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Abstract
We analyze in this paper the discrete quasi-static irreversible with small steps evolution of a

connected network related to an average distance functional minimization problem. Our main
goal is to determine whether new branches may appear during the evolution, thus changing the
topology. We would give conditions on this, and an upper bound for the time at which it must
happen for a particular class of configurations. We will use extensively tools belonging to mini-
mizing movements and optimal transportation theory with free Dirichlet regions. Then we will
give some explicit examples of quasi-static evolution, whose branching time will be estimated
direct computation, by using both pure energy and mixed geometric/energy estimates.
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1 Introduction

Many evolution schemes, like Euler schemes, arise to model evolution problems with some kind
of variational structure. An interesting question, still not deeply studied, is whether and when the
evolving set will exhibit a branching behavior.

In this paper we will consider the discrete quasi-static evolution with small steps for connected
networks related to an average distance functional, and our main goal is to analyze whether and
when optimal sets may exhibit a branching behavior.

Let Ω be a compact subset of R2, S ⊂ Ω a Hausdorff one-dimensional connected set of given
Hausdorff measure; we define the main functional of this paper:

F (S) :=

∫
Ω

dist(x, S)dx.

As we will see, the Lebesgue measure choice facilitates relating measure theory quantities with
geometrical ones.

Next we introduce a definition, with a slight abuse of name:
∗Scuola Normale Superiore di Pisa, PhD student in Mathematics, e-mail: x.lu@sns.it
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Definition 1.1. Given a domain Ω, S ⊆ Ω a subset, P ∈ S a point, its Voronoi cell is

V (P ) := {x ∈ Ω : dist(x, P ) = dist(x, S)}.

This is very similar to the classic definition of Voronoi cell, the main difference being not impos-
ing S discrete.

Now we present our evolution models: given a time step ε > 0 and an initial datum Σ0 ∈ A, we
consider the following recursive sequence:

Σ0 ∈ A(Ω)

Σn−1 ⊂ Σn

Σn ∈ argminH1(S)=nε+H1(Σ0)F (S)

(1.1)

where

Al(Ω) :=
{
X ⊆ Ω : X compact, connected andH1(X ) ≤ l

}
, A(Ω) :=

⋃
j≥0

Aj .

This is the so-called Euler scheme. In other words we are forcing the set to evolve choosing at
every step a set which minimizes the functional F , under some constraints.

This Euler scheme can be written in another way: if we consider the evolution in time interval
[0, T ], we can define

fε : [0, T ] −→ A, fε(t) := Σ[t/ε],

and with an abuse of terminology, we call fε “Euler scheme” too, when there will be no risk of
confusion.

While definitions of Al, A and Voronoi cell imply a dependence on the domain Ω, we will omit
it when there is no risk of confusion.

We define now what we mean with “branching behavior”:

Definition 1.2. Given a domain Ω, a positive time T > 0, a time step ε > 0, consider the Euler scheme

fε : [0, T ] −→ A, fε(t) := Σ[t/ε].

Then we will say fε exhibits a branching behavior at time t0 ∈ [0, T ] if there exists Q ∈ fε(t0) such that for
any t > t0 there exists R(t) > 0 such that for any r < R(t) B(Q, r) ∩ fε(t0)\{Q} has connected compo-
nents {Ci}i∈I while B(Q, r) ∩ fε(t)\{Q} has at least 3 connected components and at least one connected
components not included in {Ci}i∈I .

Now we present an easy result on F :

Proposition 1.3. Given a domain Ω, for any S1, S2 ∈ A, with S1 ⊆ S2, we have F (S1) ≥ F (S2).

Proof. The proof is easy: as S1 ⊆ S2, for any x ∈ Ω we have

dist(x, S1) ≥ dist(x, S2)

and integrating on Ω ∫
Ω

dist(x, S1)dx ≥
∫

Ω
dist(x, S2)dx

which concludes the proof.
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Moreover we see from the proof of Proposition 1.3 that if there exists Ω′ ⊆ Ω with L2(Ω′) > 0
and dist(x, S1) > dist(x, S2) for any x ∈ Ω′, then F (S1) > F (S2). So for any h > 0

min
X∈Ah

F (X ) = min
H1(X ′)=h

F (X ′)

and
argminAh

F = argminAh\
⋃

0≤h′<h Ah′
F.

which effectively allows us to use these constraints indifferently.

Our goal is to investigate the topological behavior of the evolution process, as it is not clear
whether the optimal set changes topology or not. This doubt arises from the following fact: given
a generic l ≥ 0, for most sets S ∈ argminAl

F (further explanation can be found in Proposition 3.1),
adding a small piece of curve at an endpoint of its is better than adding it elsewhere, and a closed
path is never present in any optimal set (for references, see [6], [7] and [8]). But as we will see in the
following sections, there are some configurations in which this kind of argument fails and definitely
a branching behavior will arise.

This paper will be structured as follows: in Section 2 we will present some results of optimal
transport in presence of Dirichlet regions, in particular the geometrical properties of optimal sets; in
Section 3 we will prove our main results; in Section 4 we will present some explicit situations, and
we will estimate the time at which a triple (or multiple) point will arise.

