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Abstract. We study the differential properties of solutions of the Prandtl-Reuss model.
We prove that the stress tensor has locally square-integrable first derivatives: σ ∈
L∞([0, T ]; W 1,2

loc (Ω; Mn×n
sym )) . The result is based on discretization of time and uniform

estimates of solutions of the incremental problems, which generalize the estimates in the

case of Hencky perfect plasticity. Counterexamples to the regularity of displacements
and plastic strains in the quasistatic case are presented.
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1. Introduction

A strong formulation of the Prandtl-Reuss model of perfect plasticity is the following:
given a domain Ω ⊂ Rn ,

body force f(t, x) : [0, T ]× Ω → Rn,
boundary displacement w(t, x) : [0, T ]× Γ0 → Rn,
surface force F (t, x) : [0, T ]× Γ1 → Rn,

the problem is to find functions

u(t, x), e(t, x), p(t, x) and σ(t, x)

such that for every t ∈ [0, T ] , for every x ∈ Ω the following hold:
(1) kinematic admissibility: ε(u(t, x)) = e(t, x) + p(t, x) in Ω, u(t, x) = w(t, x) on Γ0

(2) constitutive equation: σ(t, x) = A−1 e(t, x),
(3) equilibrium: div xσ(t, x) = −f(t, x) in Ω, σ(t, x) ν(x) = g(t, x) on Γ1 ,
(4) stress constraint σ(t, x) ∈ K ,
(5) associative flow rule: (ξ − σ(t, x)) : ṗ(t, x) ≤ 0 for every ξ ∈ K ,

where

ε(u) =
∇u+∇uT

2
,

K = {τ ∈ Mn×n
sym : |τD| ≤

√
2k∗}

and A is the compliance tensor (the inverse of the elasticity tensor), which in the isotropic
case has the form

(1.1) Aσ =
trσ
n2K0

1 +
1
2µ

σD,

where nK0 is the first Lamé constant, and µ is the shear modulus. The problem is supple-
mented by initial conditions at time t = 0.

During the last decades there was an extensive study of this problem in its weak formu-
lation (see e.g. [2, 5, 15]). Due to the linear growth of the functional with respect to ε(u),
arising in this problem, one looks for displacements u in the space BD(Ω) and for stresses σ
in the space L2(Ω; Mn×n

sym ). However, one can expect a better regularity of the stress tensor
1
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σ . Namely, as it was shown in [10, 11, 12, 13], in some static situations the stress belongs
to the space W 1,2

loc (Ω; Rn).
In this paper we address the issue of a higher regularity of the stress tensor σ(t) with

respect to spatial variables. The main result (see Theorem 2.1 below) states that for the
Prandtl-Reuss model one has

σ ∈ L∞([0, T ];W 1,2
loc (Ω; Mn×n

sym )).

A similar result was obtained in [1], where the authors used Norton-Hoff approximations
and the dual theory of elliptic equations. However, our proof is based on a completely
different approach, developed by G. Seregin for proving regularity of stresses in the case of
Hencky perfect plasticity (see [4, 10, 14]). Observe, that due to this fact, our assumptions
on the data of the problem are different from those of [1].

We believe, that the method proposed in this paper can be used for proving the differen-
tiability of stresses for other models occurring in plasticity.

Shortly, the strategy for proving Theorem 2.1 consists in refining the proof of the existence
of a solution to the quasistatic problem, carried out in [2], by generalizing the estimates
obtained in [4] for proving the regularity of stresses in the case of Hencky perfect plasticity.

More precisely, we follow the general scheme for proving the existence of weak solutions
of the continuous-time energy formulation of rate-independent processes (see e.g. [8] and the
references contained therein). Our arguments are similar to the ones used in [14] for the case
of plasticity with hardening. Note, that in [5, 15] the existence was proved by visco-plastic
approximations, while in order to use the methods of [4] one needs to have some analogue
of the static problem. This is why we follow the proof of the existence given in [2], where a
quasistatic problem in perfect plasticity was solved by time discretization. In this case the
incremental problems one has to solve to get the updated values of solutions, play the role
of the static problem, where one can use the machinery of [4].

We perform the standard time-discretization procedure, and for suitable defined approxi-
mate solutions (uN (t), eN (t), pN (t), σN (t)), converging to a weak solution of the quasistatic
problem, we obtain the estimate

(1.2) sup
N∈N

sup
t∈[0,T ]

‖σN (t)‖W 1,2
loc (Ω;Mn×n

sym ) ≤ C,

which yields Theorem 2.1. To get (1.2), one looks for solutions of the incremental problems,
regarded as saddle points of some minimax problem, similar to the one considered in [4, 10]
for the static case of Hencky perfect plasticity. The main difference is the presence of a term
which takes into account the preceding history of plastic deformation.

Let us note, that Theorem 2.1 does not give any information about the behavior of the
stress tensor near the boundary. As it was observed in [9], the method we use is not suitable
for the investigation of regularity up to the boundary, at least in the case of a nonconvex
domain Ω. The issue of boundary regularity was discussed also in [3].

To our best knowledge, the only global regularity result for the stress in the case of Hencky
perfect plasticity is contained in [6] where under appropriate assumptions it is proved that
σ ∈W 1/2−δ,2(Ω) for every δ > 0.

The paper is organized as follows: in Section 2 we introduce the definitions and state the
main result. In Section 3 we present a weak formulation of the quasistatic problem, outline
the proof of existence of the quasistatic evolution and obtain some time-continuity estimates
for the approximate solutions. In Section 4 an abstract scheme of relaxation of convex
functionals in non reflexive spaces is described. A minimax formulation of the incremental
problems is given in Section 5. In Section 6 we formulate the regularized problems, which
are used for obtaining the differentiability of stresses, and show the convergence properties
of their solutions. Section 7 contains the estimates of the W 1,2

loc norms of the solutions to



REGULARITY OF STRESSES IN PRANDTL-REUSS PERFECT PLASTICITY 3

the regularized problems, which imply that for every approximate solution we actually have

sup
t∈[0,T ]

‖σN‖W 1,2
loc (Ω;Mn×n

sym ) ≤ C(N),

however, without any uniformity with respect to N . The uniform estimates (1.2) and the
proof of Theorem 2.1 are contained in Section 8. In Section 9 we consider the examples which
show that there is no analogue of regularity theorem, as in [4, 10, 11], for the displacement
u and the plastic strain p .

2. Preliminary definitions and the main result

We use the following notations:

Rn denotes the n -dimensional Euclidian space,

Mn×n
sym denotes the space of all n×n symmetric matrices, equipped with a Hilbert-Schmidt

scalar product σ : ξ = σijξij ,

1 stands for the identity matrix, and we consider the orthogonal decomposition Mn×n
sym =

Mn×n
D ⊕ R1 of the space Mn×n

sym into the subspace of trace-free matrices Mn×n
D and of the

multiples of identity R1 ,

1D represents an orthogonal projection onto the subspace Mn×n
D ,

a � b stands for the symmetrized tensor product of two vectors a, b ∈ Rn , given by the
formula (a� b)ij = 1

2 (aibj + ajbi),

Lp(Ω; Rm) is the Lebesgue space of all functions from Ω into Rm , having the finite norm
(
∫
Ω
|f |p dx)1/p ,

W l,p(Ω; Rm) is the Sobolev space of all functions from Ω into Rm with the norm

‖f‖l,p,Ω :=
(∫

Ω

l∑
α=0

|∇αf |r
)1/r

,

Mb(Ω; Rm) is the space of all bounded Radon measures on Ω with values in Rm ,

BD(Ω) is the space of all functions in L1(Ω; Rn) such that ε(u) ∈Mb(Ω; Mn×n
sym ),

Ln stands for the Lebesgue measure on Rn ,

Hn−1 is the (n− 1)-dimensional Hausdorf meausure.

In the sequel we will make use of the spaces

D2,1(Ω) =
{
v ∈ L1(Ω; Rn) : ‖v‖2,1 = ‖div v‖L2(Ω) + ‖v‖L1(Ω) + ‖εD(v)‖L1(Ω) < +∞

}
,

D2,1
0 (Ω) =

{
v ∈ D2,1(Ω) : v = 0 on Γ0

}
,

which are well-known spaces of weakly differentiable vector-valued functions. For their
properties we refer to [4, Appendix A.2]. Let us introduce the notation

Σ =
{
σ ∈ L2(Ω; Mn×n

sym ) : div σ ∈ Ln(Ω; Rn), σD ∈ L∞(Ω; Mn×n
D )

}
,

K =
{
σ ∈ L2(Ω; Mn×n

sym ) : σ(x) ∈ K for a.e. x ∈ Ω
}
.

2.1. The main result. We impose the following assumptions on the data of the problem

(2.1)
f ∈ AC([0, T ];Ln(Ω; Rn)) ∩ L∞([0, T ];C1

loc(Ω; Rn))
F ∈ AC([0, T ];L∞(Γ1))
w ∈ AC([0, T ];W 1,2(Ω; Rn)).
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We also assume the so-called uniform safe-load condition:

(2.2)

there exists a function % ∈ AC([0, T ];L2(Ω; Mn×n
sym )), such that

div x%(t) = −f(t) in Ω and [%ν] = F (t) on Γ1 for every t ∈ [0, T ],

|%D(t, x)| ≤ (1− λ)
√

2k∗ for some 0 < λ < 1, a.e. x ∈ Ω, for every t ∈ [0, T ],
and %D ∈ AC([0, T ];L∞(Ω; Mn×n

D )).

Suppose that ∂Ω ∈ C2 is partitioned into two disjoint open sets Γ0 , Γ1 and their common
interface γ = ∂Γ0 = ∂Γ1 :

∂Ω = Γ0 ∪ γ ∪ Γ1.

Further, assume that

(2.3)
for each x ∈ γ, there exists a C2 diffeomorphism defined in a
neighbourhood of x which maps ∂Ω to an (n− 1)−dimensional
hyperplane, and γ to an (n− 2)-dimensional plane.

The main result of this paper is the following theorem.

Theorem 2.1. Suppose that n = 2, 3 , ∂Ω ∈ C2 , A has the form (1.1) and the assump-
tions (2.1)-(2.3) are satisfied. Then for the solution (u, e, p) of the quasistatic problem, see
Definition 3.6, we have

σ ∈ L∞([0, T ];W 1,2
loc (Ω; Mn×n

sym )),
with σ(t, x) = A−1e(t, x) .

3. Weak formulation of the quasistatic problem

There are several equivalent ways to state the original problem in a weak form. In
this section we present a formulation, expressed in terms of energy balance and energy
dissipation, presented in [2]. Then we state the existence and regularity results for this
quasistatic problem and briefly discuss the method of the proof, which consists in time-
discretization procedure. Finally, in the end of the section, we obtain a discrete version of
the absolute continuity with respect to time, which holds also at the level of incremental
problems.

3.1. Weak formulation: quasistatic evolution. The variational formulation of rate-in-
dependent processes, for which we refer to [8], expresses the evolution in terms of energy
balance and dissipation. In the rest of this section we follow the exposition of [2]. First, we
recall two definitions, which are needed to deal with boundary conditions in a relaxed form
and to have the duality between the plastic part of the strain and functions from the set
Σ, defined above. We note that the latter definition generalizes the well-known stress-strain
duality, studied in [7].

Definition 3.1. A triple (u, e, p) ∈ BD(Ω)× L2(Ω; Mn×n
sym )×Mb(Ω ∪ Γ0; Mn×n

D ) is said to
be admissible for a given boundary data w ∈W 1,2(Ω; Rn), if

(1) ε(u) = e+ p in Ω,
(2) p = (w − u)� νHn−1 on Γ0 .

The set of all admissible triples for a given w is denoted by A(w).

Remark 3.2. We point out that the first part of this definition is responsible for the additive
decomposition, while the second condition reflects the weak form of the boundary conditions,
which are typical in the variational theory of functionals with linear growth.

Definition 3.3. For w ∈ W 1,2(Ω; Mn×n
sym ), an admissible triple (u, e, p) ∈ A(w) and σ ∈ Σ

we define a measure [σD : p] ∈Mb(Ω ∪ Γ0) by∫
Ω∪Γ0

ϕd[σD : p] =
∫

Ω

ϕd[σD : εD(u)]−
∫

Ω

ϕσD : eD dx+
∫

Γ0

ϕ(w − u) · [σν]⊥ dHn−1,
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for every ϕ ∈ C(Ω ∪ Γ0). Thus, the following duality is well-defined:

〈σD : p〉Σ,Π = [σD : p](Ω ∪ Γ0).

