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Abstract

Compactness in the space Lp(0, T ;B), B being a separable Banach
space, has been deeply investigated by J.P. Aubin (1963), J.L. Lions

(1961,1969), J. Simon (1987), and, more recently, by J.M. Rakotoson

and R. Temam (2001), who have provided various criteria for relative
compactness, which turn out to be crucial tools in the existence proof
of solutions to many abstract time dependent problems related to evolu-
tionary PDE’s. In the present paper, the problem is examined in view
of Young measure theory: exploiting the underlying principles of “tight-
ness” and “concentration”, new necessary and sufficient conditions for
compactness are given, unifying some of the previous contributions and
showing that the Aubin-Lions condition is not only sufficient but also
necessary for compactness. Furthermore, the related issue of compactness
with respect to convergence in measure is studied and a general criterion
is proved.
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1 Introduction and main results.

Let us consider a bounded family U of functions in Lp(0, T ;B), where B is a
separable Banach space and 1 ≤ p <∞.

Compactness in finite dimension: a “strong concentration condition”.
When B is of finite dimension, then the celebrated theorem of Riesz-Fréchet-
Kolmogorov (see e.g. [4, Thm. IV.26]) says that U is totally bounded in
Lp(0, T ;B) if and only if

lim
h↓0

∫ T−h

0

‖u(t+ h)− u(t)‖pBdt = 0 uniformly for u ∈ U , (1.1a)
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i.e. there exists a (non-decreasing, concave) modulus of continuity ω : [0,+∞)→
[0,+∞) with limh↓0 ω(h) = 0 such that

(∫ T−h

0

‖u(t+ h)− u(t)‖pBdt
)1/p

≤ ω(h) ∀h ∈ (0, T ), u ∈ U . (1.1b)

Usually, in several evolution problems, (1.1b) is provided by exhibiting a uni-
form estimate in W 1,p(0, T ;B) for the functions in U (in that case, ω(h) =
h supu∈U ‖ ddtu‖Lp(0,T ;B)), or even in a Sobolev-Besov space of fractional order,
see e.g. [11], [12], [5]. Adopting a terminology which will appear more clear in
the sequel, we will refer to (1.1a,b) as the “strong concentration condition”.

Aubin-Lions Theorem in infinite dimension: a first “tightness con-
dition”. If the dimension of B is not finite, then condition (1.1a) is no longer
sufficient to ensure the relative compactness and some extra condition should
be imposed on U : roughly speaking, the idea is that the values of the func-
tions u ∈ U should belong, in a suitable integral sense, to some compact set
of B, a property which we will call “tightness”, following a probabilistic ter-
minology. A general sufficient condition, which played a crucial role in the so
called “compactness method” for nonlinear evolution problems [11], was given
by J.L. Lions [10, Ch. IV, §4] (for Hilbert spaces) and J.P. Aubin [1] (initially
for reflexive Banach spaces) by assuming that there exists another Banach space
A ⊂ B such that

the inclusion A ⊂ B is compact, U is bounded in Lp(0, T ;A). (1.2)

Remark 1.1. It should be remarked that, once (1.2) holds, in (1.1a) the norm
of B could be replaced by the weaker norm of any Banach space C in which B
is continuously contained.

It would be interesting to know if Aubin-Lions criterion is also necessary for
the compactness of U ⊂ Lp(0, T ;B): since it is easy to see that a compact set
U satisfies (1.1a), one has to find a suitable Banach space A ⊂ B such that the
functions of U take their value in A and (1.2) holds. We shall give an affirmative
reply to this question; first we recall the “integral” approach by Simon.

The integral characterization by Simon. J.Simon [18] provided a com-
plete characterization of the compact sets in Lp(0, T ;B), showing that it is
necessary and sufficient for U to satisfy (1.1a) and{∫ t

0

u(s)ds : u ∈ U
}

is relatively compact in B ∀t ∈ (0, T ). (1.3)

Simon’s proof is a clever combination of Ascoli-Arzelà compactness Theorem in
C0([0, T ];B) and of an approximation argument by convolution, which inherits
the integral compactness property of (1.3); convexity of the norm and linearity
of (1.3) play an important role. It is easy to see that (1.2) is stronger than
(1.3); on the other hand, (1.2) seems easier to handle in many applications (see
e.g. [11]), where it follows directly from a priori estimates involving the values
of u ∈ U instead of their time integrals.
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A characterization of compactness through a more general “tightness
condition”. So it is natural to wonder whether (1.3) can be replaced by an-
other (necessary and sufficient) condition closer to (1.2). In order to understand
in what direction we can generalize (1.2), let us rephrase it in a slightly different
form: we introduce the functional Fp,A : B → [0,+∞]

Fp,A(v) :=
{
‖v‖pA if v ∈ A,
+∞ if v ∈ B \A. (1.4)

It is easy to see that the sublevels of Fp,A

{v ∈ B : Fp,A(v) ≤ c} , c ∈ [0,+∞), are compact in B, (1.5)

and therefore Fp,A is lower semicontinuous. (1.2) is then equivalent to

sup
u∈U

∫ T

0

Fp,A(u(t))dt < +∞. (1.6)

A natural idea is to replace Fp,A by a general integrand F with compact
sublevels; more generally, we can consider a coercive normal integrand F :
(0, T )×B → [0,+∞] explicitly depending on the time t also. If L and B = B(B)
denote the σ-algebras of the Lebesgue-measurable subsets of (0, T ) and of the
Borel subsets of B respectively, we recall that F is a normal integrand if

F : (0, T )×B → [0,+∞] is L ⊗ B-measurable, (1.7a)

the maps v 7→ Ft(v) := F (t, v) are l.s.c. for a.e. t ∈ (0, T ); (1.7b)

F is also coercive if

{v ∈ B : Ft(v) ≤ c} are compact for any c ≥ 0 and for a.e. t ∈ (0, T ). (1.7c)

These conditions were introduced by E.J.Balder [2] in developing a Young
measure framework for studying lower semicontinuity in optimal control prob-
lems; following [2, §2], we introduce the following notion:

Definition 1.2 (Tightness). We say that U is tight w.r.t. a normal coercive
integrand F satisfying (1.7a, b, c) if

S := sup
u∈U

∫ T

0

F (t, u(t))dt < +∞. (1.7d)

We say that U is tight in B if there exists a normal coercive integrand F for
which (1.7d) holds.

If we compare (1.7a,b,c,d) with the assumptions in (1.4, 1.5, 1.6), we can
see that there are no more convexity or homogeneity type constraints as those
yielded by the norm functional: actually, the link with (1.3) is no longer directly
available.

Remark 1.3. If the functions u ∈ U are a.e. valued in a Banach space A ⊂ B
with compact embedding and if for a nonnegative l.s.c. function G : [0,+∞]→
[0,+∞]

sup
u∈U

∫ T

0

G
(
‖u(t)‖A

)
< +∞, with lim

s↑+∞
G(s) = +∞, (1.8)

then it is easy to see that U is tight. Choosing, e.g., G(s) := sq, 0 < q < +∞,
we see that boundedness in Lq(0, T ;A) always implies tightness.
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Remark 1.4 (Measure-theoretic formulation of tightness). Definition
1.2 is strictly related to Prohorov’s Compactness Theorem for probability mea-
sures (see Theorem 2.8): we only remark that, at least in the case of a functional
F independent of t, (1.7d) yields

∀ ε > 0 ∃Kε ⊂⊂ B :
∣∣{t ∈ (0, T ) : u(t) 6∈ Kε}

∣∣ ≤ ε ∀u ∈ U . (1.9)

In fact, we can choose

Kε := {v ∈ B : F (v) ≤ S/ε}, (1.10)

which is compact by (1.7c). Thus, definition 1.2 ensures that the function u ∈ U
are uniformly compact-valued in a measure-theoretic sense. Conversely, if (1.9)
holds, then it is possible to find a coercive integrand F : B → [0,+∞] such that
(1.7d) holds. Let us comment that (1.7d) could be easier to check than (1.9)
in many applications, where it could be directly obtained by proving integral a
priori estimates on the elements of U .

Our first result concerns a characterization of relative compact subsets in
Lp(0, T ;B) in which (1.3) can be replaced by (1.7d):

Theorem 1 (“Compactness=strong concentration+tightness”). A bo-
unded family U ⊂ Lp(0, T ;B) is relatively compact if and only if (1.1a) holds
and U satisfies (1.7d) for a normal coercive integrand F . Moreover, if U is
relatively compact in Lp(0, T ;B), it is possible to choose an integrand

F independent of t, convex, and satisfying

lim
‖v‖B↑+∞

F (v)
‖v‖pB

= +∞, F (v) ≥ Fp,A(v) ∀ v ∈ B,
(1.11)

where A is a Banach space compactly embedded in B and Fp,A is defined by
(1.4).

Remark 1.5. Let us rephrase the last statement: if U ⊂ Lp(0, T ;B) is rela-
tively compact, then (1.1a,b) hold and there exists a Banach space A compactly
embedded in B such that the functions of U take their values (up to a negligible
set) in A and

sup
u∈U

∫ T

0

‖u(t)‖pA dt < +∞. (1.12)

This proves exactly the converse of the Aubin-Lions theorem.

The proof of Theorem 1 relies on the fundamental compactness and lower
semicontinuity result of parametrized (Young) measure theory: the idea is to re-
duce the problem of compactness in Lp(0, T ;B) to the problem of compactness
with respect to convergence in measure, via some extra uniform integrability
estimate, as suggested by Proposition 1.7 below. In this approach, the “tight-
ness” condition (1.7d) (which, as we said before, generalizes (1.2)) allows us to
extract from every sequence in U a convergent subsequence in the (very weak)
sense of Young measures; (1.1a) will provide a further “concentration” property
for the limiting Young measure and the uniform p-integrability estimate 1

lim
|J|↓0

sup
u∈U

∫
J

‖u(t)‖pB dt = 0. (1.13)

1where the limit is obviously restricted to Lebesgue measurable subsets J of (0, T ) and |J |
denotes their Lebesgue measure.
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The combined effect of concentration and p-uniform integrability yields strong
convergence in Lp(0, T ;B).

