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Abstract

Within the Landau–de Gennes theory, the order parameter describing a biaxial nematic liquid crystal
assigns a symmetric traceless 3× 3 matrix Q with three distinct eigenvalues to every point of the region
Ω occupied by the system. In the constrained case of matrices Q with constant eigenvalues, the order
parameter space is diffeomorphic to the eightfold quotient S3/H of the 3-sphere S3, where H is the
quaternion group, and a configuration of a biaxial nematic liquid crystal is described by a map from
Ω to S3/H . We express the (simplest form of the) Landau–de Gennes elastic free-energy density as
a density defined on maps q : Ω → S3, whose functional dependence is restricted by the requirements
that (1) it is well defined on the class of configuration maps from Ω to S3/H (residual symmetry) and
(2) it is independent of arbitrary superposed rigid rotations (frame indifference). As an application of
this representation, we then discuss some properties of the corresponding energy functional, including
coercivity, lower semicontinuity and strong density of smooth maps. Other invariance properties are also
considered. In the discussion, we take advantage of the identification of S3 with the Lie group of unit
quaternions Sp(1) ∼= SU(2) and of the relations between quaternions and rotations in R3 and R4.

1 Introduction

A liquid crystal is a state of matter, called mesomorphic, intermediate between the crystal state and the liquid
state, in which the molecules retain preferential orientations relative to one another over large distances [9].
There are many different types of liquid crystals, the main classes being nematics, cholesterics and smectics.
In nematic liquid crystals the constituent rod-like molecules have a locally preferred direction.

According to the continuum description in the Landau–de Gennes theory [9, 24], the state of alignment
of a nematic liquid crystal which occupies a region Ω is characterized, at each point x of Ω, by a symmetric
traceless 3×3 matrix Q(x) , the so-called tensor order parameter. By definition, Q vanishes in the isotropic
phase and thus measures the extent to which the system is ordered in the region Ω. In a general nematic
phase, the tensor order parameter Q has five degrees of freedom, two of them specify the degree of order,
while the remaining three are the angles needed to specify the principal directions. A nematic phase is said
biaxial when Q has three distinct eigenvalues, uniaxial when Q has two non-zero equal eigenvalues. While
the existence of uniaxial nematics has been known for more than a century, the experimental evidence of
biaxial nematic liquid crystals is only recent [20]. A general tensor order parameter Q can be written as

Q = S1

(
n⊗ n− 1

3
I
)

+ S2

(
m⊗m− 1

3
I
)
, S1, S2 ∈ R, n,m ∈ S2, (1.1)

where n , m are orthonormal eigenvectors of Q and S1, S2 are scalar order parameters given by S1 =
λ1 − λ3 = 2λ1 + λ2 , S2 = λ2 − λ3 = λ1 + 2λ2 in terms of the eigenvalues λ1, λ2, λ3 of Q. (Observe that a
different numbering of the eigenvalues would lead to different S1 and S2.) In the uniaxial case, Q takes the
form

Q = s
(
r⊗ r− 1

3
I
)

, s ∈ R, r ∈ S2, (1.2)

where s is the only scalar order parameter. A tensor order parameter Q can be visualized by a rectangular
box which is built from the eigensystem of the tensor. The eigenvalues, suitably augmented by

√
(2/3) tr(Q2)

to ensure positivity, can be used as the edge lengths of the box. For a uniaxial Q two edges have the same
length, while for a biaxial Q all three edges are of different lengths. The Landau–de Gennes free-energy
functional is a nonlinear integral functional of Q and its spatial derivatives. In general, it is required that
any energy density Ψ = Ψ(Q,∇Q) satisfy the condition of frame indifference which amounts to

Ψ(Q,∇Q) = Ψ(MQMT ,D∗) ∀M = (M i
j) ∈ SO(3) , (1.3)
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where D∗ denotes a third order tensor such that D∗
ijk = M i

l M
j
mMk

p Qlm,p , and Qij,k = ∂
∂xk

Qij denote the
first order partial derivatives of Q, compare e.g. [1].

A commonly used expression for the free energy of a biaxial nematic liquid crystal is [9, 24, 27]

F(Q, Ω) :=
∫

Ω

[ψ(Q,∇Q) + fB(Q)] dx , (1.4)

where fB(Q) = fB(tr(Q2), tr(Q3)) is the bulk free-energy density (a function of the principal invariants of
Q) and

ψ(Q,∇Q) = L1I1 + L2I2 + L3I3 + L4I4 (1.5)

is the elastic free-energy density. Here the Li are material constants and the elastic invariants Ii are given
by

I1 = Qij,jQik,k , I2 = Qik,jQij,k , I3 = Qij,kQij,k , I4 = QlkQij,lQij,k, (1.6)

where summation over repeated indices is assumed. The bulk energy fB(Q) is invariant under the SO(3)-
action by conjugation on the five-dimensional space of Q-tensors, so that the critical points of the bulk
energy form an orbit of solutions in the five-dimensional space of Q-tensors. In particular, the SO(3)-
orbit corresponding to the general case of a biaxial minimizer is a 3-manifold, while in the special case
corresponding to a uniaxial minimizer the orbit reduces to a 2-manifold (see Section 2). Clearly, a tensor
order parameter taking values in a group orbit has constant scalar order parameters. Actually, in many
applications, it suffices to work within the so-called constrained Landau–de Gennes theory in which the
tensor order parameter Q is assumed to have constant scalar order parameters S1 and S2 , and hence
constant eigenvalues [3]. In the constrained theory, the bulk energy is constant and we only have to consider
the elastic free energy.

In the constrained uniaxial case, when the order parameter is constant, the more common and popular
director approach to continuum modeling can be used only on simply-connected domains (see [3] for the non
simply-connected case). In this theory, often referred to as the Oseen–Frank theory [26, 13], a configuration
of a uniaxial liquid crystal is described mathematically as a unitary vector field r(x) in Ω, referred to as
the director, which represents the direction of preferred molecular alignment. In the Oseen-Frank model,
the elastic energy associated to the configuration r is given by

E(r, Ω) :=
∫

Ω

w(r,∇r) dx . (1.7)

The energy density w(r,∇r) was derived by Oseen [26] on the basis of a molecular theory, and by Frank
[13] as a consequence of Galilean invariance. This energy density satisfies the invariance properties

w(r,∇r) = w(−r,−∇r),
w(Hr,H∇rHT ) = w(r,∇r), ∀H ∈ O(3) ,

(1.8)

so that the functional (1.7) is well defined on vector fields in Ω, regardless of the orientation. The first
equation in (1.8) accounts for the lack of polarity of nematics, while the second one expresses the frame
indifference of the energy density and the condition of material symmetry corresponding to the lack of
chirality of nematics. Requiring that the second line condition in (1.8) hold for the special orthogonal group
only is equivalent to the frame indifference condition (1.3) for constrained uniaxial Q-tensors (see Section 3).
The director approach to continuum modeling has been further developed by Ericksen and Leslie [11, 18]
in their hydrodynamic theory of nematic liquid crystals, which reduces to the Oseen–Frank theory in the
static case. In the more recent Ericksen theory [12], also a spatially varying orientational order is taken into
account, i.e., the state of the liquid crystal is described by a pair (s, r) ∈ R× S2, depending on x ∈ Ω .

However, although the director representation of uniaxial nematics is quite intuitive, it is not completely
appropriate from a physical point of view as it does not respect the inversion symmetry, in which r and −r
represent the same state. This means that the vector field r in the Oseen-Frank approach should actually
take values in the projective plane RP 2, obtained by identification of antipodal points in S2. This problem
is overcome by the Q-tensor approach as the representation (1.2) is invariant under the transformation
r 7→ −r.

A variational theory that takes into account the lack of orientability of RP2 is discussed by the first
author in [25]. In particular, for any Sobolev map u ∈ W 1,2(Ω,RP2), where Ω ⊂ R3 is a simply-connected
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domain, there exists, up to the action of an element of π1(RP 2) = Z2 , a unique map r ∈ W 1,2(Ω, S2) such
that u = Π ◦ r, where Π : S2 → RP 2 is the canonical projection map. This lifting property was obtained in
a more general setting and with different techniques by Bethuel and Chiron [5], who also showed that the
property is no longer true for the Sobolev classes W 1,p , when p < 2.

The lifting problem has been studied using the Q-tensor approach by Ball and Zarnescu in [3], where the
orientability problem has been discussed also in the non simply-connected case. They also prove that the
existence of a lifting of class W 1,2 implies the existence of a lifting for the trace on the boundary of Ω, in
the corresponding fractional Sobolev space W

1
2 ,2. As for non simply-connected two-dimensional domains,

they specialized to the subclass of (1.2) where r has the third component identically zero. Such subclass
of Q-tensors is identified with the real projective line RP 1. In this framework, they showed examples in
which the minimum energy in the class of W 1,2 maps Q(r) is strictly lower than the minimum energy in
the corresponding class W 1,2(Ω, S1).

In this paper we restrict ourselves to the constrained theory of biaxial nematic liquid crystals. Let
Q(λ1, λ2, λ3) be the set of all Q-tensors of the form (1.1) such that S1, S2 are constant, independent of
x ∈ Ω , ad assume that the three distinct eigenvalues λ1, λ2, λ3 ∈ (− 1

3 , 2
3 ) (see [2] for a discussion on the

physical meaning of these constraints). Any element Q ∈ Q(λ1, λ2, λ3) can be written in the form

Q = GAGT for some G ∈ SO(3),

where A = diag(λ1, λ2, λ3) is the diagonal matrix of the eigenvalues. Thus Q(λ1, λ2, λ3) coincides with
the orbit of A with respect to the SO(3)-action by conjugation on the five-dimensional space of Q-tensors.
We can then identify Q(λ1, λ2, λ3) with the homogeneous space SO(3)/D2 , where D2 is the abelian
four-element dihedral group. Using the 2:1 universal covering map Φ : S3 ∼= Sp(1) → SO(3), the order
parameter space of constrained biaxial nematics is then diffeomorphic to the homogeneous manifold S3/H,
where H is the non-abelian eight-element quaternion group (see Section 2 for more details). In this model,
a configuration of a biaxial nematic liquid crystal is described by a map from Ω to S3/H .