Remark 3.4. Here [σD : εD(u)] is the measure, defined in [7]. As in the case of stress-strain
duality, here the difficulty is due to the fact, that σD is an L∞ function, while p is just a
bounded Radon measure.

One can show, that for the duality defined in this way, the usual integration by parts
formula holds:

Proposition 3.5. Let σ ∈ Σ, f ∈ Ln(Ω; Rn), F ∈ L∞(Γ1; Rn) and let (u, e, p) ∈ A(w)
with w ∈ H1(Ω; Rn) . Assume that div σ = −f a.e. in Ω and [σν] = F on Γ1 . Then

(3.1) 〈σD, p〉Σ;Π +
∫

Ω

σ : (e− ε(w)) dx =
∫

Ω

f · (u− w) dx+
∫

Γ1

g · (u− w) dHn−1.

Now let us define the functionals which appear in the energy formulation of the problem.
We start by defining the quadratic form Q : L2(Ω; Mn×n

sym ) → R , corresponding to the stored
elastic energy, by

Q(e) =
1
2

∫
Ω

A−1e : e dx.

Denoting by H : Mn×n
D → R the support function to the sections of K , which in the

case of Prandtl-Reuss perfect plasticity has a very simple form, we introduce in the usual
way the convex functional of measures H : Mb(Ω ∪ Γ0; Mn×n

D ) → R . Then the dissipation
associated with H in any time interval [s, t] ⊂ [0, T ] is given by

DH(p; s, t) = sup
{ M∑

j=1

H(p(tj)− p(tj−1)) : s = t0 ≤ · · · ≤ tM , M ∈ N
}
.

Finally, we define the total load M : [0, T ] → BD(Ω)′ by

(3.2) M [t]u =
∫

Ω

f(t) · u dx+
∫

Γ1

F (t) · u dHn−1.

Now we are in a position to give a variational formulation of the quasistatic problem.

Definition 3.6. A quasistatic evolution is a function

(u, e, p) : [0, T ] → BD(Ω)× L2(Ω; Mn×n
sym )×Mb(Ω ∪ Γ0; Mn×n

D ),

which satisfies the following conditions

(qs1) (global stability): For every t ∈ [0, T ] the triple (u, e, p)(t) ∈ A(w(t)) and

Q(e(t))−M [t]u(t) ≤ Q(η) +H(q − p(t))−M [t]v

for every (v, η, q) ∈ A(w(t)),
(qs2) (energy balance): p : [0, T ] → Mb(Ω ∪ Γ0; Mn×n

D ) has bounded variation and for
every t ∈ [0, T ]

Q(e(t)) +DH(p; 0, t)−M [t]u(t) =

= Q(e(0))−M [0]u(0) +
∫ t

0

[
〈σ(s), ε(ẇ(s))〉L2;L2 −M [s]ẇ(s)− Ṁ [s]u(s)

]
ds

where σ(t) = A−1e(t).
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3.2. Existence result and time-discretization. The following theorem establishes the
existence of a solution to the quasistatic problem in perfect plasticity.

Theorem 3.7. Let (u0, e0, p0) ∈ A(w(0)) satisfy the stability condition

Q(e0)−M [0]u0 ≤ Q(η) +H(q − p0)−M [0]v,

for every (v, η, q) ∈ A(w(0)) . Then there exists a quasistatic evolution

(u(t), e(t), p(t)),

such that

u(0) = u0, e(0) = e0, p(0) = p0.

Moreover, the elastic part of the symmetrized gradient t 7→ e(t) is unique and a quasistatic
evolution (u, e, p) as a function from [0, T ] to BD(Ω)× L2(Ω; Mn×n

sym )×Mb(Ω ∪ Γ0; Mn×n
D )

is absolutely continuous in time.

In [2] this theorem is proved by a discretization of time. We divide the interval [0, T ] into
N equal parts of length T/N by points (tmN )m=0,...,N . For m = 0, . . . , N we set

(3.3) wm
N = w(tmN ), fm

N = f(tmN ), Fm
N = F (tmN ), Mm

N = M [tmN ], and %m
N = %(tmN ).

For every N we define um
N , e

m
N and pm

N by induction. We set

(u0
N , e

0
N , p

0
N ) = (u0, e0, p0) ∈ A(w(0)),

while for every m = 1, . . . , N we define (um
N , e

m
N , p

m
N ) as a solution to the incremental

problem

(3.4) min
(u,e,p)∈A(wm

N )

{
Q(e) +H(p− pm−1

N )−Mm
N (u)

}
.

Remark 3.8. We note, that (u, e, p) is a solution to (3.4) if and only if one of the following
conditions holds:

(1) −H(q) ≤ 〈σ|η〉L2;L2 − 〈fm
N |v〉Ln;Ln′ ≤ H(−q) for every (v, η, q) ∈ A(0).

(2) σ ∈ Σ ∩ K with div σ = −fm
N and [σν] = Fm

N .

For m = 0, . . . , N we set σm
N = A−1em

N and for every t ∈ [0, T ] we define piecewise
constant interpolations

uN (t) = um
N , eN (t) = em

N , pN (t) = pm
N , σN (t) = σm

N ,

wN (t) = wm
N , fN (t) = fm

N , FN (t) = Fm
N , MN (t) = Mm

N , %N (t) = %m
N ,

where m is the largest integer such that tmN ≤ t . By definition (uN (t), eN (t), pN (t)) ∈
A(wN (t)).

In the proof of the existence, it was shown that for approximate solutions one has the
estimate

(3.5) sup
t∈[0,T ]

‖eN (t)‖L2 + Var(pN ; 0, T ) + sup
t∈[0,T ]

‖uN‖BD ≤ C,

which is uniform with respect to N , and it was established, that these functions converge
pointwise (with respect to t) to a solution of the quasistatic evolution problem.
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3.3. Continuity estimates of solutions of the incremental problems. In [2] it was
established that the quasistatic evolution is absolutely continuous in time. However, as we
will deal precisely with the solutions of the time-discretized problems, we would need the
continuity estimates of solutions at the level of incremental problems.

Below the following notations will be often used: given a function h : [0, T ] → X ,

(3.6) δhm
N := h(tmN )− h(tm−1

N ).

We also consider the increment of the data of the problem, defined by

(3.7) Dm
N := ‖δ%m

N‖L2 + ‖δ%mD
N ‖L∞ + ‖δwm

N ‖W 1,2 + ‖δfm
N ‖Ln + ‖δFm

N ‖L∞ .

We note, that by (2.1), we may assume the data of the problem to be Lipschitz with
respect to time. Indeed, the absolutely continuous functions can be made Lipschitz just by
time reparametrization.

Theorem 3.9. For solutions of the incremental problems (um
N , e

m
N , p

m
N ) the following in-

equality holds:

(3.8) ‖δem
N‖L2 + ‖δpm

N‖Mb
+ ‖ε(δum

N )‖Mb
+ ‖δum

N‖L1 ≤ C Dm
N ,

where δhm
N in understood as in (3.6) and Dm

N denotes the increment of the data of the
problem, defined by (3.7).

Proof: As the triple

(um−1
N + wm

N − wm−1
N , em−1

N + ε(wm
N )− ε(wm−1

N ), pm−1
N ) ∈ A(wm

N ),

the minimality condition (3.4) and the integration by parts formula (3.1) imply

Q(em
N )−

∫
Ω

%m
N : em

N dx+H(pm
N − pm−1

N )− 〈%m
N , p

m
N − pm−1

N 〉Σ;Π ≤

≤ Q(em−1
N + ε(wm

N )− ε(wm−1
N ))−

∫
Ω

%m
N : (em−1

N + ε(wm
N )− ε(wm−1

N )) dx

Developing the quadratic form in the right-hand side we arrive at:

(3.9)

1
2

∫
Ω

σm
N : em

N dx− 1
2

∫
Ω

σm−1
N : em−1

N dx+H(pm
N − pm−1

N ) ≤

≤ Q(ε(wm
N )− ε(wm−1

N )) +
∫

Ω

σm−1
N : (ε(wm

N )− ε(wm−1
N )) dx+

+〈%m
N , p

m
N − pm−1

N 〉Σ;Π −
∫

Ω

%m
N : (em−1

N + ε(wm
N )− ε(wm−1

N )) dx+
∫

Ω

%m
N : em

N dx.

Now consider the functions

v = um
N − um−1

N − (wm
N − wm−1

N ), η = em
N − em−1

N − (ε(wm
N )− ε(wm−1

N )),
q = pm

N − pm−1
N .

Since (v, η, q) ∈ A(0) and (um−1
N , em−1

N , pm−1
N ) is a solution of the corresponding minimum

problem at the previous step, we obtain, by means of Remark 3.8 and the integration by
parts formula (3.1)

(3.10)

−
∫

Ω

σm−1
N : (em

N − em−1
N ) dx+

∫
Ω

%m−1
N : (em

N − em−1
N ) dx+

〈%m−1 D
N , pm

N − pm−1
N 〉Σ;Π +

∫
Ω

(σm−1
N − %m−1

N ) : (ε(wm
N )− ε(wm−1

N )) ≤

≤ H(pm
N − pm−1

N ).
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By combining (3.9) and (3.10) we get the following

(3.11)

Q(em
N − em−1

N ) =
1
2

∫
Ω

σm
N : em

N dx− 1
2

∫
Ω

σm−1
N : em−1

N dx−

−
∫

Ω

σm−1
N : (em

N − em−1
N ) dx ≤ Q(ε(wm

N )− ε(wm−1
N )) +

∫
Ω

σm−1
N : (ε(wm

N )−

ε(wm−1
N )) dx+ 〈%m

N , p
m
N − pm−1

N 〉Σ;Π−

−
∫

Ω

%m
N : (em−1

N + ε(wm
N )− ε(wm−1

N )) dx+
∫

Ω

%m
N : em

N dx−

−
∫

Ω

%m−1
N : (em

N − em−1
N ) dx−

−〈%m−1 D
M , pm

N − pm−1
N 〉Σ;Π −

∫
Ω

(σm−1
N − %m−1

N ) : (ε(wm
N )− ε(wm−1

N )).

Let us apply the integration by parts formula (3.1) to compute 〈%m
N , p

m
N − pm−1

N 〉Σ;Π :

(3.12)

〈%m
N , p

m
N − pm−1

N 〉Σ;Π = −
∫

Ω

%m
N : (em

N − ε(wm
N )− em−1

N + ε(wm−1
N )) dx+

+
∫

Ω

fm
N · (um

N − wm
N − um−1

N + wm−1
N ) dx+

+
∫

Γ1

Fm
N · (um

N − wm
N − um−1

N + wm−1
N ) dHn−1,

with the analogous expression for 〈%m−1
N , pm

N − pm−1
N 〉Σ;Π .

Putting the identity (3.12) into the inequality (3.11) we end up with the estimate

(3.13)

Q(em
N − em−1

N ) ≤ Q(ε(wm
N )− ε(wm−1

N ))+

+
∫

Ω

(fm
N − fm−1

N ) · (um
N − um−1

N − (wm
N − wm−1

N )) dx+

+
∫

Γ1

(Fm
N − Fm−1

N ) · (um
N − um−1

N − (wm
N − wm−1

N )) dHn−1 ≤

≤ C ‖ε(wm
N )− ε(wm−1

N )‖2L2+
+
(
‖fm

N − fm−1
N ‖Ln + ‖Fm

N − Fm−1
N ‖L∞

)
‖um

N − wm
N − (um−1

N − wm−1
N )‖BD.

Now let us estimate ‖pm
N − pm−1

N ‖1 in terms of the data of the problem. First of all, the
safe load condition yields

α‖pm
N − pm−1

N ‖1 ≤ H(pm
N − pm−1

N )− 〈%m D
N , pm

N − pm−1
N 〉.

