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ABSTRACT. We give a detailed description of the geometry of single droplet patterns in a
nonlocal isoperimetric problem. In particular, we focus on the sharp interface limit of the
Ohta–Kawasaki free energy for diblock copolymers, regarded as a paradigm for energies
with short and a long-range interactions. Exploiting fine properties of the regularity theory
for minimal surfaces, we extend previous partial results in different directions and give
robust tools for the geometric analysis of more complex patterns.

1. INTRODUCTION

In several physical systems competing short-range attractive and long-range repulsive
interactions often lead to the formation of patterns on mesoscopic scales. Roughly speak-
ing, the short-range interactions favor phase-separation on a microscopic scale, while the
long-range ones frustrate such an ordering on the scale of the whole sample. When these
systems are described in terms of a free energy, such a phenomenon is referred to as energy-
driven pattern formation. Examples of energy-driven patterns are ubiquitous in physics:
among the others we recall ferromagnetic and polymeric systems, type-I superconductor
films and Langmuir layers. Even if these systems are driven by different physical laws,
they exhibit remarkable similarities in the overall geometry of the patterns (see [32, 45]).

Our principal interest is the description of the geometry of patterns. For this reason we
focus here on a model energy which encodes only the main features of pattern-formation.
More specifically, in what follows we are interested in the minimization of the following
energy functional:

Fγ,m(u) :=
ˆ

Rn
|Du|+ γ

ˆ
Ω

ˆ
Ω

G(x,y)
(
u(x)−m

)(
u(y)−m

)
dxdy,

where u is the order parameter of a two-phases system confined in Ω ⊂ Rn, and γ and m
are two nonnegative parameters. The two terms in the energy mimic attractive short-range
and repulsive long-range energies between the phases. More precisely, the first term is
local, favors minimal interface area and drives the system towards a partition into few pure
phases, while the second term involving a Coulomb-like kernel G is non-local and favors
a fine mixing of the phases. A detailed description of the energy is given in § 2. The
competition between these two terms is expected to induce the formation of highly regu-
lar mesoscopic patterns (e.g. spherical spots, cylinders, gyroids, lamellae etc. . . ), whose
geometry strongly depends on the choice of the parameters γ and m.

1.1. The Ohta–Kawasaki functional for diblock copolymers. The model we consider
arises as a simplification of a Ginzburg-Landau functional proposed by Ohta and Kawasaki
in their pioneering paper [40] as a possible description of diblock copolymers’ (DBC)
systems. Even though it is questionable whether such an energy actually describes DBCs
(see Choksi and Ren [14], Muratov [38] and Niethammer and Oshita [39]), nevertheless it
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is a first, and mathematically non-trivial, attempt to capture some of the main features of
these systems. For such a reason it deserved over the last twenty years great attention from
both the mathematical and the physical community (see e.g. [7, 18, 35, 40, 49]). Under
several simplifications, the Otha-Kawasaki functional can be written in the following form:

(1) Eε,σ (u) =
ˆ

Ω

(
ε

2|∇u|2 +W (u)
)

dx+σ

ˆ
Ω

ˆ
Ω

G(x,y)(u(x)−m)(u(y)−m)dxdy,

where the order parameter u stems for the volume fraction of one block copolymer and
W is a standard double-well potential. Here m is the average of u over the whole sample,
namely m =

ffl
Ω

u, and the kernel G is the fundamental solution to the Neumann problem
for the Laplace equation in Ω:

(2) −∆G(x, ·) = δx−
1
|Ω|

,

ˆ
Ω

G(x,y)dy = 0.

As in the classical Ginzburg–Landau energy, the first contribution to the energy forces
a phase separation thanks to the competition between the gradient and the non-convex
potential. On the other hand, depending on the strength of the coupling constant σ , the
long-range contribution favors a uniform distribution of the order parameter. This term
has an entropic origin in the case of DBCs (see [7, 18, 35, 40, 49]), but it can also be
considered as the energy due to an electrostatic interaction between charged bodies if the
order parameter is assumed to represent a density of charges ([11, 19]).

It is well-known from the results by Modica and Mortola [37, 36] that, when ε� 1, the
Ginzburg-Landau energy can be approximated in the sense of Γ-conver-gence by a sharp
interface energy of the form ε c0

´
Ω
|Du|, with c0 > 0 a constant and u being a function of

bounded variation taking the two values 0,1 (these values identify the pure phases of the
system as the sets {x : u(x) = 0} and {x : u(x) = 1}), |Du| denoting the total variation of
the measure Du. Formally, this fact gives the link between the Ohta–Kawasaki energy and
the functional Fγ,m (for γ = σ/(c0 ε)). It is worth pointing out that there exists no rigorous
derivation of Fγ,m from Eε,σ in the sense of Γ-convergence. Indeed, the presence of possible
multiple scales (e.g., the one of the phase separation and that of the pattern formation) could
force the Γ-limit to be defined on more complex spaces of Young measures, as it happens
in the one dimensional case addressed by Alberti and Müller in [3]. Such a complex
multiple-scale behavior is actually observed in physical experiments (see, e.g., [30, 45]).
The experiments also suggests that, in some regimes of the parameters γ and m, droplets are
expected to be equilibrium configurations. The main open issues in this regards are: (1) the
rigorous justification of the observed lattice-type patterns (for example in two dimensions
the droplets seem to sit on the Abrikosov lattice) and (2) the description of the geometry of
the droplets. Regarding the first issue, we quote the remarkable paper by Alberti, Choksi
and Otto [2] in which the authors study the uniform distribution of the energy and of the
order parameter of the minimizers of Fγ,m (see [46] for analogous results in the case of the
Ohta–Kawasaki functional Eε,σ ). In this paper we contribute to the second question. In
particular, we investigate a regime of γ and m leading to the formation of a single droplet
minimizer, as a first step towards the analysis of multiple droplets patterns.

1.2. Single droplet minimizers. A single droplet minimizer can be roughly described as
a connected region of one phase surrounded by the other one. For this to happen, the
competition between the two terms of the energy has to be unbalanced, with the confining
term stronger than the nonlocal one. In order to identify the correct regime, we show here
the different contributions to the energy of a single ball. As shown in (20), given a ball
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Brm(p) ⊂ Ω of radius rm centered at p and with average mass m, i.e. m |Ω| = ωn rn
m (here

|Ω| stands for the n-dimensional volume of Ω), it holds

Fγ,m(χBrm (p)) =

{
2π rm + γ

(
π

2 r4
m logrm +

(
π2 grm(p)− 3π

8

)
r4

m
)

if n = 2,

nωn rn−1
m + γ

(
2ωn
4−n2 rn+2

m +ω2
n grm(p)r2n

m

)
if n≥ 3,

where grm(p) is uniformly bounded for p in a compact subset of Ω – see § 2.4. Therefore,
for the isoperimetric term to be stronger than the nonlocal one, the regimes to be considered
are

γ r3
m | logrm|<< 1 for n = 2,

γ r3
m << 1 for n≥ 3.

Note that, if γ → 0, the conditions above are trivially satisfied. On the other hand, in
the most interesting case of γ ≥C > 0, one is forced to consider the small volume-fraction
regime rm << 1, which we will always assume. Under these scalings we provide a detailed
analysis of the minimizers of Fγ,m, showing that a single droplet is a minimizer for Fγ,m. In
particular, we prove:

(a) the asymptotic convergence of the minimizers to round spheres in strong norms,
providing the rate of convergence;

(b) the asymptotic optimal centering of the droplet in the domain;
(c) the expansion of the energy in terms of the radius rm;
(d) the nonexistence of exact spherical droplets in domains Ω different from a ball;

and, on the other hand, the uniqueness of the minimizer when Ω is a ball (in this
case the minimizers is itself a ball centered at the center of Ω).

These results are summarized in the following theorem (see next sections for more
details on the notation).

Theorem 1.1. Let Ω⊂Rn be a bounded open set with C2 boundary. There exist δ0,r0 > 0
(depending on Ω) such that the following holds. Assume rm ≤ r0 and

γ r3
m | logrm|< δ0 if n = 2 or γ r3

m < δ0 if n≥ 3.

Then, every minimizer um = χEm ∈ Cm of Fγ,m satisfies the following properties:

(i) Em is a convex set and there exist pm ∈ Ω and ϕm : Sn−1 → R such that ∂Em =
{pm +(rm +ϕm(x))x : x ∈ Sn−1} and

(3) ‖ϕm‖C1 . γ rn+3
m ;

(ii) pm is close to the set of harmonic centers H of Ω, i.e.

lim
rm→0

dist(pm,H ) = 0;

(iii) the energy of um has the following asymptotic expansion:

(4) Fγ,m(um) = {
2π rm + π γ

2 r4
m logrm + γ

(
− 1

8 +π2 minΩ h
)

r4
m +O(γ r6

m) n = 2,

nωn rn−1
m + 2γ ωn

4−n2 rn+2
m + γ ω2

n r2n
m minΩ h+O(γ r2n+2

m ) n≥ 3,

where h is the Robin function relative to Ω;
(iv) Em is an exact ball if and only if the domain Ω is itself a ball, i.e. up to translations

Ω = BR for some R > 0, in which case Em = Brm is the unique minimizer.
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Remark 1.2. We stress that, for the previous statement to be true, in the definition of Fγ,m
we have taken the total variation of Du in the whole space, thus adding to the energy a
contribution which may be considered as accounting for an interaction with the boundary
of Ω. Indeed, in the case of multiple droplets patterns, on some mesoscopic scale a single
droplet feels a repulsive effect due to all the other droplets acting as a ‘virtual repulsive
boundary’ term. If we removed such a boundary contribution to the confining term, the
optimal shape would in fact be an almost half ball located in a point of smallest mean
curvature of ∂Ω and a result similar to the one stated in the previous theorem could be
true. An analysis of this issue, though interesting in its own, is not pursued here.