In the constrained theory of uniaxial nematics, it is known that the Landau–de Gennes elastic free-energy
density ψ(Q,∇Q) as given in (1.5) reduces to the Oseen–Frank energy density w(r,∇r), i.e., it is possible
to choose the material constants Li in order that ψ(Q,∇Q) = w(r,∇r) (see [3, 24] and also Section 4). In
analogy to the uniaxial case, one purpose of this article is to express the Landau–de Gennes elastic free-energy
density of biaxial nematics as a density on maps q : Ω → S3 , whose functional dependence is restricted by
requiring that it is well defined on the class of configuration maps into S3/H and is independent of arbitrary
superposed rigid rotations. In our discussion, we will take advantage of the identification of S3 with the
Lie group of unit quaternions Sp(1) ∼= SU(2) and of the relations between quaternions and rotations in R3

and R4.
In Section 3, for a generic energy density depending on a map (u,v) : Ω → S3 ⊂ R × R3 and its first

order derivatives, we introduce an invariance condition and prove that it is indeed equivalent to the frame
indifference condition (1.3) for Q-tensors. We then introduce an additional symmetry condition for this
density which takes into account the residual symmetry (characterized by the group H ) of a constrained
biaxial state. In the uniaxial case, it clearly corresponds to the first equation in (1.8).

In Section 4, working in the constrained biaxial case, we consider the simplest form of the elastic free-
energy density,

I3(Q,∇Q) = Qij,kQij,k

which corresponds to the Dirichlet energy density 2s2|∇r|2 in the uniaxial case (1.2). The situation consid-
ered here can be regarded as a limit case of the unconstrained Q-tensor theory, in the spirit of the analysis
in [22] (see also [3]), where the limit L → 0 for the the Landau–de Gennes free-energy functional

F(Q, Ω) :=
∫

Ω

[
L

2
Qij,kQij,k − a

2
tr(Q2)− b

3
tr(Q3) +

1
4

tr(Q2)2
]

dx (1.9)

is considered and referred to as “the Oseen–Frank limit” (in the formula above, a, b, c are temperature and
material dependent constants and L > 0 is the elastic constant). If instead of a bulk free-energy density
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with only three terms one uses a bulk free-energy density truncated at the sixth order, e.g.,

fB(Q) : =
A

2
tr(Q2)− B

3
tr(Q3) +

C

4
tr(Q2)2

+
D

5
tr(Q2)tr(Q3) +

E

6
tr(Q2)3 +

E′

6
tr(Q3)2,

where A,B,C, D, E and E′ are material bulk constants (see, for instance, [8, 9]), then the theory considered
here can be obtained as a limit theory for L → 0 (and appropriate boundary conditions) and can then be
regarded as a generalization to biaxial nematics of the limit theory in the sense of [22].

We express I3 in terms of maps (u,v) : Ω → S3, namely, we explicitly compute f3 : S3×M4×3 → [0,+∞]
so that

I3(Q,∇Q) = f3((u,v),∇(u,v)),

provided that Q corresponds to (u,v) , that is, Q = GAGT with G = Φ((u,v)). (In principle, similar
calculations can be performed also for the elastic invariants I1, I2 and I4. In the final section, according to
[28], we write these invariants in terms of the varying orthonormal frame (n,m, `) .)

In Section 5, we prove that the energy density model f3((u,v),∇(u,v)) actually satisfies a general in-
variance property, that corresponds to the symmetry of the Dirichlet energy density 2s2|∇r|2 in the uniaxial
case. Such an invariance property implies the above mentioned frame indifference and residual symmetry
conditions. Therefore, f3 may be interpreted as the elastic energy density model for the configuration maps
(u,v) : Ω → S3/H of a constrained biaxial nematic liquid crystal.

The corresponding elastic energy functional

F3((u,v), Ω) :=
∫

Ω

f3((u,v)(x),∇(u,v)(x)) dx

is well defined, e.g., on Sobolev maps (u,v) : Ω → S3/H, where Ω is a bounded domain of R3 , i.e., a
bounded connected open subset. Now, by ordering the eigenvalues as λ1 < λ2 < λ3, with the notation from
(1.1) we clearly have S1 < S2 < 0. Moreover, following [22] (see also Remark 2.6), we deduce that either

S1

2
≤ S2 < 0 or S2 ≤ S1

2
< 0 .

Using this and the invariance property, we are then able to prove that the energy density f3 satisfies the
following coercivity property:

f3((u,v),∇(u,v)) ≥ 8S2|∇(u,v)|2 , where S 6= 0 .

As a consequence, it is readily seen that the class of measurable and a.e. weakly differentiable functions from
Ω to S3/H with finite F3-energy agrees with the Sobolev class W 1,2(Ω,S3/H).

Now, since the second homotopy group π2(S3/H) = 0, as a consequence of the strong density result of
Bethuel [4], it turns out that if the domain Ω ⊂ R3 is bounded and simply connected, then for each Sobolev
map w ∈ W 1,2(Ω, S3/H) there exists a sequence of smooth maps {wk} ⊂ C∞(Ω, S3/H) such that wk → w
strongly in W 1,2 and F3(wk) → F3(w). Moreover, we have that the functional F3 is sequentially lower
semicontinuous with respect to the weak W 1,2-topology in the class W 1,2(Ω, S3/H). This yields that no gap
phenomenon occurs in the relaxation process, see Section 5. The proof uses the lifting result of Bethuel–
Chiron [5, Theorem 1] asserting that if the domain Ω is bounded and simply connected, then for any
exponent p ≥ 2 and every Sobolev map w ∈ W 1,p(Ω, S3/H) , there exists a Sobolev map w̃ ∈ W 1,p(Ω,S3)
such that Π ◦ w̃ = w, unique up to the action of an element of π1(S3/H) = H, where Π : S3 → S3/H is the
canonical projection. Note that S3/H can be endowed with a unique Riemannian structure so that Π is a
Riemannian covering map and that π1(S3/H) = H naturally acts by isometries on S3.

We conclude with some comments on the question of defects in our framework. It is well-known that
in the Oseen-Frank theory, based on the classical Sobolev approach, when minimizing the energy among
maps satisfying a zero degree boundary condition, only point defects with total degree equal to zero can
be explained. Using the more geometric approach based on Cartesian currents [14, 15], see also [25], point
defects connected by lines of concentration can be described. Within the Ginzburg–Landau theory, Chiron
[7] was able to describe line defects (disclinations) in the uniaxial case. See also [16, 17, 19] for discussions
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on the configuration of liquid crystals and on the static and dynamic theories of defects. In the constrained
biaxial case, our coercivity property and the triviality of the second homotopy group of S3/H suggest that
the line singularities of biaxial nematics [23] cannot be described by means of Cartesian currents.

Acknowledgements. The authors wish to thank the referee for the many useful remarks and comments.

2 Preliminaries and notation: Q-tensors and order parameter
spaces

To fix notation, we start by recalling some known facts about quaternions which will be used in our discussion,
see [10]. Let H be the real non-commutative algebra of quaternions, with the standard basis {1, i, j, k}.
Multiplication is determined by the rules

i2 = j2 = k2 = ijk = −1

which imply jk = −kj = i, ki = −ik = j, ij = −ji = k. The typical quaternion is

q = q0 + q1i + q2j + q3k, q0, q1, q2, q3 ∈ R.

The real part of q is q0 and the pure quaternion part is q1i + q2j + q3k. The conjugate of q is given by
q̄ = q0 − q1i− q2j− q3k and the norm |q| is defined by

|q|2 = qq̄ = q̄q = q2
0 + q2

1 + q2
2 + q2

3 .

The multiplicative inverse of any non-zero quaternion is q−1 = q̄/|q|2. As a vector space, H is identified with
R4 via the usual isomorphism,

q = q0 + q1i + q2j + q3k ←→ (q0, q1, q2, q3)T

which in turn induces an isomorphism between the subspace of pure quaternions and R3. In view of this
isomorphism, when convenient, the elements 1, i, j, k of H will be identified with the elements of the canonical
basis e0, e1, e2, e3 of R4, respectively. We will also make use of the decomposition H = R⊕R3 = span{1}⊕
span{i, j, k} into the real and imaginary parts, and write q = (q0,q), where q := (q1, q2, q3).

There is a diffeomorphism between the unit 3-sphere S3 ⊂ R4 and the group of unit quaternions,

Sp(1) = {q ∈ H | |q| = 1}.
Let q be a unit quaternion and consider the R-linear transformation Cq : H→ H, defined by Cq(w) = qwq̄, for
all w ∈ H. The map Cq is an isometry, that is, |Cq(w)| = |w| , and preserves the decomposition H = R⊕R3

of w into its real and imaginary parts. It can then be interpreted as a rotation of R3.
Let M(q) be the 4 × 4 matrix that represents the linear transformation Cq : H → H with respect to

the standard basis {1, i, j, k}. Since |Cq(w)| = |w| , for all w ∈ H, M(q) must be an orthogonal matrix, i.e.,
M(q) ∈ O(4). The continuity of the determinant and the connectedness of S3 imply that the determinant of
M(q) is positive, so that M(q) ∈ SO(4). The first column of M(q) is the vector representing the quaternion
q1q̄ = qq̄ = 1 , that is, e0. The fact that M(q) belongs to SO(4) now forces M(q) to be of the form

M(q) =
(

1 0
0 Φ(q)

)
, (2.1)

where Φ(q) is an element of the special orthogonal group SO(3). The map

Φ : S3 ∼= Sp(1) → SO(3), q 7→ Φ(q)

is a homomorphism of groups which is surjective and has kernel {±1} (see [10] for more details). In particular,
two matrices Φ(p) and Φ(q) represent the same rotation if and only if p = ±q. The rotation matrix
corresponding to the unit quaternion q = q0 + q1i + q2j + q3k is given explicitly by

Φ(q) = G(q0,q) :=




q2
0 + q2

1 − (q2
2 + q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 + q2
2 − (q2

1 + q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − (q2
1 + q2

2)


 . (2.2)
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Since every unit quaternion q is of the form q = cos(θ/2) + sin(θ/2)u, for a real number θ and a pure unit
quaternion u = u1i+u2j+u3k , the matrix Φ(q) ∈ SO(3) represents a rotation through an angle θ with axis
along u,

Φ(q) =




u2
1(1− cos θ) + cos θ u1u2(1− cos θ)− u3 sin θ u1u3(1− cos θ) + u2 sin θ

u1u2(1− cos θ) + u3 sin θ u2
2(1− cos θ) + cos θ u2u3(1− cos θ)− u1 sin θ

u1u3(1− cos θ)− u2 sin θ u2u3(1− cos θ) + u1 sin θ u2
3(1− cos θ) + cos θ


 .

