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Abstract. We study the asymptotic limit of obstacle problems for Mumford-Shah type function-

als with p-growth in periodically-perforated domains via the Γ-convergence of the associated free-

discontinuity energies. In the limit a non-trivial penalization term related to the 1-capacity of the

reference hole appears if and only if the size of the perforation scales like ε
n

n−1 , being ε its period-

icity. We give two different formulations of the obstacle problem to include also perforations with

Lebesgue measure zero.

1. Introduction

The aim of this paper is to study the limiting behaviour of Mumford-Shah type functionals in

periodically-perforated domains. We express the obstacle constraint by two different formulations

according to the “size” of the perforation, thus including (n− 1)-dimensional sets. For both cases we

identify the meaningful scaling yielding a non trivial limit energy (see Theorem 3.1 and Theorem 4.1).

A model case for this kind of problems is the following: studying the asymptotics as ε tends to 0 of

inf

{
∫

Ω

|∇u(x)|p dx+ Hn−1(Su) + lower order terms : u ∈ SBV (Ω), u = 0 on Bε ∪ ∂Ω

}

, (1.1)

where Ω ⊂ Rn is a given regular bounded open set, ∇u and Su are, respectively, the approximate gra-

dient and the set of approximate discontinuities of u (see Subsection 2.3), and Bε = Ω∩∪i∈ZnBrε
(iε),

with Brε
(iε) the ball centered in iε of radius rε > 0. This is the first step in studying obstacle problems

for free-discontinuity energies which we are currently investigating [30].

The case in which the minimum problems (1.1) above are restricted to the Sobolev space W 1,p, p > 1,

is classical and it has been object of many researches since the pioneering works of Marchenko and

Khruslov [31], Rauch and Taylor [34],[35] and Cioranescu and Murat [14]. A wide literature deals also

with Neumann or Robin conditions on the boundary of the set of the perforations (see [15],[13] and

the books [12],[16] for a more exhaustive list of references).

A typical phenomenon occurring in this context is that the limit problem is no longer related to an

obstacle constraint and the limit energy to be minimized contains an extra term. The latter is a

finite penalization keeping track of the local capacity density of the homogenizing obstacles (with the

appropriate notion of capacity related to the Dirichlet type energy under consideration).
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In order to deal with this relaxation phenomenon, De Giorgi, Dal Maso and Longo proposed in [27] an

approach which was then carried out by many authors (see [9],[23],[3],[4],[20],[21],[33]). The method

is based on abstract Γ-convergence arguments (see Section 2.2 for the definition and main properties

of Γ-limits) for the associated Dirichlet energies and needs a deep study of some fine properties of

Sobolev functions. It turns out that one can confine the analysis to the range 1 < p ≤ n since for

p > n the convergence result is trivial. Moreover, also in case 1 < p ≤ n a simple computation shows

that there exists only one meaningful scaling of the radius of the periodic perforation rε depending on

the space dimension n and on the exponent p: rε ∼ ε
n

n−p if 1 < p < n, rε ∼ e−ε
−n

if p = n.

A different method using direct Γ-convergence arguments was developed more recently in [2]. The

main tool there is a joining lemma in varying domains (see Lemma 3.1 [2]) which allows to modify

sequences of functions in the closeness of the perforation set, reminiscent of a method proposed by De

Giorgi to match boundary conditions.

Going back to our framework, in order to deal with problems (1.1) we introduce for any p > 1 the

functionals Fε : SBV (Ω) → [0,+∞] defined as

Fε(u) =











∫

Ω

|∇u|p dx + Hn−1(Su) u ∈ SBV (Ω), u = 0 Ln a.e. on Bε

+∞ otherwise in SBV (Ω),

(1.2)

thus neglecting the boundary condition on the fixed boundary ∂Ω (we refer to Theorem 3.1 and

Proposition 3.3 for the exact statement and the right functional framework). In Proposition 3.4 we

show how to recover the case in which the boundary datum on ∂Ω is imposed.

Unlike the Sobolev setting, it turns out that for any p > 1 there exists only one meaningful scaling

for the radius rε which depends only on the space dimension n. This is due to having enlarged the

domain of the problem allowing for fractured configurations, with a penalization on the site of fracture

added. In terms of Γ-convergence a rigorous statement of this fact is the following (see Proposition

3.3): (Fε) Γ-converges to the functional F given for any u ∈ SBV (Ω) by

F(u) =

∫

Ω

|∇u|p dx+ Hn−1(Su) + nωnβ
n−1Ln ({x ∈ Ω : u(x) 6= 0}) (1.3)

w.r.t. the L1 convergence, where the coefficient β is finite and different from 0 if and only if rε ∼ ε
n

n−1 .

This result is achieved by studying the more general case of a unilateral constraint of the same type

(see Theorem 3.1).

Similarly to the Sobolev case, the term nωn has a capacitary interpretation and it is related to the

functional capacity of degree 1 studied in details in [29],[10]. Indeed, we prove the convergence result

contained in Theorem 3.1 for a generic reference perforation set E replacing nωn in (1.3) with C1(E+),

the 1-capacity of a suitable Ln representant of E (see Subsection 2.5, and Remark 3.2).

An heuristic motivation explaining the appearance of the capacitary term (and also the independence

of p in the meaningful threshold) can be given by considering the energy of an optimizing sequence
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for a constant function u ≡ η < 0. The latter is obtained modifying u itself in a neighbourhood of the

periodic perforation in order to satisfy the constraint. In such a neighbourhood the transition between

the values 0 and η is minimal, for Mumford-Shah type energies, on totally fractured configurations,

being the contribution of the bulk term of order strictly greater than the surface one (see Lemma

3.6). Moreover, since on piecewise constant functions the energy Fε reduces to the perimeter of their

level sets, one have to solve locally an obstacle problem for minimal surfaces taking also into account

the effect of the vanishing size of the perforation. This is indeed the argument with which an upper

bound for the Γ-limit is obtained for a generic SBV function (see Proposition 3.9).

To prove that the latter is actually an optimal bound, one reduces to a local picture and estimates in

each ε-cell contained in Ω separately the contribution of the energy far and close to the perforation set.

The first term accounts for the Mumford-Shah energy in the limit, while the second for the capacitary

contribution (see Step 1 and 2 of Lemma 3.5).

In Section 4 we consider reference perforation sets which may also have Lebesgue measure zero, the

so called thin obstacles (see Theorem 4.1). In such a case formulation (1.2) of the obstacle condition

is trivial and the constraint has to be imposed in a different way. As usual in this kind of problems

(see [10]) this can be done by exploiting fine properties of the class of functions under consideration.

In particular, for a function u in BV (Ω) the representant u+ is defined Hn−1 a.e. on Ω. By taking

this into account, we prove that the family (Fε), with Fε : SBV (Ω) → [0,+∞] given by

Fε(u) =











∫

Ω

|∇u|p dx+ Hn−1(Su) u ∈ SBV (Ω), u+ ≥ 0 Hn−1 a.e. on Eε

+∞ otherwise in SBV (Ω),

where Eε = Ω∩∪i∈Zn(iε+ rεE), Γ-converges w.r.t. the L1 convergence to the functional F equal for

any u ∈ SBV (Ω) to

F(u) =

∫

Ω

|∇u|p dx+ Hn−1(Su) + C1(E)βn−1Ln ({x ∈ Ω : u(x) < 0}) (1.4)

(see Theorem 4.1). Due to the occurrence of a relaxation phenomenon the analysis of the capacitary

contribution in the statement above requires a delicate argument founded on the theory of obstacle

problems in the linear setting [26],[10],[11] (see Lemma 4.4).

This fact led us to distinguish the two formulations of the obstacle problem, being the one in Section

3 more intuitive and less technically demanding than the one of Section 4 (see Remark 4.2 for a

comparison between Theorem 3.1 and 4.1).

Eventually, in Section 5 we generalize the results obtained in the model case of the Mumford-Shah

functional to a wider class of free-discontinuity energies (see Theorem 5.1).
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2. Notation and preliminaries

2.1. Basic Notation. In the sequel Ω denotes a bounded open set of Rn with Lipschitz boundary

and Hn−1(∂Ω) < +∞, with n ≥ 2 a fixed integer. Given an open set A ⊆ Rn the family of its open

subsets is denoted by A(A).

The symbol B4C stands for the symmetric difference (B \ C) ∪ (C \B) of the sets B and C in Rn.

As usual, B1 denotes the open ball in Rn of radius 1 centered in the origin, and Q1 the semi-open

unit cube with side 1 centered in the origin, that is Q1 = [−1/2, 1/2)n. For any set E ⊂ Rn, z ∈ Rn

and r > 0, we denote by Er(z) the set z + rE, and, in case z = 0 we simply write Er for Er(0).

If B,C ∈ A(Ω) and dist(B,C) = L > 0 we call cut-off function between B and C any θ ∈ C∞(Ω)

with 0 ≤ θ ≤ 1 such that θ ≡ 1 on B and θ ≡ 0 on C. Moreover, we will assume that |∇θ| ≤ c/L.

We employ the standard notation C for the topological closure in Rn of the set C.

2.2. Γ-convergence. We recall the notion of Γ-convergence introduced by De Giorgi (see [22],[6]) in

a generic metric space (X, d) endowed with the topology induced by d. A family of functionals Fε :

X → [0,+∞] Γ-converges to a functional F : X → [0,+∞] in u ∈ X , in short F(u) = Γ- limε Fε(u),
if for every sequence (εj) of positive numbers decreasing to 0 the following two conditions hold:

(i) (liminf inequality) ∀ (uj) converging to u in X , we have lim infj Fεj
(uj) ≥ F(u);

(ii) (limsup inequality) ∃ (uj) converging to u in X such that lim supj Fεj
(uj) ≤ F(u).

