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1 Introduction and overview

In these notes I will illustrate the main results contained in the recent two papers [4] and [5],
written in collaboration with N.Gigli and G.Savaré. I will basically present results and proofs
in some detail for [4], and present only the main results of [5]. These notes follow to a large
extent the presentation given in Montreal, in July 2011.

Acknowledgement. The author acknowledges the support of the ERC ADG GeMeThNES.

1.1 Some by now “classical” results

Let us consider in Rn the heat equation (with the notation ut(x) = u(t, x))

d

dt
ut = ∆ut.

Classically, this PDE can be viewed as the gradient flow of the energy

Dir(u) :=
1

2

∫
Rn

|∇u|2 dx (+∞ if u /∈ H1(Rn))

in the Hilbert space H = L2(Rn). Indeed, formally t 7→ ut solves the ODE u′ = −∇Dir(u) in
H because

Dir “differentiable” at u ⇐⇒ −∆u ∈ L2, ∇Dir(u) = −∆u

The precise meaning of “differentiability” is provided by convex analysis and it will be specified
later on in rigorous terms.

In 1998, Jordan, Kinderlehrer and Otto proved [16] that the same equation arises as
gradient flow of the entropy functional

Ent(ρL n) :=

∫
Rn

ρ log ρ dx (+∞ if µ is not a.c. w.r.t. L n)

in the space P2(Rn) of Borel probability measures in Rn with finite quadratic moments,
with respect to Wasserstein distance W2 (I am denoting here by L n the Lebesgue measure
in Rn). Recall that W 2

2 is defined by the minimum transportation cost, in the Kantorovich
formulation, using c(x, y) = d2(x, y) as cost function, namely

W 2
2 (µ, ν) := min

{∫
Rn×Rn

|x− y|2 dγ(x, y) : (π1)]γ = µ, (π2)]γ = ν

}
.

Here and in the sequel I will adopt the standard push forward notation: any f : X → Y Borel
induces a map f] : P(X)→P(Y ) given by

f]µ(B) := µ
(
f−1(B)

)
∀B ∈ B(Y ).

The proof of this equivalence, and the reasons for it, can be found at many levels:
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(1) By the so-called Otto calculus [21], i.e. formally viewing P(X) as an infinite-
dimensional Riemannian manifold and computing with this structure the gradient flow
of Ent.

(2) Proving that the implicit time discretization scheme (the so-called Euler scheme), tra-
ditionally used for the time discrete approximation of gradient flows, when done with
energy E = Ent and distance d = W2, does converge to the heat equation. Recall that
this scheme involves a time step τ and the recursive minimization of

y 7→ E(y) +
1

2τ
d2(y, x)

to provide a discrete (piecewise constant in time) solution to the gradient flow. This is
the strategy pursued in [16].

(3) Giving a rigorous meaning to what “gradient flow of Ent in P(X) w.r.t. W2 means”,
and check that solutions of this gradient flow are solutions to the heat equation. Then,
having proved that W2 gradient flows are contained in L2 gradient flows, suffices to
apply standard uniqueness results for d

dtut = ∆ut.

The last strategy, used in [3], is more abstract, but still uses to some extent the differen-
tiable structure of Rn. The question is: are there deeper reasons for this equivalence? This
is motivated also by a long series of papers where the JKO result is extended to more general
classes of metric spaces: Riemannian manifolds [11], Finsler spaces [20], Wiener spaces [12]
(a class of infinite-dimensional Gaussian spaces), Alexandrov spaces [14], etc.

1.2 Metric measure spaces

Let us consider a metric measure space (X, d,m), with m ∈ P(X). In this framework it is
still possible to define a “Dirichlet energy”, that we call Cheeger functional:

Ch(f) :=
1

2
inf

{
lim inf
n→∞

∫
X
|∇fn|2 dm : fn ∈ Lip(X),

∫
X
|fn − f |2 dm→ 0

}
,

where

|∇g|(x) := lim sup
y→x

|g(y)− g(x)|
d(y, x)

is the slope (also called local Lipschitz constant). Our terminology is motivated by Cheeger’s
seminal paper [8], where a similar relaxation procedure is considered. Cheeger considered
arbitrary functions fn in the approximation procedure, and upper gradients gn of them in
place of the slopes; for this reason our functional is a priori larger than the original functional
in [8]. A nontrivial fact, a consequence of the identification theorem of weak gradients (see
(8.1)), is that the two functionals coincide.

Also, one can consider the so-called relative entropy functional Entm : P(X)→ [0,∞]

Entm(ρm) :=

∫
X
ρ log ρ dm (+∞ if µ is not a.c. w.r.t. m).

The basic result is that the equivalence between L2-gradient flow of Ch and W2-gradient
flow of Entm always holds, if the latter is properly understood. But, without additional
assumptions on the space, both objects can be trivial, as the following simple example shows.
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Example 1.1 (Triviality of Ch) Let X = [0, 1], d the Euclidean distance, m =∑
n≥1 2−nδqn , where {qn}n≥1 is an enumeration of [0, 1] ∩ Q. Let An ⊃ Q ∩ X be open

sets with L 1(An)→ 0 and

χn(t) :=

∫ t

0

(
1− χAn(s)

)
ds t ∈ [0, 1].

Then f ◦χn → f in L2(X,m) for all f ∈ Lip(X) and f ◦χn is locally constant in Q∩X hence

Ch(f) = 0 ∀f ∈ Lip(X).

It follows that Ch ≡ 0 in L2(X,m).

1.3 Identification of weak gradients

A closely related question, relevant in particular for the second paper, is the identification of
weak gradients. The first one, that we call relaxed gradient |∇f |∗, is the object that provides
integral representation to Ch:

Ch(f) =
1

2

∫
X
|∇f |2∗ dm ∀f ∈ D(Ch).

It has all the natural properties (locality, chain rules, etc.) a weak gradient should have,
see Theorem 3.2 and (3.1) below. This gradient is useful when doing “vertical” variations
ε 7→ f + εg (i.e. in the dependent variable). On the other hand, when computing variations
of the entropy, the “horizontal” variations ε → f(γε) (i.e. in the independent variable) are
necessary. These are related to another weak gradient |∇f |w, defined as follows.

We consider the so-called weak upper gradient property by requiring

|f(γ1)− f(γ0)| ≤
∫
γ
G

along “almost all” curves γ in AC2([0, 1];X). Then, we define |∇f |w as the weak upper
gradient G with smallest L2(X,m) norm. This definition crucially depends on the notion of
null set of curves, that we shall specify later on.

The remarkable fact is that these two gradients always coincide (and, of course, maybe
both trivial without extra assumptions). The proof of this identification uses ideas from
optimal transportation, as lifting of solutions to the heat flow to probability measures in
AC2

(
[0, 1];X

)
and the energy dissipation rate of Entm along the L2 gradient flow of Ch. I

think that this identification result, which a priori has nothing to do with entropy and optimal
transportation, is a nice illustration of the power of the optimal transport theory.

1.4 Why gradients are not trivial in Lott-Sturm-Villani spaces

In these spaces one imposes convexity along W2 geodesics of Entm (the so-called CD(0,∞)
condition) or of functionals

ρm 7→ −
∫
X
ρ1−1/N dm

(the CD(0, N) condition). In this case the gradient flow of Entm is not trivial, and since it
coincides with the L2 gradient flow of Ch, also the latter is not trivial. As a consequence,
pathological situations as those described in Example 1.1 cannot occur.
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Notice that, formally, the energy dissipation rate is

d

dt

∫
X
ρt log ρt dm =

∫
X

log ρt∆ρt dm = −
∫
{ρt>0}

|∇ρt|2

ρt
dm

= −4

∫
X
|∇√ρt|2 dm.

We shall develop a calculus that makes this result meaningful and rigorous.
The standing assumption on the metric measure structure in these notes are that (X, d) is

a compact metric space and m ∈P(X). Notice that the results in [4] require neither global
or local compactness assumption on (X, d) nor finiteness of m, and are therefore appropriate
to deal with infinite-dimensional spaces. Those of [5], instead, have been established for the
moment under the additional assumption that m ∈P(X). Good prerequisites needed for the
reading of these notes are the basic facts of optimal transport theory, see [26], [2] and [3].