For future reference, we write the orthogonality conditions of G = G(q0,q) ,

GT G = I , GGT = I , (2.3)

expressing, respectively, the orthonormality and the completeness of the column vectors of G . We also
record that

Φ(±1) = I , Φ(±i) =




1 0 0
0 −1 0
0 0 −1


 , Φ(±j) =



−1 0 0
0 1 0
0 0 −1


 , Φ(±k) =



−1 0 0
0 −1 0
0 0 1


 . (2.4)

Remark 2.1 For any quaternion q = q0+iq1+jq2+kq3, let L(q) and R(q) denote the matrix representations
of the real linear maps on H defined by w 7→ q w and w 7→ w q , relative to the standard basis {1, i, j, k}. It
follows that

L(q) =




q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


 , R(q) =




q0 q1 q2 q3

−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0


 . (2.5)

¿From the definition, one sees that L(pq) = L(p)L(q), R(pq) = R(p)R(q) and that the matrices L(p) and
R(q) commute. It also follows that L(q̄) = L(q)T and R(q̄) = R(q)T . So, if |q| = 1, L(q) and R(q) must
be orthogonal matrices. One can verify by direct computation that these matrices have determinant one,
i.e., belong to SO(4). Moreover, in this case we have that L(q)R(q) = M(q), where

M(q) =




1 0 0 0
0 q2

0 + q2
1 − (q2

2 + q2
3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)

0 2(q1q2 + q0q3) q2
0 + q2

2 − (q2
1 + q2

3) 2(q2q3 − q0q1)
0 2(q1q3 − q0q2) 2(q2q3 + q0q1) q2

0 + q2
3 − (q2

1 + q2
2)


 .

This means that for every (q0,q) ∈ S3 , the matrix in (2.2) can be written in the form

G(q0,q)i
j =

4∑
α=1

L((q0,q))i+1
α R((q0,q))α

j+1 ∀ i, j = 1, 2, 3 .

In general, the 2:1 group homomorphism Φ : Sp(1) → SO(3) is given, for every q ∈ Sp(1) , by

Φ(q)i
j =

4∑
α=1

L(q)i+1
α R(q)α

j+1 ∀ i, j = 1, 2, 3 . (2.6)

Constrained theory of nematic liquid crystals. In the sequel, we shall think of vectors in
R3 as column vectors. If n,m ∈ R3, the tensor product n⊗m is the matrix nmT , so that (n⊗m)i

j = nimj ,
if n = (n1,n2,n3)T , m = (m1,m2,m3)T . We shall also denote by n ·m and n×m the scalar and vector
products, respectively.

In the Landau–de Gennes approach to nematic liquid crystals [9, 24], the order parameter describing the
orientational properties of molecules is a function that assigns to every point of the region Ω ⊂ R3 occupied
by the liquid crystal a traceless real symmetric 3× 3-matrix Q , the so-called Q-tensor order parameter. A
nematic liquid crystal is said to be in the (1) isotropic phase if Q has three equal eigenvalues, i.e. Q = 0, (2)
uniaxial phase if Q has two equal non-zero eigenvalues, (3) biaxial phase if Q has three distinct eigenvalues.
By the spectral theorem, a generic biaxial Q can be written in the form [22, 24]

Q = S1

(
n⊗ n− 1

3
I
)

+ S2

(
m⊗m− 1

3
I
)
, (2.7)
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where S1, S2 are scalar order parameters and n , m , and n×m are orthonormal eigenvectors of Q corre-
sponding to the eigenvalues

λ1 =
2S1 − S2

3
, λ2 =

2S2 − S1

3
, λ3 = −S1 + S2

3
. (2.8)

(We henceforth assume the ordering λ1 ≤ λ2 ≤ λ3.) Equivalently, if A = diag(λ1, λ2, λ3) denotes the
traceless diagonal matrix of the eigenvalues, the representation (2.7) of the symmetric matrix Q amounts
to

Q = GAGT , (2.9)

for some rotation matrix G ∈ SO(3) . In the isotropic phase, clearly S1 = S2 = 0. In the uniaxial phase,
either S1 = 0 , S2 6= 0, or S1 6= 0 , S2 = 0, or S1 = S2, so that Q takes the form

Q = s
(
r⊗ r− 1

3
I
)

, (2.10)

where s is a scalar order parameter and r ∈ S2. When S1 = S2 , the uniaxial representation for Q is readily
obtained from the completeness property of the eigenvectors, i.e.

n⊗ n + m⊗m + `⊗ ` = I , ` := n×m ∈ S2 . (2.11)

Remark 2.2 The eigenvalues of physical Q-tensors are bounded by the inequalities − 1
3 < λi < 2

3 ,
i = 1, 2, 3 (see e.g. [2] for a thorough discussion on the physical constraints of the eigenvalues).

In the constrained Landau–de Gennes theory [3, 22, 23], the scalar order parameters S1 and S2 are
required to be constant, so that the structure of the liquid crystal at each point x ∈ Ω only depends on the
value of the orthonormal vectors n, m at x. In particular, the eigenvalues in (2.8) are constant. In the
constrained uniaxial case, according to (2.10), any tensor order parameter Q has two degrees of freedom
given by r ∈ S2. Actually, if r is replaced by −r in (2.10), Q remains the same, and can then be identified
with the pair {r,−r} , r ∈ S2, which in turn determines a point in the projective plane RP 2 (see Remark 2.5
below). In the constrained biaxial case, Q has instead three degrees of freedom, given, e.g., by the three
Euler angles corresponding to the orthonormal frame n,m, `. In the following, we discuss the constrained
biaxial case in more detail.

Definition 2.3 Let S0 denote the vector space of traceless symmetric 3 × 3 matrices over R. For fixed
distinct constants λ1, λ2, λ3 ∈ (− 1

3 , 2
3 ), ordered by λ1 < λ2 < λ3, let A = diag(λ1, λ2, λ3). The space

Q(λ1, λ2, λ3) of all elements of S0 of the form (2.7) so that (2.8) holds is known as the order parameter
space of the system.

By (2.9), we have

Q(λ1, λ2, λ3) =
{
Q ∈ S0 | Q = GAGT for some G ∈ SO(3)

}
.

If one considers the left action of SO(3) on S0 given by

G ? Q := GQGT , G ∈ SO(3), Q ∈ S0, (2.12)

then it is clear that Q(λ1, λ2, λ3) is just the orbit of the matrix A = diag(λ1, λ2, λ3) with respect to this
action. Since the eigenvalues are distinct, the subgroup of SO(3) which fixes A ,

SO(3)A := {G ∈ SO(3) | G ? A = A},
that is the isotropy subgroup of A, is readily seen to be the abelian four-element group

D2 := {diag(1, 1, 1), diag(−1,−1, 1), diag(−1, 1,−1), diag(1,−1,−1)} .

(This is the dihedral group D2 which consists of the identity and 180◦-rotations about three mutually
perpendicular axes.) Now, from the theory of homogeneous spaces [6, 29], we know that the coset space
SO(3)/SO(3)A = SO(3)/D2 can be given a structure of differentiable manifold, so that the bijective map

SO(3)/SO(3)A → Q(λ1, λ2, λ3), [G] = GSO(3)A 7→ G ? A = GAGT
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provides Q(λ1, λ2, λ3) with a differentiable structure with this map becoming a diffeomorphism. The coset
space SO(3)/D2 is an eightfold quotient of the 3-sphere. In fact, according to (2.4), the preimage of D2 in S3

under the 2:1 group homomorphism Φ : S3 ∼= Sp(1) → SO(3) coincides with the non-abelian eight-element
quaternion group H := {±1, ±i, ±j, ±k}. The parameter space Q(λ1, λ2, λ3) is thus diffeomorphic to the
coset space S3/H,

S3/H ∼= Sp(1)/H = {pH | p ∈ Sp(1)} .

Remark 2.4 Note that S3/H can be endowed with a unique Riemannian structure so that the canonical
projection Π : S3 → S3/H is a Riemannian covering map. Moreover, since S3 is simply connected, Π is
the universal covering map and π1(S3/H) = H acts isometrically on S3 (see for instance [30]).

According to formula (2.9), to any unit quaternion (u,v) ∈ S3 there corresponds a tensor order parameter
Q(u,v) ,

Q(u,v) = G(u,v)AG(u,v)T , (2.13)

where G = G(u,v) is given by (2.2). Using (2.3) and (2.8), we can write Q(u,v) as in (2.7), where

n(u,v) = G1(u,v) :=




u2 + v2
1 − (v2

2 + v2
3)

2(v1v2 + uv3)
2(v1v3 − uv2)


 , m(u,v) = G2(u,v) :=




2(v1v2 − uv3)
u2 + v2

2 − (v2
1 + v2

3)
2(v2v3 + uv1)


 (2.14)

and ` = n ×m agrees with the third column G3(u,v) of the matrix in (2.2). Notice that if G̃ = GB,
where B = Φ(q) for some q ∈ H = {±1, ±i, ±j, ±k}, then

G̃AG̃T = GAGT .

