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Abstract. We study a problem set in a finely mixed periodic medium, modelling
electrical conduction in biological tissues. The unknown electric potential solves
standard elliptic equations set in different conductive regions (the intracellular and
extracellular spaces), separated by a dielectric surface (the cell membranes), which
exhibits both a capacitive and a nonlinear conductive behaviour. Accordingly,
dynamical conditions prevail on the membranes, so that the dependence of the
solution on the time variable t is not only of parametric character.
As the spatial period of the medium goes to zero, the eletric potential approaches
a homogenization limit u0, solving

div
[
− σ0∇xu0 − A0∇xu0 −

t∫

0

A1(t − τ)∇xu0(x, τ) dτ + F(x, t)
]

= 0 ,

where σ0 > 0 and the matrices A0, A1 depend on the properties of the tissue, and
the vector function F keeps trace of the initial data of the original problem. In
the limit, the current, given as the term in square brackets in the PDE above, is
still divergence-free, but it depends on the history of the potential gradient, so that
memory effects explicitly appear.
Keywords: Homogenization, Evolution equation with memory, Dynamical condi-
tion, Electrical conduction in biological tissues.
AMS-MSC: 35B27, 78A70, 45K05, 35J65.

1. Introduction

We consider a model for the electrical conduction in a medium composed of two
different conductive phases, separated by a dielectric interface. The mathematical
scheme consists in partial differential equations of elliptic type prescribed in each
phase, complemented with suitable boundary conditions at the interface, and at the
boundary of the spatial domain. The unknown function is the electric potential.
Since the problem evolves in time, we have a family of elliptic problems parametrized
by time; but the dependence of the unknown on time is not merely parametrical.
Indeed, in order to take into account the conductive/capacitive behaviour of the
interface, the potential jumps across the interface, and the jump satisfies a dynamical
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condition (roughly speaking, in the form of a hyperbolic differential equation on the
interface itself, see (2.4)).
The physical framework we have described is most obviously applied to electrical
conduction in biological tissues [22], where one of the phases is the extracellular
space, the other one is the intracellular space, and the interface represents the cell
membranes. It is known that cell membranes may exhibit such a nonlinear conductive
behaviour [25] taken into account by the function f in (2.4). See Subsection 2.1
for more details. Our model is designed to investigate the response of biological
tissues to the injection of electrical currents in the radiofrequency range, that is the
Maxwell–Wagner interfacial polarization effect [13], [22]. This effect is relevant in
clinical applications like electric tomography and body composition [15], [19]. The
applicative interest of the model described here is treated in [3].
In view of the applications we have in mind, we assume that the two phases are finely
mixed with a microscopic periodic structure, so that the problem contains a small
parameter ε, coinciding with the period of the microstructure. We investigate the
homogenization limit when we let ε → 0. Extensive surveys on this topic are, e.g.,
in [10], [11], [12], [14], [17], [24], [29], [31], [33], [34]. In view of the applications it is
of interest to study the evolution in time of the homogenized potential. It turns out
that the partial differential equation obtained in the limit is non standard (see (2.12)
below), indeed it is an elliptic equation exhibiting memory effects, i.e., it contains
explicitly the history of the unknown. In connection with the applications mentioned
above, we remark that the limit equation (2.12) is markedly different from the Laplace
equation used as a standard in the bioelectrical impedance literature [15].
The rigorous proof of this limiting behaviour of the approximating problem relies
technically on the introduction of a non standard kind of cell functions (containing
memory terms), which we identify through the two scales approach (see Section 3).
Homogenization problems leading to the onset of memory terms are treated e.g., in [2],
[8], [16], [23], [34], [35] (see also the references therein). However the homogenization
process here is characterized by the presence of interfaces carrying a peculiar kind of
evolutive differential equations.
Our model can be compared, from the mathematical point of view, to some pa-
pers where homogenization theory is applied to linear stationary elliptic problems
involving imperfect interfaces, arising in fields like elasticity [28], or heat conduction
[30]. Our method differs from the variational approach of [30], and from the use
of extension techniques of [28]. Further remarks are given in Subsection 2.2. The
main novelty here, with respect to the just mentioned pieces of literature, lies in the
fact that those authors were concerned with stationary problems, and therefore no
evolutionary behaviour was investigated. However, in the linear case where in (2.4)
one has f(s) = s, the evolutive problem can be reduced to the stationary setting by
means of Laplace’s transform, see [6]. We stress the fact that our approach covers
also the case where the partial differential equations are nonlinear (see Remark 2.4).
We note that our model is different from the “bidomain model” for the electrical
activation of cardiac muscle cells (see [18], [26]), which deals with different length
and time scales, therefore resulting in a different scaling in the interface condition.
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Indeed, the homogenized bidomain model consists of a degenerate system of parabolic
equations, while our model yields in the limit an elliptic problem with memory effects.

1.1. Content of the paper. In Section 2 we set the problem, and give our main
results, along with the main ideas of the proofs. In Section 3 we apply the two scales
method and find the cell functions, formally identifying the limit equation, whose
structure is investigated in Section 4.
The limiting behaviour of our model is rigorously determined in Section 5. An esti-
mate of the speed of convergence is found in Section 6. Finally, Section 7 is devoted
to technical and auxiliary results.

2. The geometrical setting. Main results

Let Ω be an open connected bounded subset of R
N , and let Ω = Ωε

1 ∪Ωε
2 ∪Γ ε, where

Ωε
1 and Ωε

2 are two disjoint open subsets of Ω, and Γ ε = ∂Ωε
1 ∩ Ω = ∂Ωε

2 ∩ Ω. Let
also T > 0 be a given time.
We are interested in the homogenization limit as ε ↘ 0 of the problem for uε(x, t)
(here the operators div and ∇ act only with respect to the space variable x)

− div(σ1∇uε) = 0 , in Ωε
1; (2.1)

− div(σ2∇uε) = 0 , in Ωε
2; (2.2)

σ1∇u(int)
ε · ν = σ2∇u(out)

ε · ν , on Γ ε; (2.3)

α

ε

∂

∂t
[uε] +

1

ε
f([uε]) = σ2∇u(out)

ε · ν , on Γ ε; (2.4)

[uε](x, 0) = Sε(x) , on Γ ε; (2.5)

uε(x, t) = 0 , on ∂Ω. (2.6)

The notation in (2.1)–(2.4), (2.6), means that the indicated equations are in force in
the relevant spatial domain for 0 < t < T .
Here σ1, σ2 and α are positive constants, and ν is the normal unit vector to Γ ε

pointing into Ωε
2. Since uε is not in general continuous across Γ ε we have set

u(int)
ε := trace of uε|Ωε

1
on Γ ε; u(out)

ε := trace of uε|Ωε
2

on Γ ε.

Indeed we refer conventionally to Ωε
1 as to the interior domain, and to Ωε

2 as to the
outer domain. We also denote

[uε] := u(out)
ε − u(int)

ε .

Similar conventions are employed for other quantities; for example (2.3) can be rewrit-
ten as

[σ∇uε · ν] = 0 , on Γ ε,

where
σ = σ1 in Ωε

1, σ = σ2 in Ωε
2.

The function f fulfils

f ∈ C2(R) , f ′ , f ′′ ∈ L∞(R) , f(0) = 0 . (2.7)

The initial data Sε will be discussed below.
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In order to be more specific about the geometry of the domains of interest, let us
introduce a periodic open subset E of R

N , so that E + z = E for all z ∈ Z
N . For

all ε > 0 define Ωε
1 = Ω ∩ εE, Ωε

2 = Ω \ εE. We assume that Ω, E have regular
boundary, say of class C∞ for the sake of simplicity. We also employ the notation
Y = (0, 1)N , and E1 = E∩Y , E2 = Y \E, Γ = ∂E∩Y . As a simplifying assumption,
we stipulate that |Γ ∩ ∂Y |N−1 = 0.

i) ii)

Figure 1. Two examples of admissible periodic structures in R
2. In

both cases Y is the dashed square, and E ∩ Y is the shaded region.

Essentially, we will show that, if γ−1ε ≤ Sε(x) ≤ γε, where Sε is the initial jump
prescribed in (2.5), for a fixed constant γ > 1, then uε becomes stable as ε→ 0 (i.e.,
it converges to a nonvanishing bounded function). Therefore, let us stipulate that

Sε(x) = εS1

(
x,
x

ε

)
+ εRε(x) , (2.8)

where S1 : Ω × ∂E → R, and

‖S1‖L∞(Ω×∂E) <∞ , ‖Rε‖L∞(Ω) → 0 , as ε→ 0;

S1(x, y) is continuous in x, uniformly over y ∈ ∂E,

and periodic in y, for each x ∈ Ω.

(2.9)

In [5], under the assumptions above, we prove existence and uniqueness of a weak
solution to (2.1)–(2.6), in the class

uε|Ωε
i
∈ L2(0, T ;H1(Ωε

i )) , i = 1 , 2 , (2.10)

and uε|∂Ω = 0 in the sense of traces. The weak formulation of the problem is

T∫

0

∫

Ω

σ∇uε · ∇ψ dx dt+
1

ε

T∫

0

∫

Γ ε

f([uε])[ψ] dσ dt

− α

ε

T∫

0

∫

Γ ε

[uε]
∂

∂t
[ψ] dσ dt− α

ε

∫

Γ ε

[uε](0)[ψ](0) dσ = 0 , (2.11)
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for each ψ ∈ L2(Ω× (0, T )) such that ψ is in the class (2.10), [ψ] ∈ H1(0, T ;L2(Γ ε)),
and ψ vanishes on ∂Ω × (0, T ), as well as at t = T .
In Section 3 we give a formal asymptotic expansion of the unknown function uε in
powers of ε (see e.g., [12], [29], [33])

uε = uε(x, y, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + . . . ,

where y ∈ Y , y = x/ε is the microscopic variable. Here u0, u1, u2 are periodic in y,
and u1, u2 are assumed to have zero integral average over Y .
The coefficients of such an expansion are represented in terms of cell functions, i.e.,
periodic functions of the microscopic variable. In particular, u1 is represented in the
form

u1(x, y, t) = −χ0(y) · ∇xu0(x, t) + T (S1(x, ·))(y, t)

−
t∫

0

∇xu0(x, τ) · χ1(y, t− τ) dτ .