Acknowledgement. Work written within the research project ERC ADG GeMeThNES.

2 Hopf-Lax formula and Hamilton-Jacobi semigroup

Given a function f : X → R bounded from below, we define

Qtf(x) := inf
y∈X

f(y) +
1

2t
d2(x, y) (Hopf-Lax formula)

Theorem 2.1 Assume that f bounded and lower semicontinuous. It holds:

(1) Qtf(x) ↑ f(x) as t ↓ 0;

(2) Qt(Qsf(x)) ≥ Qt+sf(x), with equality if (X, d) is geodesic;

(3) d+

dt Qtf(x) + 1
2 |∇Qtf(x)|2 ≤ 0;

(4) Qtf(x) restricted to (ε,∞)×X is Lipschitz for all ε > 0.

Sketch of proof.
(1) It follows by the lower semicontinuity of f , which ensures also that minimizers do exist.
(2) It follows by

inf
y

(
inf
z
f(z) +

1

2s
d2(z, y)

)
+

1

2t
d2(x, y)

= inf
z

inf
y

(
1

2s
d2(z, y) +

1

2t
d2(x, y)

)
+ f(z)

≥ inf
z

1

2(s+ t)
d2(x, z) + f(z), (2.1)

noticing that the last inequality is an equality in geodesic spaces.
In order prove (3), we set{

D+
f (x, t) := max{d(x, y) : y minimizer}

D−f (x, t) := min{d(x, y) : y minimizer}.
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Since any limit of minimizers is a minimizer, D+
f is upper semicontinuous, while D−f is lower

semicontinuous.
In addition D+

f (x, s) ≥ D−f (x, s) ≥ D+
f (x, t) if 0 < t < s. Indeed,

f(xt) +
d2(xt, x)

2t
≤ f(xs) +

d2(xs, x)

2t

f(xs) +
d2(xs, x)

2s
≤ f(xt) +

d2(xt, x)

2s
.

Adding up and using 1
t >

1
s we deduce that D−f (x, s) ≥ D+

f (x, t).

It follows that, given x, D+
f (x, t) = D−f (x, t) with at most countably many exceptions.

We prove first that d±

dt Qtf(x) = −[D±f (x, t)]2/(2t2). Choosing xt at maximum distance and
xs at minimum distance yields

Qsf(x)−Qtf(x) ≤ 1

2s
d2(x, xt) + f(xt)− f(xt)−

1

2t
d2(x, xt)

=
(D+

f (x, t))2

2
(
1

s
− 1

t
)

Qsf(x)−Qtf(x) ≥ 1

2s
d2(x, xs) + f(xs)− f(xs)−

1

2t
d2(x, xs)

=
(D−f (x, s))2

2
(
1

s
− 1

t
)

One can then use semicontinuity of D±f and monotonicity D+
f ≥ D

−
f to conclude.

To conclude, suffices to show that |∇Qtf |(x) ≤ D+
f (x, t)/t. The same trick used before,

now for variations in space, yields:

Qtf(x)−Qtf(y) ≤ 1

2t
d2(x, z) + f(z)− f(z)− 1

2t
d2(z, y)

≤ d(x, y)
(D−f (y, t)

t
+
d(x, y)

2t

)
and we can use the upper semicontinuity of D+

f to conclude. �

If y is kept fixed and we let x→ y we obtain the sharper inequality

|∇+Qtf |(y) ≤
D−f (y, t)

t
, (2.2)

where the ascending slope |∇+f | is defined by

|∇+f |(y) := lim sup
x→y

[f(x)− f(y)]+

d(x, y)
.

2.1 Hamilton-Jacobi and optimal transportation

Why the Hopf-Lax formula and the Hamilton-Jacobi equation are relevant in the theory of
optimal transport?

6



c-transform. Given a cost function c : X × Y → R, the c-transforms ϕc : Y → R ∪ {−∞},
ψc : X → R ∪ {−∞} are defined by

ϕc(y) := inf
x∈X

c(x, y)− ϕ(x), ψc(x) := inf
y∈Y

c(x, y)− ψ(y).

Notice the analogy with convex analysis: ψc = (−ψ)∗ if X is Hilbert and c(x, y) = 〈x, y〉.
The relation with the HL formula is also obvious:

ψc = Q1(−ψ).

Then, we say that ϕ : X → R∪{−∞} is c-concave if ϕ = ψc for some ψ : Y → R∪{−∞}.
As in convex analysis, ϕ 7→ ϕc is an involution in the class of c-concave functions: (ϕc)c = ϕ.

Definition 2.2 We say that a c-concave function ϕ : X → R ∪ {−∞} is a Kantorovich
potential relative to (µ, ν) if it satisfies

ϕ(x) + ϕc(y) = c(x, y) for γ-a.e. (x, y) (2.3)

for any optimal plan γ from µ to ν.

Proposition 2.3 If ϕ is a Kantorovich potential from µ to ν it holds:

|∇+ϕ|(x) ≤ d(x, y) for γ-a.e. (x, y)

for any optimal plan γ from µ to ν. In particular
∫
|∇+ϕ|2 dµ ≤W 2

2 (µ, ν).

Proof. Since ϕ = (ϕc)c we may write ϕ = Q1(−ϕc). Combining this with the optimality
condition (2.3) and with (2.2) gives

|∇+ϕ(x)| = |∇+Q1(−ϕc)|(x) ≤ D−−ϕc(x, 1) ≤ d(x, y) γ-a.e. in X ×X.

�

2.2 The classical Brenier theorem and its metric counterpart

In the Euclidean case c(x, y) = |x− y|2/2, if ϕ is differentiable at x and

ϕ(x) + ϕc(y) =
1

2
|x− y|2

one can differentiate at x and obtain ∇ϕ(x) = (x − y), which tells us that y is uniquely
determined by x and

|∇+ϕ|(x) = d(x, y). (2.4)

We say that a metric Brenier theorem holds if (2.4) holds γ-a.e. for any optimal plan γ, so
that in particular W 2

2 (µ, ν) =
∫
|∇+ϕ|2 dµ. The following simple example shows that this

equality ma fail in general, see Theorem 9.14 for a positive result.

Example 2.4 X = [0, 1], µ = δ0, µt = t−1χ[0,t]L
1. In this case

ϕ(x) =
x2

2
− x,

∫
|∇+ϕ|2 dµ0 = 0

while W 2
2 (µ0, µ1) = 1

3 .
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2.3 Optimal transport and Kantorovich potentials in geodesic spaces

If (X, d) is Polish (i.e. complete and separable) and geodesic we may formulate the optimal
transport problem in terms of geodesic plans, namely probability measures π concentrated in
the Polish space Geo(X) of constant speed geodesics:

min

{∫
d2(γ0, γ1) dπ(γ) : (e0)]π = µ, (e1)]π = ν

}
. (2.5)

Here et : C([0, 1];X) → X are the evaluation maps, namely et(γ) = γt. The relation with
the classical optimal plans γ of Kantorovich theory is that if π is a minimizer in (2.5), then
(e0, e1)]π is an optimal plan, and that any optimal γ admits a (possibly nonunique) “lifting”
π, i.e. (e0, e1)]π = γ. The nice fact is that constant speed geodesics are in 1-1 correspondence
with optimal geodesic plans:

Theorem 2.5 Any constant speed geodesic µt in P(X) can be represented as (et)]π for a
suitable optimal geodesic plan π. Conversely, any optimal geodesic plan π induces a constant
speed geodesic (et)]π.

The following fundamental result provides a deeper connection between geodesics and the
Hopf-Lax formula, see the seminal paper [7] and [26] for much more on this subject.

Theorem 2.6 Let µt, t ∈ [0, 1] be a constant speed geodesic and let ϕ be a Kantorovich
potential relative to µ0, µ1. Then, for all t ∈ (0, 1], ϕt := Qt(−ϕc) is a Kantorovich potential,
relative to the scaled cost ct := c/t, from µ1−t to µ1.