Now, the relation (3.9) and the boundedness of ‖%m
N‖L2 , ‖%m D

N ‖L∞ , ‖em
N‖L2 and ‖pm

N‖1
imply

(3.14) ‖pm
N − pm−1

N ‖1 ≤ C(‖em
N − em−1

N ‖L2 +Dm
N )

Taking into account the inequality

‖um
N−wm

N−(um−1
N −wm−1

N )‖BD ≤ C(‖em
N−em−1

N ‖L2+‖pm
N−pm−1

N ‖1+‖ε(wm
N )−ε(wm−1

N )‖L2),

proved in [2, relations (3.24) and (3.25) in Theorem 3.8], the estimate

(3.15) ‖pm
N − pm−1

N ‖Mb
+ ‖em

N − em−1
N ‖L2 ≤ CDm

N

follows now from (3.13), (3.14) and the application of the Cauchy inequality.
To prove

(3.16) ‖ε(um
N )− ε(um−1

N )‖Mb
≤ CDm

N ,

we recall the additive decomposition ε(u) = e+ p and make use of (3.15).
Finally to show the validity of (3.8), it remains to estimate ‖um

N − um−1
N ‖L1 . By the

Poincare inequality for BD it suffices to estimate ‖um
N − um−1

N ‖L1(Γ0) :

‖um
N − um−1

N ‖L1(Γ0) ≤
√

2‖pm
N − pm−1

N ‖1 + C‖wm
N − wm−1

N ‖W 1,2 ,
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so the result follows from (3.15), (3.16) and the latter inequality. �

4. Relaxation of convex variational problems in non-reflexive spaces

For the reader’s convenience, here we state the general construction of the relaxed convex
variational problems in non-reflexive spaces, which is well-suited for studying the problems
in plasticity theory. For the details, we refer to [4, Chapter 1]. We remark that, by abuse
of notations, in this section the symbol u0 stands for the boundary data of a saddle-point
problem, which corresponds to wm

N , the boundary data of the incremental problems, and
has nothing to do with the initial data u0 of the quasistatic problem.

Let V,U and P be Banach spaces, V ⊂ U , and let V0 be a subspace of V . Let A : V → P

denote a linear bounded operator, and suppose that G : P → R and M̂ : U → R are convex,
proper, lower semicontinuous functionals. We denote by P ∗ and U∗ the dual spaces to P
and U , and by 〈·, ·〉P,P∗ and 〈·, ·〉U,U∗ the duality relations between the corresponding
spaces.

By G∗ we denote the conjugate functional to G , i.e. G∗(p∗) = sup{〈p∗, p〉P,P∗ −G(p) :
p ∈ P}, for p∗ ∈ P ∗ . Let us consider the variational problem

(4.1) find u ∈ u0 + V0 such that I(u) = inf{I(v) : v ∈ u0 + V0},

where u0 ∈ V is fixed, and
I(v) = G(Av) + M̂(v).

Let us intoduce the Largangian ` by letting

(4.2) `(v, q∗) = 〈q∗, Av〉P∗,P −G∗(q∗) + M̂(v).

The dual problem thus takes the form

(4.3) find p∗ ∈ P ∗ such that R(p∗) = sup{R(q∗) : q∗ ∈ P ∗},

where R(q∗) = inf{`(v, q∗) : v ∈ u0 + V0} . The following theorem (see [4, Chapter 1])
states that the problem (4.3) has a solution.

Theorem 4.1. Suppose that the following two conditions hold

(4.4) Ĉ := inf{I(v) : v ∈ u0 + V0} ∈ R;

(4.5)

{
there exists u1 ∈ u0 + V0 such that G(Au1) < +∞, M̂(u1) < +∞
and the function p 7→ G(Au1 + p) is continuous at zero.

Then the problem (4.3) has at least one solution and the identity

(4.6) Ĉ = sup{R(q∗) : q∗ ∈ P ∗}

is valid.

Together with problems (4.1) and (4.3) let us consider the following minimax problem

(4.7)

{
find a pair (u, p∗) ∈ (u0 + V0)× P ∗ such that
`(u, q∗) ≤ `(u, p∗) ≤ `(v, p∗), for all v ∈ u0 + V0, q

∗ ∈ P ∗.

Since G : P → R is a proper, convex, l.s.c. functional, then G = G∗∗ , and therefore

(4.8) I(v) = sup{`(v, q∗) : q∗ ∈ P ∗}.

Thus under conditions (4.4) and (4.5) we have the identity

(4.9) inf
v∈u0+V0

sup
q∗∈P∗

`(v, q∗) = Ĉ = sup
q∗∈P∗

inf
v∈u0+V0

`(v, q∗)
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and the general duality theory of provides the following statement:

(4.10)


a pair (u, p∗) ∈ (u0 + V0)× P ∗

is a saddle point of the minimax problem (4.7) if and only if
u ∈ u0 + V0 is a minimizer of problem (4.1) and
p∗ ∈ P ∗ is a maximizer of problem (4.3).

So by Theorem 4.1 and (4.10), the solvability of problem (4.1) is equivalent to the solv-
ability of the minimax problem (4.7).

Let us assume the following additional properties:

(4.11)


the embedding V ↪→ U is continuous;
V0 is dense in U ;
U is a reflexive space;

(4.12)

{
there exists u2 ∈ u0 + V0, such that u2 ∈ int dom M̂,

dom M̂ = {u ∈ U : M̂(u) < +∞}.

(4.13) I(v) → +∞ if ‖v‖V → +∞ and v ∈ u0 + V0.

If the space V is nonreflexive, in general, problems (4.1) and (4.7) have no solutions.
Thus, we need to relax our problem, and the desired relaxation should satisfy the following
two requirements:

(1) conservation of the greatest lower bound for problem (4.1),
(2) conservation of the dual problem.

Remark 4.2. The first requirement needs no explanations: speaking about relaxation, we
should not change the infimum of the problem. While the second point is due to the fact,
that in many physical applications the solution of the dual problem is unique and has a
clear geometrical or mechanical interpretation, so there is no necessity to change the dual
problem. In the case of perfect plasticity the stress tensor is responsible for the distribution
of elastic and plastic zones.

In order to extend the domain of definition of the functional G , we should construct a
suitable extension of the operator A . We begin by introducing an auxiliary operator A∗

with a domain D(A∗) defined as

(4.14)

{
D(A∗) = {p∗ ∈ P ∗ : there exists u∗ ∈ U∗, such that
〈p∗, Au〉P∗;P = 〈u∗, u〉U∗;U for all u ∈ V0}.

The density condition (4.11) implies that for each p∗ ∈ D(A∗) there exists only one element
u∗ ∈ U∗ satisfying the identity 〈p∗, Au〉P∗;P = 〈u∗, u〉U∗;U on V0 . Thus we can define the
linear operator A∗ : D(A∗) → U∗ through the relation

〈p∗, Au〉P∗;P = 〈A∗p∗, u〉U∗;U for every p∗ ∈ D(A∗), u ∈ V0.

If u0 is a fixed element from V , then we have the identity

(4.15) 〈p∗, Au〉P∗;P = E(u0, p
∗) + 〈A∗p∗, u〉U∗;U , for all u ∈ u0 + V0, p

∗ ∈ D(A∗),

where u− u0 ∈ V0 and

E(u0, p
∗) = 〈p∗, Au0〉P∗;P − 〈A∗p∗, u0〉U∗;U .

We enlarge the set u0 + V0 by letting

(4.16) V+ =
{
u ∈ U : sup

p∗∈D(A∗), ‖p∗‖P∗≤1

|E(u0, p
∗) + 〈A∗p∗, u〉U∗;U | < +∞

}
,
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and introduce a relaxation Φ of the functional I by means of the Lagrangian L :

(4.17)


L(v, q∗) = E(u0, q

∗) + 〈A∗q∗, v〉U∗;U −G∗(q∗) + M̂(v)
q∗ ∈ D(A∗), v ∈ V+;
Φ(v) = sup

q∗∈D(A∗)

L(v, q∗), Φ : V+ → R.

Let us collect some consequences of these definitions.

Lemma 4.3. The following relations hold:

u0 + V0 ⊂ V+,(4.18)
Φ(v) ≤ I(v), for all v ∈ u0 + V0.(4.19)

Moreover, under certain hypotheses the equality holds in (4.19).

Lemma 4.4. Suppose that for any p ∈ domG∗ there exists a sequence p∗m ∈ D(A∗) such
that

(4.20)

{
p∗m

∗
⇀ p∗ in P ∗,

G∗(p∗m) → G∗(p∗).

Then the identity

(4.21) Φ(v) = I(v) for all v ∈ u0 + V0

is valid.

The following Lemma clarifies the meaning of the relaxation considered:

Lemma 4.5. Consider a sequence um ∈ u0 + V0 , bounded in the norm of the space V and
converging to u weakly in U . Then

u ∈ V+,

lim inf
m→+∞

I(um) ≥ Φ(u).

Now we consider the minimax problem

(4.22)

{
find a pair (u∗, p) ∈ V+ ×D(A∗) such that
L(u, q∗) ≤ L(u, p∗) ≤ L(v, p∗), for all v ∈ V+, q

∗ ∈ D(A∗).

This minimax problem generates two variational problems being in duality:

(4.23)

{
find u ∈ V+ such that
Φ(u) = inf{Φ(v) : v ∈ V+},

where Φ(v) = sup{L(v, q∗) : q∗ ∈ D(A∗)} , and

(4.24)

{
find p∗ ∈ D(A∗) such that
R̃(p∗) = sup{R̃(q∗) : q∗ ∈ D(A∗)}),

with R̃(q∗) = inf{L(v, q∗) : v ∈ V+}.

Remark 4.6. Lemma 4.5 shows that there is a hope to apply the Direct methods: the
coercivity implies the boundedness of a minimizing sequence of the problem (4.1) in U and
the potential minimizer of (4.23) will be a weak cluster point of this sequence, which belongs
to the set V+ and such that the lim inf inequality is satisfied.

Indeed, this remark leads us to the following conclusion:

Theorem 4.7. Suppose that conditions (4.4), (4.5) and (4.11)-(4.13) hold. Then:
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(1) Problems (4.23) and (4.24) are solvable. Moreover, if u ∈ V+ is a solution to
problem (4.23) and p∗ ∈ D(A∗) is a solution to problem (4.24), then the identity

(4.25) Φ(u) = Ĉ = R̃(p∗)

holds true.
(2) Problems (4.3) and (4.24) are equivalent, i.e. they have the same set of solutions.
(3) A pair (u, p∗) ∈ V+×D(A∗) is a saddle point of the minimax problem (4.22) if and

only if u ∈ V+ is a minimizer of problem (4.23) and p∗ ∈ D(A∗) is a maximizer of
problem (4.24).

(4) Any minimizing sequence of problem (4.1) contains a subsequence converging to some
solution of problem (4.23) weakly in U .

5. Minimax formulation of the incremental problem

Recall that, during the proof of existence of a weak solution to the quasistatic evolution
problem of perfect plasticity, the time-discretization procedure leads one to solving the
following incremental problem at every step (see (3.4)):

(5.1) min
(u,e,p)∈A(wm

N )
{Q(e) +H(p− pm−1

N )−Mm
N (u)},

with pm−1
N be a solution of the corresponding incremental problem, obtained at the previous

step.
In the rest of this section, to simplify the notations, we will omit writing the indices m

and N when dealing with some functionals and spaces. So, in what follows the functionals
G, M̂, M, `, L, I, R, Φ and the space V+ should be understood as Gm

N , M̂
m
N , M

m
N , `

m
N , L

m
N ,

Im
N , R

m
N , Φm

N and (V+)m
N , written, however, without an explicit dependence on tmN .

We state the minimax formulation of the incremental problem and briefly sketch the ideas,
leading to the notion of a weak solution. Note, that it is a generalization of the functional
formulation of the classical boundary value problem, describing the equilibrium of a perfect
elastoplastic body (see [4, 10, 11, 12, 13, 14]).

First (subsection 5.1) we introduce the functional spaces and define the functionals of the
minimax problem. Then (subsection 5.2) we define the Lagrangian and state the primal and
dual problems. In subsection 5.3 we check the conditions (4.4), (4.5) and (4.11)-(4.13), that
allow us to apply the abstract theory from Section 4. The relaxed problem and the properties
of its solutions are presented in the same subsection. In subsection 5.4 we show, that every
saddle point of the relaxed minimax problem generates a solution to the incremental problem
(5.1).