Many of the mathematical challenges in Theorem 1.1 are due to our choice to work in
any dimension n (previous results are mostly in dimensions n = 2,3), with the standard
Coulombian kernel and the natural Neumann boundary condition. To this regard, it is
worth comparing our results to analogous ones obtained recently on problem with single
droplet minimizers. In [21] Figalli and Maggi consider an anisotropic perimeter perturbed
via a local potential term. In the regime of small masses, they prove convergence of the
minimizers to the associated Wulff shape. The presence of the nonlocal term in Fγ,m does
not allow to deduce our results from [21] and requires new ideas. At the time we proved
our result, Knüpfer and Muratov studied in [31] the existence of exact spherical solutions
to a nonlocal isoperimetric problem in R2, where the nonlocal term is a Coulombian-type
interaction with kernel K(x,y) = |x− y|−α for some α ∈ (0,2). It is worth observing that
such a choice for the nonlocal term, as well as the absence of natural boundary conditions,
make the results in [31] different from our 2-dimensional analogue. In the works by Oshita
[41] and Ren and Wei [43], by the use of a careful Lyapunov-Schmidt reduction, the authors
construct special confined solutions in dimension n = 2 to elliptic systems of the form:

(5)


−∆v = χE −m in Ω,

∇v ·ν = 0 on ∂Ω,

γ v+H∂E = 0 on ∂E,

where H∂E is the mean curvature of the boundary of a set E, and γ and m are suitably
choosen (see also [44] for the case of multiple droplets in dimension n = 3). This system
is the Euler–Lagrange equations of the functional Fγ,m whenever χE is a smooth critical
point. Therefore, as a byproduct of Theorem 1.1, we are able to extend these results show-
ing the existence of single droplete solutions to (5) in any space dimension as the (local)
minimizers of the associated functional Fγ,m.

1.3. An approach via regularity theory. The reason why most of the previous results
are two dimensional is partially due to the fact that the isoperimetric confinement in the
plane is strong enough to allow non-parametric techniques. In higher dimensions, on the
contrary, having small perimeter does not even imply boundedness (e.g., consider a very
thin tube). One of the main contributions of this paper is to provide robust arguments to
overcome this difficulty. To this aim, we exploit a combination of two facts in the regularity
theory of minimal surfaces: the uniform regularity properties of minimizers and the use of
the optimal quantitative isoperimetric inequality. To our knowledge, this is the first time
that the sharp exponent 2 in the quantitative isoperimetric inequality has an essential role,
and we are aware of only one case where the uniform regularity property is exploited
similarly in a recent paper by Acerbi, Fusco and Morini [1], in which the authors study
local minimizers for the functional Fγ,m via second variations.
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The techniques developed in this paper may also be applied to several other related mod-
els which have been considered in the last years. Indeed, the arguments exploited here do
not rely strongly on the form of the isoperimetric term neither on that of the nonlocal one,
but rather on energy scaling and regularity properties of minimizers. For example, the ideas
we develope may be useful to address the challenging problem of multiple droplets mini-
mizers in its full generality (partial results are proved in [12, 13] by Choksi and Peletier for
a regime of finitely many droplets, and in [38] by Muratov for multiple droplets (asymp-
totically infinite) in two dimensions for a slightly different nonlocal interaction). Among
the possible extension of our results, we mention the cases of:

(1) multiple droplets patterns;
(2) models presenting different Coulombian-type kernels G;
(3) droplets minimizers for the Ohta–Kawasaki functional (1);
(4) anisotropic perimeter functionals;
(5) nonlocal perimeters, as those considered by Carlen et al. in [10].

1.4. Plan of the paper. The paper is organized as follows. In § 2 we fix the notation and
recall some known preliminary results which will be used in the proof of Theorem 1.1. In
§ 3 we prove a quantitative Lipschitz continuity of the nonlocal part of the energy, deriving
the first regularity conclusions such as the almost minimality of the minimizers. Then, in
the short section § 4 we show how this observation leads to the main result of this paper in
the simpler case of periodic boundary conditions. The proof of the general case is given
in § 5. In § 6 we discuss the existence of perfectly spherical solutions, showing how the
regularity plays a role also in the study of the stability. The final Appendix is devoted to
the proof of some estimates on the Green function used through the paper.

Acknowledgements: The research of the first author was partially supported by the Eu-
ropean Research Council under FP7, Advanced Grant n. 226234 “Analytic Techniques
for Geometric and Functional Inequalities” and by the Deutsche Forschungsgemeinschaft
through the Sonderforschungsbereich 611 during his stay at the Institute for Applied Math-
ematics of the University of Bonn.

2. NOTATION AND PRELIMINARIES

In what follows Ω ⊂ Rn is a bounded open set with C2 boundary ∂Ω. For given con-
stants m ∈ (0,1) and γ > 0, we consider the sharp interface limit of the Ohta–Kawasaki
functional Fγ,m which can be written in the following way:

(6) Fγ,m(u) :=
ˆ

Rn
|Du|+ γ

ˆ
Ω

ˆ
Ω

G(x,y)
(
u(x)−m

)(
u(y)−m

)
dxdy.

The order parameter u belongs to the class Cm(Ω) (often we will simply write Cm) of
functions with bounded variation taking values in {0,1}, whose average in Ω is m and
which are constantly 0 outside Ω:

(7) Cm :=
{

u ∈ BV (Rn,{0,1}) :
 

Ω

u = m, u|Rn\Ω = 0
}

.

As already noticed in the introduction, we stress that the total variation of Du is com-
puted in the whole Rn, thus accounting also for possible concentration of this measure
(interfaces of the physical system) on the boundary of Ω. In the second term in (6), G
denotes the Green function of the Laplacian with Neumann boundary conditions on ∂Ω.
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Denoting by ν the exterior normal to ∂Ω and by |A| the n-dimensional Lebesgue measure
of the set A, G is defined by the following boundary value problem: for every x ∈Ω,

(8)


−∆G(x, ·) = δx− 1

|Ω| in Ω,

∇G(x, ·) ·ν = 0 on ∂Ω,´
Ω

G(x,y)dy = 0.

In place of the average m, we often make use of the parameter rm corresponding to the
radius of a ball whose volume fraction in Ω is m, i.e.

ωn rn
m := m |Ω|.

Moreover, we often identify u ∈ Cm with the set of finite perimeter E such that u = χE (see
[5, 26]). Accordingly, we write the energy Fγ,m of χE as depending on E in the following
way:

Fγ,m(E) := Per(E)+ γ NL(E),

where Per(E) =
´

Rn |DχE | is the perimeter of E in Rn and NL is the nonlocal part of the
energy. Note that, thanks to

´
Ω

G(x,y)dy = 0 for every x ∈Ω, we may rewrite the nonlocal
term as

NL(E) :=
ˆ

Ω

ˆ
Ω

G(x,y)χE(x)χE(y)dxdy.(9)

Finally, we fix the following convention regarding the constants we use in the formula.
Every time we use the letter C for a constant, this is assumed to be positive and depending
only on the dimension of the space n and the domain Ω. When possible, we will use the
simbols a . b, a & b and a ' b for a ≤ C b, a ≥ C b and C−1b ≤ a ≤ C b, respectively.
When we need to keep track of the constants, we number them accordingly.

2.1. Robin function and harmonic centers. Here we recall some facts about the Green
function G. First of all its symmetry G(x,y) = G(y,x) for all x 6= y ∈ Ω. Next let Γ be the
fundamental solution of the Laplacian, i.e.

(10) Γ(t) :=


log t
2π

if n = 2,

t2−n

n(2−n)ωn
if n≥ 3,

and define the regular part R of the Green function in (8) as

R(x,y) := G(x,y)+Γ(|x− y|).

Even if, in principle, R is not defined in y = x, nevertheless, for every x ∈Ω, R(x, ·) solves
the following boundary value problem:

(11)

{
∆R(x, ·) = 1

|Ω| in Ω,

∇R(x, ·) ·ν = ∇Γ(|x−·|) ·ν on ∂Ω.

This implies that R(x, ·) is an analytic function in the whole Ω and we can consider its
extension to y = x:

h(x) := R(x,x).

The function h is called the Robin function. As it can be easily seen from (11) h turns out
to be analytic in Ω.
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Several estimates on the regular part of the Green function and on the Robin function
will play an important role in the identification of the concentration points for the mini-
mizers of Fγ,m. The following facts are used in the proofs: there exists r0 depending only
on Ω such that, for all r ≤ r0,

(12) |R(x,y)| ' |Γ(r)| ∀ x,y : dist(x,∂Ω)+dist(y,∂Ω)' r, |x− y|. r.

Moreover, from (12) we deduce also:

|G(x,y)|.−Γ(|x− y|)+1, ∀ x,y ∈Ω(13)

h(x)'
∣∣Γ(dist(x,∂Ω)

)∣∣ , ∀ x ∈Ω\Ωr0 ,(14)

where, for every r > 0, we denote by Ωr the complement in Ω of the closed r-neighborhood
of ∂Ω:

(15) Ωr := {x ∈Ω : dist(x,∂Ω) > r}.
These estimates are well-known in the case of Dirichlet boundary conditions (see for ex-
ample [23]). Since we are not able to point out a reference for the Neumann boundary
conditions, we give a proof in the Appendix A. From the regularity of h and (14), it fol-
lows that h is bounded from below. In particular, since h is analytic and blows up on the
boundary of Ω (hence, in particular it has no constant directions), it follows that the set of
minimum points of h is an analytical variety compactly supported in Ω: we denote this set
by H and call it the harmonic centers of Ω.

2.2. The quantitative isoperimetric inequality. The classical isoperimetric inequality
states that the perimeter of any measurable set E is bigger than the perimeter of a ball BE
having the same volume as E, with equality only in the case E is itself a ball. Quantitative
versions of this inequality, also called Bonnesen-type inequalities [42], have been widely
studied (see, for instance, [28, 29]). The following, called sharp quantitative isoperimetric
inequality, has been proved in [16, 22, 24].

Proposition 2.1 (Sharp quantitative isoperimetric inequality). There exists a dimensional
constant C = C(n) > 0 such that for every measurable set E ⊂ Rn of finite measure with
0 < |E|< +∞, it holds

(16) C α(E)2 ≤ Per(E)−Per(BE)
Per(BE)

,

where α(E) is the Frankel asymmetry of E,

α(E) := inf
{
|EM(x+BE)|
|BE |

, x ∈ Rn
}

.

Here, VMW = (V \W )∪(W \V ) is the symmetric difference between V and W . For any
given E ⊂ Rn measurable set of positive and finite measure, we say that Bopt

E is an optimal
ball for E if |Bopt

E |= |E| and
|EMBopt

E |
|Bopt

E |
= α(E).