Sketch of proof. It is obvious that ϕt + ϕ ≤ ct. The key implication is

ϕ(γ0) + ϕc(γ1) = c(γ0, γ1) implies ϕt(γ1−t) + ϕc(γ1) = ct(γ1−t, γ1). (2.6)

Hence, if π is an optimal geodesic plan, ϕ+ϕc = c π-a.e. implies ϕt+ϕc = c/t πt-a.e., where

πt := (γ1−t, γ1)]π

is an optimal geodesic plan from µ1−t to µ1. The implication (2.6) is not difficult to prove, and
related to the fact that characteristic lines for the Hamilton-Jacobi equation are geodesics,
see also (2.1). �

3 Cheeger’s energy and relaxed gradients

Let us recall the definition of Ch we already mentioned in the introduction:

Ch(f) :=
1

2
inf

{
lim inf
h→∞

∫
X
|∇fh|2 dm : fh ∈ Lip(X),

∫
X
|fh − f |2 dm→ 0

}
.

By construction Ch : L2(X,m) → [0,∞] is lower semicontinuous, and it is easily seen to be
convex. Can we provide an integral representation to it?

Relaxed slope: G ∈ L2(X,m) is a relaxed slope of f if G bounds from above a function in{
weak L2 limit points of |∇fn|, fn ∈ Lip(X), ‖fn − f‖2 → 0

}
8



or equivalently in{
strong L2 limit points of Gn ≥ |∇fn|, fn ∈ Lip(X), ‖fn − f‖2 → 0

}
.

The equivalence between the two characterizations of relaxed slopes follows by Mazur’s
lemma: the first characterization is useful to show that f has a relaxed slope iff Ch(f) <∞,
while the second one is useful to perform diagonal arguments and to show that the collection
of relaxed slopes is a convex closed set, possibly empty. This motivates the next definition.

Definition 3.1 (Minimal relaxed slope) We call minimal relaxed slope, and denote by
|∇f |∗, the function with smallest L2(X,m) norm among relaxed slopes.

Theorem 3.2 Let f ∈ D(Ch). Then:

(1) Ch(f) = 1
2

∫
|∇f |2∗ dm;

(2) if G1, G2 are relaxed slopes, so is min{G1, G2};

(3) |∇f |∗ ≤ G m-a.e. for any relaxed slope G;

(4) g = f m-a.e. on a Borel set B implies |∇f |∗ = |∇g|∗ m-a.e. on B.

Calculus rules. If N ⊂ R is Lebesgue negligible, then |∇f |∗ = 0 a.e. in f−1(N). In addition,
we have the (weak) chain rule

|∇φ(f)|∗ ≤ |φ′(f)||∇f |∗ with equality if φ′ ≥ 0. (3.1)

Sketch of proof.
(1) Any weak limit point of |∇fn| yields a relaxed slope, hence Ch(f) ≥ 1

2

∫
|∇f |2∗ dm. Writing

G ≤ |∇f |∗ as the strong limit of Gn ≥ |∇fn| we have∫
|∇f |2∗ dm ≥

∫
G2 dm ≥ lim inf

n

∫
|∇fn|2 dm ≥ 2Ch(f).

(2) By approximation, suffices to show that χX\BG1 +χBG2 is a relaxed slope if B is closed.
Set ρ(x) = dist(x,B), χr(x) = min{1, r−1ρ}, so that χr ↑ χX\B as r ↓ 0, and pass to the limit
in

|∇(χrfn,1 + (1− χr)fn,2)| ≤ χr|∇fn,1|+ (1− χr)|∇fn,2|+ Lip(χr)|fn,1 − fn,2|.

(3) Just take G̃ := min{|∇f |∗, G}. Its L2 norm is strictly smaller than ‖|∇f |∗‖2 if the set
{|∇f |∗ > G} has positive m-measure. �

3.1 Heat flow and Laplacian

Let’s start with some reminders on the classical theory of gradient flows of convex and l.s.c.
functionals F : H → R ∪ {+∞} in a Hilbert space H.

Subdifferential ∂F . It is the multivalued map defined by

∂F (x) := {p ∈ H : F (x) + 〈p, y − x〉 ≤ F (y) ∀y ∈ H}

for all x ∈ D(F ) := {F < ∞}. The set ∂F (x) is closed and convex. The gradient ∇F (x) is
the element with minimal norm in ∂F (x).
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Definition 3.3 (Gradient flow) It is a locally absolutely continuous map x : (0,∞) → H
satisfying

−x′(t) ∈ ∂F
(
x(t)

)
for a.e. t > 0.

In addition, we say that x(t) starts from x̄ if lim
t↓0

x(t) = x̄.

Theorem 3.4 (Existence and uniqueness) For all x̄ ∈ D(F ) there exists a unique gradi-
ent flow starting from x̄ and the induced semigroup

St : [0,∞)×D(F )→ D(F )

is contractive. In addition, we have the regularizing effects:

(1) Stx̄ ∈ D(∂F ) ⊂ D(F ) for all t > 0 and

F (Stx̄) ≤ inf
v∈D(F )

F (v) +
1

2t
d2(v, x̄);

(2) d+

dt Stx̄ = −∇F (Stx̄) for all t > 0;

(3) t 7→ |∇F |2(Stx̄) is nonincreasing, so that Stx̄ is Lipschitz in (ε,∞) for all ε > 0;

(4) d+

dt F (Stx̄) = −|∇F |2(Stx̄) = −|d+dt Stx̄|
2 for all t > 0.

According to these results, we may choose H = L2(X,m) and F = Ch and define

−∆f :=the element with minimal L2-norm of ∂Ch(f)

so that (by the density of D(Ch) ⊃ Lip(X) in L2(X,m)) we obtain a L2 heat flow htf solving
(the derivative being understood in L2(X,m))

d

dt
htf̄ = ∆htf̄

starting from any initial condition f̄ ∈ L2(X,m).
Remarks. (1) ∆ = ∆d,m. Even in the classical situations, ∆f = div(∇f), where ∇f depends
on the metric (to associate a vector ∇f to df) while div depends on the volume form m, via
the adjoint formula ∫

g divF dm = −
∫
〈∇g, F 〉 dm.

(2) ∆ need not to be linear in this context! Take X = R2 with the L∞ norm, to get

Ch(f) =
1

2

∫ (∣∣∣∣∂f∂x
∣∣∣∣+

∣∣∣∣∂f∂y
∣∣∣∣)2

dxdy.

Nowithstanding this potential lack of linearity, a reasonable calculus can be developed:

−
∫
g∆f dm ≤

∫
|∇f |∗|∇g|∗ dm, (3.2)

−
∫
φ(f)∆f dm =

∫
φ′(f)|∇f |2∗ dm. (3.3)
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The inequality (3.2) follows by

Ch(f)− ε
∫
g∆f dm ≤ 1

2

∫
|∇(f + εg)|2∗ dm

noticing that |∇(f + εg)|∗ ≤ |∇f |∗ + ε|∇g|∗ for ε > 0, so that

−ε
∫
g∆f dm ≤ ε

∫
|∇f |∗|∇g|∗ dm +

ε2

2

∫
|∇g|2∗ dm.

The proof of (3.3) is based on the chain rule (3.1).

Proposition 3.5 (Properties of the heat flow) The following properties hold:

(1) Homogeneity: ht(λf) = λhtf ∀λ ∈ R;

(2) Comparison principle: if f ≤ g, then htf ≤ htg for all t ≥ 0;

(3) Energy dissipation: if J ⊂ R is an interval, ft : X → J and e : J → R is convex and
locally C1,1, then∫

e(htf) dm =

∫
e(f) dm−

∫ t

0

∫
e′′(hsf)|∇hsf |2∗ dmds.

(4) Mass preservation:
∫

htf dm =
∫
f dm for all t ≥ 0.

Strictly speaking, (3) does not cover the most interesting case, the case of the entropy
e(z) = z log z when htf ≥ 0 and J = [0,∞):∫

htf log htf dm =

∫
f log f dm−

∫ t

0

∫
{hsf>0}

|∇hsf |2∗
hsf

dmds. (3.4)

It can be recovered by the approximation f 7→ max{f, ε}, ε ↓ 0 (this is possible thanks to the
fact that m(X) <∞, the general case is much more delicate, see [4]).
Sketch of proof.
(1) Since Ch is 2-homogeneous, one can prove that ∂Ch(λf) = λ∂Ch(f), hence ft is a gradient
flow iff λft is. Uniqueness then gives the identity.
(2) Since ∆ is not linear, the standard argument (take ft − gt and use that it is a gradient
flow) does not apply. We appeal to the Euler scheme and prove that f ≤ g and

fτ minimizer of
1

2τ
‖ · −f‖22 + Ch(·), gτ minimizer of

1

2τ
‖ · −g‖22 + Ch(·),

(here τ is the time step) implies fτ ≤ gτ .
(3) By monotone approximation, e ∈ C1,1(R). Then

d

dt

∫
e(htf) dm =

∫
e′(htf)∆htf dm = −

∫
e′′(htf)|∇htf |2∗ dm.

