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1 Introduction

Ever since Poincaré asked his now famous question about the 3-sphere, mathematicians have been ab-
sorbed by the problem of trying to capture the topological or geometrical properties of a manifold by its
metric structure. One of the basic questions is: under which conditions on the curvature tensor a Rie-
mannian manifold is homeomorphic (or diffeomorphic) to a space form (a manifold of constant sectional
curvature)?
In 1951 H. E. Rauch introduced in [15] the idea of curvature pinching for Riemannian manifolds and
posed the question whether a simply connected compact manifold Mn whose sectional curvatures all lie
in the interval (1, 4] is necessarily homeomorphic (or diffeomorphic) to the standard sphere Sn. A result
of this type is usually referred to as a Sphere Theorem. After a lot of research in this field, we know that
the answer is positive, due to the works of Berger and Klingenberg for the topological statement and
Brendle-Schoen [2] for the more general result on the differentiable sphere theorem, namely:

Theorem 1.1 (The Sphere Theorem) (Brendle-Schoen [2]) Let (M, g) be a compact Riemannian
manifold with 1/4-pinched curvature (that is (M, g) has positive sectional curvature and the ratio of
the minimum and the maximum of the sectional curvatures is always strictly bigger than a quarter).
Then M admits a metric of constant sectional curvature, therefore is diffeomorphic to a spherical space
form.

In two dimension, due to Koebe and Poincaré, the Uniformization Theorem for surfaces asserts that any
compact (orientable) surface M , admits a Riemannian metric g of constant curvature kg = +1, 0,−1.
Moreover, according to the Gauss-Bonnet formula, for every metric g, one has∫

M

kg dVg = 2πχ(M) ,

hence, any surface belongs to a unique geometric type (spherical, Euclidean or hyperbolic) determined
by the topology (namely the Euler–Poincaré characteristic χ(M)). In other words in two dimensions an
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integral pinching condition (as the positivity of the above integral) implies the geometrical conclusion,
encoded in the Euler–Poincaré characteristic, that the manifold is diffeomorphic to a spherical space
form.
In the present work we will concentrate on similar kind of results in dimension higher than two, with
particular attention to the following question: is it possible, like in the case of surfaces, to characterize
spherical space forms by looking at an integral pinching condition instead of a pointwise one?
The first attempt in generalizing a pointwise to an integral pinching condition was done by S.-Y. A. Chang,
M. Gursky and P. C. Yang in [4]. They showed that the sphere in dimension four can be characterized
by an integral curvature condition. Later on M. Gursky and J. Viaclovsky [12] gave a simpler proof of
this theorem

Theorem 1.2 (Chang-Gursky-Yang [4] - Gursky-Viaclovsky [12]) Let (M4, g) be a closed Riemannian
4-manifold with positive scalar curvature. Assume that∫

M

|Rcg|2dVg <
1
3

∫
M

R2
gdVg.

Then M admits a metric g̃ conformal to g such that Rcg̃ > 0.

In this paper we extend to the case of three manifolds the technique used in [12] in order to prove this
Theorem. Our proof is heavily based on the proof given by M. Gursky and J. Viaclovsky [12] of the
theorem stated above.
Before stating our main result it will be useful to recall some well-known facts. In 1982, Hamilton [13]
introduced the Ricci flow in order to study “dynamically” the relationships between topology and curva-
ture of manifolds. He proved that the metric of any 3–dimensional compact manifolds with positive Ricci
curvature can be deformed, via the Ricci flow, into a metric of constant positive sectional curvature (and
it follows that the manifold is diffeomorphic to a spherical space form).
In dimension three and in presence of positive scalar curvature, the positivity of the Ricci tensor is implied
by a pointwise pinching condition as |Rcg|2g ≤ 3

8R2
g. What we prove here is that this pinching condition

can be replaced by an integral one. Here is our main result:

Theorem 1.3 Let (M, g) be a closed 3–dimensional Riemannian manifold with positive scalar curvature.
If ∫

M

|Rcg|2g dVg ≤
3
8

∫
M

R2
g dVg ,

then there exists a metric g̃ conformal to g such that Rcg̃ is everywhere positive. In particular, using a
result of Hamilton [13], it follows that M is diffeomorphic to a spherical space form.