We say that Fε Γ-converges to F (or F= Γ-limεFε) if F(u) = Γ- limε Fε(u) ∀u ∈ X . We may also

define the lower and upper Γ-limits as

Γ- lim sup
ε→0+

Fε(u) = inf{lim sup
ε→0+

Fε(uε) : uε → u},

Γ- lim inf
ε→0+

Fε(u) = inf{lim inf
ε→0+

Fε(uε) : uε → u},

respectively, so that conditions (i) and (ii) are equivalent to Γ-limsupεFε(u) = Γ-liminfεFε(u) = F(u).

Moreover, the functions Γ-limsupεFε(·) and Γ-liminfεFε(·) are lower semicontinuous.

One of the main reasons for the introduction of this notion is explained by the following fundamental

theorem.

Theorem 2.1. Let F = Γ-limε Fε, and assume there exists a compact set K ⊂ X such that infX Fε =

infK Fε for all ε. Then there exists minX F = limε infX Fε. Moreover, if (uj) is a converging sequence

such that limj Fεj
(uj) = limj infX Fεj

then its limit is a minimum point for F .

2.3. BV functions. In this section we recall some basic definitions and results of sets of finite perime-

ter, BV, SBV and GSBV functions. We refer to the book [1] for all the results used throughout the

whole paper, for which we will give a precise reference.

Let A ⊆ Rn be an open set, for every u ∈ L1(A) and x ∈ A, we define

u+(x) = inf

{

t ∈ R : lim
r→0+

r−nLn({y ∈ Br(x) : u(y) > t)} = 0

}
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u−(x) = sup

{

t ∈ R : lim
r→0+

r−nLn({y ∈ Br(x) : u(y) < t)} = 0

}

,

with the convention inf ∅ = +∞ and sup ∅ = −∞. We remark that u+, u− are Borel functions

uniquely determined by the Ln-equivalence class of u. If u+(x) = u−(x) the common value is denoted

by ũ(x) or ap- limy→x u(y) and it is said to be the approximate limit of u in x.

Notice that for every Ln measurable set E ⊆ Rn there holds (χE)+ = χE+
, where

E+ = {x ∈ Rn : lim sup
r→0+

r−nLn(E ∩ Br(x)) > 0}.

Moreover, we have

Ln(E \D) = 0 ⇐⇒ E+ ⊆ D+, (2.1)

thus, by (2.1) above E+ is a Ln representant of E, i.e. Ln(E4E+) = 0.

The set Su = {x ∈ A : u−(x) < u+(x)} is called the set of approximate discontinuity points of u and it

is well known that Ln (Su) = 0. Let x ∈ A \Su be such that ũ(x) ∈ R, we say that u is approximately

differentiable at x if there exists L ∈ Rn such that

ap- lim
y→x

|u(y) − ũ(x) − L(y − x)|
|y − x| = 0. (2.2)

If u is approximately differentiable at a point x, the vector L uniquely determined by (2.2), will be

denoted by ∇u(x) and will be called the approximate gradient of u at x.

A function u ∈ L1(A) is said to be of Bounded Variation in A, in short u ∈ BV (A), if its distributional

derivative is a Rn-valued finite Radon measure. If u ∈ BV (A) denote by Dau, Dsu the absolutely and

singular part of the Lebesgue decomposition of Du w.r.t. Ln A, respectively. Then u turns out to be

approximately differentiable a.e. on A (Theorems 3.83 [1]), Su to be countably Hn−1-rectifiable (see

Theorem 3.78 [1]), and the values u+(x), u−(x) are finite and specified Hn−1 a.e. in A (see Remark

3.79 [1]). Moreover, there holds

Dau = ∇u Ln A, Dsu Su = (u+ − u−)νu Hn−1 Su,

where νu ∈ Sn−1 is an orientation for Su.

We say that a Ln measurable set E ⊆ Rn is of finite perimeter in A if χE ∈ BV (A), and we call the

total variation of χE in A the perimeter of E in A, denoting it by Per(E,A) and simply by Per(E)

if A ≡ Rn. It is well known that DχE = DχE ∂∗E = ν∂∗EHn−1 ∂∗E (see Theorem 3.59 [1]),

where the countably Hn−1-rectifiable set ∂∗E is called the essential boundary of E and ν∂∗E is an

orientation for it.

We recall that if A has Lipschitz boundary, any u ∈ BV (A) leaves an inner boundary trace on ∂A,

which we denote by tr(u), and moreover tr(u) ∈ L1(∂A,Hn−1) (see Theorem 3.87 [1]).

We say that u ∈ BV (A) is a Special Function of Bounded Variation in A if Dsu ≡ Dju on A, in short

u ∈ SBV (A). Moreover, u ∈ SBVloc(A) if u ∈ SBV (U) for every open subset U ⊂⊂ A.
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We say that u ∈ L1(A) is a Generalized Special Function of Bounded Variation in A, in short u ∈
GSBV (A), if for every M > 0 the truncated function (u ∧M) ∨ (−M) ∈ SBV (A).

Functions in GSBV inherit from BV ones many properties: they are approximately differentiable a.e.

on A, and Su turns out to be countably Hn−1-rectifiable (see Theorem 4.34 [1]).

The space (G)SBV has been introduced by De Giorgi and Ambrosio [25] in connection with the

weak formulation of the image segmentation model proposed by Mumford and Shah (see [32]). If

u ∈ GSBV (A) and p ∈ (1,+∞) the Mumford-Shah energy of u is defined as

MSp(u) =

∫

A

|∇u|p dx+ Hn−1(Su). (2.3)

We recall the SBV compactness theorem due to Ambrosio in a form needed for our purposes (see

Theorem 4.8 and Theorem 5.22 [1]).

Theorem 2.2. Let (uj) ⊂ SBV (A) and assume that for some p ∈ (1,+∞)

sup
j

(

MSp(uj) + ‖uj‖L∞(A)

)

< +∞.

Then, there exist a subsequence (ujk) and a function u ∈ SBV (A) such that ujk → u a.e. in A,

∇ujk → ∇u weakly in Lp (A;Rn), Dsujk Sujk
→ Dsu Su weakly ∗ in the sense of measures.

Moreover, if ψ : Rn → R is a norm on Rn satisfying c1 ≤ ψ(ν) ≤ c2 for every ν ∈ Sn−1, with

c1, c2 > 0, there holds
∫

Su

ψ(νu)dHn−1 ≤ lim inf
k

∫

Sujk

ψ(νujk
)dHn−1.

Eventually, in case u ∈ GSBV (A) and MSp(u,A) < +∞ the values u+(x), u−(x) are finite and

specified Hn−1 a.e. in A (see Theorem 4.40 [1]).

2.4. Homogenization in SBV. Here we collect the main results of [8] (see Proposition 2.1, Propo-

sition 2.2 and Theorem 2.3 there) in a form which is convenient for our purposes.

Let ϕ : R2n → [0,+∞) and ψ : R3n × Sn−1 → [0,+∞) be two Borel functions with ψ(x, a, b, ν) =

ψ(x, b, a,−ν) for every (x, a, b, ν) ∈ R3n × Sn−1. Suppose that ϕ and ψ satisfy

(i) ϕ(·, ξ) is 1-periodic for every ξ ∈ Rn, and there exist c1, c2 > 0 such that for every ξ ∈ Rn

and a.e. x ∈ Rn there holds

c1|ξ|p ≤ ϕ(x, ξ) ≤ c2(1 + |ξ|p);

(ii) ψ(·, a, b, ν) is 1-periodic for every (a, b, ν) ∈ R2n × Sn−1, and there exist c3, c4 > 0 such that

for every (x, a, b, ν) ∈ R3n × Sn−1 there holds

c3(1 + |b− a|) ≤ ψ(x, a, b, ν) ≤ c4(1 + |b− a|);
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(iii) there exists a continuous non-decreasing function ω : [0,+∞) → [0,+∞), with ω(0) = 0, and

L > 0 such that ω(t) ≤ Lt for t ≥ 1 and

|ψ(x, a, b, ν) − ψ(x, a1, b1, ν)| ≤ ω(|a− a1| + |b− b1|)

for every (x, a, b, ν), (x, a1, b1, ν) ∈ R3n × Sn−1.

For every ε > 0, define Gε : SBV (A) ×A(A) → [0,+∞) by

Gε(u, U) =

∫

U

ϕ
(x

ε
,∇u

)

dx+

∫

Su∩U
ψ

(x

ε
, u+, u−, νu

)

dHn−1, (2.4)

then we have

Theorem 2.3. For every U ∈ A(A) the family (Gε(·, U)) Γ-converges w.r.t. the L1-convergence to

the functional Ghom : SBV (A) ×A(A) → [0,+∞) defined by

Ghom(u, U) =

∫

U

ϕhom(∇u)dx+

∫

Su∩U
ψhom (u+, u−, νu) dHn−1, (2.5)

where

1. ϕhom : Rn → [0,+∞) is the convex function given by

ϕhom(ξ) = lim
ε→0+

inf

{
∫

Q1

ϕ
(x

ε
,∇v + ξ

)

dx : v ∈ W 1,p
0 (Q1)

}

. (2.6)

2. ψhom : R2n × Sn−1 → [0,+∞) is the function given by

ψhom(a, b, ν) = lim
ε→0+

inf
{

∫

Sv∩Qν

ψ
(x

ε
, v+, v−, νv

)

dHn−1 :

v ∈ SBV (Qν) with ∇v = 0 a.e., tr(v) = tr(va,b,ν) on ∂Qν
}

, (2.7)

where Qν is any unit cube in Rn centered in the origin and one face orthogonal to ν, and

va,b,ν(x) = aχ{x:〈x,ν〉≥0}(x) + bχ{x:〈x,ν〉<0}(x).

