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Introduction

This work is to give an overview over the research that I’ve done up to now. The overall idea
behind my interests has been that of understanding analytical and geometrical properties of
non smooth spaces both from both a theoretical and a practical point of view. The two main
classes of spaces on which I focussed are: the Wasserstein space (P2(M),W2) built over a
Riemannian manifold, and abstract metric and metric-measure spaces, in particular those
with Ricci curvature bounded below.

Not all of my works are reported/synthesized here, but only the most recent ones (∼ last
2 years). For instance I won’t discuss the Hahn-Banach theorem on the Wasserstein space
(proved in [8]), and, most importantly, I won’t describe the results of the book [3] which I
wrote during the PhD together with Ambrosio and Savaré. Still, some results of this book
are mentioned, when they deserve as starting point for further analysis.

Concerning the presentation style, I will not give details about the rigorous proof of the
various statements, unless the proof itself contains ideas which I believe worth of notice. In
other words, I will try to convey only the main concepts and tools behind the theorems,
leaving aside technicalities.

The first Chapter is devoted to the study of the geometry of the Wasserstein space,
which has been for me a natural continuation of the studies done during the PhD. Indeed,
in the book [3] we gave a rigorous description of various concepts introduced by Otto in his
seminal work [39], where he described how the space (P2(Rd),W2) can be viewed as a sort of
Riemannian manifold. We used this point of view to implement a general theory of gradient
flows on (P2(Rd),W2), linking it to the study of certain parabolic PDEs. What I did after
the work on the book was concluded, has been to understand how far the interpretation of
the Wasserstein space as Riemannian manifold can be pushed.

In the second Chapter I discuss some recent examples of PDEs which can be seen as
gradient flows.

Chapters from the third to the last are related, in a very broad sense, to the study of the
heat flow on a general metric measure space, and in particular on those having Ricci curvature
bounded from below in the sense of Lott-Sturm-Villani (CD(K,∞) spaces in short), which
has been my main research subject in the last year. The results presented are partly obtained
by myself only, and partly in collaboration with other authors (Kuwada and Ohta on one side
[14] and Ambrosio and Savaré on the other [4], [5]).

More in detail, in the third chapter I study the relation between the Hopf-Lax formula
and the Hamilton-Jacobi equation, showing that the former produces solutions to the latter
in a purely metric setting. This result has been inspired by a work of Lott and Villani [32],
where they proved an analogous statement in the setting of metric measure spaces having
doubling and Poincaré. What turned out, is that actually the variational structure of the
Hopf-Lax formula allows for arguments independent on the given measure, which therefore
lead to more general results. Surprisingly, the study of the Hamilton-Jacobi equation is a key
tool for understanding the behavior of the heat flow in a metric-measure setting.

Chapter 4 describes why it is reasonable to define the heat flow on CD(K,∞) spaces as
gradient flow of the relative entropy. Indeed it is well known that this is a good definition
on a smooth setting, but on the abstract case it is a priori unclear why such gradient flows
exists and is unique. A general stability result for gradient flows is also given, which implies in
particular that the heat flow on CD(K,∞) spaces is stable under measured-Gromov-Hausdorff
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convergence.
Chapter 5 contains, in a pretty detailed way, a new description of Sobolev spaces over

metric measure spaces, where tools and ideas coming from optimal transport as well as the
study of the Hamilton-Jacobi equation play a key role. This new approach coincides with
the previous well known construction, but the new tools allow for a finer description of the
Sobolev space W 1,2(X, d,m), allowing for instance to prove that Lipschitz functions are dense
in energy, regardless of any assumption on the metric measure space (X, d,m).

Chapter 6 contains the proof of my main research achievement of the last year: in a
general CD(K,∞) space (X, d,m) the gradient flow of the relative entropy in (P2(X),W2)
produces the same evolution of the gradient flow of the natural Dirichlet energy in L2. This
is in complete accordance with what happens in a smooth setting, where it was already well
known that the heat flow can be regarded as any of these two gradient flows.

Finally, in Chapter 7 I present, without any proof, the results of a very recent work where
it is proposed a new definition of Ricci curvature bounds on metric measure spaces which
rules out Finsler geometries.
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1 Structure of the Wasserstein space

One of the major breakthrough in the study of the optimal transport problem has been
done by Otto in [39], where he described how the Wasserstein space (P2(Rd),W2) can be
viewed as a sort of infinite dimensional Riemannian manifold. The understanding of how far
Riemannian calculus on this space can be pushed has been a topic on which I invested a lot
of energies. The first results in this direction are those contained in the monograph [3] which
I wrote together with Ambrosio and Savaré. In this work, we needed to develop a rigorous
first order calculus to give a meaning to notions like ‘subdifferential of a (geodesically) convex
functional’ and develop a general theory to link the study of gradient flows on (P2(Rd),W2)
with that of certain parabolic PDEs. Some of the results in [3] are recalled in the introduction
below, as they deserve as starting point for the further investigation that I carried on after
my PhD.

Beside the introduction below, this chapter is split into three sections. In the first one I
describe the precise structure of the tangent cone of (P2(M),W2) at a general measure µ,
explaing in particular under which conditions it is an Hilbert space (published in [12]).

In the second one I present an overview about second order calculus over the ‘manifold’
(P2(M),W2), i.e. I will introduce the covariant derivative, compute it for some class of
vector fields, discuss the problem of existence of parallel transport and introduce the curvature
tensor. Much more could be said on this topic (e.g. one can rigorously describe the differential
of the exponential map and the Jacobi equation, showing that the former produces solutions
to the latter, in accordance with the smooth case), but I preferred to give here just an
introduction to the subject, in the attempt of conveying the basic ideas, rather than drilling
down as much results as possible. Full development of the second order calculus is contained in
the monograph [10]. I remark that the results contained in [12] and [10] answered problems
raised by Villani in his book [47], where he asked both for a deeper understanding of the
structure of (P2(M),W2) as a manifold and also up to what extent a rigorous second order
calculus could have been developed.

In the last section I will present some ‘spot’ results about the structure of (P2(M),W2),
which I think add value to the overall clarification of the geometry of the Wasserstein space.

1.1 Reminders

This introduction is to make a quick overview about what is meant by ‘weak Riemannian
structure’ of the space (P2(M),W2), statements are taken from the book [3] which I wrote
with Ambrosio and Savaré during my PhD.

I shall start with some heuristic considerations about geodesics: let M = Rd and (µt) be
a constant speed geodesic on P2(Rd) induced by some optimal map T , i.e.:

µt =
(
(1− t)Id + tT

)
#
µ0.

Then a simple calculation shows that (µt) satisfies the continuity equation

d

dt
µt +∇ · (vtµt) = 0,

with vt := (T − Id) ◦ ((1 − t)Id + tT )−1 for every t, in the sense of distributions. Indeed for
φ ∈ C∞c (Rd) it holds

d

dt

∫
φ dµt =

d

dt

∫
φ
(
(1−t)Id+tT

)
dµ0 =

∫
〈∇φ

(
(1−t)Id+tT

)
, T−Id〉dµ0 =

∫
〈∇φ, vt〉 dµt.
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Now, the continuity equation describes the link between the motion of the continuum µt and
the instantaneous velocity vt : Rd → Rd of every “atom” of µt. It is therefore natural to think
at the vector field vt as the infinitesimal variation of the continuum µt.

From this perspective, one might expect that the set of “smooth” curves on P2(Rd) (and
more generally on P2(M)) is somehow linked to the set of solutions of the continuity equation.
This is actually the case, as I’m going to recall now.

Since (P2(M),W2) is just a metric space, there is no a priori notion of smoothness for
a curve: the best one can do is to speak about absolutely continuous curves. Recall that a
curve (xt) with values in a metric space (X, dX) is said absolutely continuous if there exists
a function f ∈ L1(0, 1) such that

dX(xt, xs) ≤
∫ s

t
f(r) dr, ∀t < s ∈ [0, 1]. (1.1)

In this case, for a.e. t the metric derivative |ẋt| exists, given by

|ẋt| := lim
h→0

dX(xt+h, xt)

|h|
, (1.2)

and |ẋt| ∈ L1(0, 1) and is the smallest L1 function (up to negligible sets) for which inequality
(1.1) is satisfied.

The link between absolutely continuous curves in P2(M) and the continuity equation is
given by the following theorem, where I will write ‖v‖µ for the norm of the vector field v in
L2(µ).

Theorem 1.1 (Characterization of absolutely continuous curves) Let M be a smooth
complete Riemannian manifold without boundary. Then the following holds.
(A) For every absolutely continuous curve (µt) ⊂P2(M) there exists a Borel family of vector
fields vt on M such that ‖vt‖L2(µt) ≤ |µ̇t| for a.e. t and the continuity equation

d

dt
µt +∇ · (vtµt) = 0, (1.3)

holds in the sense of distributions.
(B) Conversely, if (µt, vt) satisfies the continuity equation (1.3) in the sense of distributions
and

∫ 1
0 ‖vt‖L2(µt) dt < ∞, then up to redefining (µt) on a negligible set of times, (µt) is an

absolutely continuous curve on P2(M) and |µ̇t| ≤ ‖vt‖L2(µt) for a.e. t ∈ [0, 1].

The first intuition about a connection between the Wasserstein distance and the continuity
equation is due to Benamou and Brenier ([17]), and was further investigated by Otto in his
paper [39]. The rigorous statement of the theorem as presented here was proved in [3]1. Let
me remark that in this theorem there are no regularity assumptions on the µt’s.

Starting from Theorem 1.1 a reasonably rich first order calculus on (P2(M),W2) can be
developed, I recall below some key statement.

A first consequence is the Benamou-Brenier formula, which says that

W2(µ0, µ1) = inf

{∫ 1

0
‖vt‖µt dt

}
, (1.4)

1actually, in [3] the theorem was stated in the case M = Rd, but the generalization to the case of manifolds
is straightforward, as this is a first order statement and as such cannot see the presence of curvature. A
rigorous proof of the case of Riemannian manifold starting from the Euclidean one follows, for instance, by an
application of Nash’s embedding theorem (see e.g. [2] for more details).
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where the infimum is taken among all weakly continuous distributional solutions of the con-
tinuity equation (µt, vt) such that µ0 = µ0 and µ1 = µ1.

The proof of (1.4) follows directly from Theorem 1.1: the inequality ≥ is a consequence
of (A) (considering a geodesic connecting µ0 to µ1), and ≤ of (B).

An interesting feature of equation (1.4) is that it relates the ‘static’ optimal transport
problem, to the ‘dynamic’ problem of interpolating between measures with absolutely contin-
uous curves.

The formula also suggests that the scalar product in L2(µ) should be considered as the
metric tensor on P2(M) at µ, so that (1.4) tells nothing but the fact that the Wasserstein
distance is the Riemannian distance associated to the scalar product in L2(µ). Yet, to give a
more precise meaning this statement, there is another important remark to make: given an
absolutely continuous curve (µt) ⊂P2(M), in general there is no unique choice of vector field
(vt) such that the continuity equation (1.3) is satisfied. Indeed, if (1.3) holds and wt is any
Borel family of vector fields such that ∇ · (wtµt) = 0 for a.e. t, then the continuity equation
is satisfied also with the vector fields (vt +wt). We need then to understand whether there is
some natural selection principle to associate uniquely a family of vector fields (vt) to a given
absolutely continuous curve, which we will then call the velocity vector field of the curve.

There are two possible approaches:
Algebraic approach. The fact that for distributional solutions of the continuity equation the
vector field (vt) acts only on gradients of smooth functions suggests that the vt’s should be
taken in the set of gradients as well, or, more rigorously, vt should belong to{

∇ϕ : ϕ ∈ C∞c (M)
}L2(µt)

(1.5)

for a.e. t ∈ [0, 1].
Variational approach. The fact that the continuity equation is linear in vt and the L2 norm
is strictly convex, implies that there exists a unique, up to a negligible set in time, family
of vector fields vt ∈ L2(µt), t ∈ [0, 1], with minimal norm for a.e. t, among the vector fields
compatible with the curve (µt) via the continuity equation. It is immediate to verify that vt
is of minimal norm if and only if it belongs to the set{

v ∈ L2(µt) :

∫
〈v, w〉 dµt = 0, ∀w ∈ L2(µt) s.t. ∇ · (wµt) = 0

}
. (1.6)

The important point here is that the sets defined by (1.5) and (1.6) are the same, as it is
easy to check. Therefore it is natural to give the following definition.

Definition 1.2 (The tangent space) Let µ ∈P2(M). The tangent space TanµP2(M) at
P2(M) in µ is defined as

TanµP2(M) :=
{
∇ϕ : ϕ ∈ C∞c (M)

}L2(µ)

=
{
v ∈ L2(µ) :

∫
〈v, w〉 dµ = 0, ∀w ∈ L2(µ) s.t. ∇ · (wµ) = 0

}
Thus we now have a definition of tangent space for every µ ∈P2(M) and this tangent space
is naturally endowed with a scalar product: the one of L2(µ). This fact, Theorem 1.1 and
formula (1.4) are the bases of the so-called weak Riemannian structure of (P2(M),W2).
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I shall conclude recalling some properties of (P2(M),W2) which resemble those of a
Riemannian manifold. For simplicity, I will deal with the case M = Rd only and I will
assume that the measures I’m dealing with are absolutely continuous, so that optimal maps
exist. Still, I remark that analogous statements hold without these assumptions.

Thus in the next three propositions (µt) is an absolutely continuous curve in P2(Rd) such
that µt � Ld for every t, and (vt) is the unique, up to a negligible set of times, family of
vector fields such that the continuity equation holds and vt ∈ TanµtP2(Rd) for a.e. t.

Proposition 1.3 (vt can be recovered by infinitesimal displacement) Let (µt) and (vt)
as above. Also, let T st be the optimal transport map from µt to µs. Then for a.e. t ∈ [0, 1] it
holds

vt = lim
s→t

T st − Id

s− t
,

the limit being understood in L2(µt).

Proposition 1.4 (“Displacement tangency”) Let (µt) and (vt) as above. Then for a.e.
t ∈ [0, 1] it holds

lim
h→0

W2

(
µt+h, (Id + hvt)#µt

)
h

= 0. (1.7)

Proposition 1.5 (Derivative of the squared distance) Let (µt) and (vt) as above and
ν ∈P2(Rd). Then for a.e. t ∈ [0, 1] it holds

d

dt

W 2
2 (µt, ν)

2
= −

∫
〈vt, Tt − Id〉 dµt,

where Tt is the (unique) optimal transport map from µt to ν.

1.2 First order structure

We just discussed the definition of tangent space at a certain measure µ ∈P2(M), as ‘space of
gradients’. As highlighted by Propositions 1.3, 1.4 and 1.5, this notion is coupled with several
results which are reminiscent of those valid in a genuine Riemannian context. Still, both
from theoretical and practical reasons the space TanµP2(M) can be sometime inadequate
because ‘too small’: consider for instance the case µ = δx, then it is immediate to check
that TanδxP2(M) = RdimM . Thus the ‘infinite dimensional manifold’ (P2(M),W2) has a
tangent space which is finite dimensional, which is - at least - bizarre. It is also evident that
in this case TanδxP2(M) does not reasonably describe the structure of P2(M) close to δx.
Another issue is that when studying the subdifferential of geodesically convex functionals on
P2(M), in order to obtain its weak-strong closure (which is the key tool from where to start
any sort of analysis), one soon realizes that at least for singular measures some enlargement
of TanµP2(M) is needed.

It is mainly for this latter reason that in the book [3] we introduced the geometric tangent
space Tanµ(P2(M)) as the tangent cone built over the geodesic metric space P2(M). The
definition is the following. Let the set Geodµ be defined by:

Geodµ :=
{ constant speed geodesics starting from µ

and defined on some interval of the kind [0, T ]

}
/ ≈,
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where we say that (µt) ≈ (µ′t) provided they coincide on some right neighborhood of 0. We
then endow Geodµ with the distance D defined by:

D
(
(µt), (µ

′
t)
)

:= lim
t↓0

W2(µt, µ
′
t)

t
. (1.8)

The Geometric Tangent space Tanµ(P2(M)) is then defined as the completion of Geodµ
w.r.t. the distance D.

It is natural to ask the following question: what is the relation between the “space of
gradients” TanµP2(M) and the “space of directions” Tanµ(P2(M))?

In order to answer this question, start recalling that given ϕ ∈ C∞c (M), the map t 7→
(exp(t∇ϕ))#µ is a constant speed geodesic on a right neighborhood of 0. This means
that there is a natural map ιµ from the set {∇ϕ : ϕ ∈ C∞c (M)} into Geodµ, and there-
fore into Tanµ(P2(M)), which sends ∇ϕ into the (equivalence class of the) geodesic t 7→
(exp(t∇ϕ))#µ.

In [12] I proved the following result, which answer to the previous question.

Theorem 1.6 (The tangent space) Let µ ∈P2(M). Then:

• the lim in (1.8) is always a limit,

• the metric space (Tanµ(P2(M)), D) is complete and separable,

• the map ιµ : {∇ϕ} → Tanµ(P2(M)) is an injective isometry, where on the source
space we put the L2 distance w.r.t. µ. Thus, ιµ always extends to a natural isometric
embedding of TanµP2(M) into Tanµ(P2(M)).

Furthermore, the following statements are equivalent:

i) the space (Tanµ(P2(M)), D) is an Hilbert space,

ii) the map ιµ : TanµP2(M)→ Tanµ(P2(M)) is surjective,

iii) the measure µ has the following property. For any measure ν ∈ P2(M) there exists a
unique optimal plan from µ to ν and this plan is induced by a map.

The proof of this result is rather technical; I will omit it, focussing instead on the implications
of the second part of the theorem.

Notice that (iii) is telling that there is a strict link between the properties of Tanµ(P2(M)),
which is an object related to the local structure of P2(M) around µ, and the ones of the
transport problem, which is a global problem.