Notations

The most used in this paper will be:

• Ω to denote the domain,

• ε, δ, r, ρ to denote small positive number,

• l to denote generic positive number,

• S to denote generic connected compact sets in the domain,

• S0 to denote the initial datum of an evolution,

• w(k, ·), w(k) (k ∈ N) to denote the (k + 1)-th set of an Euler scheme.

To avoid using excessive number of different notations, some symbols will be used in more sit-
uations: unless explicitly specified, if a notation is used in two different Definitions/ Propositions/
Lemma/ Theorems, there is no connection between them, so there is no risk of confusion.

The only notable exceptions are

• Al (with l ≥ 0), and A: if there is a given domain Ω, they always denote the sets defined after
(1.1),

• F which always stands for the average distance functional
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• V (·) which stands for the Voronoi cell of the point.

We will work only domains in R2 which are closure of a sufficiently regular bounded open con-
nected set. Moreover, when we will write F (X1 ∪ X2) (with X1,X2 ∈ A), we will assume implicitly
that X1 ∪ X2 ∈ A, and exclude every other case.

2 Preliminaries

In this section we present some results concerning the geometrical properties of optimal sets. The
proofs we give here are somewhat essential, and for accurate details we refer to [6], [7] and [8].

The following two results are about the regularity of optimal sets in the static case.

Proposition 2.1. Let be Ω a given domain, l > 0 a fixed quantity, and Σopt ∈ argminAl
F . Then Σopt cannot

contain a loop (a subset homeomorphic to S1).

Fig. 1: This is a simple representation of what happens if we remove the portion Λε.

Proof. Suppose that Σopt contains as subset E homeomorphic to S1. If we remove the portion Λε
from E (H1(Λε) = ε > 0), setting Eε := E\Λε we have that all the “loss” is concentrated on Γε (the
shaded region in Figure 1, which has area no larger than εdiam(Ω)), as points belonging to the rest
will not change their distance to Σε. For the points in Γε their path can be longer, but it is clear from
triangle inequality

dist(x,Eε) ≤ dist(x,E) +H1(Λε)

so we have ∫
Ω

dist(x,Σε)dx ≤
∫

Ω
dist(x,Σ)dx+ εL2(Γε)

thus the “loss” in energy after removing Λε is upper bounded by ε2diamΩ. Proposition 2.4, which
estimates from below the “gain” in energy by adding such a portion Λε to Σopt, will conclude the
proof.

Proposition 2.2. Let Ω be a given domain, l > 0 a fixed quantity, and let be Σopt ∈ argminAl
F . Then Σopt

cannot contain a cross (a subset homeomorphic to {x2 + y2 ≤ 1 : xy = 0}).
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Fig. 2: Σε is obtained from Σopt by replacing the infinitesimal cross Λε with a slightly shorter Steiner graph.

Proof. Suppose that Σopt contains as cross Λε (H1(Λε) = ε > 0). If we remove the portion Λε from
Σopt, and replacing it with a Steiner graph Zε (a direct computation yields the existence of k > 0
such thatH1(Zε) < kε) in order to keep the connection property, setting Σε := Σopt\Λε we have that
all the “loss” is concentrated on Γε (the shaded region in Figure 2, which has area no larger than
εdiam(Ω)), as points belonging to the rest will not change their distance to Σε. For the points in Γε
their path can be longer, but it is clear from triangle inequality

dist(x,Σε) ≤ dist(x,Σopt) +H1(Λε)

so we have ∫
Ω

dist(x,Σε)dx ≤
∫

Ω
dist(x,Σopt)dx+ εL2(Γε)

and the “loss” in energy after removing Λε is upper bounded by ε2diamΩ. Again, Proposition
2.4, which estimates from below the “gain” in energy by adding such a portion δε whose length is
H1(Λε)−H1(Zε) = O(ε) to Σopt, will conclude the proof.

The next estimate is a very important one, and widely used in this paper. Some definitions are
required first.

Definition 2.3. Given a domain Ω, S ∈ A a generic element, a non endpoint P ∈ S is “smooth” if:

• there exists r > 0 such that there exists an homeomorphism f : B(P, r) ∩ S −→ (0, 1),

• for any sequences {Xn} ⊂ S, {Xn} → P , the sequence { ̂XnPXn+1∧(2π− ̂XnPXn+1)} accumulates

in {0, π}, and there are sequences {X(1)
n } ⊂ S, converging to P such that the sequence ̂

X
(1)
n PX

(1)
n+1

accumulates in π.

A subset of S is smooth is all its non endpoints are smooth.
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Fig. 3: This is an example of smooth point.

Proposition 2.4. Given a domain Ω, let be S ⊂ Ω be a connected set, if we add a segment λε to a smooth
non endpoint of S (withH1(λε) = ε), then the “gain” F (S)−F (Sε) is at least comparable with ε3/2, where
Sε := S ∪ λε.

Proof. Upon scaling, the configuration can be brought to the following in Figure 4, so all the com-
putations can be done here.