Remark 2.4. In case ϕ(x, ·) is convex for all x ∈ Rn formula (2.6) can be further specialized (see

Theorem 14.7 [7]) and reduces to a cell minimization formula

ϕhom(ξ) = min

{
∫

Q1

ϕ (x,∇v + ξ) dx : v ∈W 1,p
per(Q1)

}

. (2.8)

2.5. Functional capacity of degree 1. Let Y1(R
n) be the subspace of L

n
n−1 (Rn) of functions with

distributional derivative of function type. For any set E ⊆ Rn consider the quantity

Γ1(E) = inf

{
∫

Rn

|∇u|dx : u ∈ Y1(R
n), E ⊂ int({x ∈ Rn : u(x) ≥ 1})

}

,

according to Federer and Ziemer [29] we call it the functional capacity of degree 1 of E. Actually,

different minimization problems characterize it, in particular it can be expressed in terms of the

perimeter of the sets containing E as shows the following proposition which summarizes the results

contained in Section 4 [29] and Theorem 2.1 [10].
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Proposition 2.5. Let E ⊆ Rn and let

C1(E) = inf

{
∫

Rn

|∇u|dx : u ∈ W 1,1(Rn), u+ ≥ 1 Hn−1 a.e. onE

}

,

γ(E) = inf
{

‖Du‖(Rn) : u ∈ BV (Rn), u+ ≥ 1Hn−1 a.e. onE
}

,

δ(E) = inf
{

Per(D) : D is Ln measurable, Ln(D) < +∞,Hn−1(E \D+) = 0
}

. (2.9)

Then Γ1(E) = C1(E) = γ(E) = δ(E).

The existence of extremals for the variational problems above fails for many sets E with C1(E) < +∞
(e.g. if E is a line segment in R2). A sufficient condition ensuring existence of minimizers for the

formulation (2.9) was proposed in Section 4 [29] (see also Theorem 3.3 and Theorem 3.4 Chapter IV

[26]). Here we recall the result and its proof for the readers’ convenience.

Proposition 2.6. For every Ln measurable set E ⊂ Rn with C1(E) < +∞ there holds

(a) C1(E+) ≤ C1(E);

(b) problem (2.9) for E+ has always solution and

C1(E+) = min {Per(D) : D is Ln measurable, Ln(D) < +∞, Ln(E \D) = 0} . (2.10)

Moreover, if Hn−1(E \E+) = 0 then C1(E+) = C1(E) and problem (2.9) for E has solution.

Proof. Let (Dj) be a minimizing sequence in problem (2.9) for E, then by the Isoperimetric inequality

(see Theorem 3.46 [1]) supj(Ln(Dj)+Per(Dj)) < +∞. The BV Compactness Theorem (see Theorem

3.23 [1]) in turn implies the existence of a subsequence (not relabeled for convenience) and a set

D with finite perimeter in Rn such that χDj
→ χD in L1(Rn). Thus Ln(E \ D) = 0, and by

taking into account (2.1) we have E+ ⊆ D+. Hence, D is admissible in problem (2.9) for E+, i.e.

Hn−1(E+ \D+) = 0, and so (a) is established since

C1(E) = lim inf
j

Per(Dj) ≥ Per(D) ≥ C1(E+).

Obviously the same argument applied to a minimizing sequence of C1(E+) provides a set D admissible

for such a problem which is then a minimizer. Eventually, characterization (2.10) holds true.

Sligthly abusing a terminology introduced by De Giorgi in [24],[26] we call thick the sets satisfying

Hn−1(E \E+) = 0. Indeed, De Giorgi’s original definition required the stronger condition E ⊆ E+.

In general, one can determine the relaxed problem associated to C1(·) by using De Giorgi’s measure

σ introduced in Chapther IV [26] to study non-parametric minimal surfaces problems with obstacles.

For any set E ⊆ Rn, σ is the regular Borel measure given by

σ(E) = sup
ε>0

(

inf

{

Per(D) +
Ln(D)

ε
: D Ln measurable, Hn−1(E \D+) = 0

})

. (2.11)

We are now able to state the relaxation Theorem 7.1 [10] in a form needed for our purposes (see also

Theorem 3.4 Chapter IV [26]).
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Theorem 2.7. For any Ln measurable set E ⊂ Rn there holds

C1(E) = min

{

‖Du‖(Rn) +

∫

Rn

[(χE − u+) ∨ 0]dσ : u ∈ BV (Rn)

}

= min {Per(D) + σ(E \D+) : D is Ln measurable, Ln(D) < +∞} . (2.12)

Eventually, we recall that the set function C1(·) is positively (n-1)-homogeneous, that is for any set

E ⊆ Rn and r > 0 we have C1(Er) = rn−1C1(E) (see [36]); and moreover it is such that (see [29])

C1(E) = 0 ⇐⇒ Hn−1(E) = 0.

Remark 2.8. For any bounded set E it is easy to prove that C1(E) < +∞. Moreover, if E is

contained in the interior of a bounded convex set C, one can restrict the class of competing sets in the

capacitary problem for E to those contained in C.

Indeed, by using the formulation (2.9), given a test set D, consider D′ = D ∩ C, then D′ has finite

perimeter and, being E ⊂ int(C) and C+ = C, we have Hn−1(E \ D′
+) = Hn−1(E \ (D ∩ C)+) =

Hn−1(E\D+) = 0. If ΠC denotes the projection on the convex set C, then Hn−1(ΠC(D∩(Rn\C))) ≤
Per(D ∩ (Rn \ C)). Hence, we have

Per(D′) ≤ Hn−1(ΠC(D \ int(C))) + Hn−1(∂∗D ∩ int(C))

≤ Per(D \ int(C)) + Hn−1(∂∗D ∩ int(C)) ≤ Per(D).

3. Obstacle constraint imposed in the Ln sense

Given a Ln measurable set E ⊆ Q1, for any ε > 0 let rε ∈ (0, ε) and Eε = Ω ∩ ∪ZnErε
(iε). Consider

the functional Fε : L1(Ω) → [0,+∞] defined as

Fε(u) =











MSp(u) u ∈ GSBV (Ω), u ≥ 0 Ln a.e. on Eε

+∞ otherwise in L1(Ω).
(3.1)

Moreover, denote by Fε(·, A) its localized version, obtained by substituting in definition (3.1) above

the domain of integration Ω with any open subset A ∈ A(Ω).

The same convention will be also applied to the localized version of the Mumford-Shah energy (2.3),

dropping the set dependence in case A ≡ Ω.

Theorem 3.1. Let E be a Ln measurable set and assume that rε/ε
n

n−1 → β ∈ [0,+∞) as ε → 0+.

Then, (Fε) Γ-converges to F : L1(Ω) → [0,+∞] defined by

F(u) =







MSp(u) + C1(E+)βn−1Ln ({x ∈ Ω : u(x) < 0}) u ∈ GSBV (Ω),

+∞ otherwise in L1(Ω),
(3.2)

w.r.t. the L1 convergence.
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Remark 3.2. It is worth noting that definition (3.1) of Fε is not affected by substituting E with

any other set G in its Ln equivalence class. For instance, it would not be restrictive to assume the

perforation set E to be thick in the statement of Theorem 3.1, namely to change E with E+.

The reason why the representant E+ is selected in the limit process is given by the minimality property

C1(E+) = min{C1(G) : G Ln measurable, Ln(E4G) = 0},

as follows from (a) of Proposition 2.6.

A further motivation will be discussed in Section 4 (see Theorem 4.1 and Remark 4.2 for details).

Before giving a proof of Theorem 3.1 we state the results mentioned in the introduction concerning

the bilateral obstacle case and when a boundary datum on ∂Ω is imposed. Both their proofs will be

addressed after that of Theorem 3.1, since they share many ideas and techniques developed for that

as well as using part of those results.

Proposition 3.3. Let F ′
ε be defined as Fε by substituting the unilateral positivity condition on Eε in

definition (3.1) with u = 0 Ln a.e. on Eε. Then, (F ′
ε) Γ-converges to F ′ : L1(Ω) → [0,+∞] defined

by

F ′(u) =







MSp(u) + C1(E+)βn−1Ln ({x ∈ Ω : u(x) 6= 0}) u ∈ GSBV (Ω),

+∞ otherwise in L1(Ω),
(3.3)

w.r.t. the L1 convergence.

We now consider the case in which a Dirichlet boundary datum is imposed on ∂Ω. For the sake of

simplicity we assume in what follows the additional hypothesis that Ω has C2 boundary, although this

condition might be weakened (see for instance Setion 8 [8]).

We introduce for any ε > 0 the “boundary” functionals Dε : L1(Ω) → [0,+∞] defined as

Dε(u) =











F ′
ε(u) u ∈ GSBV (Ω), tr(u) = 0 on ∂Ω

+∞ otherwise in L1(Ω),

and state the following convergence result.

Proposition 3.4. (Dε) Γ-converges w.r.t. the L1 convergence to D : L1(Ω) → [0,+∞] given by

D(u) =











F ′(u) + Hn−1({x ∈ ∂Ω : tr(u)(x) 6= 0}) u ∈ GSBV (Ω)

+∞ otherwise in L1(Ω).

Notice that if we consider lower order terms converging in a suitable sense (see Proposition 6.20

[22]), for instance fidelity terms or linear perburations, Proposition 3.4 and Theorem 2.1 imply the

convergence of problems (1.1) mentioned in the introduction to

min{D(u) + lower order terms : u ∈ GSBV (Ω)}.
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The result of Theorem 3.1 will be a consequence of Propositions 3.7, 3.9 below in which we show

separately the liminf and the limsup inequalities, respectively. Proposition 3.7 will easily follow from

Lemma 3.5 below in which we treat the case of sequences bounded in L∞.

