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Abstract

We focus on the following irrigation problem introduced in [3]

minF(Σ) :=

∫
Ω

dist(x,Σ) dµ(x),

where Ω is an open subset of R2, µ is a probability measure and where the minimum is taken
over all the sets Σ ⊂ Ω such that Σ is compact, connected, and H1(Σ) ≤ α0 for a given
positive constant α0. In this paper we seek for some conditions to find in Σ some pieces of C1

(or more) regular curves. We prove that it is the case in the ball B when Σ ∩ B contains no
corner points. More generally we prove that the Left and Right tangents half lines of Σ (that
exist everywhere out of endpoints and triple points) are semicontinuous. We also discuss how
the regularity is linked with the pull back measure ψ := k]µ where k is the projection on Σ.
In particular Σ∩B is C1,α when ψ is regular with respect to H1 with density in a certain Lp.
We also prove that Σ is locally a Lipschitz graph away from triple points and endpoints, and
that the mean curvature of Σ is a measure that is explicited in terms of measure ψ.
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1 Introduction

Let Ω ⊂ R2 be a bounded open set, α0 > 0 a fixed constant, and µ a given probability measure
on Ω. In this paper we study the regularity of the following minimization problem

min
Σ∈A
F(Σ) :=

∫
Ω

dist(x,Σ) dµ(x) (1.1)

where the minimum is taken over the family A of all the compact and connected sets Σ ⊂ Ω
satisfying the length constraintH1(Σ) ≤ α0. This problem also known as the “irrigation problem”,
was introduced by G. Buttazzo, E. Oudet and E. Stepanov in [3] and then in [5] in a more general
formulation in terms of optimal mass transport problem with “free Dirichlet regions”. In the
sequel we will call Σ an optimal set for the problem (1.1).

An easy interpretation of the Problem (1.1) is the following. One could consider Σ as being
a ressource of limited length (for instance some water in pipes) that one wants to place in the
domain Ω in such a way that the average cost for people living in Ω to reach the resource Σ is
minimal, according to the density of population given by the measure µ. We refer to [3–5, 9, 11]
for some more detailed interpretations of Problem (1.1).

In [5], the topological description of minimizers is studied and it has been proved in particular
that Σ has no loops and is a finite union of Lipschitz arcs, that meet by number of three at some
finite number of triple junctions. Concerning the regularity, it is only proved in [5] that Σ is
Ahlfors-Regular.

Then in [10], F. Santambrogio and P. Tilli restrict themselves to the simpler formulation (1.1),
which in the end is not so restrictive according to some later results [11], and they characterize the
blow up limits of the minimal set Σ in order to prove some regularity. They prove that any blow
up sequence of the minimal set Σr := 1

r (Σ ∩ B(x, r) − x) converges in B(0, 1) when r → 0, and
the limit could be either a radius (x is an endpoint), a diameter (x is ordinary point), three radius
making angles of 120 degrees (x is a triple junction), or two radius making an angle different from
180 degrees (x is a corner point).

F. Santambrogio and P. Tilli [10] also found a sufficient condition for having C1,1 regularity in
a neighborhood of a point x ∈ Σ, involving the diameter of the set of points that are projected on
Σ ∩ B(x, r). Since this condition is satisfied in a small enough neighborhood of any triple point,
they obtain that any triple point admits a small neighborhood in which the three pieces of curve
of Σ are C1,1.

Very recently, P. Tilli [12] proved that for any C1,1 simple curve Σ of length less than π times
the inverse of the infimum of its curvature, one can find an open set Ω containing Σ in such a way
that Σ is a minimizer for the problem (1.1) in Ω with µ equals to the Lebesgue measure. This fact
implies that no further regularity is possible for Σ and that C1,1 is optimal.

Recall that by “corner point” we mean a point in Σ for which the blow up limit is a union of
two radius with a strict angle (different from 180 degrees). Although it is not difficult to find some
examples of domains Ω where any minimizer Σ necessarily contains a triple point, it remains an
open question as to whether a minimizer could actually contain corner points. On the other hand
in [2], the first order Euler-Lagrange equation is computed (see Section 5 below) and the existence
of stationary sets Σ that contain corner points is shown.

Now let us describe the contributions of this paper. One of our main result is that away from
triple points, Σ is locally at least as regular as the graph of a convex fonction, namely that the Right
and Left tangent maps admit some Right and Left limits at every point and are semicontinuous.
More precisely, for a given parametrization γ of an injective Lipschitz arc Γ ⊂ Σ, by existence of
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blow up limits one can define the Left and Right tangent half-lines at every point x ∈ Γ by

TR(x) := x+ R+. lim
h→0

γ(t0 + h)− γ(t0)
h

TL(x) := x+ R+. lim
h→0

γ(t0 − h)− γ(t0)
h

Then we have the following.

Theorem 1. Let Γ ⊂ Σ be an open injective Lipschitz arc. Then the Right and Left tangent maps
x 7→ TR(x) and x 7→ TL(x) are semicontinuous, i.e. for every y0 ∈ Γ,

lim
y→y0
y<γy0

TL(y) = TL(y0) and lim
y→y0
y>γy0

TR(y) = TR(y0).

In addition the limit from the other side exists and we have

lim
y→y0
y>γy0

TL(y) = TR(y0) and lim
y→y0
y<γy0

TR(y) = TL(y0).

An interesting and immediate consequence is the following result.

Corollary 2. Assume that Γ ⊂ Σ is a relatively open subset of Σ that contains no corner points
neither triple points. Then Γ is locally a C1 regular curve.

The strategy to prove Theorem 1 is to use on one hand that when the diameter of transported
set is small we have C1,1 regularity (thank to [10]), and on the other hand when the diameter is
big Σ stays under some very large “tangent circles” that makes Σ similar to a convex set locally.
The difficulty is to glue together all the regions where we control the tangents from one argument
or another. This is what we do in Section 4.

In Section 5 and 6 we try to exploit the Euler Equation to get some regularity. In [2], G.
Buttazzo E. Mainini and E. Stepanov give the first order equation for the penalized functional

F(Σ) + λH1(Σ).

In Section 5 we prove the existence of a λ0 such that the Euler equation for the original problem
with length constraint is the same as the penalized one. The method, that was already used by F.
Santambrogio and P. Tilli to characterize the blow up limits in [10], is to estimate what we loose
or win in the average distance functional by adding or erasing a piece of curve at an endpoint. In
particular we obtain an explicit value for λ0 depending on the mass of transport rays arriving at
any endpoint and which corresponds to the “shape derivative” of F .

As an application of the Euler equation, in Section 6 we give a “tilt estimate”. In other words,
we obtain a local control on the oscillations of the tangents lines of Σ with respect to a fixed line.

In Section 7 we apply Theorem 1 to find in Σ some Lipschitz graphs (see Theorem 41) and
applying the Euler Equation and the tilt estimate on those graphs we obtain some results that are
summarized in the following statement.

Theorem 3. For every point x ∈ Σ which is not an endpoint nor a triple point, one can find a
radius r, a line π ⊂ R2 containing x and a 5-Lipschitz function f : π → π⊥ such that

Σ ∩B(x, r/4) = {(x, f(x)), x ∈ π} ∩B(x, r/4), and∫
π∩B(x, r16 )

|f ′(t)|2dt ≤ Crψ(B(x, r))2.
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Moreover, f ′ satisfies the equation

− d

dt

(
f ′√

1 + |f ′|2

)
= ψ0

on B(x, r16 ) ∩ π. Here d
dt is the derivative in the distributional sense and ψ0 is a measure that

verifies
|ψ0| ≤ (p ◦ k)]µ

where p : R2 → π is the projection on π and k is a mesurable selection of the projection multimap
onto Σ.

As a complement of Theorem 3, we also discuss how the regularity is linked with the behavior
of the measure ψ. In particular we have the following.

Theorem 4. Assume that Γ ⊂ Σ is a relatively open subset of Σ that contains no triple points
and such that ψ|Γ is absolutely continuous with respect to H1 with density in Lp(Γ, dH1). Then Γ
is locally a C1,α curve with α = p−1

p .

This last result is proved independently from all the other sections (in particular does not use
the Euler equation), and this is why Theorem 4 is actually proved at the very beginning in Section
3. It can be seen as an introduction to understand why the regularity of Σ is difficult to obtain.
We also get a reverse statement, namely that if Σ is C1,1 regular then ψ is absolutely continuous
with respect to H1 with density in L∞.

2 Preliminaries

Recall that in all the sequel, Σ will refer to an optimal set for the problem (1.1). The existence
of a minimizer is an easy consequence of Blaschke and Go la̧b Theorems and is proved in [5]. It is
also proved in [5] that it is not restrictive to assume Ω convex. We will denote by d the euclidian
distance in R2 and by dH the Hausdorff distance. For any minimizer Σ we associate a fixed
measurable selection of the projection multimap k : Ω→ Σ, that is for every x ∈ Ω

d(x,Σ) = d(x, k(x)).

Then we introduce the image measure ψ := k]µ which is defined for any Borel set A ⊂ R2 by

ψ(A) := µ(k−1(A)).

By abuse of notation we will sometimes simply denote k−1(x) instead of k−1({x}).

For x ∈ Σ we will say that Rx is a transport ray ending at x if Rx is a segment in Ω bounded
by x, and having maximal length for the property that every point y ∈ Rx satisfies dist(y,Σ) =
dist(y, x).

Recall that we already know by [5] that Σ is a finite union of injective Lipschitz arcs meeting at
some finite number of triple points. We also know that for any endpoint x of Σ it holds ψ(x) > c
for a positive constant c. If we exclude the endpoints and triple junctions, thank to [10] we have
a characterization of the blow up limits at point x in terms of ψ(x). Indeed, if x is neither an
endpoint nor a triple junction, then x is a corner point if and only if x is an atom for ψ, that is
ψ(x) > 0. Otherwise it is an “ordinary point” (i.e. the blow up limit is a diameter).