The center of an optimal ball will also be referred to as an optimal center. In general the
optimal ball may not be unique. However, as proven in [17, Lemma 6.4] by an elementary
application of the Brunn-Minkowsky inequality, whenever E is a strictly convex set the
optimal ball is actually unique. Finally, we observe that, denoting by r the radius of BE ,
(16) scales in r as follows:

(17) |EMBopt
E |

2 . rn+1 (Per(E)−Per(Bopt
E )
)
.
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2.3. First variations. The first variations of Fγ,m have been computed for regular sets by
Muratov [38] in dimension 2 and 3, and then in any dimension by Choksi and Sternberg
[15]. Given a critical point E of Fγ,m and x ∈ ∂E a regular point of its boundary, the
Euler–Lagrange equation of Fγ,m in a neighborhood of x is given by:

(18) H∂E +4γ v = c,

where H∂E denotes the scalar mean curvature of ∂E (namely, H∂E = divνE , with νE the
outer normal to ∂E), c ∈ R is a constant coming from a Lagrange multiplier and v is the
solution of the following boundary value problem:

(19)


−∆v = χE −m in Ω,

∇v ·ν = 0 on ∂Ω,´
Ω

v = 0.

Since ‖χE −m‖L∞ ≤ 1, it follows that v ∈ C1,α for every α ∈ (0,1). Therefore, from
standard elliptic estimates for the quasilinear mean curvature operator (see [25]), (18) im-
plies that, for every critical point E, ∂E is C3,α for every α ∈ (0,1) in a neighborhood of
a regular point. As shown in the next sections, every minimizer of Fγ,m is regular except a
singular set of Hausdorff dimension at most n− 8 (in particular, the singular set is empty
in the physical dimensions n = 2,3).

2.4. Asymptotic energy of balls. Here we give an asymptotic expansion of the energy of
small round balls in Ω. Let Ωr be defined as in (15). By the regularity assumption on ∂Ω,
there exists r0 > 0 such that, for every r ≤ r0 and p ∈ Ωr, the ball Br(p) ∈ Cωnrn . By a
direct computation, it follows that

Fγ,ωnrn(Br(p)) = Per(Br(p))+ γ NL(Br(p))

= nωn rn−1 + γ

ˆ
Br(p)

ˆ
Br(p)

Γ(|x− y|)dxdy+

+ γ

ˆ
Br(p)

ˆ
Br(p)

R(x,y)dxdy

=

{
2π r + γ

(
π

2 r4 logr +
(
π2 gr(p)− 3π

8

)
r4
)

if n = 2,

nωn rn−1 + 2γ ωn
4−n2 r2n + γ gr(p)(ωn rn)2 if n≥ 3,

(20)

where gr : Ωr→ R is given by

(21) gr(p) :=
 

Br(p)

 
Br(p)

R(x,y)dxdy.

Lemma 2.2. Let Ω ⊂ Rn be a bounded open set with C2 boundary. Then, there exists
r0 > 0 such that, for all r ≤ r0/2,

(22) ‖gr−h‖L∞(Ωr0 ) ' r2,

and, for every p ∈Ω\Ωr0 ,

(23) gs(p)& |Γ(dist(p,∂Ω))| ∀ s≤ dist(p,∂Ω).
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Proof. To show (22), let r0 be as in (12) and note that, since R|Ωr0×Ωr0
is analytic, we have

gr(p)−h(p) =
 

Br

 
Br

(R(x+ p,y+ p)−R(p, p)) dxdy

=
 

Br

 
Br

(
DR(p, p)(x,y)+ 〈D2R(p, p)(x,y),(x,y)〉

)
dxdy+o(r2)

= r2
 

B1

 
B1

〈D2R(p, p)(x,y),(x,y)〉dxdy+o(r2),(24)

where in the last equality we used that the linear term integrates to 0. By the linearity of
the integral and of the scalar product, it follows that

gr(p)−h(p) = ∑
i, j

(
∂xi∂x j R(p, p)Axix j +2∂xi∂y j R(p, p)Axiy j +∂yi∂y j R(p, p)Ayiy j

)
+o(r2)(25)

where

Axixi = Ayiyi = µ :=
 

B1

x2
1 dx and Axix j = Axiy j = Ayiy j = 0.

Using the simmetry R(x,y) = R(y,x), we infer from (25) that

gr(p)−h(p) =µTr
(
D2R(p, p)

)
r2 +o(r2) = 2 µ ∆yR(p, p)r2 +o(r2)

=
2 µ r2

|Ω|
+o(r2),

thus leading to (22). In order to show (23), it sufficies to notice that

gs(p)&
 

B s
2
(p)

 
B s

2
(p)

R(x,y)dxdy
(12)
& Γ(dist(p,∂Ω)). �

3. REGULARITY OF MINIMIZERS

In this section we prove the Lipschitz continuity of the nonlocal term, from which we
derive the uniform regularity properties of the minimizers in the relevant regimes.

3.1. Lipschitz continuity of NL. Proofs of the Lipschitz continuity of NL already ap-
peared in the literature (see, for instance, [1, 38, 48]). For our purposes, a more careful
quantitative estimate of the Lipschitz constant is necessary.

Proposition 3.1. For every χEm ,χGm ∈ Cm, setting w = Γ∗χGm , it holds

(26) NL(Gm)−NL(Em). (‖w‖L∞(EmMGm) + |Gm|) |EmMGm|.
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Proof. We start from (9) to get

NL(Gm)−NL(Em) =
ˆ

Ω

ˆ
Ω

G(x,y)
(
χGm(x)χGm(y)−χEm(x)χEm(y)

)
dx dy

=
ˆ

Ω

ˆ
Ω

G(x,y)χGm(x)
(
χGm(y)−χEm(y)

)
dx dy+

+
ˆ

Ω

ˆ
Ω

G(x,y)χEm(y)
(
χGm(x)−χEm(x)

)
dx dy

= 2
ˆ

Ω

ˆ
Ω

G(x,y)χGm(x)
(
χGm(y)−χEm(y)

)
dx dy−

−
ˆ

Ω

ˆ
Ω

G(x,y)
(
χGm(y)−χEm(y)

)
·

·
(
χGm(x)−χEm(x)

)
dx dy,(27)

where in the last equality we used the symmetry G(x,y) = G(y,x). Sinceˆ
Ω

ˆ
Ω

G(x,y)
(
χGm(y)−χEm(y)

)
·
(
χGm(x)−χEm(x)

)
dx dy =

ˆ
Ω

|∇z(x)|2 dx≥ 0,

where z solves {
−∆z = χGm −χEm in Ω,

∇z ·ν = 0 on ∂Ω,

we deduce:

NL(Gm)−NL(Em)≤ 2
ˆ

Ω

ˆ
Ω

G(x,y)χGm(x)
(
χGm(y)−χEm(y)

)
dx dy(28)

(13)
.
ˆ

Ω

ˆ
Ω

(−Γ(|x− y|)+1) χGm(x)
∣∣χGm(y)−χEm(y)

∣∣dxdy

=
ˆ

Ω

(|Gm|−w(y))
∣∣χGm(y)−χEm(y)

∣∣dy

. (‖w‖L∞(EmMGm) + |Gm|) |EmMGm|. �

A straightforward consequence of Proposition 3.1 is that, if Em is a minimizer of Fγ,m,
then

Per(Em)−Per(Gm)≤ γ
(
NL(Gm)−NL(Em)

)
. γ (‖w‖L∞(EmMGm) + |Gm|) |EmMGm|.(29)

By the radial monotonicity of Γ, it holds

(30) ‖Γ∗χGm‖L∞ ≤ ‖Γ∗χBrm‖L∞ =

{
r2
m
2

( 1
2 − logrm

)
if n = 2,

r2
m

2(n−2) if n≥ 3,

for every Gm with |Gm|= |Brm |. As a consequence, for rm sufficiently small, we have

(31) ‖w‖L∞ + |Gm|. ‖Γ∗χBrm‖L∞ + rn
m .

{
r2
m
2

( 1
2 − logrm

)
if n = 2,

r2
m

2(n−2) if n≥ 3.

Here we have used the direct computations:

(32) Γ∗χBr(x) =

{
|x|2
4 + r2

2 (logr−1) if |x| ≤ r,
r2

2

(
log |x|− 1

2

)
if |x|> r,

if n = 2,
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(33) Γ∗χBr(x) =


|x|2
2n + r2

2(2−n) if |x| ≤ r,
rn

n(2−n) |x|n−2 if |x|> r,
if n≥ 3.

As for rm small enough χBrm (p) ∈ Cm for some p ∈ Ω, it follows by the previous two
estimates, with Gm = Brm(p), that

(34) Per(Em)−Per(Brm(p)).

{
γ r2

m | logrm| |EmMBrm(p)| if n = 2,

γ r2
m |EmMBrm(p)| if n≥ 3.

By the quantitative isoperimetric inequality (17), there exists an optimal isoperimetric ball
Bopt

Em
for Em such that

(35) |EmMBopt
Em
|2 . rn+1

m
(
Per(Em)−Per(Bopt

Em
)
)
.

In the case χBopt
Em
∈ Cm, gathering together (35) and (34), we have that

(36) |EmMBopt
Em
|.

{
γ rn+3

m | logrm| if n = 2,

γ rn+3
m if n≥ 3.

3.2. Volume constraint. In order to deduce uniform regularity properties for minimizers,
it is convenient to get rid of the volume constraint. To this purpose we use a penalization
argument. We first rescale our sets: set pm for the barycenter of Em and

Hm :=
Em− pm

rm
⊂Ωm :=

Ω− pm

rm
.

We note that Hm is a minimizer of Fγr3
m,m in Cm(Ωm). The following lemma shows that, if

Hm is sufficiently close to a given H ⊂Rn well-contained in Ωm, the volume constraint can
be dropped.

Lemma 3.2. Let m0 > 0 be a given constant and Hm ⊂ Ωm be as above and γ r3
m . 1

for m ∈ (0,m0). Let H ⊂ Ωm be a set of finite perimeter such that dist(H,∂Ωm) ≥ 1 for
every m ∈ (0,m0). Then, there exists Λ > 0 with this property: for every m ∈ (0,m0), if
|HMHm| ≤ Λ−1, then Hm is a minimizer of GΛ,m,

GΛ,m(E) := Fγr3
m,m(E)+Λ ||E|−ωn|,

in the class of all sets E with |EMH| ≤ 2Λ−1.

The proof of the lemma follows from a simple adaptation of the computations in [20,
Section 2] (see also [1, Proposition 2.7]). We give here only the necessary modifications.

