Rigot. Optimal mass transportation in the Heisenberg group, J. Funct.
Anal., 208 (2004), no. 2, 261–301.

[5] J. Bertrand, Existence and uniqueness of optimal maps on Alexandrov spaces, Adv. Math.,
219 (2008), no. 3, 838–851.

[6] Y. Brenier, Polar factorization and monotone rearrangement of vector valued functions,
Comm. Pure and Appl. Math., 64 (1991), 375–417.

[7] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct.
Anal., 9 (1999), 428–517.

[8] N. Gigli, Optimal maps in non branching spaces with Ricci curvature bounded from below,
Geom. Funct. Anal., to appear.

[9] L. V. Kantorovich, On the translocation of masses, C.R. (Dokl.) Acad. Sci. URSS, 37 (1942),
199–201.

[10] L. V. Kantorovich, On a problem of Monge (in Russian), Uspekhi Mat. Nauk. 3 (1948),
225–226.

[11] A. Käenmäki, T. Rajala and V. Suomala, Existence of doubling measures via generalised
nested cubes, Proc. Amer. Math. Soc., to appear.

[12] J. Luukkainen and E. Saksman, Every complete doubling metric space carries a doubling
measure, Proc. Amer. Math. Soc., 126 (1998), no. 2, 531–534.

[13] R. McCann, Polar factorization of maps on Riemannian manifolds, Geom. Funct. Anal., 11
(2001), 589–608.
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