In the sequel we denote TΣ the set of triple points of Σ and EΣ its endpoints.
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2.1 Standard facts on compact connected 1-dimensional sets

Here we recall some standard properties on compact connected 1-dimensional sets that can be
found in [7].

Proposition 5. Let Σ ⊂ RN be a compact and connected set such that H1(Σ) < +∞. Then there
is a CN -Lipschitz surjective mapping f : [0, L] → Σ. As a consequence, Σ is arcwise connected
and rectifiable. Moreover, for each choice of x0, y0 ∈ Σ with x0 6= y0, we can find an injective
Lipschitz mapping f : [0, 1]→ Σ such that f(0) = x0 and f(1) = y0.

Thank to Proposition 5, our minimizer Σ is already rectifiable. Further, we will see that Σ is
actually “uniformly rectifiable” in the sense of David and Semmes. This will follow from the fact
that any minimizer Σ is Ahlfors-Regular as it is proved in [5]. Let us give some more definitions.

Definition 6. A set Σ is said to be an Ahlfors-regular set (of dimension 1), if there exists a
constant C and a positive radius r0 such that for every point x ∈ Σ and every r < r0,

rC−1 ≤ H1(Σ ∩B(x, r)) ≤ Cr

In [5] it is proved that any minimizer Σ is Ahlfors regular. More precisely, there is an r0 > 0
such that for every x ∈ Σ and any r < r0,

r ≤ H1(Σ ∩B(x, r)) ≤ 3πr. (2.1)

There is a lot of equivalent definitions of Uniform rectifiability but we will choose the one with
Ahlfors-regular curves.

Definition 7. An Ahlfors-regular curve with constant ≤ C is a set of the form Σ = z(I) where
I ⊂ R is a closed interval (not reduced to one point) and z : I → RN is a Lipschitz function such
that

|z(x)− z(y)| ≤ |x− y| for x, y ∈ I
and

H1({x ∈ I; z(x) ∈ B(y, r)}) ≤ Cr
for all y ∈ RN and r > 0.

Definition 8. Let Σ ⊂ RN be an Ahlfors-regular set of dimension 1. We say that Σ is uniformly
rectifiable when Σ is contained in some Ahlfors-regular curve.

Theorem 9. [8] Every 1 dimensional connected Ahlfors-regular set is uniformly rectifiable.

We deduce the following fact that will be used in Section 3.2.

Corollary 10. Any minimizer Σ is uniformly rectifiable.

2.2 Useful estimates and standard assumptions

We will use some estimates that are proved in [10], and that come from comparing Σ with a
competitor made by replacing a piece of Σ by a segment.

Lemma 11. [10] There exist a constant C satisfying the following properties. Let Γ ⊂ Σ be a
closed injective arc, with endpoints x, y, such that Γ\{x, y} contains no triple junctions of Σ and
Cψ(Γ\{x, y}) < 1

2 . Then

H1(Γ) ≤ |x− y|+ Cψ(Γ\{x, y})dH(Γ, [x, y]),
dH(Γ, [x, y]) ≤ Cψ(Γ\{x, y})|x− y|,

H1(Γ) ≤ |x− y|(1 + Cψ(Γ\{x, y})2), (2.2)
H1(Γ) ≤ 2|x− y|. (2.3)

5



It will be convenient in the sequel to work in some balls where Σ∩ ∂B(x, r) consists in exactly
2 points. For this purpose, let us recall some results that are still contained in [10].

For any x0 ∈ Σ consider a branch of Σ starting at x0 consisting of a Lipschitz curve γ : [0, T ]→
Σ, parameterized by arclength, such that γ(0) = x0 and γ(T ) is either an endpoint or a triple point
of Σ. We may also assume that γ contains neither endpoints nor triple junctions in its relative
interior.

Theorem 2.3 of [10] says the following.

Lemma 12. [10] Consider x ∈ Σ and r > 0 such that B(x, r) contains no endpoint and triple
junction other than, possibly, x itself. For any s < r, set

t1 := min{t ≥ 0; γ(t) ∈ ∂B(x, s)}, t2 := max{t ≤ T ; γ(t) ∈ ∂B(x, s)}.

If C1ψ(γ(0, t2]) < 1, then t1 = t2.

Lemma 12 is generally used together with the following fact which is Lemma 2.4. of [10].

Lemma 13. [10] For any x ∈ Σ there exists r(x) > 0 such that for all r < r(x) the ball B(x, r)
contains no triple junction nor endpoint other than, possibly, x itself, and C1ψ(γ((0, t2])) < 1.

In the sequel, for any x ∈ Σ we will denote r(x) the maximum radius satisfying the assumptions
of Lemma 13. In particular, for every x ∈ Σ\TΣ ∪ EΣ and for all r < r(x) we have

]Σ ∩ ∂B(x, r) = 2.

In [10], a uniform version of the above result is stated, saying that in fact one can take a common
radius r(x) = r0 for every x ∈ Σ1, where Σ1 ⊂ Σ is compactly contained in the complement of
atoms of mass at least (2C1)−1 and of triple junctions and endpoints, r0 depending now on Σ1.
In this paper we will need this slightly different version of the preceding results.

Proposition 14. For every compact set Σ1 compactly contained in Σ\TΣ, there exists a constant
C2 := C2(Σ1) and a radius r0 := r0(Σ1) such that for all x ∈ Σ1 and r < r0,

ψ(B(x, r)) ≤ C2 ⇒ r ≤ r(x).

Proof. We argue by contradiction as in the proof of Lemma 2.5. of [10]. If the proposition
is not true, then there exists a sequence of points xn ∈ Σ1 and a sequence of radii rn such
that ψ(B(xn, rn)) tends to 0, rn tends to 0 and does not satisfy the assumptions of Lemma 13.
Observe that for n big enough, B(xn, rn) contains no endpoints nor triple points. Indeed, it is easy
to exclude endpoints as soon as ψ(B(xn, rn)) gets smaller than min{ψ({x});x ∈ EΣ}. For triple
points, it suffice to wait until rn gets small enough with respect to dist(Σ1,TΣ) > 0. Possibly
by extracting a subsequence we may assume that xn converges to a point x in Σ1 and since
ψ(B(xn, rn))→ 0 we deduce that

ψ({x}) = 0. (2.4)

We also know that xn is never a triple junction. That means that for every xn, exactly two
branches of Lipschitz arcs are starting from xn and meet ∂B(xn, rn) at least once and at different
points (because Σ has no loops). Assume by contradiction that

]{Σ ∩ ∂B(xn, rn)} > 2. (2.5)

We denote by γ1
n and γ2

n the two corresponding parameterizations and γ1
n([0, t12(n)]) and γ1

n([0, t22(n)])
the two branches of “first return” in B(xn, rn). From Lemma 12 we know that one of the
ψ(γin([0, ti2(n)])) is greater than C otherwise (2.5) would not be true. By extracting a further
subsequence we may assume that ψ(γ1

n([0, t12(n)])) > C for all n and arguing as in the proof of [10]
Theorem 2.5. we obtain that γ1

n([0, t12(n)]) converges for the Hausdorff distance to x which must
be an atom of mass at least C and contradicts (2.4).
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Let us introduce a quantity which will measure the flatness of Σ in the ball B(x, r), defined
for x ∈ Σ\(TΣ ∪ EΣ) and r < r(x) by

β(x, r) :=
dH(Σ ∩B(x, r), [z, z′])

|z − z′|

where z and z′ are the two points of ∂B(x, r) ∩ Σ. The notation is given compared to the well
known P. Jones β-numbers.

For simplicity, when there is no possible confusion we will denote ψ(x, r) instead of ψ(B(x, r)).
By Lemma 11 we directly have

β(x, r) ≤ Cψ(x, r). (2.6)

Finally, we end this preliminary section by recalling the basic steps that lead to the regularity
result of [10] since we will also need the intermediate estimates. The next proposition is a direct
consequence of the proof of Lemma 2.10 of [10]. We let the details to the reader.

Proposition 15. [10] For all x ∈ Σ and r such that there exists a line π ⊂ R2 satisfying

dH(Σ ∩B(x, 2r), π ∩B(x, 2r)) ≤ r

100

we have

ψ(x, r) ≤ Crdiam(k−1(B(x, r0))) + Cr−1dH(Σ ∩B(x, 2r), π ∩B(x, 2r)). (2.7)

In particular if r < r(x) and ψ(x, r) is small enough then

ψ(x, r) ≤ C(r + β(x, 2r)).

As it is shown in [10] (Theorem 2.11.), the last estimate can be iterated in the case when
r < r(x) in order to obtain the following result which will be also needed later.

Proposition 16. [10] Let x ∈ Σ\(TΣ ∪ EΣ) and r < r(x). If diam(k−1(B(x, r0))) < 1/(2C)
then there exists r0 depending on Σ such that

ψ(x, r) ≤ Cr ∀r ≤ min(r0, r(x)) (2.8)

where C is a constant depending only on Σ, Ω and µ.

Observe that (2.8) together with (2.6) leads to some C1,1 regularity.

3 The measure ψ

In the next sections we will see how ψ is linked with the mean curvature of Σ. Therefore it is
natural to think that some good control on ψ will give some regularity on Σ. This is what we do
in this section.

3.1 The regularity is equivalent to the behavior of ψ

Let us first prove that the regularity of Σ implies some decay on ψ(x, r).

Proposition 17. If Σ ∩ B(x0, r0) is a C1,α regular curve then there exists r1 ≤ r0 such that
ψ(x, r) ≤ Crα for all x ∈ Σ ∩B(x0, r0/2) and r ≤ r1.