Let us emphasize the fact that, in our results, we don’t make any assumption on the positivity of the
Ricci tensor, we only assume that its trace is positive and a pinching on its L2-norm.
During the preparation of the manuscript of this paper, we learned that Y. Ge, C.S. Lin and G. Wang
[6] proved a weaker version of our Theorem , namely they prove that if (M, g) is a closed 3-dimensional
Riemannian manifold with positive scalar curvature and if

∫
M
|Rcg|2g dVg < 3

8

∫
M

R2
g dVg then M is

diffeomorphic to a spherical space form. Their proof is completely different from ours since they use a
very specific conformal flow.

There is a way to relate these result to the so-called Q-curvature (the curvature associated to the Paneitz
operator). The Paneitz operator introduced by Paneitz in [14] has demonstrated its importance in
dimension 4 (see for example Chang-Gursky-Yang [3] and [4]). In dimension 3, the Q-curvature is defined
by

Qg = −1
4
∆gRg − 2|Ricg|2g +

23
32

R2
g,

the Paneitz operator being defined (in dimension 3) by

Pg = ∆2
g − divg

(
−5

4
Rgg + 4Ricg

)
d− 1

2
Qg.

The Paneitz operator satisfies the conformal covariant property, that is, if ρ ∈ C∞(M), ρ > 0, then for
all ϕ ∈ C∞(M), Pρ−4g(ϕ) = ρ7Pg(ρϕ). We can now state the Corollary (here [g] stands for the conformal
class of g):
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Corollary 1.4 Let (M, g) be a closed 3-dimensional Riemannian manifold with non-negative Yamabe
invariant. If there exists a metric g′ ∈ [g] such that the Q-curvature of g′ satisfies

Qg′ ≥
1
48

R2
g′ ,

then M is diffeomorphic to a quotient of R3 if Y (M, [g]) = 0 or to a spherical space form if Y (M, [g]) > 0.

Aknowledgements : The authors would like to thank Sun-Yung Alice Chang, Matt Gursky and Paul
Yang for their interest in this work.

2 Ellipticity, upper bound and gradient estimate

Consider (M, g), a compact, smooth, 3-dimensional Riemannian manifold without boundary. Given a
section A of the bundle of symmetric two tensors, we can use the metric to raise an index and view A
as a tensor of type (1, 1), or equivalently as a section of End(TM). This allows us to define σ2(g−1A)
the second elementary function of the eigenvalues of g−1A, namely, if we denote by λ1, λ2 and λ3 these
eigenvalues

σ2(g−1A) = λ1λ2 + λ1λ3 + λ2λ3.

In this paper we choose the tensor (here t is a real number)

At
g = Ricg −

t

4
Rgg.

Note that for t = 1, A1
g is the classical Schouten tensor A1

g = Ricg − 1
4Rgg (see [1]). Hence, with our

notations, σ2(g−1At
g) denotes the second elementary symmetric function of the eigenvalues of g−1At

g.
We will denote Y (M, [g]) the Yamabe invariant associated to (M, g) (here [g] is the conformal class of
the metric g, that is [g] :=

{
g̃ = e−2ug for u ∈ C∞(M)

}
). We recall that

Y (M, [g]) := inf
g̃∈[g]

∫
M

Rg̃dVg̃(∫
M

dVg̃

) 1
3
.

An important fact that will be useful is that if g has positive scalar curvature then Y (M, [g]) > 0.

For the proof of our main Theorem, we will be concerned with the following equation for a conformal
metric g̃ = e−2ug:

(1)
(
σ2(g−1At

g̃)
)1/2

= fe2u,

where f is a positive function on M . A simple computation, similar to that in [12], shows that this
equation is equivalent to

σ2

(
g−1

(
At

g +∇2
gu + (1− t)(∆gu)g + du⊗ du− 2− t

2
|∇gu|2gg

))1/2

= f(x)e2u.

Following [12], we will discuss the ellipticity properties of equation (1).

Definition 2.1 Let (λ1, λ2, λ3) ∈ R3. We view the second elementary symmetric function as a function
on R3:

σ2(λ1, λ2, λ3) =
∑

1≤i<j≤3

λiλj ,

and we define
Γ+

2 = {σ2(λ1, λ2, λ3) > 0} ∩ {σ1(λ1, λ2, λ3) > 0} ⊂ R3,

where σ1(λ1, λ2, λ3) = λ1 + λ2 + λ3 denotes the trace.
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For a symmetric linear transformation A : V → V , where V is an n-dimensional inner product space,
the notation A ∈ Γ+

2 will mean that the eigenvalues of A lie in the corresponding set. We note that
this notation also makes sense for a symmetric 2-tensor on a Riemannian manifold. If A ∈ Γ+

2 , let
σ

1/2
2 (A) = {σ2(A)}1/2.