Fig. 4: This is how the scaled case look.

If a point (x, y) can gain in distance, i.e. verifies

dist((x, y), S ∪ λε) < dist((x, y), S)

thus
(x2 + (y − ε)2)1/2 < |y|,

this leads to

y >
x2

2ε
+
ε

2
,

the shaded parabola of Figure 4.
We have to estimate its area: as we are working in [−1, 1] × [0, 1], the intersections between

{(x, y) : y =
x2

2ε
+
ε

2
} and [−1, 1]× {1} are

x± := ±
√

2ε− ε2.

6



We do not need to compute exactly the area of this parabola, it suffices to estimate it. Putting
Z,W midpoints between (0, 1) and x−, x+ respectively, X,Y midpoints between (0, ε) and (−ε, ε),
(ε, ε) respectively, parabola contains the trapeziumXYWZ, andH1(XY ) = ε,H1(WZ) =

√
2ε− ε2

and the height is 1 − ε. The gain in path here is at least ε/2 (this minimum is attained on points X
and Y ), so the gain for the energy functional is at least

ε

2

1− ε
2

(ε+
√

2ε− ε2) ≥ ε3/2

8
,

and the proof is complete.

This result can be generalized: it is enough that a point Q ∈ S verifies

(A) there exists r > 0 such that there exists an homeomorphism f : B(Q, r) ∩ S −→ (0, 1),

(B) there exists r′ ≤ r and Q1, Q2 ∈ B(Q, r′) such that the non trivial triangle with vertexes in
Q1, Q,Q2 verifies Q1QQ2 ∩ S = {Q}.

The proof is identical to that of Proposition 2.4, with different constants.
For smooth points the gain in energy has exactly order O(ε3/2) (as the area of that parabola in

Figure 4 is upper bounded by 2
√

2ε), and this argument is applicable for any points verifying (A)
and (B) except for the angular points (see Definition 3.6), for which the gain in energy has order
O(ε).

3 Results

In this section we present the main result of our paper, i.e. conditions sufficient to force a branching
behavior for Euler schemes with sufficiently small time step, and an upper bound estimate of the
time at which the set must change topology under a particular conditions.

The next result is crucial to the purposes of this paper, and it is an estimate (from below) for the
gain in energy when endpoints with non negligible Voronoi center are present.

Proposition 3.1. Given a domain Ω, let S ∈ A, and let it have a point O satisfying:

(∗) there exists ξ > 0 such that S ∩B(O, ξ) is contained in the circular sector with center O and arc Q′R′,
with Q̂′OR′ := β < π (see Figure 5-I).

Then we have:

(1) there exist ρ > 0 and θ > 0 and a isosceles triangle T ′ ⊂ V (O) with a vertex in O, two sides with
length ρ and angle in O measuring θ, that does not intersect S,

(2) there exists ε0 such for any ε < ε0 adding a segment λε at O, withH1(λε) = ε in O leads to a gain for
the energy functional comparable with O(ε).
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Fig. 5-I: condition (∗) is enough to guarantee the existence of a triangle OQR ⊂ V (O),
with sides OQ = OR = ξ/2 and R̂OQ = π − β

Fig. 5-II: the presence of the shaded triangle T ′ makes adding at this point more convenient
than at a smooth non endpoint at least when the added portion has sufficient small length.

Proof. Let us analyze the two statements separately.

(1) The whole configuration looks like that in Figure 5-I: let us consider the triangle OQR, with
OQ = OR = ξ/2. It is contained in V (O), as given any point X ∈ OQR, dist(X,O) ≤ ξ/2,
while dist(X, ∂B(O, ξ)) ≥ ξ/2, and the shortest path from X to the circular sector containing
(B(O, ξ) ∩ S)\{O} must cross OQ′ or OR′, and dist(X,OQ′) = dist(X,OR′) = dist(X,O). So
choices ρ := ξ/2 and θ := π − β are sufficient to prove the first statement.

(2) Adding a straight segment λε at O and in the triangle JOK along the direction of bisector of
angle ĴOK (see Figure 5-II), with ε small enough, then all points on JKK ′J ′ (where J ′,K ′ are
midpoints of segment OJ and OK) will have a gain in path to S at least

ρ

2
−
√
ρ2

4
− ερ

2
cos

θ

2
≈ ε cos

θ

2
−O(ε2) (3.1)

as this is the gain of points on OJ and OK , and points inside gain even more. But it is clear

that for ε small enough the higher order term O(ε2) becomes negligible compared to ε cos
θ

2
,

thus (when ε is sufficiently small) we will have O(ε2) ≤ ε

2
cos

θ

2
. So all points of triangle JOK

gain in path at least
ε

2
cos

θ

2
, thus the gain in energy is not lower than

ε

2
cos

θ

2
L2(JOK)

and as L2(JOK) = ρ2 sin
θ

2
cos

θ

2
,

F (S ∪ λε) ≤ F (S)− ε

2
cos

θ

2
L2(JOK) = F (S)− ε

2
ρ2 sin

θ

2
cos2 θ

2

and the proof is complete.
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3.1 Changing topology

Now we investigate all the situations that may appear during the evolution. Given an initial datum
S0 ∈ A, a positive time T > 0, a time step ε > 0, consider{

w(0) := S0

w(k) ∈ argminH1(X ′)≤H1(S0)+kε, w(k−1)⊆X ′F (X ′)
.