The definition of the cell function χ0 : Y → R
N is standard. In addition to this

function, a new cell function χ1 : Y ×(0, T ) → R
N is required, owing to the dynamical

boundary condition (2.4). Its definition involves a transform T , which plays an
essential role in the following. The transform T is defined by

T (s)(y, t) = v(y, t) , y ∈ Y , t > 0 ,

where s : Γ → R, and v is a periodic null-average function in Y , solving the problem

−σ∆y v = 0 , in E1, E2;

[σ∇yv · ν] = 0 , on Γ ;

α
∂

∂t
[v] + f ′(0)[v] = σ2∇yv

(out) · ν , on Γ ;

[v](y, 0) = s(y) , on Γ .

From the point of view of physics, s can be interpreted as an initial potential jump
across Γ ; T associates to this initial data, the evolution of the potential itself, in the
process determining the discharge of the membrane in the unit cell Y under periodic
boundary conditions and in the linear approximation of f .
Then we set

αχ1
h = T

(
σ2(∇yχ

0(out)
h − eh) · ν

)
.

Memory effects appear in the homogenized equation just as a consequence of the
transform T .
As usual, the limit equation is then found as a solvability condition for a certain
“microscopic” differential problem. Actually, the limit function u0 solves the equation

− div

(
σ0∇xu0 + A0∇xu0 +

t∫

0

A1(t− τ)∇xu0(x, τ) dτ −F(x, t)

)
= 0 , (2.12)
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where σ0 =
∫

Y
σ, and the two matrices A0, A1 are defined in (3.31), while F is a

vector function keeping trace of the initial data S1, defined in (4.18). The evolution
in time of A1 and of F is ruled by the transform T .
In Section 4 we show that A0 and A1 are symmetric, and that σ0I + A0 is positive
definite, so that (2.12) is indeed of elliptic type.
In Section 5 we prove our main result:

Theorem 2.1. Under the assumptions listed above, as ε→ 0, we have that uε → u0,

weakly in L2(Ω × (0, T )), and strongly in L1
loc(0, T ;L1(Ω)), where the limit u0 ∈

L2(0, T ;H1
o (Ω)) solves (2.12).

We rely there on the use of suitable testing functions, constructed again via the T
transform, and eventually responsible of the appearance of memory terms in the limit.
An essential ingredient in the proof, i.e., the compactness in L1 of {uε}, is provided
by Lemma 7.7. Then we prove that u0 has a vanishing trace on ∂Ω, at all time levels,
using the energy inequality (2.25) and some facts from BV theory.
We also obtain the following error estimate, which we state for the sake of simplicity
under redundant regularity assumptions

Theorem 2.2. In addition to the assumptions of Theorem 2.1, we require that

Rε(x) = εS2(x, x/ε)+ εR1
ε(x), where ‖R1

ε‖L∞(Ω) → 0 as ε→ 0. Moreover, S2(x, y) is

periodic in y, and of class C1(Ω,C∞(Γ )), while S1 is of class C2+λ(Ω,C∞(Γ )), for

a given λ ∈ (0, 1). Finally let dist(∂Ω, Γ ε) ≥ γ0ε. Then

‖uε − u0‖L2(Ω×(0,T )) ≤ γ
√
ε , (2.13)

where γ, γ0 are positive constants not depending on ε.

The proof of this result is contained in Section 6. See also Remark 6.1 for the case
when ∂Ω ∩ Γ ε 6= ∅.
We have collected in Section 7 some needed technical results. For further information
on evolutive problems with boundary conditions involving the time derivative we refer
the reader to [9], [20], [21], [32], and to the references therein.

Remark 2.3. By means of minor changes in our approach, we may consider cases
with non vanishing sources appearing on the right hand sides of (2.1)–(2.4).
Of special interest in applications is the case of nonvanishing Dirichlet data, where
(2.6) is replaced with

uε(x, t) = û(x, t) , on ∂Ω, where û ∈ L2(0, T ;H2(Ω)) ∩H1(0, T ;H1(Ω)). (2.14)

In this case we look at the homogeneous Dirichlet problem for vε = uε − û, i.e.,

− div(σ∇vε) = σ∆ û , in Ωε
1, Ω

ε
2; (2.15)

[σ∇vε · ν] = −[σ]∇û · ν , on Γ ε; (2.16)

α

ε

∂

∂t
[vε] +

1

ε
f([vε]) = σ2∇v(out)

ε · ν + σ2∇û · ν , on Γ ε; (2.17)

[vε](x, 0) = Sε(x) , on Γ ε; (2.18)

vε(x, t) = 0 , on ∂Ω. (2.19)
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Arguing as in Section 5 below, one can show that vε converges to a function v0 ∈
L2(0, T ;H1

o (Ω)) such that u0 = v0 + û solves (2.12).

Remark 2.4. We also consider the case when the elliptic equations in (2.1), (2.2)
contain nonlinear terms. More specifically, our approach covers the case when

−σ∆uε = g(x, t, uε) , in Ωε
1, Ω

ε
2, (2.20)

and (2.3)–(2.6) stay the same. Here g is a Caratheodory function such that

|g(x, t, s)| ≤ L|s| + L0 , (2.21)

|g(x, t, s) − g(x, t, s′)| ≤ L|s− s′| , (2.22)

for all x ∈ Ω, t > 0, s, s′ ∈ R, for constants L0, L > 0 independent of x, t, s, s′. As
usual in elliptic problems, we require L to satisfy

L < γ0 , (2.23)

where γ0 is a suitable positive constant depending on the parameters in (2.1)–(2.6),
and on the constant appearing in Poincaré’s inequality (see Lemma 7.1 and [5]).
We also need for g some kind of integral continuity in t. We state here a simple
assumption suitable for our purposes; the interested reader may easily generalize the
proof in Subsection 7.4 to other cases. Assume then

|g(x, t, s) − g(x, t′, s)| ≤ γω(|t− t′|)|s| , for all x ∈ Ω, t, t′ > 0, s ∈ R, (2.24)

where ω is a positive continuous function such that ω(0) = 0.
The proofs and the results are essentially similar to the case when g ≡ 0, so we
consider only the homogeneous case in the following. Only the compactness estimate
(7.19) of Lemma 7.7 requires a different approach, which is discussed in Subsec-
tion 7.4. In Section 6 one needs some further assumptions, e.g., g ∈ C2([0, T ]×Ω×R),
with gt, gxi

bounded as in (2.21), in order to obtain the smoothness required there.
In the case (2.20) the limiting function u0 satisfies a version of (2.12) where the right
hand side is substituted with g(x, t, u0).

2.1. Significance of (2.1)–(2.6) in electrodynamics. Our problem actually mod-
els conduction of electrical currents in a medium with inclusions, such as for example,
a biological tissue. In this connection, Ωε

1 represents the intracellular space, and Ωε
2

the extracellular space, while Γ ε represents the cell membranes. Thus, (2.1), (2.2) are
the standard equations for the potential uε, in the widely accepted quasi-stationary
approximation. Continuity condition (2.3) across the cell membranes is also standard.
However, the potential in general may have jumps across Γ ε, because the latter ex-
hibits a capacitive/conductive behaviour. Indeed, α stands here for the membrane
capacity per unit of area. The motivation of the scaling 1/ε appearing in (2.4) is
discussed in [3]. Here we confine ourselves to point out that the capacity per unit of
area of a capacitor is inversely proportional to the gap between the plates. In our
setting, such a gap coincides with the physical membrane width, which in turn is a
given fraction of the cell diameter, and therefore is of order ε.
The term containing f in (2.4) takes into account the conductive behaviour of the
membrane [25]. The nonlinearity of f is interesting from the mathematical and mod-
elling point of view. Indeed, in the general case the two possible scalings in (2.4),
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i.e., f([uε])/ε and f([uε]/ε) differ substantially. The second one will be dealt with
elsewhere.
On multiplying (2.1), (2.2) by uε and integrating formally by parts, using also (2.3)–
(2.5), we obtain, for 0 < t < T ,

t∫

0

∫

Ω

σ|∇uε|2 dx dτ +
α

2ε

∫

Γ ε

[uε]
2(x, t) dσ +

1

ε

t∫

0

∫

Γ ε

[uε]f([uε]) dσ dτ =
α

2ε

∫

Γ ε

S2
ε (x) dσ ,

whence, by Gronwall’s inequality, and using the linear growth of f ,

t∫

0

∫

Ω

σ|∇uε|2 dx dt+
1

ε

∫

Γ ε

[uε]
2(x, t) dσ ≤ γ

ε

∫

Γ ε

S2
ε (x) dσ ≤ γ , (2.25)

where, only for the last inequality, we appealed to (2.8), (2.9); γ is independent of ε.
This energy estimate will be instrumental in our mathematical approach. Moreover,
on physical grounds, it is natural to require that the energy on the leftmost side of
(2.25) stays bounded as ε→ 0, thereby selecting the scaling in (2.8).
We are using in (2.25) the obvious fact that, for a suitable constant γ > 1,

γ−1ε−1 ≤ |Γ ε|N−1 ≤ γε−1 , for all ε > 0. (2.26)

2.2. Comparison with previous results. The scaling appearing in (2.4) is essen-
tially the same of [28], where, however, the authors considered a stationary problem
in linear elasticity. Modulo the obvious differences in the setting, we may formally ob-
tain the analog of the interface condition corresponding to (2.4), by letting ∂uε/∂t = 0
in (2.4) itself. The corresponding linear evolutive problem was treated in [6].
In [30] the author deals with a stationary problem for heat conduction. As in [28], the
problem of [30] is linear. Again, we may formally derive the model of [30] from ours,
setting ∂uε/∂t = 0 and f(s) = εβ̄s in (2.4), where β̄ is independent of ε. Due to this
different scaling, the asymptotic behaviour of the problem in [30] is dissimilar from
the one investigated here. In particular, our homogenized problem bears memory
of the physical parameters appearing in the interface condition (i.e., α and f ; see
(2.12)), while in [30] this is not the case for β̄.
Even in the case when neither E nor R

N \E are connected, we identify the Dirichlet
boundary data of the limit u0, a piece of information which, in this case, was not
obtained in [28] or [30], for different technical reasons.