(4) Suffices to use the function identically equal to 1 in the PDE. �
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3.2 Absolutely continuous functions and metric speed

A curve γ : [0, 1]→ X is said to be absolutely continuous if

d(γt, γs) ≤
∫ s

t
f(r) dr ∀[t, s] ⊂ [0, 1] (3.5)

for some f ∈ L1(0, 1).
If γ is absolutely continuous, the metric speed |γ̇| : [0, 1]→ [0,∞] is defined by

|γ̇t| := lim
h→0

d(γt+h, γt)

|h|
.

It is possible to prove that the limit exists for a.e. t, that |γ̇| ∈ L1(0, 1), and that it is the
minimal L1 function for which the bound (3.5) holds.

3.3 Kuwada’s lemma

This lemma, taken from [14] provides one of the two key connections between the “Eulerian”
or “vertical” viewpoint implicit in the theory of relaxed gradients and the “Lagrangian” of
“horizontal” viewpoint of the theory of optimal transportation.

Lemma 3.6 Let f0 ∈ L2(X,m) a probability density, ft = htf0. Then the curve µt := ftm is
absolutely continuous in P(X) and

|µ̇t|2 ≤
∫
{ft>0}

|∇ft|2∗
ft

dm for a.e. t > 0.

It is also convenient to introduce the Fisher information functional, defined on {ρ : ρ ≥
0,
√
ρ ∈ D(Ch)}, as follows:

F (ρ) := 4

∫
|∇√ρ|2∗ dm =

∫
{ρ>0}

|∇ρ|2∗
ρ

dm

(the last equality follows by chain rule).
Sketch of proof of Kuwada lemma. We prove an integral version of the lemma, namely

W 2
2 (µt, µs) ≤ `

∫ s

t
F (fr) dr

with 0 ≤ s < t <∞ and ` := (s− t). By Kantorovich’s duality formula, suffices to show∫
−ϕdµt +

∫
Q1ϕdµs ≤

`

2

∫ s

t
F (fr) dr,

where ϕ runs in the class of bounded continuous functions. Replacing ϕ by Qεϕ and letting
ε ↓ 0 we can assume that Qtϕ is Lipschitz in [0, 1]×X.

Now we set g(r) :=
∫
Qrϕdµt+`r, so that

∫
ϕdµt = g(0) and

∫
Q1ϕdµs = g(1), and we

write the inequality as ∫ 1

0
g′(r) dr ≤ `

2

∫ s

t
F (fr) dr.

12



Using the HJ subsolution property of Qrϕ and the “integration by parts” we get

g′(r) =

∫
(
d

dr
Qrϕ)ft+`r dm + `

∫
Qrϕ∆ft+`r dm

≤ −1

2

∫
|∇Qrϕ|2∗ft+`r dm + `

∫
|∇Qrϕ|∗

√
ft+`r

|∇ft+`r|∗√
ft+`r

dm.

Eventually the Young inequality gives

g′(r) ≤ `2

2
F (ft+`r)

and an integration in (0, 1) with respect to r gives the result. �

4 W2-gradient flow of Entm

Since the ambient space P(X) is not linear (at least if we take the viewpoint of optimal
transportation), what do we mean by gradient flow?

Key idea. (De Giorgi) Encode the system x′(t) = −∇F (x(t)) in a single differential inequal-
ity, by looking at the rate of energy dissipation:

(DG)
d

dt
F (x(t)) ≤ −1

2
|∇F |2(x(t))− 1

2
|x′(t)|2.

Indeed, in a sufficiently smooth setting, along any curve y(t), we have

d

dt
F (y(t)) = 〈∇F (y(t)), y′(t)〉

≥ −|∇F (y(t))||y′(t)| (= iff −y′(t) is parallel to ∇F (y(t)))

≥ −1

2
|∇F |2(y(t))− 1

2
|y′(t)|2 (= iff |∇F |(y(t)) = |y′(t)|).

All terms in (DG) make sense in a metric space (X, d): |x′| can be replaced by the metric
derivative and |∇F | by the descending slope |∇−F |, so that the speed is 0 at minimum points.
By looking at integral versions of this optimal dissipation rate we can write down an energy
dissipation inequality and an energy dissipation identity:

(EDI) F (x(t)) +

∫ t

0

1

2
|x′(r)|2 +

1

2
|∇−F |2(x(r)) dr ≤ F (x(0)) ∀t ≥ 0.

(EDE) F (x(t)) +

∫ t

0

1

2
|x′(r)|2 +

1

2
|∇−F |2(x(r)) dr = F (x(0)) ∀t ≥ 0.

5 Properties of the slope of K-convex functions

The following lemma provides very useful properties of the descending slope of K-convex and
l.s.c. functions.
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Lemma 5.1 If F is K-convex, l.s.c in a geodesic metric space, we have the upper gradient
property

F (y(0)) ≤ F (y(t)) +

∫ t

0
|y′r||∇−F |(y(r)) dr (5.1)

along any absolutely continuous curve y : [0, t] → X. As a consequence, (EDE) and (EDI)
are equivalent for F , |x′(t)| = |∇−F |(x(t)) for a.e. t > 0, t 7→ F (x(t)) is locally a.c. in
(0,∞), with derivative equal to −|∇−F |2(x(t)).

Sketch of proof. For simplicity, assume K = 0. In this case, using monotonicity of difference
quotients one has the duality formula for the descending slope:

|∇−F |(x) = sup
y 6=x

[F (x)− F (y)]+

d(x, y)
. (5.2)

It implies at once that x 7→ |∇−F |(x) is l.s.c. in X, and provides the one-sided (because
no modulus is present) and local (because the factor in front of the distance is not constant)
Lipschitz property:

F (x)− F (y) ≤ |∇−F |(x)d(x, y) ∀x ∈ D(F ). (5.3)

A real analysis lemma (see [3, Lemma 1.2.6]) then shows that (5.3) implies the upper gradient
property.

Now, if we have an (EDI) solution, we can bound F (x(0)) from above using (5.1) to get∫ t

0

1

2
|x′(r)|2 +

1

2
|∇−F |2(x(r)) dr ≤

∫ t

0
|x′(r)||∇−F |(x(r))| dr.

Since t is arbitrary, this implies that |x′| = |∇−F |(x) a.e. in (0,∞). �

These results apply of course to the Entm in P(X), under the CD(K,∞) assumption,
and provide lower semicontinuity of |∇−Entm|, the upper gradient property of |∇−Entm| and
the equivalence of the (EDE) and (EDI) formulations.

6 Fisher bounds squared slope from above

We have seen that the energy dissipation rate of Entm along the L2 heat flow is given by the
Fisher information functional. It is natural to related this functional to energy dissipation of
Entm seen from the Wasserstein viewpoint.

Proposition 6.1 In a CD(K,∞) space (X, d,m), assume that ρ ∈ L1(X,m) is a probability
density with

√
ρ ∈ D(Ch). Then

|∇−Entm|2(ρm) ≤
∫
{ρ>0}

|∇ρ|2∗
ρ

dm

(
= 4

∫
|∇√ρ|2∗ dm

)
.