Definition 2.2 Let A : V → V , where V is an n-dimensional inner product space. The first Newton
transformation associated with A is (here I is the identity map on V ) T1(A) := σ1(A) · I − A. Also, for
t ∈ R we define the linear transformation Lt(A) := T1(A) + (1− t)σ1(T1(A)) · I.

We have the following:

Lemma 2.3 If A : R → Hom(V, V ), then d
dsσ2(A)(s) =

∑
i,j T1(A)ij(s) d

ds (A)ij(s), i.e, the first Newton
transformation is what arises from differentiation of σ2.

Proof The proof of this lemma is a consequence of an easy computation. See Gursky-Viaclovsky [11]

Proposition 2.4 (Ellipticity property) Let u ∈ C2(M) be a solution of equation (1) for some t ≤ 2/3
and let g̃ = e−2ug. Assume that At

g̃ ∈ Γ+
2 . Then the linearized operator at u, Lt : C2,α(M) → Cα(M), is

invertible (0 < α < 1).

Proof The proof of this proposition, adapted in dimension 3, may be found in [12].

Throughout the sequel, (M, g) will be a closed 3-dimensional Riemannian manifold with positive scalar
curvature. Since Rg > 0, there exists δ > −∞ such that Aδ

g is positive definite (i.e. Ricg − δ
4Rgg > 0 on

M). Note that δ only depends on (M, g). For t ∈ [δ, 2/3], consider the path of equations (in the sequel
we use the notation At

ut
:= At

gt
for gt given by gt = e−2utg)

(2) σ
1/2
2 (g−1At

ut
) = fe2ut ,

where f = σ
1/2
2 (g−1Aδ

g) > 0. Note that u ≡ 0 is a solution of (2) for t = δ.

Proposition 2.5 (Upper bound) Let ut ∈ C2(M) be a solution of (2) for some t ∈ [δ, 2/3]. Then
ut ≤ δ̄, where δ̄ depends only on (M, g).

Proof From Newton’s inequality
√

3σ
1/2
2 ≤ σ1, so for all x ∈ M ,

√
3fe2ut ≤ σ1(g−1At

ut
). Let p ∈ M be

a maximum of ut, then using the fact that

At
g̃ = At

g +∇2
gu + (1− t)(∆gu)g + du⊗ du− 2− t

2
|∇gu|2gg,

since the gradient terms vanish at p and (∆ut)(p) ≤ 0,
√

3f(p)e2ut(p) ≤ σ1(g−1At
ut

)(p) = σ1(g−1At
g)(p) + (4− 3t)(∆ut)(p)

≤ σ1(g−1At
g)(p).

Since t ≥ δ, this implies ut ≤ δ̄, for some δ̄ depending only on (M, g).

Proposition 2.6 (Gradient estimate) Let ut ∈ C3(M) be a solution of (2) for some δ ≤ t ≤ 2/3.
Assume that ut ≤ δ̄. Then ‖ ∇gu ‖g,∞< C1, where C1 depends only on (M, g) and δ̄.

The proof of this lemma can be found in the paper Gursky-Viaclovsky [12].

Remark 2.7 Note that we will use this proposition with δ̄ given by Proposition 2.5 and then, since δ̄
depends only on (M, g), we infer that C1 only depends on (M, g).
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3 Lower bound

For the lower bound, we need the following lemmas:

Lemma 3.1 For a conformal metric g̃ = e−2ug, we have the following integral transformation∫
M

σ2(g̃−1A1
g̃)e

−4u dVg =
∫

M

σ2(g−1A1
g) dVg +

1
8

∫
M

Rg|∇gu|2g dVg −
1
4

∫
M

|∇gu|4g dVg

+
1
2

∫
M

∆gu|∇gu|2g dVg −
1
2

∫
M

A1
g(∇gu,∇gu) dVg.

Proof The proof of this relation being contained in the paper Ge-Wang [7] we omit it.

In the sequel of the proof, we will need the following proposition (see [12] for the proof)

Proposition 3.2 If for some metric g1 on M we have At
g1
∈ Γ+

2 , then

−At
g1

+ σ1(g−1
1 At

g1
)g1 > 0 and At

g1
+

1
3
σ1(g−1

1 At
g1

)g1 > 0.