Also, to further drill down the topic one may ask under which conditions (iii) is indeed
true. Brenier-McCann’s theorems ensure that this is the case if µ � vol, and further inves-
tigations (see for instance [34]) revealed that it is sufficient to ask that µ(E) = 0 for any
Lipschitz hypersurface E ⊂ M . Actually, to find a condition which is both sufficient and
necessary for (iii) to be true is not hard, as I remarked in [12]. For simplicity I detail it in
the case M = Rd.

The point is that we know that optimal plans are always concentrated on the subdifferen-
tial of a convex function, and viceversa for any convex function ϕ there exists at least a plan
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having µ as first marginal which is concentrated on ∂−ϕ and is therefore optimal2. Therefore
it is easy to check that (iii) is true if and only if for any convex function ϕ its set of points
of non differentiability (which is the same as the set of points where the subdifferential is
multivalued) is µ-negligible. At this point one only needs to understand how the set of non
differentiability points of a convex function is made. This problem of convex analysis has a
known answer, due to Zaj́ıček ([48]): E is the set of non differentiability points of a convex
function if and only if it can be covered by countably many c− c hypersurface, where a c− c
hypersurface is a d− 1 dimensional surface which can be written as graph of the difference of
two convex functions.

Similar arguments apply also to the case of manifolds: one defines c− c hypersurface on a
manifold is an hypersurface which read in an appropriate chart is the graph of the difference
of two convex function, and the shows that (iii) is true if and only if µ(E) = 0 for any c− c
hypersurface E.

In summary: a measure µ is well behaved w.r.t. the optimal transport problem if and
only if its geometric tangent space is an Hilbert space, and if and only if it gives no mass to
c− c hypersurfaces.

1.3 Second order structure

In the monograph [10], partly based on the previous paper [1] written in collaboration with
Ambrosio and based on results of my PhD thesis, I investigated the second order structure
of the Wasserstein space (P2(M),W2). The point being the following: we know from Otto’s
work that (P2(M),W2) has a sort of Riemannian structure and from the analysis made in
[3] and (partly) discussed also in the previous sections we also know that this interpretation
is not just formal, but can be described rigorously. It is therefore natural to question whether
it is also possible to describe rigorously the second order structure of the space, if any. This
amounts in finding a good definition for objects like Covariant Derivative and Curvature
Tensor and in proving existence results for things like Parallel Transport and Jacobi Fields.

I’ve been not the only one interested in this topics: Lott wrote a paper ([30]) on the subject,
too, where he computed at a formal level the Covariant Derivative and the Curvature Tensor
on P2(M). His point of view was not to reach the highest possible generality, but only
in trying to derive the correct formulas assuming everything to be smooth. This approach
allowed him to do the far reaching computations he did, but on the other hand left open the
question of ‘when’ his computations where really justified.

His work has been done contemporarily to my PhD thesis, where I presented a ‘concrete’
construction of the parallel transport along a certain class of curves in the case of P2(Rd),
showing also by an example why out of such class it may very well fail to exist. Thus he
worked in the more complex case of the Wasserstein space built over a manifold and wrote
down the formulas for the relevant second order objects only at a formal level, while I sticked
to the technically simpler case of the Wasserstein space over Rd, but giving an existence result.
Later one, after becoming aware of Lott’s work, I produced the monograph [10] whose results
extend both his and mine.

Back to math. I will start describing what has been the overall strategy to develop the

2well, actually one should assume that ∂−ϕ is non empty µ-a.e. and impose some growth condition on it
to ensure that the cost of the plan is finite, so that its second marginal belongs to P2(Rd) as well, but these
are minor technicalities which I neglect here
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second order calculus over (P2(M),W2).
On a typical course of basic Riemannian geometry, one of the first concepts introduced

is that of Levi-Civita connection, which identifies the only natural (“natural” here means:
“compatible with the Riemannian structure”) way of differentiating vector fields on the man-
ifold. It would therefore be natural to set up the discussion on the second order analysis
on P2(M) by giving the definition of Levi-Civita connection in this setting. However, this
cannot be done. The reason is that we don’t have a notion of smoothness for vector fields,
therefore not only we don’t know how to covariantly differentiate vector fields, but we don’t
know either which are the vector fields regular enough to be differentiated. In a purely Rie-
mannian setting this problem does not appear, as a Riemannian manifold borns as smooth
manifold on which we define a scalar product on each tangent space; but the space P2(M)
does not have a smooth structure (there is no diffeomorphism of a small ball around the origin
in TanµP2(M) onto a neighborhood of µ in P2(M)). Thus, one has to proceed in a different
way, which I describe now:
Regular curves. First of all, we drop the idea of defining a smooth vector field on the whole
“manifold”. We will rather concentrate on finding an appropriate definition of smoothness
for vector fields defined along curves. We will see that to do this, we will need to work with
a particular kind of curves, which we will call regular, see Definition 1.7.
Smoothness of vector fields. We will then be able to define the smoothness of vector
fields defined along regular curves (Definition 1.8). Among others, a notion of smoothness of
particular relevance is that of absolutely continuous vector fields: for this kind of vector fields
we have a natural notion of total derivative (not to be confused with the covariant one, see
Definition 1.9).
Levi-Civita connection. At this point we have all the ingredients we need to define the
covariant derivative and to prove that it is the Levi-Civita connection on P2(M) (Definiton
1.10 and discussion thereafter).
Parallel transport. This is the main existence result on this subject: I will prove that
along regular curves the parallel transport always exists (Theorem 1.14). I will also discuss a
counterexample to the existence of parallel transport along a non-regular geodesic (Example
1.15). This will show that the definition of regular curve is not just operationally needed to
provide a definition of smoothness of vector fields, but is actually intrinsically related to the
geometry of P2(M).
Calculus of derivatives. Using the technical tools developed for the study of the parallel
transport, I will explicitly compute the covariant derivatives of basic examples of vector fields.
Curvature. I conclude the discussion by showing how the concepts developed can lead to a
rigorous definition of the curvature tensor on P2(M).

As said at the beginning of the chapter, more can be said, but it is not the purpose of this
memo to give full details. For this reason, I shall also work only in the simpler case M = Rd,
on which anyway the theory can be fully appreciated.

A word on notation: I will write ‖v‖µ and 〈v, w〉µ for the norm of the vector field v and

the scalar product of the vector fields v, w in the space L2(µ) (which I will denote by L2
µ),

respectively.
I shall start with the definition of regular curve, which will play a key role in what follows.

Definition 1.7 (Regular curve) Let (µt) be an absolutely continuous curve and let (vt) be
its velocity vector field, that is (vt) is the unique vector field - up to equality for a.e. t - such

10



that vt ∈ TanµtP2(Rd) for a.e. t and the continuity equation

d

dt
µt +∇ · (vtµt) = 0,

holds in the sense of distributions (recall Theorem 1.1 and Definition 1.2). We say that (µt)
is regular provided ∫ 1

0
Lip(vt) dt <∞. (1.9)

If (µt) is regular, by the classical Cauchy-Lipschitz theory we know that there exists a unique
family of maps T(t, s, ·) : supp(µt)→ supp(µs) satisfying{

d

ds
T(t, s, x) = vs(T(t, s, x)), ∀t ∈ [0, 1], x ∈ supp(µt), a.e. s ∈ [0, 1],

T(t, t, x) = x, ∀t ∈ [0, 1], x ∈ supp(µt).
(1.10)

And it is also easy to check that these maps satisfy the additional properties

T(r, s, ·) ◦T(t, r, ·) = T(t, s, ·) ∀t, r, s ∈ [0, 1],
T(t, s, ·)#µt = µs, ∀t, s ∈ [0, 1].

I will call this family of maps the flow maps of the curve (µt).
The introduction of regular curves is meaningful from two points of view:

Algebraic point of view. The main problem in defining the time-smoothness of a vector field
(ut) defined along a curve (µt) is that for different times, the vectors ut belong to different
spaces, as L2

µt vary in time as well. If the support of µt is small (think for instance to the

case of a measure supported on some submanifold of Rd which is moving in time), it is also
possible that the vector field ut ∈ L2

µt is not even defined µs-a.e. for s 6= t. In this direction,
the existence of the flow maps has a key role, indeed the right composition with T(t, s, ·)
provides a bijective isometry from L2

µs to L2
µt , and therefore we can read the regularity of (ut)

by looking at the regularity of t 7→ ut ◦T(0, t, ·) ∈ L2
µ0 (see Definition 1.8).

Geometric point of view. A key, and non trivial, consequence of the fact that the vt’s are
Lipschitz is the fact that the angle between tangent spaces varies smoothly along a regular
curve (see Lemma 1.13). As we will see, this will be the key enabler for the proof of existence
of the Parallel Transport.

It can be proved that the set of regular curves is dense in the set of absolutely continuous
curves on P2(Rd) with respect to uniform convergence plus convergence of length, so that
to some extent ‘there are many of them’. It should be also noticed that in general geodesics
are not automatically regular (to see why, just consider a geodesic from a delta to a measure
which is not a delta), however a consequence of the fact that ‘optimal maps from intermediate
points are Lipschitz’ is that if (µt) is a geodesic on [0, 1], then its restriction to [ε, 1 − ε] is
regular for any ε > 0.

We can now start considering vector fields along regular curves and their time regularity.

Definition 1.8 (Vector fields along a curve and time regularity) A vector field along
a curve (µt) is a Borel map (t, x) 7→ ut(x) such that ut ∈ L2

µt for a.e. t. It will be denoted by
(ut). If (µt) is a regular curve, T(t, s, ·) are its flow maps and (ut) is a vector field defined
along it, we say that (ut) is absolutely continuous provided the map

t 7→ ut ◦T(t0, t, ·) ∈ L2
µt0

is absolutely continuous for every t0 ∈ [0, 1].

11



Since ut ◦T(t1, t, ·) = ut ◦T(t0, t, ·) ◦T(t1, t0, ·) and the composition with T(t1, t0, ·) provides
an isometry from L2

µt0
to L2

µt1
, it is sufficient to check the regularity of t 7→ ut ◦ T(t0, t, ·)

for some t0 ∈ [0, 1] to be sure that the same regularity holds for every t0. It should also be
noticed that we are not requiring the vector field to be tangent.

Coupled with the definition of absolute continuity, there is the one of total derivative.

Definition 1.9 (Total derivative) With the same notation as above, assume that (ut) is
an absolutely continuous vector field. Its total derivative is defined as:

d

dt
ut := lim

h→0

ut+h ◦T(t, t+ h, ·)− ut
h

,

where the limit is intended in L2
µt.

Notice that the total derivative may fail to be tangent, even if (ut) is.
It is not hard to check that the total derivative is well defined for a.e. t and that it is an

L1 vector field, in the sense that it holds
∫ 1

0

∥∥ d
dtut

∥∥
µt

dt <∞.
An important property is the Leibniz rule: for any couple of absolutely continuous vector

fields (u1
t ), (u2

t ) along the same regular curve (µt) the map t 7→
〈
u1
t , u

2
t

〉
µt

is absolutely
continuous and it holds

d

dt

〈
u1
t , u

2
t

〉
µt

=

〈
d

dt
u1
t , u

2
t

〉
µt

+

〈
u1
t ,

d

dt
u2
t

〉
µt

, a.e. t. (1.11)

This fact follows immediately from the identity〈
u1
t , u

2
t

〉
µt

=
〈
u1
t ◦T(t0, t, ·), u2

t ◦T(t0, t, ·)
〉
µt0

, ∀t ∈ [0, 1].

Also, it should be noticed that if (x, t) 7→ ξt(x) is a C∞c vector field on Rd, then

d

dt
ξt = ∂tξt +∇ξt · vt, a.e. t, (1.12)

which shows that the total derivative is nothing but the convective derivative well known in
fluid dynamics.

We can now introduce the covariant derivative. For µ ∈P2(Rd), we denote by Pµ : L2
µ →

TanµP2(Rd) the orthogonal projection, and put P⊥µ := Id− Pµ.

Definition 1.10 (Covariant derivative) Let (ut) be an absolutely continuous and tangent
vector field along the regular curve (µt). Its covariant derivative is defined as

D

dt
ut := Pµt

(
d

dt
ut

)
. (1.13)

Clearly, the covariant derivative is well defined for a.e. t and is an L1 vector field.
In order to call this derivation covariant derivative, we should check that is compatible

with the metric and torsion free. The first fact is a trivial consequence of the Leibniz rule
(1.11), indeed if (u1

t ), (u2
t ) are tangent absolutely continuous vector fields we have:

d

dt

〈
u1
t , u

2
t

〉
µt

=

〈
d

dt
u1
t , u

2
t

〉
µt

+

〈
u1
t ,

d

dt
u2
t

〉
µt

=

〈
Pµt

(
d

dt
u1
t

)
, u2

t

〉
µt

+

〈
u1
t ,Pµt

(
d

dt
u2
t

)〉
µt

=

〈
D

dt
u1
t , u

2
t

〉
µt

+

〈
u1
t ,

D

dt
u2
t

〉
µt

.

(1.14)
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The proof of the torsion free identity is a bit more complicated, as one should at first identify
what is the Lie bracket of two vector fields; I will omit it.

Given the definition of covariant derivative, the one of parallel transport follows naturally.

Definition 1.11 (Parallel transport) Let (µt) be a regular curve. A tangent vector field
(ut) along it is a parallel transport if it is absolutely continuous and

D

dt
ut = 0, a.e. t.

The compatibility with the metric yields that the scalar product of two parallel transports is
preserved in time. In particular, this fact and the linearity of the notion of parallel transport
give uniqueness of the parallel transport itself, in the sense that for any u0 ∈ Tanµ0P2(Rd)
there exists at most one parallel transport (ut) along (µt) satisfying u0 = u0.

Thus the problem is to show the existence. The proof is based on geometrical arguments,
and in order to understand them, there is an important analogy which I want to point out. We
already know that the space (P2(Rd),W2) looks like a Riemannian manifold, but actually it
has also stronger similarities with a Riemannian manifold M embedded in some bigger space
(say, on some Euclidean space RD), indeed in both cases:

• we have a natural presence of non tangent vectors: elements of L2
µ \ TanµP2(Rd) for

P2(Rd), and vectors in RD non tangent to the manifold for the embedded case.

• The scalar product in the tangent space can be naturally defined also for non tangent
vectors: scalar product in L2

µ for the space P2(Rd), and the scalar product in RD
for the embedded case. This means in particular that there are natural orthogonal
projections from the set of tangent and non tangent vectors onto the set of tangent
vectors: Pµ : L2

µ → TanµP2(Rd) for P2(Rd) and Px : RD → TxM for the embedded
case.

• The Covariant derivative of a tangent vector field is given by projecting the “time deriva-
tive” onto the tangent space. Indeed, for the space P2(Rd) we defined the covariant
derivative via the formula (1.13), while for the embedded manifold it holds:

∇γ̇tut = Pγt

(
d

dt
ut

)
, (1.15)

where t 7→ γt is a smooth curve and t 7→ ut ∈ TγtM is a smooth tangent vector field.

Given these analogies, I shall first give a proof of the existence of the parallel transport
along a smooth curve in an embedded Riemannian manifold, then I will describe how to
reproduce the same arguments in the Wasserstein space. Clearly, for the case of Riemannian
manifolds the arguments that I will describe are not the natural way, nor the shortest, of
proving existence of the parallel transport; yet they are interesting for the discussion here
because they can be adapted to the Wasserstein space.

Example 1.12 (Parallel transport on an embedded manifold) LetM be a given smooth
Riemannian manifold embedded on RD, t 7→ γt ∈M a smooth curve on [0, 1] and u0 ∈ Tγ0M
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a given tangent vector. Our goal is to prove the existence of an absolutely continuous vector
field t 7→ ut ∈ TγtM such that u0 = u0 and

Pγt

(
d

dt
ut

)
= 0, a.e. t.

For any t, s ∈ [0, 1], let trst : TγtRD → TγsRD be the natural translation map which takes
a vector with base point γt (tangent or not to the manifold) and gives back the translated of
this vector with base point γs. Notice that an effect of the curvature of the manifold and the
chosen embedding on RD, is that trst (u) may be not tangent to M even if u is. Now define
P st : TγtRD → TγsM by

P st (u) := Pγs(tr
s
t (u)), ∀u ∈ TγtRD.

An immediate consequence of the smoothness of M and γ are the two inequalities:

|trst (u)− P st (u)| ≤ C|u||s− t|, ∀t, s ∈ [0, 1] and u ∈ TγtM, (1.16a)

|P st (u)| ≤ C|u||s− t|, ∀t, s ∈ [0, 1] and u ∈ T⊥γtM, (1.16b)

where T⊥γtM is the orthogonal complement of TγtM in TγtRD. The existence proof that I will
provide is based on these two inequalities only.

The idea is to produce for any partition of [0, 1] an approximation of the parallel trans-
port and check that when the partition becomes finer, this approximation converges. More
precisely, given a partition P = {0 = t0 < t1 · · · < tN = 1} of [0, 1] and u ∈ Tγ0(M), we define
P(u) ∈ Tγ1M by

P(u) := P tNtN−1
(P

tN−1

tN−2
(· · ·P t1t0 (u))),

and the goal it to show that for any ε > 0 there exists a partition P such that for any partition
Q finer than P it holds |P(u)− Q(u)| ≤ ε|u|.