In fact, since B = Φ(q) ∈ SO(3)A, we have BABT = A, and hence G̃AG̃T = GBABT GT = GAGT .
This implies that if p = (u,v) ∈ S3, using quaternion product, one has

Q(p) = Q(p q) ∀ q ∈ H .

Moreover, if (n,m, `), where ` = n×m, is the oriented frame corresponding to ±p as in (2.14), the oriented
frames corresponding to p ·q are (n,−m,−`), (−n,m,−`), and (−n,−m, `), if q = i, j, and k, respectively.

In conclusion, to each Q ∈ Q(λ1, λ2, λ3) there corresponds a set of eight elements (u,v) ∈ S3, a right
coset of H in S3 ∼= Sp(1).

Remark 2.5 With reference to the left action of SO(3) on Q(λ1, λ2, λ3) given by (2.12), if two of the
eigenvalues λ1, λ2, λ3 are equal, it easily seen that the isotropy subgroup of A, SO(3)A, is isomorphic to
the orthogonal group O(2). (More precisely, SO(3)A is the group D∞ of rotations about the molecular axis
and 180◦-rotations about axes perpendicular to the molecular axis.) Thus Q(λ1, λ2, λ3) is diffeomorphic to
the coset space SO(3)/O(2) , which is just a coset space description of real projective plane RP 2, the order
parameter space in the constrained uniaxial case.

Remark 2.6 From (2.8) and the specific ordering λ1 < λ2 < λ3 of the eigenvalues, in the representation
(2.7), it follows that S1 < S2 < 0. Moreover, according to the analysis in the proof of Proposition 1 in [22],
one can conclude indeed that either

S1

2
≤ S2 < 0 or S2 ≤ S1

2
< 0 . (2.15)

In fact, using the notation from [22], condition λ1 < λ2 < λ3 yields that R−2 and R+
3 are the only admissible

regions. This will be used in the proof of Proposition 5.3 below.

3 Frame-indifference

In the framework of the Q-tensor theory, two observers see the same free-energy density ψ(Q,∇Q). This
amounts to the requirement that

ψ(Q,∇Q) = ψ(MQMT ,D∗) ∀M ∈ SO(3) , (3.1)
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where D∗
ijk := M i

l M
j
mMk

p Qlm,p, compare e.g. [1]. Here and in the sequel, the symbol “,k” denotes the
partial derivative in the kth canonical direction w.r.t. x ∈ Ω, so that e.g.

Qij,k =
∂

∂xk
Qij .

Remark 3.1 Note that the elastic free-energy densities I1, I2, I3, I4 as given in (1.6) satisfy the condition
(3.1) for the full orthogonal group O(3). This is a material symmetry reflecting the lack of chirality of the
molecules constituting nematic liquid crystals (see [1]).

The uniaxial case. The above condition is equivalent to the well-known frame invariance

w(r,H) = w(Rr, RHRT ) ∀ r ∈ S2 , H ∈M3×3 , R ∈ SO(3)

that is satisfied by an energy density in the framework of Oseen-Frank theory of uniaxial liquid crystals.

In fact, in the (constrained) uniaxial case we have Q = s
(
r ⊗ r − 1

3
I
)
, with s a non-zero constant and

r = (r1, r2, r2)T ∈ S2 varying with the position x ∈ Ω, whence

Qij = s
(
rirj − 1

3
δij

)
, Qij,k = s(rirj,k + ri,krj) . (3.2)

We first observe that Q(Mr) = MQ(r)MT . Setting

Dijk(r,H) := s(Hi
krj + riH

j
k) , r ∈ S2, H = (Hi

j) ∈M3×3 ,

it suffices to check that
Dijk(Mr,MHMT ) = M i

l M
j
mMk

p Dlmp(r,H) ,

or, equivalently, if Dk is the 3× 3 matrix with coefficients (Dk)i
j = Dijk , that

Dk(Mr,MHMT ) = MMk
p Dp(r, H)MT .

Let Hj denote the jth column of H. By a direct computation,

Dk(Mr,MHMT ) = s
[
(MHMT )k(Mr)T + Mr((MHMT )k)T

]
= s

[
MMk

p HprT MT + Mr(Hp)T Mk
p MT

]
= s

[
MMk

p HprT MT + MMk
p r(Hp)T MT

]
= sMMk

p

[
HprT + r(Hp)T

]
MT = MMk

p DpM
T ,

as required.

The biaxial case. We now show that an equivalent property holds true for an energy density f in the
framework of constrained biaxial liquid crystals. Let Φ : S3 → SO(3) denote the 2:1 group homomorphism
introduced in Section 2.

Definition 3.2 An energy density f : S3×M4×3 → [0, +∞) is said to satisfy the frame invariance condition
if for any q ∈ S3 one has

f(w,H) = f(qw, L(q)HΦ(q)T ) ∀ (w, H) ∈ S3 ×M4×3 ,

where L(q) is as in Remark 2.1 and Φ(q) is as in (2.2).

Theorem 3.3 For constrained biaxial nematics, the frame invariance condition of Definition 3.2 is equiva-
lent to the frame invariance (3.1) in the sense of Q-tensors.

To prove Theorem 3.3, for each function w(x) : Ω → S3 we set

Q̃ij(w) := (L(w)R(w)ÃR(w)T L(w)T )i
j , i, j = 0, 1, 2, 3 ,
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where we have denoted Ã := diag(λ̃0, λ̃1, λ̃2, λ̃3) ∈M4×4, with λ̃0 := 0 and λ̃i := λi for i = 1, 2, 3. Notice
that Q̃ij(w) = 0 if i = 0 or j = 0, and Q̃ij(w) = Qij(w) otherwise, where Q(w) is defined as in (2.13).
By linearity, we thus compute

∂

∂xk
Q̃ij(w) = (L(∇kw)R(w)ÃR(w)T L(w)T )i

j + (L(w)R(∇kw)ÃR(w)T L(w)T )i
j

+(L(w)R(w)ÃR(∇wk)T L(w)T )i
j + (L(w)R(w)ÃR(w)T L(∇kw)T )i

j .
(3.3)

Identifying the gradient ∇w with a 4× 4-matrix H̃ = (H0,H1,H2,H3), where H0 ≡ 0 and Hk = ∇kw

for k = 1, 2, 3, for each (w, H̃) ∈ S3 ×M4×4 , we are led to define

D̃ijk(w, H̃) :=
(
L(Hk)R(w)ÃR(w)T L(w)T + L(w)R(Hk)ÃR(w)T L(w)T

+L(w)R(w)ÃR(Hk)T L(w)T + L(w)R(w)ÃR(w)T L(Hk)T
)i

j
,

(3.4)

where i, j, k = 0, 1, 2, 3. To our purposes, it then suffices to prove the following.

Proposition 3.4 With the previous notation, for every q ∈ S3 we have

D̃ijk(qw, L(q)H̃M(q)T ) = M i
l (q)M

j
m(q)Mk

p (q) D̃lmp(w, H̃) ,

where M(q) = L(q)R(q) .

In fact, D̃ijk(w, H̃) ≡ 0 if i = 0 or j = 0 or k = 0. Since property (2.6) yields M(q) =
(

1 0
0 Φ(q)

)
,

Q(qw) = Φ(q)Q(w)Φ(q)T ⇐⇒ Q̃(qw) = M(q)Q̃(w)M(q)T .

This combined with Proposition 3.4 implies Theorem 3.3.

Proof of Proposition 3.4: We divide the proof into two steps.

Step 1: We first collect some useful formulas.

Lemma 3.5 For every q, w ∈ R4 , we have:

L(L(q)w) = L(q)L(w) , R(L(q)w) = R(q)R(w) , L(q)R(w) = R(w)L(q) .

Moreover, for matrices H,M ∈M4×4 , let (HM)k denote the kth column vector of the matrix HM . Then,

L((HM)k) = L(HMk) = Mh
k L(Hh) , R((HM)k) = R(HMk) = Mh

k R(Hh) .

As a consequence, we have:

L(L(q)H(M(q)T )k) = M(q)k
hL(q)L(Hh) , R(L(q)H(M(q)T )k) = M(q)k

hR(q)R(Hh) .

Proof: The equations in the first centered line follow from the definition of the matrices L(q) and R(q).
Moreover, denoting by (e0, . . . , e3) the column vectors of the canonical basis in R4, we have

(HM)k = HMk = Hi
hMh

k ei = Mh
k Hi

hei = Mh
k Hh

and hence, by linearity, we deduce the formulas in the second line. The last two formulas are obtained by
using the equations in the first and then in the second line. ¤

Step 2: Denote by D̃k ∈ M4×4 the symmetric matrix with coefficients (D̃k)i
j := D̃ijk. Then the claim is

equivalent to the formula

D̃k(qw,L(q)H̃M(q)T ) = M(q)k
hM(q)D̃h(w, H̃)M(q)T , (3.5)
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by replacing h with p. By (3.4), we have

D̃k(qw, L(q)H̃M(q)T ) = L(L(q)H̃(M(q)T )k)R(qw)ÃR(qw)T L(qw)T

+L(qw)R(L(q)H̃(M(q)T )k)ÃR(qw)T L(qw)T

+L(qw)R(qw)ÃR(L(q)H̃(M(q)T )k)T L(qw)T

+L(qw)R(qw)ÃR(qw)T L(L(q)H̃(M(q)T )k)T .