Remark 2.5. If E1 and E2 have a cubic symmetry, one could prove that the matrices
A0 and A1 are scalar, i.e., A0 = a0I, A

1(t) = a1(t)I. In this case, if moreover g =
g(x, t), equation (2.12) may be reduced to a standard Laplace equation. However, the
current flux on ∂Ω, which is needed for example in inverse reconstruction problems,
is inherently nonlocal in time, see Remark 5.1.

2.3. Notation. We denote by γ a generic positive constant (independent from ε),
taking in principle different values in different occurrences. These constants depend
only on the geometrical properties of E and Ω, and on α, σ1, σ2, T , and on the global
bounds for f ′, f ′′. We also denote by ∇f the pointwise spatial gradient of f , while
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Df denotes its variation measure (in the BV sense). In general ∇f and Df differ,
as we consider functions with jumps.

3. The formal homogenization asymptotics

In this section we aim at identifying the form of the homogenized equation, via the
two-scale method (see [12], [29], [34]). Introduce the microscopic variables y ∈ Y ,
y = x/ε, assuming

uε = uε(x, y, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + . . . . (3.1)

Note that u0, u1, u2 are periodic in y, and u1, u2 are assumed to have zero integral
average over Y . Recalling that

div =
1

ε
divy + divx , ∇ =

1

ε
∇y + ∇x , (3.2)

we compute

∆uε =
1

ε2
A0u0 +

1

ε
(A0u1 + A1u0) + (A0u2 + A1u1 + A2u0) + . . . , (3.3)

Here

A0 = ∆y , A1 = divy ∇x + divx ∇y , A2 = ∆x . (3.4)

Let us recall explicitly that

∇uε =
1

ε
∇yu0 +

(
∇xu0 + ∇yu1

)
+ ε
(
∇yu2 + ∇xu1

)
+ . . . , (3.5)

and stipulate, in addition to (2.8),

Sε = Sε(x, y) = εS1(x, y) + ε2S2(x, y) + . . . . (3.6)

Finally we expand

f([uε]) = f([u0]) + εf ′([u0])[u1] + ε2
{
f ′([u0])[u2] +

1

2
f ′′([u0])[u1]

2
}

+ . . . .

3.1. The term of order ε−2. Equating the first term on the right hand side of (3.3)
to zero, and applying (3.1), (3.5) to (2.1)–(2.5) we find

−σ∆y u0 = 0 , in E1, E2; (3.7)

σ1∇yu
(int)
0 · ν = σ2∇yu

(out)
0 · ν , on Γ ; (3.8)

α
∂

∂t
[u0] + f([u0]) = σ2∇yu

(out)
0 · ν , on Γ ; (3.9)

[u0](x, y, 0) = 0 , on Γ . (3.10)

In (3.10) we have also exploited the expansion (3.6). It follows (see [5], and recall
that f(0) = 0) that

u0 = u0(x, t) . (3.11)
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3.2. The term of order ε−1. Proceeding as above, but taking into consideration
the second term on the right hand side of (3.3) we obtain

−σ∆y u1 = σA1u0 = 0 , in E1, E2; (3.12)

[σ∇yu1 · ν] = −[σ∇xu0 · ν] , on Γ ; (3.13)

α
∂

∂t
[u1] + f ′(0)[u1] = σ2∇yu

(out)
1 · ν + σ2∇xu0 · ν , on Γ ; (3.14)

[u1](x, y, 0) = S1(x, y) , on Γ . (3.15)

In (3.12) and in (3.14) we have made use of (3.11), and of its consequence [u0] = 0.

3.3. The T transform. Cell functions. Let s : Γ → R be a jump function.
Consider the problem

−σ∆y v = 0 , in E1, E2; (3.16)

[σ∇yv · ν] = 0 , on Γ ; (3.17)

α
∂

∂t
[v] + f ′(0)[v] = σ2∇yv

(out) · ν , on Γ ; (3.18)

[v](y, 0) = s(y) , on Γ , (3.19)

where v is a periodic function in Y , such that
∫

Y
v = 0. Define the transform T by

T (s)(y, t) = v(y, t) , y ∈ Y , t > 0 ,

and extend the definition of T to vector (jump) functions, by letting it act compo-
nentwise on its argument.
Introduce also the functions χ0 : Y → R

N , χ1 : Y × (0, T ) → R
N as follows. The

components χ0
h, h = 1, . . . , N , satisfy

−σ∆y χ
0
h = 0 , in E1, E2; (3.20)

[σ(∇yχ
0
h − eh) · ν] = 0 , on Γ ; (3.21)

[χ0
h] = 0 , on Γ . (3.22)

We also require χ0
h to be a periodic function with vanishing integral average over Y .

Moreover χ1
h is defined from

αχ1
h = T

(
σ2(∇yχ

0 (out)
h − eh) · ν

)
. (3.23)

Let us stipulate that u1 may be written in the form

u1(x, y, t) = −χ0(y) · ∇xu0(x, t) + T (S1(x, ·))(y, t)

−
t∫

0

∇xu0(x, τ) · χ1(y, t− τ) dτ . (3.24)
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3.4. Reconciling (3.24) with (3.12)–(3.15). Equations (3.12) are equivalent to
(3.20), when we remember that the terms χ1

h and T (S1(x, ·)) in (3.24) fulfil (3.16).
Next, let us impose (3.13) in (3.24). We get, on recalling (3.17)

[σ∇yu1 · ν] = −[σ∇yχ
0
h(y) · ν]u0xh

(x, t) = −[σ∇xu0 · ν] = −[σu0xh
(x, t)νh] .

In order to satisfy this requirement, we prescribe (3.21). Note that (3.15) is obviously
satisfied, owing to the definition of T .
Finally we get to (3.14), which we combine with (3.24) obtaining

α
∂

∂t
[u1] + f ′(0)[u1] = −α[χ0(y) · ∂

∂t
∇xu0(x, t)] + α

∂

∂t
[T (S1(x, ·))](y, t)

− α∇xu0(x, t) · [χ1](y, 0) − α

t∫

0

∇xu0(x, τ) ·
∂

∂t
[χ1](y, t− τ) dτ

− f ′(0)[χ0(y) · ∇xu0(x, t)] + f ′(0)[T (S1(x, ·))](y, t)

− f ′(0)

t∫

0

∇xu0(x, τ) · [χ1](y, t− τ) dτ .

On the other hand,

σ2∇yu
(out)
1 · ν + σ2∇xu0 · ν = −σ2∇yχ

0 (out)
h (y) · νu0xh

(x, t)

+ σ2∇yT (S1(x, ·))(out) · ν −
t∫

0

u0xh
(x, τ)σ2∇yχ

1
h(y, t− τ) · ν dτ + σ2u0xh

(x, t)νh .

Hence, (3.22)–(3.23) follow, on equating the quantities above.

3.5. The term of order ε0. Let us first calculate

A1u1 = 2
∂2u1

∂xj∂yj
,

where we employ the summation convention. Therefore, the complete problem in-
volving the third term on the right hand side of (3.3) is

−σ∆y u2 = σ∆x u0 + 2σ
∂2u1

∂xj∂yj

, E1,E2 (3.25)

[σ∇yu2 · ν] = −[σ∇xu1 · ν] , on Γ ; (3.26)

α
∂

∂t
[u2] + f ′(0)[u2] +

f ′′(0)

2
[u1]

2 = σ2∇xu
(out)
1 · ν + σ2∇yu

(out)
2 · ν , on Γ ; (3.27)

[u2](x, y, 0) = S2(x, y) , on Γ . (3.28)
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3.6. Formal derivation of the homogenized equation. Integrating by parts
equation (3.25) both in E1 and in E2, and adding the two contributions, we get

[∫

E1

+

∫

E2

]{
σ∆x u0(x, t) + 2σ

∂2u1

∂xj∂yj

}
dy

=

∫

Γ

{
σ2∇yu

(out)
2 · ν − σ1∇yu

(int)
2 · ν

}
dσ =

∫

Γ

[σ∇yu2 · ν] dσ = −
∫

Γ

[σ∇xu1 · ν] dσ .

Thus

σ0 ∆x u0 = 2

∫

Γ

[σ∇xu1 · ν] dσ −
∫

Γ

[σ∇xu1 · ν] dσ =

∫

Γ

[σ∇xu1 · ν] dσ ,

where we denote

σ0 = σ1|E1| + σ2|E2| . (3.29)

We use next the expansion (3.24); namely, we recall that, in it, only last two terms on
the right hand side have a non zero jump across Γ . Thus we infer from the equality
above

σ0 ∆x u0 =

∫

Γ

[σ∇xu1 · ν] dσ = −
∫

Γ

[σ]χ0
h(y)νj dσu0xhxj

(x, t)

+
∂

∂xj

∫

Γ

[σT (S1(x, ·))](y, t)νj dσ −
t∫

0

u0xhxj
(x, τ)

∫

Γ

[σχ1
h](y, t− τ)νj dσ dτ .

We finally write the PDE for u0 in Ω × (0, T ) as

− div

(
σ0∇xu0 + A0∇xu0 +

t∫

0

A1(t− τ)∇xu0(x, τ) dτ

−
∫

Γ

[σT (S1(x, ·))](y, t)ν dσ

)
= 0 . (3.30)

The two matrices Ai are defined by

(A0)jh =

∫

Γ

[σ]χ0
h(y)νj dσ , (A1(t))jh =

∫

Γ

[σχ1
h](y, t)νj dσ . (3.31)

The matrices A0 and A1 are symmetric, and σ0I + A0 is positive definite (see Sec-
tion 4).