Lemma 3.5. For every sequence uε → u in L1(Ω) such that supε ‖uε‖L∞(Ω) < +∞

lim inf
ε

Fε(uε) ≥ F(u).

Proof. We may suppose Ln({x ∈ Ω : u(x) < 0}) > 0 and Ln(E) > 0, being otherwise the state-

ment trivial. Moreover, it is not restrictive to assume lim infε Fε(uε) = limε Fε(uε) < +∞.

Hence, Ambrosio’ SBV closure and compactness Theorem 2.2 implies that u ∈ SBV (Ω) and also

lim infε Fε(uε) = lim infεMSp(uε) ≥MSp(u).

Note that the L1 convergence assumption implies that for L1 a.e. η < 0 and for any A ∈ A(Ω)

lim
ε

Ln ({x ∈ A : uε(x) < η}4{x ∈ A : u(x) < η}) = 0. (3.4)

For every η < 0 we are going to prove that

lim inf
ε

Fε(uε) ≥MSp(u) + C1(E+)βn−1Ln({x ∈ Ω : u(x) < η}). (3.5)

Once (3.5) is established the thesis follows by letting η → 0−.

Since by Ambrosio’s lower semicontinuity Theorem 2.2, for any A ∈ A(Ω) we have

lim inf
ε

Fε(uε, A) ≥ Hn−1(Su ∩ A), (3.6)

in order to prove (3.5), it suffices to show that for any A ∈ A(Ω) there holds

lim inf
ε

Fε(uε, A) ≥
∫

A

|∇u|pdx+ C1(E+)βn−1Ln({x ∈ A : u(x) < η}). (3.7)

Indeed, given (3.7) for granted, inequality (3.5) follows from standard measure theoretic arguments

by taking into account that the two quantities on the right hand side of (3.6), (3.7) are mutually

orthogonal measures and the left hand side term is a superadditive set function defined on A(Ω) (for

details see Proposition 1.16 [5]).

Fix A ∈ A(Ω) and choose η for which (3.4) holds for the open set A. Moreover, set V = {x ∈ A :

u(x) < η}, and assume that Ln({x ∈ A : u(x) < η}) > 0 being otherwise (3.7) trivial.

For k ∈ N fixed we consider the following splitting of the energies1

Fε(uε, A) = MSp(uε, A \ ∪ZnB3ε/4k(iε)) +MSp(uε, A ∩ ∪ZnB3ε/4k(iε)). (3.8)

We will now estimate separately the two terms on the right hand side of (3.8) showing that the first

contributes to the gradient energy (Step 1) while the latter provides the capacitary term of (3.7) (Step

2).

1The choice of the coefficient 3/4 in the radius of the balls in (3.8) is arbitrary and could be replaced with any

t ∈ (0, 1). Indeed, since rε = o(ε) the set Erε is definitively contained in Btε for any t ∈ (0, 1).
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Step 1. (Gradient estimate) We prove that

lim
k

(

lim inf
ε

MSp(uε, A \ ∪ZnB3ε/4k(iε))
)

≥
∫

A

|∇u|pdx. (3.9)

In order to match the assumptions of Theorem 2.3, let us fix a parameter γ > 0 and consider the

auxiliary (localized) functionals Gγ,kε : SBV (A) ×A(A) → [0,+∞) defined as

Gγ,kε (v, U) =

∫

U

ϕγ,k
(x

ε
,∇v

)

dx+

∫

Sv∩U
ψγ,k

(x

ε
, v+, v−, νv

)

dHn−1,

where ϕγ,k(x, ξ) = aγ,k(x)|ξ|p for (x, ξ) ∈ R2n, ψγ,k(x, a, b, ν) = aγ,k(x) + γ|b − a| for (x, a, b, ν) ∈
R3n × Sn−1, and aγ,k is the (Borel) 1-periodic function defined by

aγ,k(x) =











1 x ∈ Q1 \B3/4k

γ x ∈ B3/4k.

Being supεMSp(uε) < +∞, for a positive constant c we get

lim sup
ε

∫

Suε∩A
|u+
ε − u−ε |dHn−1 ≤ 2 sup

ε

(

‖uε‖L∞(Ω)Hn−1(Suε
)
)

≤ c,

and

lim inf
ε

MSp(uε, A \ ∪ZnB3ε/4k(iε)) ≥ lim inf
ε

Gγ,kε (uε, A) − cγ. (3.10)

For every U ∈ A(A) the family (Gγ,kε (·, U)) satisfies the assumptions of Theorem 2.3, and thus it

Γ-converges to the functional Gγ,khom(·, U) defined in (2.5) of Theorem 2.3. Hence, to prove Step 1 it

suffices to estimate the volume density ϕγ,khom of Gγ,khom since (3.10) rewrites as

lim inf
ε

MSp(uε, A \ ∪ZnB3ε/4k(iε)) ≥ Gγ,khom(u,A) − cγ ≥
∫

A

ϕγ,khom(∇u)dx− cγ. (3.11)

We claim that, with fixed γ > 0, for every ξ ∈ Rn we have

lim
k
ϕγ,khom(ξ) = sup

k
ϕγ,khom(ξ) = |ξ|p. (3.12)

Once (3.12) is established, (3.9) follows from (3.11) by letting first k → +∞ and using the Monotone

convergence theorem, and then γ → 0+.

In order to prove (3.12) we take advantage of (2.4). Indeed, with fixed ξ ∈ Rn, we prove that the

Γ-limit (as k → +∞) in the L1 strong topology of the sequence Aγ,k : W 1,p
per(Q1) → [0,+∞], with

Aγ,k(v) =

∫

Q1

aγ,k(x)|∇v + ξ|pdx,

is given by

A(v) =

∫

Q1

|∇v + ξ|pdx.

Notice that by definition minW 1,p
per (Q1)

Aγ,k = ϕγ,khom(ξ) and by Jensen inequality minW 1,p
per (Q1) A = |ξ|p.

Moreover, for any fixed γ > 0 the sequence (Aγ,k) is equi-coercive in L1(Q1), so that we may apply

Theorem 2.1 to deduce (3.12).

Eventually, we establish the claimed Γ-limit concerning (Aγ,k).
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The limsup inequality is trivial, being the recovery sequence for any given v ∈ W 1,p
per(Q1) provided by

the function itself thanks to Lebesgue dominated convergence theorem. Indeed, aγ,k → 1 in L1(Q1)

and 0 ≤ aγ,k(x) ≤ 1 for every x ∈ Q1.

To accomplish the liminf inequality it suffices to note that for every (vk) ⊂W 1,p
per(Q1) such that vk → v

in L1(Q1) and lim infkAγ,k(vk) < +∞, then actually (vk) converges to v weakly in W 1,p(Q1). Hence,

for every δ > 0 we have

lim inf
k

Aγ,k(vk) ≥ lim inf
k

∫

Q1\Bδ

aγ,k(x)|∇vk + ξ|pdx

= lim inf
k

∫

Q1\Bδ

|∇vk + ξ|pdx ≥
∫

Q1\Bδ

|∇v + ξ|pdx,

and the conclusion by letting δ → 0+.

Step 2. (Capacitary Estimate) We prove that

lim inf
ε

MSp(uε, A ∩ ∪ZnB3ε/4k(iε)) ≥ C1(E+)βn−1

(

Ln (V ) − 1

kn+1

)

. (3.13)

Choose an open set W ⊆ A such that W ⊇ V and Ln(W \ V ) ≤ 1/(2k2(n+1)). By (3.4) the set

{x ∈ A : uε(x) ≥ η} ∩ V has vanishing Ln measure so for ε sufficiently small we have

Ln({x ∈ A : uε(x) ≥ η} ∩ V ) ≤ 1

2k2(n+1)
.

Set Uε = {x ∈W : uε(x) ≥ η}, then for ε small enough there holds

Ln(Uε) ≤ Ln(Uε ∩ V ) + Ln(Uε ∩ (W \ V )) ≤ 1

k2(n+1)
.

Let

Wε = {i ∈ Zn : Qε(iε) ⊂⊂W},

and consider

Ikε =

{

i ∈ Wε : Ln(Uε ∩Qε(iε)) ≤
εn

kn+1

}

.

The set of indices Ikε identifies those cells for which the contribution to the capacitary term can be

estimated up to an error infinitesimal as k → +∞.

Let us first show that Ikε nearly exhausts Wε, indeed we have

1

k2(n+1)
≥ Ln(Uε) ≥

∑

Wε

Ln(Uε ∩Qε(iε)) ≥ #
(

Wε \ Ikε
) εn

kn+1
,

from which we deduce #
(

Wε \ Ikε
)

≤ 1/(kn+1εn).

Moreover, setting ρε = 3ε/4k, the very definition of Ikε yields also

Ln(Uε ∩ Bρε
(iε)) ≤ 2n

wnk
Ln(Bρε

(iε)), (3.14)

and a simple translation argument shows that for any such index i ∈ Ikε we have

MSp(uε, Bρε
(iε)) ≥ mε(η) = inf {MSp(v,Bρε

) : v ∈ SBV (Bρε
),
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v ≥ 0 a.e. on Erε
,Ln({x ∈ Bρε

: v(x) ≥ η}) ≤ 2n

ωnk
Ln(Bρε

)

}

.

It is clear that if we restrict the class of admissible functions v in the definition of mε(η) above to

simple functions assuming values in {0, η}, we have by (2.10)

mε(η) ≤ C1((E+)rε
) = C1(E+)rn−1

ε .

Next we want to estimate mε(η) from below, more precisely we prove

lim
ε
r1−nε mε(η) = C1(E+). (3.15)

To do that we need the following result.