7



Proof. Assume that Σ′ := Σ∩B(x0, r0) is a C1,α regular curve γ parameterized by arclenght. Let
x ∈ Σ ∩B(x0, r0/2) and r ≤ r0/2. Then for all y ∈ B(x, r) one has

γ(t)− γ(0) =
∫ t

0

γ′(s)ds

with γ(0) = x and γ(t) = y. Further,

γ(t)− γ(0) =
∫ t

0

γ′(s)− γ′(0)ds+
∫ t

0

γ′(0)ds

|γ(t)− γ(0)− tγ′(0)| ≤
∫ t

0

|γ′(s)− γ′(0)|ds

≤ Ct1+α

which implies

dist(y, T (x)) ≤ C|x− y|1+α ≤ Cr1+α

where T (x0) is the tangent line at x0. Since y is an arbitrary point lying in Σ ∩B(x, r), by (2.7)
we conclude that ψ(x, r) ≤ Crα for r small enough depending on r0 an other constants.

Now we prove the reverse statement.

Proposition 18. Assume that x0 ∈ Σ and r0 > 0 are such that B(x0, r0) contains no triple
points nor endpoints and such that ψ(x, r) ≤ Crα for all x ∈ Σ∩B(x0, r0/2) and r < r0/2. Then
Σ ∩B(x0, r0/2) is a C1,α regular curve.

Proof. We denote r0(Σ1) the radius given by Proposition 14 with Σ1 := Σ ∩ B(x0, r0). We also
denote r2 ≤ min(r0(Σ1), r0/2) a radius such that Crα2 ≤ C2(Σ1) in such a way that for all
x ∈ Σ ∩ B(x0, r0/2), r2 ≤ r(x). Now from ψ(x, r) ≤ Crα for all r ≤ r2 we obtain by (2.6) that
β(x, r) ≤ Crα for all x ∈ Σ1 and r < r2.

For every x ∈ B(x0, r0/2) and r < r2, we denote πx,r the line through the two points of
Σ∩ ∂B(x, r). We claim that πx,r converges to some tangent line πx at x when r goes to 0. To see
this, let us introduce for two lines πx,s1 and πx,s2 the distance

dist(πx,s1 , πx,s2) := dH(π̄x,s1 ∩B(0, 1), π̄x,s2 ∩B(0, 1))

where dH the Hausdorff distance, and π̄x,r is the line parallel to πx,r through the origin. In other
words dist(πx,s1 , πx,s2) ' α(πx,s1 , πx,s2) where α is the smallest angle between the two lines πx,s1
and πx,s2 thus endowed with this distance the set of lines in R2 centered at the origin is a complete
metric space. Now since β(x, r) ≤ Crα we claim that for any s1 < s2,

dist(πx,s1 , πx,s2) ≤ Csα2 . (3.1)

Indeed, for all s ≤ r2 it is clear that

dist(πx,s/2, πx,s) ≤ Csα. (3.2)

Now if k is such that 2−(k+1)s2 < s1 ≤ 2−ks2 we have

dist(πx,s1 , πx,s2) ≤ C
k∑
j=0

dist(πx,2−(j+1)r2 , πx,2−jr2) ≤ C
k∑
j=0

2−jαsα2 ≤ Csα2

which proves (3.1).
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Now (3.1) says that π̄x,r is a Cauchy sequence and converges to some line π̄x centered at the
origin. Moreover, if πx denotes the line parallel to π̄x passing through x, for all r < r0 we have
that

dist(πx, πx,r) ≤ Crα

and

dH(Σ ∩B(x, r), πx ∩B(x, r)) ≤ 2dH(πx,r ∩B(x, r), πx ∩B(x, r)))
≤ 4rdist(πx,r, πx) ≤ Crα+1

thus πx is a tangent line at x.

So Σ∩B(x0, r0/2) admits a tangent line πx at every point x. To prove that Σ∩B(x, r0/2) is a
C1,α regular curve, it suffice to show that the map x 7→ πx is Hölder regular. Let y and z be two
different points of Σ∩B(x0, r0/2) and let ρ := |y− z|. Assume first that ρ ≤ r2/10. We have that

dist(πy, πz) ≤ dist(πy, πy,2ρ) + dist(πy,2ρ, πz,2ρ) + dist(πz,2ρ, πz)
≤ Cρα + dist(πy,2ρ, πz,2ρ). (3.3)

Now observe that taking a point z′ between y and z and applying (3.1) at this point with
r = 4ρ we have that

dist(πy,2ρ, πz,2ρ) ≤ C[β(z′, 4ρ) + dist(πy,2ρ, πz′,4ρ) + dist(πz,2ρ, πz′,4ρ)] ≤ Cρα. (3.4)

Therefore, (3.3) and (3.4) imply

dist(πy, πz) ≤ C|y − z|α. (3.5)

Now if ρ ≥ r2/10 (3.5) is also true up to change C (depending on r2), which means that Σ ∩
B(x0, r0/2) is C1,α.

As an application we can state the following.

Theorem 19. Assume that Γ ⊂ Σ is a relatively open subset of Σ that contains no triple points
and such that ψ|Γ is absolutely continuous with respect to H1 with density in Lp(Γ, dH1). Then Γ
is locally a C1,α curve with α = p−1

p .

Proof. Let x ∈ Γ. Since Γ is open, we may assume that there is a ball B(x, r) such that r < r(x)
and ψ|Σ∩B(x,r) is absolutely continuous with respect to H1 in B(x, r) and its density belongs to
Lp. Then for all x ∈ Σ ∩B(x, r/2) Hölder inequality gives, for all y ∈ B(x, r) and s < r/2,

ψ(y, s) := ψ(B(y, s)) ≤ ‖ψ‖pH1(Σ ∩B(y, s))
1
p′ ≤ Cs

1
p′

thus Proposition 18 applies which proves that Γ is C1,α
loc with α = 1− 1

p .

As far as the reverse implication is concerned, we can prove the following.

Proposition 20. If Σ ∩ B(x, r) is a C1,1 regular curve then ψ|Σr is absolutely continuous with
respect to H1 in B(x, r/2) and its density belongs to L∞.

Proof. According to Theorem 2.56 of [1], it is enough to find a constant M such that for every
y ∈ Σ ∩B(x, r/2),

lim sup
s→0

ψ(y, s)
s

≤M (3.6)

and this is the case when Σ∩B(x, r) is C1,1, because then arguing as for Proposition 17 we easily
have that β(y, s) ≤ Cs for every y ∈ Σ ∩ B(x, r/2) and s < r2(Σ ∩ B(x, r)) thus ψ(y, s) ≤ Cr by
(2.7).
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3.2 ψ(x, t)dH1(x)dt
t

satisfies a Carleson measure condition

As Proposition 17 and 18 say, the regularity of Σ depends on the behavior of ψ(x, r) with re-
spect to r. The next proposition shows that in mean, ψ(x, t) is very small with respect to t
at every scale, at least sufficiently small to make a certain integral converging. In other words
ψ(x, t)χ[x,r(x)](t)dH1(x)dtt is a Carleson Measure.

Proposition 21. For all x ∈ Σ\(TΣ ∪ EΣ). Then there exists r0(x) ≤ r(x) such that∫
y∈Σ∩B(x,r)

∫
0<t<r

ψ(y, t)2dH1(y)
dt

t
≤ Cr ∀r ∈ (0, r0(x)).

Proof. Since Σ is a uniformly rectifiable set of dimension 1 in R2, there is a constant C (see [6])
such that ∫

y∈Σ∩B(x,r)

∫
0<t<r

β(y, t)2dH1(y)
dt

t
≤ Cr (3.7)

for x ∈ Σ and r ∈ (0, r0). Actually the β in (3.7) is normally the one of P. Jones which is slightly
different than our β but smaller than 2 times ours thus (3.7) holds. Now possibly by taking a
smaller r0 (depending on r(x)) and using inequality (2.7) we compute∫

y∈Σ∩B(x,r)

∫
0<t<r

ψ(y, t)2dH1(y)
dt

t
≤ C

∫
y∈Σ∩B(x,r)

∫
0<t<r

t2 + β(y, t)2dH1(y)
dt

t

≤ Cr.

4 About the diameter of the transported set and applica-
tions

In [10], it is proved that Σ is C1,1 provided that the diameter of the transported set is small. In
the next section we are interested in the opposite situation, when the diameter is very large. In
this case Σ stays under some very large “tangent circles” that makes it close to be a convex graph.

4.1 Considerations for large diameters

We first want to give a notion of Right and Left tangents at a point x ∈ Σ when its blow up is a
line or a corner. To do this, we need to give an orientation on Σ to say in which direction Σ is
followed.

Definition 22. For any injective parametrization γ : [0, T ]→ Σ of a piece of Σ that contains no
triple point we define the Right and Left Tangent at point x = γ(t0) ∈ γ(]0, T [) associated to γ
and denote by TR(x) and TL(x) the half lines

TR(x) := x+ R+. lim
h→0

γ(t0 + h)− γ(t0)
h

TL(x) := x+ R+. lim
h→0

γ(t0 − h)− γ(t0)
h

Remark 23. Notice that the existence of Right and Left tangents comes from the existence of
blow up limits (line or corner) at each points and that the dependance on γ is only relying on
orientation.
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In the sequel we will prove that x 7→ TR(x) and x 7→ TL(x) admits some Left and Right limits
at every point (see Theorem 31) and are semi-continuous but let us check first that it is the case
in basic situations when the diameter of transported set is under control.

For any parametrization γ : [0, T ]→ Σ we will use the notation

x <γ y

to say that x = γ(t) and y = γ(t′) with t < t′.