Remark 3.1. In the case when f(s) = s, g = 0, one can give the following represen-

tation of u2. For any given pair of jump functions s1, s2 : Γ → R define T̃j(s1, s2) = v,
12



j = 1, . . . , N , where v is a periodic function with zero average in Y , solving

−σ∆y v =
σ

σ0

∫

Γ

[σT (s1)]νj dσ + 2σ
∂

∂yj
T (s1) , in E1, E2; (3.32)

[σ∇yv · ν] = −[σT (s1)νj] , on Γ ; (3.33)

α
∂

∂t
[v] = σ2∇yv

(out) · ν + σ2T (s1)
(out)νj on Γ ; (3.34)

[v](y, 0) = s2(y) , on Γ . (3.35)

Note that T (s) = T̃j(0, s) for any choice of j. Moreover define the functions χ̃0
hj :

Y → R, χ̃1
hj : Γ → R, for h, j = 1, . . . , N , by means of

−σ∆y χ̃
0
hj = − σ

σ0
A0

hj − 2σ
∂

∂yj
χ0

h , in E1, E2; (3.36)

[σ(∇yχ̃
0
hj − χ0

hej) · ν] = 0 , on Γ ; (3.37)

[χ̃0
hj ] = 0 , on Γ ; (3.38)

and of

αχ̃1
hj = σ2(∇yχ̃

0 (out)
hj − χ0

hej) · ν , on Γ . (3.39)

We require χ̃0
hj to be a periodic function with vanishing integral average over Y . Then

one can check that the problem for u2, (3.25)–(3.28) is equivalent to the representation

u2(x, y, t) = χ̃0
hj(y)

∂2u0

∂xh∂xj
(x, t) + T̃j

(∂S1

∂xj
(x, ·), S2(x, ·)

)
(y, t)

+

t∫

0

∂2u0

∂xh∂xj

(x, τ)T̄jh(y, t− τ) dτ , (3.40)

where T̄jh(y, t) = T̃j(−χ1
h, χ̃

1
hj)(y, t).

4. The structure of the limit equation.

Owing to the results of Subsection 7.2, the functions χ0 and χ1 are of class C∞

separately in E1, and in E2. As a by product, the two matrices A1 and A0 are well
defined.

Proposition 4.1. σ0I + A0 is symmetric and positive definite.

Proof. From the definition of χ0 we get
∫

Y

σ∇χ0
h · ∇χ0

j dy = −
∫

Γ

[σ∇χ0
j · ν]χ0

h dσ = −
∫

Γ

[σ]νjχ
0
h dσ = −(A0)jh , (4.1)

implying that A0 is symmetric (and negative semidefinite). Moreover

−
∫

Y

σ∇χ0
j · eh dy = −

∫

Y

σ
∂χ0

j

∂yh

dy =

∫

Γ

[σ]χ0
jνh dσ = (A0)hj . (4.2)
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Thus, taking into account (4.1), (4.2), and the definition of σ0,

∫

Y

σ(∇χ0
j − ej) · (∇χ0

h − eh) dy = −(A0)jh + 2(A0)jh + σ0δjh = (σ0I + A0)jh . (4.3)

The strict positivity of σ0I+A0 can be proven in the following standard fashion, mak-
ing use of (4.3) and of elementary linearity properties. Denoting σm = min(σ1, σ2),
we have for all ξ ∈ R

N

∑
j,h(σ0I + A0)jhξjξh ≥ σm

∫

Y

|∇∑j(χ
0
jξj − yjξj)|2 dy ≥

σm

∑
k

(∑
j

∫

Y

∂χ0
j

∂yk

ξj dy −
∫

Y

ξk dy

)2

= σm

∑
k

(∑
j

∫

∂Y

χ0
jνk dy ξj − ξk

)2

= σm|ξ|2 .

�

The ideas employed in the proof of next result will turn out to be essential also in
proving Theorem 2.1.

Lemma 4.2. Let s1, s2 : Γ → R be traces on Γ of two functions of class H1(Y ),
periodic in y. Then, for all t > 0:

∫

Γ

[T (s1)](t) [T (s2)](0) dσ =

∫

Γ

[T (s1)](0) [T (s2)](t) dσ . (4.4)

Note that the transforms T (s1), T (s2) are well defined, according to the results in
[5].

Proof. Let us define vh = T (sh), and, for a fixed t > 0,

v̂h(y, τ) = vh(y, t− τ) , 0 < τ < t . (4.5)

Thus v̂h solves for 0 < τ < t

−σ∆y v̂h = 0 , in E1, E2; (4.6)

[σ∇yv̂h · ν] = 0 , on Γ ; (4.7)

α
∂

∂τ
[v̂h] − f ′(0)[v̂h] = −σ2∇yv̂

(out)
h · ν , on Γ ; (4.8)

[v̂h](y, t) = sh(y) , on Γ . (4.9)

Use vj as a testing function in (4.6)–(4.8), and obtain

∫

Y

σ∇v̂h · ∇vj dy = −
∫

Γ

[vj ]σ2∇v̂(out)
h · ν dσ = α

∫

Γ

[vj ]
∂

∂τ
[v̂h] dσ − f ′(0)

∫

Γ

[vj][v̂h] dσ .
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Note that the formal calculations appearing here can be easily made rigorous invoking
the regularity obtained in [5]. Integrating in time over (0, t), we calculate

t∫

0

∫

Y

σ∇v̂h · ∇vj dy dτ + f ′(0)

t∫

0

∫

Γ

[vj][v̂h] dσ dτ = α

t∫

0

∫

Γ

[vj]
∂

∂τ
[v̂h] dσ dτ

= α

∫

Γ

[vj](t)[v̂h](t) dσ − α

∫

Γ

[vj ](0)[v̂h](0) dσ − α

t∫

0

∫

Γ

[v̂h]
∂

∂τ
[vj] dσ dτ . (4.10)

Next using v̂h as a testing function in the problem (3.16)–(3.18) solved by vj we find

t∫

0

∫

Y

σ∇vj · ∇v̂h dy dτ = −
t∫

0

∫

Γ

[v̂h]σ2∇v(out)
j · ν dσ dτ = −α

t∫

0

∫

Γ

[v̂h]
∂

∂τ
[vj ] dσ dτ

− f ′(0)

t∫

0

∫

Γ

[vj ][v̂h] dσ dτ . (4.11)

Subtracting (4.11) from (4.10) we find

α

∫

Γ

[vj](t)[v̂h](t) dσ = α

∫

Γ

[vj ](0)[v̂h](0) dσ , (4.12)

thereby proving (4.4). �

Corollary 4.3. A1 is symmetric.

Proof. Let us define now vh = χ1
h, and, for a fixed t > 0, v̂h as in (4.5). We start

from (4.12) written for this choice of vh.
Let us compute explicitly, recalling the definitions of v̂h, χ

1
h,

α

∫

Γ

[vj ](t)[v̂h](t) dσ = α

∫

Γ

[vj](t)[vh](0) dσ

= α

∫

Γ

[vj ](t)[χ
1
h](0) dσ =

∫

Γ

[vj](t)σ2∇χ0 (out)
h · ν dσ −

∫

Γ

[vj ](t)σ2νh dσ . (4.13)

In order to obtain a different expression for the penultimate integral, we multiply
(3.20) against vj(t) and integrate by parts, so that we get

∫

Y

σ∇χ0
h · ∇vj(t) dσ =

∫

Γ

{σ1∇χ0 (int)
h · νv(int)

j (t) − σ2∇χ0 (out)
h · νv(out)

j (t)} dσ

= −
∫

Γ

[vj](t)σ2∇χ0 (out)
h · ν dσ −

∫

Γ

v
(int)
j (t)[σ]νh dσ , (4.14)
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where we have made use of (3.21). However, on using χ0
h as a testing function in the

problem (3.16)–(3.19) defining vj , one readily sees that the leftmost side of (4.14)
vanishes. Thus, combining (4.13) and (4.14), we prove

α

∫

Γ

[vj](t)[v̂h](t) dσ = −
∫

Γ

v
(int)
j (t)[σ]νh dσ −

∫

Γ

[vj](t)σ2νh dσ = −
∫

Γ

[σvj ](t)νh dσ .

(4.15)
Reasoning as above

α

∫

Γ

[vj ](0)[v̂h](0) dσ = α

∫

Γ

[vj](0)[vh](t) dσ = −
∫

Γ

[σvh](t)νj dσ . (4.16)

Combining (4.12) with (4.15), (4.16) we finally infer

(A1(t))jh =

∫

Γ

[σvh](t)νj dσ =

∫

Γ

[σvj](t)νh dσ = (A1(t))hj . (4.17)

�

Next result reconciles the seemingly different forms of F as found in (3.30) and in
the rigorous limiting procedure carried out in Section 5.

Corollary 4.4. For all h = 1, . . . , N ,

Fh(x, t) := −α
∫

Γ

S1(x, y)[χ
1
h](y, t) dσ =

∫

Γ

[σT (S1(x, ·))](y, t)νh dσ . (4.18)

Of course we assume here that S1(x, ·) is regular enough for T (S1(x, ·)) to be defined,

e.g., that S1(x, ·) has the regularity mentioned in Lemma 4.2.

Proof. This is a by-product of Lemma 4.2, and of the proof of Corollary 4.3. Indeed,
note that the calculations leading to (4.15) actually use only the special form of
[vh](0) = [χ1

h](0). Therefore, (4.12) and (4.15) are still in force if we let vh as in
Corollary 4.3, while formally replacing there vj with T (S1(x, ·)). This yields (4.18).