The fact that this procedure approximates the parallel transport can be heuristically
deduced by the identity

∇γtP t0(u)|t=0
= 0, ∀u ∈ Tγ0M, (1.17)

which tells that the vectors P t0(u) are a first order approximation at t = 0 of the parallel
transport. To prove (1.17) we notice that taking (1.15) into account, (1.17) is equivalent to

|P 0
t (trt0(u)− P t0(u))| = o(t), u ∈ Tγ(0)M, (1.18)

and thus equation (1.18) follows by applying inequalities (1.16) (note that trt0(u) − P t0(u) ∈
T⊥γtM):

|P 0
t (trt0(u)− P t0(u))| ≤ Ct|trt0(u)− P t0(u)| ≤ C2t2|u|. (1.19)

The comparison of P(u) and Q(u) is based on the inequality∣∣P s3s1 (u)− P s3s2 (P s2s1 (u))
∣∣ ≤ C2|u||s1 − s2||s2 − s3|, ∀u ∈ Tγs1M,
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valid for any 0 ≤ s1 ≤ s2 ≤ s3 ≤ 1, whose proof is similar to that of (1.19). Then, an easy
induction shows that for any 0 ≤ s1 < · · · < sN ≤ 1 and u ∈ Tγs1M we have∣∣P sNs1 (u)− P sNsN−1

(P
sN−1
sN−2 (· · · (P s2s1 (u))))

∣∣
≤

∣∣P sNs1 (u)− P sNsN−1
(P

sN−1
s1 (u))

∣∣+
∣∣P sNsN−1

(P
sN−1
s1 (u))− P sNsN−1

(P
sN−1
sN−2 (· · · (P s2s1 (u))))

∣∣
≤ C2|u||sN1 − s1|!sN − sN−1|+

∣∣P sN−1
s1 (u)− P sN−1

sN−2 (· · · (P s2s1 (u)))
∣∣

≤ · · ·

≤ C2|u|
N−1∑
i=2

|s1 − si||si − si+1| ≤ C2|u||s1 − sN |2. (1.20)

With this result, it is immediate to check that the limit of P(u) as P becomes finer exists: given
ε > 0, it is sufficient to pick P := {0 = t0 < t1 · · · < tN = 1} such that

∑
i |ti − ti−1|2 < ε/C2

to conclude that if Q is finer than P it holds |P(u)−Q(u)| ≤ ε|u| (just repeatedly apply (1.20)
to the various partitions induced by Q on the intervals [ti, ti+1]).

Thus for any u ∈ Tγ0M this process produces a limit vector in Tγ1M , which means that
we built a map T 1

0 from Tγ0M to Tγ1M . The same procedure applied to the restriction of (γt)
to the interval [t, s] gives a map T st : TγtM → TγsM . It is then easy to verify, starting from
(1.17), that for any u ∈ Tγ0M the vector field t 7→ T t0(u) is precisely the parallel transport of
u along (γt). �

Now back to the Wasserstein case. To follow the analogy with the Riemannian case, keep
in mind that the analogous of the translation map trst is the right composition with T(s, t, ·),
and the analogous of the map P st is

Ps
t (u) := Pµs(u ◦T(s, t, ·)),

which maps L2
µt onto TanµsP2(Rd). We saw that the key to prove the existence of the

parallel transport in the embedded Riemannian case are inequalities (1.16). Thus, given that
we want to imitate the approach in the Wasserstein setting, we need to produce an analogous
of those inequalities. This is the content of the following key lemma, where I will denote by
Tan⊥µ (P2(Rd)) the Normal space at µ, i.e. the orthogonal complement of TanµP2(Rd) in L2

µ.

Lemma 1.13 (Control of the angles between tangent spaces) Let µ, ν ∈P2(Rd) and
T : Rd → Rd be any Borel map satisfying T#µ = ν. Then it holds:

‖v ◦ T − Pµ(v ◦ T )‖µ ≤ ‖v‖ν Lip(T − Id), ∀v ∈ TanνP2(Rd),

and, if T is invertible, it also holds

‖Pµ(w ◦ T )‖µ ≤ ‖w‖ν Lip(T−1 − Id), ∀w ∈ Tan⊥ν (P2(Rd)).

To see why this lemma is true, assume for simplicity that T − Id ∈ C∞c (Rd,Rd) and notice
that the first inequality is equivalent to

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ‖ν Lip(T − Id), ∀ϕ ∈ C∞c (Rd). (1.21)
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Thus what we have to do is to find a function whose gradient is not too far from ∇ϕ◦T in L2
µ.

Let’s consider the function ϕ ◦T : since ϕ ◦T ∈ C∞c (Rd),we have ∇(ϕ ◦T ) = ∇T · (∇ϕ) ◦ T ∈
TanµP2(Rd) and thus

‖∇ϕ ◦ T − Pµ(∇ϕ ◦ T )‖µ ≤ ‖∇ϕ ◦ T −∇T · (∇ϕ) ◦ T‖µ

=

(∫
|(I −∇T (x)) · ∇ϕ(T (x))|2 dµ(x)

)1/2

≤
(∫
|∇ϕ(T (x))|2‖∇(Id− T )(x)‖2op dµ(x)

)1/2

≤ ‖∇ϕ‖ν Lip(T − Id),

where I is the identity matrix and ‖∇(Id − T )(x)‖op is the operator norm of the linear
functional from Rd to Rd given by v 7→ ∇(Id− T )(x) · v.

The rest of the proof follows by a pretty standard approximation procedure, and the
second inequality comes from a duality argument.

From this lemma and the readily checked inequality

Lip
(
T(s, t, ·)− Id

)
≤ e|

∫ s
t Lip(vr) dr| − 1 ≤ C

∣∣∣∣∫ s

t
Lip(vr) dr

∣∣∣∣ , ∀t, s ∈ [0, 1],

where C := e
∫ 1
0 Lip(vr) dr − 1, it is immediate to verify that it holds:

‖u ◦T(s, t, ·)−Ps
t (u)‖µs ≤ C‖u‖µt

∣∣∣∣∫ s

t
Lip(vr) dr

∣∣∣∣ , u ∈ TanµtP2(Rd),

‖Ps
t (u)‖µs ≤ C‖u‖µt

∣∣∣∣∫ s

t
Lip(vr) dr

∣∣∣∣ , u ∈ Tan⊥µt(P2(Rd)).
(1.22)

These inequalities are perfectly analogous to the (1.16) (well, the only difference is that here
the bound on the angle is L1 in t, s while for the embedded case it was L∞, but this does not
really change anything). Therefore the arguments presented before apply also to this case,
and we can derive the existence of the parallel transport along regular curves:

Theorem 1.14 (Parallel transport along regular curves) Let (µt) be a regular curve
and u0 ∈ Tanµ0P2(Rd). Then there exists a parallel transport (ut) along (µt) such that
u0 = u0.

Now we know that the parallel transport exists along regular curves, and we know also that
regular curves are dense, it is therefore natural to try to construct the parallel transport along
any absolutely continuous curve via some limiting argument. However, this cannot be done,
as the following counterexample shows.

Example 1.15 (Non existence of parallel transport along a non regular geodesic)
Let Q = [0, 1] × [0, 1] be the unit square in R2 and let Ti, i = 1, 2, 3, 4, be the four open tri-
angles in which Q is divided by its diagonals. Let µ0 := χQL 2 and define the function
v : Q→ R2 as the gradient of the convex map max{|x|, |y|}, as in the figure. Set also w = v⊥,
the rotation by π/2 of v, in Q and w = 0 out of Q. Notice that ∇ · (wµ0) = 0.

Set µt := (Id + tv)#µ0 and observe that, for positive t, the support Qt of µt is made of 4
connected components, each one the translation of one of the sets Ti, and that µt = χQtL

2.
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Figure 1: The support of µ0 is split along the curve

It is immediate to check that (µt) is a regular geodesic on [ε, 1] for every ε > 0, but not
on [0, 1]. Fix ε > 0 and note that, by construction, the flow maps of µt in [ε, 1] are given by

T(t, s, ·) = (Id + sv) ◦ (Id + tv)−1, ∀t, s ∈ [ε, 1].

Now, set wt := w ◦T(t, 0, ·) and notice that wt is tangent at µt (because wt is constant in the
connected components of the support of µt, so we can define a C∞c function to be affine on
each connected component and with gradient given by wt, and then use the space between the
components themselves to rearrange smoothly the function). Since wt+h◦T(t, t+h, ·) = wt, we
have d

dtwt = 0 and a fortiori D
dtwt = 0. Thus (wt) is a parallel transport in [ε, 1]. Furthermore,

since ∇ · (wµ0) = 0, we have w0 = w /∈ Tanµ0(P2(R2)). Therefore there is no way to extend
wt to a continuous tangent vector field on the whole [0, 1]. In particular, there is no way to
extend the parallel transport up to t = 0. �

To move on with the analysis, I shall show how with the tools just built it is possible to
start developing a vector calculus on (P2(Rd),W2). In particular, I will consider the following
problem. Let (ut) be an absolutely continuous vector field along the regular curve (µt) and
consider the vector field (Pµt(ut)). From inequalities (1.22) one can check that the latter is
absolutely continuous as well. The question is: can we derive a formula which expresses its
covariant derivative?

At a formal level, we expect that it holds something like

D

dt
Pµt(ut) = Pµt

(
d

dt
ut

)
+

 some operator - which we may
think as the covariant derivative
of Pµt - applied to ut

 . (1.23)

This heuristic is indeed true, and to turn it into a rigorous statement we will need to introduce
the interesting tensor Nµ.

Start fixing ϕ ∈ C∞c (Rd) and apply the Leibniz rule for the total and covariant derivatives
((1.11) and (1.14)), to get that for a.e. t ∈ [0, 1] it holds

d

dt
〈ut,∇ϕ〉µt =

〈
d

dt
ut,∇ϕ

〉
µt

+

〈
ut,

d

dt
∇ϕ
〉
µt

,

d

dt
〈Pµt(ut),∇ϕ〉µt =

〈
D

dt
Pµt(ut),∇ϕ

〉
µt

+

〈
Pµt(ut),

D

dt
∇ϕ
〉
µt

.
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Since ∇ϕ ∈ TanµtP2(Rd) for any t, it holds 〈Pµt(ut),∇ϕ〉µt = 〈ut,∇ϕ〉µt for any t ∈ [0, 1],
and thus the left hand sides of the previous equations are equal for a.e. t. Recalling formula
(1.12) we have d

dt∇ϕ = ∇2ϕ ·vt and D
dt∇ϕ = Pµt(∇2ϕ ·vt), thus from the equality of the right

hand sides we obtain〈
D

dt
Pµt(ut),∇ϕ

〉
µt

=

〈
d

dt
ut,∇ϕ

〉
µt

+
〈
ut,∇2ϕ · vt

〉
µt
−
〈
Pµt(ut),Pµt(∇2ϕ · vt)

〉
µt

=

〈
d

dt
ut,∇ϕ

〉
µt

+
〈

P⊥µt(ut),P
⊥
µt(∇

2ϕ · vt)
〉
µt
.

(1.24)

This formula characterizes the scalar product of D
dtPµt(ut) with any ∇ϕ when ϕ varies on

C∞c (Rd). Since the set {∇ϕ} is dense in TanµtP2(Rd) for any t ∈ [0, 1], the formula actually
identifies D

dtPµt(ut).
However, from this expression it is unclear what is the value of

〈
D
dtPµt(ut), w

〉
µt

for a

general w ∈ TanµtP2(Rd), because some regularity of ∇ϕ seems required to compute ∇2ϕ ·vt.
In order to better understand what the value of D

dtPµt(ut) is, fix t ∈ [0, 1] and assume for a
moment that vt ∈ C∞c (Rd). Then compute the gradient of x 7→ 〈∇ϕ(x), vt(x)〉 to obtain

∇〈∇ϕ, vt〉 = ∇2ϕ · vt +∇vt
t · ∇ϕ,

and consider this expression as an equality between vector fields in L2
µt . Taking the projection

onto the Normal space we derive

P⊥µt(∇
2ϕ · vt) + P⊥µt(∇v

t
t · ∇ϕ) = 0.

Plugging the expression for P⊥µt(∇
2ϕ · vt) into the formula for the covariant derivative we get〈

D

dt
Pµt(ut),∇ϕ

〉
µt

=

〈
d

dt
ut,∇ϕ

〉
µt

−
〈

P⊥µt(ut),P
⊥
µt(∇v

t
t · ∇ϕ)

〉
µt

=

〈
d

dt
ut,∇ϕ

〉
µt

−
〈
∇vt · P⊥µt(ut),∇ϕ

〉
µt
,

which identifies D
dtPµt(ut) as

D

dt
Pµt(ut) = Pµt

(
d

dt
ut −∇vt · P⊥µt(ut)

)
, (1.25)

consistently with (1.23).
We found this expression assuming that vt was a smooth vector field, but given that

we know that D
dtPµt(ut) exists for a.e. t for an arbitrary regular curve (µt), it is realistic

to believe that the expression makes sense also for general Lipschitz vt’s. The problem is
that the object ∇vt may very well be not defined µt-a.e. for arbitrary µt and Lipschitz vt
(Rademacher’s theorem is of no help here, because we are not assuming the measures µt to
be absolutely continuous w.r.t. the Lebesgue measure). To give a meaning to formula (1.25)
we need to introduce a new tensor.

Definition 1.16 (The Lipschitz non Lipschitz space) Let µ ∈P2(Rd). The set LnLµ ⊂
[L2
µ]2 is the set of couples of vector fields (u, v) such that min{Lip(u),Lip(v)} < ∞, i.e. the

set of couples of vectors such that at least one of them is Lipschitz.
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We say that a sequence (un, vn) ∈ LnLµ converges to (u, v) ∈ LnLµ provided ‖un−u‖µ →
0, ‖vn − v‖µ → 0 and

sup
n

min{Lip(un),Lip(vn)} <∞.

Then it possible to prove the following theorem:

Theorem 1.17 (The Normal tensor) Let µ ∈P2(Rd). The map

Nµ(u, v) : [C∞c (Rd,Rd)]2 → Tan⊥µ (P2(Rd)),
(u, v) 7→ P⊥µ (∇ut · v)

extends uniquely to a sequentially continuous bilinear and antisymmetric map, still denoted
by Nµ, from LnLµ in Tan⊥µ (P2(Rd)) for which the bound

‖Nµ(u, v)‖µ ≤ min{Lip(u)‖v‖µ,Lip(v)‖u‖µ}, (1.26)

holds.

I will not present the proof of this theorem, which anyway is based only on some careful
approximation procedure. What I believe is more interesting to underline is that the theorem
produces an antisymmetric tensor which is well defined as soon as at least one of the vector
fields involved is Lipschitz, but not if none of them is. As far as I know, this is a pretty
uncommon property.

Definition 1.18 (The operators Ov (·) and O∗v (·)) Let µ ∈ P2(Rd) and v ∈ L2
µ a Lips-

chitz vector field. Then the operator u 7→ Ov (u) is defined by

Ov (u) := Nµ(v, u),

and the operator u 7→ O∗v (u) as the adjoint of Ov (·), i.e.

〈O∗v (u) , w〉µ := 〈u,Ov (w)〉µ , ∀w ∈ L2
µ.

The bound (1.26) ensures that the operator norm of Ov (·) and O∗v (·) is bounded by Lip(v).
Notice also that if v is smooth we have the representation

Ov (u) = P⊥µ (∇vt · u),

O∗v (u) = ∇v · P⊥µ (u).

I should remark that in writing Ov (u), O∗v (u) I’m losing the reference to the base measure µ,
which certainly plays a role in the definition; this simplifies the notation and hopefully should
create no confusion, as the measure I’m referring to should always be clear from the context.

The introduction of the operators Ov (·) and O∗v (·) allows to give a precise meaning to
formula (1.25) for general regular curves. Indeed, starting from (1.25) it is immediate to
verify that it holds the formula

D

dt
Pµt(ut) = Pµt

(
d

dt
ut − O∗vt (ut)

)
, (1.27)

which now makes perfectly sense for a.e. t for any regular curve (µt).
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Interestingly enough, this sort of differential calculus can be developed quite a lot, for
instance one can show that it holds

d

dt
Ovt (ut) = O d

dt
vt

(ut) + Ovt

(
d

dt
ut

)
− Ovt (Ovt (ut)) + Pµt

(
O∗vt (Ovt (ut))

)
,

d

dt
O∗vt (ut) = O∗d

dt
vt

(ut) + O∗vt

(
d

dt
ut

)
− O∗vt

(
O∗vt (ut)

)
+ O∗vt (Ovt (Pµt(ut))) ,

as soon as the velocity vector field (vt) of the regular curve considered satisfies
∫ 1

0 Lip
(
d
dtvt

)
dt <

∞, An important feature of these equations is that to express the derivatives of (Ovt (ut)) and
(O∗vt (ut)) “no new operators appear”. Therefore we can recursively calculate derivatives of
any order of the vector fields (Pµt(ut)), (P⊥µt(ut)), Ovt (ut) and O∗vt (ut), provided - of course -
that we make appropriate regularity assumptions on the vector field (ut) and on the velocity
vector field (vt). An example of result which can be proved following this direction is that
the operator t 7→ Pµt(·) is analytic along (the restriction of) a geodesic.

Also, the understanding of the properties of the tensor Nµ allows for a precise description
of the curvature tensor of the “manifold” P2(Rd), and I shall conclude this section describing
this latter point.

Following the analogy with the Riemannian case, one could be lead to define the curvature
tensor in the following way: given three vector fields µ 7→ ∇ϕiµ ∈ TanµP2(Rd), i = 1, . . . , 3,
the curvature tensor R calculated on them at the measure µ is defined as:

R(∇ϕ1
µ,∇ϕ2

µ)(∇ϕ3
µ) := ∇∇ϕ2

µ
(∇∇ϕ1

µ
∇ϕ3

µ)−∇∇ϕ1
µ
(∇∇ϕ2

µ
∇ϕ3

µ) + ∇[∇ϕ1
µ,∇ϕ2

µ]∇ϕ3
µ,

where the objects like ∇∇ϕµ(∇ψµ), are, heuristically speaking, the covariant derivative of the
vector field µ 7→ ∇ψµ along the vector field µ 7→ ∇ϕµ.

However, in order to give a precise meaning to the above formula, one should be sure, at
least, that the derivatives he is taking exist. Such an approach is possible, but heavy: indeed,
consider that one should define what are C1 and C2 vector fields, and in doing so he cannot
just consider derivatives along curves, because he would need to be sure that “the partial
derivatives have the right symmetries”, otherwise there won’t be those cancellations which
let the above operator be a tensor.