5.1. Functional formulation. In order to handle this problem using the abstract relax-
ation scheme described in Section 4 we set

V = D2,1(Ω), V0 = D2,1
0 (Ω), U = Ln/(n−1)(Ω),

(5.2)

{
P = {p = {τ, a} : ‖p‖2P = ‖τD‖2L1(Ω) + 1

n‖tr τ‖
2
L2(Ω)+

‖a‖L1(Γ1) < +∞} ⊂ L1(Ω; Mn×n
sym )× L1(Γ1; Rn).

Then

(5.3)

{
P ∗ = {p∗ = {σ, b} : σD ∈ L∞(Ω; Mn×n

sym ), trσ ∈ L2(Ω),
b ∈ L∞(Γ1; Rn)}
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Next, let us introduce the functionals G : P → R and M̂ : U → R

(5.4)
G(p) =

∫
Ω

g(τ + em−1
N ) +

∫
Γ1

Fm
N · a dHn−1, p = {τ, a} ∈ P,

M̂(v) = −
∫

Ω

fm
N · v dx, v ∈ U.

Then it is easy to see, that for p∗ = {σ, b} ∈ P ∗ its Legendre transform G∗ takes the
form

(5.5) G∗(p∗) =


∫

Ω

(
g∗(σ)− σ : em−1

N

)
dx, if b ≡ Fm

N

+∞, otherwise.

Here
g∗(σ) =

1
2n2K0

tr 2τ + g∗0(|σD|) = sup
{
σ : κ − g(κ) : κ ∈ Mn×n

sym

}
is the Legendre transform of

g : Mn×n
sym → R, g(κ) =

1
2
K0tr 2κ + g0(|κD|), κ ∈ Mn×n

sym .

Here g0 : R → R, and g∗0 is its Legendre transform. In the case of Hencky and Prandtl-Reuss
models of plasticity this function has the form:

g0(t) =

{
µt2, |t| ≤ t0 = k∗√

2µ
;

k∗(
√

2|t| − k∗
2µ ), |t| > t0.

5.2. Lagrangian and a saddle-point problem. The linear operator A : V → P is
introduced as follows:

Av = {ε(v), −v|Γ1}, v ∈ V,
and in view of the estimate

‖Av‖P =
(

1
n
‖div v‖2L2(Ω) + ‖εD(v)‖2L1(Ω) + ‖v‖2L1(Γ1)

)1/2

≤ c(Ω, n)‖v‖2,1,

one concludes that A is continuous.
Following the ideas, outlined in Section 4 (see (4.7)), the minimax problem is

(5.6)

{
find a pair (u, σ) ∈ (δwm

N + V0)×K, such that
`(u, τ) ≤ `(u, σ) ≤ `(v, σ), for all v ∈ wm

N + V0, τ ∈ K,

where the Lagrangian, according to (4.2), is given by

`(v, τ) =
∫

Ω

(
ε(v) : τ + τ : em−1

N

)
dx−

∫
Ω

g∗(τ) dx+ M̂(v),

and δwm
N is defined, according to (3.6). The functional I takes the form

I(v) = G(Av) + M̂(v) =
∫

Ω

g(ε(v) + em−1
N )−

∫
Γ1

Fm
N · v dHn−1 −

∫
Ω

fm
N · v dx.

Recall that the functions fm
N , F

m
N and δwm

N satisfy the following conditions:

(5.7) fm
N ∈ Ln(Ω; Rn), Fm

N ∈ L∞(Γ1; Rn), δwm
N ∈W 1,2(Ω; Rn).

The minimax problem (5.6) generates two dual variational problems:

(5.8)

{
find u ∈ δwm

N + V0 such that
I(u) = inf{I(v) : v ∈ wm

N + V0},

and

(5.9)

{
find σm

N ∈ Qfm
N
∩ K such that

R(σ) = sup{R(τ) : τ ∈ Qfm
N
∩ K, }
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where

R(σ) =

{
`(δwm

N , τ), τ ∈ Qfm
N
∩ K

−∞, τ /∈ Qfm
N
∩ K

for τ ∈ K,

with Qfm
N

being defined as

Qfm
N

=
{
τ ∈ Σ :

∫
Ω

τ : ε(v) dx = Mm
N (v), for all v ∈ V0

}
,

where we refer to (3.2) and (3.3) for the definition of Mm
N . We note that

τ ∈ Qfm
N
⇔ div τ = −fm

N in Ω, [τν] = Fm
N on Γ1.

5.3. The relaxed problem. Let us check the conditions (4.4), (4.5) and (4.11)-(4.13).
Since the functional G is convex and finite, that is domG = P , the function p 7→ G(Au1+p)
is continuous at zero for any u1 ∈ δwm

N +V0 . By the finiteness of the functional M , condition
(4.5) is fulfilled. Conditions (4.11) and (4.12) are obviously satisfied.

The conditions (4.4) and (4.13) are guaranteed by the safe-load condition (2.2):

(5.10)

I(v) =
K0

2

∫
Ω

|div v + tr em−1
N |2 dx+

+ sup
σ∈K

{∫
Ω

σD : (εD(v) + em−1D
N )− g∗(σD) dx

}
−

−
∫

Ω

%m
N : (ε(v)− ε(δwm

N )) dx+M(δwm
N ) ≥ K0

2

∫
Ω

|div v + tr em−1
N |2 dx+

+ sup
σ∈K

{∫
Ω

(σD − %mD
N ) : (εD(v) + em−1D

N )− g∗(σD) dx
}
−

−C
∫

Ω

tr %m
N div v dx+

∫
Ω

%mD
N : em−1

N dx+

+
∫

Ω

%m
N : ε(δwm

N ) dx+M(δwm
N ) ≥ C1

[∫
Ω

|div v|2 dx+ |εD(v)|1

]
− C →∞

whenever ‖v‖V →∞, v ∈ δwm
N +V0 . So the coercivity is established. Finally, the condition

(4.4) is provided by the estimate

Ĉ = inf{I(v) : v ∈ δwm
N + V0} ≥ R(%m

N ) > −∞.

Thus, according to Theorem 4.1 we can state that the problem (5.9) has at least one
solution σ ∈ Qfm

N
∩ K , that identity (4.9) holds and the statement (4.10) is valid. Due

to the non-reflexivity of V the variational problem (5.8) in general has no solutions. We
construct relaxations of these variational problems following the scheme described above.

Define the operator A∗ : D(A∗) → U∗ . As in (4.14), a pair p∗ = {σ, b} ∈ D(A∗) if and
only if there exists u∗ ∈ U∗ = Ln(Ω; Rn), such that∫

Ω

u∗ · v dx =
∫

Ω

σ : ε(v) dx−
∫

Γ1

b · v dHn−1 for all v ∈ V0,

that is A∗p∗ := u∗ = −div σ ∈ Ln(Ω; Rn). Therefore

D(A∗) =
{
p∗ = {σ, b} ∈ P ∗ : div σ ∈ Ln(Ω; Rn),∫

Γ1

b · v dHn−1 =
∫

Ω

(σ : ε(v) + v · div σ) dx, for all v ∈ V0

}
.

According to (4.16) the extension V+ of the set δwm
N + V0 is

V+ =
{
v ∈ L

n
n−1 (Ω; Rn) :

sup
‖p∗‖P∗≤1, p∗={σ,b}∈D(A∗)

〈
−
∫

Γ1

b·δwm
N dHn−1+

∫
Ω

(σ : ε(δwm
N )+(δwm

N−v)·div σ) dx
〉
< +∞

}
.
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The important properties of this space are summarized below. In particular, the following
proposition shows that a triple (u, e, p), constructed from a solution (δum, σm) of a relaxed
minimax problem in an obvious way (see Theorem 5.4 below), is kinematically admissible
for a boundary data δwm

N .

Proposition 5.1. The following relations hold:

(5.11) V+ ⊂ BD(Ω),

and for every v ∈ V+

(5.12) div v ∈ L2(Ω),

(5.13) (v − δwm
N ) · ν = 0 on Γ0.

Proof: The definition of V+ implies that

(5.14) sup
σ∈C∞0 (Ω∪Γ0)

〈∫
Ω

(σ : ε(δwm
N )+(δwm

N −v) ·div σ) dx
〉
≤ C(‖trσ‖L2(Ω)+‖σD‖L∞(Ω)).

This estimate and the fact that δwm
N ∈W 1,2(Rn; Rn) ensures the estimate

sup
σ∈C∞c (Ω;Mn×n

sym )

∫
Ω

v · div σ dx ≤ C‖σ‖L∞(Ω;Mn×n
sym ).

So the claim (5.11) is established.
By taking the test vector fields in (5.14) with σD = 0 we conclude, that div v ∈ L2(Ω),

thus (5.12) is proved.
As to the last claim, by taking arbitrary ϕ ∈ C∞c (Ω ∪ Γ0) and taking σ = ϕ I we get by

the integration by parts formula the following inequality:∫
Γ0

ϕ(δwm
N − v) · ν dHn−1 =

∫
∂Ω

(δwm
N − v) · [σν] dHn−1 =

=
∫

Ω

(δwm
N − v) · div σ dx+

∫
Ω

trσ div (δwm
N − v) dx ≤ C‖ϕ‖L2(Ω).

This estimate, in its turn, implies that (δwm
N − v) · ν = 0 on Γ0 . �

By the properties of g∗0 and by (5.5) we have that G∗(p∗) = G∗({τ, b}) = +∞ if b 6= F
on Γ1 or τ /∈ K . Introduce the relaxed Lagrangian, as in (4.17):

L(v, q∗) = E(δwm
N , q

∗) + 〈A∗q∗, v〉 −G∗(q∗) + M̂(v) =

= −
∫

Γ1

Fm
N · δwm

N dHn−1+

+
∫

Ω

[
ε(δwm

N ) : τ + (δwm
N − v) · div τ − g∗(τ)− fm

N · v + τ : em−1
N

]
dx

for all v ∈ V+ and q∗ = {τ, Fm
N } ∈ D(A∗), such that τ ∈ K . Now we introduce the set

(5.15) Q = {τ ∈ Σ : {τ, Fm
N } ∈ D(A∗)}

and a new Lagrangian on V+ × (Q ∩ K) defined as

(5.16) L̃(v, τ) = L(v, q∗)

where
q∗ = {τ, Fm

N } ∈ D(A∗), τ ∈ K.
Now, instead of the minimax problem (5.6) we consider its relaxation

(5.17)

{
find a pair (u, σ) ∈ V+ × (Q ∩ K) such that
L̃(u, τ) ≤ L̃(u, σ) ≤ L̃(v, σ), for all v ∈ V+, τ ∈ Q ∩ K.
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For the functional Φ : V+ → R we have the formula

(5.18) Φ(v) = sup
q∗∈D(A∗)

L(v, q∗) = sup
q∗={τ,F m

N }∈D(A∗), τ∈K
L(v, q∗) = sup

τ∈Q∩K
L̃(v, τ),

and the relaxation of the variational problem (5.8) takes the form

(5.19) find u ∈ V+ such that Φ(u) = inf
v∈V+

Φ(v)

As in [4, Lemma 1.3.1] one can show, that (4.20) holds, and thus Lemma 4.4 reads as
follows.

Lemma 5.2. We have

Φ(v) = I(v), for all v ∈ δwm
N + V0.

Finally, we can state Theorem 4.7, which in this case takes the following form.

Theorem 5.3. Suppose that conditions (2.2) and (5.7) hold. Then there exists at least one
pair (δum, σm) ∈ V+ × (Q ∩ K) being a solution to the minimax problem (5.17). Moreover,
σm is the unique solution to the dual variational problem (5.9), δum is a solution of the
relaxed variational problem (5.19) and the identity

Φ(δum) = inf{I(v) : v ∈ δwm
N + V0} = L̃(δum, σm) = R(σm)

holds.
Furthermore,

Φ(v) = I(v) for all v ∈ δwm
N + V0.

Finally, any minimizing sequence of the problem (5.8) converges strongly in L1(Ω; Rn)
and weakly in L

n
n−1 (Ω; Rn) to some solution of problem (5.19).

5.4. Saddle points generate solutions to the incremental problem. Let us show,
that if we interpret a saddle point (δum, σm) of (5.17) as the increment of u and the
updated value of σ , then we get a solution to the incremental problem (5.1).