Since our result is local, it is not restrictive to consider the situation in a small ball B(x, r)
around x := γ(t) ∈ Σ. We need to define a sort of local orientation on Σ. Recall that for every
x ∈ Σ which is not a triple point, nor an endpoint, Lemma 13 gives a radius r(x) such that
]Σ ∩ ∂B(x, r) = 2 for all r < r(x). It follows that for all r < r(x), B(x, r)\Σ is cut by Σ in
exactly two connected components. Suppose now that x ∈ Σ and r ∈ (0, r(x)) are such that
Σ ∩ B(x, r) = Γ ∩ B(x, r) where Γ := γ([0, T ]). Let s < r be given and let γ(t1) and γ(t2) be
the two points of ∂B(x, s) ∩ Γ. Assume in addition that t1 < t2. Then we denote ∂B(x, s)± the
two connected components of ∂B(x, s)\Γ, in such a way that ∂B(x, s)+ is corresponding to the
piece of circle obtained when we start at γ(t1) and follow the circle in the clockwise sense as in
the following picture.

x

∂B(x, s)−

∂B(x, s)+

γ(t2)

γ(t1)

�

Y

Γ

�

Then we define B(x, s)± as being the connected components of B(x, s)\Γ labeled in such a
way that the boundary of B(x, s)+ meets ∂B(x, s)+. Observe that by this way, if s′ < s then
∂B(x, s′)+ ⊂ B(x, s)+. This follows from the fact that the points zs and z′s lying on Σ∩ ∂B(x, s)
are continuous with respect to s. It is worth mentioning that the orientation does not depend on
point x, in other words if B(x, s) and B(x′, s′) are both contained in B(x0, r0) with r0 < r(x0),
then B(x, s)+ ∩B(x′, s′)− = ∅ and viceversa.

General assumptions 1 : We will say that we are under General assumptions 1 in B(x0, r0)
when γ : [0, T ] → Σ is a given parametrization as in Definition 22, Σ ∩ B(x0, r0) = γ[t1, t2] for
some t1, t2 ∈ [0, T ] and γ([t1, t2]) contains no triple points nor endpoints. We also assume that
r0 ≤ r(x0). In this situation we have an orientation, namely B(x0, s)± are well defined for all
s ≤ r0. We also denote Γ := γ([0, T ]).

Notice that for every x ∈ Σ\(TΣ ∪ EΣ) one can always find a parametrization γ and a radius
r in such a way that B(x, r) satisfies General Assumptions 1.

Definition 24. Assume that we are under general assumptions 1 in B(x0, r0). Then for every
y ∈ Γ∩B(x0, r0) and for every transport ray Ry ending at y we say that Ry is coming from above
if Ry ∩B(x0, r0)+ 6= ∅ and we say that Ry is coming from below if Ry ∩B(x0, r0)− 6= ∅. If Ry and
Rz are two different transport rays that are both coming from below or both coming from above we
will say that Ry and Rz are coming from the same direction. We denote k−1(y)+ the family of
transported Rays ending at y and coming from above and k−1(y)− the ones coming from below.

Remark 25. Of course a non empty ray cannot comes from above and below at the same time.
The definition of Above and Below depends only on the orientation given by γ.
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We will need this elementary fact which was already used in a slightly different version in [10].

Proposition 26. Assume that Ω is convex and that we are under General assumptions 1 in
B(x0, r0). Then x 7→ diam(k−1(x)±) are upper-semicontinuous for x ∈ Σ ∩B(x0, r0).

Proof. It is enough to prove the Proposition for diam(k−1(x)+). Assume the contrary. Namely,
there exists δ > 0 and a sequence of points xn that converges to x∞ in Σ∩B(x0, r0) and such that

diam(k−1(xn)+) ≥ diam(k−1(x∞)+) + δ. (4.1)

Let yn be a sequence of points in k−1({xn})+ such that d(xn, yn) = diam(k−1(xn)+). Up to a
subsequence we can assume that yn converges to a certain y∞, and by continuity of x 7→ dist(x,Σ)
we deduce that y∞ ∈ k−1(x∞). Moreover y∞ is still coming from above. Then from (4.1) and

d(yn, xn) ≤ d(yn, x∞) + d(x∞, xn)

we obtain
diam(k−1(x∞)+) + δ ≤ d(yn, x∞) + d(x∞, xn),

thus passing to the limit it comes

diam(k−1(x∞)) + δ ≤ d(y∞, x∞)

which is a contradiction.

For all x ∈ Σ and Rx a transported ray arriving at x we will denote ν(Rx) the unit “normal”
vector oriented by Rx and defined by the identity

Rx = x+ [0,H1(Rx)].ν(Rx).

In most of our next arguments we will need the following “key lemma”.

Lemma 27. Assume that we have General assumptions 1 in B(x0, r0) with x0 ∈ Σ and a
parametrization γ. Then for every C3 > r0 the following holds. Let t < t′ be such that γ(t)
and γ(t′) lie in B(x0, r0) and admit some transport rays Rt and Rt′ that are both coming from
above and satisfying min(H1(Rt),H1(Rt′)) ≥ C3. Then :

Angle(ν(Rγ(t′)), ν(Rγ(t))) ≤ 2 arcsin
( 1
C3
|γ(t)− γ(t′)|

)
where Angle(v, w) denotes the oriented angle between the two vectors v and w.

Proof. Let t and t′ be as in the statement of the Lemma. We know that γ(t) is under a circle of
radius bigger than C3 “tangent” to γ(t′) and viceversa. Let us assume without loss of generality
that γ(t′) is the origin and R⊥γ(t′) is the first axis. Let Lt be the line containing the two points γ(t)
and γ(t′) and let vt be the unit vector orthogonal to Lt pointing in the “above” direction, which
means pointing in the clockwise sense on the circle B(γ(t′), |γ(t) − γ(t′)|). The only way for the
angle Angle(ν(Rγ(t′)), vt) to be positive is when γ(t) has negative first coordinate and positive
second coordinate as in the following picture

γ(t′)

γ(t) 6

�

vt

Lt

ν(Rγ(t′))
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and since γ(t) must be at the same time lying under the “tangent” circle associated to γ(t′) we
deduce that

Angle(ν(Rγ(t′)), vt) ≤ arcsin[
1
C3
|γ(t)− γ(t′)|].

By the same argument considering this time the circle associated to γ(t) we also have that

Angle(vt, ν(Rγ(t))) ≤ arcsin[
1
C3
|γ(t)− γ(t′)|]

which all together gives (i), and the Lemma is proved.

Now we can state a first regularity result.

Proposition 28. Assume that we have General assumptions 1 in B(x0, r0) and that

inf{diam(t−1(y)+); y ∈ Σ ∩B(x0, r0)} > 0. (4.2)

then x 7→ TR(x) and x 7→ TL(x) are semicontinuous, i.e. for every y0 ∈ B(x0, r0),

lim
y→y0
y<γy0

TL(y) = TL(y0) and lim
y→y0
y>γy0

TR(y) = TR(y0). (4.3)

In addition the limit from the other side exists and we have

lim
y→y0
y>γy0

TL(y) = TR(y0) and lim
y→y0
y<γy0

TR(y) = TL(y0). (4.4)

Proof. Up to change the orientation it is enough to prove the result for TL. For any corner point
y ∈ Σ∩B(x, r) let us denote RRy and RLy the two transported Rays orthogonal to TR(y) and TL(y)
as in the following picture

y

RRyRLy

TR(y)TL(y)

Σ

Under assumption (4.2), if RRy and RLy are not empty they can only arrive from above. We denote
R1 the union of all the RRy and RLy for y a corner point in Σ∩B(x0, r0). Then, for every ordinary
point y ∈ Σ ∩B(x0, r0) we denote R+

y the single ray coming from above and arriving at y and we
denote R2 the union of all the R+

y for all ordinary point y. Finally, we denote R := R1 ∪R2.

We claim that (4.2) implies the following stronger condition

inf{H1(Ry);Ry ∈ R} ≥ C3/2 (4.5)

where
C3 := inf{diam(t−1(y)+); y ∈ Σ ∩B(x, r)}.
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Indeed, if y is an ordinary point then diam(t−1(y)+) = H1(R+
y ) so the problem could only occur at

corner points. Now let y be a corner point and assume by contradiction that H1(RRy ) < C3/2 (the
argument will work by the same way for RLy ). Then by semicontinuity of the length of transported
rays (Proposition 28), all the transported rays coming from above and arriving in a sufficiently
small neigborhood at the right hand side of y still has a length strictly less than C3. Now to get
a contradiction with (4.2) it suffice to choose an ordinary point z in this neighborhood for which
we know that the lenght of R+

z is exactly diam(t−1(z)+) ≥ C3. It is always possible to find such
a point z because ordinary points of Σ have full H1 measure.

Now to prove the existence of limit we will use the “key lemma”. Let y0 be a fixed point in
B(x0, r0). Since the result is local we can restrict ourself to B(y0, s) for a radius s small as we
want. For instance we can take s ≤ C3/100. Now by convention, when y is an ordinary point we
set RRy = RLy = R+

y and we define for y ∈ B(y0, s) and y ≤γ y0 the function

θ(y) := Angle(ν(RLy0), ν(RLy )).

We want to prove that θ(y) has a limit when y → y0, and y <γ y0. Let

M := sup{θ(y); y ∈ B(y0, s) and y <γ y0}.

It is clear that

lim sup
y→y0
y<γy0

θ(y) ≤M. (4.6)

Now by definition of M , for every ε > 0 one can find yε ∈ Σ ∩ B(y0, s) such that θ(yε) ≥ M − ε.
On the other hand for all y >γ yε Lemma 27 implies

θ(yε) ≤ θ(y) + 2 arcsin
( 1
C3
|y − yε|

)
which leads to

M − ε ≤ lim inf
y→y0
y<γy0

θ(y)

and since ε is arbitrary, combining the last inequality with (4.6) and letting ε goes to 0 we obtain
that the Left limit of θ(y) exists and is equal to M , which means that the Left limit

lim
y→y0
y<γy0

TL(y)

exists. For the existence of Right limit of TL one can argue by the same way using this time the
infimum instead of supremum.

Let us prove now that

lim
y→y0
y<γy0

TL(y) = TL(y0). (4.7)

The proof of

lim
y→y0
y>γy0

TL(y) = TR(y0) (4.8)

will follow by the same argument.