Lemma 3.6. Let H ⊂ Rn be a bounded Ln measurable thick set, and vε ∈ SBV (BRε
), Rε → +∞,

be such that

(i) vε ≥ 0 a.e. on H, supε ‖vε‖L∞(BRε ) < +∞,

(ii) limε ‖∇vε‖Lp(BRε ) = 0, lim supεHn−1(Svε
) ≤ C1(H),

(iii) supε ‖Dvε‖(BRε
) < +∞,

(iv) there exists ζ < 0 such that Ln({x ∈ BRε
: vε(x) ≥ ζ}) < 1

2Ln(BRε
).

Then, limεHn−1(Svε
) = C1(H).

Moreover, for every subsequence (vεm
) there exist (vεmj

) and v ∈ SBVloc(R
n) such that vεmj

→ v in

L1
loc(R

n), v ≥ 0 a.e. on H, v =
∑

s∈I aiχEi
, where I is a finite set, Ei has finite perimeter, ai ∈ R,

and Hn−1(Sv) = C1(H).

Proof. (of Lemma 3.6) First note that by assumption (ii) it is sufficient to show that

lim inf
ε

Hn−1(Svε
) ≥ C1(H).

Denote by (vεm
) a sequence for which lim infεHn−1(Svε

) = limmHn−1(Svεm
). Ambrosio’ SBV com-

pactness and lower semicontinuity Theorem 2.2 applied on every ball BR, R > 0, and an obvious

diagonalization argument ensure the existence of an extracted subsequence (vεmj
) ⊆ (vεm

), and of

v ∈ SBVloc ∩ L∞(Rn) such that vεmj
→ v in L1

loc(R
n), ∇v = 0 a.e. in Rn and

Hn−1(Sv) ≤ lim
j

Hn−1(Svεmj
) ≤ C1(H).

For the sake of simplicity in the rest of the proof we set vj = vεmj
and Rj = Rεmj

.

The BV Coarea formula (see Theorem 3.40 [1]) and the Mean value theorem provide tj ∈ (ζ, ζ/2)

such that

‖Dvj‖(BRj
) ≥

∫ ζ/2

ζ

Per({x ∈ BRj
: vj(x) > t}, BRj

)dt

≥ |ζ|
2

Per({x ∈ BRj
: vj(x) > tj}, BRj

) ≥ |ζ|
2
cLn({x ∈ BRj

: vj(x) > tj})1−1/n

≥ |ζ|
2
cLn({x ∈ BRj

: vj(x) > ζ/2})1−1/n,
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where in the third inequality we have used assumption (iv) and the Relative isoperimetric inequality

in balls (see Remark 3.50 [1]). Hence, (iii) gives supj Ln({x ∈ BRj
: vj(x) > ζ/2}) < +∞, so that

the L1
loc convergence implies Ln({x ∈ Rn : v(x) > ζ/2}) < +∞ as well as v ≥ 0 a.e. on H .

Being v ∈ SBVloc ∩ L∞(Rn) with ∇v = 0 a.e. on Rn and Hn−1(Sv) < +∞, the decomposition

v =
∑

i≥0 aiχΣi
, with Σi a set with finite perimeter for every i, and the equality 2Hn−1(Sv) =

∑

i≥0 Per(Σi) holds true (see Theorem 4.23 [1]).

Since {x ∈ Rn : v(x) ≥ 0} = ∪sr=1Σir for some ir, then Per(∪sr=1Σir ) ≤ Hn−1(Sv) ≤ C1(H).

Moreover, since H is a thick obstacle, ∪sr=1Σir has finite perimeter and ∪sr=1Σir ⊇ H , we have

Hn−1(H \ (∪sr=1Σir )+)=0. Thus, χ∪s
r=1

Σir
is a test function for the capacitary problem on H , which

implies Per(∪sr=1Σir ) = C1(H).

Eventually, if Σ = ∪i6=ir Σi it is easy to prove that there exists an index t ≥ 1, with at 6= air for every

r, such that v =
∑s
r=1 airχΣir

+ atχΣ.

Let us go back to the proof of inequality (3.15).

Given wε such thatMSp(wε, Bρε
) ≤ mε(η)+r

n
ε , let us check that the family vε(x) = wε(rεx), x ∈ BRε

,

where Rε = ρε/rε, satisfies the assumptions of Lemma 3.6 above with H = E+. Indeed, (i) is trivially

satisfied, while (ii) holds true since by scaling

MSp(wε, Bρε
)

rn−1
ε

= r1−pε

∫

BRε

|∇vε|pdx+ Hn−1(Svε
) ≤ C1(E+) + rε. (3.16)

Moreover, (3.16) and Hölder’s inequality yield

∫

BRε

|∇vε|dx ≤ Rn−n/pε ‖∇vε‖Lp(BRε ) ≤
(

3ε

4kr
1−1/n
ε

)n−n/p
(C1(E+) + rε)

1/p, (3.17)

so that supε ‖Dvε‖(BRε
) < +∞, and (iii) is satisfied, too. Eventually, (iv) easily follows from (3.14)

for k ≥ 2n+2, hence Lemma 3.6 implies (3.15).

To conclude fix W ′ ⊂⊂W and notice that for ε small W ′ ⊂ ⋃

Wε
Qε(iε). Then

lim inf
ε

∑

Ik
ε

MSp(uε, Bρε
(iε)) ≥ lim inf

ε
mε(η)#Ikε (3.18)

≥ βn−1 lim
ε

mε(η)

rn−1
ε

(

εn#Wε −
1

kn+1

)

≥ βn−1C1(E+)

(

Ln(W ′) − 1

kn+1

)

.

To get (3.13), it remains to pass on the supremum on the sets W ′ ⊂⊂W and to recall that W ⊇ V .

Step 3. (Estimate (3.7)) We eventually obtain (3.7) by collecting Step 1 and Step 2, and by passing

to the limit as k → +∞ in (3.8), i.e.

lim inf
ε

Fε(uε, A) ≥ lim inf
k

(

lim inf
ε

MSp(uε, A \ ∪ZnB3ε/4k(iε))
)

+ lim inf
k

(

lim inf
ε

MSp(uε, A ∩ ∪ZnB3ε/4k(iε))
)

≥
∫

A

|∇u|pdx+ C1(E+)βn−1Ln(V ).
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The lower bound inequality in the general case is an easy consequence of a standard truncation

argument.

Proposition 3.7. Under the hypotheses of Theorem 3.1, for every u ∈ L1(Ω) there holds

Γ- lim inf
ε

Fε(u) ≥ F(u),

where F is defined in (3.2).

Proof. The thesis follows straightforward by Lemma 3.5 once one notices that the energies Fε, F are

decreasing by truncation and the Mumford-Shah functional is continuos along such sequences. More

precisely, if v ∈ L1(Ω) and M > 0, denoting (v ∧M) ∨ (−M) by vM , if v satisfies the constraint vM

does, and there hold MSp(v
M ) ≤MSp(v) for every M > 0, and MSp(v

M ) → MSp(v) as M → +∞.

Remark 3.8. As a consequence of Step 2 in Lemma 3.5 above, we have that in case ε
n

n−1 = o(rε),

that is β = +∞, the Γ-limit of (Fε) equals MSp(u) if u ∈ GSBV (Ω), u ≥ 0 Ln a.e. on Ω, and +∞
otherwise in L1(Ω). This follows straightforward from (3.18).

Let us now conclude the proof of Theorem 3.1 and prove the upper bound inequality. We introduce

the notation

Uρ(A) = {x ∈ Rn : dist(x,A) < ρ}

where ρ > 0, A ⊆ Rn.

Proposition 3.9. Under the hypotheses of Theorem 3.1, for every u ∈ L1(Ω) there holds

Γ- lim sup
ε

Fε(u) ≤ F(u), (3.19)

where F is defined in (3.2).

Proof. Let u ∈ GSBV (Ω) be such that F(u) < +∞, being otherwise the inequality trivially verified.

We first prove the Γ-limsup inequality under the following additional assumptions

(a) u ∈ SBV (Ω) such that Hn−1(Su\Su) = 0, u ∈ W k,∞(Ω\Su) for any k ∈ N, and Su ⊆ ∪Nj=1Σj

where Σj are (n− 1)-simplexes;

(b) the set {x ∈ Ω : u(x) < 0} has finite perimeter in Ω, {x ∈ Ω \ Su : u(x) = 0} is a (n − 1)-

dimensional smooth manifold in Ω \ Su.

By (2.10) and Remark 2.8 we choose a set of finite perimeter D ⊆ Q1 with C1(E+) = Per(D) and

Hn−1(E+ \D+) = 0, which of course implies Ln(E \D) = 0.

Define J = {i ∈ Zn : Ln(Drε
(iε) ∩ {x ∈ Ω : u(x) < 0}) > 0}, Dε = ∪i∈JDrε

(iε), and uε ∈ L1(Ω) as

uε = uχΩ\Dε
. Then, uε ∈ SBV (Ω) and by construction uε ≥ 0 Ln a.e. on Dε, actually uε = 0 Ln a.e.
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on Dε. Since Ln(Dε) ≤ #(J )rnεLn(D) ≤ crε, we have uε → u in L1(Ω), and a direct computation

shows

Fε(uε) ≤
∫

Ω\Dε

|∇u|p dx+ Hn−1(Su \Dε) + Per(Dε)

≤
∫

Ω

|∇u|p dx+ Hn−1(Su) + #(J )rn−1
ε Per(D)

≤MSp(u) + C1(E+)
rn−1
ε

εn
Ln(U√

nε({x ∈ Ω : u(x) < 0})). (3.20)

In the last inequality we used that #(J )εn = Ln(∪i∈JQε(iε)) and ∪i∈JQε(iε) ⊆ U√
nε({x ∈ Ω :

u(x) < 0}). To estimate the Lebesgue measure of the last term in (3.20) we use the equality

⋂

ε>0

U√
nε({x ∈ Ω : u(x) < 0}) = {x ∈ Ω : u(x) < 0},

so that

lim
ε→0+

Ln(U√
nε({x ∈ Ω : u(x) < 0})) = Ln

(

{x ∈ Ω : u(x) < 0}
)

.