Instead, we adopt the following strategy:

• First we calculate the curvature tensor for some very specific kind of vector fields, for
which we are able to do and justify the calculations. Specifically, we will consider vector
fields of the kind µ 7→ ∇ϕ, where the function ϕ ∈ C∞c (Rd) does not depend on the
measure µ.

• Then we prove that the object found is actually a tensor, i.e. that its value depends
only on the µ−a.e. value of the considered vector fields, and not on the fact that we
obtained the formula assuming that the functions ϕ’s were independent on the measure.

• Finally, we discuss under which conditions the object found is well defined.

Pick ϕ1, ϕ2, ϕ3, ϕ4 ∈ C∞c (Rd) and observe that the curve t 7→ (Id + t∇ϕ2)#µ is a regular
geodesic on an interval [−T, T ] for T sufficiently small. It is then immediate to verify that
a vector field of the kind (∇ϕ3) along it is absolutely continuous, with continuous covariant
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derivative, and that such derivative calculated at t = 0 is given by Pµ(∇2ϕ3 · ∇ϕ2). Thus we
can write:

∇∇ϕ2∇ϕ3(µ) := Pµ(∇2ϕ3 · ∇ϕ2). (1.28)

By the same arguments, the vector field (∇2ϕ3 · ∇ϕ2) can be covariantly differentiated at
t = 0 along the regular curve t 7→ (Id + t∇ϕ1)#µ, so that recalling the formula (1.27) we get

∇∇ϕ1(∇∇ϕ2∇ϕ3)(µ) = Pµ

(
∇(∇2ϕ3 · ∇ϕ2) · ∇ϕ1 − O∗∇ϕ1

(
∇2ϕ3 · ∇ϕ2

) )
.

It is now just a matter of computations starting from the definition

R(∇ϕ1,∇ϕ2)(∇ϕ3) := ∇∇ϕ2(∇∇ϕ1∇ϕ3)−∇∇ϕ1(∇∇ϕ2∇ϕ3) + ∇[∇ϕ1,∇ϕ2]∇ϕ3

to check that it holds

〈R(∇ϕ1,∇ϕ2)∇ϕ3,∇ϕ4〉µ = 〈Nµ(∇ϕ1,∇ϕ3),Nµ(∇ϕ2,∇ϕ4)〉µ
− 〈Nµ(∇ϕ2,∇ϕ3),Nµ(∇ϕ1,∇ϕ4)〉µ
+ 2 〈Nµ(∇ϕ1,∇ϕ2),Nµ(∇ϕ3,∇ϕ4)〉µ .

(1.29)

The antisymmetry of Nµ yields that R has all the standard symmetry properties and the first
Bianchi identity, and with some work it is also possible to check that it satisfies the second
Bianchi identity as well. Also, it immediately follows that R is actually a tensor: indeed the
left hand side of equation (1.29) is a tensor w.r.t. the fourth entry, so that the claim follows
from the symmetries of the right hand side.

Concerning the domain of definition of the curvature tensor, the following statement holds,
whose proof follows from the properties of the normal tensor Nµ:

Proposition 1.19 Let µ ∈ P2(Rd). Then the curvature tensor, thought as map from
[{∇ϕ}]4 to R given by (1.29), extends uniquely to a sequentially continuous map on the set of
4-ples of vector fields in L2

µ in which at least 3 vector fields are Lipschitz, where we say that
(v1
n, v

2
n, v

3
n, v

4
n) is converging to (v1, v2, v3, v4) if there is convergence in L2

µ on each coordinate
and

sup
n

Lip(vin) <∞,

for at least 3 indexes i.

Thus, in order for the curvature tensor to be well defined we need at least 3 of the 4 vector
fields involved to be Lipschitz. However, for some related notion of curvature the situation
simplifies. Of particular relevance is the case of sectional curvature:

Example 1.20 (The sectional curvature) If we evaluate the curvature tensor R on a 4-
ple of vectors of the kind (u, v, u, v) and we recall the antisymmetry of Nµ we obtain

〈R(u, v)u, v〉µ = 3 ‖Nµ(u, v)‖2µ .

Thanks to the simplification of the formula, the value of 〈R(u, v)u, v〉µ is well defined as soon
as either u or v is Lipschitz. That is, 〈R(u, v)u, v〉µ is well defined for (u, v) ∈ LnLµ. In
analogy with the Riemannian case we can therefore define the sectional curvature K(u, v) at
the measure µ along the directions u, v by

K(u, v) :=
〈R(u, v)u, v〉µ

‖u‖2µ‖v‖2µ − 〈u, v〉
2
µ

=
3 ‖Nµ(u, v)‖2µ

‖u‖2µ‖v‖2µ − 〈u, v〉
2
µ

, ∀(u, v) ∈ LnLµ.
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This expression shows that the sectional curvatures of P2(Rd) are positive, and provides a
rigorous proof of the analogous formula found by Otto in [39] and formally computed using
O’Neill formula. �

1.4 Other results on the optimal transport problem

1.4.1 Regularity of Kantorovich potentials on non compact manifolds

It is well known that on a compact Riemannian manifold with cost=distance-squared/2, c-
concave functions are Lipschitz and semiconcave, this fact being a simple consequence of the
fact that the functions x 7→ d2(x, y) are uniformly Lipschitz and uniformly semiconcave in y
coupled with the definition of c-concavity:

ϕ is c-concave if and only if ϕ(x) = inf
y
c(x, y)− ψ(y) for some ψ. (1.30)

This regularity of c-concave functions implies that optimal transport maps are a.e. differ-
entiable, indeed McCann showed in [35] that optimal maps T can be written as

T (x) = expx(−∇ϕ(x)), (1.31)

for some c-concave function ϕ, called Kantorovich potential. In turn, the differentiability of
optimal maps is a key tool which allows, for instance, to give a meaning to the change of
variable formula

η(T (x)) =
ρ(x)

|det∇T |(x)
, vol− a.e. x

where ρ, η are respectively the source and target densities.
When M is not compact, this argument breaks down because there is not anymore uniform

Lipschitzianity/semiconcavity of the squared distance functions. This creates problems not
only in the change of variable formula, but also in the construction of the optimal map T
via the formula (1.31). In the attempt to recover the existence of optimal maps via equation
(1.31), some authors (see for instance [23]) passed to a weak formulation with the approximate
gradient ∇̃ϕ in place of ∇ϕ, showing that the Kantorovich potential has sufficient regularity
to still justify the formula.

In a joint work with Figalli [6], we understood that the introduction of such analytic tool is
actually unneeded, as regardless of any curvature assumption on the manifold and assumptions
on the given measures to transport, the Kantorovich potentials are always locally semiconcave
in the ‘region of interest’. This shows not only that (1.31) holds, but also that the change of
variable formula is true. More precisely, we proved that

Theorem 1.21 Let ϕ be a Kantorovich potential as above, set D := {ϕ < +∞} and let Ω be
the interior of D. Then ϕ is locally semiconvex in Ω, ∂cϕ(x) is non-empty for any x in Ω,
and ∂cϕ is locally bounded in Ω. Moreover, D \ Ω can be covered by a countable number of
semiconvex surfaces3 of dimension (n− 1).

I remark that semiconvex surfaces are particular cases of c−c hypersurfaces (see the discussion
made in Section 1.2), therefore the theorem also ensures that as soon as a measure µ satisfies

3actually, in the mentioned paper we proved that D \ Ω is n − 1-rectifiable. I improved the result to the
current statement in [12]
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(iii) of Theorem 1.6, it is concentrated on Ω, where the Kantorovich potential is locally
semiconcave. Thus this statement perfectly fits into the global picture of the optimal transport
problem.

The tools we used in the proof are mainly geometrical and inspired from a discussion made
by Villani in [47, Chapter 10], where he introduces the assumptions (H∞1) and (H∞2), and
proves that if the cost function satisfies these assumptions, then a result closely related to
ours holds (see [47, Theorem 10.24]).

I shall now sketch the proof of the local semiconcavity result.
Step 1: ϕ is locally bounded in Ω.
Since ϕ is defined by a infimum of continuous functions, the fact that ϕ is locally bounded
from above is immediate. Hence we only need to prove the bound from below.

We argue by contradiction, and we assume the existence of a sequence xn → x ∈ Ω such
that ϕ(xn)→ −∞. For every n ∈ N, let us choose yn ∈M a point such that

ϕ(xn) ≥ c(xn, yn)− ψ(yn)− 1. (1.32)

In particular, as c = d2

2 ≥ 0, we have ψ(yn)→ +∞. Hence, since

R 3 ϕ(x) ≤ c(x, yn)− ψ(yn),

we deduce that c(x, yn)→ +∞, which further implies c(xn, yn) = d(xn,yn)2

2 → +∞.
Now, let γn : [0, d(xn, yn)] → M be a minimizing geodesic parameterized by arc-length

connecting xn to yn. Since d(xn, yn)→ +∞, any geodesic γn is defined at least on an interval
[0, `], for some ` > 0. Let us define the following set:

Cn :=
{
x ∈M : there exists t ∈ [0, `] s.t. d(x, γn(t)) ≤ t/2

}
.

We claim that
sup
Cn

ϕ→ −∞ as n→ +∞. (1.33)

Indeed, if d(x, γn(t)) ≤ t/2 for some t ∈ [0, `], thanks to the triangle inequality and (1.32) we
have

ϕ(x) ≤ c(x, yn)− ψ(yn) ≤ [d(γn(t), yn) + d(x, γn(t))]2

2
− ψ(yn)

≤ [d(γn(t), yn) + t/2]2

2
− ψ(yn) =

[d(xn, yn)− t/2]2

2
− ψ(yn)

≤ d(xn, yn)2

2
− d(xn, yn)

t

2
+
`2

8
− ψ(yn)

≤ ϕ(xn) + 1 +
`2

8
,

where in the second line we used the identity d(γn(t), yn) = d(xn, yn) − t. Thus the claim
(1.33) is proved.

Now, letting n→ +∞ and using the local compactness of M it is easy to check that (1.33)
implies the existence of an open set A ⊂ Ω containing x in its boundary and on which ϕ is
identically −∞. Which is absurdum by definition of Ω.
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Step 2: ∂cϕ(x) is non-empty and bounded as x varies in a compact subset of Ω.
In particular, ϕ is locally semiconcave in Ω.

Let K ⊂⊂ Ω, take x ∈ K, and let y ∈M be such that

ϕ(x) ≥ c(x, y)− ψ(y)− 1.

We claim that d(x, y) is uniformly bounded, independently of y satisfying the above inequality.
Indeed, assuming without loss of generality d(x, y) ≥ 1, as in the proof of Step 1 we can
consider the point γ(`) on the (unit speed) geodesic from x to y, where ` ≤ d(K,Ωc)/2. Then
we have

ϕ(γ(`)) ≤ c(γ(`), y)− ψ(y) ≤ d2(x, y)

2
(1− `)− ψ(y) ≤ ϕ(x) + 1− `d

2(x, y)

2

Since by Step 1 ϕ is uniformly bounded on the set {x ∈ M : d(x,K) ≤ `} ⊂⊂ Ω, the claim
follows.

Thus we just proved that if x varies in a compact subsetK of Ω, any sequence of minimizers
in (1.30) must lie in a bounded set H. Hence any such sequence must have a convergent
subsequence, which proves that ∂cϕ(x) is non empty and bounded. It also follows that for
x ∈ K it holds

ϕ(x) = inf
y∈H

d2(x, y)

2
− ψ(y),

and since x 7→ d2(x, y) is semiconcave on K for any y ∈ H, the local semiconcavity of ϕ
follows as well.

1.4.2 Regularity of the map ν 7→ T νµ

Consider the transport problem in Rd with cost=distance-squared, let µ� Ld be a measure
with finite second moment. For ν ∈P2(Rd), let T νµ be the optimal transport map from µ to
ν.

A consequence of the stability of the set of optimal plans w.r.t. weak convergence, is that
the map

P2(Rd) 3 ν 7→ T νµ ∈ L2(Rd,Rd;µ),

is continuous.
The question, loosely formulated, that I want to address now is: does this map have any

better regularity? In particular, if we have a Lipschitz curve (νt), do we have that t 7→ T νtµ is
Lipschitz as well?

The general answer is no. In [11] I produced an example of geodesic (νt) such that T νtµ
is at most 1

2 -Hölder continuous. On the other direction, an argument by Ambrosio shows

that C1/2 regularity is achievable, so that the example gives the sharp bound. I also mention
that a similar question has been investigated also by Loeper [29]. He obtained a result of
the following kind: he assumed νt = (X(t, ·))#µ, with µ = Ld|Ω for some open set Ω, and

X(t, x) : [0, 1] × Ω → Rd with both X and ∂tX L∞ in space and time, and he derived that
t 7→ T νtµ ∈ L2(Rd,Rd : µ) is of bounded variation.

I turn to the description of the example. Notice that it is built over the example (provided
in [3]) which shows that (P2(Rd),W2) is an Alexandrov space with curvature ≥ 0. Note that
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with minor modifications one can let all the measures involved be absolutely continuous with
C∞c densities.

Let A := (−2, 1), B := (2, 1), C := (0,−2) and O := (0, 0). Since the strict inequality

|A−O|2 + |O − C|2 = 5 + 4 < 13 + 0 = |A− C|2 + |O −O|2

holds, where | · | is the euclidean norm, we have that for r > 0 small enough it holds

|A−O′|2 + |O − C ′|2 < |A− C ′|2 + |O −O′|2, ∀O′ ∈ Br(O), C ′ ∈ Br(C). (1.34)

Fix such an r and define the measures

µ0 :=1
2 (δA + δO) ,

µ1 :=1
2 (δB + δO) ,

σ :=(2πr2)−1
(
L2
|Br(O)∪Br(C)

)
.

Inequality (1.34) implies that the optimal transport map T0 from σ to µ0 satisfies T0(Br(O)) =
{A} and T0(Br(C)) = {O}. Symmetrically, for the optimal transport map T1 from σ to µ1 it
holds T1(Br(O)) = {B} and T1(Br(C)) = {O}.

Now observe that since

|A−O|2 + |O −B|2 = 5 + 5 < 16 + 0 = |A−B|2 + |O −O|2,

there is a unique optimal plan between µ0 and µ1 and this plan is induced by the map S, seen
from µ0, given by S(A) = O and S(O) = B. Observe that it holds S(T0(Br(O))) 6= T1(Br(O)).

Let µt := ((1 − t)Id + tS)#µ0 and Tt be the optimal transport map from σ to µt. Let
Dt := (1− t)A and Et := tB, so that supp(µt) = {Dt, Et}.

B

Dt

Et

A

C

O

Figure 2: Position of the masses

Here it comes the main idea of the example. We claim that the map t→ Tt ∈ L2(R2,R2;σ)
is not Cα for α > 1/2: we will argue by contradiction. Suppose that for some α > 1/2 the map
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is Cα, let χ be the characteristic function of Br(0) (i.e. χ(Br(0)) = {1} and χ(R2 \Br(0)) =
{0}) and observe that from the inequality∫

|Tt − Ts|2χdσ ≤
∫
|Tt − Ts|2dσ,

we get that ‘any regularity of t 7→ Tt seen as curve in L2(R2,R2;σ) is inherited by the
curve t 7→ Tt seen as curve with values in L2(R2,R2, 2χσ)’ (the factor 2 stands just for the
renormalization of the mass). In particular the map t 7→ Tt ∈ L2(R2,R2; 2χσ) is Cα, too.
Therefore defining the measures

νt := (Tt)#(2χσ),

and using the inequality

W 2(νt, νs) ≤
∫
|Tt − Ts|2 d(2χσ),

we get that the curve t 7→ νt ∈ (P2(Rd),W2) is Cα. The contradiction comes from the
fact that the mass of ν0 lies entirely on D0, while the mass of ν1 is on E1. To make the
contradiction evident, define the function f : [0, 1]→ [0, 1] as f(t) := νt(Dt) and observe that
it holds f(0) = 1 and f(1) = 0. Now we want to evaluate the distance W (νt, νs): roughly
speaking, the best way to move the mass from νt to νs is to move as much mass as poissible
from Dt to Ds, as much mass as possible from Et to Es and then ‘to adjust the rest’. More
precisely, it can be easily checked that the optimal transport plan between νt and νs is given
by

min{f(t), f(s)}δ(Dt,Ds) + min{1− f(t), 1− f(s)}δ(Et,Es)

+ (f(t)− f(s))+δ(Dt,Es) + (f(s)− f(t))+δ(Et,Ds),

as its support is either {(Dt, Ds), (Et, Es), (Dt, Es)} or {(Dt, Ds), (Et, Es), (Et, Ds)} (depend-
ing on whether f(t) ≥ f(s) or viceversa, respectively) and both of these sets are cyclically
monotone. Therefore we get

W 2
2 (νt, νs) = min{f(t), f(s)}|Dt −Ds|2 + min{1− f(t), 1− f(s)}|Et − Es|2

+ (f(t)− f(s))+|Dt − Es|2 + (f(s)− f(t))+|Et −Ds|2.

Considering only the last two terms of the expression on the right, and choosing |s− t| < 1/2
we get the bound

W2(νt, νs) ≥
√

5

2

√
f(t)− f(s).

From the fact that t 7→ νt ∈ (P2(Rd),W2) is Cα we get√
f(t)− f(s) ≤ c|t− s|α, ∀t, s s.t. |s− t| < 1/2,

for some constant c. The contradiction follows: indeed the above inequality and the fact that
α > 1/2 implies that f is constant on [0, 1], while we know that f(0) = 1 and f(1) = 0.
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2 PDEs with gradient flow structure

A subject on which I spent many energies since my PhD studies has been the study of gradient
flows both from the theoretical point of view, and from the one of applications. The book
which I wrote together with L. Ambrosio and G. Savaré contains essentially all of what I’ve
done during the PhD. Here I want to focus on more recent results, where techniques coming
from the study of gradient flows help the study of certain PDEs.