�

5. The homogenization limit

Introduce for i = 1, . . . , N , the functions

wε
i (x, t) = xi − εχ0

i

(x
ε

)
− ε

T∫

t

χ1
i

(x
ε
, τ − t

)
dτ , (5.1)

so that explicit calculations reveal

−σ∆wε
i = 0 , in Ωε

1, Ω
ε
2; (5.2)

[σ∇wε
i · ν] = 0 , on Γ ε; (5.3)

α

ε

∂

∂t
[wε

i ] −
f ′(0)

ε
[wε

i ] = −σ2∇wε
i
(out) · ν , on Γ ε. (5.4)
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Let ϕ ∈ C∞
o (Ω), and select wε

iϕ as a testing function in the weak formulation (2.11).
We obtain

T∫

0

∫

Ω

σ∇uε · ∇wε
i ϕ dx dt+

T∫

0

∫

Ω

σ∇uε · ∇ϕwε
i dx dt+

1

ε

T∫

0

∫

Γ ε

f([uε])[w
ε
i ]ϕ dσ dt

− α

ε

T∫

0

∫

Γ ε

[uε]
∂

∂t
[wε

i ]ϕ dσ dt− α

ε

∫

Γ ε

[uε](0)[wε
i ](0)ϕ dσ = 0 , (5.5)

once we use the obvious relation [wε
i ](x, T ) = 0. Next select uεϕ as a testing function

in the weak formulation of (5.2)–(5.4); in this second step, no integration by parts in
t is needed on Γ ε. We get

T∫

0

∫

Ω

σ∇wε
i · ∇uε ϕ dx dt+

T∫

0

∫

Ω

σ∇wε
i · ∇ϕuε dx dt

− α

ε

T∫

0

∫

Γ ε

∂

∂t
[wε

i ][uε]ϕ dσ dt+
f ′(0)

ε

T∫

0

∫

Γ ε

[wε
i ][uε]ϕ dσ dt = 0 . (5.6)

Subtract (5.6) from (5.5) and find, taking (2.8) into account,

T∫

0

∫

Ω

σ∇uε · ∇ϕwε
i dx dt = K1ε +K2ε +K3ε , (5.7)

where we have defined

K1ε =

T∫

0

∫

Ω

σ∇wε
i · ∇ϕuε dx dt ,

K2ε = −αε
∫

Γ ε

(
S1

(
x,
x

ε

)
+Rε(x)

)
ϕ(x)

T∫

0

[χ1
i ]
(x
ε
, τ
)
dτ dσ ,

K3ε =
1

ε

T∫

0

∫

Γ ε

{
f ′(0)[uε] − f([uε])

}
[wε

i ]ϕ dσ dt .

We rely here on the energy inequality (2.25). Although it was derived formally in
the Introduction, its proof can be made rigorous, starting from the weak formulation
(2.11), and using a Steklov averaging procedure. Estimate (2.25), together with
lemma 7.1 and 7.7 imply that, extracting subsequences if needed, we may assume

− σ∇uε → ξ , uε → u0 , weakly in L2(Ω × (0, T )), (5.8)

uε → u0 , strongly in L1
loc(0, T ;L1(Ω)), (5.9)
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for some ξ ∈ L2(Ω×(0, T ))N , u0 ∈ L2(Ω×(0, T )). On the other hand, clearly wε
i → xi

strongly in L2(Ω × (0, T )), as ε → 0. Let us investigate the limiting behaviour of
σ∇wε

i . Due to the periodicity of the functions χi, and to (4.2), one immediately gets

σ∇
(
xi − εχ0

i

(x
ε

))
→ (σ0I + A0)ei , weakly in L2(Ω).

By the same token, in the same weak sense,

−σ∇
(
ε

T∫

t

χ1
i

(x
ε
, τ − t

)
dτ

)
→ −

T∫

t

∫

Y

σ∇yχ
1
i (y, τ − t) dy dτ =

T∫

t

A1(τ − t)ei dτ ,

where last equality follows from the definition (3.31) of A1 and from a trivial inte-
gration by parts. Thus, invoking Lemma 7.9 and Remark 7.10 below,

K1ε →
T∫

0

∫

Ω

(σ0I + A0)ei · ∇ϕu0 dx dt+

T∫

0

∫

Ω

T∫

t

A1(τ − t)ei dτ · ∇ϕu0 dx dt =: K10 .

Elementary manipulations show that

K10 =

T∫

0

∫

Ω

{
u0(x, t)(σ0I + A0)ei +

t∫

0

u0(x, τ)A
1(t− τ)ei dτ

}
· ∇ϕ(x) dx dt .

Next we turn to the task of evaluating the limiting behaviour of K2ε. Clearly the
term involving Rε vanishes in the limit. Then we appeal to the stipulated regularity
of S1, and apply, with minor changes, the ideas of [36] Lemma 3; we infer

K2ε → −α
∫

Ω

ϕ(x)

∫

Γ

S1(x, y)

T∫

0

[χ1
i ](y, τ) dτ dσ dx =

T∫

0

∫

Ω

ϕ(x)Fi(x, τ) dx dτ ,

where F has been defined in the first equality of (4.18).
One can easily check that K3ε → 0; actually

|K3ε| ≤

∣∣∣∣∣∣
1

ε

T∫

0

∫

Γ ε

f ′′(µε)

2
[uε]

2[wε
i ]ϕ dσ dt

∣∣∣∣∣∣
≤ γ

T∫

0

∫

Γ ε

[uε]
2 dσ dt ≤ γε , µε = µε(x, t) ,

where we have used the properties of f , the definition of wε
i , and the energy inequality

(2.25), as well as the regularity of χ0, χ1 obtained in Subsection 7.2.
Collecting the results above, let ε→ 0 in (5.7) to arrive at

−
T∫

0

∫

Ω

ξ · ∇ϕxi dx dt =

T∫

0

∫

Ω

ϕ(x)Fi(x, τ) dx dτ

+

T∫

0

∫

Ω

{
u0(x, t)(σ0I + A0)ei +

t∫

0

u0(x, τ)A
1(t− τ)ei dτ

}
· ∇ϕ(x) dx dt . (5.10)
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As usual, next we take ϕxi as a testing function in (2.11). This test essentially does
not detect the boundary Γ ε, due to (2.3); on letting ε→ 0

T∫

0

∫

Ω

ξ · ∇ϕxi dx dt+

T∫

0

∫

Ω

ξ · ei ϕ dx dt = 0 . (5.11)

We substitute (5.11) in (5.10), and differentiate in T the resulting equality; in fact
the choice of T is essentially arbitrary in this setting. We obtain (reverting to t as
the time variable)

∫

Ω

{
u0(x, t)(σ0I + A0) +

t∫

0

u0(x, τ)A
1(t− τ) dτ

}
∇ϕ(x) dx

=

∫

Ω

ξ(x, t)ϕ(x) dx−
∫

Ω

ϕ(x)F(x, t) dx ,

a.e. t. It follows that u0 ∈ L2(0, T ;H1(Ω)) (see Lemma 7.3 below), and that

ξ(x, t) = −(σ0I + A0)∇u0(x, t) −
t∫

0

A1(t− τ)∇u0(x, τ) dτ + F(x, t) , (5.12)

a.e. (x, t). Clearly div ξ = 0 in the sense of distributions (see e.g., (5.11) above). This
shows that (2.12) is in force.

Remark 5.1. The equality (5.12), which is the constitutive relationship of the ho-
mogenized material, expresses the limiting current ξ as a function of the history of
the gradient of the potential, ∇u0.

5.1. u0 vanishes on ∂Ω. The trace of u0 on ∂Ω exists for a.e. t ∈ (0, T ), because of
the already proven regularity of u0. It is left to show that this trace is zero.
We understand here u0 and each uε to be defined on R

N × (0, T ), by extending them
as zero outside Ω. Also define,

Uε(x) =

T∫

0

uε(x, t) dt , U0(x) =

T∫

0

u0(x, t) dt .

Since we already know that the trace on ∂Ω of each uε, and therefore of Uε, is zero,
we infer that for each bounded open set G ⊂ R

N , the variation |DUε|(G) is given by

|DUε|(G) =

∫

G

∣∣∣∣∣∣

T∫

0

∇uε dt

∣∣∣∣∣∣
dx+

∫

Γ ε∩G

∣∣∣∣∣∣

T∫

0

[uε] dt

∣∣∣∣∣∣
dσ

≤ γ
(
|G|1/2 + (ε|Γ ε ∩G|N−1)

1/2
)
, (5.13)

where we have made use of Hölder’s inequality and of (2.25). As a first consequence
of this estimate, we may invoke classical compactness and semicontinuity results to
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show that (extracting subsequences if needed)

Uε → U0 , in L1(RN), |DU0|(G) ≤ lim inf
ε→0

|DUε|(G) , (5.14)

for every set G ⊂ R
N as above. On the other hand, according to [7] Theorem 3.77,

|DU0|(∂Ω) =

∫

∂Ω

|U+
0 − U−

0 | dσ =

∫

∂Ω

|U+
0 | dσ , (5.15)

where the symbol U+
0 (respectively, U−

0 ) denotes the trace on ∂Ω of U0|Ω (respectively,
of U0|

� N\Ω ≡ 0).
Define for 0 < h < 1 the open set

Vh = {x ∈ R
N | dist(x, ∂Ω) < h} .

Combining (5.13)–(5.15), we obtain, as ∂Ω ⊂ Vh for all h,

∫

∂Ω

|U+
0 | dσ ≤ |DU0(Vh)| ≤ γ lim inf

ε→0

(
|Vh|1/2 + (ε|Γ ε ∩ Vh|N−1)

1/2
)
≤ γh1/2 .

Indeed, it is readily seen that |Vh| ≤ γh, and that |Γ ε ∩ Vh|N−1 ≤ γh/ε for all
sufficiently small h. Therefore, letting h → 0 above we obtain that U+

0 = 0 a.e. on
∂Ω. However, U+

0 and the trace u+
0 of u0 are related by

U+
0 (x) =

T∫

0

u+
0 (x, t) dt , x ∈ ∂Ω .

Clearly, T stands here for any positive time, so that, differentiating the last equality
in time, we obtain u+

0 (x, t) = 0 a.e. on ∂Ω × (0, T ).

Remark 5.2. Due to the uniqueness results of [4], actually the whole sequence {uε}
converges to u0.