Putting

Σ : [0, T ] −→ A, Σ(t) := w([t/ε]),

at any time T0 ∈ [0, T ], the following (obvious) dichotomy is possible:

(1) Σ(T0) does not branch,

(2) Σ(T0) exhibits a branching behavior.

In order to provide an upper bound to the branching time, we need to establish when choice (2)
becomes necessary preferable to choice (1).

As Σ(t) is connected for any t, in spite of Proposition 3.1, possible ways are either to admit the
existence non endpoints verifying its hypothesis, or negate the existence of endpoints, or negate the
existence of endpoints verifying condition (∗). The last reads:
“for any endpoint O′, for any ρ, θ > 0, for all triangles with a vertex in O′ and sides ρ, ρ, ρ

√
2− 4 cos θ the

set Σ(t) intersects that triangle”.
Let us try with this possibility first.
These tools will be used:

Definition 3.2. Let S be a compact connected set in a given domain Ω,, P ∈ S a point, and a positive value
R > 0. The “the inner radial projection” is the function

πP,R : B(P,R) −→ ∂B(P,R), πP,R(x) := ∂B(P,R) ∩ Px

where Px denotes the halfline starting from P and passing through x.

The above function is useful to define the equivalent of a loop:

Definition 3.3. Given a domain Ω, let be Γ a curve, a subset γ ⊆ Γ is “general loop” around a point Q ∈ Ω
if it is a closed connected set satisfying:

(1) There exists aR′ for which γ ⊆ B(Q,R′) and πQ,R′(γ ∩B(Q,R′)) = ∂B(Q,R′);

(2) No connected proper subsets of γ satisfies the first condition.
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Fig. 6: I is an example of general loop, while II and III are not.

Notice that in the above definitions B(P,R′) is not necessary in the domain, and the exact value
R′ in condition (1) is not relevant, and if the condition holds for a suitableR0, then it holds for every
R > R0.

Using the above notations, we introduce the following tool:

Definition 3.4. Given a domain Ω, let be Γ a curve, P ∈ Γ an endpoint, and suppose that there exist a
sequence {ρn}∞n=0 with ρn ↓ 0 such that for any n πP,ρn(Γ ∩ B(P, ρn)) = ∂B(P, ρn). Then if there exists a

partition of Γ, namely Γ =

∞⋃
n=0

Ln, P /∈ Ln for any n, such that:

• for every n, ∂B(P, ρn) contains the farthest point of Ln from P ,

• for every n, ∂B(P, ρn+1) contains the closest point of Ln from P ,

then we call the sequence {ρn}∞n=0 “distance sequence” for P .

Notice that from the above definition it is not necessary that every endpoint has a distance se-
quence, and even if it had one, this is not unique, as if {ρn}∞n=0 is a distance sequence for an endpoint
P , then for any positive integer M0 {ρn}∞n=M0

is a distance sequence for P too.
Now we can present a condition on the branching behavior, for the discrete case first:

Proposition 3.5. Given a domain Ω, let be S0 ∈ A (A defined just after (1.1)) be the initial datum of the
following class of Euler schemes (ε′ is the time step, a free variable parameter){

w(0) := S0

w(k) ∈ argminH1(X ′)≤H1(S0)+kε′, w(k−1)⊆X ′F (X ′)
.

Then, a branching behavior occurs at the very beginning for Euler schemes with sufficiently small time
step if the following condition is satisfied:

(∗∗) any endpoint P ′ ∈ S0 has a distance sequence {ρ(P ′)
n }∞n=0 and a constant Wr(P ′) which verifies

lim sup
n→∞

log
ρ
(P ′)
n

ρ
(P ′)
(n+1) ≤Wr(P ′) < 2.
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Moreover, there exists a constant r > 0, depending only on geometric quantities, such that the
branching happens outside B(P, r) for ε′ sufficiently small.

Proof. We assume first that Σ(0) = S0 has an unique endpoint P .
Let us analyze what happens if we add some set Jε′ (with length ε′ > 0 small) at P : we have to

estimate the gain for the energy. As Jε′ ⊂ B(P, ε′), the gain is upper bounded by the quantity

ε′|B(P, ρ
(P )
m(ε′)−2)|

where ρm(ε′)−2 will be explained in the following.