According to Lemma 3.5 and by the linearity of p 7→ L(p) and p 7→ R(p), we get

D̃k(qw,L(q)H̃M(q)T ) = M(q)k
hL(q)L(Hh)R(q)R(w)ÃM(w)T M(q)T

+L(q)L(w)M(q)k
hR(q)R(Hh)ÃM(w)T M(q)T

+M(q)M(w)Ã[M(q)k
hR(q)R(Hh)]T L(w)T L(q)T

+M(q)M(w)ÃR(w)T R(q)T [M(q)k
hL(q)L(Hh)]T

= M(q)k
hM(q)L(Hh)R(w)ÃM(w)T M(q)T

+M(q)k
hM(q)L(w)R(Hh)ÃM(w)T M(q)T

+M(q)k
hM(q)M(w)Ã[M(q)L(w)R(Hh)]T

+M(q)k
hM(q)M(w)Ã[M(q)L(Hh)R(w)]T ,

from which follows

D̃k(qw, L(q)H̃M(q)T ) = M(q)k
hM(q)

{
L(Hh)R(w)ÃM(w)T + L(w)R(Hh)ÃM(w)T

+M(w)ÃR(Hh)T L(w)T + M(w)ÃR(w)T L(Hh)T
}
M(q)T ,

that is (3.5), as claimed. ¤

Residual symmetry. In order to deal with a functional defined on maps taking values in the coset
space S3/H , where H = {±1, ±i, ±j, ±k}, we also introduce the following symmetry condition.

Definition 3.6 An energy density f : S3 × M4×3 → [0,+∞) is said to satisfy the residual symmetry
property if, for any q ∈ H , one has

f(w,H) = f(qw, L(q)H) ∀ (w ,H) ∈ S3 ×M4×3 .

The above symmetry property is the counterpart of the property

w(r, H) = w(−r,−H) ∀ r ∈ S2 , H ∈M3×3 ,

satisfied by the energy density of uniaxial nematic liquid crystals in the sense of Oseen-Frank.

Remark 3.7 Note that the two conditions in Definition 3.2 and 3.6 are necessary conditions for a map
f : S3×M4×3 → [0,+∞) representing an energy density for constrained biaxial nematic states. In Section 5,
we will introduce an energy density, f3 , which satisfies both the invariance and the symmetry properties in
the sense of Definitions 3.2 and 3.6 (see Proposition 5.1).

4 The elastic energy density

In a special case of the Landau–de Gennes theory, compare e.g. [3, 24], the elastic energy density is defined
by

ψ(Q,∇Q) = L1I1 + L2I2 + L3I3 + L4I4 (4.1)

where the Li are constant and the four elastic invariants Ii are

I1 := Qij,jQik,k , I2 := Qik,jQij,k , I3 := Qij,kQij,k , I4 := QlkQij,lQij,k .

The uniaxial case. In the (constrained) uniaxial case we have (3.2). For the sake of completeness,
we now recover the well-known related formulas.
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Proposition 4.1 In the constrained uniaxial case (3.2), we have

I1 = s2
(
(div r)2 + |r× curl r|2) , I2 = s2

(|r× curl r|2 + tr[(∇r)2]
)
,

I3 = 2s2
(
tr[(∇r)2] + (r · curl r)2 + |r× curl r|2) , I4 = 2s3

(2
3
|r× curl r|2 − 1

3
tr[(∇r)2]− 1

3
(r · curl r)2

)
.

Proof: We first recall that riri = 1, so that riri,α = 0 for each i, α. Moreover,

| curl r|2 = (r · curl r)2 + |r× curl r|2 ,
|∇r|2 = tr[(∇r)2] + | curl r|2 ,
|∇r|2 = tr[(∇r)2] + (r · curl r)2 + |r× curl r|2 .

(4.2)

In fact, one has

curl r = (a32, a13, a21) , aij := (ri,j − rj,i) ,
| curl r|2 = a2

32 + a2
13 + a2

21 ,
(r · curl r)2 = (r1a32 + r2a13 + r3a21)2 ,
r× curl r = (r2a21 − r3a13, r3a32 − r1a21, r1a13 − r2a32)

|r× curl r|2 = (r1a13 − r2a32)2 + (r1a21 − r3a32)2 + (r2a21 − r3a13)2 .

On the other hand,

| curl r|2 − (r · curl r)2 = (1− r2
1)a

2
32 + (1− r2

2)a
2
13 + (1− r2

3)a
2
21

−2(r1r2a32a13 + r1r3a32a21 + r2r3a13a21)
= (r2

2 + r2
3)a

2
32 + (r2

1 + r2
3)a

2
13 + (r2

1 + r2
2)a

2
21

−2(r1r2a32a13 + r1r3a32a21 + r2r3a13a21)
= (r1a13 − r2a32)2 + (r1a21 − r3a32)2 + (r2a21 − r3a13)2 ,

that gives the first equality in (4.2). Also,

tr[(∇r)2] = rk,jrj,k = r2
1,1 + r2

2,2 + r2
3,3 + 2(r1,2r2,1 + r1,3r3,1 + r2,3r3,2)

| curl r|2 = r2
1,2 + r2

2,1 + r2
1,3 + r2

3,1 + r2
2,3 + r2

3,2 − 2(r1,2r2,1 + r1,3r3,1 + r2,3r3,2)
(4.3)

hence the second equality in (4.2) holds by summation, whereas the third one is a direct consequence.

Remark 4.2 Using that riri,α = 0, one also obtains

r1a13 − r2a32 = −(∇r)3r , r3a32 − r1a21 = −(∇r)2r , r2a21 − r3a13 = −(∇r)1r ,

where we have denoted (∇r)ir := rkri,k, so that

rlrkri,lri,k =
3∑

i=1

(
(∇r)ir

)2 = |r× curl r|2 . (4.4)

As for the first energy term, using that riri = 1 and riri,α = 0, we have

I1 = s2(rirj,j + ri,jrj)(rirk,k + ri,krk)
= s2(ririrj,jrk,k + rjrkri,jri,k + (riri,k)rkrj,j + (riri,j)rjrk,k)
= s2(rj,jrk,k + rjrkri,jri,k) ,

so that the above formula follows from (4.4) and from the equality rj,jrk,k = (div r)2.
For the second energy term, we similarly compute

I2 = s2(rirk,j + ri,jrk)(rirj,k + ri,krj)
= s2(ririrk,jrj,k + rjrkri,jri,k + (riri,k)rjrk,j + (riri,j)rkrj,k)
= s2(rk,jrj,k + rjrkri,jri,k) ,

and then use the first equality in (4.3) and again (4.4).
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The third energy term similarly reads as

I3 = s2(rirj,k + ri,krj)(rirj,k + ri,krj)
= s2(ririrj,krj,k + rjrjri,kri,k + 2(riri,k)rjrj,k)
= 2s2rj,krj,k ,

so that this time we use that rj,krj,k = |∇r|2 and the third equality in (4.2).
Finally, we decompose the fourth term as I4 = I1

4 + I2
4 , where

I1
4 := s3rlrk(rirj,l + ri,lrj)(rirj,k + ri,krj) ,

I2
4 := −1

3
s3δlk(rirj,l + ri,lrj)(rirj,k + ri,krj) = −1

3
s3(rirj,k + ri,krj)(rirj,k + ri,krj) .

Similarly to as for I3, we get I2
4 = −2

3
s3 |∇r|2, whereas

I1
4 = s3rlrk(ririrj,lrj,k + rjrjri,lri,k + (riri,k)rjrj,l + (riri,l)rjrj,k)

= 2s3rlrkrα,lrα,k ,

so that (4.4) gives I1
4 = 2s3|r× curl r|2. Adding the two terms, we obtain

I4 = 2s3
(|r× curl r|2 − 1

3
|∇r|2) ,

and hence the formula for I4 follows from the third equality in (4.2). ¤

As a consequence, compare [3], choosing

K1 := L1s
2 + L2s

2 + 2L3s
2 − 2

3
L4s

3 , K2 := 2L3s
2 − 2

3
L4s

3 ,

K3 := L1s
2 + L2s

2 + 2L3s
2 +

4
3
L4s

3 , K4 := L2s
2

by Proposition 4.1 we deduce that the energy density ψ(Q,∇Q) in (4.1) agrees with the Oseen-Frank energy
density w(r,∇r) of nematic liquid crystals:

w(r,∇r) := K1(div r)2 + K2(r · curl r)2 + K3|r× curl r|2 + (K2 + K4)
[
tr[(∇r)2]− (div r)2

]
.

We finally recall that the last energy term of w(r,∇r) is a null-Lagrangian, as
[
tr[(∇r)2]− (div r)2

]
= div[(∇r)r− (div r)r)] .

The biaxial case. In the (constrained) biaxial case, we have (2.7), where S1 6= S2 are non-zero
constants and n, m ∈ S2 satisfy n ·m = 0 and depend on the position x ∈ Ω, see Definition 2.3.

We shall focus on the third elastic invariant

I3(Q,∇Q) := Qij,kQij,k . (4.5)

Using (2.11), we have that
Q = λ1n⊗ n + λ2m⊗m + λ3`⊗ ` , (4.6)

with λ1, λ2, λ3 as in (2.8), hence

Qij = λ1ninj + λ2mimj + λ3`i`j ,
Qij,k = λ1(ninj,k + ni,knj) + λ2(mimj,k + mi,kmj) + λ3(`i`j,k + `i,k`j) .

Proposition 4.3 Under the previous hypotheses, we have

I3(Q,∇Q) = 2(2λ2
1 + λ2λ3)|∇n|2 + 2(2λ2

2 + λ3λ1)|∇m|2 + 2(2λ2
3 + λ1λ2)|∇`|2 .
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Proof: We first decompose I3 = I1
3 + I2

3 + I3
3 + I4

3 + I5
3 + I6

3 , where

I1
3 = λ2

1(ninj,k + ni,knj)(ninj,k + ni,knj) ,
I2
3 = λ2

2(mimj,k + mi,kmj)(mimj,k + mi,kmj) ,
I3
3 = λ2

3(`i`j,k + `i,k`j)(`i`j,k + `i,k`j) ,
I4
3 = 2λ1λ2(ninj,k + ni,knj)(mimj,k + mi,kmj) ,

I5
3 = 2λ2λ3(mimj,k + mi,kmj)(`i`j,k + `i,k`j) ,

I6
3 = 2λ3λ1(`i`j,k + `i,k`j)(ninj,k + ni,knj) .