6. Error estimate

Here u0 is the limit function of Theorem 2.1, while u1 and u2 are defined as in
subsections 3.2, 3.5. In what follows we understand that

u1 = u1(x,
x

ε
, t) , u2 = u2(x,

x

ε
, t) .

We use extensively in this section the notation in (3.2)–(3.4).
Define the rest function

rε = (uε − u0 − εu1)ε
−1 , x ∈ Ω , t > 0 .
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6.1. The conditions satisfied by the rest function. We calculate, separately in
Ωε

1 and in Ωε
2,

− div σ∇rε =
1

ε

{
− div σ∇uε + div σ∇u0 + ε div σ∇u1

}

(by means of (2.1), (2.2))

=
1

ε

{
σ∆x u0 + εσ∆x u1 + 2σu1xhyh

+
1

ε
σ∆y u1

}

(by means of (3.12), (3.25))

= −1

ε
σ∆y u2 + σ∆x u1 =: Eε .

Define

Qε =
1

ε
f([uε]) − f ′(0)[u1] =

1

ε

{
f([uε]) − εf ′(0)[u1]

}
.

Then (recalling (2.4), (3.14)), straightforward calculations yield that on Γ ε

α
∂

∂t
[rε] =

{
σ2∇u(out)

ε − σ2∇u(out)
0 − σ2∇yu

(out)
1

}
· ν −Qε

= εσ2

{1

ε
∇u(out)

ε − 1

ε
∇u(out)

0 −∇u(out)
1

}
· ν + εσ2∇xu

(out)
1 · ν −Qε

= εσ2∇r(out)
ε · ν + εσ2∇xu

(out)
1 · ν −Qε .

Finally

[σ∇rε · ν] =
1

ε
[σ(∇uε −∇u0 − ε∇u1) · ν]

(by means of (2.3), (3.13))

= −1

ε
[σ∇u0 · ν] −

1

ε
[σ∇yu1 · ν] − [σ∇xu1 · ν] = −[σ∇xu1 · ν] .

6.2. Estimating the L2 norm of the rest. Introduce the corrected rest function

r̃ε = rε + u1φε ,

where φε is a cut off function equal to 1 in a neighbourhood of ∂Ω, and such that

φε(x) = 0 if dist(x, ∂Ω) ≥ γ0ε .

Here γ0 is the constant appearing in in the statement of Theorem 2.2. Hence φε ≡ 0
on Γ ε. We may assume 0 ≤ φε ≤ 1, |∇φε| ≤ γ/ε. The function r̃ε satisfies

−σ∆ r̃ε = Eε − σ∆(u1φε) , in Ωε
1, Ω

ε
2; (6.1)

[σ∇r̃ε · ν] = −[σ∇xu1 · ν] , on Γ ε; (6.2)

α
∂

∂t
[r̃ε] = εσ2∇r̃(out)

ε · ν + εσ2∇xu
(out)
1 · ν −Qε , on Γ ε; (6.3)

r̃ε = 0 , on ∂Ω. (6.4)

Note that the correction u1φε has been introduced precisely in order to guarantee
(6.4).

21



Multiply (6.1) by r̃ε and integrate by parts, obtaining, by virtue of (6.4),

t∫

0

∫

Ω

σ|∇r̃ε|2 dx dτ +

t∫

0

∫

Γ ε

[σ∇r̃ε · ν]r̃(int)
ε dσ dτ +

t∫

0

∫

Γ ε

[r̃ε]σ2∇r̃(out)
ε · ν dσ dτ

=

t∫

0

∫

Ω

{
Eε − σ∆(u1φε)

}
r̃ε dx dτ . (6.5)

Next compute

t∫

0

∫

Ω

Eεr̃ε dx dτ =

t∫

0

∫

Ω

σ
{
− 1

ε
∆y u2 + ∆x u1

}
r̃ε dx dτ

=

t∫

0

∫

Ω

σ
{
− 1

ε
∆y u2 − divx(∇yu2)

}
r̃ε dx dτ +

t∫

0

∫

Ω

σ
{

divx(∇yu2) + ∆x u1

}
r̃ε dx dτ

= −
t∫

0

∫

Ω

div(σ∇yu2)r̃ε dx dτ +

t∫

0

∫

Ω

{
σ divx(∇yu2) + σ∆x u1

}
r̃ε dx dτ

=

t∫

0

∫

Γ ε

[σ∇yu2 · νr̃ε] dσ dτ +

t∫

0

∫

Ω

σ∇yu2 · ∇r̃ε dx dτ

+

t∫

0

∫

Ω

{
σ divx(∇yu2) + σ∆x u1

}
r̃ε dx dτ (6.6)

Note that the last integral in (6.6) can be majorized by

t∫

0

∫

Ω

{
σ divx(∇yu2) + σ∆x u1

}
r̃ε dx dτ ≤ γ(δ) + δ

t∫

0

∫

Ω

r̃2
ε dx dτ ,

where δ > 0 will be chosen in the following. We exploit here the estimate (see
Subsection 7.2, and [4])

T∫

0

∫

Ω

(u2
2xiyi

+ u2
1xixi

) dx dt ≤ γ . (6.7)
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Similarly, for δ′ = min(σ1, σ2)/2,

−
t∫

0

∫

Ω

σ∆(u1φε)r̃ε dx dτ =

t∫

0

∫

Ω

σ∇(u1φε) · ∇r̃ε dx dτ ≤ δ′
t∫

0

∫

Ω

|∇r̃ε|2 dx dτ

+
γ(δ′)

ε2
|{x ∈ Ω | dist(x, ∂Ω) ≤ γ0ε}| ≤ δ′

t∫

0

∫

Ω

|∇r̃ε|2 dx dτ +
γ(δ′)

ε
. (6.8)

We have used here (see again Subsection 7.2 and [4])

sup
x∈Ω , y∈Y , 0<t<T

{
|u1| + |∇xu1| + |∇yu1|

}
(x, y, t) <∞ . (6.9)

Let us also rewrite the integral appearing in (6.6)

t∫

0

∫

Γ ε

[σ∇yu2 · νr̃ε] dσ dτ =

t∫

0

∫

Γ ε

[σ∇yu2 · ν]r̃(int)
ε dσ dτ +

t∫

0

∫

Γ ε

σ2∇yu
(out)
2 · ν[r̃ε] dσ dτ

= −
t∫

0

∫

Γ ε

[σ∇xu1 · ν]r̃(int)
ε dσ dτ +

t∫

0

∫

Γ ε

σ2∇yu
(out)
2 · ν[r̃ε] dσ dτ , (6.10)

where we have made use of (3.26) too.
Combining the previous estimates, absorbing the gradient term in (6.8) into the left
hand side of (6.5), and also recalling (6.2),

1

2

t∫

0

∫

Ω

σ|∇r̃ε|2 dx dτ +

t∫

0

∫

Γ ε

[r̃ε]σ2∇r̃(out)
ε · ν dσ dτ −

t∫

0

∫

Γ ε

[σ∇xu1 · ν]r̃(int)
ε dσ dτ

≤ γ(δ)

ε
+ δ

t∫

0

∫

Ω

r̃2
ε dx dτ −

t∫

0

∫

Γ ε

[σ∇xu1 · ν]r̃(int)
ε dσ dτ +

t∫

0

∫

Γ ε

σ2∇yu
(out)
2 · ν[r̃ε] dσ dτ

+

t∫

0

∫

Ω

σ∇yu2 · ∇r̃ε dx dτ . (6.11)

Here we drop the equal terms appearing on both sides, and then consider that, owing
to (6.3),

t∫

0

∫

Γ ε

[r̃ε]σ2∇r̃(out)
ε · ν dσ dτ =

α

ε

t∫

0

∫

Γ ε

∂

∂t
[r̃ε] [r̃ε] dσ dτ

+
1

ε

t∫

0

∫

Γ ε

[r̃ε]Qε dσ dτ −
t∫

0

∫

Γ ε

[r̃ε]σ2∇xu
(out)
1 · ν dσ dτ .

23



Also recall that, taking into account (2.5), (3.15), and the expansion in ε we assume
for Sε, we have at time t = 0

∫

Γ ε

[r̃ε]
2(0) dσ ≤ γε .

Hence, we obtain from (6.11) that

t∫

0

∫

Ω

|∇r̃ε|2 dx dτ +
1

ε

∫

Γ ε

[r̃ε]
2(t) dσ ≤ γ(δ)

ε
+ γδ

t∫

0

∫

Ω

r̃2
ε dx dτ

+ γ

t∫

0

∫

Γ ε

[r̃ε]σ2

{
∇yu

(out)
2 + ∇xu

(out)
1

}
· ν dσ dτ + γ

t∫

0

∫

Ω

σ∇yu2 · ∇r̃ε dx dτ

+
γ

ε

t∫

0

∫

Γ ε

|f ′(0) − f ′(µε)| |[u1][r̃ε]| dσ dτ +
γ

ε

t∫

0

∫

Γ ε

|f ′(µε)|[r̃ε]
2 dσ dτ , (6.12)

where |µε(x, t)| ≤ |[uε]|. By means of a simple application of Cauchy-Schwarz in-
equality, we may partially absorb the third and fourth terms on the right hand side
of (6.12) into the left hand side. Moreover, note that

1

ε

t∫

0

∫

Γ ε

|f ′(0) − f ′(µε)| |[u1][r̃ε]| dσ dτ ≤ γ

ε

t∫

0

∫

Γ ε

|[uε][u1][r̃ε]| dσ dτ

≤ γ

ε

t∫

0

∫

Γ ε

[r̃ε]
2 dσ dτ +

γ

ε

t∫

0

∫

Γ ε

[uε]
2 dσ dτ ,

where the last term can be bounded uniformly by means of (2.25). We have used
here the boundedness of f ′′. Thus (6.12) yields

t∫

0

∫

Ω

|∇r̃ε|2 dx dτ +
1

ε

∫

Γ ε

[r̃ε]
2(t) dσ ≤ γ(δ)

ε
+ γδ

t∫

0

∫

Ω

r̃2
ε dx dτ +

γ

ε

t∫

0

∫

Γ ε

[r̃ε]
2 dσ dτ .