Theorem 5.4. Let (δum, σm) ∈ V+ × (Q∩K) be a saddle point for the relaxed Lagrangian
L̃ . Then the triple (um, em, pm) , constructed as

um = um−1 + δum,
em = Aσm,
pm = ε(um)− em in Ω,
pm = (wm − um)� νHn−1 on Γ0,

is admissible for the boundary data wm
N , in the sense of Definition 3.1 and is a solution to

the incremental problem (5.1).

Proof: Let (δum, σm) ∈ V+ × (Q ∩ K) be a saddle point of L̃ :

L̃(δum, τ) ≤ L̃(δum, σm) ≤ L̃(v, σm) for all v ∈ V+, τ ∈ Q ∩ K.
As σm ∈ Q ∩ K , we have that σm ∈ K and [σmν] = F on Γ1 and∫

Ω

(v − δum) · div σm dx ≤ −
∫

Ω

fm
N · (v − δum) dx,

which is in fact an equality, valid for all v ∈ V+ . Hence,

(5.20) div σm = −fm
N ∈ Ln.

The inequality of a saddle point yields

(5.21)

∫
Ω

[
ε(δwm

N ) : σm + (δwm
N − δum) · div σm − g∗(σm) + σm : em−1

]
dx ≥

≥
∫

Ω

[
ε(δwm

N ) : τ + (δwm
N − δum) · div τ − g∗(τ) + τ : em−1

]
dx
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On the other hand, by the integration by parts formula (see [7, Theorem 3.2]) for δum ∈
BD(Ω) and σm ∈ Σ with −div σm = fm

N and [σmν] = Fm
N on Γ1 :

(5.22)

∫
Ω

(δwm
N − δum) div σm dx = −〈εD(δwm

N − δum), σmD〉−

− 1
n

∫
Ω

div (δwm
N − δum)trσm dx+

∫
∂Ω

[σmν] · (δwm
N − δum).

We note that, strictly speaking, in the boundary term the integrand is just a distribution, an
element of (C1(∂Ω))′ . However, as (δwm

N − δum) · ν = 0 on Γ0 and [σmν] = Fm
N ∈ L∞(Γ1)

by [7, Proposition 3.4] one has ∫
∂Ω

[σmν] · (δwm
N − δum) =∫

Γ1

(δwm
N − δum) · Fm

N dHn−1 +
∫

Γ0

(δwm
N − δum)τ · [σmν]τ dHn−1.

This relation together with (5.21) and (5.22) implies

〈εD(δum), τD − σmD〉 −
∫

Ω

1
2
(Aτ, τ) dx+

+
∫

Ω

1
2
(Aσm, σm) dx+

1
n

∫
Ω

div δum tr (τ − σm) dx+

+
∫

Ω

(τ − σm) : em−1 dx+
∫

Γ0

(δwm
N − δum)τ · [τ − σm]τ dHn−1 ≤ 0,

and hence

〈εD(δum), τD − σmD〉+
∫

Ω

(τ − σm) : em−1 dx−
∫

Ω

Aσm : (τ − σm) dx+

+
1
n

∫
Ω

div δum tr (τ − σm) dx+

+
∫

Γ0

(δwm−1
N − δum)τ · [τ − σm]τ dHn−1 −

∫
Ω

1
2

A(σm − τ) : (σm − τ) dx ≤ 0.

Now, taking τ̃ = σm + α(τ − σm) ∈ K and letting α→ 0 one gets

〈εD(δum), τD − σmD〉+
∫

Ω

(τ − σm) : em−1 dx+
1
n

∫
Ω

div δum tr (τ − σm) dx−

−
∫

Ω

Aσm : (τ − σm) dx+
∫

Γ0

(δwm
N − δum)τ · [τ − σm]τ dHn−1 =

= 〈εD(δum), τD − σmD〉+
∫

Ω

(τD − σmD) : (em−1D − emD) dx+

+
1
n

∫
Ω

(div δum − tr δem) tr (τ − σm) dx+
∫

Γ0

(δwm
N − δum)τ · [τ − σm]τ dHn−1 ≤ 0.

for all τ ∈ Q ∪ K . Taking τ ∈ C∞c (Ω; Mn×n
sym ) with τD = 0 we conclude that

tr (ε(δum)− δem) = div δum − tr δem = 0 a.e. in Ω ,

and the induction hypothesis tr (ε(um−1) − em−1) = 0 a.e. in Ω implies that tr (ε(um) −
em) = 0 a.e. in Ω, and thus

pm ∈Mb(Ω ∪ Γ0; Mn×n
D ).

Therefore we have the following inequality

〈pm − pm−1
N , τ − σ〉 ≤ 0

for all τ ∈ Q ∩ K .
The last relation, in its turn, implies that

H(pm − pm−1
N ) = 〈pm − pm−1

N , σ〉,
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which yields the following

H(εq + pm − pm−1
N )−H(pm − pN )− 〈εq, σ〉 ≥

≥ 〈εq + pm − pm−1
N , σ〉 − 〈pm − pm−1

N , σ〉 − 〈εq, σ〉 ≥ 0,

for every triple (v, η, q) ∈ A(0).
The latter inequality and (5.20) imply that (um, em, pm) ∈ A(wm

N ) is a solution to problem
(5.1). �

6. Approximations

In this section we will show that some solutions of the relaxed minimax problem (5.17)
possess an important property of being approximated by more regular functions in a way
that allows us to get the higher regularity of stresses for our evolutionary problem.

Now we consider a family of regularized problems and show that their solutions converge
to a saddle point of (5.17) in a suitable weak sense.

6.1. Regularized problems. We consider a family of variational problems depending on
a parameter α ∈ (0, 1)

(6.1)

{
find uα ∈ V∗
Iα(uα) = inf{Iα(v) : v ∈ δwm

N + V∗},

where

V∗ = V0 ∩W 1,2(Ω; Rn),

Iα(v) =
α

2

∫
Ω

|εD(v) + em−1D
N |2 dx+ I(v) =

α

2

∫
Ω

|εD(v) + em−1D
N |2 dx+

∫
Ω

g(ε(v) + em−1
N ) dx−

∫
Ω

fm
N · v dx−

∫
Γ1

Fm
N · v dHn−1.

As it is easy to see, for each α > 0, the coercivity estimate (5.10) and Korn inequal-
ity guarantee that the problem (6.1) has the unique minimizer uα ∈ V∗ which satisfies a
nonlinear system of PDE’s of elliptic type:

(6.2)
∫

Ω

σα : ε(v) dx = Mm
N (v) ≡

∫
Ω

fm
N · v dx+

∫
Γ1

Fm
N · v dHn−1 for all v ∈ V∗ ,

where

(6.3)

σα = α(εD(uα) + em−1D
N ) +

∂g

∂κ
(ε(uα) + em−1

N ) =

= α(εD(uα) + em−1D
N ) +K0(div uα + tr em−1

N )1+

+g′0(|εD(uα) + em−1
N |)

εD(uα) + em−1
N

|εD(uα) + em−1
N |

.

Therefore,

(6.4) div σα + fm
N = 0 in Ω.

Remark 6.1. We note, that the functional Iα(v) is of the form I(v) + α
2 ‖ε

D(v)‖2L2 , where
the second summand is added to make it coercive in W 1,2 .

Lemma 6.2. For any α ∈ (0, 1) the following estimate is true

(6.5)
√
α‖εD(uα) + em−1D

N ‖L2(Ω) + ‖div uα‖L2(Ω) + ‖εD(uα)‖L1(Ω) + ‖uα‖
L

n
n−1 (Ω)

≤ C,

where C = C(‖fm
N ‖Ln(Ω), ‖Fm

N ‖L∞(Γ1), ‖δwm
N ‖W 1,2(Ω;Rn), ‖em−1

N ‖L2) .
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Moreover for a subsequence the following hold:

uα ⇀ u in L
n

n−1 (Ω; Rn),(6.6)
uα → u in Lr(Ω; Rn) for r ∈ [1, n/(n− 1)),(6.7) ∫

Ω

τ : ε(uα) dx→
∫

Ω

τ : ε(u) dx for every τ ∈ C∞c (Ω; Mn×n
sym ),(6.8)

div uα ⇀ div u in L2(Ω; Rn),(6.9)

α

∫
Ω

|εD(uα) + em−1D
N |2 dx→ 0,(6.10)

σα ⇀ σ in L2(Ω; Mn×n
sym ),(6.11)

σδD − α(εD(uα) + em−1D
N ) ∗

⇀ σD in L∞(Ω; Mn×n
sym ),(6.12)

where u is a solution to problem (5.19) and σ is the unique solution to problem (5.9).

Proof: From the coercivity estimate (5.10) one immediately obtains (6.5).
It follows from (6.3) that the sequences {σα} and {σαD − α(εD(uα) + em−1D

N )} are
bounded in L2(Ω; Mn×n

sym ) and L∞(Ω; Mn×n
D ) respectively.

So we get the estimates (6.6)-(6.9), (6.11) and (6.12). It remains to show, that u and σ
are solutions of (5.19) and (5.9) and that (6.10) holds.

As τα := σα−α(εD(uα)+em−1D
N ) ∈ K , and since K is weakly closed in L2(Ω; Mn×n

sym ), it
follows that σ ∈ K . Now passing to the limit in (6.2) and using the results of [7, Proposition
3.4] we can extend (6.2) to V0 and thus σ ∈ Qfm

N
.

On the other hand, the duality relations imply that

τα : (ε(uα) + em−1
N )− g(ε(uα) + em−1

N )− g∗(τα) = 0 a.e. in Ω.

But then, by (6.2) and (6.3) one gets

Iα(uα) =
α

2

∫
Ω

|εD(uα) + em−1D
N |2 dx+

∫
Ω

[
τα : (ε(uα) + em−1

N )− g∗(τα)
]
dx−Mm

N (uα) =

= −α
2

∫
Ω

|εD(uα) + em−1D
N |2 dx+

∫
Ω

[
σα : (ε(uα) + em−1

N )− g∗(τα)
]
dx−Mm

N (uα).

By Theorem 4.1 we get

(6.13)

sup{R(τ) : τ ∈ Qfm
N
∩ K} = inf{I(v) : v ∈ δwm

N + V0} ≤ I(uα) ≤ Iα(uα) =

= −α
2

∫
Ω

|εD(uα) + em−1D
N |2 dx−

∫
Ω

g∗(τα) dx+
∫

Ω

σα : (ε(uα) + em−1
N ) dx−

−Mm
N (uα) = −α

2

∫
Ω

|εD(uα) + em−1D
N |2 dx−

∫
Ω

g∗(τα) dx+

+
∫

Ω

σα : (ε(δwm
N ) + em−1

N ) dx−Mm
N (δwM

N ),

where the Euler equation (6.2) was used.
Now, by exploiting the convergence (6.11) and (6.12) we go on with (6.13):

lim
α→0

Iα(uα) ≤ −
∫

Ω

g∗(σ) dx+
∫

Ω

σ : (ε(δwm
N ) + em−1

N ) dx−Mm
N (δwm

N ) = R(σ).

Thus, proceeding with (6.13) we obtain

sup{R(τ) : τ ∈ Qfm
N
∩ K} = inf{I(v) : v ∈ u0 + V0} ≤ I(uα) ≤ Iα(uα) ≤

≤ R(σ) + lim sup
α→0

−α
2

∫
Ω

|εD(uα)− pα|2 dx ≤ R(σ),

which gives the relation (6.10) and ensures that σ is a solution to problem (5.9).
Moreover one has the identity

lim
α→0

I(uα) = inf{I(v) : v ∈ δwm
N + V0},



20 A. DEMYANOV

which implies that uα is a minimizing sequence for the problem (5.8), and therefore it
converges weakly in L

n
n−1 (Ω; Rn) to a solution of problem (5.19). �

Remark 6.3. One can easily prove the following formula for the derivatives σα
,k :

(6.14)

σα
,k =


α(εD(uα

,k) + em−1D
N,k ) +K0 (div uα

,k + tr em−1
N,k )1+

+∂2g0
∂τ2 (|εD(uα) + em−1D

N |)(εD(uα
,k) + em−1D

N,k ), if |εD(uα) + em−1D
N | < k∗√

2µ

α(εD(uα
,k) + em−1D

N,k ) +K0 (div uα
,k + tr em−1

N,k )1, if |εD(uα) + em−1D
N | ≥ k∗√

2µ
.