Arguing exactly as in Proposition 4.1, we get

I1
3 = 2λ2

1|∇n|2 , I2
3 = 2λ2

2|∇m|2 , I3
3 = 2λ2

3|∇`|2 ,

compare the third equality in (4.2). As for the fourth term, using that nimi = 0, we get

I4
3 = 2λ1λ2(niminj,kmj,k + njmjni,kmi,k + nimjnj,kmi,k + njmini,kmj,k)

= 4λ1λ2nimjnj,kmi,k .

In a similar way, we have:

I5
3 = 4λ2λ3mi`jmj,k`i,k , I6

3 = 4λ3λ1`inj`j,kni,k .

Denoting for simplicity

X := (ninj,k)mjmi,k , Y := (mimj,k)`j`i,k , Z := (`i`j,k)njni,k ,
N := ni,kni,k , M := mi,kmi,k , L := `i,k`i,k ,

we deduce the formulas:

X =
1
2
(L−M −N) , Y =

1
2
(N − L−M) , Z =

1
2
(M −N − L) . (4.7)

In fact, the property (2.11) yields that for each i, j, k

ninj,k + njni,k + mimj,k + mjmi,k + `i`j,k + `j`i,k = 0 . (4.8)

Replacing the parenthesis in X, Y , and Z with the corresponding sum of five terms coming from equation
(4.8), and using that (n,m, `) is an orthonormal frame, we readily obtain the system





X = −M − Y
Y = −L− Z
Z = −N −X

the solution of which gives (4.7). Using that

N = |∇n|2 , M = |∇m|2 , L = |∇`|2 ,

we thus obtain
I4
3 = 2λ1λ2(|∇`|2 − |∇m|2 − |∇n|2) ,

I5
3 = 2λ2λ3(|∇n|2 − |∇`|2 − |∇m|2) ,

I6
3 = 2λ3λ1(|∇m|2 − |∇n|2 − |∇`|2) .

Adding the six terms Ih
3 , and using that λ1 + λ2 + λ3 = 0, the formula for I3 is readily proved. ¤

We recall that in the previous sections we have associated to each unit vector (u,v) ∈ S3 a tensor
order parameter Q(u,v) that satisfies (4.6), where n(u,v), m(u,v), and `(u,v) agree with the three
columns G1(u,v), G2(u,v), and G3(u,v) of the matrix in (2.2), respectively, compare (2.14). Using this
correspondence, we now compute |∇n|2, |∇m|2, and |∇`|2 in terms of the derivatives of the vector map
(u,v) : Ω → S3, where v = (v1, v2, v3). Denoting by Di the ith partial derivative with respect to x ∈ Ω,
we now prove the following.
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Proposition 4.4 For each i = 1, 2, 3 we have:

|Din|2 = 4
(
|Di(u,v)|2 − (−v1Diu + uDiv1 + v3Div2 − v2Div3

)2
)

|Dim|2 = 4
(
|Di(u,v)|2 − (−v2Diu− v3Div1 + uDiv2 + v1Div3

)2
)

|Di`|2 = 4
(
|Di(u,v)|2 − (−v3Diu + v2Dv1 − v1Dv2 + uDiv3

)2
)

where |Di(u,v)|2 := (Diu)2 + (Div1)2 + (Div2)2 + (Div3)2.

Proof: We first prove the first formula, and we denote D = Di for simplicity. Since n = G1(u,v), compare
(2.14), we get

Dn = DG1(u,v) = 2




uDu + v1Dv1 − v2Dv2 − v3Dv3

v1Dv2 + v2Dv1 + uDv3 + v3Du
v1Dv3 + v3Dv1 − uDv2 − v2Du


 .

Using that |(u,v)| = 1, we compute

1
4
|Dn|2 = (Du)2(u2 + v2

3 + v2
2) + (Dv1)2(v2

1 + v2
2 + v2

3)

+(Dv2)2(v2
2 + v2

1 + u2) + (Dv3)2(v2
3 + u2 + v2

1)
+2

[
DuDv1(uv1 + v2v3 − v2v3) + DuDv2(−uv2 + v1v3 + uv2)
+DuDv3(−uv3 + uv3 − v1v2) + Dv1Dv2(−v1v2 + v1v2 − uv3)
+Dv1Dv3(−v1v3 + uv2 + v1v3) + Dv2Dv3(v2v3 + uv1 − uv1)

]
= (Du)2(1− v2

1) + (Dv1)2(1− u2) + (Dv2)2(1− v2
3) + (Dv3)2(1− v2

2)
+2

[
uv1DuDv1 + v1v3DuDv2 − v1v2DuDv3

−uv3Dv1Dv2 + uv2Dv1Dv3 + v2v3Dv2Dv3

]

and hence
1
4
|Dn|2 = |D(u,v)|2 − (v1Du− uDv1)2 − (v3Dv2 − v2Dv3)2

+2
[
v1v3DuDv2 − v1v2DuDv3 − uv3Dv1Dv2 + uv2Dv1Dv3

]
= |D(u,v)|2 − (v1Du− uDv1)2 − (v3Dv2 − v2Dv3)2

+2(v1Du− uDv1)(v3Dv2 − v2Dv3)
= |D(u,v)|2 − (

v1Du− uDv1 + v2Dv3 − v3Dv2

)2
,

that gives the first formula. The second and third formulas are obtained by replacing (u, v1, v2, v3) with
(u,−v2,−v1,−v3) and (u,−v3,−v2,−v1), respectively. ¤

For the sake of brevity, denote now:

A2 :=
3∑

i=1

(−v1Diu + uDiv1 + v3Div2 − v2Div3

)2
,

B2 :=
3∑

i=1

(−v2Diu− v3Div1 + uDiv2 + v1Div3

)2
,

C2 :=
3∑

i=1

(−v3Diu + v2Dv1 − v1Dv2 + uDiv3

)2
,

(4.9)

so that by Proposition 4.4 and the fact that λ1 + λ2 + λ3 = 0,

4
(|∇(u,v)|2 −A2

)
= |∇n|2 , 4

(|∇(u,v)|2 −B2
)

= |∇m|2 , 4
(|∇(u,v)|2 − C2

)
= |∇`|2 .

Using Proposition 4.3, we get

I3 = 12(λ2
1 + λ2

2 + λ2
3)|∇(u,v)|2 − 8(2λ2

1 + λ2λ3) A2

−8(2λ2
2 + λ3λ1)B2 − 8(2λ2

3 + λ1λ2)C2 .

By (2.8), we compute

λ2
1 + λ2

2 + λ2
3 =

2
3
(S2

1 + S2
2 − S1S2) , 2λ2

3 + λ1λ2 = S1S2 ,

2λ2
1 + λ2λ3 = S2

1 − S1S2 , 2λ2
2 + λ3λ1 = S2

2 − S1S2 ,
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so that we obtain:
1
8
I3 = (S2

1 + S2
2 − S1S2)|∇(u,v)|2 − (S2

1 − S1S2)A2

−(S2
2 − S1S2)B2 − S1S2 C2 .

(4.10)

Equivalently, by Proposition 4.3 we deduce that

I3 = 2
{
S1(S1 − S2)|∇n|2 + S2(S2 − S1)|∇m|2 + S1S2|∇`|2} ,

where we have identified n,m,n with the first, second, and third column of the matrix-valued map x 7→
G(u,v).

Remark 4.5 In the uniaxial case, we have seen that

λ2 = λ3 =⇒ S2 = 0 , λ1 = λ3 =⇒ S1 = 0 , λ2 = λ3 =⇒ S1 = S2 = −S .

We thus recover the expression of I3 from Proposition 4.1 where, we recall, in the above three cases one has
s = S1, S2, S and r = n,m, `, respectively.

5 The elastic energy of biaxial nematic liquid crystals

In this section we discuss the functional corresponding to the energy density given by the elastic invariant
(4.5), which has been considered in the previous section in the framework of constrained biaxial nematic
liquid crystals.

Function spaces. Let Ω ⊂ R3 denote a bounded domain. Following [3], and according to Def-
inition 2.3, for 1 ≤ p < ∞ we shall denote by W 1,p(Ω,Q(λ1, λ2, λ3)) the class of measurable maps
Q : Ω → Q(λ1, λ2, λ3) such that Q(x) has weak derivative ∇Q(x) a.e. in Ω satisfying

∫

Ω

|∇Q(x)|p dx < ∞ .

Since
I3(Q,∇Q) := Qij,kQij,k = |∇Q|2 ,

we deduce that the energy functional

Q 7→ I3(Q) :=
∫

Ω

I3(Q,∇Q) dx (5.1)

is well defined and finite on the Sobolev class W 1,2(Ω,Q(λ1, λ2, λ3)).

The above facts lead us to consider also the Sobolev classes

W 1,p(Ω, S3) := {(u,v) ∈ W 1,p(Ω,R4) : |(u,v)(x)| = 1 for a.e. x ∈ Ω} .

We also introduce the elastic energy functional

F̃3(u,v) :=
∫

Ω

f3((u,v)(x),∇(u,v)(x)) dx , (5.2)

where the energy density f3 : S3 ×M4×3 → [0,+∞) is defined for (u,v) ∈ S3 and H ∈M4×3 by

f3((u,v),H) := (k1 − k2 + k3)|H|2 − k1 A((u,v),H)2 + k2B((u,v),H)2 − k3C((u,v), H)2 . (5.3)

In the above formula, H = (Hj
i ), j = 0, 1, 2, 3 ; i = 1, 2, 3, |H|2 :=

∑3
i=1

∑3
j=0(H

j
i )2, and

k1 := 8S1(S1 − S2) , k2 := 8S2(S1 − S2) , k3 := 8S1S2.
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From Remark 2.6, it follows that k1, k2, k3 > 0 and (k1 − k2 + k3) = 8(S2
1 + S2

2 − S1S2) > 0. Moreover, by
(4.9),

A((u,v),H)2 :=
3∑

i=1

(−v1H
0
i + uH1

i + v3H
2
i − v2H

3
i

)2
,

B((u,v),H)2 :=
3∑

i=1

(−v2H
0
i − v3H

1
i + uH2

i + v1H
3
i

)2
,

C((u,v),H)2 :=
3∑

i=1

(−v3H
0
i + v2H

1
1 − v1H

2
i + uH3

i

)2
.