We now invoke Lemma 7.1 to get, for a suitable choice of δ,

t∫

0

∫

Ω

|∇r̃ε|2 dx dτ +
1

ε

∫

Γ ε

[r̃ε]
2(t) dσ ≤ γ

ε
+
γ

ε

t∫

0

∫

Γ ε

[r̃ε]
2 dσ dτ . (6.13)

Finally, after an application of Gronwall’s inequality, we get

t∫

0

∫

Ω

|∇r̃ε|2 dx dτ +
1

ε

∫

Γ ε

[r̃ε]
2(t) dσ ≤ γ

ε
. (6.14)
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On recalling the definition of r̃ε, and invoking again Lemma 7.1, we obtain

t∫

0

∫

Ω

(uε − u0 − εu1(1 − φε))
2 dx dτ ≤ γε , (6.15)

whence finally the estimate (2.13), on making use of

t∫

0

∫

Ω

(εu1(1 − φε))
2 dx dτ ≤ γε2 .

Remark 6.1. The proof in the case when ∂Ω ∩ Γ ε 6= ∅ differs from the one we
present here only for minor changes, required by the slightly different form taken by
the interface conditions (6.2) and (6.3). However the additional terms, appearing
in formulae (6.8) and following can be dealt with by means of the same techniques
employed above.

7. Auxiliary results

7.1. Poincaré’s inequality. We give first a result central to our approach; for ex-
ample, it is required to prove a uniform L2 estimate for the sequence {uε}.
Lemma 7.1. Let v : Ω → R be given by

v|Ωε
1

= v1|Ωε
1
, v|Ωε

2
= v2|Ωε

2
, v1 , v2 ∈ H1

o (Ω) .

Then ∫

Ω

v2 dx ≤ C

{∫

Ω

|∇v|2 dx+ ε−1

∫

Γ ε

[v]2 dσ

}
. (7.1)

Here C depends only on Ω and E.

Proof. As v2 is of class W 1,1 both in Ωε
1 and in Ωε

2, v
2 ∈ BV (Ω), and the usual

contradiction argument, exploiting v2 = 0 on ∂Ω in the sense of traces, shows that
∫

Ω

v2 dx ≤ γ|Dv2(Ω)| ≤ γ

∫

Ω

|v||∇v| dx+ γ

∫

Γ ε

|[v2]| dσ , γ = γ(Ω) . (7.2)

Indeed the singular part of the variation of v (and therefore of v2) is concentrated on
Γ ε. We estimate above last integral by
∫

Γ ε

|[v]|(|v(int)| + |v(out)|) dσ ≤ (δε)−1

∫

Γ ε

[v]2 dσ + δε

∫

Γ ε

(|v(int)|2 + |v(out)|2) dσ , (7.3)

for a δ ∈ (0, 1) to be chosen presently. Exploiting the periodicity of E, and standard
trace inequalities, we check that for each cell Qi = ε(Y + zi), zi ∈ Z

N ,
∫

Γ ε∩Qi

(|v(int)|2 + |v(out)|2) dσ ≤ γε−1

∫

Ω∩Qi

(
v2 + ε2|∇v|2

)
dx , (7.4)

25



where γ = γ(E) does not depend on Qi. Next we add (7.4) over all the cells covering
Ω, and use the resulting inequality in (7.3). A further application of Cauchy-Schwartz
inequality to (7.2) yields

∫

Ω

v2 dx ≤ γδ−1

∫

Ω

|∇v|2 dx+ γ(δε)−1

∫

Γ ε

[v]2 dσ + γδ

∫

Ω

v2 dx ,

whence (7.1) on selecting a small enough δ. �

Remark 7.2. The factor ε−1 in (7.1) is necessary in general, as one can show easily
by counterexample. However, if E is connected, this is not the case: actually, one
can prove an estimate similar to (7.1), but with the factor ε−1 formally replaced by
ε (in this spirit, see Lemma 6 of [28]).

7.2. Regularity results.

Lemma 7.3. Let M0, M1 be two N×N real matrices. We assume that M0 is constant

and non singular, while the entries of M1 are functions of t of class L2(0, T ). Let

η ∈ L2(Ω × (0, T ))N , u ∈ L2(Ω × (0, T )), and assume that a.e. t > 0, for all

ϕ ∈ C1
o (Ω),

∫

Ω

{
M0u(x, t) +

t∫

0

M1(t− τ)u(x, τ) dτ
}
∇ϕ(x) dx =

∫

Ω

η(x, t)ϕ(x) dx . (7.5)

Then u ∈ L2(0, T ;H1(Ω)), and

−η(x, t) = M0∇u(x, t) +

t∫

0

M1(t− τ)∇u(x, τ) dτ . (7.6)

Proof. First, we may clearly assume M0 = I, by multiplying (7.5) by M−1
0 .

Next, introduce a smooth symmetric mollifying kernel kh(x) such that supp kh ⊂
{|x| ≤ h}, and approaching Dirac’s delta as h→ 0. Fix h > 0, and select ϕ as above
such that h < dist(suppϕ, ∂Ω). Denoting by ∗ the standard convolution operator in
R

N , choose ϕ ∗ kh as a testing function in (7.5). An application of Fubini’s theorem
shows that uh = u ∗ kh still satisfies (7.5), with η replaced by ηh = η ∗ kh. Then,
integrating by parts, and using the arbitrariness of ϕ we obtain

−ηh(x, t) = ∇uh(x, t) +

t∫

0

M1(t− τ)∇uh(x, τ) dτ ,

a.e. x ∈ Ωh = {x ∈ Ω | dist(x, ∂Ω) > h}. Whence, for a.e. t > 0,

∫

Ωh

|∇uh(x, t)|2 dx ≤ 2

∫

Ω

|η(x, t)|2 dx+ γ

t∫

0

∫

Ωh

|∇uh(x, τ)|2 dx dτ ,
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where γ = γ(M1, T, Ω), which in turn yields, by virtue of Gronwall’s lemma (this is
the observation that makes the result possible),

T∫

0

∫

Ωh

|∇uh(x, t)|2 dx dt ≤ γ(η,M1, T, Ω) , (7.7)

for a γ independent of h. This shows that u is as regular as claimed. Equality (7.6)
follows again from integrating (7.5) by parts. �

Our next aim is to prove the smoothness of the cell functions used in previous sections.
In view of the existence and uniqueness results proved in [5], it is enough to find the
required regularity results in the form of a priori estimates. We denote by C∞

per(A)
the space of functions of class C∞ which are Y -periodic in A. Similarly we define

Hm
per(Ei) the space of Y -periodic functions in Ei, of class Hm. Finally H

m− 1

2

per (Γ ) is
the space of traces on Γ of functions in Hm

per(Ei).

Lemma 7.4. Let P|Ei
∈ C∞

per(Ei), i = 1, 2, and Q, s ∈ C∞
per(Γ ); we also assume that

∫

Y

P dy =

∫

Γ

Q dσ . (7.8)

Then the solution v to

−σ∆ v = P , in E1, E2; (7.9)

[σ∇v · ν] = Q , on Γ ; (7.10)

[v] = s , on Γ ; (7.11)

satisfies v|Ei
∈ C∞

per(Ei), i = 1, 2.

Proof. First we reduce to the case of a standard diffraction problem, where Q ≡ s ≡ 0
on Γ , by subtracting from v|E2

a suitable function w ∈ C∞
per(E2) such that on Γ ,

w = s, σ2∇w ·ν = Q. Then the result follows by local rectification of Γ , and iterated
use of Theorem 16.2 of [27]. �

Corollary 7.5. Assume that P ∈ C∞([0, T ];C∞
per(Ei)), i = 1, 2, and that Q, h ∈

C∞([0, T ];C∞
per(Γ )), s ∈ C∞

per(Γ ), and that (7.8) holds at every time level. For all

integers k ≥ 0 set vk(x, t) = ∂kv/∂tk(x, t), where v is the solution to

−σ∆ v = P (t) , in E1, E2; (7.12)

[σ∇v · ν] = Q(t) , on Γ ; (7.13)

α
∂

∂t
[v] + f ′(0)[v] = σ2∇v(out) · ν + h(t) , on Γ ; (7.14)

[v](y, 0) = s , on Γ . (7.15)

Then for all k ≥ 0, vk(·, 0)|Ei
∈ C∞(Ei) i = 1, 2.

Proof. The statement follows directly from Lemma 7.4 in the case k = 0. Then
we observe that each vk(·, 0) solves an elliptic problem similar to the one solved by
v(·, 0), where the partial differential equations and the interface condition are found
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by differentiating in time (7.12) and (7.13), while the initial condition is given by
(7.14), in terms of vk−1. We conclude the proof reasoning by induction: at each step
k, the data in those conditions are smooth, as a consequence of the regularity of
vk−1. �

Theorem 7.6. Under the same assumptions of Corollary 7.5, the solution v to

(7.12)–(7.15) satisfies v ∈ C∞([0, T ];C∞
per(Ei)), i = 1, 2.