Going on with the proof for the lower bound, we have the Lemma:

Lemma 3.3 If At
g̃ ∈ Γ+

2 , then we have the following estimate

1
2

∫
M

Ag(∇gu,∇gu) dVg <
3− 2t

8

∫
M

Rg̃|∇gu|2ge−2u dVg +
1
4

∫
M

∆gu|∇gu|2g dVg −
1
4

∫
M

|∇gu|4g dVg.

Proof Since At
g̃ ∈ Γ+

2 , by Proposition 3.2, we get

−At
g̃ > −σ1(g̃−1At

g̃)g̃ = −(4− 3t)σ1(g̃−1A1
g̃)e

−2ug.

Hence we get
−A1

g̃ − (1− t)σ1(g̃−1A1
g̃)e

−2ug > −(4− 3t)σ1(g̃−1A1
g̃)e

−2ug,

which implies that
A1

g̃ < (3− 2t)σ1(g̃−1A1
g̃)e

−2ug.

Applying this to ∇gu we obtain

1
2
A1

g̃(∇gu,∇gu) <
3− 2t

8
Rg̃|∇gu|2ge−2u.

Using the conformal transformation law of the tensor A1
g̃, integrating over M , we have the result.

Now we are able to prove the following lower bound (recall that C1 is given by Lemma 2.6)

Proposition 3.4 (Lower Bound) Assume that for some t ∈ [δ, 2/3] the following estimate holds

(3)
∫

M

σ2(g−1A1
g) dVg +

1
24

(
7
10

− t) inf
g′=e−2ϕg , |∇gϕ|g≤C1

(∫
M

R2
g′e

−ϕdVg′

)
:= µt > 0.

Then there exists δ depending only on (M, g) such that if ut ∈ C2(M) is a solution of (2) and if At
ut
∈ Γ+

2

then ut ≥ δ.

Proof Since At
g = A1

g + (1− t)σ1(g−1A1
g)g, we easily have that

σ2(At
g) = σ2(A1

g) + (1− t)(5− 3t)σ1(g−1A1
g)

2.

Letting g̃ = e−2utg,

e4utf2 = σ2(g−1At
ut

) = σ2(g−1A1
ut

) + (1− t)(5− 3t)
(
σ1(g−1A1

ut
)
)2

= e−4ut

(
σ2(g̃−1A1

ut
) +

1
16

(1− t)(5− 3t)R2
g̃

)
.
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Integrating this with respect to dVg , we obtain

C

∫
M

e4ut dVg ≥
∫

M

f2e4ut dVg

=
∫

M

σ2(g̃−1A1
ut

)e−4ut dVg +
1
16

(1− t)(5− 3t)
∫

M

R2
g̃e
−4ut dVg

=
∫

M

σ2(g̃−1A1
ut

)e−4ut dVg +
1
16

(1− t)(5− 3t)
∫

M

R2
g̃e
−ut dVg̃,

where C > 0 is chosen so that f2 ≤ C (recall that, since f = σ2(g−1Aδ
g), C depends only on (M, g)).

Using the fact that
Rg̃e

−2ut = Rg + 4∆gut − 2|∇gut|2g,

from Lemma 3.1, we get∫
M

σ2(g̃−1A1
ut

)e−4ut dVg =
∫

M

σ2(g−1A1
g) dVg +

1
8

∫
M

Rg̃|∇gut|2ge−2ut dVg

−1
2

∫
M

A1
g(∇gu,∇gu) dVg.

Notice that, since At
ut
∈ Γ+

2 , we have

0 < σ1(g−1At
ut

) = (4− 3t)σ1(g−1A1
ut

),

and so Rg̃ > 0. By Lemma 3.3, we obtain∫
M

σ2(g̃−1A1
ut

)e−4ut dVg ≥
∫

M

σ2(g−1A1
g) dVg −

1− t

4

∫
M

Rg̃|∇gut|2ge−2ut dVg

−1
4

∫
M

∆gut|∇gut|2g dVg +
1
4

∫
M

|∇gut|4g dVg.