Here and henceforth the subscript ,k denotes the partial derivative with respect to xk .

7. W 1,2
loc -estimates of stresses in the incremental problems

In this section we deduce the iterative estimate of L2 -norms of gradients of functions σα ,
defined by means of (6.3) via the solutions of regularized problems (6.1), and we show, that
for every given m and N we have σm

N ∈ W 1,2
loc (Ω; Mn×n

sym ). We note, however, that in this
section we are concerned only with the problem of regularity of each σm

N , that is, we do not
care about the uniformity of estimates with respect to m and N . Having these estimates
in hand, we conclude, that the convergence of approximate solutions σα to σm

N , which was
known to take place in the weak topology of L2(Ω; Mn×n

sym ) (see (6.11)) is actually better,
and is determined by the critical exponent of the Sobolev embedding.

We note, that, to underline the dependence of σα and uα on m we sometimes write them
as σα

m and uα
m . Remark, that in what follows the constant C will denote the constant, which

depends upon the data of the problem in a way, as in (3.5), and on the C3 -norm of the
cut-off function ϕ chosen below, that is on the domain Ω′ ⊂⊂ Ω.

Thus, our objective now is the following estimate

(7.1)
∫

Ω′
Aσα

m,k : σα
m,k dx ≤ C(m,N,Ω′),

valid for any Ω′ ⊂⊂ Ω.
Suppose, by induction, that we have already proved that σm−1

N ∈ W 1,2
loc (Ω; Mn×n

sym ). To
simplify the notation, in this section for the solutions of the incremental problem (5.1)
we will omit writing the index N . Let us turn to the regularized problem (6.1). Since
uα

m is a solution of the nonlinear elliptic system (6.4) with fm ∈ Ln(Ω; Rn) and em−1
N ∈

W 1,2
loc (Ω; Mn×n

sym ), one can show, by considering the difference quotients, that

(7.2) uα
m ∈W 2,2

loc (Ω; Rn), ε(uα
m), σα

m ∈W 1,2
loc (Ω; Mn×n

sym ).

As

(7.3) (σα
m)ij,j = −fm

i a.e. in Ω,

one has

(7.4)
∫

Ω

σα
m,k : ε(v) dx = −

∫
Ω

fm · v,k dx for all v ∈ C∞0 (Ω; Rn), k = 1, . . . , n.
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By using formula (6.14) for the gradient of σα
m ,

Aσα
m,k : σα

m,k = A[α1D +D2g(ε(uα
m) + em−1)] (ε(uα

m,k) + em−1
,k ) : σα

m,k ≤

≤
[
[α1D +D2g(ε(uα

m) + em−1)] (ε(uα
m,k) + em−1

,k ) : (ε(uα
m,k) + em−1

,k )
]1/2

·

·
[
[α1D +D2g(ε(uα

m) + em−1)] A2 σα
m,k : σα

m,k

]1/2

=

=
[
σα

m,k : (ε(uα
m,k) + em−1

,k )
]1/2

·

·
[
[α1D +D2g(ε(uα

m) + em−1)] A2 σα
m,k : σα

m,k

]1/2

≤

≤ 1
2
σα

m,k : ε(uα
m,k) +

1
2

Aσα
m,k : σm−1

,k +
1
2

Aσα
m,k : σα

m,k + C αAσα
m,k : σα

m,k.

By applying again the Cauchy inequality to Aσα
m,k : σm−1

,k , we get

Aσα
m,k : σα

m,k ≤ Aσm−1
,k : σm−1

,k + 2σα
m,k : ε(uα

m,k) + αC Aσα
m,k : σα

m,k,

so that

(7.5) (1− oα(1))Aσα
m,k : σα

m,k ≤ Aσm−1
,k : σm−1

,k + 2σα
m,k : ε(uα

m,k).

Thus, it remains to prove the boundedness of the second summand of (7.5), which will
be denoted by Jα

m .
Let us introduce the notation

σα := σα
m, f := fm, uα := uα

m,

omitting also the index m for further convenience. Let ϕ ∈ C3
0 (Ω) be an arbitrary cut-off

function. By (7.2) we can put the function

v = ϕ6uα
,k

into the identity (7.4).
Here and henceforth we adopt the summation convention over repeated indices (excluding

m and α). We start by

(7.6)

∫
Ω

σα
,k : ε(ϕ6uα

,k) dx = −
∫

Ω

f · (ϕ6uα
,k),k dx =

= −
∫

Ω

f · ϕ6∆uα dx−
∫

Ω

f · ϕ6
,ku

α
,k dx.

As
1
2
∆uα = div ε(uα)− 1

2
∇div uα,

we go on

(7.7)

−
∫

Ω

f · ϕ6∆uα dx−
∫

Ω

f · ϕ6
,ku

α
,k dx = −2

∫
Ω

f · ϕ6div ε(uα) dx+

+
∫

Ω

f · ϕ6∇div uα dx−
∫

Ω

f · ϕ6
,ku

α
,k dx = 2

∫
Ω

ε(f) : ϕ6ε(uα) dx+

+2
∫

Ω

(f �∇ϕ6) : ε(uα) dx+
∫

Ω

ϕ6 f · ∇div uα dx−
∫

Ω

f · ϕ6
,ku

α
,k dx =

= 2
∫

Ω

ϕ6ε(f) : ε(uα) dx+
∫

Ω

ϕ6 f · ∇div uα dx+
∫

Ω

fi ϕ
6
,ju

α
j,i dx =

= 2
∫

Ω

ϕ6ε(f) : ε(uα) dx+

+
∫

Ω

ϕ6 f · ∇div uα dx−
∫

Ω

∇ϕ6 · uα div f dx−
∫

Ω

(f � uα) : ∇2ϕ6 dx.
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Thus (7.6) and (7.7) yield

(7.8) Jα
m :=

∫
Ω

ϕ6σα
,k : ε(uα

k ) dx = J1 + J2 + J3,

where

J1 := −2
∫

Ω

σα
ij,kϕ

6
,kεkj(uα) dx,(7.9)

J2 :=
∫

Ω

σα
ij,kϕ

6
,iu

α
k,j dx,(7.10)

J3 :=
∫

Ω

[
2ϕ6ε(f) : ε(uα) + ϕ6 f · ∇div uα dx−(7.11)

∇ϕ6 · uα div f − (f � uα) : ∇2ϕ6

]
dx.

Now, by using the orthogonal decomposition of Mn×n
sym = MD + R1 :

ε(uα) = εD(uα) +
1
n

div uα1, σα = σαD +
1
n

trσα1

and the Euler equation (7.3), one gets

(7.12)

J1 = −2
∫

Ω

σα
ij,kϕ

6
,iε

D
jk(uα) dx− 2

n

∫
Ω

σα
ij,jϕ

6
,idiv uα dx =

− 2
n

∫
Ω

trσα
,kϕ

6
,iε

D
ik(uα) dx− 2

∫
Ω

σαD
ij,kϕ

6
,iε

D
jk(uα) dx+

+
2
n

∫
Ω

f · ∇ϕ6div uα dx = − 2
n

∫
Ω

(fk + σαD
ks,s)ϕ

6
,iε

D
ik(uα) dx−

−2
∫

Ω

σαD
ij,kϕ

6
,iε

D
jk(uα) dx+

2
n

∫
Ω

f · ∇ϕ6div uα dx =

= 2
∫

Ω

(f �∇ϕ6) : εD(uα) dx+
2
n

∫
Ω

f · ∇ϕ6div uα dx+

+12
∫

Ω

ϕ5σαD
ij,k

(
− ϕ,iε

D
jk(uα) + δikϕ,sε

D
js(u

α)
)
dx =

= 2
∫

Ω

(f �∇ϕ6) : εD(uα) dx+ 12
∫

Ω

ϕ5σαD
,k : S(k) dx+

2
n

∫
Ω

f · ∇ϕ6div uα dx.

where the matrices S(k) are defined by

S
(k)
ij :=

(
δikϕ,sε

D
js(u

α)− ϕ,iε
D
jk(uα)

)
.

It follows immediately from the definition that

(7.13) tr (S(k)) = δikϕ,sε
D
is(u

α)− ϕ,iε
D
ik(uα) = 0.
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Now let us turn to J2 :

J2 = −
∫

Ω

[
σα

ijϕ
6
,iku

α
k,j + σα

ijϕ
6
,jdiv uα

,i

]
=

=
∫

Ω

σα
ij,jϕ

6
,iku

α
k dx+

∫
Ω

σα
ijϕ

6
,ijku

α
k dx+

∫
Ω

σα
ij,jϕ

6
,idiv uα dx+

+
∫

Ω

σα
ijϕ

6
,ijdiv uα dx = −

∫
Ω

(f � uα) : ∇2ϕ6 dx−

−
∫

Ω

f · ∇ϕ6div uα dx+
∫

Ω

σα
ijϕ

6
,ijku

α
k dx+

∫
Ω

σα : ∇2ϕ6div uα dx.

The latter inequality and (7.8)-(7.12) give the estimate:

(7.14)
Jα

m ≤ Iα
0 + 12

∫
Ω

ϕ5σαD
,k : S(k) dx+

∫
Ω

σα
ijϕ

6
,ijku

α
k dx+

+
∫

Ω

σα : ∇2ϕ6div uα dx =: Iα
0 + Iα

1 + Iα
2 + Iα

3 ,

with

(7.15)

Iα
0 = 2

∫
Ω

[
(f �∇ϕ6) : εD(uα) + ϕ6ε(f) : ε(uα)−

−(f � uα) : ∇2ϕ6 − f · ∇ϕ6div uα
]
dx−

−
∫

Ω

(
ϕ6div f div uα +∇ϕ6 · uαdiv f

)
dx.

Estimate of Iα
0 . By using the convergence uα

m
∗
⇀ δum in BD(Ω), Iα

0 can be estimated
as

(7.16) |Iα
0 | ≤ C(‖fm‖C1(Ω′), ‖ϕ‖C1(Ω)) sup

α
‖uα

m‖BD ≤ C(m,N,Ω′).

Estimate of Iα
1 . We have

(7.17)

|Iα
1 | ≤ C

∣∣∣∣∣
∫

Ω

ϕ5[δ1D +D2g(ε(uα
m) + em−1)](ε(uα

m,k) + em−1
,k ) : S(k) dx

∣∣∣∣∣ ≤
≤ C

[∫
Ω

ϕ6σα
m,k : (ε(uα

m,k) + em−1
,k ) dx

]1/2

·

·

[∫
Ω

(α+ 2µχ{|εD(uα
m)+em−1D|< k∗√

2µ
})S

(k) : S(k) dx

]1/2

≤

≤ 1
100

(
Jα

m +
∫

Ω

ϕ6Aσα
m,k : σα

m,k dx+ ‖ϕ3∇σm−1‖2L2

)
+ Cα

∫
Ω

|εD(uα
m)|2 dx+

+C
∫

Ω∩{|εD(uα
m)+em−1D|< k∗√

2µ
}
|εD(uα

m)|2 dx.

Estimate of Iα
2 . As to the second summand, the embedding W 1,2

0 (Ω; Mn×n
sym ) ↪→

Ln(Ω; Mn×n
sym ) for n = 2, 3 allows one to make the following estimates

(7.18)

C
(∫

Ω

|ϕ3σα
m|n
)1/n(∫

Ω

|uα
m|

n
n−1

)n−1
n ≤ C‖∇(ϕ3 σα

m)‖L2

(∫
Ω

|uα
m|

n
n−1

)n−1
n ≤

≤ C

[∫
Ω

ϕ6Aσα
m,k : σα

m,k dx+
∫

Ω

ϕ4|∇ϕ|2|σα
m|2 dx

]1/2

‖uα
m‖L

n
n−1

.
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Estimate of Iα
3 . As

div uα
m =

1
nK0

trσα
m − tr em−1,

we can bound Iα
3 as

(7.19) |Iα
3 | ≤ C(‖σα

m‖2L2 + ‖σm−1‖L2)

So, (7.5), (7.14), (7.16)-(7.19) and the regularity of σm−1
N , proved at the previous step,

allow us to conclude that (7.1) holds, and thus

(7.20) lim sup
α→0

‖∇σα
m‖L2(Ω′) ≤ C(m,N,Ω′),

where this constant depends on the domain Ω′ , the step m and the data of the problem.