Proof. First of all, we note that if we set β = f ′(0), and ṽ(x, t) = v(x, t)e
β

α
t, then

ṽ satisfies (7.12)–(7.15) where P,Q and h are replaced by P (x, t)e
β

α
t, Q(x, t)e

β

α
t,

h(x, t)e
β
α

t, respectively, and (7.14) is rewritten with f ′(0) = 0. Hence, without loss
of generality, we will assume that f ′(0) = 0 in (7.14).
Now, we differentiate k times with respect to t the problem satisfied by v, obtaining
a problem for vk = ∂kv/∂tk. Routine calculations performed on this formulations
yield for each k ∈ N∫

Y

|∇vk(y, t)|2 dy +

∫

Γ

[vk]2(y, t) dσ ≤ γ(k) , 0 < t < T . (7.16)

The constant γ here depends also on the values of the functions vk(·, 0), which however
are bounded because of Corollary 7.5. In fact, on multiplying (7.12) written for vk

by vk itself and integrating formally by parts on Y , using also (7.13)–(7.15) and the
periodicity of the involved functions, it follows

∫

Y

|∇vk(y, t)|2 dy ≤ γ


1 +

∫

Γ

|[vk+1][vk]|(y, t) dσ




≤ γ


1 +

∫

Γ

[vk+1]2(y, t) dσ +

∫

Γ

[vk]2(y, t) dσ


 ≤ γ(vk+1(0), vk(0)) ,

where we used also (2.25) applied to vk and vk+1 in the periodic cell, with non zero
sources.
Estimate (7.16), together with the Poincaré’s inequality of [30], implies that vk (int),

vk (out) have traces belonging to L∞(0, T ;H
1/2
per (Γ )).

As a consequence of (7.16), vk can be seen, separately in E1 and in E2, as the
local solution to smooth elliptic problems of Neumann type, with boundary data

on Γ of class L∞(0, T ;H
1/2
per (Γ )). These boundary conditions are in fact obtained

on differentiating k times, with respect to t, (7.13) and (7.14). At this stage, we

use the fact that [vk+1] belongs to H
1/2
per (Γ ), uniformly in time, as implied by (7.16).

Thus the classical results of [1] yield (after local rectification of Γ ) that vk is of class
L∞(0, T ;H2(Ei)), i = 1, 2. This regularity for vk+1, together with the condition
obtained differentiating (7.14) k times with respect to t, implies that the Neumann

data for vk are in H
3/2
per (Γ ), uniformly in t. Therefore vk ∈ L∞(0, T ;H3

per(Ei)), i = 1,
2. A standard bootstrap argument gives that, for every k ∈ N and every m ≥ 1,
vk ∈ L∞(0, T ;Hm

per(Ei)), i = 1, 2; i.e., for every m ≥ 1, v ∈ Hm(Ei × (0, T )), i = 1,
2, which implies the required regularity for v. �
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7.3. Compactness results. We first note that [uε] ∈ H1
loc(0, T ;L2(Γ ε)) can be

proven by means of Steklov averages techniques. More exactly, it holds

1

ε

T∫

t0

∫

Γ ε

|[uε]t|2 dσ dt ≤ γ(t0) , for all 0 < t0 < T . (7.17)

This will be used in the following result.

Lemma 7.7. Let uε be the solution to (2.1)–(2.6). For all ε > 0, extend uε to 0 in

R
N \Ω. Then

T∫

0

∫

Ω

|uε(x+ h, t) − uε(x, t)| dx dt ≤ γ1|h| , for all h ∈ B1(0); (7.18)

T−τ∫

t0

∫

Ω

|uε(x, t+ τ) − uε(x, t)|2 dx dt ≤ γ2τ
2 , for all 0 < τ < T − t0, (7.19)

for all 0 < t0 < T . Here γ1 and γ2 do not depend on ε, h or τ ; γ2 depends on t0 as

t0 → 0, and on T as well.

Proof. We use the fact that uε(t) ∈ BV (G) for each open set G containing Ω (a.e.
t). Then

T∫

0

∫

Ω

|uε(x+ h, t) − uε(x, t)| dx dt ≤ |h|
T∫

0

|Duε(t)|(G) dt = |h|
T∫

0

|Duε(t)|(Ω) dt

≤ γ|h|
{

T∫

0

∫

Ω

|∇uε|2 dx dt+ ε−1

T∫

0

∫

Γ ε

[uε]
2 dσ dt

}1/2
,

yielding (7.18), when we take into account the energy estimate (2.25).
Next we turn to the proof of (7.19). Define

zε(x, t) = uε(x, t+ τ) − uε(x, t) . (7.20)

Clearly zε solves a problem similar to (2.1)–(2.5), so that we can prove the analog of
(2.25), for t1 < t < T − τ

t∫

t1

∫

Ω

σ|∇zε|2 dx dθ +
α

2ε

∫

Γ ε

[zε]
2(t) dσ ≤ γ

ε

∫

Γ ε

[zε]
2(t1) dσ +

γ

ε

t∫

t1

∫

Γ ε

[zε]
2 dσ dθ .

(7.21)

By an application of Gronwall’s lemma, we may essentially drop the last term in the
formula above, also by redefining the constant γ appearing in the first term on the
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right hand side. Using the definition of zε, we arrive at
t∫

t1

∫

Ω

σ|∇zε|2 dx dθ +
α

2ε

∫

Γ ε

[zε]
2(t) dσ ≤ τ

γ

ε

t1+τ∫

t1

∫

Γ ε

|[uε]θ|2 dσ dθ . (7.22)

On integrating the inequality above in t1 over (t0/2, t) we find after straightforward
calculations, for all 0 < t0 < t ≤ T − τ ,

t0

t∫

t0

∫

Ω

σ|∇zε|2 dx dθ + t0
α

2ε

∫

Γ ε

[zε]
2(t) dσ ≤ τ 2γ

ε

T∫

t0/2

∫

Γ ε

|[uε]θ|2 dσ dθ ≤ γ(t0)τ
2 ,

where we invoked (7.17). The bound in (7.19) follows now from the estimate above
and from Lemma 7.1. �

Remark 7.8. a) When dealing with the non homogeneous problem (2.15)–(2.18),
the moduli of continuity on the right hand sides of (7.18) and of (7.19) depend on û
too.
b) Estimate (7.19) actually implies that uεt, u0t ∈ L2

loc(0, T ;L2(Ω)).

Lemma 7.9. Let G ⊂ R
N be a bounded open set. Assume that vn → v weakly in

L2(G), and un → u strongly in L1
loc(G). Assume moreover that the norms of un and

u in L2(G) are uniformly bounded, and that for all η > 0 there exist a k > 0, and a

compact set I ⊂ G such that∫

{|vn|>k}

v2
n dx < η ;

∫

G\I

v2
n dx < η . (7.23)

Then ∫

G

unvn dx→
∫

G

uv dx . (7.24)

Proof. Since ∫

G

unvn −
∫

G

uv =

∫

G

u(vn − v) +

∫

G

vn(un − u) ,

we only need show that the last integral becomes vanishingly small as n → ∞. Fix
η > 0 and k, I as in (7.23). Write, denoting Vk = {|vn| > k}

∫

G

vn(un − u) =

∫

Vk∪(G\I)

vn(un − u) +

∫

(G\Vk)∩I

vn(un − u) =: J1n + J2n .

Next we bound

|J1n|2 ≤ 2

{∫

Vk

v2
n +

∫

G\I

v2
n

}∫

G

(u2
n + u2) ≤ constant · η .

Finally,

|J2n| ≤ k

∫

I

|un − u| → 0 , as n→ ∞.
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Remark 7.10. In Section 5 we apply Lemma 7.9 with vn = ∂wε
i /∂xj, un = uε∂ϕ/∂xj.

The equiintegrability in (7.23) follows by periodicity.

7.4. The case of g 6≡ 0. In this case all the proofs stay the same, with minor
changes. The only result requiring a different approach is the compactness estimate
(7.19).
Estimate (7.17) is not implied by a Steklov averages technique, which instead yields

α

ε

t∫

t0

∫

Γ ε

[zε]
2(x, θ) dσ dθ ≤ γ(t0)τ

2 + τ

t∫

t0

∫

Ω

(g)τzε(x, t) dx dθ , (7.25)

where zε is as in (7.20), and 0 < t0 < t < T − τ . Moreover we set

(g)τ (x, t) =
1

τ

t+τ∫

t

g(x, θ, uε(x, θ)) dθ .

Note that, owing to the uniform boundedness of (g)τ and of zε in L2(Ω × (0, T )),
(7.25) immediately yields

α

ε

t∫

t0

∫

Γ ε

[zε]
2(x, θ) dσ dθ ≤ γ(t0)τ . (7.26)

Now inequality (7.21) is replaced with

t∫

t1

∫

Ω

σ|∇zε|2 dx dθ +
α

2ε

∫

Γ ε

[zε]
2(t) dσ ≤ γ

ε

∫

Γ ε

[zε]
2(t1) dσ

+
γ

ε

t∫

t1

∫

Γ ε

[zε]
2 dσ dθ + L

t∫

t1

∫

Ω

z2
ε dx dθ + γω(τ) , (7.27)

where 0 < t1 < t < T − τ . Indeed, owing to (2.22), (2.24), one has

|g(x, t + τ, uε(x, t+ τ)) − g(x, t, uε(x, t))| |zε(x, t)|
≤ Lzε(x, t)

2 + γω(τ)|uε(x, t)||zε(x, t)| .

Recalling that L is small, according to (2.23), we may invoke Poincaré’s inequality
(7.1) to partially absorb the third integral on the right hand side of (7.27) into the
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left hand side. We obtain in this fashion

t∫

t1

∫

Ω

σ|∇zε|2 dx dθ +
α

2ε

∫

Γ ε

[zε]
2(t) dσ ≤ γ

ε

∫

Γ ε

[zε]
2(t1) dσ

+
γ

ε

t∫

t1

∫

Γ ε

[zε]
2 dσ dθ + γω(τ) .

On integrating this inequality in t1 over (t0/2, t), and applying (7.26) we get for t ≥ t0

t0

t∫

t0

∫

Ω

σ|∇zε|2 dx dθ + t0
α

2ε

∫

Γ ε

[zε]
2(t) dσ ≤ γω(τ) +

γ

ε

t∫

t0/2

∫

Γ ε

[zε]
2(t1) dσ ≤ γ(t0)ω(τ)

(we may clearly assume ω(τ) ≥ τ), whence, on applying a last time Poincaré’s in-
equality, we infer a compactness estimate similar to (7.19), but with modulus of
continuity given in terms of ω, rather than as a linear function. However, the com-
pactness obtained in this way is sufficient for our purposes in this paper, see Section 5.
If ω(τ) = τ , a refinement of the proof above gives exactly (7.19) for uε.
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