Notice that it is precisely this inequality that prevents, in CD(K,∞) spaces, triviality of the
theory!
Sketch of proof. By approximation (recall that Ch is defined by approximation with Lips-
chitz functions and that |∇−Entm| is l.s.c.) we can assume that

√
ρ ∈ Lip(X). By truncation,

we can also assume that c−1 ≥ √ρ ≥ c > 0, so that log ρ ∈ Lip(X).
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Let us consider another density η and an optimal plan πη from ρ to η. Then, following
[26, Theorem 20.1], we can estimate:

Entm(ρm)− Entm(ηm) ≤
∫

log ρ(ρ− η) dm =

∫
log ρ(x)− log ρ(y) dπη

≤
∫ (
|∇− log ρ|(x) + ωx(y)

)
d(x, y) dπη(x, y)

≤ W2(ηm, ρm)

(∫
(|∇− log ρ|(x) + ωx(y))2 dπη

)1/2

where ωx(y) is a uniformly bounded modulus of continuity with ωx(x) = 0. Dividing both
sides by W2(ηm, ρm) and letting ηm→ ρm gives the result, by the weak convergence of πη to
the identity plan πρ, concentrated on the diagonal (since the first marginal is fixed, the limit
works even though |∇− log ρ| is discontinuous). �

7 Identification of gradient flows

Coming back to the notation used in the introduction, where we dealt with the JKO result
for entropy and the heat equation, the conventional strategy goes as follows:

{ gradient flow of Ent} ⊂ { gradient flow of Dir }
=⇒ = holds

Uniqueness of gradient flow of Dir

The new strategy, initiated in [14], proves instead
{ gradient flow of Ch} ⊂ { gradient flow of Entm }

=⇒ = holds

Uniqueness of gradient flow of Entm

The new strategy is feasible thanks to the recent uniqueness result proved by Gigli in [13]
for the W2 gradient flow of Entm. This result is surprising, because no contractivity property
of W2 can be expected at this level of generality [25], not even in Finsler (non Riemannian)
spaces.

We want to show that any L2 heat flow ft := htf0 (with f0 probability density) is a
W2-gradient flow with µt := ftm, i.e.∫

ft log ft dm +

∫ t

0

1

2
|µ̇r|2 +

1

2
|∇−Entm|2(µr) dr ≤

∫
f0 log f0 dm.

Indeed, Kuwada’s Lemma 3.6 and Proposition 6.1 give for almost every t > 0

|µ̇t|2 ≤
∫
{ft>0}

|∇ft|2∗
ft

dm, |∇−Entm|2(ftm) ≤
∫
{ft>0}

|∇ft|2∗
ft

dm, (7.1)

while the Hilbertian energy dissipation gives

d

dt

∫
ft log ft dm = −

∫
{ft>0}

|∇ft|2∗
ft

dm for a.e. t > 0.
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Coming now to uniqueness, the key contribution of [13] is the proof of convexity (in the
usual sense) of µ 7→ |∇−Entm|2(µ). Once we know this, if we have two EDI solutions µ1t , µ

2
t ,

both starting from µ̄, namely

Entm(µit) +

∫ t

0

1

2
|µ̇is|2 +

1

2
|∇−Entm|2(µis) ds ≤ Entm(µ̄) i = 1, 2

we can combine them into µt := (µ1t + µ2t )/2 to get (using convexity of Entm and of the
squared metric derivative as well)

Entm(µt) +

∫ t

0

1

2
|µ̇s|2 +

1

2
|∇−Entm|2(µs) ds ≤ Entm(µ̄).

By the upper gradient property the inequality has to be an equality, and this can happen only
if 2Entm(µt) = Entm(µ1t ) + Entm(µ2t ). Strict convexity of the entropy then gives the result.

Another byproduct of the inclusion of L2 gradient flows of Ch into W2-gradient flows of
Entm is that all inequalities (see (7.1) in particular) should be equalities, so that the energy
dissipation rates are equal a.e. in (0,∞):

|∇−Entm|2(ftm) =

∫
{ft>0}

|∇ft|2∗
ft

dm for a.e. t > 0.

By letting t ↓ 0, this can be used to show that Fisher coincides with slope:

|∇−Entm|2(fm) =

∫
{f>0}

|∇f |2∗
f

dm.

8 Weak gradients and their identification

Let’s start from the Euclidean case. We discuss only the case W 1,2, although all W 1,p spaces
1 < p < ∞ (and even the W 1,1 and BV spaces) could be treated, see [6]. The two standard
definitions of Sobolev spaces are of W type (weak derivatives)

W 1,2(Rn) :=

{
u ∈ L2(Rn) :

∂u

∂xi
∈ L2(Rn), 1 ≤ i ≤ n

}
and of H type (strong derivatives)

H1,2(Rn) :=
{

completion of C∞ ∩W 1,2 for the W 1,2 norm
}
.

The celebrated “H = W” theorem by Meyers-Serrin in 1960 provides equivalence of the
two definitions, even in any open domain. Another less known approach goes back to a paper
by B.Levi [17] in 1906. Levi was looking for a function space where the minimization of the
Dirichlet energy in a planar domain with given boundary conditions could find a solution, I
will adopt his definition to n space dimensions, denoting for any i = 1, . . . , n by xi the i-th
variable and by x′i the block of the remaining (n− 1) variables.

Definition 8.1 (Beppo Levi space) Let u : Rn → R. We say that u ∈ BL1,2(Rn) if:

(a) for i = 1, . . . , n and for L n−1-a.e. x′i ∈ Rn−1, u(x′i, ·) is absolutely continuous in R;
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(b)
n∑
i=1

∫
Rn−1

∫
R |

∂u
∂xi
|2 dxidx′i <∞.

Using Fubini’s theorem we can still define a gradient in BL spaces. However, a drawback
of this approach is that it is not clear whether the BL property is frame-indifferent or not.
It is actually true, but to realize this one has to pass through the equivalence with the H
and W definitions, that we are now going to discuss. Actually, another way to bypass this
objection would be to consider in some sense all or, more precisely, almost all curves (not
only geodesics), this is exactly the strategy pursued in the metric theory. For a proof of this
result, see for instance [1] or [15].

Theorem 8.2 BL1,2(Rn) ⊂ W 1,2(Rn). In addition, any u ∈ W 1,2(Rn) has a version (for
instance lim supε u ∗ ρε) in BL1,2(Rn).

In metric spaces, the W definition seems to be difficult to adapt. On the other hand,
the H definition roughly corresponds to Cheeger’s energy Ch (with Lip(X) playing the role
of C∞), while Levi’s definition corresponds to Shanmugalingam’s notion [22] of Newtonian
space N1,2(X, d,m), that now I am going to illustrate. Actually in [4] a different notion of
gradient is used, a priori smaller than the gradient of [22]; however, to simplify the exposition,
I will just confine myself to the relaxed gradient and the gradient of [22].

Definition 8.3 Given Γ ⊂ AC([0, 1];X) we define

Mod2(Γ) := inf

{∫
g2 dm : g : X → [0,∞] Borel,

∫
γ
g ≥ 1 for all γ ∈ Γ

}
.

Here the curvilinear integral is defined, as in the theory of upper gradients, using the
metric derivative, namely

∫
γ g :=

∫ 1
0 g(γs)|γ̇s| ds.

We now define N1,2(X, d,m) by{
f : X → R :

∣∣∫
∂γ
f | ≤

∫
γ
G for Mod2-a.e. γ, for some G ∈ L2(X,m)

}
and |∇f |S ∈ L2(X,m) as the function G with smallest L2 norm.

Lemma 8.4 (Absolute continuity lemma) Any f ∈ N1,2(X, d,m) is absolutely continu-
ous along Mod2-a.e. curve γ.

Proof. Let Γ be the set of curves γ where the u.g. property with |∇f |S does not hold,

Γ1 :=
{
γ : γ ⊃ γ′ ∈ Γ

}
,

Γ2 :=

{
γ :

∫
γ
|∇f |S =∞

}
.

Now, Γ1 is Mod2-negligible because Γ is (any g admissible for Γ is admissible for Γ′), Γ2 is
Mod2-negiglible by the “Markov” inequality

Mod2

(
Γ2 ∩

{∫
γ
|∇f |S ≥ n

})
≤ 1

n2

∫
|∇f |2S dm→ 0.
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If γ /∈ (Γ1 ∪ Γ2) we have∣∣∣∣∫
∂γ′

f

∣∣∣∣ ≤ ∫
γ′
|∇f |S ≤

∫
γ
|∇f |S <∞ ∀γ′ ⊂ γ

which yields immediately the absolute continuity property of t 7→ f(γt).
The gradient |∇f |S has pointwise minimality properties analogous to |∇f |∗ (see Theo-

rem 3.2(3)), in particular if G satisfies the weak upper gradient property∣∣∣∣∫
∂γ
f

∣∣∣∣ ≤ ∫
γ
G for Mod2-a.e. curve γ

then |∇f |S ≤ G m-a.e. in X. �

Are the gradients |∇f |∗, |∇f |S equal? While the first gradient is relevant in connection
with the L2 heat flow and the “vertical” derivative, the second one is relevant in connection
with the derivative of Entm and the “horizontal” derivative.