By passing to the limsup as ε→ 0+ in (3.20) we get

lim sup
ε→0+

Fε(uε) ≤MSp(u) + C1(E+)βn−1Ln
(

{x ∈ Ω : u(x) < 0}
)

.

To obtain (3.19) it suffices to notice that

Ln
(

{x ∈ Ω : u(x) < 0} \ {x ∈ Ω : u(x) < 0}
)

= 0

thanks to (a), (b) and the regularity of ∂Ω.

We now remove assumption (b). In order to do that it suffices to note that by applying Sard’s lemma

to u on Ω\Su and by the BV Coarea formula (see Theorem 3.40 [1]), we can find a sequence ηk → 0−

such that for any k ∈ N the functions u− ηk satisfy (b). Hence, the previous step implies

Γ- lim sup
ε

Fε(u− ηk) ≤ F(u− ηk) ≤ F(u),

and the upper bound inequality for u follows by letting ηk → 0− and by taking into account the lower

semicontinuity of Γ- lim supε Fε.
For a general function u ∈ GSBV (Ω) we use a density result with respect to Mumford-Shah type

energies and in L1(Ω) with functions satisfying (a) proved in [17] (see also [18] for a more general

statement).

This given, consider (uj) satisfying (a) and such that uj → u in L1(Ω) and MSp(uj) →MSp(u), and

let ηk → 0− be such that Ln({x ∈ Ω : uj(x) < ηk}) → Ln({x ∈ Ω : u(x) < ηk}) as j → +∞ for every

k ∈ N.

Then, by using for every j ∈ N the identity Γ- lim supε Fε(uj − ηk) = F(uj − ηk), and the lower

semicontinuity of Γ- lim supε Fε we infer

Γ- lim sup
ε

Fε(u− ηk) ≤ lim
j

F(uj − ηk)
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= lim
j

(

MSp(uj) + C1(E+)βn−1Ln({x ∈ Ω : uj(x) < ηk})
)

= MSp(u) + C1(E+)βn−1Ln({x ∈ Ω : u(x) < ηk}) ≤ F(u).

Passing to the liminf as k → +∞ and taking again into account the lower semicontinuity of

Γ- lim supε Fε we finally conclude.

Remark 3.10. It is clear from the proof of Proposition 3.9 that in the regime rε = o
(

ε
n

n−1

)

, that is

β = 0, the Γ-limit of (Fε) is trivial and identically equal to MSp.

We now provide the proof of the bilateral obstacle case contained in Proposition 3.3.

Proof. (of Proposition 3.3) Lower Bound: First notice that for every A ∈ A(Ω), ε > 0 and u ∈ L1(Ω)

we have

F ′
ε(u,A) ≥ Fε(u,A), F ′

ε(u,A) ≥ Fε(−u,A). (3.21)

Hence, given (uε) converging to u in L1(Ω), by applying Proposition 3.7 to the two terms on the right

hand sides of the inequalities in (3.21), we get

lim inf
ε

F ′
ε(uε, A) ≥ F(u,A) = MSp(u,A) + C1(E+)βn−1Ln({x ∈ A : u(x) < 0}) (3.22)

and

lim inf
ε

F ′
ε(uε, A) ≥ F(−u,A) = MSp(u,A) + C1(E+)βn−1Ln({x ∈ A : u(x) > 0}). (3.23)

In particular, this entails u ∈ GSBV (Ω) provided lim inf ε F ′(uε) < +∞. Moreover, the usual measure

theoretic arguments imply the lower bound inequality. Indeed, the second terms in the sums on the

right hand sides of (3.22), (3.23) are mutually orthogonal measures and the left hand side term is a

superadditive set function defined on A(Ω) (for details see Proposition 1.16 [5]).

Upper Bound: To conclude we construct a recovery sequence for any u ∈ GSBV (Ω) such that F ′(u) <

+∞. Moreover, we may assume Ln({x ∈ Ω : u(x) 6= 0}) > 0, being otherwise the result trivial.

We keep the notation of Proposition 3.9, and first prove the limsup inequality under the additional

assumptions (a) and (b) with the set {x ∈ Ω : u(x) 6= 0} playing the role of {x ∈ Ω : u(x) < 0} there.

Supposing this, we may perform the very same construction of Proposition 3.9 substituting the 0

sub-level set of u with {x ∈ Ω : u(x) 6= 0}. Indeed, the recovery sequence (uε) ⊂ SBV (Ω) built up

there is such that uε = 0 Ln a.e. on Eε. Hence, using the same arguments one achieves

Fε(uε) ≤MSp(u) + C1(E+)βn−1Ln({x ∈ Ω : u(x) 6= 0}) + o(1),

passing to the limsup as ε→ 0+ we get the desired inequality.

We now remove the regularity assumption (b) on the set {x ∈ Ω : u(x) 6= 0}.
To do this, argue as in Proposition 3.9 and consider a positive sequence (ηk) such that ηk → 0+ as

k → +∞ and both the sets {x ∈ Ω : u(x) > ηk}, {x ∈ Ω : u(x) < −ηk} satisfy (b).
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Let uk ∈ SBV (Ω) be defined as uk = (u∨ηk)+(u∧ (−ηk)), then notice that |u(x)| ≤ ηk ⇔ uk(x) = 0,

u(x) ≥ ηk ⇒ uk(x) = u(x) − ηk, u(x) ≤ −ηk ⇒ uk(x) = u(x) + ηk, and Hn−1(Suk \ Su) = 0.

Clearly uk → u in L1(Ω) and

Γ- lim sup
ε

F ′
ε(u

k) ≤ F ′(uk) = MSp(u
k) + C1(E+)βn−1Ln({x ∈ Ω : uk(x) 6= 0})

≤MSp(u) + C1(E+)βn−1Ln({x ∈ Ω : |u(x)| > ηk}).

Passing to the liminf as k → +∞ and taking into account the lower semicontinuity of Γ- lim supε F ′
ε,

we get the desired inequality.

Eventually, to finish the proof for any u ∈ GSBV (Ω) consider a sequence (uj) satisfying (a) and such

that uj → u in L1(Ω) and MSp(uj) →MSp(u) (see Theorem 3.9 [17]), and let ηk → 0+ be such that

Ln({x ∈ Ω : |uj(x)| > ηk}) → Ln({x ∈ Ω : |u(x)| > ηk}) as j → +∞ for every k ∈ N.

Since (uj)
k → uk in L1(Ω), arguing as in the last step of Proposition 3.9 we infer

Γ- lim sup
ε

F ′
ε(u

k) ≤ lim inf
j

F ′((uj)
k)

≤ lim
j

(

MSp(uj) + C1(E+)βn−1Ln({x ∈ Ω : |uj(x)| > ηk})
)

= MSp(u) + C1(E+)βn−1Ln({x ∈ Ω : |u(x)| > ηk}) ≤ F ′(u).

Passing to the liminf as k → +∞ and taking again into account the lower semicontinuity of

Γ- lim supε F ′
ε we finally conclude.

Eventually, we prove the case in which Dirichlet boundary conditions are imposed.

Proof. (of Proposition 3.4) Lower Bound: The lower bound inequality can be easily derived from

Proposition 3.3. Given v ∈ GSBV (Ω) denote by ṽ the function obtained extending v to 0 on Rn \Ω.

Then ṽ ∈ GSBV (Rn) and fixed any open set Ω′ ⊃⊃ Ω with Lipschitz boundary, we have

MSp(ṽ,Ω
′) = MSp(v,Ω) + Hn−1({x ∈ ∂Ω : tr(v)(x) 6= 0})

(see Theorem 3.84 and 3.87 [1]).

Given (uε) ∈ GSBV (Ω) with tr(uε) = 0 on ∂Ω and converging to u in L1(Ω), (ũε) converges to ũ in

L1(Ω′), and applying Proposition 3.3 with Ω replaced by Ω′, we have

lim inf
ε

Dε(uε) = lim inf
ε

F ′
ε(ũε,Ω

′) ≥ F ′(ũ,Ω′)

= F ′(u,Ω) + Hn−1({x ∈ ∂Ω : tr(u)(x) 6= 0}) = D(u).

Upper Bound: It remains to prove the upper bound inequality. First note that a recovery sequence

for u ∈ GSBV (Ω) with tr(u) = 0 on ∂Ω is given by the one constructed when no boundary condition

is imposed in Proposition 3.3 above.
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Given a generic function u ∈ GSBV (Ω), it is possible to find a sequence (uj) ⊂ GSBV (Ω) with

tr(uj) = 0 on ∂Ω and converging to u in L1(Ω) such that limj D(uj) = D(u). Taken this into account

the result follows by the lower semicontinuity of Γ-lim supDε.

This sequence can be obtained by modifying u in a suitable neighbourhood of the boundary in which

the distance function is regular. Fixed a sequence of positive numbers rj tending to 0 and denoted

d(x) = dist(x, ∂Ω), consider

uj(x) =























u(x) if 2rj < d(x)

u(x+ (d(x) − 2rj)∇d(x)) if rj < d(x) < 2rj

0 if 0 < d(x) < rj .

It can be easily checked that

MSp(uj ,Ω) ≤MSp(u,Ω) + cMSp(u, {x ∈ Ω : rj < d(x) < 2rj})

+Hn−1({x ∈ Ω : d(x) = rj , tr(u)(x − rj∇d(x)) 6= 0})

for a positive constant c not depending on j.