Proof. The proof is by contradiction. Assume that there exist Λh→+∞ with this property:
there exist mh ∈ (0,m0), Hh minimizers of Fh := Fγr3

mh
,mh

and Eh such that:

(a) |HhMH| ≤ Λ
−1
h ;

(b) |EhMH| ≤ 2Λ
−1
h ;

(c) |Eh|< |Hh|= ωn (the case |Eh|> |Hh| is analogous);
(d) Gh(Eh) := GΛh,mh(Eh) < Fh(Hh).

Since Eh → H in L1(Rn), as in [1, Proposition 2.7], one can show the existence of suit-
able deformations Ẽh and constants σh > 0 satisfying the following: |Ẽh| = |Hh| = ωn,
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dist(Ẽh,H) < 1 (in particular, Ẽh ⊂Ωm) and

|Hh|− |Eh| ≥ c1(n)σh,(37)

Per(Ẽh)≤ Per(Eh)(1+ c2(n)σh),(38)

|ẼhMEh| ≤ c3(n)σh Per(Eh),(39)

where c1,c2,c3 > 0 are dimensional constants. Hence, we infer that, for h sufficiently
large,

Fh(Ẽh) = Gh(Ẽh)

≤ Gh(Eh)+
[
c2(n)σh Per(Eh)+C |EhMẼh|−Λh ||Eh|−ωn|

]
(d),(37)−(39)

< Fh(Hh)+σh
[
c2 Per(Eh)+C c3 Per(Eh)− c1 Λh

]
< Fh(Hh),

where we used the Lipschitz continuity of the nonlocal term with γ r3
m . 1, Λh→+∞ and

the uniform bound on Per(Eh) implied by (d):

Per(Eh) < Fh(Hh)≤ Fγr3
mh

,mh
(B1) < +∞ ∀ h ∈ N.

This contradicts the minimizing property of Hh and proves the lemma. �

3.3. Λ-minimizers. It follows from Lemma 3.2 that the sets Hm are uniform strong Λ-
minimizer of the perimeter according to the following definition.

Definition 3.3. Let Ω ⊂ Rn be open. A set of finite perimeter E ⊂ Ω is a strong Λ-
minimizer of the perimeter in Ω at scale η > 0 if

(40) P(E)≤ P(F)+Λ|EMF |, ∀ EMF ⊂⊂Ω, |EMF | ≤ η .

This notion of almost minimality has been widely studied in the regularity theory for
minimal surfaces. By the theory developed in [4, 8, 27, 50], strong Λ-minimizers have
regularity estimates which are uniform in the parameters Λ and η . More precisely, recall
the notation DχE for the vector valued measure given by the distributional derivative of the
BV function χE ; then, for every α ∈ (0,1), there exists a constant ε0 = ε0(n,α,Λ,η) such
that

Exc(E,Br(x)) := r1−n
(
|DχE |(Br(x))−|DχE(Br(x))|

)
≤ ε0

=⇒ ∂E ∩B r
2
(x) ∈C1,α .

Since the quantity Exc is continuous under L1 convergence of Λ-minimizers, uniform reg-
ularity estimates can be inferred for Λ-minimizers in a neighborhood of a given smooth
set.

Proposition 3.4. Let Λ,η > 0 be given constants and let F ⊂ Ω be a set with smooth
boundary and dist(F,∂Ω) ≥ 1. Then, for every α ∈ (0,1), there exist constants η0 =
η0(n,α,Λ,η ,F) > 0, R = R(n,Λ,η ,F) > 0, c = c(n) > 0 and a modulus of continuity
ω : R+→ R+ with this property: for every E ⊂Ω strong Λ-minimizers at scale η ,

(i) if |EMF | ≤ η0, then ∂E can be parametrized on ∂F by a function ϕ : ∂F → R,

∂E =
{

x+ϕ(x)νF(x) : x ∈ ∂F
}
,

with ‖ϕ‖C1,α ≤ ω(|EMF |);



DROPLET MINIMIZERS OF AN ISOPERIMETRIC PROBLEM WITH LONG-RANGE INTERACTIONS 13

(ii) for all x ∈ E and 0 < r < R with Br(x)⊂Ω, it holds

(41) c(n)rn ≤ |E ∩Br(x)|.

Although never stated in this form, Proposition 3.4 is a direct consequence of the already
known regularity theory (in particular, see [50, Theorem 1.9 and Proposition 3.4]). Note,
however, that we will apply Proposition 3.4 always in the case F = B1.

3.4. Higher regularity. Thanks to Proposition 3.4, the first variations in § 2.3 can be used
to improve the regularity of the minimizers of Fγ,m.

Proposition 3.5. Let Em be a minimizer of Fγ,m and let Hm, pm and Ωm be as in § 3.2.
Then, for every α ∈ (0,1), there exists η > 0 such that, if γr3

m . 1, |HmMB1| ≤ η and
dist(B1,∂Ωm)≥ 1, then Hm can be parametrized on ∂B1,

∂Hm =
{
(1+ϕm(x))x : x ∈ ∂B1

}
,

and ‖ϕm‖C3,α ≤ ω̄(|HmMB1|) for a given modulus of continuity ω̄ .

Proof. The existence of a parametrization ϕm is guaranteed by Proposition 3.4 (i), under
the hypothesis that η is chosen sufficiently small. We need only to show that the Euler–
Lagrange equation for Fγ,m, namely

(42) H∂Hm(x+ϕm(x)x)+4γ r3
m wm(x+ϕm(x)x) = λm,

allows actually to infer the higher regularity claimed in the statement. Here λm ∈ R is a
Lagrange multiplier and wm solves the boundary value problem:

(43)


−∆wm = χHm −m in Ωm,

∇wm ·ν = 0 on ∂Ωm,´
Ωm

wm = 0.

It suffices to prove supm ‖ϕm‖C3,α ′ ≤ C for every α ′ ∈ (0,1). Indeed, since we have that
‖ϕm‖C1,α ≤ ω(|HmMB1|), where ω is the modulus of continuity in Proposition 3.4, by
compactness in the C3,α norm for α < α ′ we would as well deduce that ‖ϕm‖C3,α → 0 as
|HmMB1| → 0.

To show this, we consider separately the two terms in (42). For what concerns λm we
recall that, by Lemma 3.2 there exists Θ > 0 such that Hm minimize GΘ,m locally in a
neighborhood of B1. This allows us to compute the first variations of GΘ,m. Since the
penalization term Θ ||E| −ωn| is not differentiable, we have to distinguish between the
variations increasing the volume and those decreasing it. Let ψ ∈C∞(∂B1) and Kε be the
competitor such that

∂Kε :=
{

x+(ϕm(x)+ ε ψ(x))x : x ∈ ∂B1
}
.

The volume of Kε is given by

|Kε |= n−1
ˆ

∂B1

(1+ϕm + ε ψ)n dH n−1,

hence, it follows that |Kε |> ωn or |Kε |< ωn for small ε > 0 if ψ > 0 or ψ < 0, respectively.
The minimizing property of Hm implies the following variational inequality to hold true:

dGΘ,m(Kε)
dε

|ε=0+ ≥ 0.
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In turns this leads to (with analogous computations for the first variations of Fγ,m as in [15])ˆ
∂B1

(
H∂Hm(x+ϕm(x)x)+4γ r3

m wm(x+ϕm(x)x)+Θ

)
ψ(x)≥ 0 if ψ > 0,(44)

ˆ
∂B1

(
H∂Hm(x+ϕm(x)x)+4γ r3

m wm(x+ϕm(x)x)−Θ

)
ψ(x)≥ 0 if ψ < 0.(45)

Since ψ in (44) and (45) is an arbitrary positive and negative function respectively, we
deduce a uniform bound on the Lagrange multipliers λm:

(46) |λm| ≤Θ ∀m > 0.

For what concerns wm, by an analogous computation as in (30) using |G|. |Γ|+1 and the
radial monotonicity of Γ, we deduce that ‖wm‖L∞ ≤C. Moreover, since ‖χHm − χB1‖Lp .
η for every p > n, the Sobolev embeddings and the Gagliardo–Niremberg interpolation
inequality lead to uniform W 2,p bounds and, hence, C1,α ′ bounds on wm for every α ′ ∈
(0,1) (see [9, Chapter 9]). Therefore, since ϕm has also uniform C1,α ′ bounds, the non-
parametric theory for the mean curvature-type equation (42) (see [33, Chapter 3] or [26,
Appendix C]) finally yelds the desired uniform C3,α ′ estimates for ϕm. �

4. PERIODIC BOUNDARY CONDITIONS: Ω = Tn

Here we show the proof of our main result in a technically simpler case, namely for
periodic boundary conditions. Indeed, in this case one discards the interactions with the
boundary and the optimal centering of the asymptotic droplet, and the proof is a direct
consequence of the regularity arguments developed in the previous section.

4.1. Notation and statement. Let Tn be the n-dimensional torus obtained as the quotient
of Rn via the Zn lattice or, equivalently, Tn := [0,1]n with the identification of opposite
faces. We consider functions

u ∈ BV (Tn;{0,1}) with
 

Tn
u = m.

As usual such functions u can be identified with measurable sets E ⊆ Rn invariant under
the action of Zn and such that |E ∩ [0,1]n| = m. The confining term of the energy is then
given by the perimeter of E in the torus:

Per(E,Tn) :=
ˆ

[0,1)n
|DχE |;

and the nonlocal term by:

NL(E) :=
ˆ

[0,1]n

ˆ
[0,1]n

G(x,y)χE(x)χE(y)dxdy,

where G is the Green function for the Laplacian in Tn, i.e.

(47)

{
−∆G(x, ·) = δx−1 in Tn,´

Ω
G(x,y)dy = 0.

By the invariance of the torus under translations, we can write with a sligth abuse of nota-
tion G(x,y) = G(|x−y|). In the case of periodic boundary conditions, Theorem 1.1 reduces
to a statement regarding the shape of the minimizers Em and the asymptotic behavior of
the energy.
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Theorem 4.1. There exists δ0 > 0 such that the following holds. Assume rm < 1 and

γ r3
m| logrm|< δ0 if n = 2 or γ r3

m < δ0 if n≥ 3.