The common feature of the three sections below is the fact that it will be given a metric
space (X, d) and a functional E on X, then for an initial datum x0 and a time step τ I will
consider the following well known recursive minimization scheme, called implicit Euler scheme
or minimizing movements technique. I put xτ0 := x0 and for every n ∈ N the point xτn+1 ∈ X
is chosen among the minimizers of

y 7→ E(y) +
d2(xτn, y)

2τ
. (2.1)

This defines a sequence (xτn) and one can show that in a quite high generality when τ ↓ 0
these sequence converge, after appropriate time rescaling, to a gradient flow of E (see [3]).

Beside the potential interest of this construction in an abstract setting, the point on
which I focus in this chapter is that with appropriate choice of functional/metric space this
construction can produce solutions to various PDEs. This, of course, is not a new observation:
the added value here is the study of new PDEs via this technique.

2.1 The heat equation with Dirichlet boundary data

In the seminal paper [26] Jordan, Kinderleher and Otto understood that the heat equation
on Rd can be viewed as gradient flow of the relative entropy w.r.t. the Wasserstein distance
W2, so that in particular the scheme described above applied to the space (P2(Rd),W2) and
the relative entropy functional

Ent(µ) :=


∫

Ω
ρ log ρdLd, if µ = ρLd,

+∞, otherwise
(2.2)

converges to solutions of the heat equation.
If one replaces the metric space (P2(Rd),W2) with (P(Ω),W2), where Ω ⊂ Rd is a

bounded open set, it will still converge to solutions of the heat equation, and the boundary
data will be the homogeneous Neumann ones. The fact that these are the boundary conditions
arising can be heuristically guessed observing that given that the distance involved is W2, and
given that this distance is well defined only for couples of measure with the same mass, the
mass itself must be preserved along the flow.

Motivated by the intent to find an analogous approach to construct solutions of the heat
flow subject to Dirichlet boundary condition with a transport-like approach, in a joint paper
with A. Figalli ([7]) we introduced a new transportation distance Wb2 between measures
whose main features are:

• It metrizes the weak convergence of positive Borel measures in Ω belonging to the space

MΩ :=

{
µ :

∫
d2(x, ∂Ω) dµ(x) <∞

}
. (2.3)
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Notice that MΩ contains all positive finite measures on Ω and that the claim made is
perfectly analogous to what happens for the common Wasserstein distances, but without
any mass constraint.

• The resulting metric space (MΩ,Wb2) is always geodesic. This is a particularly inter-
esting property compared to what happens in the classical Wasserstein space: indeed
the space (P(Ω),W2) is geodesic if and only if Ω is convex. In our case, the convexity
of the open set is not required (actually, not even connectedness is needed).

• The natural approach via time discretization and implicit Euler scheme pictured above
and applied to the relative entropy functional, leads to weak solution of the heat equation
with Dirichlet boundary condition.

As a drawback, the entropy functional does not have the same nice properties it has in the
classical Wasserstein space, since it is not geodesically convex. Because of this:

• We were not able to prove any kind of contractivity result for the flow.

• Actually, we were not even able to prove uniqueness of the limit of the minimizing
movements scheme. (Of course one knows by standard PDE techniques that weak
solutions of the heat equation with Dirichlet boundary conditions are unique, therefore
a posteriori it is clear that the limit has to be unique - what I’m saying here is that we
do not know whether such uniqueness may be deduced a priori via techniques similar,
e.g., to those appeared in [3].)

The distance Wb2 is defined in the following way (the ‘b’ stands to recall that we have
some room to play with the boundary of Ω). Let Ω ⊂ Rd be a bounded open set, and let MΩ

be defined by (2.3). We define the distance Wb2 on MΩ as a result of the following problem:

Problem 1 (A variant of the transportation problem) Let µ, ν ∈ MΩ. The set of ad-
missible couplings Admb(µ, ν) is defined as the set of positive measures γ on Ω×Ω satisfying

π1
#γ|Ω = µ, π2

#γ|Ω = ν. (2.4)

For any non-negative measure γ on Ω× Ω, we define its cost C(γ) as

C(γ) :=

∫
Ω×Ω
|x− y|2 dγ(x, y).

The distance Wb2(µ, ν) is then defined as:

Wb22(µ, ν) := inf
γ∈Admb(µ,ν)

C(γ).

The difference between Wb2 and W2 relies on the fact that an admissible coupling is a measure
on the closure of Ω× Ω , rather than just on Ω× Ω, and that the marginals are required to
coincide with the given measures only inside Ω. This means that we can use ∂Ω as an infinite
reserve: we can ‘take’ as mass as we wish from the boundary, or ‘give’ it back some of the
mass, provided we pay the transportation cost. This is why this distance is well defined for
measures which do not have the same mass.
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Figure 3: Example of admissible transport plan

Then, what we proved is that the discretization scheme applied to the same relative
entropy functional defined in (2.2) produces solutions to the heat equation with Dirichlet
boundary conditions: {

∂tρt = ∆ρt in Ω× (0,∞),
ρt = e−1 in ∂Ω× [0,∞).

The fact that the limit curve is a solution of the heat equation is not surprising, and can be
shown more or less with the same ideas used for the standard distance W2.

It is more interesting to understand why the boundary conditions that appear are the
Dirichlet ones. The first thing to notice is that the functional Ent has a unique minimum
in MΩ, namely the measure 1

eL|Ω, which has constant density 1
e . This already suggests that

whatever the starting measure is, when t → ∞ we should converge to L|Ω, independently
of the mass of the initial datum, and this excludes the Neumann boundary condition and
illustrates why one should expect that the boundary condition is the Dirichlet one, with
constant value equal to 1

e . The correct proof of this ansatz passes from the study of the
discrete scheme. The idea is based on the following two facts:

• the cost of moving/taking mass from the boundary is small if the point where we want
to take/move mass is close to the boundary itself,

• in terms of entropy, it is certainly better to have as most points as possible with density
close to 1

e .

Turning these two properties into quantitative statements is not hard. What comes out is
that any minimizer of the discrete scheme has trace 1 on the boundary of Ω, and the estimates
passes to the limit, giving the claimed property for the solution of the heat equation.

Finally, I remark that slightly modifying the functional, one can achieve constant Dirichlet
boundary data with any positive constant in place of 1

e : putting ρ log ρ− cρ in place of ρ log ρ
inside the integral gives boundary value ec−1 (because the minimizer of z 7→ z log z − cz is
that value). What is not possible to do is to is to produce non constant Dirichlet boundary
data without adding a drift term to the heat equation; this is perfectly in line with what
happens with the use of the classical distance W2.

29



2.2 The Burgers equation

In a joint paper with Otto ([16]) we investigated the relation between (a generalization of)
the 1-dimensional Burgers equation

∂tθt + ∂x(θt(1− θt)) = 0, (2.5)

and the gradient flow theory on a two-phase Wasserstein space (see below for the definition).
Such relation was already understood in a previous paper by Otto ([38]), but in our work
several proofs have been simplified and a deeper analysis has been carried out.

The point is the following. Consider the set

M :=
{
θ : [−1, 1]→ [0, 1] :

∫
θ dL1 = 1

}
,

and endow it with the distance

d2(θ, θ̃) := W 2
2 (θ, θ̃) +W 2

2 (1− θ, 1− θ̃),

having identified a measure with its density. Then we can see M as a ‘submanifold’ of the
product manifold P2(R)×P2(R).

On M we consider the functional E : M→ [−1, 1] given by

E(θ) :=

∫ 1

−1
z θ(z) dz.

It is then not hard to check that, at least from the formal viewpoint, the gradient flow of E in
(M, d) produces solutions to the Burgers equation (2.5). This fact can be proved rigorously,
but it is not the main point here.

What is interesting to observe is that neither at the level of Burgers’ equation, nor at the
one of gradient flows of E one can expect a general uniqueness statement (see below); yet,
the natural scheme used to build gradient flows for E selects precisely the ‘correct’ solution
of the equation.

Notice that:

• For the Burgers equation one typically does not have C1 regularity of the solution, so
that one has to deal with distributional solutions. However, they don’t grant uniqueness
and in order to restore the existence of a unique solution, the notion of entropy solution
comes into play.

• The functional E is not semi(geodesically)convex on the ‘manifold’ M, so that it is very
possible that it admits more than one gradient flow for some given initial data. It is
unclear whether there is a general principle to select the ‘most natural’ gradient flow
(see the discussion below), but there is a natural scheme to produce gradient flows: the
Euler scheme.

Concerning this latter point, observe that given the variational nature of the implicit Euler
scheme, it is natural to guess that in a situation where uniqueness is not guaranteed, it selects
the gradient flow which ‘decreases the energy fastest’. Consider for instance the case of the
energy E on R+ given by E(x) := −x4/3. It is a classical fact of ODEs’ theory that there are
infinite gradient flows for it starting from 0, the two extremal solutions being the stationary
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curve x1
t ≡ 0 and the curve which immediately moves x2

t := ct3/2, with c = (8/9)3/2. Of the
two, the second one certainly decreases the energy E faster. A straightforward computation
shows that this second curve is the one selected by the implicit Euler scheme.

To formalize the concept of ‘decreasing the energy fastest’, let me observe that given a
gradient flow (xt) of E, the first derivative of the energy along the flow is prescribed by the
gradient flow equation, as it holds ∂tE(xt) = ∇E(xt) · x′t = −|∇E|2(xt), however if E is
not C2, as in the case considered, the second derivative is not. Indeed in our case we have
∂ttE(x1

t ) = 0 and ∂ttE(x2
t ) = −2c. In other words, the derivative of |∇E|2 along the flow is

not given, and is higher for those flows which decrease the energy fastest. Thus one can try
to give the following definition.

Definition 2.1 (Gradient flows which decreases the energy fastest) Let E : Rd → R
be a C1 functional and (xt) ⊂ Rd a curve. Then we say that (xt) is a gradient flow which
decreases the energy fastest, provided it is a gradient flow for E and for any t0 ≥ 0 the
following is true. If (yt) is a gradient flow for E starting from xt0, then

d+

dt
|∇E|2(xt)|t=t0 ≥

d+

dt
|∇E|2(yt)|t=0

. (2.6)

Still at the level of formal analogies, this definition helps understanding why the gradient
flow which decreases the energy fastest for the functional E on M should correspond to the
entropy solution of (2.5). Indeed, some (formal) computations show that the squared slope
of E in (M, d) is given by

|∇E|2(θ) =

∫
θ(1− θ) dL1,

and therefore is a strictly concave function of θ. As such, η(z) := −z(1− z) is an admissible
entropy for (2.5) and we know from the work of Dafermos [21] that the entropy solution (θt)
is characterized among all weak solutions by the inequality

d+

dt

∫
η(θt)|t=t0 ≤

d+

dt

∫
η(θ̃t)|t=0

, (2.7)

where (θ̃t) is any other weak solution coinciding with (θt) up to the time t = t0.
The parallelism between (2.6) and (2.7) is what drove our intuition in proving that the

minimizing movements scheme for E on M produces the entropy solution for (2.5).

Yet, I want to underline that all the discussion that I made here is purely formal, and
actually unneeded in the rigorous proof of our result. In particular, the definition of gradient
flow which decreases the energy fastest that I gave here, in general does not guarantees
existence, not even for C1 functionals on R2. And even when there is existence, it is very
possible that the implicit Euler scheme does not select it. In my opinion, these two facts
(proved by counterexamples in [16]) and the fact that in the ‘practical’ case of the Burgers
equation the formal argument suggests a statement which is actually true, show that there is
still something ‘behind the scenes’ which needs to be undestood.

2.3 The Navier-Stokes equations

In a paper with S. Mosconi [13] we used a variant of the implicit Euler scheme to study the
Navier-Stokes equations, and reprove many known basic results about them within a single
framework. For this scheme we proved that:
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• in any dimension it produces Hopf solutions,

• in dimension 3 it converges to suitable solutions,

• if the initial datum is in H1 it produces strong solutions in some interval [0, T ),

• if the initial datum satisfies the classical smallness conditions, the scheme produces
strong solutions in [0,∞).

In order to describe the approach, I will assume that we are working in the d−dimensional
flat torus Td = Rd/Zd, so that we don’t have to worry about the boundary conditions. Let u
be a smooth divergence free vector field on the Td and consider the Navier-Stokes equations
with initial datum u:

∂tut + (ut · ∇)ut +∇pt = ∆ut, in [0,∞)× Td,
∇ · ut = 0, in Td ∀t,

u0 = u, in Td,
(2.8)

Now given a smooth vector field u, define its flow map R× Td 3 (t, x) 7→ Xu
t (x) ∈ Td as the

only solution of {
∂tX

u
t = u ◦Xu

t ,
Xu

0 = Id.

Then for a given time step τ > 0 define uτ0 := u and uτn+1 as the unique minimizer of

v 7→ 1

2

∫
Td
|∇v|2 dLd +

‖v ◦Xuτn
τ − uτn‖2L2

2τ
, (2.9)

among all L2 and divergence free vector fields v.
From a theoretical point of view, it is worth noticing the structural difference between

this minimization scheme and the one in (2.1): the distance term is perturbed by something
depending on the previous minimization step. Hence, to some extent, this fact is saying that
the Navier-Stokes equations can be seen as a sort of ‘non-autonomous and implicit’ gradient
flow.

In practice, it is natural to compare (2.9) with the problem of minimizing L2 3 g 7→
1
2

∫
|∇g|2 dLd +

‖g−f‖2
L2

2t used to build solutions of the heat equations. There two differences:

• we are not minimizing over all L2 vector fields, but only among divergence free ones
(this will produce the pressure term),

• we are perturbing the L2 distance with the right composition by the flow map X
uτn
τ (this

will produce the non-linear term).

I shall now informally describe why this minimization procedure gives solutions of the Navier-
Stokes equations. For notational simplicity, consider the first step in the minimization pro-
cedure. It is not hard to check that the unique minimum uτ1 of (2.9) satisfies

uτ1 − u ◦Xu
−τ

τ
+∇pτ1 = ∆uτ1 , (2.10)
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where pτ1 is identified, up to additive constants, by

∆pτ1 = ∇ ·
(
u ◦Xu

−τ
τ

)
.

The point is that (2.10) is a time discretization of (2.8). Indeed, the term

uτ1 − u ◦Xu
−τ

τ
=

(
uτ1 ◦Xu

τ − u
τ

)
◦Xu
−τ ,

is the time discretization of the convective derivative

∂tut + (ut · ∇)ut =
(
∂t(ut ◦ Tt)

)
◦ T−1

t ,

where here [0,∞) × Td 3 (t, x) 7→ Tt(x) ∈ Td is the flow map (or particle-trajectory map)
associated to (ut), i.e.: {

∂tTt = ut ◦ Tt,
T0 = Id.

and the pressure term satisfies

∆pτ1 = ∇ ·
(
u ◦Xu

−τ
τ

)
= ∇ ·

(
u ◦Xu

−τ − u
τ

)
,

which is a time discretization of

∆pt = ∇ ·
(
(ut · ∇)ut

)
= ∇ ·

(
∂tut + (ut · ∇)ut

)
,

the latter being the formula identifying the pressure in (2.8).
Now, to prove that the scheme produces a distributional solution of (2.8), just multiply

(2.10) by a smooth ξ and integrate over Td to get〈
uτ1 − u
τ

, ξ

〉
L2

−
〈
u,
ξ ◦Xu

τ − ξ
τ

〉
L2

+ 〈pτ1 ,∇ · ξ〉L2 = 〈uτ1 ,∆ξ〉L2 ,

having used the fact that (Xu
τ )#Ld = Ld, which is a consequence of the fact that ∇ · u = 0.

Thus from the identity

ξ ◦Xu
τ − ξ =

∫ τ

0
∂tξ ◦Xu

t dt =

∫ τ

0
∇ξ ◦Xu

t · u ◦Xu
t dt,

and a simple iteration, it is not hard to see that the discrete solutions produce approximate
distributional solutions. To gain the (discrete) energy inequality, multiply (2.10) by uτ1 and
integrate to get

‖uτ1‖2L2 −
〈
uτ1 , u ◦Xu

−τ
〉
L2 = τ 〈uτ1 ,∆uτ1〉L2 .

Now notice that from

〈uτ1 ,∆uτ1〉L2 = −‖∇uτ1‖2L2 ,〈
uτ1 , u ◦Xu

−τ
〉
L2 ≤

1

2
‖uτ1‖2L2 +

1

2
‖u ◦Xu

−τ‖2L2 =
1

2
‖uτ1‖2L2 +

1

2
‖u‖2L2 ,
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one can conclude that 1
2‖u

τ
1‖2L2 + τ‖∇uτ1‖2L2 ≤ 1

2‖u‖L2 , which by iteration gives

1

2
‖uτm‖2L2 + τ

m∑
i=n+1

‖∇uτi ‖2L2 ≤
1

2
‖uτn‖L2 , ∀n,m ∈ N.

Once one has these discrete equations, to pass to the limit and get Hopf solutions is
easy, and along similar lines one can prove the other claimed statements concerning suitable
solutions and strong solutions.

Let me underline that, as far as I know, this scheme does not produce any new esti-
mate/guess about the Navier-Stokes equation. Still, I believe it is interesting to know both
that these equations have a sort of gradient flow structure, and that many known basic results
about them can be recovered using a single technique.
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3 Hopf-Lax formula and Hamilton-Jacobi equation in metric
spaces

It is well known that on Rd the Hopf-Lax formula

Qtf(x) := inf
y
f(y) +

|x− y|2

2t
,

produces the unique viscosity solution of the Hamilton-Jacobi equation

d

dt
ft +

|∇ft|2

2
= 0,

with initial data f .
In this short chapter, whose content is extracted from [4], I will show that a strong relation

between the Hopf-Lax formula and the Hamilton-Jacobi equation holds in a purely metric
setting.