A different point of view: reinforcing weak convergence. The flexibil-
ity of the previous argument can be better understood by recalling the approach
of reinforcing weak convergence recently proposed by Rakotoson and Temam

[15]: in order to guarantee the strong Lp(0, T ;B) convergence of the sequence
U := {un}n∈N they assume the Aubin-Lions “tightness” condition (1.2) (in the
particular case of p = 2 and of two Hilbert spaces A,B) and the uniform inte-
grability (1.13): they replace the “strong concentration condition” (1.1a), by a
different one of weaker type

∃w− lim
n↑+∞

un(t) = u(t) for a.e. t ∈ (0, T ). (1.14)

In this case the combined effect of tightness (1.2) and weak concentration (1.14)
provides the convergence in measure: if one assumes (1.13), strong convergence
in Lp(0, T ;B) can be deduced. Observe that in this framework (1.13) is no more
guaranteed by the other two assumptions.

It is then natural to ask if the extra assumptions (Hilbert structure, p = 2)
could be removed and substituted by the tightness condition (1.7d) and if (1.14)
could be weakened, too.

We will propose an answer to this question (see Theorem 1.15 later on)
and the proof of (the “sufficiency part” of) Theorem 1 by providing a general
characterization of compactness with respect to convergence in measure, which
is a subject of independent interest.

Compactness for the convergence in measure.

The topology of convergence in measure. Let us denote by M(0, T ;B)
the space of strongly-measurable B-valued functions; we recall that a sequence
{un}n∈N ⊂M(0, T ;B) converges in measure to u ∈M(0, T ;B) as n ↑ +∞ if

lim
n↑+∞

∣∣ {t ∈ (0, T ) : ‖un(t)− u(t)‖B ≥ σ}
∣∣ = 0 ∀σ > 0. (1.15)

It is well known that

an a.e. converging sequence {un}n∈N also converges in measure, (1.16)

whereas from every sequence {un}n∈N converging to u inM(0, T ;B) it is always
possible to extract a subsequence {unk}k∈N a.e. converging to the same limit u.

It can be shown that M(0, T ;B) is an F -space, i.e. its topology is induced
by a complete metric δ, invariant by translations: e.g. if we set

dB(v, w) := min{1, ‖v − w‖B} ∀ v, w ∈ B, (1.17)

an admissible metric δ is given by

δ(v, w) :=
∫ T

0

dB(v(t), w(t)) dt ∀ v, w ∈M(0, T ;B). (1.18)

It is not difficult to show that the bounded distance δ induces the convergence
in measure (see [7, III.2, IV.11]).

5



By the Chebychev inequality, it is easy to see that Lp convergence (resp.
compactness) yields convergence (resp. compactness) in M(0, T ;B). On the
other hand, the latter notion, though weaker, entails the stronger one if some
extra information of uniform integrability type is supplied.

Uniform integrability and weak L1 compactness. We already recalled
that a subset U ⊂ Lp(0, T ;B) is p-uniformly integrable (or simply uniformly
integrable if p = 1) if (1.13) holds, or, equivalently, if

∀ ε > 0 ∃ δ > 0 : ∀J ⊂ (0, T ) |J | < δ ⇒ sup
u∈U

∫
J

‖u(t)‖pB dt ≤ ε. (1.19)

It is easy to see that boundedness in Lp+ε(0, T ;B) and the Hölder inequality
entail p-uniform integrability for every ε > 0.

Conversely, it is clear that uniform integrability implies boundedness in
L1(0, T ;B); furthermore, in the case B := R, uniform integrability is equiv-
alent to weak compactness in the space L1(0, T ), as stated by this fundamental
result:

Theorem 1.6 (Dunford-Pettis Criterion). Let V ⊂ L1(0, T ). The following
conditions are equivalent:
1. V is (sequentially) weakly relatively compact in L1(0, T );
2. V is uniformly integrable;
3. There exists a positive, convex and super-linearly increasing function
G : [0,+∞)→ R such that

lim
s→∞

G(s)
s

= +∞, sup
v∈V

∫ T

0

G(|v(t)|) dt <∞. (1.20)

(See e.g. [6, Th. 22, 25 Chap.III], [7, Cor. IV.8.11] and [8, Th. 4.21.2] for the
proof).

In general, the link between Lp convergence, uniform integrability and con-
vergence in measure is precised in [7, Th.III.3.6]:

Proposition 1.7. On p-uniformly integrable sets the topologies of Lp(0, T ;B)
and of M(0, T ;B) coincide. In particular, a set U ⊂ Lp(0, T ;B) is (relatively)
compact in Lp(0, T ;B) iff it is p-uniformly integrable and (relatively) compact
in M(0, T ;B).

Remark 1.8 (Strong concentration yields uniform integrability). If
U ⊂ Lp(0, T ;B) is bounded and fulfills (1.1a), U is also p-uniformly integrable.
In fact, from (1.1a) we have

lim
h→0

sup
u∈U

∫ T−h

0

∣∣∣ ‖u(t+ h)‖B − ‖u(t)‖B
∣∣∣pdt = 0,

which implies, by the Riesz-Fréchet-Kolmogorov criterion, that {‖u‖B}u∈U is
relatively compact in the strong topology of Lp(0, T ). Then it is easy to see
that {‖u‖pB}u∈U is relatively sequentially compact in the strong topology of
L1(0, T ), hence uniformly integrable by the Dunford-Pettis criterion.
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A “weak concentration” condition. We present now our main result on
compactness for the convergence in measure; as we briefly said before, we will
show that the right assumptions are the tightness condition w.r.t. a normal
coercive integrand as in Theorem 1 and a concentration condition substantially
weaker than (1.1a): more precisely, we will replace it by

lim
h↓0

∫ T−h

0

g(u(t+ h), u(t)) dt = 0, uniformly for u ∈ U , (1.21a)

where the function g : B × B → [0,+∞], which plays the same role of the
distance induced by the norm ‖ · ‖B , satisfies

g : B ×B → [0,+∞], g is lower semicontinuous, (1.21b)

and it should be connected to F by some sort of compatibility conditions; more
precisely, denoting by D(Ft) the proper domain of Ft (see (1.7b))

D(Ft) := {v ∈ B : F (t, v) < +∞} ,

we are assuming that

u, v ∈ D(Ft), g(u, v) = 0 ⇒ u = v for a.e. t ∈ (0, T ). (1.21c)

It is clear that, if g is actually a distance, then (1.21c) is always verified, inde-
pendently of F .

Theorem 2 (Compactness in measure=tightness+weak concentration).
Let U be a family of measurable B-valued functions; if there exist a normal coer-
cive integrand (1.7a,b,c) F : (0, T )×B → [0,+∞] and a l.s.c. map g : B×B →
[0,+∞] compatible with F in the sense of (1.21c), such that

U is tight w.r.t. F , i.e. S := sup
u∈U

∫ T

0

F (t, u(t))dt < +∞, (1.22)

and

lim
h↓0

sup
u∈U

∫ T−h

0

g(u(t+ h), u(t)) dt = 0, (1.23)

then U is relatively compact in M(0, T ;B).
Conversely, if U is relatively compact in measure, then U is tight w.r.t. a normal
coercive integrand F independent of the variable t and (1.23) holds for any
bounded continuous (semi-)distance g on B (thus inducing a weaker topology
than the strong one).

Before showing some examples of possible applications of Theorem 2, let us
briefly discuss some straightforward extensions of the above results.

Extension 1 (From Banach to Polish (metric) spaces). Convergence in
measure and Theorem 2 are of metric nature, i.e. the linear structure of B is
irrelevant: it is sufficient to substitute each occurrence of terms like ‖v − w‖B
by the distance dB(v, w); therefore, the statement of

Theorem 2 also holds if (B, dB) is a complete, separable metric space, (1.24)

a Polish space according to the probabilistic terminology. We will adopt this
more general metric point of view in the proofs.
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Extension 2 (Unbounded intervals). Theorem 1 can be extended to un-
bounded intervals, e.g. for T = +∞, simply by adding to (1.1a,b) and (1.7d) a
uniform “vanishing integral condition” at infinity as in the scalar case (see e.g.
[4, Cor. IV.27]), i.e.

lim
T↑+∞

sup
u∈U

∫ +∞

T

‖u(t)‖p dt = 0. (1.25)

Extension 3 (Dependence on multiple variables). Theorems 1 and 2 can
be rephrased in the case of B-valued functions defined in a bounded open sub-
set Ω of some euclidean space Rd, simply by modifying the (weak or strong)
concentration conditions in an obvious way. For instance, (1.1b) reads∫

Ω|h|

‖u(x+ h)− u(x)‖B dx ≤ ω(|h|) ∀h ∈ Rd, u ∈ U , (1.26)

where
Ω|h| :=

{
x ∈ Ω : inf

y∈∂Ω
|x− y| > |h|

}
.

Examples and applications

Example 1. Let B,C be separable Banach spaces, continuously embedded in
another Hausdorff topological vector space V ; we suppose that the norm of C
is l.s.c. with respect to strong B-convergence, i.e.

vn ∈ B ∩ C, lim
n↑+∞

‖vn − v‖B = 0

lim inf
n↑+∞

‖vn‖C < +∞

 ⇒ v ∈ C, ‖v‖C ≤ lim inf
n↑+∞

‖vn‖C . (1.27)

The following result is an immediate corollary of Theorem 2, in the same spirit
of Remark 1.1.