Then, every minimizer Em ⊂ Tn of Fγ,m is, up to a translation, a convex set such that

∂Em = {(1+ψm(x))rm x : x ∈ Sn−1},
for some ψm : Sn−1→ R with

(48) ‖ψm‖C1 . γ rn+3
m ,

and its energy has the following asymptotic expansion:

(49) Fγ,m(χEm) =

{
2π rm + π γ

2 r4
m logrm + γ

(
− 1

8 +π2 h(0)
)

r4
m +O(γ r6

m) if n = 2,

nωn rn−1
m + 2γ ωn

4−n2 rn+2
m + γ ω2

n r2n
m h(0)+O(γ r2n+2

m ) if n≥ 3,

where h is the Robin function associated to G.

4.2. Improved perimeter estimate. Due to the translation invariance, we may assume
that for a given minimizer Em the optimal ball Bopt

Em
= Brm is centered at the origin. There-

fore, from (36) we infer for Hm = Em/rm that

|HmMB1|.

{
γ r3

m | logrm|< δ0 if n = 2,

γ r3
m < δ0 if n≥ 3.

If δ0 is chosen sufficiently small, by Lemma 3.2, the sets Hm are minimizer of some penal-
ized functional GΛ,m and, hence, are Λ-minimizers of the perimeter. By Proposition 3.4,
Hm can be parametrized by the graph of a function ϕm on ∂B1 satisfying

‖ϕm‖L∞(∂B1) . |HmMB1|,
thus implying that Em can be parametrized on ∂Brm by ψm with

(50) ‖ψm‖L∞(∂Brm ) .
|EmMBrm |

rn−1
m

.

These observations lead to the following proposition which is a consequence of an im-
proved estimate for the Lipschitz constant of the nonlocal part of the energy.

Proposition 4.2. There exists δ0 > 0 such that, if γ r3
m | logrm|< δ0 in the case n = 2 or if

γ r3
m < δ0 in the case n≥ 3, and Em is a minimizer of Fγ,m, then

(51) Per(Em)−Per(Bopt
Em

). γ
|EmMBopt

Em
|2

rn−2
m

+ γ rn+1
m |EmMBopt

Em
|.

Proof. Recalling (28) in Proposition 3.1, and assuming as above Brm = Bopt
Em

, we have that

NL(Brm)−NL(Em).
ˆ

Ω

ˆ
Ω

G(x,y)χBrm (x)
(
χBrm (y)−χEm(y)

)
dx dy

=
ˆ

Ω

ˆ
Ω

(
Γ(|x− y|)χBrm (x)−α

)(
χBrm (y)−χEm(y)

)
dxdy+

+
ˆ

Ω

ˆ
Ω

R(x,y)χBrm (x)
(
χBrm (y)−χEm(y)

)
dxdy,

where we used
´

χBrm −
´

χEm = 0 and we set

α :=

{
r2
m
2

(
logrm− 1

2

)
if n = 2,

r2
m

2(2−n) if n≥ 3.
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By the direct computation of w = Γ ∗ χBrm in (32) and (33) (in particular, |∇w| . rm in a
neighborhood of ∂Brm ), we get,

‖w−α‖L∞(EmMBrm ) . rm ‖ψm‖L∞(∂Brm )

(50)
.
|EmMBrm |

rn−2
m

.

Moreover, again using
´

χBrm −
´

χEm = 0,
ˆ

Ω

ˆ
Ω

R(x,y)χBrm (x)
(
χBrm (y)−χEm(y)

)
dxdy

= R(0,0)
ˆ

Ω

ˆ
Ω

χBrm (x)
(
χBrm (y)−χEm(y)

)
dxdy+O(rn+1

m )|EmMBrm |

' rn+1
m |EmMBm|.

Hence, gathering together the previous estimates, by the minimality of Em, it follows:

Per(Em)−Per(Brm)≤ γ NL(Brm)− γ NL(Em)

' γ ‖w−α‖L∞(EmMBrm ) |EmMBrm |+ γ rn+1
m |EmMBrm |

' γ
|EmMBrm |2

rn−2
m

+ γ rn+1
m |EmMBrm |. �

4.3. Proof of Theorem 4.1. In order to prove (48) we use the quantitative isoperimetric
inequality and the improved estimate in Proposition 4.2 to infer that

|EmMBrm |2
(17)
. rn+1

m
(
Per(Em)−Per(Brm)

)
(51)
. γ r3

m |EmMBrm |2 + γ r2n+2
m |EmMBrm |.

This implies |EmMBrm |. γ r2n+2
m , that is, by (50),

(52) ‖ψm‖L∞(∂B1) . γ rn+3
m .

From the C3,α regularity of ψm proved in Proposition 3.5, the convexity of Em and (48)
follows. Similarly, by comparing the energy of Em with that of Brm , using Proposition 3.1,
Proposition 4.2 and Lemma 2.2, (49) follows:

Fγ,m(Em) = Fγ,m(Brm)+O(γ r3n+3
m )

=

{
2π rm + π γ

2 r4
m logrm + γ

(
− 1

8 +π2 h(0)
)

r4
m +O(γ r6

m) if n = 2,

nωn rn−1
m + 2γ ωn

4−n2 rn+2
m + γ ω2

n r2n
m h(0)+O(γ r2n+2

m ) if n≥ 3.

�

5. STRONG CONVERGENCE TO ROUND SPHERES

In this section we prove Theorem 1.1 (i), (ii) and (iii). We remark that, in this general
case, before we may argue as in the proof of Theorem 4.1, we need to show that the min-
imizers of Fγ,m are well-contained in Ω. This is crucial in order to apply the regularity
results in § 3, which hold under the hypothesis of being at a fixed distance from the bound-
ary. The proof is based on the analysis of the nonlocal energy of a minimizer when it gets
close to ∂Ω. To this extent a key role will be played by the estimates (12), (13) and (14).
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5.1. Localization of minimizers. We prove that the minimizers of Fγ,m are well-contained
in Ω.

Proposition 5.1. There exist δ0,r0 > 0 such that the following holds. Assume rm ≤ r0/2,
γ r3

m | logrm|< δ0 if n = 2 or γ r3
m < δ0 if n≥ 3. Then, every minimizer Em of Fγ,m satisfies

(53) Em ⊂ B2rm(q) for some q ∈Ωr0 .

Proof. We prove the result in the case n ≥ 3, the case n = 2 being similar up to minor
changes. The proof consists of three steps.

STEP 1. If δ0 and r0 are sufficiently small, then there exists a ball Bm := Brm(pm)⊂ Ω

such that

(54) |BmMEm|. δ

1
n+1

0 rn
m and dist(pm,∂Ω)& δ

− 1
(n+1)(n−2)

0 rm.

For any ball of radius Brm(p)⊂Ω (note that such a ball exists if r0 is choosen sufficiently
small), by (34) it holds

(55) Per(Em)−Per(Brm(p)). γ r2
m|EmMBrm(p)|. γ rn+2

m .

On the other hand, by the quantitative isoperimetric inequality, there exists an optimal ball
Bopt

Em
⊂ Rn such that

(56) |EmMBopt
Em
|2

(35)
. rn+1

m
(
Per(Em)−Per(Bopt

Em
)
) (55)
. γ r2n+3

m .

Note that Bopt
Em

may not be contained in Ω. Nevertheless, since Bopt
Em
\Ω ⊂ Bopt

Em
MEm, it

follows from (56) that
|Bopt

Em
\Ω|. (γ r3

m)1/2 rn
m . δ

1/2
0 rn

m.

We can now use a simple geometric argument proved in Lemma 5.3 below to deduce the
existence of a vector v ∈ Rn such that

|v| ' δ
1/(n+1)
0 rm and Bm := Bopt

Em
+ v⊂Ω.

Setting pm as the center of Bm, namely Bm = Brm(pm), this amounts to say that pm ∈Ωrm .
We claim that Bm satisfies (54). Note that, since the measure of the symmetric difference
between two balls is linear with the distance of the centers, we infer the first conclusion in
(54), namely

(57) |EmMBm| ≤ |EmMBopt
Em
|+ |Bopt

Em
MBm|.

(
δ

1/2
0 +δ

1/(n+1)
0

)
rn

m . δ
1/(n+1)
0 rn

m.

On the other hand, appealing to the minimality of Em (now χBm ∈ Cm) and using (20), we
get:

γ (ωn rn
m)2 grm(pm)− γ (ωn rn

m)2 min
p∈Ωrm

grm(p) = Fγ,m(Bm)− min
p∈Ωrm

Fγ,m(Brm(p))

≤ Fγ,m(Bm)−Fγ,m(Em)

≤ γ NL(Bm)− γ NL(Em)

. γ δ
1/(n+1)
0 rn+2

m ,(58)

where in the last inequality we have used Proposition 3.1 and (31). Then, by Lemma 2.2
and (10) we obtain the second inequality in (54):

dist(pm,∂Ω)2−n . δ
1/(n+1)
0 r2−n

m .
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STEP 2. The whole Em is well-contained in Ω, i.e.

(59) Em ⊂ B2rm(pm).

With the notation as in § 3.2, by (36) we have that |HmMB1| . γ r3
m ≤ δ0. Then, using

Lemma 3.2, the sequence of sets Hm turns out to be a sequence of uniform Λ-minimizer of
the perimeter in Ωm. Moreover, by (54), if δ0 is small enough, we have that

(60) dist(0,∂Ωm)& δ
− 1

(n+1)(n−2)
0 ≥ 4.

As a consequence, we are in position to use the density estimate (41) in Proposition 3.4
according to which there exists R > 0 (without loss of generality we assume R < 1) such
that, for every x ∈ Hm∩ (B3 \B2),

c(n)Rn ≤ |Hm∩BR(x)| ≤ |Hm∩B1(x)|.

Therefore, since for every x ∈ Hm∩ (B3 \B2) it holds B1(x)∩B1 = /0, we get:

c(n)Rn ≤ |Hm∩B1(x)| ≤ |HmMB1|
(54)
. δ

1/(n+1)
0 .