Let me assume for simplicity that the metric space (X, d) we are dealing with is compact
(this is largely unneeded), and fix a continuous function f : X → R. For t > 0 define
F : (0,∞)×X2 → R by

F (t, x, y) := f(y) +
d2(x, y)

2t
,

and Qtf : X → R by
Qtf(x) := inf

y∈X
F (t, x, y), (3.1)

with Q0f := f .
Now denote by |∇g| the local Lipschitz constant of g defined by

|∇g|(x) := lim
y→x

|g(y)− g(x)|
d(x, y)

,

and by |∇±g| its one sided counterparts, namely the ascending and descending slopes, defined
respectively by

|∇+g|(x) := lim
y→x

(g(y)− g(x))+

d(x, y)
,

|∇−g|(x) := lim
y→x

(g(y)− g(x))−

d(x, y)
.

(3.2)

If x is isolated, all these object are taken 0 by definition.
Then the following theorem holds.

Theorem 3.1 With the above notation, the map (0,∞) × X 3 (t, x) 7→ Qtf(x) is locally
Lipschitz and for any x ∈ X it holds

d

dt
Qtf(x) +

|∇Qtf |2(x)

2
≤ 0, (3.3)

with at most countably many exceptions in (0,∞).
If (X, d) is a geodesic space, then equality holds in (3.3), with at most countably many

exceptions in (0,∞) as well.
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Notice that the statement does not tell anything about viscosity solutions of (3.3), the reason
simply being that as of today there is no notion of viscosity solution in a metric setting.

Before describing the approach to the proof of this theorem, I want to underline that
the first intuition about the purely metric relation between the Hopf-Lax formula and the
Hamilton-Jacobi equation is due to Lott and Villani, who in [31] proved an analogous result
under the additional conditions that the space is equipped with a reference doubling measure
m and that (X, d,m) supports a local Poincaré inequality. These assumption allowed them to
use the deep results obtained by Cheeger in [19] to somehow mimic (up to several non trivial
technicalities) the standard proof available in a smooth setting. What we added in [4] was the
fact that the result can be achieved relying only on the metric structure, taking advantage of
the variational structure of the Hopf-Lax formula.

The first step in the proof of 3.1 is the introduction of the functions D+, D− : (0,∞)×X →
[0,∞):

D+(t, x) := sup d(x, y),

D−(t, x) := inf d(x, y),

where in both cases y varies among the minimizers of F (t, x, ·) (which exist because of the
continuity of f and the compactness of X). It is immediate to check that the sup and the
inf in the definition of D± are realized. Also, a simple stability argument shows that D+ is
upper semicontinuous and D− lower semicontinuous.

An argument which goes back to De Giorgi (which is key when studying the problem of
gradient flows in metric spaces) shows the following.

Lemma 3.2 (De Giorgi’s variational interpolation) For any x ∈ X the map t 7→ Qtf(x)
is locally semiconcave and it holds

d

dt
Qtf(x) = −

(
D±(t, x)

)2
2t2

,

for any t ∈ (0,∞) \N , where N is at most countable. In particular, D+(t, x) = D−(t, x) for
any t ∈ (0,∞) \N .

This is a known fact whose proof can be found in [3, Theorem 3.1.4].
Now notice that for given t > 0 the map x 7→ Qtf(x) is certainly Lipschitz, because from

the boundedness of X we deduce that the maps x 7→ d2(x, y) are uniformly Lipschitz in y.
Hence to conclude the proof of the first part of Theorem 3.1 the only thing we need to check
is that

D+(x, t)

t
≥ |∇Qtf |(x). (3.4)

To prove this, notice that

Qtf(x)−Qtf(y) ≤ F (t, x, yt)− F (t, y, yt) =
d2(x, yt)− d2(y, yt)

2t

≤ d(x, y)
d(x, yt) + d(y, yt)

2t
≤ d(x, y)

d(x, y) + 2D+(t, y)

2t
,

where yt is any minimizer of F (t, y, ·). Dividing by d(x, y) and letting y → x we get (3.4) for
the ascending slope in place of the local Lipschitz constant. To get the same inequality for
the descending slope, just reverse the roles of x and y in the previous inequality.
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In the case of geodesic spaces, to show that equality holds in (3.3) it is sufficient to show
that

|∇−Qtf |(x) =
D+(t, x)

t
, ∀t ∈ (0,∞), x ∈ X.

To this aim, fix t, x, let xt ∈ argminF (t, x, ·) be such that d(x, xt) = D+(t, x) and let γ be a
constant speed geodesic connecting x to xt. Then it holds

Qtf(x)−Qtf(γs) ≥ F (t, x, xt)− F (t, γs, xt) =
d2(x, xt)− d2(γs, xt)

2t

= d2(x, xt)
2s− s2

2t
= d(x, γs)D

+(t, x)
2− s

2t
,

so that dividing by d(x, γs) and letting s ↓ 0 we get the claim.
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4 The heat flow on CD(K,∞) spaces as gradient flow of the
entropy

4.1 Introduction

In recent years, a lot of attention has been given to the interplay between optimal transport
and analysis in non-smooth setting, the majors breakthrough having been the works of Lott
and Villani on one side ([33]) and of Sturm on the other ([43], [44]) where an abstract definition
of Ricci curvature bound from below for metric measure spaces has been given.

A definition of particular relevance is that of CD(K,∞) space (the ∞ stands to say that
no upper bound on the dimension is given, the general definition is about CD(K,N) spaces
which are spaces with Ricci curvature bounded below by K and dimension bounded above
by N).

To give the definition I first recall that given a measure space (X,m), the relative entropy
functional Entm : P(X)→ [0,∞] is defined by

Entm(µ) :=


∫
ρ log(ρ) dm if µ = ρm,

+∞ otherwise.

Definition 4.1 (Metric measure spaces with Ricci curvature bounded below) We say
that (X, d,m) has Ricci curvature bounded below by K ∈ R (in short: it is a CD(K,∞) space)
provided the relative entropy functional is K-geodesically convex on (P2(X),W2). In other
words, (X, d,m) is a CD(K,∞) space provided for any µ0, µ1 ∈P2(X) there exists a constant
speed geodesic (µt) connecting them such that

Entm(µt) ≤ (1− t)Entm(µ0) + tEntm(µ1)− K

2
t(1− t)W 2

2 (µ0, µ1).

While several analytical and geometric properties of CD(K,N) spaces have been proved in
[33], [43], a number of open questions remained open. Among others, Villani posed in [47]
the following one: is it well defined an heat flow on CD(K,∞) spaces? The question is
natural because on Riemannian manifolds with Ricci curvature bounded below the heat flow
preserves the mass. Also, from the seminal paper [26] we know that the heat flow on Rd can
be viewed as gradient flow of the relative entropy w.r.t. W2 (later works generalized this fact
to other smooth structures like Riemannian manifolds [22] and [46] and Finsler ones [37]),
which gives a nice ‘coincidence’ given that CD(K,∞) spaces are defined exactly asking for a
good behavior of the relative entropy w.r.t. the Wasserstein geometry.

It is therefore natural to try to define the heat flow on a CD(K,∞) space as gradient
flow of Entm w.r.t. W2: following this path, what one should do is to prove that the heat
flow actually exists and is unique. This is precisely what I did in [9] (more recent results will
be detailed in the following chapters). To discuss the point, I shall recall few facts about the
general theory (as developed in [3]) of gradient flows of geodesically convex functionals on
metric spaces.

Let (Y, dY ) be a complete and separable metric space (which in the future will be the
Wasserstein space built over a CD(K,∞) space) and E : Y → R ∪ {+∞} a functional. I
will denote by D(E) its domain, i.e. D(E) := {E < ∞}. E is said K-geodesically convex
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provided for any y0, y1 ∈ Y there exists a constant speed geodesic (yt) connecting them such
that

E(yt) ≤ (1− t)E(y0) + tE(y1)− K

2
t(1− t)d2

Y (y0, y1), ∀t ∈ [0, 1].

If E is K-geodesically convex, then the descending slope (recall (3.2)) admits the representa-
tion

|∇−E|(y) = sup
z 6=y

(
E(y)− E(z)

dY (y, z)
− K−

2
dY (y, z)

)+

. (4.1)

A non trivial consequence (see [3, Corollary 2.4.10]) of K-geodesic convexity and lower semi-
continuity is that the slope is an upper gradient for E, i.e. for any absolutely continuous
curve (yt) ⊂ D(E) it holds

|E(yt)− E(ys)| ≤
∫ s

t
|∇−E|(yr)|ẏr|dr, ∀t < s,

thus an application of Young’s inequality shows that it holds

E(y0) ≤ E(yt) +
1

2

∫ t

0
|ẏr|2 dr +

1

2

∫ t

0
|∇−E|2(ys) dr, ∀t. (4.2)

Notice that by construction the equality holds if and only if for a.e. t the slope of E at yt is
realized along the curve and we have |ẏt| = |∇−E|(yt). It is easy to see that if E is a smooth
functional on Rd, then this latter two conditions characterize solutions of

y′t = −∇E(yt).

This motivates the following definition:

Definition 4.2 (Gradient flow of geodesically convex functionals) Let E : Y → R ∪
{+∞} be a K-geodesically convex and lower semicontinuous functional and y ∈ D(E). We
say that [0,∞) 3 t 7→ yt ∈ E is a gradient flow for E starting from y provided it is a
continuous curve, locally absolutely continuous in (0,∞), y0 = y and it holds

E(y0) = E(yt) +
1

2

∫ t

0
|ẏr|2 dr +

1

2

∫ t

0
|∇−E|2(ys) dr, ∀t ≥ 0. (4.3)

The question is now: do we have in general existence and uniqueness of the gradient flow
of a geodesically convex functional? Concerning uniqueness, the answer is no, so that in
particular one cannot even expect any sort of contractivity of the distance along two flows.
This can be easily seen considering the metric space R2 endowed with the L∞ norm, and the
functional E(x, y) := x. In this case any Lipschitz curve t 7→ (xt, yt) satisfying

x′t = −1, |y′t| ≤ 1, a.e. t,

is a gradient flow for E starting from (0, 0).
Concerning existence, the following general result holds (see [3, Corollary 2.4.12]):

Theorem 4.3 Let (Y, dY ) be a complete and separable metric space and E : Y → R∪ {+∞}
a K-geodesically convex and l.s.c. functional. Assume that there is a topology σ on Y , such
that:
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i) dY -bounded sublevels of E are σ-relatively compact,

ii) dY and E are σ-lower semicontinuous on dY -bounded sets,

iii) |∇−E| is σ-lower semicontinuous on dY -bounded sublevels of E.

Then every y0 ∈ D(E) is the starting point of a gradient flow for E.

If we want to apply this theorem to the relative entropy functional on (P2(X),W2), where
(X, d,m) is a CD(K,∞) space, we can deduce existence of gradient flows of the entropy only
if (X, d) is compact. Indeed under this assumption (P(X),W2) is compact as well and we
can choose as topology σ on P(X) the same topology induced by W2, i.e. the weak topology.
The only thing to check is the lower semicontinuity of the slope, which is a simple consequence
of formula (4.1) and of the lower semicontinuity of Entm.

When X is not compact, the only reasonable choice for the topology σ in order to be sure
that (i), (ii) are satisfied is the weak topology. However, with this choice is not at all clear
why (iii) is fulfilled as well (notice that in (4.1) the term containing the distance is at the
denominator). Part of my contribution to the topic has been to show that with this choice of
σ actually (iii) is true, see below.

4.2 Existence and uniqueness

One of the two results that I proved in [9] was:

Theorem 4.4 Let (X, d,m) be a metric measure space, with (X, d) complete and separable4

and m ∈P(X). Assume that it is a CD(K,∞) space. Then for any µ ∈ D(Entm) ∩P2(X)
there exists a unique gradient flow of Entm in (P2(X),W2) starting from µ.

The proof of this theorem relies on the following lemma, which I believe of independent
interest.

Lemma 4.5 With the same assumption of Theorem 4.4 the squared slope |∇−Entm|2 of the
entropy is convex (w.r.t. affine interpolation) and lower semicontinuous w.r.t. weak conver-
gence of measures on bounded sublevels of Entm.

I remark that this lemma has been the first example where the ‘horizontal world’ inter-
acted with the ‘vertical world’ in the abstract setting: indeed, notice that the hypothesis
of the lemma are related to the W2-structure only, where the object which plays a role is
the displacement interpolation, similarly, the object investigated, namely the squared slope,
is defined via the interaction of the entropy functional and the Wasserstein geometry. Yet,
the thesis tells that the squared slope is convex w.r.t. the classical affine interpolation of
measures, an interpolation which is often unnatural in the context of optimal transport.

Before discussing which are the key ideas behind the proof of Lemma 4.5, I describe why
it implies Theorem 4.4. For existence, it is sufficient to apply Theorem 4.3 with the weak
topology as topology σ. For uniqueness, the proof is by contradiction: assume that for some

4to be precise, the proof that I gave for uniqueness works in general Polish spaces, while the one for existence
only in locally compact spaces. The extension from the locally compact case to the general one follows from
the tightness of the sublevels of Entm, a remark which I missed in [9]. This observation (and much more) is
contained in [4].
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µ ∈ D(Entm)∩P2(X) there are two different gradient flows (µ1
t ), (µ2

t ) starting from it. Then
for any T > 0 and i = 1, 2 we would have

Entm(µ) = Entm(µiT ) +
1

2

∫ T

0
|µ̇it|2 dt+

1

2

∫ T

0
|∇−Entm|2(µit) dt.

Now consider the curve µt :=
µ1t+µ

2
t

2 . The convexity of W 2
2 w.r.t. affine interpolation easily

gives that (µt) is absolutely continuous and that 2|µ̇t|2 ≤ |µ̇1
t |2 + |µ̇2

t |2 for a.e. t. By Lemma
4.5 we also get that 2|∇−Entm|2(µt) ≤ |∇−Entm|2(µ1

t ) + |∇−Entm|2(µ2
t ). Finally, the relative

entropy is strictly convex, hence for any T > 0 such that µ1
T 6= µ2

T we would have

Entm(µ) > Entm(µT ) +
1

2

∫ T

0
|µ̇t|2 dt+

1

2

∫ T

0
|∇−Entm|2(µt) dt,

which is impossible, because of inequality (4.2).
Notice that this uniqueness proof tells nothing about the contractivity of W2 along the

flow. Actually, it has been proved later by Ohta and Sturm ([45]) that contractivity fails on
Rd equipped with the Lebesgue measure and any norm not coming from a scalar product.

Thus everything boils down in proving Lemma 4.5. In order explain the idea (I will
focus on the convexity only, as then the lower semicontinuity follows by pretty standard
approximations arguments), it is necessary to introduce the notion of push forward by a plan.

Definition 4.6 (Push forward via a plan) Let µ ∈ P(X) and γ ∈ P(X2) be such that
µ� π1

#γ, say µ = ρπ1
#γ. Then the measure γ#µ ∈P(X) is defined by

γ#µ := ηπ2
#γ, η being given by η(y) :=

∫
X
ρ(x) dγy(x),

where {γy}y is the disintegration of γ w.r.t. the projection on the second marginal. I also
denote by γµ ∈P(X2) the plan defined by dγµ := ρ ◦ π1dγ, so that γ#µ = π2γµ.

This construction was firstly used, with a different notation, by Sturm in [43] to prove stability
of Ricci curvature bound, and later independently rediscovered by myself and Savaré.

I will say that a plan γ ∈P(X2) is of bounded compression, provided cm ≤ π1
#γ, π2

#γ ≤
Cm for some c, C and d ∈ L∞(γ). The set of plans with bounded compression is pretty rich,
in particular it holds the following approximation lemma:

Lemma 4.7 Let (X, d,m) be a metric measure space and µ, ν ∈ D(Entm). Then there exists
a sequence (γn) of plans with bounded compression such that

Entm(γn#µ)→ Entm(ν),∫
d2(x, y) dγµ(x, y)→W 2

2 (µ, ν).

The argument for the proof consists in picking an optimal plan γ ∈ Opt(µ, ν), restricting
it to the set {(x, y) : dµ

dπ1
γ

(x) + dν
dπ2

γ
(y) + d(x, y) < n} and then adding a small multiple of

(Id, Id)#m.
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A trivial relation between the construction of push forward via a plan and the transport
problem is the fact that the map

µ 7→ C(γµ),

is linear on its domain of definition, where by C(γ) we denote the cost of the plan γ, given
by C(γ) :=

∫
d2(x, y)dγ(x, y).

What is non trivial, is the following relation between the operation γ# and the relative
entropy functional:

Proposition 4.8 Let (X, d,m) be a metric measure space and γ ∈ P(X2) with bounded
compression. Then the map

µ 7→ Eγ(µ) := Entm(µ)− Entm(γ#µ)

is convex (w.r.t. affine interpolation) on D(Entm).

The first proof of a prototype version of this statement was due to Savaré in [41], and later
generalized by myself in its current version in [9]. The proof is not hard: it follows by applying
Jensen’s inequality to the second derivative of the map t 7→ Eγ((1− t)µ0 + tµ1).

Having said this, we are now ready to conclude the proof of Lemma 4.5. Here is where the
K-geodesic convexity of the entropy comes into play: from the representation formula (4.1)
we have

|∇−Entm|2(µ) = sup
ν

((
Entm(µ)− Entm(ν)− K−

2 W 2
2 (µ, ν)

)+)2

W 2
2 (µ, ν)

,

so that using the approximation Lemma 4.7 we also get

|∇−Entm|2(µ) = sup
γ

((
Eγ(µ)− K−

2 C(γµ)
)+)2

C(γµ)
,

where the sup is taken among all plans with bounded compression. To conclude that this
latter expression is convex, it is sufficient to show that for a given plan γ with bounded
compression the map

µ 7→

((
Eγ(µ)− K−

2 C(γµ)
)+)2

C(γµ)
,

is convex. But this is obvious, because from the convexity of µ 7→ Eγ and the linearity of
µ 7→ C(γµ) we deduce the convexity of

µ 7→
(
Eγ(µ)− K−

2
C(γµ)

)+
,

so that the conclusion follows using again the linearity of µ 7→ C(γµ) in conjunction with the

fact that the map (a, b) 7→ a2

b is convex on [0,∞)2 and increasing in a.
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4.3 Stability

If one accepts the definition of heat flow on a CD(K,∞) space as gradient flow of the relative
entropy, as in the approach just described, the following natural question arises. Assume
that (Xn, dn,mn) is a sequence of CD(K,∞) spaces converging to a limit space (X, d,m) in
the measured Gromov-Hausdorff sense, then do the heat flows on the approximating spaces
converge to the heat flow in the limit space? As we will see in a moment, the answer is yes.
For simplicity I will stick to the compact case.

