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Abstract. We introduce a new class of nonoriented sets in Rk endowed with a

generalized notion of second fundamental form and boundary, proving several
compactness and structure properties. Our work extends the definition and

some results of J. E. Hutchinson [13] and can be applied to variational problems

involving surfaces with boundary.
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1. Introduction

Some problems in the calculus of variations are concerned with existence of min-
ima for functionals defined on smooth manifolds embedded in Rk and involving
quantities related to the geometry of the manifolds. The functionals we are inter-
ested in depend on the curvature tensor of manifolds. As usual, in order to get
existence of minimizers by the so called direct methods of calculus of variations it
is necessary to enlarge the space where the functional is defined and work out a
compactness–semicontinuity theorem in the enlarged domain.

The aim of this paper is to introduce a new class of n–dimensional sets endowed
with a weak notion of second fundamental form and boundary. We prove that this
class has good compactness and structure properties.

Our work is based on the theory of integer rectifiable varifolds developed by
Allard in [1], [2] (see section 2). Roughly speaking, an integer n–varifold is an n–
dimensional set in Rk endowed with an integer multiplicity; smooth n–dimensional
manifolds can be considered as unit density varifolds.

Inspired by the classical divergence formula on manifolds and by the first vari-
ation of the area functional, Allard gave a weak definition of mean curvature (see

1991 Mathematics Subject Classification. Primary 49Q20; Secondary 49Q15, 58-XX.
Key words and phrases. Varifold, generalized second fundamental form.

1



2 CARLO MANTEGAZZA

also [18]) and boundary for varifolds. The Allard’s definition is strong enough to
guarantee compactness and rectifiability properties. However Allard’s varifolds do
not share strong local regularity properties, because of multiplicity (see the exam-
ple in [6], p. 162) and because the mean curvature does not “see” some singularity
points, for instance the triple junction with equal angles of three halflines in R2.

Using a suitable integration by parts formula involving functions of the tangent
space, Hutchinson introduced in [13] the so called curvature varifolds with sec-
ond fundamental form in Lp and proved several compactness, semicontinuity and
regularity results (see [12], [14]). The theory of Hutchinson provides a weak formu-
lation of variational problems involving surfaces without boundary and functionals
depending on the second fundamental form.

Motivated by variational problems involving piecewise smooth surfaces (see for
instance [3]) we extend the theory of Hutchinson in order to include smooth mani-
folds with boundary.

We give here a brief outline of the paper.

Section 2. This is an introductory section about varifolds and basic facts we
will need in the sequel.

Section 3. We give the definition of curvature varifolds with boundary, explain-
ing the similarities and the differences with the definitions of Allard and Hutchinson.
We also prove that the generalized second fundamental form and the generalized
boundary are uniquely determined and have the same formal properties of the
smooth case.

Section 4. In this section we prove that the class of curvature varifolds with
boundary is stable under localization in the ambient space and in the Grassmannian.
This provides a weak, local orientability property of these varifolds which is very
useful from the analytic viewpoint.

Section 5. The section is devoted to the study of the tangent space func-
tion P (x) of a curvature varifold with boundary, defined Hn–almost everywhere
on the support of the varifold. We prove that P (x) is approximately differentiable
Hn–almost everywhere and its approximate differential is the (weak) second fun-
damental form. This property was not known even for Hutchinson’s curvature
varifolds.

Section 6. We prove in this section a compactness result in the class of vari-
folds with second fundamental form in Lp. We also give some examples showing
the utility of curvature varifolds with boundary in the study of some variational
problems involving piecewise smooth surfaces.

Section 7. Using the local orientability property of section 4 and the approx-
imate differentiability of the tangent space function we extend the Boundary Rec-
tifiability Theorem of Federer–Fleming to curvature varifolds with boundary. This
provides at the end a complete description of the boundary measure.

Acknowledgement. I wish to thank Professor Luigi Ambrosio for his assistance
in the preparation of this paper. Moreover I am very grateful to Professor Ennio
De Giorgi for a lot of stimulating conversations.

2. Notations and Preliminaries

Standard reference for the theory and the notations of this section is [18].
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The ambient space containing all the objects we deal with is always an open set
Ω in Rk and we will denote with Br(x) the open ball centred at x with radius r.
Hn is the n–dimensional Hausdorff measure on Rk.