Clearly, if δ0 is small enough, this inequality cannot be satisfied, thus implying Hm∩ (B3 \
B2) = /0. In order to complete the proof of (59), we need to show that Hm∩ (Ωm \B3) = /0
as well. To this purpose, we argue by contradiction and show that, in this case, a suitable
rescaling of Jm := Hm∩B2 would have lower energy than Hm. We fix the notation:

Km := Hm \ Jm and Lm := ρm Jm,

with ρm ≥ 1 such that |Lm|= |Hm|. Note first the following two observations: by a simple
computation on the volumes, it follows that

(61) ρm−1. |Km|;

consequently, we can estimate |LmMJm| in the following way:

|LmMJm|=
ˆ

Rn
|χJm(ρ−1

m x)−χJm(x)|dx

≤
ˆ

B3

ˆ 1

0
|DχJm(sx+(1− s)ρ

−1
m x)|(1−ρ

−1
m ) |x|dsdx

. (ρm−1)Per(Jm). |Km|,(62)

where, in order to rigourously justify the second inequality without referring to fine prop-
erties of functions of bounded variation, it is enough to consider an approximation via
smooth functions and to pass to the limit. Recalling that Fγ,m(Em) = rn−1

m Fγ r3
m,m(Hm), we

can compare the energies of Hm and Jm as follows:

Fγ r3
m,m(Lm) = ρ

n−1
m Per(Jm)+ γ r3

m NL(Lm)

≤ ρ
n−1
m Per(Hm)−ρ

n−1
m Per(Km)+ γ r3

m C |LmMHm|+ γ r3
m NL(Hm)

(61)
≤ (1+C |Km|)Per(Hm)−ρ

n−1
m Per(Km)+

+ γ r3
m C
(
|LmMJm|+ |Km|

)
+ γ r3

m NL(Hm)
(62)
≤ Fγ r3

m,m(Hm)+C |Km|+C δ0 |Km|−C |Km|(n−1)/n

< Fγ r3
m,m(Hm),(63)
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if δ0 is sufficiently small because |Km| ≤ δ
1/(n+1)
0 < 1. Clearly, this is a contradiction with

the minimality of Hm, thus proving that Hm \B2 = /0 or, after scaling by rm, that (59) holds
true.

STEP 3. Proof of (53). We set E ′m := Em− pm and, as a consequence of (59), we note
that E ′m ⊂ B2rm . For all q ∈Ω2rm , let us set Em(q) := E ′m +q (in particular, Em(q)⊂Ω and
Em = Em(pm)). We may write the energy of Em(q) as

(64) Fγ,m(Em(q)) = Per(E ′m)+ γ

ˆ ˆ
Γ(|x− y|)χE ′m(x)χE ′m(y)dxdy

+ γ

ˆ ˆ
R(x+q,y+q)χE ′m(x)χE ′m(y)dxdy.

Since Em minimizes Fγ,m, we have that Fγ,m(Em(pm)) ≤ Fγ,m(Em(q)) for every q ∈ Ω2rm .
By (64) this implies thatˆ ˆ

R(x+ pm,y+ pm)χE ′m(x)χE ′m(y)dxdy

≤
ˆ ˆ

R(x+q,y+q)χE ′m(x)χE ′m(y)dxdy.

In view of E ′m ⊂ B2rm , (12) and the last inequaltiy imply that pm is contained in a compact
subset of Ω. �

Remark 5.2. It follows a posteriori that the optimal balls Bopt
Em

for Em are, in fact, well-
contained in Ω and (56) holds, i.e.

(65) dist(Bopt
Em

,∂Ω)& 1 and |Bopt
Em
MEm|. δ

1/2
0 rn

m.

The following is the geometric lemma used in the Step 1 of the proof of Proposition 5.1.

Lemma 5.3. Let Ω ⊂ Rn be an open set with C2 boundary. Then, there exist r0,h0 > 0
with this property: for r < r0, h ≤ h0 and p ∈ Ω such that |Br(p) \Ω| ≤ hrn, there exists
v ∈ Rn with |v|. h2/(n+1)r such that Br(p+ v)⊂Ω.

Proof. The main argument in the proof is given by an elementary consideration. Assume
first that r = 1 and ∂Ω∩B1(p) ⊂ Rn−1×{0} is flat. If |B1(p) \Ω| ≤ h and h ≤ h0 is
small enough, then β := 1−|p| ' h2/(n+1). To see this, one can easily compute the exact
expression for β solving the equation

h = (n−1)ωn−1

ˆ √2β−β 2

0

(√
1− r2−1+β

)
rn−2 dr.

Alternatively, one can simply notice that
√

1−|p|2 ' β 1/2 and the volume of B1(p) \Ω

is comparable with that of the cylinder with base ∂Ω∩B1(p) and height β (in fact, the
cylinder with half the height and half the radius of the base is contained in B1(p) \Ω).
Hence, h' β (n+1)/2, from which the conclusion. Clearly, v =−β en fulfills the conclusion
of the lemma.

If Ω is not flat, we need to restrict the size of the balls we consider choosing r0 small
enough to have |A∂Ω| ≤ ε(n)r−1

0 , where A∂Ω is the second fundamental form of ∂Ω and
ε(n) > 0 is a dimensional constant to be chosen momentarily. Consider r ≤ r0 and p as in
the statement. By a simple rescaling of the variable by a factor r and a translation, we find
B1(p′) and new domain Ω′ such that |B1(p′)\Ω′| ≤ h≤ h0 and

∂Ω
′∩B1(p′)⊂

{
(x,y) ∈ Rn−1×R : −ε(n) |x|2 ≤ y≤ ε(n) |x|2

}
.(66)
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Note that, by an analogous computation as above (now β := 1−|p′|), we have that

(n−1)ωn−1

ˆ √2β−β 2

0

(√
1− r2−1+β − ε(n)r2

)
rn−2 dr ≤ h

≤ (n−1)ωn−1

ˆ √2β−β 2

0

(√
1− r2−1+β + ε(n)r2

)
rn−2 dr.

One can easily compute (or argue by elementary geometric consideration as before) that
h ' β (n+1)/2. Note that, setting as before v′ := −β en, we have that B1(p′ + v′) ⊂ Ω′

because of (66). Hence, scaling back to Ω, the conclusion follows. �

5.2. Proof of Theorem 1.1: part I. We are now ready for the proof of Theorem 1.1 (i),
(ii) and (iii).

The proof of (i) follows from the same arguments in Theorem 4.1. Indeed, thanks to
Proposition 5.1, the minimizers Em of Fγ,m are well contained in Ω. By Proposition 3.1
and Lemma 3.2, we know that the Em are uniform Λ-minimizers. We can, hence, use
the regularity in Proposition 3.5 and infer that the sets Em can be parametrized on a op-
timal isoperimetric ball Bopt

Em
by a C3,α regular function. Therefore, we can derive for Em

the improved perimeter estimate as in Proposition 4.2 and use the optimal isoperimetric
inequality to conclude (3).

For what concerns (ii), let q∈H be a generic harmonic center and let popt
m be the center

of the optimal ball for Em, namely Bopt
Em

= Brm(popt
m ). We compare the energy of Em with

that of Brm(q) and use |EmMBopt
Em
|. γ r2n+2

m as shown in the proof of Theorem 4.1 to get:

γ r2n
m grm(popt

m )− γ r2n
m grm(q) = Fγ,m(Bopt

Em
)−Fγ,m(Brm(q))≤ Fγ,m(Bopt

Em
)−Fγ,m(Em)

≤ γ NL(Bopt
Em

)− γ NL(Em)

. γ
|EmMBopt

Em
|2

rn−2
m

+ γ rn+1
m |EmMBopt

Em
|

. γ
2 r3n+3

m . γ δ0 r3n
m .(67)

By (22) in Lemma 2.2, this implies that

h(popt
m )−h(q) = grm(popt

m )−grm(q)+C r2
m . δ0 rn

m + r2
m . r2

m.

Since the harmonic centers are compactly contained in Ω, from this estimate it follows that
popt

m belongs to some neighborhood of the harmonic centers.
Finally, the proof of (iii) follows as in Theorem 4.1 by comparison with the energy of

Brm(popt
m ). �

6. STABILITY AND EXACT SOLUTIONS

In this section we address the problem of the formation of exact spherical droplets,
proving assertion (iv) in Theorem 1.1.

6.1. Non spherical domains: non existence of critical spherical droplets. In this sec-
tion we show that if Ω is not itself a ball, the critical points of Fγ,m cannot be exactly
spherical.

Proposition 6.1. Let Ω ⊂ Rn be a C2 bounded open set and assume that Ω is not a ball.
Then, χBrm (p) with Brm(p)⊂Ω is not a critical point of Fγ,m.
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Proof. The proof is a simple consequence of a unique continuation argument. Indeed, we
show that if χBrm (p) satisfies the Euler–Lagrange equations (18) and (19), namely

(68)


H∂Brm (p) +4γ vm = λm,

−∆vm = χBrm (p)−m in Ω,

∇vm ·ν = 0 on ∂Ω,´
Ω

vm = 0,

then vm is a radially symmetric function with respect to p, and hence Ω must be a ball.
Assume without loss of generality that p = 0 and (68) holds, and consider the case n ≥ 3
(the two dimensional case is analogous). Since H∂Brm

≡ (n− 1)/rm, it follows from the
first equation in (68) that vm|∂Brm

≡ cm ∈ R. Thus, from the uniqueness for the Dirichlet
problem for the Laplacian, we infer that vm|Brm is radially symmetric and:

(69) vm(x) =
(1−m)(|x|2− r2

m)
2n

+ cm, for |x| ≤ rm.

Moreover, in Ω\Brm , vm solves the boundary value problem:

(70)


∆vm = m in Ω\Brm ,

vm = cm on ∂Brm ,

∇vm ·ν∂Brm
= (1−m)rm

n on ∂Brm .

Note that also (70) has a unique solution. Indeed, given v1,v2 solving (70), w = v1− v2
solves

(71)

{
∆w = 0 in Ω\Brm ,

w = ∇w ·ν∂Brm
= 0 on ∂Brm ,

which is extended to a harmonic function in Ω setting w ≡ 0 in Brm , thus implying w ≡ 0
in Ω\Brm . By a direct computation, the solution of (70) is given by

vm(x) :=−m(|x|2− r2
m)

2n
+ cm +

r2
m

n(n−2)
− rn

m

n(n−2) |x|n−2 .

Therefore, since ∇vm · ν ≡ 0 on ∂Ω, it follows by the radial symmetry of vm that Ω is a
ball, which contradicts the hypothesis. �

Remark 6.2. In particular, in the case of periodic boundary conditions the exact sphere is
never an equilibrium configuration.

6.2. Ball domains: uniqueness of a spherical droplet minimizer. In this section we
consider Ω = BR for some R > 0. In this case we show that the ball Brm is the unique
minimizer of Fγ,m in the regime of small mass, thus completing the proof of Theorem 1.1.
In order to address this problem, here we need to introduce a new ingredient: the stability
analysis of the droplet configurations. In particular, we will show that the spherical droplet
Brm is strictly stable, which will turn to imply that it is the unique minimizer of Fγ,m.