Let me first point out that if the approximating spaces are Riemannian manifolds with
dimension uniformly bounded from above, a consequence of the analysis done by Cheeger and
Colding in [20] is that this question has indeed affirmative answer.

The setting under consideration here is, however, more general for two reasons, beside the
obvious one that we are considering abstract non-smooth spaces: there is no a priori bound
on the dimension, and the heat flow is potentially not linear. In particular, notice that this
latter fact prevents the definition and study of the associate Dirichlet form (which is the path
followed in [20]).

Let me recall that in proving stability of Ricci curvature bounds Lott and Villani on one
side and Sturm on the other proved that if (Xn, dn,mn) converge to (X, d,m) in the measured-
Gromov-Hausdorff sense, then the relative entropies Entmn Γ-converge to the relative entropy
Entm in the limit space (up to isometrically embed all the spaces into a common one, which
is always possible under Gromov-Hausdorff convergence). Since the notion of K-geodesic
convexity is easily seen to be stable under Γ-convergence, stability of Ricci curvature bounds
follows.

Therefore the question on stability of the heat flow fits into the more general one: are
gradient flows ofK-geodesically convex functionals stable under Γ-convergence? The answer is
yes, but before turning to the relevant definitions, let me remark that since in general gradient
flows of K-geodesically convex functionals are not unique, stability should be understood in
the sense of closure, i.e. any limit of gradient flows is a gradient flow.

Recall that given a Polish space (Y, dY ) and functionals En, E : Y → R ∪ {+∞}, n ∈ N,
one says that En Γ-converges to E, and writes Γ − limnEn = E provided the following two
are true:

E(y) ≤ inf
(yn)

lim
n→∞

En(yn), (the Γ− lim inequality)

E(y) ≥ inf
(yn)

lim
n→∞

En(yn), (the Γ− lim inequality)
(4.4)

where in both cases the inf is taken among all sequences (yn) ⊂ Y converging to y.
The stability result proven in [9] is then the following.

Theorem 4.9 (Stability of gradient flows) Let (Y, dY ) be a compact space and En, E :
Y → R∪{+∞}, n ∈ N, K-geodesically convex and lower semicontinuous functionals such that
Γ − limnEn = E. Also, let y0 ∈ D(E), (yn0 ) ⊂ Y be a sequence such that limn→∞En(yn0 ) =
E(y0) and for every n let (ynt ) be a gradient flow of En starting from yn0 . Then

• the sequence of curves (ynt ) is relatively compact w.r.t. locally uniform convergence,

• any limit curve (yt) is a gradient flow of E starting from z.
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The relative compactness of the sequence is a simple consequence of the definition of gradient
flow: indeed notice that from (4.3) we get that for any T > 0 it holds∫ T

0
|ẏnt |2 dt ≤ En(yn0 )− inf En, ∀n ∈ N,

so that from the fact that limnEn(yn0 ) = E(y0) <∞, the uniform bound from below and the
compactness of Y we get the relative compactness of the set of curves.

Thus the problem is only in proving that any limit curve is actually a gradient flow, and
up to pass to a subsequence I can assume that the full sequence of curves (ynt ) is converging
locally uniformly to (yt). Thanks to inequality (4.2), the goal is to show that

E(y0) ≥ E(yT ) +
1

2

∫ T

0
|ẏt|2 dt+

1

2

∫ T

0
|∇−E|2(yt) dt, ∀T > 0,

knowing the same inequality for the (ynt )’s. From the assumptions it trivially follows that

limn→∞En(ynT ) ≥ E(yT ) and limn→∞
∫ T

0 |ẏ
n
t |2 dt ≥

∫ T
0 |ẏt|

2 dt, thus to conclude it is sufficient
to show that

|∇−E|(zt) ≤ lim
n→∞

|∇−En|(znt ), ∀t ≥ 0.

Here is where the K-geodesic convexity comes into play. Indeed, recall that from formula
(4.1) we have

|∇−E|(z̃) = sup
y

(
E(z̃)− E(y)

d(z̃, y)
+
K−

2
d̃(z̃, y)

)+

.

Now fix z̃, y and find a sequence (yn) realizing the Γ − lim inequality for E(y), and let (z̃n)
be any sequence converging to z̃. The validity of

d̃(z̃, y) = lim
n→∞

d̃(z̃n, yn),

E(z̃) ≤ lim
n→∞

En(z̃n),

E(y) = lim
n→∞

En(yn),

gives (
E(z̃)− E(y)

d̃(z̃, y)
+
K−

2
d̃(z̃, y)

)+

≤ lim
n→∞

(
En(z̃)− En(y)

d̃(z̃n, yn)
+
K−

2
d̃(z̃n, yn)

)+

≤ lim
n→∞

|∇−En|(z̃n),

and the conclusion.

An interesting consequence of the stability of the heat flow is the following result.

Theorem 4.10 Let F be a Finsler manifold which is compact, smooth, and without boundary.
Then F can be realized as Gromov-Hausdorff limit of a sequence of Riemannian manifolds
with Ricci curvature uniformly bounded from below if and only if it is Riemannian.
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This result was already known under the additional assumption that the approximating se-
quence has dimension uniformly bounded from above: this came from the very fine analysis
carried on by Cheeger and Colding in [20] that showed that a.e. point in the limit space must
have a Euclidean tangent space, which is certainly a statement much stronger than the one of
Theorem 4.10. On the other hand, if one cares only about ruling out Finsler geometries at the
limit, the stability result provides a much simpler proof, which holds even without the upper
bound on the dimension: it is sufficient to recall that the heat flow on a Finsler manifold is
linear if and only if the manifold is Riemannian.
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5 Sobolev spaces over metric measure spaces

5.1 Introduction

One of the results contained in the recent joint work with Ambrosio and Savaré on the
calculus and heat flow over metric measure spaces [4], has been a finer description of the
Sobolev spaces over a general metric measure space. Such topic has been deeply investigated
in the last decades, I refer to [25] for an overview on the subject and detailed references. Yet,
some basic questions remained unanswered, and one of our contributions has been to prove
the following density result:

Theorem 5.1 Let (X, d,m) be a metric measure space with (X, d) Polish and m locally finite.
Then Lipschitz functions are dense in energy in W 1,2(X, d,m), i.e. for any f ∈W 1,2(X, d,m)
there exists a sequence (fn) of Lipschitz functions converging to f in L2 and such that
‖fn‖W 1,2 → ‖f‖W 1,2.

Such a result was known under the assumption that the measure is doubling and the space
supports a local Poincare’ inequality (thanks to the fine analysis done by Cheeger in [19]),
but the general case was open. In the following I will deal with the technically simpler case
in which m is a probability measure.

To see the point, and why this question has been hard to answer to, I shall recall the
usual definition of W 1,2(X, d,m). Although not needed, in what comes next I will always
work under the simplifying assumption that m is a finite measure: anyway, Theorem 5.1 will
follow by some localization argument.

The first thing to understand when trying to propose such a definition, is that it is
(necessary and) sufficient to provide a lower semicontinuous map E : L2 → [0,∞] which plays
the role of the Dirichlet energy in Rd: the semicontinuity of E ensures by standard arguments
that the space

W 1,2(X, d,m) :=
{
f ∈ L2 : E(f) <∞

}
,

endowed with the norm
‖f‖W 1,2 :=

√
‖f‖L2 + E(f),

is a Banach space (this is the best we can hope for: even on Rd equipped with a norm not
coming from a scalar product the space W 1,2 is not Hilbert).

In order to define E, two - a posteriori equivalents - paths have been followed: one is to
proceed by relaxation, the other by looking at the upper gradient property along ‘almost all
curves’. For the first approach (followed by Cheeger in [19]), one says that G is an upper
gradient for f ∈ L2(X,m) provided the inequality∣∣f(γ0)− f(γ1)

∣∣ ≤ ∫
γ
G,

is true for any absolutely continuous curve γ : [0, 1]→ X, where by
∫
γ G is meant

∫ 1
0 G(γt)|γ̇t| dt.

Then the energy of f ∈ L2(X,m) is defined as

E(f) := inf lim
n→∞

‖Gn‖2L2 ,

where the infimum is taken among all sequences (fn) converging to f in L2, and the Gn’s are
upper gradients for fn.
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For the second approach (followed by Shanmugalingam in [42]) one needs a way to measure
how big sets of curves are. The notion which comes into play is that of 2-Modulus, defined
by

Mod2(Γ) := inf
{
‖ρ‖L2 :

∫
γ
ρ ≥ 1, ∀γ ∈ Γ

}
, ∀Γ ⊂ AC([0, 1], X)

Is it possible to show that the 2-Modulus is an outer measure on the space of absolutely
continuous curves. Then one may say that f ∈ W 1,2(X, d,m) provided there exists f̃ = f
m-a.e. and G ∈ L2(X,m) such that∣∣f̃(γ0)− f̃(γ1)

∣∣ ≤ ∫
γ
G, ∀γ ∈ AC([0, 1], X) \N,

where Mod2(N) = 0. In this case, one defines the energy Ẽ : L2 → [0,∞] by putting

Ẽ(f) := inf ‖G‖2L2 ,

where the infimum is taken among all G’s satisfying the previous condition. Thanks to the
properties of the 2-modulus, it is possible to show that Ẽ is indeed L2 lower semicontinuous,
so that it leads to a good definition of the Sobolev space. The advantage of this approach is
that there is no need of relaxation, so that it is, at least in principle, easier to bound from
below the size of upper gradients.

Using a key lemma due to Fuglede, Shanmugalingam proved in [42] that the two ap-
proaches are actually the same, so that both the constructions lead to the same Sobolev
space and in particular E = Ẽ.

It is also important to observe that for functions f ∈W 1,2(X, d,m), not only is well defined
the ‘Dirichlet’ energy 1

2E(f), but also a pointwise object |∇f |C which provides an integral
representation E, in the sense this it satisfies E(f) =

∫
|∇f |2C dm and for any sequence of

functions (fn) converging to f in L2 and any choice of upper gradients Gn for the fn’s, it
holds |∇f |C ≤ G m-a.e., where G is any weak limit in L2 of (Gn).

Finally, let me underline that an application of Fuglede’s lemma shows that the con-
struction(s) presented here lead to the standard Sobolev space H1(Rd) when applied to the
Euclidean case. This fact also shows why the notion of 2-modulus is important.

To conclude this introduction, let me underline why Theorem 5.1 is not trivial. The point
is that to know that a function f has an upper gradient G in L2, while ensuring, for instance,
that the function is absolutely continuous along ‘most’ curves, gives no informations at all on
its Lipschitz constant. Even if one knows a priori that G is bounded (and typically one does
not have such information) the conclusion is non trivial, unless one works in geodesic spaces
(or more generally, λ-convex spaces, where the length of the minimal curve joining two points
is controlled by λ-times the distance between the points themselves).

5.2 A new relaxation procedure: relaxed gradients

The simplest thing one might try to do in order to ensure weak density of Lipschitz functions in
the Sobolev space is to change the relaxation procedure: rather than relaxing upper gradients,
one can relax directly the local Lipschitz constant. More in detail, for a given function
f : X → R one defines its local Lipschitz constant |∇f | : X → [0,∞] (as in (3.2)) by

|∇f |(x) := lim
y→x

|f(x)− f(y)|
d(x, y)

,
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where this lim sup is taken by definition 0 if x is isolated.
Then one can define the Cheeger energy5 Ch(f) : L2(X,m)→ [0,∞] by

Ch(f) := inf
(fn)

lim
n→∞

1

2

∫
|∇fn|2 dm,

where the inf is taken among all sequences (fn) of Lipschitz functions converging to f in L2.
As before, the lower semicontinuity of Ch ensures that the domain D(Ch) of the Cheeger

energy endowed with the norm ‖f‖2W 1,2 := ‖f‖2L2 +2Ch(f) is a Banach space. Also, as before,
for functions f ∈ D(Ch) there exists a pointwise representative |∇f |∗, which we called relaxed
gradient in [4], such that Ch(f) = 1

2

∫
|∇f |2∗ dm. This relaxed gradient has the characterizing

property that |∇f |∗ ≤ G whenever G is the weak limit of (|∇fn|), the sequence (fn) being
made of Lipschitz functions converging to f in L2(X,m).

It is also easy to check that for the relaxed gradient they hold the standard calculus rules
available on a metric setting, i.e.

|∇(αf + βg)|∗ ≤ |α||∇f |∗ + |β||∇g|∗, ∀f, g ∈ D(Ch), α, β ∈ R
|∇(fg)|∗ ≤ |f ||∇g|∗ + |g||∇f |∗, ∀f, g ∈ D(Ch) ∩ L∞,

|∇(ϕ ◦ f)|∗ ≤ |ϕ′ ◦ f ||∇f |∗, ∀f ∈ D(Ch), ϕ ∈ C1(R) ∩ Lip(R),

where the last inequality is an equality if ϕ is non decreasing.
In summary, the Cheeger’s energy has all the properties one wishes from an energy defined

on a metric space, and the problem is ‘only’ to show that it coincides with the energy E
previously defined. In order to prove this, we need to develop some calculus rule and to call
into play optimal transport.

Notice that the only trivial relation which is granted from the construction, is that

|∇f |∗ ≥ |∇f |C , m− a.e., (5.1)

whenever f ∈ D(Ch). This can be seen from the fact that for a Lipschitz function f , the local
Lipschitz constant is certainly an upper gradient, hence in the relaxation procedure which
gives the definition of |∇f |C we are relaxing over a set bigger than the one used to define
|∇f |∗.

From the definition of Ch we can extract a definition of Laplacian in a purely variational
way. Indeed, from the definition of Ch we see that not only it is lower semicontinuous on L2,
but also convex. Hence its subdifferential ∂Ch(f) is a well defined object: given f ∈ D(Ch)
we say that v ∈ ∂Ch(f) provided

Ch(f) +

∫
v(g − f) dm ≤ Ch(g), ∀g ∈ L2(X,m).

Notice that ∂Ch(f) is closed and convex, possibly empty.
Then we say that f is in the domain of the Laplacian provided ∂Ch(f) 6= ∅, and in this

case we define ∆f := −v, where v is the element of minimal norm in the subdifferential of

5the name ‘Cheeger energy’ has been preferred over ‘Dirichlet energy’ both to acknowledge the important
contribution of Cheeger to analysis in metric spaces, and to avoid potential confusion: Ch is typically not a
quadratic function, which is the same as to say that W 1,2(X, d,m) can be not an Hilbert space, while the
terminology ‘Dirichlet energy’ strongly reminds Dirichlet forms
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Ch at f . It is a one line computation to check that this definition is consistent with the
classical one for the space H1(Rd). Notice that the Laplacian is a linear operator if and only
if W 1,2(X, d,m) is Hilbert. Still, it is always 1-homogeneous.

The standard theory of gradient flow of convex functionals in an Hilbert setting (see for
instance [18]) ensures that for any f ∈ L2 there exists a unique curve [0,∞) 3 t 7→ ft ∈ L2

which is locally absolutely continuous, converges to f when t ↓ 0, and satisfies

d

dt
ft ∈ −∂Ch(ft), a.e. t. (5.2)

This curve is called gradient flow of Ch starting from f (this definition is consistent with the
abstract one given in Definition 4.2). It also has the following property:

d+

dt
ft = ∆ft, ∀t ≥ 0,

which justifies the definition of Laplacian. It is also easy to check that the gradient flow
is mass preserving (i.e.

∫
ft dm =

∫
f0 dm for any t ≥ 0) and that it obeys the maximum

principle (i.e. f0 ≥ c implies ft ≥ c for any t ≥ 0, and similarly for bounds from above).
Interesting enough, for the Laplacian they hold calculus rules which are strongly reminis-

cent of those valid in a smooth setting:∣∣∣∣∫ g∆f dm

∣∣∣∣ ≤ ∫ |∇f |∗|∇g|∗ dm, ∀f ∈ D(∆), g ∈ D(Ch),∫
ϕ ◦ f∆f dm = −

∫
ϕ′ ◦ f |∇f |2∗ dm,

(5.3)

where in the second formula ϕ : R → R is C1, Lipschitz and non decreasing. The proof of
these formulas follows directly from the deifnition, for instance, the first one follows noticing
that for any v ∈ ∂Ch(f) it holds

1

2

∫
|∇f |2∗ dm + ε

∫
vg dm ≤ 1

2

∫
|∇f + εg|2∗ dm,

and using the inequality |∇f + εg|∗ ≤ |∇f |∗ + ε|∇g|∗.
An immediate consequence of the ‘integration by parts’ formula (5.3) is that if (ft) is a

gradient flow of Ch and f0 ≥ c > 0, then it holds

d

dt

∫
ft log ft dm =

∫
(log ft + 1)∆ft dm = −

∫
|∇ft|2∗
ft

dm, a.e. t, (5.4)

which is consistent with the entropy dissipation formula along the heat flow valid in a smooth
setting.