Defining ϕj : ∂Ω → Ω as ϕj(y) = y + rj∇d(y) (with a slight abuse of notation ∇d(y) denotes the

inner normal to ∂Ω in y), we have that

{x ∈ Ω : d(x) = rj , tr(u)(x− rj∇d(x)) 6= 0} = ϕj({y ∈ ∂Ω : tr(u)(y) 6= 0}).

The conclusion then follows using the fact that Hn−1(ϕj(H)) ≤ (Lipϕj)
n−1Hn−1(H) for any set H ,

and Lipϕj → 1 as j → +∞.

4. The case of thin obstacles

In this section we show how to deal with a general reference perforation set thus including thin

obstacles, i.e. sets with Lebesgue measure zero. To consider (non-trivial) thin obstacles problems it

is clear the need to express the constraint in a different form. To do that it suffices to recall that

if u ∈ GSBV (Ω) and MSp(u) < +∞ the values u+(x), u−(x) are finite and specified for Hn−1 a.e.

x ∈ Ω (see Theorem 4.40 [1]).

Given a Hn−1 measurable set T ⊆ Q1, for any ε > 0 let rε ∈ (0, ε) and let Tε = Ω ∩ ∪ZnTrε
(iε).

Consider the functional Fε : L1(Ω) → [0,+∞] defined as

Fε(u) =











MSp(u) u ∈ GSBV (Ω), u+ ≥ 0 Hn−1 a.e. on Tε

+∞ otherwise in L1(Ω).
(4.1)

The asymptotic analysis of (Fε) takes advantage of the ideas and techniques developed in Section 3.

The main difference is in the proof of Lemma 4.4, the counterpart of Lemma 3.6 in this framework,

for which substantial changes are required. This is not accidental and a mere technical fact, we want
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to point out that Lemma 4.4 relies on the deep relaxation results contained in Chapter IV [26] and in

[10] (see Theorem 2.7).

Theorem 4.1. Let T be a Hn−1 measurable set, assume that rε/ε
n

n−1 → β ∈ [0,+∞) as ε → 0+.

Then, (Fε) Γ-converges to F : L1(Ω) → [0,+∞] defined by

F(u) =







MSp(u) + C1(T )βn−1Ln ({x ∈ Ω : u(x) < 0}) u ∈ GSBV (Ω),

+∞ otherwise in L1(Ω),
(4.2)

w.r.t. the L1 convergence.

Remark 4.2. Let us point out how Theorem 3.1 can be recovered from Theorem 4.1 above.

To this aim we notice that given a set E the following equivalence holds

u ≥ 0 Ln a.e. on E ⇐⇒ u+ ≥ 0 Hn−1 a.e. on E+, (4.3)

so that one can rephrase the unilateral obstacle condition in sense Ln on E with the more precise

Hn−1 meaning exactly on E+. Roughly speaking, the equivalence in (4.3) means that the constraint

for u intended in the Ln sense is active, for a suitable representant, only on the Ln measure theoretic

closure of E, and thus it is neglected on lower dimensional parts of the set.

By taking this into account, the functionals in the statement of Theorem 3.1 can be rewritten as

Fε(u) =











MSp(u) u ∈ GSBV (Ω), u+ ≥ 0 Hn−1 a.e. on (E+)ε

+∞ otherwise in L1(Ω),

Theorem 3.1 then follows by applying Theorem 4.1 with T = E+.

Remark 4.3. It is worth noting that a priori the functional Fε in (4.1) could be not L1 lower

semicontinuous. More generally, given a Hn−1 measurable set H ⊆ Ω, one can study the lower

semicontinuity properties of the functional G : L1(Ω) → [0,+∞] defined as

G(u) =











MSp(u) u ∈ GSBV (Ω), u+ ≥ 0 Hn−1 a.e. on H

+∞ otherwise in L1(Ω).

In a forthcoming paper (see [30]) we will prove that the lower semicontinuous envelope of G in the L1

topology is given by

sc−(G)(u) =























MSp(u) + 1
2σ ({x ∈ H ∩ Su : u+(x) < 0}) + σ ({x ∈ H \ Su : u+(x) < 0})

u ∈ GSBV (Ω)

+∞ otherwise in L1(Ω),
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where σ is the measure defined in (2.11). Thus, by taking into account Theorem 4.1, well known

results (see Proposition 6.11 [22]) yield the Γ-convergence to the functional F in (4.2) of the energies

sc−(Fε)(u) =























MSp(u) + 1
2σ ({x ∈ Tε ∩ Su : u+(x) < 0}) + σ ({x ∈ Tε \ Su : u+(x) < 0})

u ∈ GSBV (Ω)

+∞ otherwise in L1(Ω).

As a further development of this research we are investigating the compactness and integral represen-

tation properties of Mumford-Shah type energies with general obstacle constraints, as those established

by Dal Maso in the Sobolev setting ([20], see also [10],[11]).

We now turn to the proof of Theorem 4.1. As already stated, we will point out only the changes

needed in the proof of Theorem 3.1 in order to reach the conclusion. The set T in Theorem 4.1 plays

the same role of E+ in Lemma 3.5. Moreover, we keep the same notation used in Section 3 to which

obviously we refer.

Proof. (of Theorem 4.1) Lower bound: The proof of Lemma 3.5 goes through until the capacitary

estimate (3.13) of Step 2, having assumed Hn−1(E) > 0 being otherwise the statement trivial. The

latter is now a consequence of Lemma 4.4 below. Given this for granted, to prove the lower bound

inequality for sequences bounded in L∞ it suffices to verify that the blow-up functions vε satisfy the

assumptions of Lemma 4.4. The same arguments used in Theorem 3.1 assure (i) and (iii), while (ii)

follows by (3.17) taking into account that the right hand side in that formula is bounded as a function

of ε and infinitesimal as k → +∞.

Eventually, the truncation argument of Proposition 3.7 needs no change, so that the lower bound is

established.

Upper Bound: The same argument of Proposition 3.9 works by substituting in the construction of the

recovery sequence a minimizing set D with a minimizing sequence for the capacitary problem for T .

The statement of Lemma 4.4 below is given in a sligthly more general framework than needed in our

context.

Lemma 4.4. Let H be a bounded Hn−1 measurable set with Hn−1(H) > 0, N ∈ N, N ≥ 4, and

vε ∈ BV (BRε
), Rε → +∞, be such that

(i) v+
ε ≥ 0 Hn−1 a.e. on H, supε ‖vε‖L∞(BRε ) < +∞,

(ii) supε ‖Dvε‖(BRε
\ Svε

) < 1
N ,

(iii) there exists ζ < 0 such that Ln({x ∈ BRε
: vε(x) ≥ ζ}) < 1

2Ln(BRε
).

Then, there exists a positive constant c = c(ζ) such that lim infεHn−1(Svε
) ≥ C1(H) − c√

N
.
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Proof. It is not restrictive to assume lim infεHn−1(Svε
) < +∞, being otherwise the statement trivial.

Let (vεj
) be such that limj Hn−1(Svεj

) = lim infεHn−1(Svε
) < +∞, for the sake of simplicity for the

rest of the proof we set vj = vεj
and Rj = Rεj

.

Step 1. For any open set A, v ∈ BV (A) satisfying v+ ≥ 0 Hn−1 a.e. on H, with H ⊆ A, and for any

δ < 0, there exists η ∈ (δ, 0) for which Ln({x ∈ A : v(x) ≥ η}) > 0, Per({x ∈ A : v(x) ≥ η}, A) < +∞
and Hn−1(H \ {x ∈ A : v(x) ≥ η}+) = 0.

Let us first prove that there exists t ∈ (δ, 0) for which the corresponding super-level set has positive

measure. Arguing by contradiction, if there was δo < 0 such that Ln({x ∈ A : v(x) ≥ t}) = 0 for every

t ∈ (δo, 0), then the very definition of v+ would give v+(x) ≤ δo Hn−1 a.e. on H , which is clearly a

contradiction since v+ ≥ 0 Hn−1 a.e. on H and Hn−1(H) > 0.

Moreover, since {x ∈ A : v(x) ≥ η} ⊇ {x ∈ A : v(x) ≥ t} if η < t and Per({x ∈ A : v(x) ≥ η}, A) <

+∞ for L1 a.e. η ∈ R we get {x ∈ A : v(x) ≥ η}+ ⊇ {x ∈ A : v+(x) ≥ t} for L1 a.e. η ∈ R, η < t.

Since {x ∈ A : v(x) ≥ η}+ ⊇ {x ∈ A : v+(x) ≥ t} ⊇ {x ∈ A : v+(x) ≥ 0}, it is clear that we can find

η ∈ (δ, t) for which all the required conditions are satisfied.

Step 2. There exist wj ∈ SBV (BRj
) and ηj ∈ (ζ, 0), with ζ as in assumption (iii), such that ∇wj = 0

Ln a.e. on BRj
, Hn−1(H \ {x ∈ BRj

: wj(x) ≥ ηj}+) = 0, supj Ln({x ∈ BRj
: wj(x) ≥ ηj}) < +∞,

supj Per({x ∈ BRj
: wj(x) ≥ ηj}, BRj

) < +∞, and

lim inf
j

Hn−1(Svj
) ≥ lim inf

j
Hn−1(Swj

) − c√
N
.

Let C = supj ‖vj‖L∞(BRj
) and kN = [

√
N ], then apply the BV Coarea formula to get

‖Dvj‖(BRj
\ Svj

) =

kN−1
∑

i=0

∫ αi+1

αi

Per({x ∈ BRj
: vj(x) ≥ t}, BRj

\ Svj
)dt,

where α0 = −C, αi+1 = αi + 2C/kN for 0 ≤ i ≤ kN − 1.