Theorem 1.9. If U ⊂M(0, T ;B ∩C) is tight in B (def. 1.2) and satisfies the
strong concentration property in C, i.e.

lim
h↓0

sup
u∈U

∫ T−h

0

‖u(t+ h)− u(t)‖Cdt = 0, (1.28)

then U is relatively compact in M(0, T ;B); if U is also p-uniformly integrable
(1.19), then it is relatively compact in Lp(0, T ;B).

Example 2 (Transversality). Let L(t) : D(L(t)) ⊂ B → C, t ∈ (0, T ), be
a measurable family of (possibly multivalued) closed operators between B and
another Banach space C.

Theorem 1.10. Let U ⊂M(0, T ;B) and V ⊂M(0, T ;C) satisfy

∀u ∈ U ∃ v ∈ V : v(t) ∈ L(t)u(t) a.e. in (0, T ), (1.29a)
U is tight w.r.t. some coercive normal integrand F , (1.29b)

V is relatively compact in M(0, T ;C). (1.29c)

If L and F fulfil a transversality condition, i.e. for a.e. t ∈ (0, T )

u1, u2 ∈ D(Ft), ∃w ∈ L(t)u1 ∩ L(t)u2 ⇒ u1 = u2, (1.29d)

then U is relatively compact in M(0, T ;B).
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Remark 1.11. Let us recall that L is measurable if the global graph in (0, T )×
B × C

H :=
{

(t, u, v) ∈ (0, T )×B×C : v ∈ L(t)u
}

is L⊗B(B)⊗B(C) measurable.

In fact we could assume the following weaker condition:{
(t, u, v) ∈ (0, T )×B ×K : F (t, u) ≤ c, v ∈ L(t)u

}
is L ⊗ B(B)⊗ B(C) measurable, ∀ c ∈ [0,+∞), ∀K ⊂⊂ C.

(1.30)

The closeness assumption on L(t) could be relaxed, too: in fact it is sufficient
for the “restriction” of L(t) on each sublevel of Ft to be closed, i.e. for a.e.
t ∈ (0, T )

(un, vn)→ (u, v), sup
n

Ft(un) < +∞, vn ∈ L(t)un ⇒ v ∈ L(t)u. (1.31)

Of course, if L(t) is a continuous family of continuous maps the above assump-
tions are satisfied.
If the operators L(t) are single-valued, then (1.29a,c) take the more readable
form

the set V :=
{
t 7→ L(t)u(t)

}
u∈U

is relatively compact in M(0, T ;C). (1.32)

As we shall see in section 4, this result is a simple consequence of Theorem
2 applied in the product space B × C.

Remark 1.12. Theorem 1.10 and its “weak” version 1.21 considerably ex-
tend the abstract theory developed in [14] and [17] in order to deal with some
non-trivial compactness problems arising in quasi-stationary phase field mod-
els. This kind of questions arose from the pioneering paper of Luckhaus [13],
who proposed a direct method for solving the Stefan problem with the Gibbs-
Thomson law (see also [20]); the original ideas of Luckhaus can thus be seen
as an alternative way (with respect to the standard Aubin-Lions approach) to
combine tightness and concentration principles to get compactness for evolution
problems. Nevertheless, Theorem 2 shows the common root of these apparently
different arguments. We refer to [17], [16], for other examples, applications, and
discussions of this and related subjects.

Example 3. Here we present an application of Theorem 2 to the framework
considered by Rakotoson-Temam in [15].

Definition 1.13. Let S be a subset of the dual B∗ of the separable Banach
space B; we say that S separates the points of B (or S is a separating set) if

v ∈ B, 〈w∗, v〉 = 0 ∀w∗ ∈ S ⇒ v = 0. (1.33)

We say that S is a determining set for (the norm of) B if

‖v‖B = sup
{
〈w∗, v〉 : w∗ ∈ S, ‖w∗‖B∗ ≤ 1

}
∀ v ∈ B. (1.34)
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Remark 1.14. Of course, a determining subset is always separating; B∗ is
determining; if B = C∗ is the dual of another Banach space C, then C (or,
rather, the image of C in B∗ = C∗∗) is a determining set. If B = L (E,F ) is
the Banach space of all bounded linear operators between the Banach spaces
E,F then

S :=
{
` ∈ L (E,F )′ : `(A) = 〈f∗, Ae〉 for some e ∈ E, f∗ ∈ F ∗

}
is a determining set. D(Ω) is a determining set of L1(Ω), Ω being an open subset
of some Euclidean space. The Hahn-Banach Theorem shows that S ⊂ B∗ is a
separating set for B if and only if the vector space B∗0 := span(S) generated by
S is weakly∗ dense in B∗.

Theorem 1.15. Let U ⊂M(0, T ;B) be tight (def. 1.2) and let us suppose that{
〈w∗, u〉 : u ∈ U

}
is relatively compact in M(0, T ), ∀w∗ ∈ S, (1.35)

being S ⊂ B∗ a separating set as stated in (1.33). Then U is relatively compact
in M(0, T ;B). In particular, if U is uniformly p-integrable, then U is compact
in Lp(0, T ;B), too.

Weak convergence

Example 4. The previous Example 3 shows an interesting link between strong
and “weak” convergence in measure: here we want to investigate the latter
aspect more carefully .

First of all, since the topology of weak convergence is not metrizable, we
would have to extend the notion of convergence in measure a little bit; in the
sequel we fix

a closed determining and strongly separable subspace B∗0 ⊂ B∗, (1.36)

and we will use the adjective “weak” referring to the weak topology σ(B,B∗0)
of B induced by B∗0 .

Definition 1.16. We denote by Mw(0, T ;B) the space of the function u :
(0, T )→ B which are σ(B,B∗0)-weakly measurable, i.e.

t 7→ 〈w∗, u(t)〉 is measurable in (0, T ) ∀w∗ ∈ B∗0 . (1.37)

We say that a sequence {un}n∈N σ(B,B∗0)-weakly converges in measure to u ∈
Mw(0, T ;B) if

lim
n↑+∞

〈w∗, un〉 = 〈w∗, u〉 in M(0, T ) ∀w∗ ∈ B∗0 .

Correspondingly, a set U ⊂Mw(0, T ;B) is σ(B,B∗0)-weakly (sequentially) rela-
tively compact in measure if every sequence {un}n∈N ⊂ U admits a subsequence
unk weakly convergent in measure.

Remark 1.17. If B is separable and B∗0 = B∗, then we are speaking of the
usual weak convergence; observe that by Pettis’ Theorem there is no difference
between weakly and strongly measurable functions.
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The case B = C∗ and B∗0 = C corresponds to weak∗ convergence (in this case
C should be separable). Different choices are possible: e.g. if B = C(K), K
being a compact metric space, the choice

B∗0 :=
{
φ ∈ C(K) 7→ φ(x), x ∈ K

}
induces the pointwise convergence.

Now we obviously extend the notion of tightness to weak topologies: for
simplicity, we are limiting our analysis to integrands independent of time.

Definition 1.18 (Weak tightness). We say that an integrand F : B →
[0,+∞] is weakly coercive if for every c ≥ 0

{v ∈ B : Ft(v) ≤ c} are σ(B,B∗0)-compact for a.e. t ∈ (0, T ). (1.38)

U is weakly tight (w.r.t. the weakly coercive integrand F ) if

sup
u∈U

∫ T

0

F (u(t)) dt < +∞. (1.39)

Remark 1.19. If B is a separable reflexive space and B∗0 = B∗, then a func-
tional F is weakly coercive iff

lim
‖v‖↑+∞

F (v) = +∞ for a.e. t ∈ (0, T ). (1.40)

Correspondingly, U is weakly tight iff

∀ ε > 0 ∃Mε > 0 :
∣∣{t ∈ (0, T ) : ‖u(t)‖B > Mε}

∣∣ ≤ ε ∀u ∈ U . (1.41)

Theorem 1.20. Suppose that a subset U ⊂ Mw(0, T ;B) is σ(B,B∗0)-weakly
tight and{

〈w∗, u〉 : u ∈ U
}

is relatively compact in M(0, T ), ∀w∗ ∈ S, (1.42)

S ⊂ B∗0 being a separating set for B; then U is (sequentially) σ(B,B∗0)-weakly
compact in measure.

Example 5 (Weak transversality and strong compactness). Let us con-
sider the framework of example 2, but now we suppose that L(t) : D(L(t)) ⊂
B → C, t ∈ (0, T ), is a family of (possibly multivalued) strongly- weakly closed
operators, for a fixed determining closed and separable subspace C∗0 of C∗: more
precisely, for a suitable normal coercive integrand F : (0, T ) × B → [0,+∞]
and a σ(B,B∗0)-weakly coercive integrand G : C → [0,+∞], for a.e. t ∈ (0, T )

un → u, sup
n

Ft(un) < +∞,

vn ⇀ v, sup
n

G (vn) < +∞
vn ∈ L(t)un ⇒ v ∈ L(t)u. (1.43a)

L is supposed to be measurable, in the sense that{
(t, u, v) ∈ (0, T )×B × C : F (t, u) ≤ c,G (v) ≤ c, v ∈ L(t)u

}
is L ⊗ B(B)⊗ B(C) measurable, ∀ c ∈ [0,+∞).

(1.43b)

The interest here is that a concentration condition of weak type yields strong
compactness.
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Theorem 1.21. Let U ⊂M(0, T ;B) and V ⊂Mw(0, T ;C) satisfy

∀u ∈ U ∃ v ∈ V : v(t) ∈ L(t)u(t) a.e. in (0, T ), (1.43c)
U ⊂M(0, T ;B) is tight w.r.t. F , (1.43d)

V is weakly tight w.r.t. G and satisfies a condition like (1.42). (1.43e)

If L and F fulfil the transversality condition (1.29d) then U is strongly rela-
tively compact in M(0, T ;B).