What is totally non trivial, is the relation of the gradient flow of Ch with the Wasserstein
distance W2. Such relation, firstly exploited in [14], will be key both in proving the density
of Lipschitz functions in the Sobolev space, and in proving that in CD(K,∞) spaces the
W2-gradient flow of the entropy coincides with the L2-gradient flow of Ch. What makes the
following lemma non trivial is the fact that puts in relation two different worlds: on one side
we have the L2-gradient flow of Ch, on the other we are relating such flow with the Wasserstein
distance, which is a priori a totally different object.
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Lemma 5.2 (Key estimate for the Wasserstein velocity) Let f0 ∈ L2(X,m) be such
that

∫
f0 dm = 1 and f0 ≥ c > 0 for some c, and consider the gradient flow (ft) of Ch starting

from f0. Define the measures µt := ftm (which are probability measures, thanks to the mass
preservation and the maximum principle). The the curve t 7→ µt ∈P(X) is locally absolutely
continuous w.r.t. W2 and for its metric speed it holds the bound

|µ̇t|2 ≤
∫
|∇ft|2∗
ft

dm, a.e. t. (5.5)

Notice that the bound provided is sharp, in the sense that on smooth spaces equality holds.
The idea to prove this lemma, which is due to Kuwada and appeared firstly in the technically
simpler case of Alexandrov spaces in [14], is to pass to the dual formulation of optimal
transport and then to use the properties of the Hopf-Lax semigroup. Indeed, we know that
it holds

W 2
2 (µt, µs)

2
= sup

ϕ∈Lip(X)

∫
ϕdµt +

∫
ϕc dµs = sup

ψ∈Lip(X)

∫
Q1(ψ) dµs −

∫
ψ dµt, (5.6)

where Q1(ψ) is defined via the Hopf-Lax formula as in (3.1). Since t 7→ Qt(ψ) is Lipschitz
with values in Cb(X), it is easy to check that the following calculations are justified:∫

Q1(ψ) dµs −
∫
ψ dµt

=

∫ 1

0

∫
d

dt

(
Qr(ψ)ft+r(s−t)

)
dmdr

=

∫∫ 1

0
ft+r(s−t)

d

dt
Qr(ψ) +Qr(ψ)

d

dt
ft+r(s−t) dr dm

(3.3)

≤
∫∫ 1

0
−|∇Qr|

2

2
ft+r(s−t) + (s− t)Qr(ψ)∆ft+r(s−t) dr dm

(5.3)

≤
∫∫ 1

0
−|∇Qr|

2

2
ft+r(s−t) + (s− t)|∇Qr(ψ)|∗|∇ft+r(s−t)|∗ dr dm

≤
∫∫ 1

0

(
−|∇Qr|

2

2
+
|∇Qrψ|2∗

2

)
ft+r(s−t) +

(s− t)2|∇ft+r(s−t)|2∗
2ft+r(s−t)

dr dm

≤ (s− t)2

2

∫∫ 1

0

|∇ft+r(s−t)|2∗
ft+r(s−t)

dr dm,

where in the last equality we used the fact that for any Lipschitz function g it holds |∇g|∗ ≤
|∇g| m-a.e., which is a trivial consequence of the definition. Thus we found a bound on∫
Q1(ψ) dµs −

∫
ψ dµt which is independent on ψ. Equation (5.6) then gives

W 2
2 (µt, µs)

2
≤ (s− t)2

2

∫∫ 1

0

|∇ft+r(s−t)|2∗
ft+r(s−t)

dr dm,

from which Lemma 5.2 easily follows.

5.3 A new notion of null set of curves: weak gradients

Here I recall another possible definition of Sobolev space on a metric measure space, inspired
to the approach of Shanmugalingam, and in the next section I will show why all these notions
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of ‘norm of gradient’ actually coincide. I will denote by et : C([0, 1], X) → X, t ∈ [0, 1], the
evaluation map defined by

et(γ) := γt.

Definition 5.3 (Test plans and negligible set of curves) A Borel probability measure
π ∈ P(C([0, 1]), X) is a test plan provided

∫∫ 1
0 |γ̇t|

2 dtdπ(γ) < ∞ and there exists C > 0
such that

(et)#π ≤ Cm, ∀t ∈ [0, 1].

A Borel set Γ ⊂ AC2([0, 1], X) is said negligible provided π(Γ) = 0 for any test plan π. A
property which is true for any curve γ ∈ AC2([0, 1], X) except a negligible set is said to hold
for a.e. curve.

Notice that if Mod2(Γ) = 0, then Γ is negligible. Indeed for π test plan and ρ ∈ L2(X,m)
such that

∫
γ ρ ≥ 1 for any γ ∈ Γ we have

π(Γ) ≤
∫∫

γ
ρdπ(γ) =

∫∫ 1

0
ρ(γt)|γ̇t| dt dπ(γ)

≤

√∫∫ 1

0
ρ2(γt) dt dπ(γ)

√∫∫ 1

0
|γ̇t|2 dtdπ(γ)

≤
√
C

√∫
ρ2(x) dm(x)

√∫∫ 1

0
|γ̇t|2 dtdπ(γ),

which implies the claim.
Coupled with the notion of negligible set, we can give the definition of functions which

are Sobolev along a.e. curve:

Definition 5.4 (Functions Sobolev along a.e. curve) We say that f : X → R is Sobolev
along a.e. curve provided for a.e. curve the map t 7→ f(γt) coincides a.e. in [0, 1] and in
{0, 1} with an absolutely continuous map fγ. In this case we say that G : X → [0,∞] is a
weak upper gradient for f provided∣∣f(γ0)− f(γ1)

∣∣ ≤ ∫
γ
G, a.e. γ. (5.7)

The definition of negligible set of curves is given to ensure basic invariance and lower-
semicontinuity properties, so that, for instance, if (fn) is a sequence of functions Sobolev
along a.e. curve which converges m-a.e. to f , and if Gn is a weak upper gradient and
Gn → G weakly in L2(X,m), then f is Sobolev along a.e. curve and G is a weak upper
gradient of f .

Also, it is possible to show that for f Sobolev along a.e. curve there exists a minimal
m-a.e. function G satisfying (5.7): we will denote such G by |∇f |w and call it minimal weak
gradient.

Since we know that a Mod2 null set is also a negligible set, we obtain immediately from the
definition that |∇f |C ≥ |∇f |w m-a.e., which coupled with (5.1) gives the chain of inequalities

|∇f |w ≤ |∇f |C ≤ |∇f |∗, m− a.e.,

so that to conclude the proof of Theorem 5.1 we need to show that |∇f |w ≥ |∇f |∗ m-a.e..
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In order to describe the key argument to achieve this inequality, I need to recall the
superposition principle valid in a generic metric space (proved by Lisini in [28], generalizing
the arguments in [3] for the Euclidean setting).

Theorem 5.5 (Superposition principle) Let (µt) ⊂P(X) be an AC2([0, 1],P(X)) curve
w.r.t. the distance W2. Then there exists π ∈P(C([0, 1], X)) concentrated on AC2([0, 1], X)
such that

(et)#π = µt, ∀t ∈ [0, 1],∫
|γ̇t|2 dπ(γ) = |µ̇t|2, a.e. t ∈ [0, 1].

(5.8)

Our job is now to prove that |∇f |w ≥ |∇f |∗ m-a.e., and in order to do so the first thing we
need to do is to find a way to bound from below the minimal weak gradient |∇f |w. I remark
that, to some extent, this should not be an hard task, because the minimal weak gradient is
something which is defined in inequality (5.7) as to be greater or equal than something else
(as opposed to the relaxed gradient |∇f |∗ which is defined by relaxation and thus is ‘naturally
less or equal than something’). The only thing we need to do, roughly said, is to find some
test plan in order to be able to check inequality (5.7) along sufficiently many curves.

We will achieve this by looking at the gradient flow of Ch. Indeed, we know that given
f0 ∈ L2(X,m) such that 0 < c ≤ f0 ≤ C <∞ and

∫
f0 dm = 1, the gradient flow (ft) satisfies

0 < c ≤ ft ≤ C < ∞ and
∫
ft dm for any t ≥ 0. Furthermore, by Lemma 5.2 we also know

that the curve t 7→ µt := ftm is absolutely continuous w.r.t. W2 and its metric derivative
satisfies the bound (5.5). Now we apply the superposition principle given by Theorem 5.5
to get the existence of a plan π ∈ P(C([0, 1], X)) satisfying (5.8). The maximum principle
ensures that this plan is a test plan. Hence the following calculation is justified:∫

f0 log f0 dm−
∫
ft log ft dm ≤

∫
log f0(f0 − ft) dm

=

∫
log(f0 ◦ e0)− log(f0 ◦ et) dπ

≤
∫∫ 1

0
|∇ log(f0)|w(γt)|γ̇t| dt dπ(γ)

≤ 1

2

∫∫ 1

0
|∇ log(f0)|2w(γt) dt dπ(γ) +

1

2

∫∫ 1

0
|γ̇t|2 dt dπ(γ)

=
1

2

∫∫ 1

0

|∇f0|2w
f2

0

ft dtdm +
1

2

∫∫ 1

0
|γ̇t|2 dtdπ(γ)

(5.9)

5.4 Identification of the two gradients

At this stage, we have all the ingredients needed to conclude that |∇f |∗ = |∇f |w. Indeed
from (5.9), (5.8) and (5.5) we get

lim
t↓0

∫
f0 log f0 dm−

∫
ft log ft dm

t
≤ 1

2

∫
|∇f0|2w
f0

dm +
1

2

∫
|∇f0|2∗
f0

dm,

while from (5.4) we know that

lim
t↓0

∫
f0 log f0 dm−

∫
ft log ft dm

t
=

∫
|∇f0|2∗
f0

dm.
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Hence it must hold ∫
|∇f0|2w
f0

dm ≥
∫
|∇f0|2∗
f0

dm,

which, together with the pointwise estimate |∇f |w ≤ |∇f |∗ grants the conclusion.
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6 Two points of view on the heat flow as gradient flow

It well known that on Rd the gradient flow of the Dirichlet energy in L2 coincides with the
gradient flow of the relative entropy in the Wasserstein space, as both produces solutions to
the heat equation. More precisely, given f ∈ L2(Rd,Ld) such that µ := fLd ∈P2(Rd), if we
let (ft) be the gradient flow of the Dirichlet energy starting from f and (µt) the one of the
relative entropy starting from µ, it holds µt = ftL

d for any t ≥ 0.
The same property is true also on Riemannian manifolds (proved by Erbar in [22], see

also Villani’s arguments in [46]) and on Finsler manifolds (by Ohta and Sturm in [37]).
In all these situations, the structure of the proof of the identification is the same:

• One studies the gradient flow of the Dirichlet energy in L2 and writes down the PDE
solved by it,

• then he studies also the gradient flow of Entm w.r.t. W2 and writes down the PDE
solved by it,

• he realizes the the two PDEs are actually the same: the heat equation.

• Finally, and this is the key step, he calls into play his knowledge of PDEs to assert that
solutions to the heat equation uniquely depend on their initial data. Hence the two
gradient flows must coincide.

Thus we know that in all the smooth situations the two gradient flows coincide. It is then
natural to guess that there must be some deep reasons in order for this equivalence to be
true, and that the same should hold in a non smooth context as well. The natural abstract
setting where to work on is that of CD(K,∞) spaces, because, as already recalled in Chapter
4 we know from the study of Riemannian geometry that a sufficient condition in order for
the heat flow to preserve the mass is that the Ricci curvature is bounded from below (mass
preservation is important if we want to work with the Wasserstein distance).

On CD(K,∞) spaces we have a natural analogue for the Dirichlet energy: the Cheeger
energy Ch (which, as discussed, is well defined on general metric measure spaces), and we also
studied its gradient flow in L2. Also, by the discussion made in Chapter 4 we know that the
gradient flow of the relative entropy w.r.t. W2 exists and is unique.

Thus the question is: do these two gradient flows coincide in this generality?
The difficulty in answering this question relies on the fact that the strategy used for the

smooth case cannot be applied, because we don’t have any a priori uniqueness result for the
solutions of the heat equation (written, for instance, as in (5.2)). And even if such uniqueness
result were available, we would still have the problem to show that the gradient flow of Entm
satisfies the heat equation.

Hence a new approach is needed. Such approach has been developed firstly in [14], and
later generalized in [4] , where we proved the following result:

Theorem 6.1 Let (X, d,m) be a CD(K,∞) space, f0 ∈ L2(X,m) such that µ0 := f0m ∈
P2(X) and define (ft) ⊂ L2(X,m) as the gradient flow of Ch w.r.t. L2 starting from f0 and
(µt) ⊂P2(X) as the gradient flow of Entm w.r.t. W2 starting from µ0.

Then µt = ftm for any t ≥ 0.
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The proof of this result has been one of the main research goals that I tried to accomplish
in the last 2 years, and the paper [9] where I prove existence, uniqueness and stability of the
W2-gradient flow of the relative entropy should be regarded as the first step in this direction.
Also, all the technical tools like the study of the Hamilton-Jacobi equation and the refined
analysis of the Sobolev spaces discussed in Chapters 3 and 5 have been developed exactly to
achieve this result (although I believe that they are of independent interest).

With all the machinery that we have at disposal now, the proof is not hard. Indeed,
we know from Theorem 4.4 that the W2-gradient flow of the entropy is unique, so that to
conclude it is sufficient to show that the curve t 7→ νt := ftm satisfies the inequality

Entm(ν0) ≥ Entm(νT ) +
1

2

∫ T

0
|ν̇t|2 dt+

1

2

∫ T

0
|∇−Entm|2(νt) dt, ∀T > 0.

Thanks to the absolute continuity of t 7→ Entm(νt) ∈ R and of t 7→ νt ∈ P2(X) (the latter
being proved in Lemma 5.2), it is sufficient to show that

− d

dt
Entm(νt) =

∫
|∇ft|2∗
ft

dm, a.e. t,

|ν̇t|2 ≤
∫
|∇ft|2∗
ft

dm, a.e. t,

|∇−Entm|2(fm) ≤
∫
|∇f |2∗
f

dm, ∀f ∈ L2(X,m), s.t. fm ∈P2(X).

The first equation is proved in 5.4, and the second one in Lemma 5.2, so that to conclude the
proof it is sufficient to prove the bound from above on the slope. This is not hard, as Lott
and Villani proved in [33] the same statement with the local Lipschitz constant in place of
the relaxed gradient, so that to conclude it is enough to use the lower semicontinuity of the
slope w.r.t. weak convergence of measures.
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7 Riemannian Ricci curvature bounds

We already discussed the definition of spaces with Ricci curvature bounded below, and con-
cerning the appearance of Finsler geometries we saw that:

• Smooth Finsler manifolds are CD(K,∞) spaces for appropriate K.

• Finsler manifolds cannot arise as limit of Riemannian manifolds with Ricci curvature
bounded from below.

In particular, this shows that the class of CD(K,∞) spaces strictly contains the closure of
the class of Riemannian manifolds with uniform bounds from below on the Ricci curvature.
Thus, regardless of whether one wants or not to include in the study Finsler geometries, it is
natural to ask if there is a more restrictive notion of Ricci bound which rules them out, in
order to have a better description of the closure of the class of Riemannian manifolds.

In the recent paper [5] written in collaboration with Ambrosio and Savaré we made a first
step in this direction by introducing the notion of spaces with Riemannian Ricci curvature
bounded from below (in short RCD(K,∞) spaces). Up to minor technicalities - which I won’t
discuss here - what we add to the CD(K,∞) condition is the linearity of the heat flow, or,
which is the same, we ask for the Sobolev space W 1,2 to be an Hilbert space.

Clearly, Riemannian manifolds with Ricci curvature bounded below by K are RCD(K,∞)
spaces, as they are CD(K,∞) spaces and the heat flow is linear on them. Also, from the
studied made in [40], [49], [36] and [15] we also know that finite dimensional Alexandrov
spaces with curvature bounded below are RCD(K,∞) spaces as well.

The stability of this notion can be deduced, for instance, from the stability result discussed
in Section 4.3, which grants that if the approximating sequence of spaces have linear heat
flow, then the same is true for the limit space as well.

Hence RCD(K,∞) spaces have the same basic properties of CD(K,∞) spaces, which
gives to this notion the right of being called a synthetic (or weak) notion of Ricci curvature
bound.

The point is then to understand which kind of gains about analysis/geometry of these
spaces one gets from adding this linearity condition. A first non trivial consequence is that
the heat flow K-contracts the distance W2, i.e.

W2(µt, νt) ≤ e−KtW2(µ0, ν0), ∀t ≥ 0,

whenever (µt), (νt) ⊂P2(X) are two gradient flows of the entropy.
By a duality argument (see [27]) this property implies the Bakry-Emery gradient estimate

|∇ht(f)|2∗(x) ≤ e−2Ktht(|∇f |2∗)(x), ∀t ≥ 0, m− a.e. x,

where ht : L2(X,m) → L2(X,m) is the heat flow seen as gradient flow of Ch. If (X, d,m) is
doubling and supports a local Poincaré inequality, then also the Lipschitz regularity of the
heat kernel is deduced (following an argument described in [14]).

Also, notice that the linearity of the heat flow is equivalent to the fact that Ch is a
quadratic form, which means that

E(f, g) := Ch(f + g)− Ch(f)− Ch(g), ∀f, g ∈W 1,2(X, d,m),
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induces a closed Dirichlet form on L2(X,m) (closure follows from the L2-lower semicontinuity
of Ch). Hence it is natural to compare the calculus on RCD(K,∞) spaces with the abstract
one available for Dirichlet forms (see [24]). The picture here is pretty clear and, I believe,
satisfactory. Recall that to f ∈ D(E) one can associate the energy measure [f ] defined by

[f ](ϕ) := −E(f, fϕ) + E(f2/2, ϕ).

Using the calculus tools developed in the previous chapters, we are able to show that under
the only assumption that W 1,2(X, d,m) is Hilbert (so no bound on the curvature is needed
here), the energy measure coincides with |∇f |2∗m. Also, if (X, d,m) is a RCD(K,∞) space,
then we can also show that the distance d coincides with the intrinsic distance dE induced by
the form, which is defined by

dE(x, y) := sup
{
|g(x)− g(y)| : g ∈ D(E) ∩ C(X), [g] ≤ m

}
.

Taking advantage of these identification and of the locality of E (which is a consequence of the
locality of the notion |∇f |∗), one can also see that on RCD(K,∞) spaces it is well defined a
continuous Brownian motion.

Finally, for RCD(K,∞) spaces we have been able to prove tensorization and locality
properties which are in line to those available for CD(K,∞) spaces.
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