We already know that
lim sup
y→y0
y<γy0

θ(y) ≤ θ(y0) = 0

14



so it is enough to prove the reverse inequality, for which we argue as follows. Let yk be a sequence
of points converging to y0 and let zk be a corresponding sequence of points belonging to a transport
Ray RLyk ending at yk. By continuity of x 7→ dist(x,Σ) we obtain that the zk converges to a point
z which belongs to k−1(y0)+. This implies that

lim sup
y→y0
y<γy0

θ(y) ≥ 0

which ends the proof.

Remark 29. A consequence of the proposition just proved is that if we assume Σ to contain
no corner points in B(x, r), then under assumption (4.2) Σ is C1 in B(x, r) because in this case
TL(x) = TR(x) at every point.

Now if (4.2) holds from above and below at the same time we have more regularity as it is
shown by the following proposition.

Proposition 30. Assume that we have General assumption 1 in B(x0, r0). If

inf{min(diam(t−1(x)+), diam(t−1(x)−));x ∈ Σ ∩B(x, r)} > 0 (4.9)

then Σ is C1,1 in B(x0, r0/2).

Proof. Observe that under assumption (4.9), for every point y ∈ Σ ∩ B(x0, r0/2) we have that Σ
is lying in the complement of two circles with radius uniformly bounded from below and tangent
to each other at y. From this fact one can find a radius r1 such that β(y, r) ≤ Cr for all r < r1

and the proposition follows from the same argument as for Proposition 18.

4.2 A regularity result

This paragraph is devoted to the proof of the following result.

Theorem 31. For any minimizer Σ and for every injective and open arc Γ ⊂ Σ, the Right and
Left Tangents TR(x) and TL(x) admit some Right and Left limits at every point x ∈ Γ and are
semicontinuous. More precisely (4.3) and (4.4) holds for every point y0 ∈ Γ.

To prove Theorem 31 we will first need a precision about the C1,1 regularity result of [10].

Lemma 32. Let Σ1 be compactly contained in Σ\(TΣ∪EΣ). Let x ∈ Σ1 be such that diam(k−1(x)) <
min(C,C2(Σ1)) and let I ⊂ Σ be an “interval” in Σ1 (i.e. an injective Lipschitz image of [0, 1])
containing x maximal for the property that

sup
y∈I

diam(k−1(y)) ≤ min(C,C2(Σ1))

and let z ∈ Ī\I. Then Σ is C1,1 regular up to z, with Lipschitz constant for the derivative
depending only on Σ, Ω and µ, in particular does not depend on I and x.

Proof. The Lemma is an easy consequence of the regularity result of [10] so let us give only a
sketch of the proof. Assume that Ī is parameterized by an injective map γ : [0, 1]→ Ī and assume
that z = γ(0). We already know by the result of [10] that γ is C1,1 in the interior of I. Moreover,
by existence of blow up limits we know that γ′ exists at 0. Denoting TR(z) the half tangent line
at z, and using Lemma 11 we have that

1
δ

sup
t∈[0,δ]

dist(γ(t), TR(z)) ≤ Cψ(γ((0, δ]).
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On the other hand, one can easily prove the estimate

ψ(γ((0, δ]) ≤ Cr ∀δ < δ0 (4.10)

by a small modification of the proof of Proposition 16. Indeed, the only difference is to find
an analogous “one-sided” version of inequality (2.7). This is done by delimiting one side of the
domain k−1(γ(0, δ)) with exactly the same argument as for the original proof of (2.7), and for the
other side the rays are delimited by the line orthogonal to the left tangent TL(z). Then the proof
of (4.10) follows by the same way as the proof of Proposition 16, the iteration still works since the
diameter of transported set is small enough for the points of γ((0, δ] by our assumptions. We left
the details to the reader.

Once (4.10) is proved, the desired C1,1 regularity follows by the same argument as in the proof
Proposition 17.

We are now ready to prove our regularity result.

Proof of Theorem 31. We can assume that we are working on Σ1 compactly contained in the
complement of TΣ and EΣ since we already know by [10] that the curves that compose Σ are C1,1

in a neighborhood of any triple point. Let C0 be the constant depending on Ω, µ and Σ that comes
from the regularity result of [10] (i.e. that implies C1,1 regularity whenever diam(k−1({x})) < C0)
and let C < min(C0, C2(Σ1)). Since the result is local, when x0 is not an endpoint we can work
under General assumption 1 in a ball B(x0, r0), and we can assume that r0 < C/100.

Then let us decompose Γ ∩B(x0, r0) in a disjoint union

Γ ∩B(x0, r0) := O1 ∪A+ ∪A− ∪ F

where
O1 := {x ∈ Γ ∩B(x0, r0); diam(t−1(x)) < C}

A+ := {x ∈ Γ ∩B(x0, r0); diam(t−1(x)−) < C/4 and diam(t−1(x)+) ≥ C/2}

A− := {x ∈ Γ ∩B(x0, r0); diam(t−1(x)+) < C/4 and diam(t−1(x)−) ≥ C/2}

F := Σ ∩B(x0, r0)\(O1 ∪A+ ∪A−).

In particular in F , all the points have very big transported sets from above and below. By
semicontinuity of the diameter of transported set (Proposition 26), we get that O1, O1 ∪A+ and
O1 ∪A− are relatively open sets in Γ∩B(x0, r0) thus F is relatively closed by definition. We will
first prove that taken separately in the interior of all the above sets, Σ is C1 regular. Indeed by
definition of constant C, from [10] we directly know that O1 is C1,1

loc , which means that the maps
TL and TR are continuous (even Lipschitz) in O1. In the interior of F , A+ and A−, we know that
the maps TL and TR are semicontinuous by Proposition 28. Now we have to glue together those
sets to prove that TL and TR are semicontinuous everywhere. Up to a change of orientation it is
enough to prove the result for only TL.

Let us consider O1 as a countably union of disjoints “intervals” like

O1 :=
∑
i∈N

γ(]ti, ti+1[)

with ti < ti+1. We already know that γ is C1,1 in each of the Ii := γ([ti, ti+1]) (also up the the
boundaries of each interval thanks to Lemma 32). Now we will enlarge the set of points in which
TL is semicontinuous to progressively achieve the semicontinuity everywhere. Let us start with
the open set A+ ∪O1. Let y0 ∈ A+\O1 (otherwise γ is C1,1 in the neighborhood of x and we have
nothing to prove). For r small enough we know that B(x, r) ∩ Σ ⊂ A+ ∪ O1. We want to prove

16



that TL(y) tends to TL(y0) when y → y0 and y <γ y0. We use the same notations as for the proof
of Proposition 28, i.e. we denote the oriented angle

θ(y) := Angle(ν(RLy0), ν(RLy ))

and we want to prove that θ(y) tends to θ(y0) = 0.

First of all, since y0 ∈ A+, for all subsequence yn → y0 with yn <γ y0 and such that for all
n > 0, yn ∈ A+ ∩ B(y0, r) we can prove that θ(yn) converges to θ(y0) = 0 arguing exactly as for
Proposition 28. This means that for every ε > 0 there exists rε < r such that

sup{|θ(y)|; y ∈ A+ ∩B(y0, rε) and y <γ y0} < ε. (4.11)

Now we have to control the angle for points in O1. Since y0 ∈ A+, we deduce that

Ii ∩B(y0, rε) 6= ∅ ⇒ Ii ⊂ {y; y <γ y0} or Ii ⊂ {y; y >γ y0}.

Then by Lemma 32, for all y ∈ Ii with Ii ⊂ O1 ∩ {y; y <γ y0} ∩ B(y0, rε), one can estimate
(possibly taking a smaller rε)

|θ(y)− θ(yi)| ≤ CH1(I) ≤ ε
where yi is the right hand side bound of the interval Ii, in other words the point maximal in Ii
for the order <γ . Then it comes, for all y ∈ O1 ∩B(x, rε) ∩ {y <γ y0},

|θ(y)| ≤ |θ(y)− θ(yi)|+ |θ(yi)| ≤ 2ε

because in particular yi ∈ A+ so that we can apply (4.11) to estimate |θ(yi)|, and finally we have
proved that

lim
y→y0
y<γy0

θ(y) = 0

which implies the semicontinuity of TL in O1 ∪A+.

By a similar argument we can also prove that for every y0 ∈ O1 ∪A+,

lim
y→y0
y>γy0

TR(y) = TR(y0). (4.12)

Thus reversing the orientation and applying (4.12) we obtain the semicontinuity for TL, when
y <γ y0 at every point y0 of A− ∪ O1 as well. Since A± ∪ O1 are open sets we have proved that
TL is semicontinuous in O1 ∪ A+ ∪ A−. To have the semicontinuity of TL everywhere it remains
to prove the semicontinuity at points of F .

We already know that TL is semicontinuous in the interior of F (Σ is even C1,1 in this case by
Lemma 30). So it is enough to prove semicontinuity at point y0 ∈ F ∩ A+ ∪O1 ∪A−. But this
will be done by the same arguments as before. All we have to prove is that for rε small enough
and for all points y ∈ B(y0, rε) ∩ {y <γ y0}, we have that |θ(y)| ≤ ε. Since the point y0 ∈ F is
achieved by two large transport rays from above and below at the same time, we can control the
angle of tangents for every point y ∈ B(y0, rε) ∩ {y <γ y0} by considering the four different cases
whenever y lie in O1, A+, A− or F . Indeed, in each situation between O1, A+ and A− we can use
one of the arguments that we already used before to prove semicontinuity in O1 ∪ A+ ∪ A−, and
for points of F we can use either the argument associated to A+ or the one of A−.

In conclusion we have proved that (4.3) holds at every point of Γ, and the proof of (4.4) works
by the same way.

As an immediate consequence of Theorem 31 we can state the following interesting result.

Corollary 33. Let Σ be an optimal set for the problem (1.1) and let B be a ball such that Σ ∩B
contains only ordinary points. Then Σ ∩B is locally a C1 regular curve.
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5 Euler-Lagrange equation

We will need the equation of first derivative that one can find in [2]. We refer for instance to [1]
page 355 for the definition and classical properties of the tangential divergence divΣΦ.