Here is a typical case of application of the previous Theorem when C is a
separable reflexive Banach space:

Corollary 1.22. Let F : B → [0,+∞] a coercive integrand with superlinear
growth and L : D(F )→ C be an injective operator weakly continuous on each
sublevel of F , C being reflexive. Assume that a given sequence {un}n∈N of B-
valued measurable functions satisfies an a priori estimate (independent of n) of
the type∫ T

0

(
F (un(t)) + ‖Lun(t)‖C

)
dt ≤M < +∞

∫ T

0

|〈 ddtLu
n(t), w∗〉| dt ≤ C(w∗)

where w∗ is an arbitrary element of a separating set S ⊂ C∗. Then there exists
a subsequence unk strongly convergent in L1(0, T ;B).

Plan of the paper.

As we mentioned before, the proof of Theorem 2 relies on some basic results of
infinite-dimensional Young measures theory. In order to make this paper more
readable and almost self-contained (at least for the statements of the main
properties we will use), we will present in the next section a brief summary of
this theory and of the related measure-theoretic results; of course, the expert
reader may skip this part without difficulty.

The proofs of Theorems 1 and 2 are developed in Section 3; the last section
4 contains the proofs of the applications of Theorem 2 and it relies on the
statement of Theorem 2 only, being therefore independent of sections 2, 3.

2 Preliminary results.

Notation. In the sequel, (B, dB) is a complete, separable metric space (Polish
space): in particular, a separable Banach space with the distance induced by
its norm. L and B = B(B) denote the σ-algebras of the Lebesgue measurable
subsets of (0, T ) and of the Borel subsets of B, respectively, |J | is the Lebesgue
measure of a set J in L. The set of all Borel probability measures on B is
denoted by P(B).
L ⊗ B is the usual product σ-algebra in (0, T ) × B. Recall that if a real

function ϕ defined on (0, T ) × B is L ⊗ B-measurable, then each of its partial
mappings t 7→ ϕ(t, v), v 7→ ϕ(t, v) is measurable on the corresponding factor
space. Conversely, if ϕ : (0, T ) × B → R is a Carathéodory map [3], i.e. it
satisfies

t 7→ ϕ(t, v) is L-measurable ∀ v ∈ B
v 7→ ϕ(t, v) is continuous for a.e. t ∈ (0, T )

(2.1)
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then ϕ is L⊗B-measurable. As we already said in the previous section, a positive
normal integrand is a

L ⊗ B-measurable map ϕ : (0, T )×B → [0,+∞] such that
ϕ(t, ·) is l.s.c. on B for a.e. t ∈ (0, T ).

(2.2)

We will denote by Cb(B) the Banach space of continuous and bounded real
functions defined on B.

Parametrized measures.

Definition 2.1 (Parametrized measures). A parametrized measure is a
family ν := {νt}t∈(0,T ) of probability measures in P(B), such that one of the
following two (equivalent) conditions holds

t ∈ (0, T ) 7→ νt(D) is L-measurable ∀D ∈ B; (2.3a)

t ∈ (0, T ) 7→
∫
B

φ(ξ) dνt(ξ) is L-measurable ∀φ ∈ Cb(B). (2.3b)

We denote by Y(0, T ;B) the set of all parametrized measures.

The following is a (enhanced) version of Fubini’s Theorem, adapted to fam-
ilies of parametrized measures [6, p. 20-II]

Theorem 2.2. Let ν = {νt}t∈(0,T ) be a parametrized measure in B; there exists
one and only one measure (which we still denote by ν) on L ⊗ B such that

ν(I ×A) =
∫
I

νt(A) dt ∀ I ∈ L, A ∈ B, (2.4)

in particular
ν(I ×B) = |I| ∀ I ∈ L. (2.5)

Moreover, for every L ⊗ B-measurable function ϕ : (0, T ) × B → [0,+∞] the
function

t 7→
∫
B

ϕ(t, ξ)dνt(ξ) is L-measurable, (2.6)

and the following extension of Fubini’s formula holds:∫
(0,T )×B

ϕ(t, ξ) dν(t, ξ) =
∫ T

0

(∫
B

ϕ(t, ξ)dνt(ξ)
)
dt. (2.7)

Remark 2.3. To each measurable function u ∈M(0, T ;B) is uniquely associ-
ated the parametrized measure {δu(t)}t∈(0,T ), where for every w ∈ B we denote
by δw the usual Dirac’s measure concentrated on {w}

δw(A) :=

{
1 if w ∈ A,
0 if w 6∈ A

∀A ⊂ B. (2.8)

Conversely, a parametrized measure ν = {νt}t∈(0,T ) is associated to a measur-
able function u if

the support supp(νt) is a singleton {u(t)} for a.e. t ∈ (0, T ). (2.9)
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Narrow convergence of parametrized measures. The identification of a
parametrized measure {νt}t∈(0,T ) with the measure ν on E := (0, T )×B given
by (2.4) allows to introduce a topology on Y(0, T ;B) simply by considering
the topology of the narrow2 convergence of measures in E = (0, T ) × B; we
reproduce both definitions below.

Definition 2.4. Let E be a Polish (i.e. separable, complete) metric space and let
{νn}n∈N, ν be finite Borel measures on E. We say that νn narrowly converges
to ν if

lim
n↑+∞

∫
E

φ(ξ) dνn(ξ) =
∫
E

φ(ξ) dν(ξ) ∀φ ∈ Cb(E). (2.10)

In particular, when E = (0, T ) × B, we say that a sequence of parametrized
measures νn = {νnt }t∈(0,T ) ∈ Y(0, T ;B) narrowly converges to ν = {νt}t∈(0,T )

if ∀ϕ ∈ Cb((0, T )×B) (see (2.7))

lim
n↑+∞

∫
(0,T )×B

ϕ(t, ξ)dνn(t, ξ) =
∫

(0,T )×B
ϕ(t, ξ)dν(t, ξ). (2.11)

Remark 2.5. In the literature of control theory and Young measures, the space
of bounded continuous real functions on (0, T ) × B is often replaced by the
space (of Carathéodory integrands) L1(0, T ;Cb(B)). Since these two topologies
coincide on parametrized measures, (as it is possible to verify using, e.g., the
approximation results contained in [3]), we prefer the previous simpler definition,
based on continuous test functions.

Remark 2.6. Of course, when νn = {δun(t)}t∈(0,T ) are the Young measures
associated to the sequence un ∈ M(0, T ;B) as in Remark 2.3, then we write
un → ν in Y(0, T ;B) and (2.11) simply means that for every function ϕ ∈
Cb((0, T )×B)

lim
n↑+∞

∫ T

0

ϕ(t, un(t)) dt =
∫ T

0

(∫
B

ϕ(t, ξ) dνt(ξ)
)
dt. (2.12)

Observe that (2.12) implies that for every φ ∈ Cb(B)

φ(un)⇀∗
∫
B

φ(ξ) dνt(ξ) in L∞(0, T ). (2.13)

It is possible to show that this property is in fact equivalent to definition (2.4).

Lower semicontinuous and normal integrands. The following property
of narrow convergence plays a basic role for the application of Young measures
theory (see [19, Thm. 7]).

Proposition 2.7. Let E be a Polish space and let νn, ν be finite measures such
that νn → ν narrowly. If φ : E → (−∞,+∞] is l.s.c. bounded from below, then

lim inf
n↑+∞

∫
E

φ(ξ) dνn(ξ) ≥
∫
E

φ(ξ) dν(ξ). (2.14)

2Sometimes, the ambiguous term of “weak convergence” is also used.
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Analogously, if E = (0, T ) × B with νn,ν ∈ Y(0, T ;B) and νn → ν narrowly,
then for every nonnegative normal integrand ϕ : (0, T ) × B → [0,+∞] (see
(2.2))

lim inf
n↑+∞

∫
(0,T )×B

ϕ(t, ξ)dνn(t, ξ) ≥
∫

(0,T )×B
ϕ(t, ξ)dν(t, ξ). (2.15)

Compactness. Let us first recall the fundamental Prohorov’s compactness
result for a tight family of measures [6, 72-II]

Theorem 2.8 (Prohorov). Let E be a Polish space and let V be a family
of finite Borel measures on E such that ν(E) is independent of ν ∈ V. V is
relatively (sequentially) compact w.r.t. the narrow convergence iff V is tight,
i.e.

∀ ε > 0 ∃Kε ⊂⊂ E : ν(E \Kε) ≤ ε ∀ ν ∈ V. (2.16)

Now we can state the related compactness result [2, Thm.1], which allows
to associate (at least one) parametrized measure to each tight sequence un ∈
M(0, T ;B).

Theorem 2.9 (Balder). Let un ∈M(0, T ;B) be tight w.r.t. a normal coercive
integrand (1.7a,b,c,d). Then there exists a subsequence unk and a parametrized
measure ν = {νt}t∈(0,T ) ∈ Y(0, T ;B), which we call a Young measure associated
to un, such that unk → ν as k ↑ ∞ in the sense of (2.12); in particular, for
every nonnegative normal integrand ϕ : (0, T )×B → [0,+∞]

lim inf
k→∞

∫ T

0

ϕ(t, unk(t)) dt ≥
∫ T

0

(∫
B

ϕ(t, ξ)dνt(ξ)
)
dt. (2.17)

The link with the convergence in measure.

Lemma 2.10. Let un, u ∈ M(0, T ;B), n ∈ N, and let νn,ν be the associated
parametrized measures. Then

un → u in measure ⇔ νn → ν narrowly. (2.18)

In particular, if ν = {νt}t∈(0,T ) is the narrow limit of a sequence {un}n∈N ⊂
M(0, T ;B), then un is convergent in measure iff νt is concentrated on a single-
ton for a.e. t ∈ (0, T ).