(5.4)

Therefore, by (4.10), the energy density f3 corresponds to the third elastic invariant I3 in (4.5), in the
constrained biaxial case.

Invariance properties. Using the above notation and Remark 2.1, we can prove the following.

Proposition 5.1 For every (u,v) ∈ S3 and H ∈M4×3, let f3 be as in (5.3). Then

f3(q · (u,v), L(q)H) = f3((u,v),H) = f3

(
(u,v), HMT

)

for any q ∈ S3 and M ∈ SO(3).

Proof: We first observe that by orthogonality |H| = |L(q)H|. Since L(q · (u,v))T = (L(q)L((u,v)))T =
L((u,v))T L(q)T , we have

L(q · (u,v))T L(q)Hi = L((u,v))T L(q)T L(q)Hi = L((u,v))T Hi . (5.5)

Using that L((u,−v)) = L((u,v))T , we observe that the terms in (5.4) are actually expressed in terms of
the products L((u,v))T Hi . This gives the first equality, on account of (5.5). As for the second equality,
we again have |H| = |HMT |. Moreover, we compute

(HMT )j
i = Hj

α(MT )α
i = Hj

αM i
α .

By substituting in the first equation of (5.4), and using the orthogonality of M , we get

A((u,v),HMT )2 =
3∑

i=1

(−v1(HMT )0i + u(HMT )1i + v3(HMT )2i − v2(HMT )3i
)2

=
3∑

i=1

(−v1H
0
αM i

α + uH1
αM i

α + v3H
2
αM i

α − v2H
2
αM i

α

)2

=
(−v1H

0
αM i

α + uH1
αM i

α + v3H
2
αM i

α − v2H
2
αM i

α

)
×(−v1H

0
βM i

β + uH1
βM i

β + v3H
2
βM i

β − v2H
2
βM i

β

)
=

(−v1H
0
α + uH1

α + v3H
2
α − v2H

2
α

)(−v1H
0
β + uH1

β + v3H
2
β − v2H

2
β

)
M i

αM i
β

=
3∑

α=1

(−v1H
0
α + uH1

α + v3H
2
α − v2H

2
α

)2 = A((u,v),H)2 .

In a similar way, it can be checked that

B((u,v),HMT )2 = B((u,v), H)2 , C((u,v),HMT )2 = C((u,v),H)2 .

The claim follows from (5.3). ¤

Remark 5.2 According to Theorem 3.3, by Proposition 5.1 we directly obtain that the energy density f3

satisfies both the frame invariance and the residual symmetry properties introduced in Definitions 3.2 and
3.6. This fact will be used in our Definition 5.5 below.

Energy bounds. Clearly there exists an absolute constant K > 0, only depending on S1, S2, and
hence on the fixed eigenvalues λ1, λ2, λ3, such that

0 ≤ f3(w, H) ≤ K |H|2 ∀ (w,H) ∈ S3 ×M4×3 . (5.6)
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This yields that the energy F̃3 is finite on the Sobolev class W 1,2(Ω,S3). Therefore, by the previous
computation, we deduce that for each Sobolev map (u,v) ∈ W 1,2(Ω,S3) the corresponding map x 7→
Q(x) := Q((u,v)(x)) belongs to the Sobolev space W 1,2(Ω,Q(λ1, λ2, λ3)), and for a.e. x ∈ Ω

f3((u,v)(x),∇(u,v)(x)) = I3(Q(u,v),∇Q(u,v)(x)) . (5.7)

Using the invariance properties and (2.15) of Remark 2.6, we now prove that a coercivity property holds
too. To this purpose, according to the alternative in (2.15), we set

S :=





S2 if
S1

2
≤ S2 < 0

S1 if S2 ≤ S1

2
< 0

S 6= 0 . (5.8)

Proposition 5.3 For every (u,v) ∈ S3 and H ∈M4×3, we have

f3((u,v), H) ≥ 8 S2 |H|2 .

Proof: By (5.4), taking (u,v) = PN := (1, 0, 0, 0), the north pole in S3, for each H ∈M4×3 we have

A(PN , H)2 =
3∑

i=1

(H1
i )2 , B(PN ,H)2 =

3∑

i=1

(H2
i )2 , C(PN , H)2 =

3∑

i=1

(H3
i )2 .

Setting |Hj |2 :=
3∑

i=1

(Hj
i )2, so that |H|2 =

3∑

j=0

|Hj |2, by (5.3) we thus obtain

f3(PN ,H) = (k1 − k2 + k3)|H0|2 + (k3 − k2)|H1|2 + (k1 + k3)|H2|2 + (k1 − k2)|H3|2 .

Assume now that the first alternative in (2.15) holds. We observe that

(k1 − k2 + k3) = 8(S2
1 + S2

2 − S1S2) ≥ 4(S2
1 + S2

2) ≥ 20S2
2 ,

(k3 − k2) = 8S2
2 , (k1 + k3) = 8S2

1 ≥ 32S2
2 , (k1 − k2) = 8(S1 − S2)2 ≥ 8S2

2 .

This yields the lower bound

f3(PN ,H) ≥ 8S2
2

4∑

j=1

|Hj |2 = 8S2
2 |H|2 . (5.9)

We now use the invariance properties of f3. More precisely, let q := (u,v)−1 = (u,−v), so that
q · (u,v) = PN . Proposition 5.1 yields that

f3(PN , L(q)H) = f3(q · (u,v), L(q)H) = f3((u,v),H) .

Using (5.9), this implies that
f3((u,v),H) ≥ 8

(
S2|L(q)H|)2

.

By the orthogonality of L(q) , we finally get |L(q)H| = |H|. On the other hand, if the second alternative in
(2.15) holds, we similarly obtain that

f3((u,v),H) ≥ 8
(
S1|L(q)H|)2

,

which proves the claim. ¤

We have shown that

8 S2

∫

Ω

|∇(u,v)|2 dx ≤ F̃3(u,v) ≤ K

∫

Ω

|∇(u,v)|2 dx ∀ (u,v) ∈ W 1,p(Ω,S3) , (5.10)

with S 6= 0 given by (5.8). This yields that the class of measurable and a.e. weakly differentiable functions
from Ω to S3 with finite F̃3-energy agrees with the Sobolev class W 1,2(Ω, S3).
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The energy of maps into S3/H. From now on, we let Ω ⊂ R3 denote a bounded and simply
connected domain, and Y a smooth, compact Riemannian manifold without boundary isometrically embed-
ded in RN , equipped with the induced metric (and topology). Also, for X = Lp, W 1,p, C∞, where p ≥ 1,
denote

X(Ω,Y) := {w ∈ X(Ω,RN ) | w(x) ∈ Y for a.e x ∈ Ω} ,
X(Ω,Y) ∩ C∞ := {w ∈ X(Ω,Y) | w is smooth } .

By the Nash–Moser isometric embedding theorem, we assume that the Riemannian homogeneous man-
ifold S3/H is isometrically embedded as a submanifold Y := F (S3/H) in some Euclidean space RN with
induced Riemannian metric, where F : S3/H → RN is an isometric embedding.

Remark 5.4 Observe that the diffeomorphism S3/H ∼= Q(λ1, λ2, λ3) yields a bijective correspondence
between the Sobolev spaces W 1,2(Ω,S3/H) and W 1,2(Ω, Q(λ1, λ2, λ3)).

We now make use of the lifting result of Bethuel–Chiron discussed at the end of the introduction. As in
Remark 2.4, let Π : S3 → S3/H denote the canonical projection and set Π̃ := F ◦Π. Then, according to [5,
Theorem 1], for every w ∈ W 1,2(Ω, S3/H), there exists w̃ ∈ W 1,2(Ω, S3) such that Π̃ ◦ w̃ = w a.e. in Ω,
that is unique up to the action of an element of H = π1(S3/H). Furthermore, we have |∇w| = |∇w̃| a.e. in
Ω. This suggests the following.

Definition 5.5 The F3-energy of a Sobolev map w ∈ W 1,2(Ω, S3/H) is given by the F̃3-energy of any
Sobolev map w̃ ∈ W 1,2(Ω, S3) such that Π̃ ◦ w̃ = w, i.e.,

F3(w) := F̃3(w̃) if Π̃ ◦ w̃ = w a.e. in Ω ,

where F̃3(w̃) is given by (5.2), with w̃ = (u,v).

By Remark 5.2, note that the energy functional F3(w) is well defined on the Sobolev class W 1,2(Ω, S3/H).
Moreover, property (5.10) and the equality |∇w| = |∇w̃| yield that

8 S2

∫

Ω

|∇w|2 dx ≤ F3(w) ≤ K

∫

Ω

|∇w|2 dx ∀w ∈ W 1,2(Ω,S3/H) , (5.11)

with S 6= 0 given by (5.8), hence the energy functional F3(w) is finite exactly on W 1,2(Ω, S3/H).

Density results. The following strong density result is due to Bethuel [4].

Theorem 5.6 (Bethuel) Let p ≥ 1 and p denote the integer part of p. The class W 1,p(Ω,Y) ∩ C∞ is
strongly dense in W 1,p(Ω,Y) if and only if the p-th homotopy group πp(Y) = 0.

Choosing Y := F (S3/H) and p = 2, we have π2(Y) = π2(S3/H) = π2(S3) = 0. Therefore, for each
Sobolev map w ∈ W 1,2(Ω, S3/H) there exists a sequence of smooth maps {wk} ⊂ W 1,2(Ω, S3/H)∩C∞ such
that wk → w strongly in W 1,2. Furthermore, we obtain:

Proposition 5.7 For each Sobolev map w ∈ W 1,2(Ω, S3/H) there exists a sequence of smooth maps {wk} ⊂
W 1,2(Ω, S3/H) ∩ C∞ such that wk → w strongly in W 1,2 and F3(wk) → F3(w).