Remark 7.1. The inequality (7.20) and the convergence σα
m ⇀ σm

N in L2(Ω; Mn×n
sym ), see

(6.11), imply that

(7.21)
σm

N ∈W 1,2
loc (Ω; Mn×n

sym ),

σα
m ⇀ σm

N in W 1,2
loc (Ω),

and σα → σm
N in Ln

loc(Ω; Mn×n
sym ),

where the strong convergence in Ln
loc(Ω; Mn×n

sym ) is guaranteed by the Sobolev embedding for
n = 2, 3.

8. Uniform W 1,2
loc -estimates of stresses

To carry out the proof of the uniform boundedness of ‖σN‖L∞((0,T );W 1,2
loc (Ω;Mn×n

sym )) we will
make use of the iterative estimate (7.5), deduced in the previous section, which results in a
discrete analogue of the Gronwall inequality. To this aim, we need to have the estimate of
the last term of (7.5). To make the estimates uniform, we will use the convergence of uα

m

to δum as in (6.6)-(6.10), and the convergence of σα
m to σm as in (7.21).

So, the goal of this section is to prove the following inequality

(8.1)
(
1− C

N

)∫
Ω

ϕ6Aσm
N : σm

N dx ≤
(
1 +

C

N

)∫
Ω

ϕ6Aσm−1
N : σm−1

N dx+
C

N
,

with C independent of N .
We will deduce it from (7.5). Recall (7.14):

(8.2)
Jα

m ≤ Iα
0 + 12

∫
Ω

ϕ5σαD
,k : S(k) dx+

∫
Ω

σα
ijϕ

6
,ijku

α
k dx+

+
∫

Ω

σα : ∇2ϕ6div uα dx =: Iα
0 + Iα

1 + Iα
2 + Iα

3 ,

with Iα
0 defined in (7.15).

Estimates of Iα
0 : Since f ∈ C1

loc(Ω; Rn), one can employ (6.6)-(6.9) to pass to the limit
in (7.15), and use estimates (3.8) of ‖δum‖BD = ‖um − um−1‖BD to get

(8.3) |Iδ
0 | ≤ C(‖f(t)‖L∞([0,T ];C1(Ω;Rn)), ‖ϕ‖C1(Ω))

1
N
.
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Estimates of Iα
1 : Taking into account (6.14) and (7.13)

(8.4)

∫
Ω

ϕ5σαD
,k : S(k) dx =

∫
Ω

ϕ5σα
,k : S(k) dx =

=
∫

Ω

ϕ5[α1D +D2g(ε(uα
m) + em−1)] (ε(uα

m,k) + em−1
,k ) : S(k) dx ≤

≤

[∫
Ω

ϕ6[α1D +D2g(ε(uα
m) + em−1)](ε(uα

m,k) + em−1
,k ) : (ε(uα

m,k) + em−1
,k )

]1/2

·

·

[∫
Ω

ϕ4[α1D +D2g(ε(uα
m) + em−1)] S(k) : S(k) dx

]1/2

≤ 1
100N

B1 + C NB2.

Let us estimate B1

∫
Ω

ϕ6[α1D +D2g(ε(uα
m) + em−1)] (ε(uα

m,k) + em−1
,k ) : (ε(uα

m,k) + em−1
,k ) dx =

=
∫

Ω

ϕ6σα
m,k : (ε(uα

m,k) + em−1
,k ) dx ≤

≤
∫

Ω

ϕ6σα
m,k : ε(uα

m,k) dx+
1
2

∫
Ω

ϕ6Aσα
m,k : σα

m,k dx+
1
2

∫
Ω

ϕ6Aσm−1
,k : σm−1

,k dx =

= Jα
m +

1
2

∫
Ω

ϕ6Aσα
m,k : σα

m,k dx+
1
2

∫
Ω

ϕ6Aσm−1
,k : σm−1

,k dx.

Let us estimate B2 . As |S(k)| ≤ C|εD(uα
m)| we proceed with∫

Ω

ϕ6[α1D +D2g(ε(uα
m) + em−1)] S(k) : S(k) dx ≤

C α

∫
Ω

|εD(uα
m)|2 dx+

∫
Ω

ϕ6[D2g(ε(uα
m) + em−1)] S(k) : S(k) dx

Now we study the second summand carefully. Taking into account (7.13), the properties
of g , (6.1) and (7.21) we have∫

Ω

ϕ6[D2g(ε(uα
m) + em−1)] S(k) : S(k) dx =

=
∫

Ω∩{|εD(uα
m)+em−1D|< k∗√

2µ
}
2µϕ6S(k) : S(k) dx ≤

≤ 2µC
∫

Ω∩{|εD(uα
m)+em−1D)|< k∗√

2µ
}
ϕ6|εD(uα

m)|2 dx =

=
C

2µ

∫
Ω∩{|εD(uα

m)+em−1D|< k∗√
2µ
}
ϕ6
∣∣∣2µ(εD(uα

m) + em−1D − em−1D
)∣∣∣2 dx ≤

≤ C

∫
Ω∩{|εD(uα

m)+em−1D|< k∗√
2µ
}
ϕ6

∣∣∣∣(∂g∂τ (ε(uα
m) + em−1)

)D

− σm−1D

∣∣∣∣2 dx =

= C

∫
Ω∩{|εD(uα

m)+em−1D|< k∗√
2µ
}
ϕ6
∣∣∣σαD

m − σm−1D − α(εD(uα
m) + em−1D)

∣∣∣2 dx ≤
≤ C‖σmD − σm−1D‖2L2 + oα(1).
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Finally, by applying the Cauchy inequality to (8.4) and using (3.8), one obtains

(8.5)

∫
Ω

ϕ5σαD
,k : S(k) dx ≤ Jα

m

5N
+

1
N

∫
Ω

ϕ6Aσα
m,k : σα

m,k dx+

+
1
N

∫
Ω

ϕ6Aσm−1
,k : σm−1

,k dx+ CN‖σm − σm−1‖2L2(Ω) + oα(1) ≤

≤ Jα
m

5N
+

1
N

∫
Ω

ϕ6Aσα
m,k : σα

m,k dx+
1
N

∫
Ω

ϕ6Aσm−1
,k : σm−1

,k dx+
C

N
+ oα(1).

Estimates of Iα
2 : To pass to the limit in Iα

2 , we exploit (6.6) and (7.21):

lim
α→0

Iα
2 = lim

α→0

∫
Ω

σα
ijϕ

6
,ijku

α
k dx =

∫
Ω

σm
ijϕ

6
,ijk(um − um−1)k dx =: I2.

Now let us use the embedding W 1,2
0 (Ω; Mn×n

sym ) ↪→ Ln(Ω; Mn×n
sym ) for n = 2, 3 and (3.8)

(8.6)

|I2| ≤ C‖ϕ3σm‖Ln(Ω)‖um − um−1‖
L

n
n−1

≤

≤ C

(∫
Ω

ϕ6σm
,k : σm

,k dx+ ‖ϕσm‖L2

)1/2

‖um − um−1‖
L

n
n−1

≤

≤ 1
N

(∫
Ω

ϕ6Aσm
,k : σm

,k dx+ C

)
+ CN‖um − um−1‖2

L
n

n−1
≤

≤ 1
N

∫
Ω

ϕ6Aσm
,k : σm

,k dx+
C

N
.

Estimates of Iα
3 : The relations (6.9) and (7.21) allow one to pass to the limit in Iα

3 :

lim
α→0

Iα
3 = lim

α→0

∫
Ω

σα
m : ∇2ϕ6div uα

m dx =
∫

Ω

σm : ∇2ϕ6div (um − um−1) dx =: I3,

so in view of the equality

div (um − um−1) = tr (em − em−1)

by (3.8) we conclude that

(8.7) |I3| ≤ C‖σm‖L2‖tr (em − em−1)‖L2 ≤ C

N
.

Proof of Theorem 2.1: The estimates (8.2), (8.3) and (8.5)-(8.7) yield

Jα
m ≤ C

N

[∫
Ω

ϕ6Aσα
m : σα

m dx+
∫

Ω

ϕ6Aσm
N : σm

N dx+
∫

Ω

ϕ6Aσm−1
N : σm−1

N dx+ 1

]
+ oα(1),

where oα(1) depends upon m,N . Now (7.5) implies(
1− C

N

)∫
Ω

ϕ6Aσα
m : σα

m dx ≤

≤
(
1 +

C

N

)∫
Ω

ϕ6Aσm−1
N : σm−1

N dx+
C

N

∫
Ω

ϕ6Aσm
N : σm

N dx+
C

N
+ oα(1).

To deduce (8.1) it remains to pass to the limit with respect to α , to use (7.21) and the lower
semicontinuity of the norm. By applying the discrete version of Gronwall lemma we obtain
(1.2). Now the conclusion follows from convergence of σN (t) ⇀ σ(t) in L2(Ω; Mn×n

sym ) for
every t ∈ [0, T ] . �
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9. Examples

Below we give two examples that show that we cannot hope to get regularity results
in the spirit of [4], that is, the existence of the elastic zone, where the equations of linear
elasticity are satisfied and where the stress and strain are as regular, as the data of the
problem permits.

We consider two particular cases of the periodic problem in dimension two, where not
only the stress tensor σ(t) is unique, but so are the displacement u(t) and a plastic part of
the strain p(t). In this case the problem is reduced to a one-dimensional one.

In the first example we consider the situation, where the data of the problem is of class
C∞ , but the solution of the reduced one-dimensional problem uR(t) develops a jump after
some time t∗ . The second example shows, that even when the displacement uR is continu-
ous, we cannot expect any kind of regularity of uR or pR . Namely, it shows, that given any
diffuse measure µR ∈ M+

b (0, 1), we can choose the data of the problem to be C∞ in such
a way, that at time t = 1 the plastic strain is precisely measure µR , while for almost every
time t we have σ(t, x) ∈ int K for all x , except one point.

This is in contrast with the case of Hencky plasticity (see [4]), where it was proved the
existence of the elastic zone – an open set Ω0 ⊂ Ω, such that

σ(x) ∈ int K for all x ∈ Ω0,

div
( ∂g
∂κ

(ε(u))
)

+ f = 0 in Ω0,

σ(x) ∈ ∂K for a.e. x ∈ Ω \ Ω0.

We consider the case of simple shear in Dirichlet-periodic case in dimension n = 2.
Similar examples can be easily constructed also in higher dimensions. We consider the unit
cube Ω = (0, 1)× (0, 1) and x1 -periodic solutions with boundary data of the form

(9.1)
u(t, x1, 0) = (0, 0),
u(t, x1, 1) = (

√
2ϕ(t), 0),

u(t, 0, x2) = u(t, 1, x2).

Let us introduce a linear isometry M : R → M2×2
sym as

(9.2) M(α) =

(
0 α√

2
α√
2

0

)
.

Assume, that the volume force has the form

(9.3) f(t, x) =
1√
2
(fR(t, x2), 0),

where we require the safe-load assumption to hold, and the initial conditions (u0, e0, 0) are

(9.4) u0(x1, x2) =
( √

2uR
0 (x2)
0

)
and e0(x1, x2) = M(eR

0 (x2)),

for some functions uR
0 , e

R
0 .

First, we will show, that in this particular situation all solutions of the quasistatic problem
can be obtained from the solutions of a suitable one-dimensional problem. The definition
of quasistatic evolution in dimension one can be obtained from Definitions 3.1 and 3.6 by
replacing the spaces Mn×n

sym and Mn×n
D by R , the compliance tensor A with a multiplication

by 1
2µ and the set K by KR = [−

√
2k∗,

√
2k∗] .

Let us introduce a space W ⊂ M2×2
sym as follows

W =
{( 0 a

a 0

)
: a ∈ R

}
.
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Given pR ∈Mb([0, 1]), the measure M(pR) ∈Mb([0, 1]× [0, 1]; M2×2
sym) is defined by

(9.5)

M(pR)(A×B) = M(pR(B))L1(A)
for every pair of Borel sets A,B ⊂ [0, 1], that is

〈M(pR), ψ〉 =
√

2
∫ 1

0

〈pR, ψ12(x1, ·)〉 dx1

for every ψ ∈ C0([0, 1]× [0, 1]; M2×2
sym).