Remark 2.11. The statement above implies that if U ⊂M(0, T ;B) is relatively
compact in measure, the set of the associated Young measures V is narrowly
(sequentially) compact in E = (0, T ) × B, which entails, (here we refer to
Theorem 2.8) that V is tight in the classical probabilistic sense, i.e. it satisfies
(2.16), which is equivalent to (1.9) in terms of U .

Tensor products of parametrized measures. The following fiber-product
Lemma will be useful (see [19, Th. 13]).

Lemma 2.12. Let ν1 = {ν1
s}s∈(0,T ) and ν2 = {ν2

t }t∈(0,T ) ∈ Y(0, T ;B) be
parametrized measures on B; then the formula

ν = ν1 ⊗ ν2, ν(s,t) := ν1
s ⊗ ν2

t ∀(s, t) ∈ Q := (0, T )× (0, T ), (2.19)
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defines a parametrized measure in Y(Q;B × B). Moreover, if the sequences
{νi,n}n∈N ⊂ Y(0, T ;B) narrowly converge to νi as n ↑ +∞ for i = 1, 2, then

νn = ν1,n ⊗ ν2,n → ν = ν1 ⊗ ν2 narrowly as n ↑ +∞. (2.20)

3 Proofs of the main theorems

Proof of Theorem 2: sufficiency.

SinceM(0, T ;B) is metrizable, we can equivalently consider sequential compact-
ness; the tightness hypothesis and Theorem 2.9 allow us to extract from every
sequence {un}n∈N ⊂ U a subsequence unk with generalized limit ν = {νt}t∈(0,T ).
Invoking Lemma 2.10, in order to prove that unk converges in measure, we
simply have to show that {νt}t∈(0,T ) is concentrated in a point mass for a.e.
t ∈ (0, T ).

Here are the main points to show this concentration property:

1. First of all, we show that the support of νt lies in the effective domain
D(Ft) of F ,

D(Ft) := {v ∈ B : F (t, v) < +∞}, (3.1)

i.e.
νt
(
B \D(Ft)

)
= 0 for a.e. t ∈ (0, T ). (3.2)

2. Starting from the weak concentration property (1.21a) and doubling vari-
ables we will end up with an integrated limiting form of (1.21a)

lim
h↓0

1
h

∫ h

0

∫ T−σ

0

(∫∫
B×B

g(v, w) dνt+σ(v)⊗ dνt(w)
)
dt dσ = 0. (3.3)

3. Then we will pass to the limit in (3.3) obtaining∫ T

0

(∫∫
B×B

g(v, w) dνt(v) dνt(w)
)

= 0. (3.4)

4. Finally, we combine (3.2), (3.4) and the compatibility condition (1.21c) to
see that

supp νt ⊗ νt is a singleton for a.e. t ∈ (0, T ). (3.5)

This property entails the analogous one for νt, concluding the proof.

Claim 1. We first apply (2.17) to the functional F yielding the tightness, so
that: ∫ T

0

(∫
B

F (t, v)dνt(v)
)
dt ≤ lim inf

k→∞

∫ T

0

F (t, unk(t))dt ≤ S < +∞.

Then ∫
B

F (t, v)dνt(v) < +∞ for a.e. t ∈ (0, T ),

which implies that

F (t, v) < +∞ for νt-a.e. v ∈ B, for a.e. t ∈ (0, T ),

i.e. (3.2).
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Claim 2. In order to show (3.3), let us set

τ(h) := sup
0≤σ≤h

sup
n

∫ T−σ

0

g(un(t+ σ), un(t))dt, with lim
h↓0

τ(h) = 0,

thanks to (1.23). Of course,

1
h

∫ h

0

(∫ T−σ

0

g(un(t+ σ), un(t))dt

)
dσ ≤ τ(h) ∀n ∈ N; (3.6)

on the other hand, Fubini’s Theorem yields

1
h

∫ h

0

(∫ T−σ

0

g(un(t+ σ), un(t))dt

)
dσ =

1
h

∫∫
Q(h)

g(un(s), un(t))dsdt

where Q(h) is the strip

Q(h) :=
{

(s, t) ∈ (0, T )× (0, T ) : t ≤ s ≤ t+ h
}
. (3.7)

Since by Lemma 2.12 the couple (unk(s), unk(t)) narrowly converges to {νs ⊗
νt}s,t∈Q0 , we can apply (2.15) to the normal integrand

G(s, t, v, w) := χQ(h)(s, t)g(v, w)

obtaining

1
h

∫∫
Q(h)

(∫∫
B×B

g(v, w)d(νs ⊗ νt)(v, w)
)
ds dt

≤ lim inf
k↑+∞

1
h

∫∫
Q(h)

g(unk(s), unk(t)) ds dt ≤ τ(h).

A reverse application of Fubini’s theorem yields (3.3).

Claim 3. (3.4) follows immediately, if we show that

lim inf
h↓0

1
h

∫ h

0

∫ T−σ

0

(∫∫
B×B

g(v, w) dνt+σ(v)⊗ dνt(w)
)
dt dσ

≥
∫ T

0

(∫∫
B×B

g(v, w) dνt(v) dνt(w)
)
.

(3.8)

We fix ε > 0 and observe that Fatou’s Lemma yields

lim inf
h↓0

1
h

∫ h

0

∫ T−σ

0

(∫∫
B×B

g(v, w) dνt+σ(v)⊗ dνt(w)
)
dt dσ

≥ lim inf
h↓0

1
h

∫ h

0

∫ T−ε

0

(∫∫
B×B

g(v, w) dνt+σ(v)⊗ dνt(w)
)
dt dσ

≥ lim inf
h↓0

∫ 1

0

∫ T−ε

0

(∫∫
B×B

g(v, w) dνt+hσ(v)⊗ dνt(w)
)
dt dσ

≥
∫ 1

0

(
lim inf
h↓0

∫ T−ε

0

(∫∫
B×B

g(v, w) dνt+hσ(v)⊗ dνt(w)
)
dt
)
dσ
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We observe that, again by Fubini’s Theorem,∫ T−ε

0

(∫∫
B×B

g(v, w) dνt+hσ(v)⊗ dνt(w)
)
dt =∫ T−ε

0

(∫
B

(∫
B

g(v, w) dνt(w)
)
dνt+hσ(v)

)
dt =∫ T−ε

0

(∫
B

ϕ(t, v)dνt+hσ(v)
)
dt

where
ϕ(t, v) :=

∫
B

g(v, w)dνt(w), (3.9)

is a nonnegative normal integrand, in view of Lemma 3.2 below. Thus, by
Lemma 3.1 and Fatou’s Lemma we get

lim inf
h↓0

∫ T−ε

0

(∫
B

ϕ(t, v) dνt+hσ(v)
)
dt ≥

∫ T−ε

0

lim inf
h↓0

(∫
B

ϕ(t, v) dνt+hσ(v)
)
dt

≥
∫ T−ε

0

(∫
B

ϕ(t, v) dνt(v)
)
dt =

∫ T−ε

0

(∫∫
B×B

g(v, w) dνt(v)⊗ dνt(w)
)
dt

Since ε > 0 is arbitrary, the Monotone Convergence Theorem yields (3.8).

Claim 4. Finally, we are showing that for a.e. t ∈ (0, T ) νt is a Dirac mass.
First of all, (3.4) reads that∫

B×B
g(ξ, η)d(νt ⊗ νt)(ξ, η) = 0 for a.e. t ∈ (0, T ), i.e.

(νt ⊗ νt)
{

(ξ, η) ∈ B ×B : g(ξ, η) > 0
}

= 0 for a.e. t ∈ (0, T ).
(3.10)

The point here is that, since νt is concentrated on D(Ft) and g is “non-
degenerate” w.r.t. D(Ft) for a.e. t ∈ (0, T ) (see 1.21c), νt ⊗ νt is concentrated
on the diagonal set ∆ of B × B, which allows us to conclude that the support
of νt is a singleton. As a matter of fact, let us suppose, by contradiction, that
supp(νt), which is obviously non-empty, contains two distinct elements x1 6= x2;
then there exist two disjoint open neighborhoods N1 3 x1, N2 3 x2 such that
that νt (Ni) > 0 for i = 1, 2. Hence

(νt ⊗ νt) (N1 ×N2) = νt (N1) νt (N2) > 0

On the other hand,

(νt ⊗ νt) (N1 ×N2) = (νt ⊗ νt) (N1 ×N2 ∩∆) = (νt ⊗ νt) (∅) = 0.

which is absurd.

Lemma 3.1. Let ν := {νt}t∈[0,T ] be a parametrized measure on (0, T ) × B,
and, for h > 0, let νh be the measure with disintegration {νt+h}t∈(0,T−h), i.e.

νh(J ×A) =
∫
J

νt+h(A) dt ∀J ⊂ (0, T − h), J ∈ L, A ∈ B.
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Then νh → ν narrowly as h ↓ 0 on every interval (0, T ′), T ′ < T . In particular,
for every nonnegative normal integrand ϕ

lim inf
h↓0

∫ T ′

0

∫
B

ϕ(t, ξ)dνt+h(ξ) dt ≥
∫ T ′

0

∫
B

ϕ(t, ξ)dνt(ξ) dt. (3.11)

Proof. For a fixed F ∈ Cb((0, T ′)×B) we have

lim
h↓0

∫
(0,T ′)×B

F (t, ξ)dνh(t, ξ) = lim
h↓0

∫ T ′

0

(∫
B

F (t, ξ)dνt+h(ξ)
)
dt

= lim
h↓0

∫ T ′+h

h

(∫
B

F (t− h, ξ)dνt(ξ)
)
dt =

∫ T ′

0

(∫
B

F (t, ξ)dνt(ξ)
)
dt,

where the last limit easily follows from the continuity of F and the Lebesgue
Dominated Convergence Theorem.