By Young’s inequality, one has∫
M

R2
g̃e
−ut dVg̃ ≥

2
ε

∫
M

Rg̃|∇gut|2ge−2ut dVg −
1
ε2

∫
M

|∇gut|4g dVg,

for all ε > 0. By an easy computation, we have

1
16

(1− t)(5− 3t) =
1
24

(
7
10

− t) + P2(t),

where P2(t) is a positive, second order, polynomial in t. Putting all together, we obtain (for C > 0
depending only on (M, g))

C

∫
M

e4ut dVg ≥
∫

M

σ2(g̃−1A1
ut

)e−4ut dVg +
1
16

(1− t)(5− 3t)
∫

M

R2
g̃e
−ut dVg̃

=
∫

M

σ2(g̃−1A1
ut

)e−4ut dVg +
(

1
24

(
7
10

− t) + P2(t)
) ∫

M

R2
g̃e
−ut dVg̃

≥
∫

M

σ2(g−1A1
g) dVg +

1
24

(
7
10

− t)
∫

M

R2
g̃e
−ut dVg̃

+P2(t)
∫

M

R2
g̃e
−ut dVg̃ −

1− t

4

∫
M

Rg̃|∇gut|2ge−2ut dVg

−1
4

∫
M

∆gut|∇gut|2g dVg +
1
4

∫
M

|∇gut|4g dVg.
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Now using Young’s inequality and the conformal change equation of the scalar curvature, we get (for a
certain C > 0 depending only on (M, g))

C

∫
M

e4ut dVg ≥
∫

M

σ2(g−1A1
g) dVg +

1
24

(
7
10

− t)
∫

M

R2
g̃e
−ut dVg̃

+
(

2P2(t)
ε

− 1− t

4

) ∫
M

Rg|∇gut|2g dVg

+
(

8P2(t)
ε

− (1− t)− 1
4

) ∫
M

∆gut|∇gut|2g dVg

+
(

3− 2t

4
− P2(t)

ε2
− 4P2(t)

ε

) ∫
M

|∇gut|4g dVg.

We choose ε = ε(t) > 0, such that 8P2(t)
ε − (1− t)− 1

4 = 0. One can easily check that, with this choice,

2P2(t)
ε

− 1− t

4
≥ 0 and

3− 2t

4
− P2(t)

ε2
− 4P2(t)

ε
≥ 0.

Finally, recalling that according to lemma 2.6 ‖∇gut‖g,∞ ≤ C1 with C1 depending only on (M, g), we
obtain the following estimate (for a certain C > 0 depending only on (M, g))

C

∫
M

e4ut dVg ≥
∫

M

σ2(g−1A1
g) dVg +

1
24

(
7
10

− t)
∫

M

R2
g̃e
−ut dVg̃

≥
∫

M

σ2(g−1A1
g) dVg +

1
24

(
7
10

− t) inf
g′=e−2ϕg , |∇gϕ|g≤C1

(∫
M

R2
g′e

−ϕdVg′

)
.

Consider the following quantity:

I(M, g) := inf
g′=e−2ϕg , |∇gϕ|≤C1

(∫
M

R2
g′e

−ϕdVg′

)
.

We let, for g′ = e−2ϕg, i(g′) :=
∫

M
R2

g′e
−ϕdVg′ . As one can easily check, if two metrics g1 and g2 are

homothetic, then i(g1) = i(g2). So, we have

I(M, g) = inf
g′=e−2ϕg , V ol(M,g′)=1 and |∇gϕ|g≤C1

(∫
M

R2
g′e

−ϕdVg′

)
.

Take ϕ ∈ C∞(M) such that, for g′ = e−2ϕg, V ol(M, g′) = 1 and such that |∇gϕ|g ≤ C1 where C1 is
given by Proposition 2.6. Since V ol(M, g′) = 1, if p is a point where ϕ attains its minimum we have

e−3ϕ(p)V ol(M, g) ≥ 1,

and then, there exists C0 depending only on (M, g) such that ϕ(p) ≤ C0. Now, using the mean value
theorem, it follows since |∇gϕ|g is controlled by a constant depending only on (M, g), that maxϕ ≤ C ′

0

where C ′
0 depends only on (M, g).

Using this, we clearly have that ∫
M

R2
g′e

−ϕdVg′ ≥ e−C′
0

∫
M

R2
g′dVg′ .

Using Hölder inequality and the definition of the Yamabe invariant, we get (recall that V ol(M, g′) = 1)∫
M

R2
g′e

−ϕdVg′ ≥ e−C′
0 (Y (M, [g]))2 ,

and then I(M, g) ≥ e−C′
0 (Y (M, [g]))2. This proves that there exists a positive constant C = C(M, g)

depending only on (M, g) such that

I(M, g) ≥ C (Y (M, [g]))2 .
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Using this control from below of I(M, g) we have that

C

∫
M

e4ut dVg ≥
∫

M

σ2(g−1A1
g) dVg +

1
24

(
7
10

− t)C (Y (M, [g]))2 := µt > 0.