Theorem 9.1. Suppose, that we are given a boundary conditions as in (9.1) and the load
as in (9.3) with f ∈ AC([0, T ];L2(Ω)) . Suppose, that the triple (u0, e0, 0) is kinematically
admissible and satisfies the stability condition. Then every solution (u, e, p) of the quasistatic
problem with the initial conditions (9.4) has the form:

u(t, x1, x2) =
( √

2uR(t, x2)
0

)
, e(t, x1, x2) = M(eR(t, x2)), p(t) = M(pR(t))

with M(pR(t)) defined in (9.5), where (uR(t), eR(t), pR(t)) is a solution to a one-dimensional
quasistatic problem, solved on a domain ΩR = (0, 1) with the initial data (uR

0 , e
R
0 , 0) , Dirich-

let boundary conditions uR(t, 0) = 0 , uR(t, 1) = ϕ(t) and the load fR(t, y) .

Proof: Consider the quasistatic problem with initial data (uR
0 , e

R
0 , 0) in dimension one

with domain ΩR = (0, 1), the compliance tensor AR = 1
2µ , volume force fR(t, y) and the

Dirichlet boundary data uR(t, 0) = 0, uR(t, 1) = ϕ(t). Let (uR(t, y), eR(t, y), pR(t, y)) be
its solution.

Now we show, that the function (u, e, p) defined as follows

(9.6) u(t, x1, x2) = (
√

2uR(t, x2), 0), e(t, x1, x2) = M(eR(t, x2)), p(t) = M(pR(t)),

with M defined in (9.2) and (9.5), is a quasistatic evolution in dimension two.
To this aim, let us check conditions (qs1) and (qs2) of Definition 3.6 with w(t, x1, x2) =

(
√

2ϕ(t)x2 ,0).
(qs1): The kinematic admissibility condition for (u, e, p) in dimension two (see Definition
3.1) follows from the corresponding condition for (uR, eR, pR) in dimension one.

As the minimality condition in (qs1) is equivalent to −div σ = f and σ ∈ K , and these
properties follow form the properties of σR . (qs2): Since M is an isometry, the energy
balance for (u, e, p) follows from the analogous property of (uR, eR, pR), .

Thus, the function (u(t), e(t), p(t)), defined in (9.6) is a quasistatic evolution in dimension
two.

By the uniqueness of the strain σ , we know, that for any quasistatic evolution in dimen-
sion two, the stress field σ(t) is given by

(9.7) σ(t, x1, x2) =
(

0 σ12(t, x2)
σ12(t, x2) 0

)
.

By the pointwise formulation of the flow rule, proved in [2, Theorem 6.4], and taking into
account the fact, that σ(t) is continuous, we have that for a.e. t ∈ [0, T ]

g(x) :=
dṗ(t)
d|ṗ(t)|

∈W for |ṗ(t)|-a.e. x ∈ [0, 1]× [0, 1] .

As ṗ(t) = g(x) |ṗ(t)| for a.e. t ∈ [0, T ] , it follows that

ṗ(t) ∈Mb([0, 1]× [0, 1];W ).

Thus, as

〈p(t), ϕ〉 =
∫ t

0

〈ṗ(s), ϕ〉 ds,

for every ϕ ∈ C([0, T ]× [0, T ]; Mn×n
sym ), we conclude that p(t) ∈Mb([0, 1]× [0, 1];W ) for a.e.

t ∈ [0, T ] .
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So, from (9.7) and the last relation we deduce by the additive decomposition, that

ε(u) ∈Mb(Ω;W ).

In particular, it implies, that

u1,1(t, x) = 0, and u2,2(t, x) = 0,

that is,
u1(t, x) = u1(t, x2) and u2(t, x) = u2(t, x1).

However, from the relaxed form of boundary conditions (9.1), which take the form

u2(t, x1, x2) = u2(t, x1, 0) = (−u(t, x1, 0)� ν(x1))22 = 0,

we have that u2(t, x1, x2) ≡ 0.
Thus, u(t, x1, x2) = (u1(t, x2), 0), the elastic part e(t) has the form, as in the statement

of the Theorem, and hence p ∈Mb([0, 1]× [0, 1];W ) and the Theorem is proved. �

9.1. Example 1. In this situation the data of the problem is the following: the domain ΩR

is (0, 1), the time interval is [0, T ] = [0, 3
2 ] , the constraint set KR = [−1, 1] and the elasticity

tensor AR is the identity. Taking the initial data to be (u0, e0, p0) = (0, 0, 0) we show that
there exists a unique quasistatic evolution in dimension one, and that the displacement u
of the solution has a jump at a point x = 1

2 after time t∗ = 1.
We choose a function G ∈ C∞0 (0, 1) such that∫ 1

0

G(y) dy = 0,

G(1/2) = 1, G(y) < 1 for y 6= 1
2 ,

G(y) > − 1
10

for y ∈ [0, 1],

and denote by g(y) its derivative.
So, we consider the one-dimensional quasistatic problem with the following C∞ data:

(9.8)
(uR

0 , e
R
0 , p

R
0 ) = (0, 0, 0),

uR(t, 0) = uR(t, 1) = 0,
fR(t, y) = −t g(y).

According to Theorem 9.1 all solutions of the corresponding two-dimensional Dirichlet-
periodic problem are generated by the solutions of one-dimensional problem (9.8).

Consider the functions (uR(t), eR(t), pR(t)) as follows:

uR(t, y) =


t

∫ y

0

G(z) dz, for t ≤ 1;

(1− t)y + (t− 1)χ( 1
2 ,1)(y) + t

∫ y

0

G(z) dz, for 1 < t ≤ 3
2 ;

eR(t, y) = σR(t, y) =
{
tG(y), for t ≤ 1;
tG(y) + 1− t, for 1 < t ≤ 3

2 ;

pR(t) =
{

0, for t ≤ 1;
(t− 1)δ1/2, for 1 < t ≤ 3

2 .
It is easy to see, that this triple satisfies

(u(t), e(t), p(t)) ∈ AR(0) for all t ∈ [0, T ] .

In view of Remark 3.8 the global minimality condition is ensured by the fact that |σR(t, y)| ≤
1 and σR

y (t, y) = tg(y) = −f(t, y).
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By [2, Theorem 6.4] the energy balance is equivalent to the pointwise formulation of the
flow rule. Since ṗ(t) = δ 1

2
for t > 1 and as σ(t, 1

2 ) = 1, and |σ(t, y)| < 1 for y 6= 1
2 or t < 1

we have that

1 =
dṗR(t)
d|ṗR(t)|

∈ NK(σR(t, y)) for |ṗR(t)|-a.e. y ∈ [−1, 1],

which is precisely the pointwise expression of the flow rule. Thus, (u, e, p) constructed above
is a quasistatic evolution in dimension one.

Now we show that the solution constructed is the unique one. Let us suppose, that there
exists another quasistatic evolution (v(t), η(t), q(t)). By the uniqueness of the stress, η ≡ e .
Now let us show that q ≡ p . As the energy balance (qs2) is satisfied for (v, η, q), the
pointwise formulation of the flow rule yields

dq̇(t)
d|q̇(t)|

∈ NK(σ(t, x)) for |q̇(t)|-a.e. x ∈ [−1, 1].

By the properties of σ(t) it follows, that supp q̇(t) ⊂ { 1
2} for a.e. t ∈ [1, 3

2 ] , while q̇(t) = 0
for a.e. t ∈ [0, 1].

Thus the formula

〈q(t), ϕ〉Mb;C0 =
∫ t

0

〈q̇(s), ϕ〉Mb;C0 ds for any ϕ ∈ C0(0, 1) ,

yields that q(t) = β(t)δ 1
2

with β ≥ 0, and the boundary conditions (9.8) imply that β(t) =
t−1, that is q ≡ p . This yields also that v(t) = u(t), and we obtain the uniqueness of u(t).

9.2. Example 2. We are given the domain ΩR = (0, 1), the time interval [0, 1], the con-
straint set KR = [−1, 1] and the elasticity tensor AR = 1. Let µR ∈M+

b (0, 1) be a diffuse
measure, that is µR({x}) = 0. Suppose, that µR([0, 1]) = 1.

We will choose the data of the problem to be C∞ and such that for the unique solution
of the quasistatic problem pRs(t, ·) = µRs for t = 1.

Let us take the continuous nondecreasing function Φ(s) = µR([0, s]) . We consider the
left-continuous inverse

X(t) := sup{s : Φ(s) < t},
so that Φ(X(t)) ≡ t . Let us take the set {(t,X(t)) : t ∈ [0, 1]} and denote its closure by E :

E := cl{(t,X(t)) : t ∈ [0, 1]} = {(t,X(t+ 0)), (t,X(t− 0)) : t ∈ [0, 1]}.
Then there exists a function φ(t, y), such that

φ ∈ C∞0 (R2), 0 < φ ≤ 1,
φ−1({1}) = E.

The data of the one-dimensional problem we would like to solve is the following:

(9.9)

uR
0 (y) =

∫ y

0

φ(0, z) dz, eR
0 (y) = φ(0, y), pR

0 = 0,

uR(t, 0) = 0, uR(t, 1) =
∫ 1

0

φ(t, y) dy + t,

fR(t, y) = −φy(t, y).

Now consider a function µR : [0, T ] →M+
b ([0, 1]), defined as

µR(t)(B) = µR(B ∩ [0, X(t)])

for every Borel set B ⊂ [0, 1]. The estimate

‖µR(t)− µR(s)‖1 = µR((x(s), x(t)]) = Φ(X(t))− Φ(X(s)) = t− s,

shows that µR ∈ AC([0, T ];M+
b ([0, 1])). Moreover, the very definition of X(t) yields

µ̇R(t) = δX(t).
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Consider the following functions:

(9.10)

u(t, y) =
∫ y

0

φ(t, z) dz + µR(t)(0, y),

e(t, y) = σ(t, y) = φ(t, y),

p(t) = µR(t),

and let us show that (u, e, p) defined in this way is the unique solution of the quasistatic
problem (9.9).

First of all, it is obvious that the initial conditions are satisfied and the triple (uR
0 , e

R
0 , p

R
0 )

satisfies the stability condition. Let us check the conditions (qs1) and (qs2) as in the Defi-
nition 3.6.
(qs1): As

(µR(t)(0, y))y = µR(t) in D′(0, 1) ,

the kinematic admissibility condition in (0, 1) is trivially satisfied by (9.10). As the boundary
conditions hold in the strong sense and p = 0 on ∂Ω, we have that the triple (u(t), e(t), p(t))
is kinematically admissible for its boundary data.

What about the global stability, it follows from the equivalent condition (see Remark 3.8)

−σy(t, y) = fR(t, y) and |σ(t, y)| ≤ 1.

(qs2): As σ(t,X(t + 0)) = σ(t,X(t − 0)) = 1 and |σ(t, x)| < 1 otherwise, the pointwise
formulation of the flow rule, which is equivalent to the energy balance, is satisfied:

ṗR(t) = δX(t−0), 1 =
dṗR(t)
d|ṗR(t)|

∈ NK(σR(t, y)), for |ṗR(t)|-a.e. y ∈ (0, 1) .

So, (9.10) is a solution to (9.9).
Now let us take any solution (v(t), η(t), q(t)) to quasistatic problem (9.9). As the stress

is unique, we have η(t) ≡ e(t). Now, the pointwise formulation of the flow rule implies

dq̇(t)
d|q̇(t)|

∈ NK(σ(t, x)), for |q̇(t)|-a.e. x ∈ (0, 1) ,

that is supp q̇(t) ⊂ {X(t), X(t + 0)} . As X(t) is a monotone function, it has at most
countable number of discontinuities, that is for a.e. t ∈ [0, 1] we have

(9.11) supp q̇(t) ⊂ {X(t)}.

The boundary conditions for v(t) yield:

v(t, 1) =
∫ 1

0

φ(t, y) dy + q(t)(0, 1) =
∫ 1

0

φ(t, y) dy + t,

which in its turn implies that q(t)(0, 1) = t, and from (9.11) it follows, that

q̇(t) = δX(t).

That is, q(t) ≡ p(t) and (9.10) is the unique solution to (9.9).
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