Lemma 3.2. Under the assumptions of Theorem 2, the function ϕ defined by
(3.9) is a normal integrand.

Proof. Let us first consider the case of a bounded continuous function g; then
ϕ is a Carathéodory integrand (see (2.1)), since it is measurable w.r.t. t (by
definition of parametrized measure, (2.3b)) and continuous w.r.t. v (as it is
immediately checked by the Lebesgue Dominated Convergence Theorem); in
particular ϕ is L × B-measurable.

The general case of a l.s.c. function g can be easily recovered, since (by a well
known approximation result) we can find a non decreasing sequence of bounded
continuous functions gn : B ×B → [0,∞) such that

g(ξ, η) = lim
n↑+∞

gn(ξ, η) = sup
n∈N

gn(ξ, η) ∀(ξ, η) ∈ B ×B. (3.12)

By the monotone convergence theorem, ∀(t, ξ) ∈ (0, T )×B

ϕ(t, ξ) =
∫
B

g(ξ, η)dνt(η) = lim
n↑+∞

∫
B

gn(ξ, η)dνt(η) = sup
n∈N

ϕn(t, ξ)

which gives the desired conclusion, since ϕn is L×B-measurable and continuous
w.r.t. ξ for a.e. t ∈ (0, T ).

Remark 3.3 (Proof of Theorem 1: sufficiency). One of the implications
of Theorem 1 follows directly from Theorem 2: if U satisfies (1.1a) then, taking
account of Remark 1.8, U is uniformly p-integrable and, by Proposition 1.7, it
is sufficient to prove its relative compactness in M(0, T ;B), which is supplied
by Theorem 2.

Proof Theorem 2: necessity

Let U ⊂ M(0, T ;B) be a relatively compact subset. By Remark 2.11 we know
that there exists an increasing sequence of compact sets {Kn}+∞n=0 of B such
that ∣∣{t ∈ (0, T ) : u(t) 6∈ Kn}

∣∣ ≤ 2−n ∀u ∈ U . (3.13)
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We define

F (v) := min
{
n ∈ N : v ∈ Kn

}
, with F (v) = +∞ if v 6∈

⋃
n∈N

Kn. (3.14)

F is l.s.c. and coercive, since its level subsets are exactly the compact sets Kn;
moreover

F (v) =
+∞∑
n=0

χK′n(v) =
+∞∑
n=1

nχKn\Kn−1(v), where K ′n := B \Kn−1.

Finally, if u ∈ U then∫ T

0

F (u(t)) dt =
+∞∑
n=0

∣∣K ′n∣∣ ≤ +∞∑
n=0

2−n < +∞,

i.e. (1.22) is satisfied.
Let us now fix a continuous bounded distance g : B × B → [0,+∞): we

want to show that (1.23) holds. As in (1.18) we set

δg(v, w) :=
∫ T

0

g(v(t), w(t)) dt ∀ v, w ∈M(0, T ;B) (3.15)

and it is easy to see that δg is a continuous distance inM(0, T ;B); in particular,
U is relatively compact with respect to this metric. Let us fix v0 ∈ B; for a
given v ∈M(0, T ;B) and h ∈ (0, T ) let us set{

vh(t) := v(t+ h) if t ∈ (0, T − h);
vh(t) := v0 if t ∈ (T − h, T )

(3.16)

and

ω(v;h) := δg(vh, v) =
∫ T−h

0

g(v(t+ h), v(t)) dt+
∫ T

T−h
g(v0, v(t)) dt. (3.17)

An easy variant of the well known property for integrable functions (obtained
via approximation by continuous functions) shows that

h 7→ ω(v;h) is continuous in [0, T ) ∀ v ∈M(0, T ;B). (3.18)

Moreover,

|ω(v1;h)− ω(v2;h)| ≤ 2δg(v1, v2) ∀ v1, v2 ∈M(0, T ;B), (3.19)

i.e. the functions v 7→ ω(v;h) are uniformly equicontinuous inM(0, T ;B). Since
U is relatively compact and they pointwise converge to 0 as h ↓ 0, Ascoli-Arzelà’s
Theorem yields uniform convergence and we can conclude that

lim
h↓0

sup
u∈U

ω(u;h) = 0.
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Remark 3.4. By checking the previous construction (3.13)-(3.14), when B is a
Banach space we can always find a coercive integrand F satisfying the following
additional properties:

F (v) ≥ F (0) = 0, F (−v) = F (v) ∀ v ∈ B, (3.20)
{v ∈ B : F (v) ≤ c} is convex ∀ c ≥ 0. (3.21)

In fact, if Kn is a family of compact sets as in (3.13), we can consider the new
family

K̂n := closed convex hull of
(
Kn ∪ (−Kn)

)
; (3.22)

K̂n is still compact and satisfy (3.13): thus we can define F as in (3.14) starting
from K̂n.

Proof of Theorem 1: necessity.

We are now supposing that B is a (separable) Banach space. First of all we
recall a useful application of the Lebesgue Dominated Convergence theorem [9,
p. 22]

Lemma 3.5. Suppose that, for n, k ∈ N, we are given Zn,k, Zk ∈ B, zn,k, zk ∈
[0,+∞) with

lim
n↑+∞

Zn,k = Zk strongly in B, lim
n↑+∞

zn,k = zk, ‖Zn,k‖ ≤ zn,k.

If

lim
n↑+∞

+∞∑
k=1

zn,k =
+∞∑
k=1

zk < +∞ then lim
n↑+∞

+∞∑
k=1

Zn,k =
+∞∑
k=1

Zk. (3.23)

We need the following auxiliary result, which is well known when ζ maps B
in a finite dimensional space [2].

Theorem 3.6. Let B be a separable Banach space, F̂ : B → [0,+∞] be a
coercive integrand (i.e. with compact sublevels) such that

lim
‖v‖↑+∞

F̂ (v)
‖v‖

= +∞. (3.24)

If S ⊂ P(B) is a family of probability measures with

S := sup
µ∈S

∫
B

F̂ (v) dµ(v) < +∞, (3.25)

then S is narrowly (sequentially) compact. For every continuous function ζ :
B → B such that

sup
B

‖ζ(v)‖
1 + ‖v‖

< +∞, (3.26)

the map

µ ∈ S 7→ Z(µ) :=
∫
B

ζ(v) dµ(v) (3.27)

is strongly continuous w.r.t. the narrow convergence in S.
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Proof. Since F̂ has compact sublevels, S is tight according to (2.16) by the
Chebychev inequality: compactness of S then follows by Prohorov’s Theorem
2.8. (3.24) and (3.26) yield

µ ∈ S ⇒
∫
B

‖ζ(v)‖ dµ(v) < +∞,

so that (the Bochner integral) (3.27) makes sense.

Claim 1: if φ : B → R is continuous and at most linearly increasing then

µ 7→
∫
B

φ(z) dµ(z) is continuous in S.

In particular, Z is weakly continuous. We fix a sequence µn ∈ S narrowly
converging to µ ∈ S and we define for ε > 0

φε(v) := φ(v) + εF̂ (v), φε(v) := φ(v)− εF̂ (v).

Thanks to (3.24), since φ is linearly increasing, φε is u.s.c. and bounded from
above, φε is l.s.c. and bounded from below. It follows from Proposition 2.7 that

lim inf
n↑+∞

∫
B

φ(v) dµn(v) ≥ lim inf
n↑+∞

∫
B

φε(v) dµn(v)− εS

≥
∫
B

φε(v) dµ(v)− εS ≥
∫
B

φ(v) dµ(v)− εS,

and analogously

lim sup
n↑+∞

∫
B

φ(v) dµn(v) ≤ lim sup
n↑+∞

∫
B

φε(v) dµn(v) + εS

≤
∫
B

φε(v) dµ(v) + εS ≤
∫
B

φ(v) dµ(v) + εS..

Being ε arbitrary, we conclude. Finally, choosing φ(v) := 〈w∗, ζ(v)〉, w∗ ∈ B∗,
we deduce that Z is weakly continuous.

Claim 2: if ζ is bounded then Z is strongly continuous. Let us suppose that

sup
v∈B
‖ζ(v)‖ = C < +∞;

we want to show that Z(S) is (strongly) relatively compact in B; by the previous
Claim, this would entail the strong continuity of Z.

Being B complete, it will suffice to show that Z(S) is totally bounded: we
fix ε > 0 and we choose

Kε ⊂⊂ B : µ(B \Kε) ≤ ε/2C ∀µ ∈ S.

Of course ∥∥∥∥∫
B

ζ(v) dµ(v)−
∫
Kε

ζ(v) dµ(v)
∥∥∥∥
B

≤ ε/2 ∀µ ∈ S. (3.28)
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On the other hand, if Hε is the closed convex hull of ζ(Kε), Hε is compact and
it is well known that ∫

Kε

ζ(v) dµ(v) ∈ Hε ∀µ ∈ S. (3.29)

Thus we can cover Hε by a finite collection of balls {Bε/2(xi)}i=1,...N of radius
ε/2; it follows from (3.28) that {Bε(xi)}i=1,...N is a finite covering of Z(S);
being ε arbitrary, we conclude.

Claim 3: Z is (strongly) continuous for every ζ satisfying (3.26), i.e. if µn ∈ S
is narrowly converging to µ ∈ S then

lim
n↑+∞

Z(µn) = Z(µ) strongly in B. (3.30)

Let us fix a continuous partition of the unity {φk(x)}+∞k=1 on [0,+∞) such that

suppφk ⊂ [k − 1, k + 1], φk(x) ≥ 0,
+∞∑
k=1

φk(x) = 1 ∀x ∈ [0,+∞). (3.31)

We set

ζk(v) := φk(‖v‖)ζ(v), so that ζ(v) =
+∞∑
k=1

ζk(v), ζk is bounded on B.