If we assume doubling & Poincaré (with the S-gradient in the right hand side), then we
can approximate any f ∈ N1,2(X, d,m), see for instance [8], in the strong norm and even in
the Lusin sense by Lipschitz maps fn. This leads to the equality of gradients.

The strategy is to consider the maximal function

M(x) := sup
r>0

∫
Br(x)

|∇f |S(y) dm(y)

m(Br(x))

and to prove that f |{M≤n} is Cn-Lipschitz. Defining fn as a Lipschitz extension of f |{M≤n},
locality of gradients and

m
(
{M > n}

)
= o(

1

n2
)

provide the result.
With “optimal transportation tools” we can provide in [4], see also [6], the equivalence

of gradients and the density in energy of Lipschitz maps without doubling & Poincaré. This
requires an approximation by Lipschitz functions fn in “energy”, namely

lim sup
n→∞

∫
|∇fn|2 dm ≤

∫
|∇f |2S dm,

∫
|fn − f |2 dm→ 0. (8.1)

By uniform convexity, this provides also

lim
n→∞

∫ ∣∣|∇fn| − |∇f |S∣∣2 dm = 0.

Notice that, as soon as we know that the Sobolev spaces are reflexive, we can use Mazur’s
lemma (i.e. take convex combinations) to improve the approximation from weak to strong
(while, without doubling & Poincaré, the Lusin approximation seems really to be out of
reach).

In order to prove (8.1) we need, besides Kuwada’s lemma, three more auxiliary results.

Lemma 8.5 If η ∈ P(C([0, 1];X)) concentrated on AC2([0, 1];X) has uniformly bounded
time marginals, i.e. (et)]η ≤ C(η)m for all t ∈ [0, 1], then

[η(Γ)]2 ≤ C(η)

(∫ ∫ 1

0
|γ̇s|2 ds dη(γ

)
Mod2(Γ) ∀Γ ⊂ AC2([0, 1];X).

In particular Mod2(Γ) = 0 implies η(Γ) = 0.
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Proof. If g is admissible for Γ we have

[η(Γ)]2 ≤
(∫ 1

0

∫
g(γs)|γ̇s| ds dη(γ)

)2

.

Then, it suffices to apply Hölder and to minimize w.r.t. g. �

Proposition 8.6 (Superposition principle [3], [18]) Let (µt)t∈[0,T ] ⊂ P(X) be abso-
lutely continuous with L2-integrable metric derivative. Then there exists η ∈P(C([0, T ];X))
concentrated on AC2([0, T ];X) and satisfying

(1) µt = (et)]η for all t ∈ [0, T ];

(2) |µ̇t|2 =
∫
|γ̇t|2 dη(γ) for a.e. t ∈ (0, T ).

Lemma 8.7 (Stability of weak upper gradients [22], [15]) If fn → f in L2(X,m),
Gn → G weakly in L2(X,m) and∣∣∣∣∫

∂γ
fn

∣∣∣∣ ≤ ∫
γ
Gn for Mod2-a.e. curve γ,

then there is a version f̃ of f satisfying∣∣∣∣∫
∂γ
f̃

∣∣∣∣ ≤ ∫
γ
G for Mod2-a.e. curve γ.

Using this lemma with fn equal to the optimal sequence in the definition of Ch and
Gn = |∇fn|, weakly convergent to |∇f |∗, we obtain

|∇f̃ |S ≤ G = |∇f |∗ m-a.e. in X.

The proof of the converse inequality is constructive: we need Lipschitz functions fn satisfying
fn → f in L2(X,m) and

lim sup
n→∞

∫
|∇fn|2 dm ≤

∫
|∇f |2S dm.

By a diagonal argument, suffices to find fn ∈ D(Ch) satisfying lim supn
∫
|∇fn|2∗ dm ≤∫

|∇f |2S dm. By a truncation argument we assume that, 0 < c ≤ f ≤ c−1 < ∞ and by
homogeneity

∫
f2 dm = 1. We set k = f2, kt = htk, µt = ktm ∈ P(X), η given by the

superposition principle. Then we argue as in Proposition 6.1, this time using the S-gradient
in place of the relaxed slope:∫

k log k − kt log kt dm

≤
∫

log k(k − kt) dm =

∫
log k(γ0)− log k(γt) dη(γ)

≤
∫ ∫ t

0
|∇ log k|S(γs)|γ̇s|dsdη(γ)

≤
(∫ t

0

∫
|∇ log k|2S(γs)dηds

)1/2(∫ t

0

∫
|γ̇s|2 dη(γ)ds

)1/2

≤ 1

2

∫ t

0

∫
|∇ log k|2Sksdmds+

1

2

∫
|µ̇s|2 ds.
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By the Kuwada lemma we get∫
k log k − kt log kt dm

≤ 1

2

∫ t

0

∫
|∇ log k|2Sksdmds+

1

2

∫ t

0

∫
{ks>0}

|∇ks|2∗
ks

dmds.

The entropy dissipation formula (3.4) then gives∫ t

0

∫
{ks>0}

|∇ks|2∗
ks

dmds ≤
∫ t

0

∫
|∇ log k|2Sksdmds,

so that the identity |∇ log k|S = |∇k|S/k = 2|∇f |S/f we get

4

t

∫ t

0
Ch(
√
ks) ds ≤

4

t

∫ t

0

∫ |∇f |2S
f2

ks dmds.

Letting t ↓ 0 and using the w∗-convergence in L∞(X,m) of ks to k = f2 gives the result.

9 Riemannian Ricci lower bounds

As noticed by Cordero Erausquin, Sturm and Villani, all Minkowski spaces (Rn endowed with
the Lebesgue measure and any norm ‖ · ‖) satisfy the CD(0, n), and therefore the CD(0,∞)
condition. On the other hand, Cheeger and Colding ruled out in [9] the possibility to obtain
these spaces as limits of Riemannian manifolds with uniform lower bounds on Ricci curvature
and uniform upper bounds on volume.

In [5] we tried to give an answer to the following question: is there a more restrictive
notion, still stable and strongly consistent with the Riemannian case, that rules out Minkowski
(non Hilbert) spaces? Recall that the CD(K,∞) condition is stable [23, 24, 19], meaning
that measured Gromov-Hausdorff limits of CD(K,∞) spaces are CD(K,∞), and strongly
consistent, meaning that a Riemannian manifold M endowed with Riemannian distance d =
dM and the volume measure m = volM is CD(K,∞) iff RicM ≥ KI. So, a positive answer to
this question would provide more insight, among other things, on the closure of Riemannian
manifolds under uniform Ricci lower bounds.

This led us to the definition of spaces with Riemannian Ricci lower bounds. We have 3
equivalent definitions (and their equivalence is far from being trivial), summarized below, and
this class of spaces provides a positive answer to the question I raised.

Definition 9.1 (RCD(K,∞) spaces) We say that (X, d,m) has Riemannian Ricci curva-
ture bounded from below by K ∈ R, and write RCD(K,∞), if one of the following equivalent
conditions hold:

(i) (X, d,m) is a strong CD(K,∞) space and the L2 gradient flow ht of Ch is linear;

(ii) (X, d,m) is a strong CD(K,∞) space and the W2 gradient flow Ht of Entm is additive
(i.e. convex and concave) on P(X);

(iii) for all µ ∈P(X) with suppµ ⊂ suppm, Htµ is a gradient flow in the EV IK sense.

I will illustrate later on what strong CD(K,∞) and EV IK mean, in the next subsections
I will instead list some properties of this class of spaces.
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9.1 Stability under Gromov-Hausdorff limits of RCD(K,∞) spaces

We say that two metric measure spaces (X, dX ,mX) and (Y, dY ,mY ) are isomorphic if there
exists a bijective isometry f : suppmX → suppmY such that f]mX = mY . We will denote by
X the set of isomorphism classes of metric measure spaces that we will consider (as we said at
the beginning we confine ourselves to compact metric spaces (X, d) and probability reference
measures m):

X :=
{

(X, d,m) : (X, d) is compact and m ∈P(X)
}
.