Proposition 6.3. Assume Ω = BR ⊂ Rn, for some R > 0. There exists δ0 > 0 such that, if
γ r3

m| logrm|< δ0 in the case n = 2 or if γ r3
m < δ0 in the case n≥ 3, then Brm is the unique

minimizer of Fγ,m.

Proof. The proof of the proposition is divided in three steps.

STEP 1. The minimizers Em can be parametrized on Brm for δ0 small enough.
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To see this, we start noticing that in the case Ω = BR, due to the spherical symmetry, the
origin is the only minimum point of the Robin function. Moreover, D2h(0)& Id. To check
this, one can either use the explict formulas for h (see, e.g., [34, Chapter IV 5] in the case
n = 3, similar formulas hold in every dimension):

h(x) =
R |x|n−3

(R2−|x|2)n−2 +
1

Rn−2 log
(

R2

R2−|x|2

)
+

|x|2

2nωn Rn +h(0), if n≥ 3;

or alternatively, one can simply notice that R(x,0) = |x|2
2nωnRn , so that D2h(0) = D2

xR(0,0) =
Id

nωnRn . From the definition of gr in (21) and the radial symmetry of h, it is readly verified
that gr also has minimum in the origin and this minimum is not degenerate as well. From
(67), we can hence conclude that |popt

m |2. δ0 rn
m. Note that, in any dimension n, this implies

that

(72) |popt
m |. δ

1/2
0 rm.

This actually leads straightforwardly to the claim. Indeed, for δ0 small enough, there
exists s < 1 such that, for every point x ∈ ∂Brm , Bsrm(x)∩Bopt

rm is a graph over ∂Brm with
small Lipschitz constant. Since by (i) of Theorem 1.1 the sets Em are parametrized on
∂Bopt

rm with a graph of small C1-norm, this implies in turns that ∂Em is a graph on ∂Brm .
Moreover, the C3,α regularily is clearly preserved for this new parametrization.

STEP 2. We show now that for δ0 small enough, the ball Brm is strictly stable.
By scaling, we can consider the functional

Fδ ,m(E) = Per(E)+δ NL(E),

with δ = γ r3
m, and we show that for δ0 small enough E = B1 is strictly stable.

Let us recall the second variation for Fδ ,m. Let E be a stationary point and consider
vector fields X ∈C1

c (Ω,Rn) such that

(73)
ˆ

∂E
X ·νE dH n−1 = 0.

Following [6, Lemma 2.4], for every such field, there exists F : Ω×(−ε,ε)→Ω such that:
(a) F(x,0) = x for all x ∈Ω, F(x, t) = x for all x ∈ ∂Ω and t ∈ (−ε,ε);
(b) Et := F(E, t) satisfies |Et |= |E| for every t ∈ (−ε,ε);
(c) ∂F(x,t)

∂ t |t=0 = X(x) for every x ∈ ∂E.
The stability operator for deformations as above is given by (see [1, 15])

F ′′
δ ,m(E)[X ] =Per′′(E)[X ]+δ NL′′(E)[X ]

=
ˆ

∂E

(
|∇∂E(X ·νE)|2−|A|2 (X ·νE)2) dH n−1

+8δ

ˆ
∂E

ˆ
∂E

G(x,y)(X(x) ·νE)(X(y) ·νE)dH n−1(x)dH n−1(y)

+4δ

ˆ
∂E

∇v ·νE (X ·νE)2 dH n−1

= Per′′(E)[X ]+δ NL′′1(E)[X ]+δ NL′′2(E)[X ],(74)

where |A| is the norm of the second fundamental form of ∂E and v solves (19).
In order to prove the strict stability of Brm we need to compute (74) on E = Brm and

show the existence of a constant c0(n,m,δ ) > 0 such that

(75) F ′′
δ ,m(Brm)[X ]≥ c0 ‖X ·νBrm‖

2
L2(∂Brm ),
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for every X as in (73). Write X ·ν = Π(X ·ν)+Π⊥(X ·ν), where Π(X ·ν) is the projection
of X ·ν on the 0-eigenspace (corresponding to the constant vectors) of the Laplace-Beltrami
operator on the sphere and Π⊥(X ·ν) is its orthogonal complement. Moreover, set X0 :=
Π(X ·ν) ν and X⊥ := Π⊥(X ·ν) ν .

We start by noticing that, by the discreteness of the spectrum of the Laplace–Beltrami,
the following inequality holds true: there exists a constant c1(n) > 0 such that

(76) Per′′(B1)[X ]≥ c1(n)‖Π⊥(X ·ν)‖2
L2(∂B1).

By explicit computation (vm is given in (69)), it holds

NL′′2(B1)[X ] = NL′′2(B1)[X0]+NL′′2(B1)[X⊥]

=−4(1−m)
(
‖X0 ·ν‖2

L2(∂B1) +‖X
⊥ ·ν‖2

L2(∂B1)

)
.(77)

Moreover, for X = X0, since the first eigenfunctions of the Laplace–Beltrami operator on
the sphere are linear functions, we can compute explicitly NL′′(B1)[X0] in the following
way:

NL′′(B1)[X0] =
d2NL(B1(t X0))

d t2

∣∣∣
t=0

=
d2

d t2

ˆ
B1

ˆ
B1

(
Γ(|x− y|)+R(x+ t X0,y+ t X0)

)
dxdy

∣∣∣
t=0

=
ˆ

B1

ˆ
B1

〈D2R(x,y)(X0,X0),(X0,X0)〉dxdy

& c2(n) |X0|2,(78)

where c2(n) is a dimensional constant. Here we used again that the regular part of the
Green function has in the origin the unique non-degenerate minimum.

Next we estimate NL′′1 [X ] as follows:

NL′′1(B1)[X ] = 8
ˆ

∂B1

ˆ
∂B1

G(x,y)Π(X ·ν)(x)Π(X ·ν)(y)

+8
ˆ

∂B1

ˆ
∂B1

G(x,y)Π⊥(X ·ν)(x)Π⊥(X ·ν)(y)dH n−1

+16
ˆ

∂B1

ˆ
∂B1

G(x,y)Π(X ·ν)(x)Π⊥(X ·ν)(y)

= NL′′1(B1)[X0]+NL′′1(B1)[X⊥]

+16
ˆ

∂B1

ˆ
∂B1

G(x,y)Π(X ·ν)(x)Π⊥(X ·ν)(y)

≥ NL′′1(B1)[X0]−a‖Π(X ·ν)‖2
L2(∂B1)−Ca‖Π⊥(X ·ν)‖2

L2(∂B1).(79)

The estimate (79) follows from: (a) NL′′1(B1)[X⊥] ≥ 0, (b) the estimates on the Riesz
potential in [47, chap. 5 Theorem 1] (note that here the domain ∂B1 has finite measure, the
space dimension is n−1, α = 1, p = 2(n−1)

n+1 and q = 2) and (c) the following Hölder and
Young inequalities with a constant a > 0 to be fixed soon (below we set I1(|Π⊥(X ·ν)|) =
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´
∂B1

|Π⊥(X ·ν)(y)|
|x−y|n−2 ):

∣∣∣ˆ
∂B1

ˆ
∂B1

G(x,y)Π(X ·ν)(x)Π⊥(X ·ν)(y)
∣∣∣

≤C0

ˆ
∂B1

ˆ
∂B1

|Π(X ·ν)(x)||Π⊥(X ·ν)(y)|
|x− y|n−2

≤C‖Π(X ·ν)‖L2(∂B1)‖I1(|Π⊥(X ·ν)|)‖L2(∂B1)

≤ a‖Π(X ·ν)‖2
L2(∂B1) +Ca‖Π⊥(X ·ν)‖2

L2(∂B1).

The existence of C0 > 0 independent of rm in the first line follows by (13) taking into
account that, as already observed, on a ball BR we have R(0,0) = 0 and D2

xR(0,0) = Id
nωnRn .

The proof of (75) can now be achieved as follows:

F ′′
δ ,m(B1)[X ] = Per′′(B1)[X ]+δ NL′′1(B1)[X ]+δ NL′′2(B1)[X ]

(76),(79)
≥ c1‖Π⊥(X ·ν)‖2

L2(∂B1) +δNL′′1(B1)[X0]−aδ ‖Π(X ·ν)‖2
L2(∂B1)

−Ca δ‖Π⊥(X ·ν)‖2
L2(∂B1) +δ NL′′2(B1)[X0]+δ NL′′2(B1)[X⊥]

(77),(78)
≥

(
c1−Ca δ −4(1−m)δ

)
‖Π⊥(X ·ν)‖2

L2(∂B1)

+δ c2 ‖Π(X ·ν)‖2
L2(∂B1)−aδ ‖Π(X ·ν)‖2

L2(∂B1)

≥ c‖X ·ν‖2
L2(∂B1),

as soon as a < c2 and δ is small enough to have δ (Ca +4(1−m)) < c1.

STEP 3. Brm is the unique minimizer. The conclusion follows from the fact that the
minimizers Em are C2 close to a strictly stable configuration, namely Brm , thus implying
that actually Em coincide with Brm . The proof of this fact, well-known for the area func-
tional, can be achieved by a carefull construction of a flow interpolating ∂Em and ∂Brm .
Such computations appeared in [1, Theorem 3.9]. In particular, to reduce to this case, let
ψm be the parametrization of ∂Em/rm on ∂B1, i.e.

Em =
{

rm x(1+ψm(x)) : x ∈ ∂B1
}
.

By Proposition 3.5 and (72), for every η > 0 we can choose δ0 small enough to have
‖ψm‖C3,α ≤ η . We are, hence, a small perturbation of the fixed stable configuration B1 and
[1, Theorem 3.9] applies. �

Remark 6.4. The proof of the previous result becomes trivial if the minimizer Em is such
that Bopt

Em
is centered at the origin,that is Bopt

Em
= Brm . In this case, it is simple to show that

the spherical symmetry of G allows to drop the linear term in (51) and, by the quantitative
isoperimetric inequality, we get

|BrmMEm|2 . γ r3
m|BrmMEm|2,

which clearly implies Em = Brm for δ0 small enough.
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APPENDIX A. ON THE BEHAVIOR OF THE FUNCTION R IN A NEIGHBORHOOD OF ∂Ω

In this section we prove the estimates (12) and (13) on the regular part of the Green
function: 

∆Rx = 1
|Ω| in Ω,

∇Rx ·ν = ∇Γx ·ν on ∂Ω,´
Ω

Rx =
´

Ω
Γx.