Therefore

Z(µn) =
+∞∑
k=1

Zk(µn), with Zk(µn) :=
∫
B

ζk(v) dµn(v) ∀n ∈ N.

Since by the previous Claim

lim
n↑+∞

Zk(µn) = Zk(µ),

we simply have to show that it is possible to invert the order of the limit and
the summation in the formula

lim
n↑+∞

+∞∑
k=1

Zk(µn).

We apply Lemma 3.5, choosing Zn,k := Zk(µn) and

zn,k :=
∫
B

φk(‖v‖)‖ζ(v)‖ dµn(v), zk :=
∫
B

φk(‖v‖)‖ζ(v)‖ dµ(v).

Of course lim
n↑+∞

zn,k = zk and, by Claim 1, in view of (3.26) as well, we have

lim
n↑+∞

+∞∑
k=1

zn,k = lim
n↑+∞

∫
B

‖ζ(v)‖ dµn(v) =
∫
B

‖ζ(v)‖ dµ(v) =
+∞∑
k=1

zk.
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The following lemma is a standard result of convex analysis:

Lemma 3.7. Let p ∈ [1,+∞) be a fixed exponent and suppose that G : [0,+∞)→
[0,+∞) is a l.s.c. function satisfying the p-growth condition

lim
s↑+∞

G(s)
sp

= lim
s↑+∞

G1/p(s)
s

= +∞. (3.32)

There exists a convex super-linearly increasing function Ĝ : [0,+∞)→ [0,+∞)
such that

lim
s↑+∞

Ĝ(s)
s

= +∞, G(s) ≥
(
Ĝ(s)

)p ∀ s ∈ [0,+∞). (3.33)

Proof. Condition (3.32) is equivalent to

−G∗p(α) := inf
s≥0

(G1/p(s)− αs) > −∞ ∀α ≥ 0.

Observe that, by definition,

αs−G∗p(α) ≤ G1/p(s) ∀α, s ≥ 0; (3.34)

thus we define
Ĝ(s) = sup

α≥0

(
αs−G∗p(α)

)
which is clearly convex,

(
Ĝ(s)

)p ≤ G(s) by (3.34), and

lim inf
s↑+∞

Ĝ(s)
s
≥ lim inf

s↑+∞

αs−G∗p(α)
s

≥ α ∀α ≥ 0,

so that (3.33) holds.

Now we can conclude the proof of Theorem 1. Let us suppose that U
is a relatively compact subset of Lp(0, T ;B). Since (1.1a) is well known, we
must show that there exists a Banach space A compactly embedded in B and a
convex functional F satisfying (1.11) such that U is tight w.r.t. F .

Claim 1: U is tight w.r.t. a coercive integrand F̂ p : B → [0,+∞] such that

1 ≤ F̂ (0) = min
v∈B

F̂ (v) < +∞, F̂ (−v) = F̂ (v) ∀ v ∈ B,

F̂ (v) ≥ ‖v‖B ∀ v ∈ B, lim
‖v‖↑+∞

F̂ (v)
‖v‖

= +∞.
(3.35)

Theorem 2 and Remark 3.4 provide an integrand G : B → [0,+∞] with compact
sublevels such that

G (0) = 0, G (−v) = G (v) ∀ v ∈ B, sup
u∈U

∫ T

0

G p(u(t)) dt < +∞.

Moreover, since {
‖u‖p : u ∈ U

}
is compact in L1(0, T ),
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the Dunford-Pettis Theorem 1.6 and Lemma 3.7 yield an increasing convex
function Ĝ : [0,+∞)→ [0,+∞) such that

Ĝ(s) ≥ s, lim
s↑+∞

Ĝ(s)
s

= +∞, sup
u∈U

∫ T

0

Ĝp
(
‖u(t)‖B

)
dt < +∞. (3.36)

The functional
F̂ (v) := G (v) + Ĝ

(
‖v‖B

)
+ 1 (3.37)

is coercive and satisfies the required condition (3.35).

Claim 2: U is tight w.r.t. F p, where F := l.s.c. convex envelope of F̂ , is
coercive, convex, and satisfies (3.35).
More precisely we set

F (v) := inf
{∫

B

F̂ (w) dµ(w) : µ ∈ P(B),
∫
B

w dµ(w) = v
}
. (3.38)

Observe that, whenever F (v) < +∞, the infimum in (3.38) is in fact a mini-
mum, thanks to Theorem 3.6 applied to ζ(w) := w. It is then easy to show that
F is convex, symmetric with respect to the origin, and, by Jensen inequality,

Ĝ(‖v‖B) ≤ F (v) ≤ F̂ (v) ∀ v ∈ B,

so that F satisfies (3.35) and U is tight w.r.t. F as well. It remains to show
that the sublevels of F are strongly compact. Let us fix c ∈ [0,+∞) and let us
set

S :=
{
µ ∈ P(B) :

∫
B

F̂ (w) dµ(w) ≤ c
}
, Z(µ) :=

∫
B

w dµ(w).

Since {
v ∈ B : F (w) ≤ c

}
= Z(S),

being S compact and Z strongly continuous, we conclude.

Claim 3: let us set

‖v‖A := inf
λ>0

1
λ

F (λv), A :=
{
v ∈ B : ‖v‖A < +∞

}
. (3.39)

Then A is a normed vector space with norm ‖ · ‖A continuously embedded in B
and Fp,A ≤ F .
Let us first observe that if v ∈ A \ {0}, the coercivity property of F ensures
that the infimum in (3.39) is attained. ‖ · ‖A is symmetric (being F symmetric)
and homogeneous of degree one:

‖αv‖A = min
λ>0

1
λ

F (αλv) = α min
λ>0

1
(αλ)

F (αλv) = α ‖v‖A ∀α > 0;

moreover, since 0 ∈ D(F ) and F (v) ≥ ‖v‖B

‖0‖A = 0, ‖v‖A ≥ ‖v‖B ∀ v ∈ B. (3.40)

Let us check the sub-additivity of ‖ ·‖A: we are given v1, v2 ∈ A\{0}, λ1, λ2 > 0
with

‖vi‖A =
1
λi

F (λivi) i = 1, 2;
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then, for

λ−1 = λ−1
1 + λ−1

2 , so that
λ

λ1
+

λ

λ2
= 1,

we have

‖v1 + v2‖A ≤
1
λ

F (λ(v1 + v2)) =
1
λ

F (
λ

λ1
λ1v1 +

λ

λ2
λ2v2)

≤ 1
λ

( λ
λ1

F (λ1v1) +
λ

λ2
F (λ2v2)

)
= ‖v1‖A + ‖v2‖A.

It follows that
(
A, ‖ · ‖A

)
is a normed vector space.

Claim 4: the unit ball of A is compact in B; in particular the map v 7→ ‖v‖A is
l.s.c. in B.
Let us take a sequence vn ∈ A \ {0} and λn ∈ [1,+∞) such that

‖vn‖A =
1
λn

F (λnvn) ≤ 1 (3.41)

We can always extract a subsequence (still denoted by vn, λn) such that

∃ lim
n↑+∞

λn = λ ∈ [1,+∞].

We have now to distinguish two cases: if λ < +∞ then

sup
n

F (λnvn) < +∞ (3.42)

and therefore there exists subsequences vnk , λnk such that

lim
k↑+∞

λnkvnk = v in B, so that ∃ lim
k↑+∞

vnk = v/λ.

Moreover, by the lower semicontinuity of F ,

‖v‖A ≤
1
λ

F (λv) ≤ lim inf
k↑+∞

1
λnk

F (λnkvnk) ≤ 1.

If λ = +∞ let us call ` := lim infn↑+∞ ‖vn‖B ; if ` > 0, then

` = lim inf
n↑+∞

‖λnvn‖B
F (λnvn)

F (λnvn)
λn

≤ lim inf
n↑+∞

‖λnvn‖B
F (λnvn)

≤ lim sup
‖w‖B↑+∞

‖w‖B
F (w)

= 0,

which is absurd; therefore ` = 0, i.e. there exists a subsequence vnk converging
to v = 0 in B.

Claim 5: A is complete. Let {vn}n∈N ∈ A be a Cauchy sequence w.r.t. the
norm ‖ · ‖A, i.e.

lim
n,m↑+∞

‖vn − vm‖A = 0, which in particular implies sup
n
‖vn‖A < +∞.

Then vn is a Cauchy sequence in B and therefore it is strongly convergent to
some element v ∈ B. Being vn bounded in A, the lower semicontinuity of ‖ · ‖A
yields v ∈ A and

lim sup
n↑+∞

‖vn − v‖A ≤ lim sup
n↑+∞

lim inf
m↑+∞

‖vn − vm‖A ≤ lim sup
n,m↑+∞

‖vn − vm‖A = 0.
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4 Proof of the examples

Theorem 1.9 is a direct consequence of Theorem 2; let us consider the second
example.