Given an n–dimensional vector subspace P of Rk, we can consider the k × k–
matrix {Pij} of the orthogonal projection over the subspace P . So we can think of
the Grassmannian Gn,k of n–spaces in Rk, endowed with the relative metric, as a

compact subset of Rk2 ; this identification is used throughout the paper. Moreover
given a subset A of Rk, we define the product space

Gn(A) = A×Gn,k.
If {µk} and µ are Radon measure on a locally compact and separable space X

we write

µk → µ

to denote the weak∗ convergence as elements of the dual space of C0
c (X).

Given a Radon measure µ on X and a measurable function f : X → Y we
canonically define the image measure f#µ on Y setting

f#µ (B) = µ(f−1(B))

for every B Borel subset of Y .
We define a special subclass of Radon measures on the open set Ω ⊂ Rk, Rn(Ω)

to be the set of signed Radon measures µ on Ω with these properties:

• µ is supported in a countably n–rectifiable set N ;
• |µ| is absolutely continuous with respect to the measure Hn N .

Now we introduce the terminology and some basic facts about varifolds.
A general n–varifold V in an open set Ω ⊂ Rk is simply a Radon measure on

Gn(Ω). The varifold convergence is the weak∗ convergence of measures on Gn(Ω).
We can associate to any varifold V a Radon measure µV on the open Ω projecting

the measure V on the first factor of the product space Gn(Ω):

µV = π#V

where π : Gn(Ω)→ Ω is the projection. This measure is called the weight measure
of the varifold V .

Consider now a countably n–rectifiable, Hn–measurable set M in Ω and a non–
negative function θ : M → R, locally integrable with respect to Hn M . We give
the following definition:

Definition 2.1. Let us assume that for some x0 ∈M there exists an n–dimensional
vector subspace T of Rk such that

lim
ρ→0

1

ρn

∫
M

θ(x)ϕ

(
x− x0

ρ

)
dHn(x) = θ(x0)

∫
T

ϕ(y) dHn(y) ∀ϕ ∈ C0
c (Rk).

Then we say that T is the approximate tangent space to the countably n–rectifiable
set M at x0 with respect to the function θ.

It is a well known fact that for Hn–a.e. x ∈ M there exists the approximate
tangent space apTxM to M at x with respect to the function θ and that if we choose
a different function θ′ the tangent spaces are the same Hn–almost everywhere in
M .
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Then we can define the rectifiable varifold V ≡ VM,θ associated to the pair (M, θ)
as above, to be the Radon measure characterized by∫

Gn(Ω)

ϕ(x, P ) dV (x, P ) =

∫
M

θ(x)ϕ(x, apTxM) dHn(x)

for every function ϕ ≡ ϕ(x, P ) ∈ C0
c (Gn(Ω)). We say that apTxM is the approxi-

mate space tangent to the rectifiable varifold V .

Note 2.2. It can be proved that the function apTxM defined before isHn–measurable
and so are its components when we use the identification subspace–matrix of pro-
jection. Hence the formula above defines a measure on Gn(Ω), or on the larger

space Ω × Rk2 containing Gn(Ω). Usually in the sequel we write P (x) ≡ {Pij(x)}
for the tangent space function apTxM of M .

With these definitions, the weight measure of a rectifiable varifold VM,θ is H\ θ
(extending θ to zero outside the set M). Commonly M and θ are called respectively
the support and the density function of the rectifiable varifold V .

If the density function of a rectifiable varifold V is integer valued, we say that
V is an integer varifold.

In the following we are concerned only with this special class, so when we will
write varifold we will always mean integer varifold.

Now we come to the definition of curvature. Usually the curvature tensor of
an embedded manifold M is described by its second fundamental form which is a
symmetric bilinear form defined at every x ∈M by (see for instance [5], [8], [13])

B : TxM × TxM → NxM

B(v, w) = (Dvw)⊥

whereNxM is the normal space toM at x andDvw denotes covariant differentiation
in the Euclidean space Rk. We can naturally extend B to a symmetric bilinear form
on all Rk with values in Rk setting

B(v, w) = B(v>, w>)

where the symbol > indicates the projection on the tangent space to M . The
components of the form B are defined by

Bk
ij =< B(ei, ej), ek > .