Proposition 34. [2] For every compact and connected set Σ ⊂ Ω and for every Φ ∈ C∞0 (R2,R2)
one has

d
dε
F((Id + εΦ)(Σ))

∣∣∣
ε=0

=
∫

R2
〈Φ(k(x)),

k(x)− x
|k(x)− x|

〉 dµ(x). (5.1)

As a consequence, for a given λ > 0, if Σ is a minimizer for the functional

G(Σ′) :=
∫

Ω

d(x,Σ′) dµ(x) + λH1(Σ′) (5.2)

over all compact and connected sets Σ′ ⊂ Ω, then for all Φ ∈ C∞0 (R2,R2) one has∫
R2
〈Φ(k(x)),

k(x)− x
|k(x)− x|

〉 dµ(x) + λ

∫
Ω

divΣΦ dH1 = 0. (5.3)

We would like to apply equation (5.3) to the minimizers of our functional F defined in (1.1) with
length constraint instead of the penalized functional G. The following Proposition was suggested
to the Author by F. Santambrogio and says that one can find a λ0 such that the two first order
equations for the two minimizing problems are the same. To get a similar result one could also try
to apply the classical Lagrange multipliers theorem on a suitable Banach space of diffeomorphisms
to the functional J(ϕ) := F(ϕ(Σ)) but the Fréchet differentiability of such functional at ϕ0 := Id
is not clear. Moreover, despite of the technical difficulties of the proof of the next proposition, the
idea is very intuitive and perhaps more instructive as well since it gives the explicit value of λ0 in
terms of measure ψ at any endpoint x0.

To be more precise, let x0 be an endpoint of Σ that we will assume, up to a translation, being
the origin. Following [10], let us denote by ν the image measure of µxk−1({x0}) by the application
x 7→ x

‖x‖ and define the vector

v̄ :=
∫
S1
v dν(v).

By [10] Theorem 3.2. we know that Σ admits a tangent line at x0 which direction is given by the
vector −v̄. Now we define the constant

λ0 :=
∫
S1
v.

v̄

‖v̄‖
dν(v) = ‖v̄‖. (5.4)

Proposition 35. Let Σ be a minimizer for the problem (1.1) and x0 be one of its endpoint.
Then Equation (5.3) holds with λ = λ0 defined in (5.4) and for every Φ ∈ C∞0 (R2,R2) compactly
supported in the complement of {x0}.

The idea is to quantify how much one can win or loose in the functional adding a piece of
segment of size r starting at the endpoint x0 or erasing a piece of curve of size r from the same
endpoint. We will prove that the two operations have a cost in λ0r+ o(r) and this is the purpose
of the two next lemmas. Actually one can find similar computations in the proof of Theorem 3.5.
of [10] (with a more elliptic redaction) but we would like to re-write here the arguments in full
details for the convenience of the reader.

Let x0 be an endpoint of Σ that we still assume being the origin, and let Φ ∈ C∞0 (R2,R2) be a
given diffeomorphism supported in a compact K contained in the complement of {0}. We denote
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C∞K the family of diffeomorphisms ϕ ∈ C∞0 (R2,R2) supported in K satisfying ϕ(K) ⊂ K. Let us
define

ϕε := Id + εΦ.

Notice that if ε is small enough, then ϕε ∈ C∞K . For every ε we denote kε a measurable selection
of the projection multimap onto Σε := ϕε(Σ).

Let us define now νε the image measure of µxk−1
ε ({0}) by the application x 7→ x

‖x‖ and
introduce the constant

λε :=
∫
S1
v.

v̄

‖v̄‖
dνε(v).

It is not difficult to see that λε → λ0 when ε→ 0.

Lemma 36. One can find an r0 such that for every r < r0 there exists a set Σrε such that

Σrε ∩K = Σε, H1(Σrε) = H1(Σε) + r and

F(Σε)−F(Σrε) = rλε + o(r) (5.5)

where o(r) depends on Φ but not on ε.

Proof. Up to a rotation we can assume that v̄ = e1. Defining the line L := R−.v̄, by [10] we know
that

1
r
dH(Σ ∩B(x0, r), L ∩B(x0, r))→ 0

when r → 0, and this is the same for ϕ(Σ) for all ϕ ∈ C∞K since they do not move any points near
the origin. Let P+ be the half space

P+ := {(x, y) ∈ R2;x ≥ 0}. (5.6)

We claim that for all ε,
k−1
ε ({0}) ⊆ P+.

Indeed, suppose the contrary, namely that there exists a point x such that kε(x) = 0 and x 6∈ P+.
Then, since {0} admits R−e1 as left-tangent line it would be better for x to be projected onto a
point y ∈ Σ ∩ ∂B(0, s) for s small enough which is a contradiction.

We define
Σrε := Σε ∪ L+

r

where L+
r := [0, r]× {0}. We have to compute the winning in the functional F in terms of r but

independently from ε small enough, say less than ε0.

Let Dr := (L+
r × R) ∩ Ω. For every point x ∈ P+\Dr one has d(x, L+

r ) = d(x, xr) where
xr := (r, 0). Then, a simple computation yields, for r → 0

‖x− xr‖2 = ‖x‖2 − 2〈x, xr〉+ o(r) = ‖x‖2
(
1− 2

〈 x

‖x‖2
, xr
〉

+ o(r)
)
. (5.7)

Therefore, we obtain that for all x ∈ k−1
ε ({0})\Dr,

d(x,Σε)− d(x,Σrε) = ‖x‖ − ‖x− xr‖ = r
〈 x

‖x‖
, e1

〉
+ o(r)

where o(r) does not depend on ε. On the other hand, let us define

Aεr :=
{
x ∈ Ω\k−1

ε ({0}); d(x,Σrε) = d(x, L+
r )
}

19



and
Ar :=

⋃
ε≤ε0

Aεr.

We claim that

sup
ε≤ε0

∫
Aεr

d(x,Σε)− d(x,Σrε) dµ(x) = o(r). (5.8)

To see this, observe that Aεr ⊂ P+ thus, using (5.7), for x ∈ Aεr we have

0 ≤ d(x,Σε)− d(x,Σrε) ≤ ‖x‖ − d(x,Σrε) = ‖x‖ − d(x, xr) = r
〈 x

‖x‖
, e1

〉
+ o(r)

where o(r) does not depend on ε. Then∣∣∣ ∫
Aεr

d(x,Σε)− d(x,Σrε) dµ(x)
∣∣∣ ≤ rµ(Aεr) + o(r) ≤ rµ(Ar) + o(r)

and we conclude by observing that µ(Ar)→ 0 thus (5.8) is true.

Finally, since
∫
Dr
d(x,Σε)− d(x,Σrε) = o(r) we have

F(Σε)−F(Σrε) =
∫
k−1
ε ({0})\Dr

d(x,Σε)− d(x,Σrε) dµ(x) +
∫
Aεr

d(x,Σε)− d(x,Σrε) dµ(x) + o(r)

= λεr + o(r)

which proves the Lemma.

Now we want to do the same while removing this time from Σε a piece of size r, and estimate
the loss in terms of r independently from ε. Compared to Lemma 36 we will this time prove only
an inequality which will be enough to prove Proposition 35.

Lemma 37. One can find an r0 such that for every r < r0 there exists a set Σrε such that

Σrε ∩K = Σε, H1(Σrε) = H1(Σε)− r and

F (Σrε)− F (Σε) ≤ rλε + o(r) (5.9)

where o(r) depends on Φ but not on ε.

Proof. The proof is very similar to the one of Lemma 36. The only difference is that here we don’t
consider a piece of segment but a piece of curve that converges to a segment with speed o(r).

Let γ : [0, T ] → R2 be a parametrization by arclength of the Lipschitz curve starting at x0,
such that γ(0) = x0 and γ(T ) is a triple point or endpoint. By [10], for t small enough, we know
that

]{∂B(x0, t) ∩ Σ} = 1.

We deduce the existence of a radius tr defined by Σ ∩ ∂B(x0, tr) = γ(r) and satisfying γ([0, r]) =
Σ ∩B(x0, tr). Moreover since the blow up limit at x0 is a radius we also know that r = tr + o(r)
when r → 0. We assume r0 small enough in such a way that B(x, tr) ∩K = ∅ for all r < r0 and
we define

Σrε := Σε\γ([0, r]).

By construction we automatically get H1(Σrε) = H1(Σε)− r.

Now we want to compute what we have lost in the functional F . We still suppose x0 = {0}
and the tangent line at x0 being R−.e1. We denote P+ the half space defined in (5.6). As before,
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we know that for every ε small enough, k−1
ε ({0}) ⊂ P+. Let us denote xr := Σ ∩ ∂B(0, tr) and

x̄r = p1(xr) where p1 is the projection on the first axis. We know that ‖xr − x̄r‖ = o(r) and
‖x̄r‖ = tr = r − o(r). By a computation similar to (5.7) and using that o(r) = o(tr) we obtain
that for all x ∈ P+,

‖x− x̄r‖2 = ‖x‖2
(
1− 2

〈 x

‖x‖2
, x̄r
〉

+ o(r)
)

which implies
‖x− x̄r‖ − ‖x‖ = r

〈 x

‖x‖
, e1

〉
+ o(r).

Then, since ‖xr − x̄r‖ = o(r) we deduce

‖x− xr‖ − ‖x‖ = r
〈 x

‖x‖
, e1

〉
+ o(r).

Now we compute

F(Σrε)−F(Σε) =
∫
k−1
ε (B(0,tr))

d(x,Σrε)− d(x,Σε) dµ(x)

≤
∫
k−1
ε ({0})

d(x, xr)− d(x, 0) dµ(x) + r

∫
k−1
ε (B(0,tr)\{0})

dµ(x)

≤
∫
k−1
ε ({0})

‖x− xr‖ − ‖x‖ dµ(x) + rψ(B(0, tr)\{0})

≤ rλε + o(r)

which ends the proof.

We are now ready to prove Proposition 35.