Proof: By uniform convexity, the strong convergence wk → w in W 1,2 is equivalent to the a.e. con-
vergence wk → w joined with the energy convergence

∫
Ω
|∇wk|2 dx → ∫

Ω
|∇w|2 dx. Therefore, for each

w ∈ W 1,2(Ω, S3/H) we find a sequence {wk} ⊂ W 1,2(Ω,S3/H) ∩ C∞ such that wk → w a.e. and∫
Ω
|∇wk|2 dx → ∫

Ω
|∇w|2 dx. By [5, Theorem 1], for each k we also find a (smooth) Sobolev map w̃k ∈

W 1,2(Ω, S3) such that Π̃◦ w̃k = wk. Using the bounds in the formula (5.10), the structure (5.3) and (5.4) of
the energy density f3, and the dominated convergence theorem, we deduce that F̃3(w̃k) → F̃3(w̃) for some
Sobolev map w̃ ∈ W 1,2(Ω,S3) satisfying Π̃ ◦ w̃ = w. The claim follows from Definition 5.5. ¤

Lower semicontinuity. We now see that the functional w 7→ F3(w) is sequentially lower semicon-
tinuous w.r.t. the weak W 1,2-topology in the class W 1,2(Ω, S3/H).
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Proposition 5.8 Let {wk} ⊂ W 1,2(Ω, S3/H) be a sequence such that supk

∫
Ω
|∇wk|2 dx < ∞ and wk → w

a.e. to some w ∈ W 1,2(Ω,S3/H). Then

F3(w) ≤ lim inf
k→∞

F3(wk) .

Proof: By the preceding discussion, see Remark 5.4, to any Sobolev map w ∈ W 1,2(Ω, S3/H) there
corresponds a unique Q̃ in W 1,2(Ω,Q(λ1, λ2, λ3)) given by Q̃(x) := Q(w̃(x)) , where w̃ ∈ W 1,2(Ω,S3) is
such that Π̃ ◦ w̃ = w , so that by Definition 5.5, (5.7), and (5.1)

F3(w) = I3(Q̃) =
∫

Ω

|∇Q̃(x)|2 dx .

Therefore, by (5.11), the weak W 1,2-convergence wk ⇀ w implies the weak W 1,2-convergence Q̃k ⇀ Q̃,
where Q̃k ∈ W 1,2(Ω,Q(λ1, λ2, λ3)) is given by Q̃k(x) := Q(w̃k(x)) for some w̃k ∈ W 1,2(Ω,S3) satisfying
Π̃ ◦ w̃k = wk. Since the functional Q̃ 7→ I3(Q̃) is sequentially lower semicontinuous with respect to the
weak topology in W 1,2(Ω,Q(λ1, λ2, λ3)), we get

F3(w) = I3(Q̃) ≤ lim inf
k→∞

I3(Q̃k) = lim inf
k→∞

F3(wk) ,

as required. ¤

Relaxed energy. Finally, for the class of summable maps L1(Ω,S3/H) we consider the relaxed energy

F3(w) := inf
{
lim inf
k→∞

F3(wk) | {wk} ⊂ C∞(Ω, S3/H) , wk → w strongly in L1
}

.

Corollary 5.9 We have

F3(w) =
{ F3(w) if w ∈ W 1,2(Ω,S3/H)

+∞ otherwise in L1(Ω, S3/H) .

Proof: If F3(w) < ∞, from the coercivity condition (5.11) and the lower semicontinuity property estab-
lished in Proposition 5.8 we infer that w ∈ W 1,2(Ω, S3/H) and that F3(w) ≤ F3(w). In this case, moreover,
the density result from Proposition 5.7 yields the equality F3(w) = F3(w). ¤

6 A more general energy density

With reference to the discussion in Section 4 and according to [8], in this section we extend some of the
previous results to a more general energy functional. First, following [28], we explicitly write the elastic
invariants

I1 = Qij,jQik,k , I2 = Qik,jQij,k , I4 = QlkQij,lQij,k

in the constrained biaxial case. For the sake of brevity, we omit the calculations. As above, let

Q = λ1n⊗ n + λ2m⊗m + λ3`⊗ ` ,

with λ1, λ2, λ3 given by (2.8). Then

Qij = λ1ninj + λ2mimj + λ3`i`j ,
Qij,k = λ1(ninj,k + ni,knj) + λ2(mimj,k + mi,kmj) + λ3(`i`j,k + `i,k`j) .

For unit vector fields r, s, t, we adopt the following notation:

(∇r)s := (∇r)is ei , (∇r)is := skri,k

rT∇s := (r∇is) ei , r∇is := rksk,i

where (e1, e2, e3) is the canonical basis in R3 and “·” denotes the scalar product in R3, so that

r · (∇s)t = ri(tksi,k) = tk(risi,k) = ti(rksk,i) = t · (rT∇s) .
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As for the first elastic invariant, we obtain:

I1 = λ2
1

(
(div n)2 + |n× curln|2) + λ2

2

(
(div m)2 + |m× curlm|2) + λ2

3

(
(div `)2 + |`× curl `|2)

+2λ1λ2

{
(∇n)n · (∇m)m + (div n)

[
n · (∇m)m

]
+ (div m)

[
m · (∇n)n

]}
+2λ2λ3

{
(∇m)m · (∇`)` + (div m)

[
m · (∇`)`

]
+ (div `)

[
` · (∇m)m

]}
+2λ3λ1

{
(∇`)` · (∇n)n + (div `)

[
` · (∇n)n

]
+ (div n)

[
n · (∇`)`

]}
.

(6.1)

The second elastic invariant becomes:
I2 = λ2

1

(|n× curln|2 + tr[(∇n)2]
)

+ λ2
2

(|m× curlm|2 + tr[(∇m)2]
)

+ λ2
3

(|`× curl `|2 + tr[(∇`)2]
)

+2λ1λ2

{
(nT∇m) · (∇n)m + (mT∇n) · (∇m)n + (∇n)m · (∇m)n

}
+2λ2λ3

{
(mT∇`) · (∇m)` + (`T∇m) · (∇`)m + (∇m)` · (∇`)m

}
+2λ3λ1

{
(`T∇n) · (∇`)n + (nT∇`) · (∇n)` + (∇`)n · (∇n)`

}
.

(6.2)
Finally, the fourth elastic invariant takes the following form:
1
2
I4 = λ3

1|n× curln|2 + λ3
2|m× curlm|2 + λ3

3|`× curl `|2
+2λ2

1λ2

[
n · (∇m)n

] [
m · (∇n)n

]
+ 2λ2

2λ1

[
m · (∇n)m

] [
n · (∇m)m

]
+2λ2

2λ3

[
m · (∇`)m

] [
` · (∇m)m

]
+ 2λ2

3λ2

[
` · (∇m)`

] [
m · (∇`)`

]
+2λ2

3λ1

[
` · (∇n)`

] [
n · (∇`)`

]
+ 2λ2

1λ3

[
n · (∇`)n

] [
` · (∇n)n

]
+λ1λ2λ3

{[
m · (∇`)n

] [
` · (∇m)n

]
+

[
` · (∇n)m

] [
n · (∇`)m

]
+

[
n · (∇m)`

] [
m · (∇n)`

]}
.

The third elastic invariant I3 has already been computed in Proposition 4.3 and written in terms of a
map (u,v) in Proposition 4.4. In principle, by similar computation as those in Proposition 4.4, one could
express also the invariants I1, I2, and I4 in terms of maps (u,v) : Ω → S3, hence yielding energy densities
fi : S3 ×M4×3 → [0,+∞) such that

fi((u,v)(x),∇(u,v)(x)) = Ii(Q(u,v)(x),∇Q(u,v)(x)), i = 1, 2, 4, (6.3)

see (5.3) for the case i = 3. By Theorem 3.3, the energy densities fi satisfy both the frame invariance and
the residual symmetry properties from Definitions 3.2 and 3.6, see also Remark 3.7.

A more general energy. Assume now that the elastic constants verify L4 = 0 and

L3 > 0 , −L3 < L2 < 2L3 , L1 > −3
5
L3 − 1

10
L2 .

Davis and Gartland [8] proved that under these hypotheses the energy functional (defined on general Q-
tensors)

I(Q) :=
∫

Ω

(
L1I1 + L2I2 + L3I3) dx

is sequentially weakly lower semicontinuous in W 1,2, provided that the domain Ω has smooth boundary. In
fact, there exist two positive constants K > µ > 0 such that

K |∇Q|2 ≥ L1I1 + L2I2 + L3I3 ≥ µ |∇Q|2 .

With this choice of the constants Li, since |∇Q|2 = I3, by (5.7) and Proposition 5.3 we readily obtain
a similar coercivity property for the corresponding functional F̃ := L1F̃1 + L2F̃2 + L3F̃3 on W 1,2(Ω, S3),
where F̃i is defined as in (5.2) with fi as in (6.3). As a consequence, the class of measurable and a.e. weakly
differentiable functions from Ω to S3 with finite F̃-energy agrees with the Sobolev class W 1,2(Ω,S3).

Reasoning exactly as in the second part of Section 5, with F3 replaced by F , we can extend the F-
energy to the Sobolev class W 1,2(Ω, S3/H) as in Definition 5.5; in particular, the energy functional F(w)
is finite exactly on W 1,2(Ω,S3/H).

As in Proposition 5.7, we then obtain the approximation in F-energy with smooth maps in the class
W 1,2(Ω, S3/H). In fact, on account e.g. of the formulas (6.1) and (6.2), recalling that n and m are given
by (2.14), and that ` = n ×m agrees with the third column G3(u,v) of the matrix in (2.2), we deduce
that the dominated convergence theorem can be applied.

Moreover, arguing as in Proposition 5.8, since the functional Q̃ 7→ I(Q̃) is sequentially lower semicon-
tinuous with respect to the weak W 1,2-topology, we infer the weak lower semicontinuity of the functional
w 7→ F(w) in W 1,2(Ω, S3/H).

Finally, we deduce the representation formula of the corresponding relaxed energy as in Corollary 5.9.
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