As the point P satisfies condition (∗∗), there exists a maximum m(ε′) for which ρ
(P )
m(ε′) ≤ ε′ <

ρ
(P )
m(ε′)−1, so the total gain can be estimated by π(ρ

(P )
m(ε′)−2)2ε′, and as

ρ
(P )
m(ε′) ≤ ε

′ < ρ
(P )
m(ε′)−1 < ρ

(P )
m(ε′)−2

the logarithmic condition in (∗∗) gives

ε′2 < (ρ
(P )
m(ε′)−2)2 ≤ (ρ

(P )
m(ε′))

1/Wr(P ) ≤ ε′1/Wr(P ) = o(ε′1/2)

and the total gain is an O(ε′1+1/Wr(P )) = o(ε′3/2).
Adding Jε′ in this way is not optimal for ε′ sufficiently small.
But if we add Jε′ at a non endpoint, it can gain O(ε′

3
2 ) (see Proposition 2.4). Moreover, if both

dist(P, Jε′) and ε′ are small enough (i.e. every point of Jε′ is close to P ), then there exists ρ∗ (de-
pendent on dist(P, Jε′) and ε′) and a general loop Gρ∗ such that Jε′ ⊂ conv(Gρ∗) ⊂ B(P, ρ∗) ⊂
conv(Gρ∗−1). Thus the gain in energy would be smaller than ε′3/2α(Gρ∗−1), where α(Gρ∗−1) is a
value that depends only on the geometry of the general loop Gρ∗−1 and goes to 0 as the area of
Gρ∗−1 goes to 0. So if we let both dist(P, Jε′) and ε′ go to 0, the maximum ρ∗ goes to ∞, thus the
gain in energy becomes ε′3/2 multiplied by a factor going to 0.

As H1(Σε′(T )) ≤ H1(S0) + T + 1, there will always be point Z ∈ S0, such that adding Jε′ at Z
leads to a gain in energy not lower than dε′3/2, with d dependent only on geometric quantities (of
S0 near Z).

So even adding positive (small) length too close to the unique endpoint P is not optimal: this
means that no set in any Euler scheme (with small time step) can add length too close to P , and a
branching behavior appears at the very beginning (the very first step) of this evolution.

This argument can be generalized to S0 having more endpoints (by applying it to all endpoints
of S0), so the proof is complete.

3.2 Frequent visiting

In the previous subsection we have given a condition sufficient to force a branching behavior, but
it looks quite artificial, and its branching is at the very first step. Here we try to put a weaker one,
by exploiting the existence of non endpoints with not negligible Voronoi cell, and by estimating the
required “free space” (i.e. the minimum value for Voronoi cells of its endpoints) to evolve without
changing topology.
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The choice of adjective “frequent” will be clear at the end of this section, in Theorem 3.8.
Proposition 2.4 is too weak, as the gain obtained in that way has orderO(ε3/2) for ε small enough.

Something stronger is required.
We introduce a new class of points:

Definition 3.6. Given a domain Ω, S ∈ A a generic element, a non endpoint P ∈ S is “angular” if there
exists r > 0 and θ < π such that:

(1) there exists an homeomorphism f : B(P, r) ∩ S −→ (0, 1);

(2) given any sequence {Pn}∞n=0 ⊂ S converging to P , the sequence ̂PnPPn+1 ∧ (2π − ̂PnPPn+1) accu-
mulates in {0, θ}.

An angular point can be imagined as a point around which the tangent vector form an angle or
a cuspid.

Fig. 7: This is an example of angular point, with the dashed lines indicating tangent directions.

This class of point is important for the following result:

Lemma 3.7. Given a domain Ω, let S ∈ A be an arbitrary element, and suppose there exists Q ∈ S. The Q
verifies condition (∗) of Proposition 3.1.

Proof. Introduce a local coordinate system as in Figure 8:

Fig. 8: All the points in the shaded area belong to V (Q), and it contains a triangle.
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As Q is angular, we have that by definition there exists θ < π given any sequence {Qn}∞n=0 ⊂ S

converging to Q the sequence ̂QnQQn+1 ∧ (2π − ̂QnQQn=1) accumulates in {0, θ}. We claim that
there exists ρ > 0 such that all points belonging to S ∩ B(Q, ρ) are contained in the circular sector

(of B(Q, ρ)) with center Q and central angle
θ + π

2
.

This can be translated by saying that there are at least two sequences {Xn}∞n=0, {Yn}∞n=0 in S
converging toQ such that the angle between vectors v(XnQ)/||v(XnQ)|| (v(XnQ) denotes the vector
starting in Xn and pointing towards Q) and v(YnQ)/||v(YnQ)|| tend to be θ for n → ∞. Now if
condition (∗) has to fail, then there exists rn ↓ 0 such that for any n there exists a Qn not in the

circular sector (of B(Q, rn)) with center Q and central angle
θ + π

2
.

Now it is clear that Qn → Q, and (upon passing to subsequences) {Qn}∞n=0 converges to Q along

a third direction, different from the previous two. So by definition of angular point, if θ 6= 2

3
π, the

proof is complete.
We have to analyze the last case, when {Xn}∞n=0, {Yn}∞n=0 and {Qn}∞n=0 converge to Q and the

the value of angle formed between then (X̂nQYn, Q̂nQYn, X̂nQQn) accumulates all to
2

3
π.