Definition 9.2 Given two metric measure spaces (X, dX ,mX), (Y, dY ,mY ), we consider the
product space (X × Y, dXY ), where

dXY
(
(x1, y1), (x2, y2)

)
:=
√
d2X(x1, x2) + d2Y (y1, y2).

We say that (d,γ) is an admissible coupling if:

(a) d is a pseudo distance on X t Y which coincides with dX (resp. dY ) when restricted to
suppmX × suppmX (resp. suppmY × suppmY ) and d|X×Y : X × Y → [0,∞) is Borel.

(b) γ is a Borel measure on X × Y , πX] γ = mX and πY] γ = mY .

It is not hard to see that the set of admissible couplings is always non empty. The cost
C(d,γ) of a coupling is given by

C(d,γ) :=

∫
d2(x, y)γ. (x, y).

In analogy to the definition of W2, Sturm’s distance D is then defined as

D2
(
(X, dX ,mX), (Y, dY ,mY )

)
:= inf C(d,γ),

the infimum being taken among all couplings (d,γ) of (X, dX ,mX) and (Y, dY ,mY ).

Theorem 9.3 Let (Xn, dn,mn) ∈ X be RCD(K,∞) spaces. If D
(
(Xn, dn,mn), (X, d,m)

)
→

0, then (X, d,m) is a RCD(K,∞) space as well.

In the proof of this result it is the EV IK formulation that plays a decisive role.

9.2 Tensorization of RCD(K,∞) spaces

Remember [24] that the product of two non-branching CD(K,∞) spaces is still CD(K,∞),
and it is still open the validity of the implication if the non-branching assumption is removed.
Here non-branching means that the map (e0, et) : Geo(X) → X2 is injective for all t > 0; in
other words, geodesics can’t split. The following result proves that the same property persists
for the stronger RCD(K,∞) notion.

Theorem 9.4 If (X, dX ,mX) and (Y, dY ,mY ) are RCD(K,∞) and non-branching, so is

(X × Y,
√
d2X + d2Y ,mX ×mY ).
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In the proof of this result we failed to prove directly tensorization of the EV IK , so we
rely on the above mentioned Sturm’s result saying that the product is CD(K,∞). Since the
nonbranching property tensorizes, and since it is not difficult to show that

CD(K,∞) + nonbranching =⇒ strong CD(K,∞)

the product is also strong CD(K,∞).
Finally, we have to prove that linearity of the heat flow tensorizes as well. This is equivalent

to say that

ChX×Y (f) =

∫
ChX(fy) dmY (y) +

∫
ChY (fx) dmX(x)

or equivalently that (with fx(y) = f(x, y) = fy(x))

|∇f |2∗(x, y) = |∇fx|2∗(y) + |∇fy|2∗(x) mX ×mY -a.e. in X × Y .

The proof of the inequality |∇f |2∗(x, y) ≤ |∇fx|2∗(y) + |∇fy|2∗(x) is based on the following
calculus lemma and on a smoothing argument with the product semigroup hXt × hYt .

Lemma 9.5 If f : X × Y → R is Lipschitz and γ = (γX , γY ) : [0, 1] → X × Y is absolutely
continuous, then, for a.e. t, | ddt(f ◦ γ)(t)| is bounded from above by

lim sup
h↓0

|f(γXt−h, γ
Y
t )− f(γXt , γ

Y
t )|

h
+ lim sup

h↓0

|f(γXt , γ
Y
t+h)− f(γXt , γ

Y
t )|

h
.

The proof of the converse inequality |∇f |2∗(x, y) ≥ |∇fx|2∗(y) + |∇fy|2∗(x) is much more
delicate. It relies indeed in a version of Kuwada’s lemma in product spaces, when we con-
sider the product semigroup hXt × hYt , correspondent to the gradient flow of 1

2

∫
|∇fx|2∗(y) +

|∇fy|2∗(x) dmX ×mY (x, y):

Proposition 9.6 (Kuwada’s lemma in product spaces) Let f ∈ L2(X × Y,mX × mY )
be a probability density and let ft be the evolution of f under the product semigroup, µt =
ftmX ×mY . Then for a.e. t > 0 it holds

|µ̇t|2 ≤
∫
{ft>0}

|∇fxt |2∗(y) + |∇fyt |2∗(x)

ft(x, y)
dmX ×mY (x, y).

Once we know this, the machinery of identification theorems provides identification of the
two gradients.

9.3 The heat flow in RCD(K,∞) spaces

The identification between the L2 gradient flow ht and the W2 gradient flow Ht allows to
pick the best properties from each of them: for instance, the symmetry of the transition
probabilities θt : X × X → [0,∞), defined by Htδx := θt(x, ·)m, comes from the fact that
ht is L2-selfadjoint, while the contractivity properties of ht in spaces different from L2(X,m)
follow from those of Ht.

Proposition 9.7 (Properties of the heat flow) It holds:
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(1) The pointwise formula h̃tf(x) :=
∫
f dHtδx provides a version of htf and an extension

of ht to a contraction semigroup in all Lp(X,m) spaces.

(2) h̃t leaves Lip(suppm) invariant and, by the contractivity estimate W2(Htδx,Htδy) ≤
e−Ktd(x, y), Lip(h̃tf) ≤ e−KtLip(f). Furthermore, h̃t maps L∞(X,m) in Cb(suppm).

(3) The Bakry-Emery estimate holds:

|∇(htf)|2∗ ≤ e−2Ktht|∇f |2∗ m-a.e. in X. (9.1)

9.4 RCD(K,∞) spaces and Dirichlet forms

Since Ch is a quadratic form in RCD(K,∞) spaces, the analysis of the connection with
Fukushima’s theory of Dirichlet forms is useful and mandatory. Let

E(u, v) :=
1

4

(
Ch(u+ v)− Ch(u− v)

)
be the symmetric bilinear form associated to Ch. It is a Dirichlet form (i.e. closable and
Markovian) because Ch is L2(X,m)-lower semicontinuous and decreases, by chain rule, under
left composition with 1-Lipschitz maps.

In the theory of Dirichlet forms, two objects are naturally defined, namely the local energy
measure

[u](ϕ) := E(u, uϕ)− E(
u2

2
, ϕ)

and the induced distance

dE(x, y) := sup {|ψ(x)− ψ(y)| : [ψ] ≤ m} .

We proved that in the class of RCD(K,∞) spaces these objects coincide with the natural
ones.

Theorem 9.8 In a RCD(K,∞) space (X, d,m) the local energy measure [u] coincides with
|∇u|2∗m and the induced distance dE coincides with d.

The proof involves the construction of a symmetric bilinear form

(u, v) ∈
[
D(Ch)

]2 7→ ∇u · ∇v ∈ L1(X,m)

satisfying the Leibnitz rule and providing integral representation to E, namely E(u, v) =∫
∇u · ∇v dm.

In addition, since E is also strongly local, the theory of Dirichlet forms can be applied as
a black box to obtain a unique (in law) Brownian motion in (suppm, d,m), i.e. a Markov
process Xt with continuous sample paths satisfying

P(Xt|X0 = x) = Htδx ∀x ∈ suppm, t ≥ 0.
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9.5 Strong CD(0,∞) condition and EV IK

In a geodesic metric space, convexity of an energy F can be asked along some geodesic
connecting a given pair of points, or along all geodesics connecting a given pair of points.
It is well known and easy to check that the first choice (call it convexity) leads to a stable
condition, under Gromov-Hausdorff limits, while the second choice (call it strong convexity)
leads in general to an unstable condition.

The definition given below represents a sort of compromise: we ask for a distinguished
geodesic in P(X) (i.e. an optimal geodesic plan π), but we ask that the same property
persists for all weighted geodesic plans hπ, h ∈ Cb(Geo(X)).

Definition 9.9 (Strong CD(K,∞)) We say that (X, d,m) is a strong CD(0,∞) space if
for all µ0, µ1 ∈ P(X) with finite entropy there exists an optimal geodesic plan π between
them satisfying

Entm
(
(et)](hπ)

)
≤ (1− t)Entm

(
(e0)](hπ)

)
+ tEntm

(
(e1)](hπ)

)
− K

2
t(1− t)W 2

2

(
(e0)](hπ), (e1)](hπ)

)
for all t ∈ [0, 1], h ∈ Cb(Geo(X)) nonnegative,

∫
h dπ = 1.