Let 0 ≤ r ≤ kN − 1 be such that ζ ∈ (αr−1, αr]; and first assume that αr+1 ≤ 0.

For every 0 ≤ i ≤ kN − 1 by the Mean value theorem we may find tji ∈ (αi, αi+1) such that

2C

kN
Per({x ∈ BRj

: vj(x) ≥ tji}, BRj
\ Svj

) ≤
∫ αi+1

αi

Per({x ∈ BRj
: vj(x) ≥ t}, BRj

\ Svj
)dt. (4.4)

Let 0 ≤ s ≤ kN − 1 be such that 0 ∈ (tjs, t
j
s+1], and note that tjs ∈ (ζ, 0) since αr+1 ≤ 0 implies

tjs ≥ tjr > αr. Consider ηj ∈ (tjs, 0) provided by Step 1 and the sets Σji = {x ∈ BRj
: tji ≤ vj(x) < tji+1},

then define the function wj : BRj
→ R as wj(x) = ηj if x ∈ Σjs and wj(x) = tji if x ∈ Σji , 0 ≤ i ≤ kN−1

and i 6= s.

Clearly, being Σji of finite perimeter in BRj
, we have wj ∈ SBV (BRj

) with ∇wj = 0 Ln a.e. on BRj
,

Swj
⊆ ∪kN−1

i=0 ∂∗Σji , and Hn−1(H \ {x ∈ BRj
: wj(x) ≥ ηj}+) = 0 since by the choice of ηj ∈ (tjs, 0)

{x ∈ BRj
: wj(x) ≥ ηj} = {x ∈ BRj

: vj(x) ≥ tjs} ⊇ {x ∈ BRj
: vj(x) ≥ ηj}.
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Moreover, by assumption (ii) and the definition of kN there holds

Hn−1(Swj
) ≤ Hn−1(Svj

) +

kN−1
∑

i=0

Per({x ∈ BRj
: vj(x) ≥ tji}, BRj

\ Svj
)

≤ Hn−1(Svj
) +

kN
2C

‖Dvj‖(BRj
\ Svj

) ≤ Hn−1(Svj
) +

c√
N
.

Eventually, the Relative isoperimetric inequality in balls (see Remark 3.50 [1]), the choices ζ < tjs <

ηj < 0 and assumption (iii) imply that supj Ln({x ∈ BRj
: wj(x) ≥ ηj}) < +∞.

In case ζ ∈ (αr−1, αr] with αr+1 > 0, this construction fails since tjs might not satisfy tjs > ζ.

Nevertheless, this case can be handled by slightly modifying the choice of the tji ’s.

Indeed, choose tji as in (4.4) for i /∈ {r − 1, r}, choose tjr ∈ (ζ, 0) be such that

|ζ|Per({x ∈ BRj
: vj(x) ≥ tjr}, BRj

\ Svj
) ≤

∫ αr+1

αr−1

Per({x ∈ BRj
: vj(x) ≥ t}, BRj

\ Svj
)dt,

and set tjr−1 = tjr. Let ηj ∈ (tjr, 0) be provided by Step 1, and define wj : BRj
→ R as wj(x) = ηj if

x ∈ Σjr, and wj(x) = tji if x ∈ Σji , 0 ≤ i ≤ kN − 1 and i /∈ {r − 1, r}. Notice that Σjr−1 = ∅.
The same arguments exploited before entail that (wj) still satisfies the statement of Step 2.

Step 3. Conclusion. Set Σj = {x ∈ BRj
: wj(x) ≥ ηj}, then Hn−1(Swj

) ≥ Per(Σj , BRj
) (see

Theorem 4.23 [1]), which, together with Step 2, yield

+∞ > lim
j

Hn−1(Svj
) ≥ lim inf

j
Hn−1(Swj

) − c√
N

≥ lim inf
j

Per(Σj , BRj
) − c√

N
. (4.5)

By applying the BV compactness theorem we may extract a subsequence (not relabeled for conve-

nience) and find a set Σ with locally finite perimeter in Rn, such that χΣj
→ χΣ in L1

loc(R
n). By

Theorem 6.1 [10] (see also Chapter IV [26]) for every R > 0 we get

lim inf
j

Per(Σj , BR) ≥ Per(Σ, BR) + σ((H \ Σ+) ∩ BR), (4.6)

so that by combining (4.5) and (4.6), and by passing to the supremum on R, Σ has finite perimeter

in Rn and moreover

lim
j

Hn−1(Svj
) ≥ Per(Σ) + σ(H \ Σ+) − c√

N
.

The thesis eventually follows by taking into account (2.12) of Theorem 2.7.

5. Further results

In the previous sections we have described the asymptotic behaviour of the Mumford-Shah energy in

periodically perforated domains. In the present section we extend the results of Sections 3 and 4 to

more general free-discontinuity energies. We limit ourselves to state and give the hints of the proof of

the generalization of Theorem 4.1 in this setting, being then the analogous of Proposition 3.3 and 3.4

trivial.

Let p > 1 and ϕ, ψ : Rn → R be continuous functions such that



MUMFORD-SHAH TYPE FUNCTIONALS IN PERIODICALLY-PERFORATED DOMAINS 25

(a) ϕ is convex, and there exist constants c1, c3 > 0 and c2 ∈ R such that for every ξ ∈ Rn

c1|ξ|p − c2 ≤ ϕ(ξ) ≤ c3(|ξ|p + 1);

(b) ψ is a norm on Rn, and there exist constants c4, c5 > 0 such that for every ν ∈ Sn−1

c4 ≤ ψ(ν) ≤ c5.

Analogously to the case in which ψ is the euclidean norm one can define an anisotropic capacity as

follows: For any set E ⊆ Rn let

Cψ(E) = inf

{
∫

∂∗D

ψ(ν∂∗D)dHn−1 : D is Ln measurable, Ln(D) < +∞,Hn−1(E \D+) = 0

}

.

Different characterizations of Cψ, similar to those of Proposition 2.5, can be given as follows from

Theorem 6.1 [10].

Given a Hn−1 measurable set T ⊆ Q1, for any ε > 0 let rε ∈ (0, ε) and let Tε = Ω ∩ ∪ZnTrε
(iε).

Consider the functional Fε : L1(Ω) → [0,+∞] defined as

Fε(u) =











∫

Ω

ϕ(∇u)dx+

∫

Su

ψ(νu)dHn−1 u ∈ GSBV (Ω), u+ ≥ 0 Hn−1 a.e. on Tε

+∞ otherwise in L1(Ω).

(5.1)

We are now in a position to state the following result whose proof is just a technical adjustment of

those of Theorem 3.1 and 4.1.

Theorem 5.1. Let T be a Hn−1 measurable set, assume that rε/ε
n

n−1 → β ∈ [0,+∞) as ε → 0+.

Suppose that ϕ and ψ satisfy assumptions (a) and (b) above, then (Fε) Γ-converges to F : L1(Ω) →
[0,+∞] defined by

F(u) =











∫

Ω

ϕ(∇u)dx+

∫

Su

ψ(νu)dHn−1 + Cψ(T )βn−1Ln ({x ∈ Ω : u(x) < 0}) u ∈ GSBV (Ω),

+∞ otherwise in L1(Ω)

w.r.t. the L1 convergence.

Proof. Lower bound: We first point out that estimate (3.6) in Lemma 3.5 follows directly by Theorem

2.2.

Moreover, in order to get a gradient estimate as that in (3.9) of Step 1, the same argument developed

there can be repeated replacing the function | · |p with ϕ, and taking into account the convexity of ϕ

and assumption (a).

Furthermore, a capacitary estimate as that in (3.13) of Step 2 follows by substituting in the statement

of Lemma 4.4 the total variation of a BV function with the anisotropic variation
∫

Ω

ψ

(

dDu

d‖Du‖

)

d‖Du‖, (5.2)
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and in its conclusion C1 with Cψ . Indeed, thanks to assumption (b), one can use for the anisotropic

variation in (5.2) suitable versions of the BV Coarea formula (see Lemma 2.4 [19]) and of the relaxation

result for energies with linear growth with obstacles (see Theorem 7.1 [10]).

Eventually, the truncation argument of Proposition 3.7 can be carried out with only minor changes.

Upper bound: The proof of Proposition 3.9 works by substituting in the construction of the recovery

sequence a minimizing set D for the usual capacity with a minimizing sequence for the anisotropic

capacitary problem for T related to ψ.
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Their Applications. Collège de France Seminar, vol. II, 98-135, and vol. III, 154-178, Res. Notes in Math. 60 and

70, Pitman, London, 1982 and 1983.

[15] Cioranescu D. - Saint Jean Paulin J., Homogenization in open sets with holes, J. Math. Anal. Appl. 71 (1979),

590-607.

[16] Cioranescu D. - Saint Jean Paulin J., “Homogenization of Reticulated Structures”, Applied Mathematical Sciences

136, Springer-Verlag, Berlin, 1999.

[17] Cortesani G., Strong approximation of GSBV functions by piecewise smooth functions, Ann. Univ. Ferrara - Sez.

VII - Sc. Mat. vol. XLII (1997), 27–49.

[18] Cortesani G. - Toader R., A density result in SBV with respect to non-isotropic energies, Nonlinear Anal. 38

(1999), 585–604.

[19] Dal Maso G., Integral representation on BV (Ω) of Γ-limits of variational integrals, Manuscripta Math. 30 (1980),

387-416.

[20] Dal Maso G., On the integral representation of certain local functionals, Ricerche Mat. 32 (1983), 85-114.

[21] Dal Maso G., Limits of minimum problems for general integral functionals with unilateral obstacles, Atti Accad.

Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 84 fasc. 2 (1983), 55-61.

[22] Dal Maso G., “An Introduction to Γ-convergence”, Birkhäuser, Boston, 1993.
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