This gives
max

M
ut ≥ log µt − C(g).

Since ‖∇gut‖g,∞ < C1 this implies the Harnack inequality

max
M

ut ≤ min
M

ut + C(M, g),

by simply integrating along a geodesic connecting points at which ut attains its maximum and minimum.
Combining this two inequalities, we obtain

min
M

ut ≥ log µt − C,

where C only depends on (M, g). This ends the proof of the Lemma.

4 C2,α estimate

We have the following C2,α estimate for solutions of the equation (1). For the proof, see [12] and [10].

Proposition 4.1 (C2,α estimate) Let ut ∈ C4(M) be a solution of (2) for some δ ≤ t ≤ 2/3, satisfying
δ < ut < δ̄, and ‖ ∇ut ‖g,∞< C1. Then for 0 < α < 1, ‖ ut ‖g,C2,α≤ C2, where C2 depends only on
(M, g).

5 Proof of the main Theorem

We use the continuity method. Our 1-parameter family of equations, for t ∈ [δ, 2
3 ], is

(4) σ
1/2
2 (g−1At

ut
) = f(x)e2ut ,

with f(x) = σ
1/2
2 (g−1Aδ

g) > 0, and δ was chosen so that Aδ
g is positive definite. Define

S =
{

t ∈ [δ,
2
3
] | ∃ a solutionut ∈ C2,α(M) of (4)withAt

ut
∈ Γ+

2

}
.

Clearly, with our choice of f , u ≡ 0 is a solution for t = δ. Since Aδ
g is positive definite, δ ∈ S, and S 6= ∅.

Let t ∈ S, and ut be a solution. By Proposition 2.4, the linearized operator at ut, Lt : C2,α(M) → Cα(M),
is invertible. The implicit function theorem tells us that S is open. From classical elliptic theory, it follows
that ut ∈ C∞(M), since f ∈ C∞(M). By Proposition 2.5 we get an uniform upper bound on the solutions
ut, independent of t. We may then apply Proposition 2.6 to obtain a uniform gradient bound on ut, and
by Proposition 3.4, we get a uniform lower bound. Finally using Proposition 4.1 and the classical Ascoli-
Arzela’s Theorem, then implies that S must be closed, therefore S = [δ, 2

3 ]. The metric g̃ = e
−2u 2

3 g

then satisfies σ2(A
2
3
g̃ ) > 0 and Rg̃ > 0. The positivity of the Ricci tensor associated to g̃ follows from

proposition 3.2 (where t is taken to be equal to 2
3 ).

6 Proof of Corollary 1.4

Assume that M admits a metric g′ such that Qg′ ≥ 1
48R2

g′ and Y (M, [g′]) ≥ 0. Recall that

Qg′ = −1
4
∆g′Rg′ − 2|Ricg′ |2g′ +

23
32

R2
g′ ,

Integrating Qg′ on M with respect to dVg′ we obtain (since Qg′ ≥ 0)

(5)
∫

M

|Rigg′ |2g′dVg′ ≤
23
64

∫
M

R2
g′dVg′ .
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Now if we compute
∫

M
σ2(g′−1A1

g′) using (5), we have (recall that σ2(g′−1A1
g′) = − 1

2 |Ricg′ |2g′ + 3
16R2

g′):∫
M

σ2(g′−1A1
g′) ≥

1
128

∫
M

R2
g′dVg′ ≥ 0.

Now, consider the conformal laplacian operator Lg′ := ∆g′ − 1
8Rg′ . We have using the assumption

Qg′ ≥ 1
48R2

g′

Lg′Rg′ = ∆g′Rg′ −
1
8
R2

g′ ≤ −8|Ricg′ |2g′ +
22
8

R2
g′ −

1
12

R2
g′ ≤

(
−8

3
+

22
8
− 1

12

)
R2

g′ = 0.

Applying a Lemma due to Gursky [9], since Y (M, [g′]) ≥ 0 we have either Rg′ > 0 (if Y (M, [g′]) > 0)
or Rg′ ≡ 0 (if Y (M, [g′]) = 0). If Y (M, [g′]) > 0 we can apply our main Theorem to conclude that M is
diffeomorphic to a spherical space form. Otherwise, if Y (M, [g′]) = 0, since Qg′ ≥ 1

48R2
g′ and Rg′ ≡ 0, we

deduce, using the expression giving Qg′ , that Ricg′ ≡ 0 and then M is diffeomorphic to a quotient of R3.
This ends the proof of the Corollary.
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