In this case, as B(Q, r) ∩ S is homeomorphic to (0, 1) (by definition of angular point), it cannot
contain more than one connected component, thus Qn must be connected frequently to Xn or Yn by
a path γr (and as Q has multiplicity 2, we can assume that Qn is connected frequently to Xn by a
path γr not passing in Q). As this is valid for arbitrary small r, we can consider a sequence rn ↓ 0
and pathes γrn : γrn ⊂ B(Q, rn), thus in the Hausdorff metric γrn → Q, thus there must be another
sequence {Zn}∞n=0 which converges to Q along a direction different from that of {Xn}∞n=0, {Yn}∞n=0,
{Qn}∞n=0, and the proof is complete.

The next result is a condition required to avoid branching behaviors for Euler schemes.

Theorem 3.8. Given a domain Ω, let S(1)
0 ∈ A be a generic element, T a positive time and ε > 0 a (small)

positive time step, let us consider the Euler scheme{
w(0) := S

(1)
0

w(k) ∈ argminH1(X ′)≤H1(S
(1)
0 )+kε, w(k−1)⊆X ′F (X ′)

in the time interval [0, T ].
Suppose that there exist P0 ∈ S(1)

0 angular and η > 0 such that B(P0, η) ∩ (w(k)\w(0)) = ∅ for any k.
Then there is an upper bound T εmax such that T > T εmax causes a branching behavior.

Proof. As P0 is angular, Lemma 3.7 affirms that Proposition 3.1 is verified for some positive ρ, θ. So
from the estimate of Proposition 3.1 there is a constant K(P0) > 0 (depending only on ρ, θ and not
on ε) such that for any j

min
H1(X ′)≤H1(w(j−1))+vε, w(j−1)⊆X ′

F (X ′) ≤ F (w(j − 1))−K(P0)ε,

as this gain is achieved by simple adding a segment Segε ⊂ TP (H1(Segε) = ε) along the bisector of
P̂0, which would create a branching behavior.
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In order to avoid this, for any d, w(d) must be obtained from w(d− 1) by adding length at points
of ext(w(d− 1)), and the gain in energy must be more than K(P0)ε, i.e.

F (w(d)) ≤ F (w(d− 1))−K(P0)ε ∀d = 1, · · · ,
[
T

ε

]
which leads to

F (w(d)) ≤ F (w(0))− dK(P0)ε ∀d = 1, · · · ,
[
T

ε

]
and finally, for d =

[
T

ε

]
,

F (

[
T

ε

]
) ≤ F (w(0))−

[
T

ε

]
K(P0)ε.

As
T

ε
− 1 ≤

[
T

ε

]
≤ T

ε
, this leads to

0 ≤ F (

[
T

ε

]
) ≤ F (w(0))− (T − ε)K(P0),

which forces

T ≤ ε+
F (S

(1)
0 )

K(P0)

and putting T εmax := ε+
F (S

(1)
0 )

K(P0)
completes the proof.

Now some word about the use of adjective “frequent”: indeed Theorem 3.8 states that if some
angular point has a neighbor never visited by the evolving set, than soon or later a branching will
arise in this point, i.e. for any angular point the latter must pass frequently close to it to avoid
branching behaviors.

4 Examples

In this section we give two examples of branching behavior, and two ways to estimate this.

4.1 Energy estimate

In Theorem 3.8 we have given an upper bound estimate for the branching time under that particular
configuration: now we present an explicit example.

In order to apply this result, its hypothesis must be verified: so given a domain Ω, let Sini0 be
the initial datum, and suppose there exist P0 ∈ Sini0 angular and ξ > 0 such that B(P0, ξ) ∩ Sini0 is
homeomorphic to (0, 1).

Moreover, we must ensure that this ball B(P0, ξ) is not visited, and one way to do this is impos-
ing that any visiting here must cause a branching behavior. So we choose a particular Sini0 .
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Suppose that

• there exist P0 ∈ Sini0 angular and let be ξ > 0 such that B(P0, ξ) ∩ Sini0 is homeomorphic to
(0, 1);

• there exist a closed injective path γ : [0, 1] −→ Ω such that γ([0, 1]) ⊆ Sini0 : the domain Ω
is now divided in two regions, Ω+ and Ω− with Ω = Ω+ ∪ Ω− (they are the two connected
components of Ω\γ([0, 1]), and they correspond to the “interior” and the “exterior” part of
γ([0, 1]) – the order is not relevant – as given by the Jordan Curve Theorem);

• triangle TP0 ⊂ V (P0)∩B(P0, ξ) (whose existence is given by Lemma 3.7) verifies |TP0∩Ω+| > 0,
and ext(Sini0 ) ⊂ Ω−.

The main estimate we are going to present here is Theorem 4.2, whose proof requires a series of
preliminary lemma.

In the rest of this subsection we will suppose that Ω− is large enough (both in diameter and
in measure) so that all computations can be done without considering constraints imposed by
diam(Ω−), |Ω−| (otherwise a branching behavior is exhibited even sooner).

Consider {
w(0) = w(0) := Sini0

w(k) ∈ argminH1(X ′)≤H1(Sini
0 )+kεF (X ′)

,

Σε(t) := w

([
t

ε

])
.