We introduce the following notation. Since Ω is assumed to have C2 regular boundary,
for x in a sufficiently small tubolar neighborhood of ∂Ω, there exists a unique point x0 ∈ ∂Ω

such that dist(x,∂Ω) = |x− x0|. Hence, we can consider x∗ ∈ Rn \Ω such that x∗− x0 =
x0− x and set Sx := Rx + Γx∗ . Sx is also characterized by the following boundary value
problem:

(80)


∆Sx = 1

|Ω| in Ω,

∇Sx ·ν = (∇Γx +∇Γx∗) ·ν on ∂Ω,´
Ω

Sx =
´

Ω
(Γx +Γx∗).

The main idea behind the estimates are illustrated in the following simple case. Assume
that 0 ∈ ∂Ω and B2 ∩Ω = {x ∈ B2 : xn < 0}. Then, by an elementary computation, for
every x ∈ B1, {

(∇Γx +∇Γx∗) ·ν = 0 on ∂Ω∩B2,

|(∇Γx +∇Γx∗) ·ν |. 1 on ∂Ω\B2.

Therefore, it follows from (80) that |Sx| ≤ C. This in turns implies (12): namely, there
exists r0 > 0 such that, for r ≤ r0 and x,y ∈Ω∩B1 with r <−xn < 2r and |x− y| ≤ r,

|Rx(y)| ' |Γx∗(y)| ' |Γ(r)|.

Moreover, since |Γx∗ |. |Γx|+1 for every x ∈ B1, (13) follows straightforwardly.

The general case of a C2 bounded domain Ω can be deduced by a perturbation of the
argument above. Let r0 > 0 be such that, for every x0 ∈ ∂Ω, B2r0(x0)∩∂Ω can be written
as the graph of a function: namely, up to an affine change of coordinates, we may assume
that x0 = 0 and

B2r0 ∩Ω = {(z′, t) : t ≤ u(z′)},
for a given u : Bn−1

2r0
⊂ Rn−1 → R in C2(Bn−1

2r0
) with u(0) = |∇u(0)| = 0. In particular,

for x = (0,−d) it holds d = dist(x,∂Ω). Set D := Bn−1
2r0
× [0,1] and consider the function

g : D→ R given by

g(z′, t) :=
(

∇Γx
(
(z′, t u(z′))

)
+∇Γx∗

(
(z′, t u(z′))

))
· (−t ∇u(z′),1)√

1+ t2 |∇u(z′)|2
.

By definition, g(z′,1) = ∇Sx ·ν |∂Ω and g(z′,0) = 0. Writing zt = (z′, t u(z′)), it holds

∂t g(z′, t) = u(z′)
(

∂

∂xn
∇Γx(zt)+

∂

∂xn
∇Γx∗(zt)

)
·ν |∂Ωt

−
(

∇Γx(zt)+∇Γx∗(zt)
)
· ∇u(z′)√

1+ t2 |∇u(z′)|

− t |∇u(z′)|2

1+ t2|∇u(z′)|2
(

∇Γx +∇Γx∗
)
·ν |Ωt (zt).



26 MARCO CICALESE AND EMANUELE SPADARO

Since |u(z′)| ≤C |z′|2 and |∇u(z′)| ≤C |z′|, where C > 0 depends only on ‖u‖C2 , one infers
that

|∂t g(z′, t)|.
(
|D2

Γx(zt)|+ |D2
Γx∗(zt)|

)
|z′|2 +

(
|∇Γx|+ |∇Γx∗ |

)
|z′|

.
|z′|2

|x− zt |n
+

|z′|
|x− zt |n−1 .(81)

Note that, for |z′| ≤ r0 small enough,

|x− zt |2 = |d + tu(z′)|2 + |z′|2 ≥ d2

2
−|u(z′)|2 + |z′|2 ≥ d2

2
−C |z′|4 + |z′|2

≥ d2

2
+
|z′|2

2
,

from which we infer

(82) |∂t g(z′, t)|. |z′|2

|x− zt |n
+

|z′|
|x− zt |n−1 .

|z′|
(d2 + |z′|2) n−1

2
=: f (z′).

It is simple to see that f ∈ Lp(Bn−1
2r0

) for every p ∈ [1,∞) and

ˆ
Bn−1

2r0

f (z′)p dz′ =
ˆ 2r0

0

sp

(d2 + s2)
p(n−1)

2

sn−2 ds

= d−p(n−2)+n−1
ˆ 2r0

d

0

t p+n−2

(1+ t2)
p(n−1)

2

dt

.

2r0 if n = 2,

d−p(n−2)+n−1 ´ ∞

0
t p+n−2

(1+t2)
p(n−1)

2
dt . d−p(n−2)+n−1 if n≥ 3.(83)

Note that, for dist(x,∂Ω)≤ d0 and every z ∈ ∂Ω∩B2r0 ,

|∇Sx(z) ·ν |∂Ω∩B2r0
|= |g(z′,1)−g(z′,0)| ≤

ˆ 1

0
|∂tg(z′,s)|ds.

Therefore, we deduce the following bound on the Lp norm of ∇Sx ·ν :

‖∇Sx ·ν‖p
Lp(∂Ω∩B2r0 ) .

ˆ
∂Ω∩B2r0

(ˆ 1

0
|∂tg(z′,s)|ds

)p

dz′+
ˆ

∂Ω\B2r0

|∇Sx ·ν |p dz′

.
ˆ

∂Ω∩B2r0

ˆ 1

0
|∂tg(z′,s)|p dsdz′+C

(83)
.

{
1 if n = 2,

d−p(n−2)+n−1 if n≥ 3.

Setting β =(n−1)/p > 0, by the Lp-regularity theory for (80), we get ‖Sx‖W 1,p . dβ

0 dist(x,∂Ω)2−n.
By the arbitrariness of p and the Sobolev embedding, we finally get

(84) |Sx|. dβ

0 dist(x,∂Ω)2−n.

The proofs of (12), (13) and (14) now follows straightforwardly.
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A.1. Proof of (13). Fix r0 ≤ d0 as above. Then, if x belongs to some Ωr0 , then

|G(x,y)| ≤ |Γ(x,y)|+ |R(x,y)|
≤ |Γ(x,y)|+ |Γ(x∗,y)|+ |Sx|
. |Γ(x,y)|+1,

where we have used that dist(x,∂Ω)2−n. |Γ(x,y)| for every y∈Ω if n≥ 3, and dist(x,∂Ω).
1 in n = 2.

A.2. Proof of (12). Note that, for r0 small enough, whenever r < r0/2, r ≤ dist(x,∂Ω)≤
2r and |y− x| ≤ r, then |Γx∗(y)| ' |Γx(y)|. Then, by (84) we may assume that d0 is suffi-
ciently small that, for r0 ≤ d0 and x,y as above, it holds

|Rx(y)| ≥ |Γx∗(y)|− |Sx(y)|& |Γx(y)|−dβ

0 dist(x,∂Ω)2−n & |Γx(y)|,
and

|Rx(y)| ≤ |Γx∗(y)|+ |Sx(y)|. |Γx(y)|+dβ

0 dist(x,∂Ω)2−n . |Γx(y)|.

A.3. Proof of (14). Straightforward from (12) with x = y.
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applications].

[10] E. A. Carlen, M. C. Carvalho, R. Esposito, J. L. Lebowitz, and R. Marra. Droplet minimizers for the Gates-
Lebowitz-Penrose free energy functional. Nonlinearity, 22(12):2919–2952, 2009.

[11] L.Q. Chen and A.G. Khachaturyan. Dynamics of simultaneous ordering and phase separation and effect of
long-range coulomb interactions. Phys. Rev. Lett., 70:1477—1480, 1993.

[12] Rustum Choksi and Mark A. Peletier. Small volume fraction limit of the diblock copolymer problem: I.
Sharp-interface functional. SIAM J. Math. Anal., 42(3):1334–1370, 2010.

[13] Rustum Choksi and Mark A. Peletier. Small volume-fraction limit of the diblock copolymer problem: II.
Diffuse-interface functional. SIAM J. Math. Anal., 43(2):739–763, 2011.

[14] Rustum Choksi and Xiaofeng Ren. On the derivation of a density functional theory for microphase separa-
tion of diblock copolymers. J. Statist. Phys., 113(1-2):151–176, 2003.

[15] Rustum Choksi and Peter Sternberg. On the first and second variations of a nonlocal isoperimetric problem.
J. Reine Angew. Math., 611:75–108, 2007.

[16] M. Cicalese and G.P. Leonardi. A selection principle for the sharp quantitative isoperimetric inequality.
Arch. Rational Mech. Anal., 206(2):617–643, 2012.

[17] M. Cicalese and G.P. Leonardi. The best constant for the sharp quantitative isoperimetric inequality in the
plane is reached on non-convex sets. J. Eur. Math. Soc. (JEMS), to appear.



28 MARCO CICALESE AND EMANUELE SPADARO

[18] P.G. de Gennes. Effect of cross-links on a mixture of polymers. J. de Physique - Lett., 40:69–72, 1979.
[19] V.J. Emery and S.A. Kivelson. Frustrated electronic phase-separation and high-temperature superconduc-

tors. Physica C, 209:597—621, 1993.
[20] Luca Esposito and Nicola Fusco. A remark on a free interface problem with volume contraint. J. Convex

Anal., 18(2):417–426, 2011.
[21] A. Figalli and F. Maggi. On the shape of liquid drops and crystals in the small mass regime. Arch. Rat. Mech.

Anal., 18(2):417–426, 2011.
[22] A. Figalli, F. Maggi, and A. Pratelli. A mass transportation approach to quantitative isoperimetric inequali-

ties. Invent. Math., 182(1):167–211, 2010.
[23] Martin Flucher. Variational problems with concentration. Progress in Nonlinear Differential Equations and

their Applications, 36. Birkhäuser Verlag, Basel, 1999.
[24] N. Fusco, F. Maggi, and A. Pratelli. The sharp quantitative isoperimetric inequality. Ann. of Math. (2),

168(3):941–980, 2008.
[25] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in

Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.
[26] Enrico Giusti. Minimal surfaces and functions of bounded variation, volume 80 of Monographs in Mathe-
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