Question: is there a condition stronger than strong convexity and stable? The answer is
yes, it is the existence of EV IK gradient flows.

If H is Hilbert and F : H → R∪{+∞} is K-convex and l.s.c., we can write the differential
inclusion −x′(t) ∈ ∂F (x(t)) for a.e. t > 0 as follows:

∀y ∈ D(F ), 〈−x′(t), y − x(t)〉+ F (x(t)) +
K

2
|x(t)− y|2 ≤ F (y) for a.e. t > 0.

Equivalently

∀y ∈ D(F ),
d

dt

1

2
|x(t)− y|2 + F (x(t)) +

K

2
|x(t)− y|2 ≤ F (y) for a.e. t > 0.

Definition 9.10 In a metric space (E, d), a locally absolutely continuous curve u : (0,∞)→
E is an EV IK solution to the gradient flow of F : X → R ∪ {+∞} if for all v ∈ D(F ) it
holds

d

dt

1

2
d2(u(t), v) + F (u(t)) +

K

2
d2(u(t), v) ≤ F (v) for a.e. t > 0.

This formulation of gradient flows is equivalent in Hilbert spaces, but in general stronger
than the one based on energy dissipation, see [2]. A remarkable result, proved by Daneri and
Savaré in [10], is that existence of a sufficiently rich family of EV IK gradient flows implies
K-convexity.

Theorem 9.11 In a geodesic space (X, d), assume that EV IK gradient flows exist starting
from any x̄ ∈ D(F ). Then, F is K-convex along any geodesic contained in D(F ).

Sketch of proof. We assume K = 0 and give a formal proof. Let γ : [0, 1] → X be a
constant speed geodesic contained in D(F ) and t ∈ (0, 1), xs the EV I solution starting from
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γt. With no loss of generality, γ0, γ1 ∈ D(F ). The EV I property gives (we assume that the
derivative exists at s = 0)

d+

ds

1

2
d2(xs, γ0)

∣∣∣∣
s=0

≤ F (γ0)− F (x0),
d+

ds

1

2
d2(xs, γ1)

∣∣∣∣
s=0

≤ F (γ1)− F (x0).

Multiply the first one by (1− t), the second one by t, and use the fact that x0 = γt, to get

(1− t)F (γ0) + tF (γ1)− F (γt) ≥
1

2

d+

ds
(1− t)d2(γ0, xs) + td2(xs, γ1)

∣∣∣∣
s=0

.

On the other hand, Young and triangle inequality easily imply that

(1− t)d2(x, z) + td2(z, y) ≥ t(1− t)d2(x, y) ∀x, y, z ∈ X,

with equality (only) if d(x, z) = td(x, y), d(z, y) = (1− t)d(x, y).
Hence, choosing x = γ0, y = γ1, the quantity

s 7→ (1− t)d2(γ0, xs) + td2(xs, γ1)

is minimal at s = 0 (recall that x0 = γt), so that its right derivative is nonnegative. �

Having now defined EV IK , we can now give a sketchy proof of the stability; as in the
proof of the analogous result for CD(K,∞) spaces, the crucial property is the joint lower
semicontinuity property of (µ,m) 7→ Entm(µ). The latter is a direct consequence of the
duality formula

Entm(σ) = sup
f∈Cb

∫
f dσ −

∫
F ∗(f) dm

where F (z) = ez−1 is the transform of z log z (set to +∞ for z < 0).
Sketch of proof of stability of RCD(K,∞). Let (Xn, dn,mn) → (X, d,m) w.r.t. the
distance D, (Xn, dn,mn) RCD(K,∞). Thanks to an embedding theorem and the invari-
ance in the isomorphism class we can (possibly extracting a subsequence) assume that both
Xn = suppmn and X = suppm are contained in a fixed metric space (Y, dY ) and that
dn = dY |Xn×Xn , d = dY |X×X .

Given an initial condition µ̄ = ρm with ρ ∈ L∞(X,m), we want to build an EV I solution
starting from µ̄ in the space (X, d,m). We find µ̄n := ρnmn, with ‖ρn‖∞ ≤ ‖ρ‖∞, weakly
convergent to µ̄, and the EV I solutions µnt starting from µ̄n:

∀ν, d

dt

1

2
W 2

2 (µnt , ν) + Entmn(µnt ) ≤ Entmn(ν) for a.e. t > 0.

By standard tightness estimates in space and equi-continuity estimates in time we can assume
that µnt → µt in P(X) for all t ≥ 0, so that µt is our candidate EV I solution.

In order to check this, for any ν ∈ D(Entm) we can find νn ∈ D(Entmn) convergent to ν
in P(X) and satisfying Entmn(νn)→ Entm(ν).

In this way the right hand sides in the EV I converge and also the time derivatives (in the
sense of distributions). It remains to prove that

lim inf
n→∞

Entmn(µnt ) ≥ Entm(µt) ∀t ≥ 0

and this follows, as we said, by the joint lower semicontinuity of the entropy.
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9.6 Some auxiliary results

In this section I just state some auxiliary results needed to prove the equivalence of conditions
(i), (ii), (iii) in Definition 9.1.

Lemma 9.12 (Derivative of squared Wasserstein distance) Let (X, d,m) be a
CD(K,∞) space, µ = ρm ∈P(X) such that 0 < c ≤ ρ ≤ C <∞ and set µt := Ht(µ) = ρtm.
Let ν = σm ∈ P(X) and let ϕt be a Kantorovich potential relative to (µt, ν). Then for a.e.
t > 0 it holds

d

dt

1

2
W 2

2 (ρtm, σm) ≤ Ch(ρt − εϕt)− Ch(ρt)

ε
∀ε > 0.

Lemma 9.13 (Derivative of the entropy along a geodesic) Let (X, d,m) ∈ X be a
strong CD(K,∞) space and let ρ, σ be bounded probability densities. Assume that σ has
bounded support and that ρ ≥ c > 0. Then there exists an optimal geodesic plan π from ρm
to ν := σm satisfying

Ch(ϕ)− Ch(ϕ+ ερ)

ε
≤ lim

s↓0

Entm(σsm)− Entm(ρm)

s
∀ε > 0,

where (es)]π = σsm and ϕ is any Kantorovich potential relative to (ρm, ν).

Theorem 9.14 (Metric Brenier theorem for strong CD(K,∞) spaces) Let
(X, d,m) ∈ X be a strong CD(K,∞) space, µ = ρm ∈ P(X) with c−1 ≥ ρ ≥ c > 0
and ν ∈P(X) with bounded support and density. Then there exist an optimal geodesic plan
π and L : X → [0,∞) satisfying

L(γ0) = d(γ0, γ1) for π-a.e. γ ∈ Geo(X).

Furthermore,
L(x) = |∇ϕ|∗(x) = |∇+ϕ|(x) for µ-a.e. x ∈ X,

where ϕ is any Kantorovich potential relative to (µ, ν).

10 Open problems and perspectives

(1) It would be interesting to examine the impact of the additional axiom, i.e. linearity of
the heat flow, at the level of the finite-dimensional theory, i.e. CD(K,N) with N < ∞. Or
to understand, at least in the case K = 0, where the Reny entropy is available, the role of
the EV I formulation

(2) At least formally, one can use this calculus to write down a differential CD(K,N) in-
equality

∆
|∇f |2∗

2
≥ 〈∇∆f,∇f〉+

(∆f)2

N
+K|∇f |2∗,

and try to investigate its relation with the existing theories. Also, in this differential per-
spective, one might try to reverse the implication from the Bakry-Emery condition (9.1) to
(R)CD(K,∞).

(3) In presence of doubling & Poincaré, Cheeger’s theory applies and provides, in a suitable
and very weak sense, local coordinates and a tangent bundle. The relations with the calculus
described in these lectures are still not completely understood.
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(4) What about the behaviour on small scales of RCD(K,∞) spaces? The question makes
sense, if one adds a doubling condition. The natural conjecture is that tangent metric spaces,
in the measured Gromov-Hausdorff sense, are Euclidean. This has been proved by Cheeger-
Colding, but for limits of Riemannian manifolds.
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