Proof of Proposition 35. Let Φ be given and consider Σε := ϕε(Σ) where as before ϕε = Id + εΦ.
Assume first that H1(Σε) − H1(Σ) = −rε < 0. Then, denoting Σ+

ε the set given by Lemma 36
applied with r := rε and using that Σ is a minimizer for F we obtain that

F(Σ) ≤ F(Σ+
ε )

= F(Σε)− λεrε − o(rε)
= F(Σε) + λε[H1(Σε)−H1(Σ)] + o(rε).

Now if H1(Σε) − H1(Σ) = rε > 0 we can use Lemma 37 to find a set Σ−ε satisfying the length
constraint so by minimality of Σ,

F(Σ) ≤ F(Σ−ε )
≤ F(Σε) + λεrε + o(rε)
≤ F(Σε) + λε[H1(Σε)−H1(Σ)] + o(rε).

In conclusion, using that rε = O(ε) and that λε → λ0 we have proved for every ε,

F(Σ)−F(Σε) + λ0[H1(Σ)−H1(Σε)] ≤ o(ε).

Now dividing by ±ε and passing to the limit, we obtain

d
dε
[
F(Σε) + λ0H1(Σε)

] ∣∣∣
ε=0

= 0

and we conclude using (5.1) and the classical fact that the derivative of H1(Σε) is the mean
curvature.

Remark 38. The constant λ0 does not depend on the choice of endpoint x0. Indeed, if the
constant λ1 associated to a different endpoint x1 6= x0 was greater or lower, one could get a
contradiction with the minimality of Σ adding or erasing a little piece of curve at one endpoint
and do the opposite operation at the other endpoint in order to diminish the functional F .
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6 Tilt estimate

In this section we control the oscillation of the tangent lines πx to Σ with respect to a fixed line
π, also called “the tilt”. When π1 and π2 are two lines in R2, we denote by α(π1, π2) ∈ [0, π2 ] the
smallest angle between them.

For any x ∈ Σ\(TΣ ∪ EΣ) and r < r(x) we denote by πx,r the line that contains the segment
[z, z′], where z and z′ are, as usual, the two points of ∂B(x, r) ∩ Σ. For H1-a.e. y ∈ Σ we also
denote by πy the approximate tangent line centered at y. Finally, we denote α(y) := α(πy, πx,r).
The definition of α(y) depends in particular on x and r but we do not make it explicit to lighten
the notations. A first easy estimate is the following∫

Σ∩B(x,r)

1− cos(α(y)) dH1(y) ≤ Crψ(x, r)β(x, r). (6.1)

Indeed, let γ : [−T, T ] be a parametrization of Σr := Σ∩B(x, r). Assume without loss of generality
that the segment S := [z, z′] is contained in the first axis of R2 and that γ(−T ) = z, γ(T ) = z′

with z < z′. Then by setting γ(t) := (x(t), y(t)), using Lemma 11 we have∫ T

−T

√
x′(t)2 + y′(t)2 − x′(t)dt = H1(Σr)− (z′ − z)

= H1(Σr)−H1(S)
≤ Cψ(x, r)dH(Σr, S)
≤ Crψ(x, r)β(x, r).

On the other hand the area formula shows that∫ T

−T

√
x′(t)2 + y′(t)2 − x′(t) dt =

∫ T

−T

(
1− x′(t)√

x′(t)2 + y′(t)2

)√
x′(t)2 + y′(t)2 dt

=
∫

Σr

(1− 〈τ(y), e1〉) dH1(y)

≥
∫

Σ∩B(x,r)

1− cos(α(y)) dH1(y)

where τ(y) is the unit tangent vector at point x (oriented by the parametrization γ) and e1 is the
first vector of basis, so (6.1) follows.

The next proposition gives a slightly better estimate than (6.1) proved by a variational argu-
ment.

Proposition 39. For all τ ∈ (0, 1), x ∈ Σ\(TΣ ∪ EΣ) and r < r(x) we have∫
Σ∩B(x,τr)

sin2(α(y)) dH1(y) ≤ C(τ)rψ(x, r)β(x, r)

where α(y) is the angle between πy and πx,r.

Proof. Without loss of generality we may assume that π := πx,r is the first axis. Let us choose
Φ(z) := η(z)2(π⊥(z)), where π⊥ is the projection on the second axis and where η ∈ C1

c (B(x, r)),
0 ≤ η ≤ 1, η = 1 on B(τr) and |∇η| ≤ 2/r(1− τ).

For every line π′ let eπ′ be a unit vector in the direction of π′ and denote by Mπ′ the orthogonal
projection on Reπ′ . We maintain that

‖Mπ −Mπ′‖ = sin(α(π′, π)) (6.2)
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where the norm in the left side is the euclidian norm of linear operators and α(π′, π) ∈ [0, π2 ] is,
as usual, the smallest angle between the lines π̄′ and π. To show (6.2), let z ∈ R2 be of unit norm
and let (a, b) be its coefficients in the orthonormal basis {eπ, eπ⊥}. Then ‖Mπ′(z) −Mπ(z)‖2 =
‖a(Mπ′(eπ)−eπ)+bMπ′(eπ⊥)‖2 = ‖bMπ′(eπ⊥)−aMπ′⊥(eπ)‖2 = (a2+b2)‖Mπ′(eπ⊥)‖2 = 〈eπ′ , eπ⊥〉2 =
cos2(α(π′, π⊥)) = sin2(α(π′, π)), so (6.2) holds.

Now let us compute the tangential divergence of Φ. Since the first component of Φ is 0 and
the second is equal to η(z)2z2 we have

divπ
′
Φ(z) = 〈∇π

′
(η(z)2z2), e2〉

and

∇π
′
(η(z)2z2) = [2η(z)z2〈∇η(z), eπ′〉+ η(z)2〈e2, eπ′〉].eπ′ .

Thus

divπ
′
Φ(z) = 2η(z)z2〈∇η(z), eπ′〉〈e2, eπ′〉+ η(z)2〈e2, eπ′〉2

= 2η(z)〈Mπ′(∇η(z)), π⊥(z)〉+ η(z)2 sin2(α(π, π′))
= 2η(z)〈(Mπ′ −Mπ)(∇η(z)), π⊥(z)〉+ η(z)2 sin2(α(π, π′))

≥ η(z)2 sin2(α(π, π′))−
[1
t
η(z)2‖Mπ′ −Mπ‖2‖∇η(z)‖2 + t|π⊥(z)|2

]
hence setting t := 2‖∇η(z)‖2 and using (6.2) we get

divπ
′
Φ(z) ≥ 1

2
η(z)2 sin2(α(π, π′))− 8

r2(1− τ)2
‖π⊥(z)‖2. (6.3)

Therefore, applying the above inequality with π′ the approximate tangent line at point x and
recalling (by 2.1) that H1(B(x, r) ∩ Σ) ≤ 3πr we obtain∫

B(x,τr)

sin2(α(z)) dH1 ≤ 2
∫
B(x,r)∩Σ

divΣΦ dH1 +
C

(1− τ)2
rβ(x, r)2

≤ 2
∫
B(x,r)∩Σ

divΣΦ dH1 + C(τ)rβ(x, r)ψ(x, r)

by (2.6). On the other hand, since B(x, r) does not contain any endpoint, by Proposition 35 we
have that ∫

Ω

divΣΦ dH1 ≤ 1
λ0

∫
R2
|〈Φ(k(z)),

k(z)− z
|k(z)− z|

〉| dµ(x)

≤
∫
k−1(B(x,r))

η(k(z))2‖π⊥(k(z))‖ dµ(z)

≤ Crβ(x, r)ψ(x, r)

so the proof is complete.

7 Σ is locally a Lipschitz graph

In this last section we prove that away from triple points Σ is locally a graph. We begin with
some precisions about corner points.
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7.1 About the aperture of corners

Using the first order equation, one can rely the aperture of any corner point x0 in terms of
measure ψ. Following the notations of Section 39, for any atom x ∈ Σ for the measure ψ (i.e. x is
either a corner point of endpoint) we define νx the image measure of µxk−1(x) by the application
y 7→ y−x

‖y−x‖ and the vector

v̄(x) :=
∫
S1+x

(v − x) dνx(v).

Then we denote

λ(x) := ‖v̄(x)‖.

It is clear that λ(x) ≤ ψ({x}) and recall that λ0 := λ(x0) where x0 is any endpoint of Σ. For any
corner point x let us denote θ(x) the smallest angle between the two rays of the bow up limit at
point x. Then, by the proof of Theorem 3.7. of [10] we have the following very nice identity :

λ0 cos
(θ(x)

2
)

= λ(x).

The next proposition gives a lower bound on the aperture of any corner point and will be needed
to find some pieces of graphs. This is probably a well known fact but as far as the author knows,
it was never explicitly written before in the literature.

Proposition 40. For any corner point x of Σ it holds θ(x) ≥ 2π
3 .

Proof. The proof is fairly simple, relying on the fact that if the aperture is too small, one can
replace Σ by a suitable Steiner connection to win some length. Indeed, let x be a corner point
with aperture θ := θ(x) < 2π

3 . For any r ∈ (0, r(x)) let zr and z′r be the two points of Σ∩∂B(x, r)
and let Sr be the Steiner minimal set connecting the points zr, z′r and x.

x

zr
z′r z )Sr

Σ

Since the blow up limit converges to a union of two rays of aperture θ < 2π
3 , we deduce that

H1(Σ ∩B(x, r)) = 2r + o(r)

and
H1(Sr) = l(θ)r + o(r)

where l(θ) is the length of the Steiner connection corresponding to an exact angle of aperture θ in
the unit ball. In particular l(θ) < 2, and for r small enough we have thatH1(Σ∩B(x, r)) > H1(Sr).
This allows us to take as a competitor for Σ the set

Σr := Σ\B(x, r) ∪ Sr ∪ L+
r

where L+
r is a piece of segment added at any endpoint of Σ as in the proof of Lemma 36, and

satisfying
H1(L+

r ) = H1(Σ ∩B(x, r))−H1(Sr) = (2− l(θ))r + o(r).
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Then it comes

F(Σ) ≤ F(Σr)
≤ F(Σ) + rψ(B(x, r)\{x})− λ0[2− l(θ)]r + o(r)

λ0[2− l(θ)]r ≤ rψ(B(x, r)\{x}) + o(r)

which implies a contradiction for r small enough because ψ(B(x, r)\{x}) tends to 0.