The notations introduced (except mute counters) will have the same meaning in all this subsec-
tion.

Lemma 4.1. If there exist k such that (w(k)\Sini0 ) ∩ Ω+ 6= ∅, but (w(k − 1)\Sini0 ) ∩ Ω+ = ∅, this means
w(k) is not homeomorphic to w(k − 1).

Proof. The hypothesis force w(k) ∩ γ([0, 1]) 6= ∅, as w(k) ∩ Ω− and w(k) ∩ Ω− are both non empty.
Moreover at least one point γ(s) (s ∈ [0, 1]) belonging to w(k, n)∩γ([0, 1]) is connected by a path

γ′ : [0, 1] :−→ (w(k) ∩ Ω+) ∪ {γ(s)} to w(k) ∩ Ω+.
Removing the entire set γ([0, 1]) the following situation may arise:

• a new connected component (previously not present in w(k − 1)\γ([0, 1])) given by (w(k)\
γ([0, 1])) ∩ Ω+ arises, thus w(k) and w(k − 1) are not homeomorphic;

• the set ((w(k)\γ([0, 1]))) ∩ Ω+ is not a new connected component, so there exists a subset σ ⊂
w(k−1)\γ([0, 1]) such that σ and ((w(k)\γ([0, 1])))∩Ω+ are in the same connected component.

Let us analyze the second case: as w(k − 1) is connected, this would mean that there exists
a sequence {On} ⊂ σ converging to a point on γ([0, 1]), and as a similar sequence is present in
(w(k)\γ([0, 1])) ∩ Ω+, definitely σ ∪ ((w(k)\γ([0, 1])) ∩ Ω+) is a new closed path connecting two
points on γ([0, 1]), thus the homotopy class changes, and the proof is complete.
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Now we can present an upper bound estimate for the branching time.

Theorem 4.2. There exists a time T̄ such that if T > T̄ , then there exists al least two sets in {Σε(t)}t∈[0,T ]

which are not homeomorphic, and the branching time is not larger than T̄ .

Proof. From Lemma 4.1 we see that for any k, w(k)\w(0) must be in Ω− ∪ γ([0, 1]), while TP0 ∩Ω+ ⊆
V (P0) has positive measure, so for Theorem 3.8 we have that there exists a constant K(P0) such that
it is not possible to evolve beyond time

F (Sini0 )

K(P0)

without branching.
Now we estimate K(P0) from geometric quantities: we will use an argument similar to that

found in the proof of Proposition 3.1. Let us call P1, P2 the other two vertex of TP0 : by reducing the
measure of the triangle we can suppose that H1(P0P1) = H1(P0P2) := ρ, and let be φ the value of
P̂1P0P2:

using the same argument in the proof of the second statement of Proposition 3.1, we have that
the gain in energy is at least

ε

2
ρ2 sin

φ

2
cos2 φ

2

thus the choice
K(P0) :=

1

2
ρ2 sin

φ

2
cos2 φ

2

is acceptable, upper bound estimate for the branching time is in this case

T̄ :=
F (Sini0 )

K(P0)
=

2F (Sini0 )

ρ2 sin
φ

2
cos2

φ

2

.

The above methods relies on the fact that in this configuration there is a lower bound for the
gain (for the functional F ) at each step in each Euler scheme.

4.2 Geometric-energy estimate

Now we present a more stringent upper bound estimate for the branching time, arising from a finer
estimate based on both geometrical arguments and energy considerations. The notations used in
the previous subsection are null here.

Lemma 4.3. Given a domain Ω, an element S1 ∈ A, and suppose that there exists Q ∈ Ω and R > 0 such
that the ball B(Q,R) ∩ S = ∅. Then

F (S1) ≥ 4πR3

27
.
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Proof. The proof is easy: asB(Q,R)∩S1 = ∅, for any r < R all points x ∈ B(Q, r) verify dist(x, S1) ≥
R− r, so

F (S1) =

∫
Ω

dist(x, S1)dx ≥
∫
B(Q,r)

dist(x, S1)dx ≥ (R− r)πr2.

Differentiating the expression (R − r)πr2, its maximum value is attained by r =
2

3
R, which corre-

sponds to

F (S1) ≥ 4π

27
R3

and the proof is complete.

Lemma 4.4. Given a domain Ω, an element S2 ∈ A, a pointQ′ ∈ S2 and suppose that its Voronoi cell V (Q′)

has |V (Q′)| > 0. Then there exists Q̄ ∈ Ω such that B(Q̄,
1

2
diam(V (Q′))) ∩ S2 = ∅.

Proof. For V (Q′) we have |V (Q′)| ≤ π

4
diam(V (Q′))2. Let be X1, X2 ∈ V (Q′) points such that

dist(X1, X2) = diam(V (Q′)):

dist(X1, X2) = diam(V (Q′)) ≤ dist(X1, Q
′) + dist(Q′, X2)

so min{dist(X1, Q
′),dist(Q′, X2)} ≥ 1

2
diam(V (Q′)).