Proof of Theorem 1.10 Since V is relatively compact in M(0, T ;C), it is
tight, i.e. there exists an integrand G : C → [0,+∞] with compact sublevels,
such that

sup
v∈V

∫ T

0

G (v(t)) dt < +∞, (4.1)

and

lim
h↓0

sup
v∈V

∫ T−h

0

dC(v(t+ h), v(t)) dt = 0. (4.2)

We set

H (t, u, v) :=

{
F (t, u) + G (v) if v ∈ L(t)u,
+∞ otherwise

(4.3)

which is a normal coercive integrand in (0, T ) × B × C thanks to (1.30) and
(1.31). Let us now choose a sequence {un}n∈N in U and a corresponding sequence
{vn}n∈N in V such that vn(t) ∈ L(t)un(t) for a.e. t ∈ (0, T ), and observe that
the sequence (un, vn) is tight in B × C, since∫ T

0

H (t, un(t), vn(t)) dt =
∫ T

0

F (t, un(t)) dt+
∫ T

0

G (vn(t)) dt

is uniformly bounded w.r.t. n. Moreover, setting

g
(
(u1, v1), (u2, v2)

)
:= dC(v1, v2) ∀(u1, v1), (u2, v2) ∈ B × C

g satisfies (1.21c) with respect to H and (1.21a) by (4.2). Therefore we can
extract a subsequence unk converging in M(0, T ;B): we conclude that U is
relatively compact.

Proof of Theorem 1.15 First of all, let us observe that (1.35) holds if w∗

belongs to the linear space span(S) generated by S as well, and, in particular,
if w∗ belongs the the intersection S0 of span(S) with the closed unit ball of B∗.
It easy to check that S0 is a separating set, too.

Since the closed unit ball of B∗ endowed with the weak∗ topology is compact
and metrizable, S0 is totally bounded with respect to the distance which induces
the weak∗ topology and it is also separable.

Thus we can choose a countable set S̃0 := {w∗n}n∈N weakly∗ dense in S0:
again S̃0 separates the points of B. We set

g(u, v) :=
+∞∑
n=1

2−n min
(

1,
∣∣〈w∗n, u− v〉∣∣).

g is a continuous and bounded distance on B; moreover, setting

ωn(h) := sup
u∈U

∫ T−h

0

min
(
1, |〈w∗n, u(t+ h)− u(t)〉|

)
dt, (4.4)
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the proof of the necessity statement of Theorem 2 shows that

ωn(h) ≤ T, lim
h↓0

ωn(h) = 0.

Since ∫ T−h

0

g(u(t+ h), u(t)) dt ≤
+∞∑
n=1

2−nωn(h) ∀u ∈ U ,

the Lebesgue Dominated Convergence Theorem for series yields

lim
h↓0

sup
u∈U

∫ T−h

0

g(u(t+ h), u(t)) dt ≤ lim
h↓0

+∞∑
n=1

2−nωn(h) = 0.

Applying Theorem 2 again, we conclude.

Remark 4.1. It is easy to check that Theorem 1.15 still holds if we know that
and S separates the points of the linear space generated by D(F ), where F is
a coercive functional such that

sup
u∈U

∫ T

0

F (u(t)) dt < +∞.

Weak convergence The key ingredient of the proofs of Theorems 1.20 and
1.21 relies in the following result.

Theorem 4.2. Let B a Banach space, let B∗0 a determining and strongly sep-
arable closed subspace of B∗, as in (1.36), and let S ⊂ B∗0 be a vector space
separating the points of B. Then there exists a separable Banach space B̂ and
a (countable) subset S0 ⊂ S such that

B is continuously and densely embedded in B̂, (4.5a)

bounded sets of B are totally bounded in B̂, (4.5b)

σ(B,B∗0)-weakly compact sets are strongly compact in B̂, (4.5c)

S0 ⊂ B̂∗ separates the points of B, (4.5d)

Mw(0, T ;B) ⊂M(0, T ; B̂). (4.5e)

Proof. Let us call U the closed unit ball of B and U∗ the dual unit ball of B∗0 ;
we choose a countable subset D0 ⊂ B∗0 which is strongly dense in U∗ and a
countable subset S0 of S which is strongly dense in S ∩ U∗: S0 separates the
points of B. Being D0, S0 countable, we can order the elements of their union
in a sequence, so that

D := D0 ∪ S0 =
{
w∗m}m∈N, S0 =

{
w∗mk}k∈N (4.6)

for a suitable subsequence k 7→ mk ∈ N; we set

‖v‖B̂ :=
+∞∑
m=1

2−m|〈w∗m, v〉|. (4.7)
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It is easy to check that ‖ · ‖B̂ is a continuous norm on B: we denote by B̂ the
completion of B w.r.t. this norm and we identify B with its continuous (dense)
image in B̂. Observe that

un, u ∈ U, lim
n↑+∞

‖un − u‖B̂ = 0 ⇔ lim
n↑+∞

〈w∗m, un〉 = 〈w∗m, u〉 ∀m ∈ N

(4.8)
so that the map

u ∈ U 7→ u := {um}m∈N ∈ [−1, 1]N, um := 〈w∗m, u〉

is an homeomorphism between U and u(U) with respect to the distance in U
induced by ‖·‖B̂ and the topology of u(U) induced by the compact metric space
[−1, 1]N. Being the image u(U) relatively compact, U is totally bounded (and
thus separable) with respect to ‖ · ‖B̂ ; since ∪n∈NnU is dense in B̂, we obtain
that B̂ is separable.

(4.8) shows that on B-bounded sets ‖ · ‖B̂ is continuous with respect to
the σ(B,B∗0)-weak topology: therefore, since σ(B,B∗0)-weakly compact sets are
bounded, they are also strongly compact in B̂.

If w∗ = w∗mk ∈ S0 for some k ∈ N, then∣∣〈w∗, v〉∣∣ ≤ 2mk‖v‖B̂ ∀ v ∈ B

so that w∗ can be uniquely extended by continuity to an element of B̂∗.
If u ∈Mw(0, T ;B) then (4.7) yields

t 7→ ‖u(t)− v‖B̂ is measurable ∀ v ∈ B;

being B dense in B̂, then the previous map is measurable even if v ∈ B̂, so that
u ∈M(0, T ; B̂).

Corollary 4.3. With the same notation of the previous Theorem 4.2, let us
suppose that U ⊂ Mw(0, T ;B) is σ(B,B∗0)-weakly tight w.r.t. F ; then it is
(strongly) tight in B̂ w.r.t. the functional

F̂ (v̂) :=

{
F (v̂) if v̂ ∈ B,
+∞ if v̂ ∈ B̂ \B.

(4.9)

If a sequence un ∈ U converges to u in M(0, T ; B̂) as n ↑ +∞, then u(t) ∈ B
for a.e. t and un σ(B,B∗0)-weakly converges in measure to u. In particular, U
is σ(B,B∗0)-weakly sequentially relatively compact if and only if it is (strongly)
relatively compact in M(0, T ; B̂).

Proof. The only non trivial part is the assertion about the convergence of the
sequence un. We know that

sup
n

∫ T

0

F (un(t)) dt = sup
n

∫ T

0

F̂ (un(t)) dt < +∞.

Observe that the sublevels of F̂ are strongly compact in B̂, i.e. F̂ is strongly co-
ercive on B̂; therefore {un}n∈N is tight in B̂. We can find a suitable subsequence
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unk such that

lim
k↑+∞

|unk(t)− u(t)| = 0 a.e. in (0, T ), (4.10)∫ T

0

F̂ (u(t)) dt ≤ lim inf
k↑+∞

∫ T

0

F (unk(t)) dt < +∞. (4.11)

(4.11) shows that

u(t) ∈ B for a.e. t ∈ (0, T ),

in particular, we can change u on a negligible set, so that its values belong to
B. (4.10), the density of D0 in U∗ and the determining property of B∗0 yields

t 7→ 〈w∗, u(t)〉, t 7→ ‖u(t)‖B are measurable ∀w∗ ∈ B∗0 ,

so that u ∈Mw(0, T ;B). We want now to prove that

〈w∗, unk〉 → 〈w∗, u〉 in measure ∀w∗ ∈ B∗0 .

For a fixed w∗ ∈ B∗0 and an arbitrary element w∗m ∈ D (to be chosen later on)
we observe that∣∣〈w∗, unk(t)−u(t)〉

∣∣ ≤ ‖w∗−w∗m‖B∗(‖unk(t)‖B+‖u(t)‖B
)
+|〈w∗m, unk(t)−u(t)〉|.

For a given ε > 0 we can find M > 0 such that (here | · | denotes the∣∣∣{t ∈ (0, T ) : ‖unk(t)‖B + ‖u(t)‖B > M
}∣∣∣ ≤ ε/2

and m ∈ N such that ‖w∗ −w∗m‖B∗ ≤ ε/M ; finally, by assumption, there exists
k0 such that∣∣∣{t ∈ (0, T ) : |〈w∗m, unk(t)− u(t)〉| > ε/2

}∣∣∣ < ε/2 ∀ k ≥ k0

Combining all these estimates we conclude that for k ≥ k0∣∣∣{t ∈ (0, T ) : |〈w∗, unk(t)− u(t)〉| ≥ ε
}∣∣∣ ≤ ε

which yields the convergence in measure.

Proof of Theorem 1.20 It is not restrictive to suppose that S is a linear
space. We denote by F the functional yielding the tightness of U ; let B̂, S0

be defined as in the previous Theorem 4.2, F̂ as in (4.9): by Corollary 4.3, we
have to show that U is relatively compact inM(0, T ; B̂). But now we can apply
Theorem 1.15, taking account of Remark 4.1.

Proof of Theorem 1.21 Let G : C → [0,+∞] be the (weakly) coercive
functional yielding the tightness of V , and let Ĉ, S0 be given by Theorem 4.2;
the extended functional Ĝ : Ĉ → [0,+∞] is defined as in (4.9).

By Theorem 1.20 and Corollary 4.3, we know that V is relatively compact in
M(0, T ; Ĉ). Then we can proceed as in the proof of Theorem 1.10, by setting

H (t, u, v) :=

{
F (t, u) + Ĝ (v) if v ∈ L(t)u,
+∞ otherwise;

(1.43a), (1.43b), the tightness of F and Ĝ yield that H is a normal coercive
integrand on (0, T )×B × Ĉ.
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