7.2 Construction of the graph

A consequence of Theorem 31, is that Σ is locally a graph. We still denote TΣ the set of triple
points. For any ordinary point we denote πy the tangent line at y (which is defined H1-a.e. on Σ),
and when y is a corner point we also denote πy the line through y orthogonal to the mediatrice of
the corner resulting from taking the blow up limit at y.

Proposition 41. For all x ∈ Σ\(TΣ ∪ EΣ) there exists r depending on x, and there exists a
5-Lipschitz function f : πx → R with graph denoted by Γf := {(t, f(t)); t ∈ πx} which has the
following properties

Σ ∩B(x, r/4) = Γf ∩B(x, r/4) (7.1)∫
πx∩B(x, r16 )

|f ′(t)|2dt ≤ Crψ(x, r)2 (7.2)

Proof. Let γ := [−T, T ]→ R2 be a parametrization of Σr := Σ∩B(x, r), where r < r(x) the usual
radius given by Lemma 13. Assume without loss of generality that πx is the first axis of R2 x is
the origin. We denote p1 the orthogonal projection on the first axis, and (γ1, γ2) the coordinates
of γ.

For H1-a.e. y ∈ Σ ∩B(x, r) we denote α(y) the smallest non oriented angle between the lines
πy and πx. In particular by the area formula one has∫

γ(a,b)

sin(α(y))2dH1(y) =
∫ b

a

γ′2(t)2√
γ′1(t)2 + γ′2(t)2

dt.

From Theorem 31 we know that for every ε > 0 there exists a radius r such that∣∣ sin2
(
α(y)

)
− sin2

(π − θ(x)
2

)
∣∣ ≤ ε for H1 a.e. y ∈ Σ ∩B(x, r)

which implies using Proposition 40 that

sin2
(
α(y)

)
≤ 3

4
+ ε for H1 a.e. y ∈ Σ ∩B(x, r)

Let us choose ε = 1/400. Since Σ admits two half tangent lines at x, up to a smaller choice
of r we may assume that γ([−T, 0]) ∩ B(x, r) ⊂ R−∗ × R, γ([0, T ]) ∩ B(x, r) ⊂ R+

∗ × R and
γ([−T, T ]) ∩ {0} × R = {x}. Taking if necessary a smaller radius r we may also assume that
Cψ(γ([−T, T ]\{0}))2 ≤ 1/400 and dH(γ([−T, T ], L ∩B(x, r)) ≤ r/400 where L := TR(x) ∪ TL(x)
is the blow up limit at point x. Then using (2.2), for every a, b ∈ [0, T ] such that γ([a, b]) ⊂ B(x, r)
we have ∫ b

a

γ′2(t)2√
γ′1(t)2 + γ′2(t)2

dt =
∫
γ([a,b])

sin(α(y))2H1(y)

≤ (3/4 + 1/400)H1(γ([a, b]))
≤ (8/10)|γ(a)− γ(b)|. (7.3)
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because under our assumptions, H1(γ([a, b])) ≤ (1 + 1
400 )|γ(a) − γ(b)|. Now we denote F :=

Σ ∩B(x, r/4). We claim that

]{z′ ∈ F ; p1(z) = p1(z′)} = 1 ∀z ∈ F. (7.4)

Let us denote F− := γ([−T, 0]) ∩ B(x, r/4) and F+ := γ([0, T ]) ∩ B(x, r/4). To prove (7.4), it is
enough to prove that

]{z′ ∈ F±; p1(z) = p1(z′)} = 1 ∀z ∈ F±.
It suffice to consider the case of F+ (the proof for F− will follow by the same way). Assume the
contrary, namely that there is z, z′ ∈ F+ such that p1(z) = p1(z′). Let I ⊂ [0, T ] be such that γ(I)
is the arc that goes from z to z′ and fix r0 := |z − z′| ≤ r/2. We know that γ(I) ∩ ∂B(z, r0) = z′,
in particular γ(I) is contained in B(z, r0), and we have∫

I

|γ′2(t)|dt ≥ r0. (7.5)

On the other hand by (7.3), (2.2)∫
I

|γ′2(t)|dt ≤
(∫

I

√
γ′21 (t) + γ′2(t)2dt

) 1
2
(∫

I

|γ′2(t)|2√
γ′21 (t) + γ′2(t)2

dt
) 1

2

≤ H1(γ(I))
1
2

(∫
γ(I)

sin(α(y))2 dH1(y)
) 1

2

≤ r0

√
401
400

.
8
10

≤ 9
10
r0 (7.6)

which gives a contradiction with (7.5). Therefore, one can define the application f : p1(F ) → R
such that (t, f(t)) ∈ F for all t ∈ p1(F ).

Further, using a similar argument as before we claim that for all t and t′ in p1(F ) we have that

|f(t)− f(t′)| ≤ 5|t− t′| (7.7)

Indeed assume by contradiction that (7.7) is not true, thus there is t and t′ such that |f(t)−f(t′)| >
|t− t′|. It is enough to consider the case when t, t′ ≤ 0 or t, t′ ≥ 0 (the general case follows from
taking 0 as an intermediate point between t and t′). We denote z := (t, f(t)), z′ := (t′, f(t′)), and
r1 := |z−z′| ≥

√
6|t− t′|. As before, let J ⊂ [0, T ] be such that γ(J) is the arc that goes from z to

z′. We know that γ(J) ∩ ∂B(z, r1) = z′, in particular γ(J) is contained in B(z, r1) ⊂ B(x, 3r/4),
and we have ∫

J

|γ′2(t)|dt ≥
√
r2
1 − |t− t′|2 ≥

√
5
6
r1 >

9
10
r1. (7.8)

On the other hand arguing as for (7.6),∫
J

|γ′2(t)|dt ≤ 9
10
r1 (7.9)

which gives a contradiction with (7.8) so (7.7) is proved.

Therefore, by a standard extension argument one can find a 5-Lipschitz function f̃ on R that
is equal to f on p1(F ), that satisfies (7.1) and that we will still denote by f instead of f̃ .

It remains to prove (7.2). Observe that by our assumptions since x = 0, dH(γ([−T, T ] ∩
B(x, r), T ∩ B(x, r)) ≤ r/400, using Proposition 40 and the fact that Σ ∩ B(x, r/4) is connected
we also have that

p1(Σ ∩B(x, r/4)) ⊇ [− r

16
,
r

16
].
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On the other hand since

dH(Σ ∩B(x, r), L ∩B(x, r)) ≤ Crψ(B(x, r)\{x}),

we deduce that

α(πx, πx,r) ≤ Cψ(B(x, r)\{x}). (7.10)

Now since f is 5-Lipschitz, applying Proposition 39 with τ = 1
4 , using (2.6) and (7.10) we get∫

[− r
16 ,

r
16 ]

f ′(t)2dt ≤
√

6
∫

[− r
16 ,

r
16 ]

f ′(t)2√
1 + f ′(t)2

dt

≤
√

6
∫
F∩B(x, 14 r)

sin2(α(y)) dH1(y)

≤ Crψ(x, r)2

thus (7.2) holds and the proposition is proved.

7.3 The equation of curvature

To complete the proof of Theorem 3 we will give some further remarks about the first order
equations applied to f .

Given η, let us take Φ(x, y) := (0, η(x)χ(y)) with χ ∈ C1
0 ([−δ, δ]), χ = 1 on (− δ2 ,

δ
2 ) and δ > 0

is chosen in such a way that supp(Φ) ⊂ supp(η) × (−δ, δ) ⊂ B(x0, r0). By applying Proposition
35 with this choice of diffeomorphism Φ we obtain that∫

Ω

divΣΦ dH1 =
1
λ0

∫
R2
〈Φ(k(y)),

y − k(y)
|y − k(y)|

〉 dµ(y) (7.11)

Now for H1 a.e. x ∈ Σ ∩ Γ, a direct computation gives

divΣΦ(z) =
η′(z)f ′(z)

1 + |f ′(z)|2

thus by the area formula we obtain∫
I

η′(z)f ′n(z)√
1 + |f ′n(z)|2

dH1 =
1
λ0

∫
R2
η(π(k(y)))〈e2,

y − k(y)
|y − k(y)|

〉 dµ(y). (7.12)

An immediate consequence of the above equation is that the derivative of t 7→ f ′(t)√
1+|f ′(t)|2

in the

distributional sense is a measure. Indeed, we can also write this equation in a more natural form
using disintegration. Consider the linear form T that associate for every η ∈ Cc(I) the quantity

T (η) :=
∫

R2
η(π(k(y)))〈e2,

y − k(y)
|y − k(y)|

〉 dµ(y)

Since |T (η)| ≤ C‖η‖∞ by the Riesz theorem one can find a measure ψ0 on I such that T (η) =∫
I
η(t) dψ0(t). Then (7.12) becomes

− d

dt

( f ′(t)√
1 + |f ′(t)|2

)
= ψ0

Furthermore it is interesting to link ψ0 with ψ. Actually, we easily have that

|ψ0| ≤ π]ψ.
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In particular, f ′(t)√
1+|f ′(t)|2

∈ BV (I) and the jump set is concentrated on corner points so that we

have

− d

dt

( f ′(t)√
1 + |f ′(t)|2

)
= H(t)dt+

∑
(t,f(t))∈Corner

ctδt +HCant

where HCant is the cantor part, ‖H(t)‖L1(I) ≤ ψ(B(x, r)) and |ct| ≤ ψ({(t, f(t))}) for any atom
(t, f(t)) of ψ.
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