Assume that dist(X1, Q
′) ≥ 1

2
diam(V (Q′)): X1 ∈ V (Q′) means for any i <

1

2
diam(V (Q′)),

B(X1, i) ∩ S2 = ∅ to avoid dist(X1, B(X1, i) ∩ S2) ≤ i < 1

2
diam(V (Q′)).

So we can choose Q̄ := X1, and considering that diam(V (Q′)) ≥
√

4

π
|V (Q′)|, the proof is com-

plete.

Now we consider a configuration similar to the one in the previous subsection:
given a domain Ω, let Sdat0 be the initial datum, and there exist

• P ′0 ∈ Sdat0 angular and let be ξ′ > 0 such that B(P ′0, ξ
′) ∩ Sdat0 is homeomorphic to (0, 1);

• a closed injective path γ∗ : [0, 1] −→ Ω such that γ∗([0, 1]) ⊆ Sdat0 : the domain Ω is now divided
in two regions, Ω+ and Ω− with Ω = Ω+ ∪ Ω− (they are the two connected components of
Ω\γ∗([0, 1]), and they correspond to the “interior” and the “exterior” part of γ ∗ ([0, 1]) – the
order is not relevant – given by the Jordan Curve Theorem);

• triangle TP ′0 ⊂ V (P ′0) ∩ B(P ′0, ξ
′) (its existence is given by Lemma 3.7) verifies |TP ′0 ∩ Ω+| > 0,

and ext(Sdat0 ) ⊂ Ω−.

Notice that Sdat0 is very similar to Sini0 , and results as Lemma 4.1 holds.
In the rest of this subsection we will suppose that Ω− is large enough (both in diameter and

in measure) so that all computations can be done without considering constraints imposed by
diam(Ω−), |Ω−| (otherwise branching behaviors will be exhibited sooner).

17



Consider {
w(0) = w(0) := Sdat0

w(k) ∈ argminH1(S′′)≤H1(Sdat
0 )+kε′F (S′′)

,

Σε′ : [0, T ] −→ A,Σε′(t) := w

([
t

ε′

])
.

The main estimate here is Theorem 4.5.
The notations introduced (except mute counters like k and n) will have the same meaning in the

following of this subsection.
Again we have a positive constant K(P ′0) (depending only on geometric quantities, not on ε′

and estimable with the same argument found in Theorem 4.2) such that for any k

min
H1(X ′′)≤w(k−1)+kε′, w(k−1)⊂X ′′

F (X ′′) ≤ F (w(k − 1))−K(P ′0)ε′

thus
F (w(k)) ≤ F (w(0))− kK(P ′0)ε′ (4.1)

i.e. ∀t ∈ [0, T ]

F (Σε′(t)) := F (w(

[
t

ε′

]
)) ≤ F (Sdat0 )−

[
t

ε′

]
K(P ′0)ε′ ≤ F (Sdat0 )− (

t

ε′
+ 1)K(P ′0)ε′.

To avoid a branching behavior, there exists an endpoint P ∗ of Σε′(t) with |V (P ∗)| ≥ K(P ′0), then
for Lemma 4.4 there exists a point X ∈ Ω− such that the ball

B(X, v) ∩ Σ(t) = ∅, v =

√
K(P ′0)

π
,

and Lemma 4.3 gives

F (Σε′(t)) ≥
4

27

√
K(P ′0)3

π
.

But we must have

F (Σε′(t)) ≤ F (w(0))− tK(P ′0)

and combining the above inequalities,

F (w(0))− tK(P ′0) ≥ 4

27

√
K(P ′0)3

π

which gives t ≤ F (w(0))

K(P ′0)
− 4

27

√
K(P ′0)3

π
. So we have proved the following result:
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Theorem 4.5. For this configuration, with the above notations, an upper bound for the branching time is
given by

Tmax :=
F (Sdat0 )

K(P ′0)
− 4

27

√
K(P ′0)3

π
.

Notice that the partition Ω+ ∪ Ω− is crucial as Lemma 4.1 makes impossible passing from one
region to another without changing topology, so it prevents Σ(t) from ever visit T (P ′0)∩Ω+ without
exhibiting branching behaviors.
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[3] D. Bucur, G. Buttazzo: Irreversible quasistatic evolutions by minimizing movements, Journal of Con-
vex Analysis vol. 15 no. 3, pp. 523-534, 2008

[4] D. Bucur, G. Buttazzo, A. Lux: Quasistatic evolution in debonding problems via capacity methods,
Arch. Rational Mech. Anal., 190 (2008), 281–306.

[5] D. Bucur, G. Buttazzo, P. Trebeschi: An existence result for optimal obstacles, J. Funct. Anal. 162(1)
(1999) 96-119

[6] G. Buttazzo, E. Oudet, E. Stepanov: Optimal transportation problems with free Dirichlet regions
Published Paper, Progress in Nonlinear Diff. Equations and their Applications vol. 51, pp. 41-65,
2002

[7] G. Buttazzo, E. Stepanov: Minimization problems for average distance functionals, Calculus of Vari-
ations: Topics from the Mathematical Heritage of Ennio De Giorgi, D. Pallara (ed.), Quaderni
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