The mean curvature vector H has then components

Hi = Bi
jj

summing on the repeated indexes from 1 to k.

We observe this convention on repeated indexes throughout all the paper.

There is another way to express the second fundamental form that is useful
in our context. We define for an arbitrary function ϕ ∈ C1(M) its tangential
gradient, denoted by ∇Mϕ, as the projection on the tangent space of the gradient
of the function ϕ (it is clear that to compute the derivatives we have to extend
the function in a neighbourhood of the manifold M , but it is easy to see that the
tangential part of the gradient is independent of the extension).
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We can consider the tangential gradients of the tangent space functions

Aijk = ∇Mi Pjk.(2.1)

The interesting fact is that the functions Aijk are univocally related to the compo-
nents of the second fundamental form B (see [13]).

Proposition 2.3. For every x ∈M the following hold:

• Bk
ij = PjlAikl

• Aijk = Bk
ij + Bj

ik

• Hi = Ajij.

After this classical introduction we can show the way Allard defined a distribu-
tional notion of mean curvature for a varifold V ≡ VM,θ in an open Ω ⊂ Rk.

Consider the linear functional δV , defined on the space of vector fields X in Rk
with compact support in Ω

δV (X) =

∫
M

divM X(x) dµV (x)

where divM X is the tangential divergence of the vector field X with respect to the
countably rectifiable M and is defined by

divM X(x) =
∑
i,j

Pij(x)∇jXi(x)

(here Pij(x) are the approximate tangent space functions).
If δV is a locally bounded functional it can be represented, by the Riesz Theorem,

by a Radon measure that we still denote by δV . Hence, using the Radon–Nikodym
Theorem, we split δV in its absolutely continuous and singular part with respect
to the measure µV , obtaining∫

M

divM X dµV = −
∫
M

< X,H > dµV −
∫
Ω

< X, ν > dσ

for a certain Radon measure σ on Ω and functions H ∈ L1
loc(µV ,Rk), ν ∈ L1

loc(σ,S
k−1).

Considering the analogy with the classical case (the tangential divergence for-
mula, see [5]), Allard defined H, ν, σ respectively to be the generalized mean
curvature, the generalized inner normal and the generalized boundary.

The class of varifolds such that this property holds are called varifolds with locally
bounded first variation.

This class of sets is endowed with a distributional notion of mean curvature
and boundary that generalizes the classical case of smooth manifolds. The basic
compactness result in this class is the following theorem.

Theorem A (Allard’s Compactness Theorem). Given for every open set Ω′ ⊂⊂ Ω
a positive constant c(Ω′), the class of integer n–varifolds V in an open set Ω ⊂ Rk
such that

µV (Ω′) + ‖δV ‖(Ω′) ≤ c(Ω′)

is sequentially compact with respect to varifold convergence. Moreover in the same
class the mapping V 7→ δV is weakly∗ continuous.
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For a proof, see [18].
Finally we need a theorem of Brakke (see [6], Chapter 5) concerning the orthog-

onality of the generalized mean curvature vector and a “flattening property” for
integer varifolds.

Theorem B (Brakke’s Orthogonality Theorem). If V is an integer varifold with
locally bounded first variation the vector H(x) is orthogonal to the tangent space
P (x), for µV –almost all points x ∈ Ω. Moreover

lim
ρ→0

ρ−n−1

∫
Bρ(x0)

|P (x)− P (x0)|2 dµV = 0

for µV –a.e.x0 ∈ Ω.

Before going on we have to introduce some tools from the theory of currents.
An n–current in Ω is a continuous linear functional on the vector space of n–

differential forms with compact support in Ω, endowed with the usually locally
convex topology of distributions.

An integral n–current T in Ω is defined by a countably n–rectifiable, Hn–
measurable set M ⊂ Ω, an integer function θ ∈ L1

loc(Hn M) and a Hn-measurable
field η of n–vectors defined on M . We denote this current with T ≡ (M, θ, η).
T acts as a linear functional on n–differential forms with compact support in Ω,

by integration:

< T, ω >=

∫
M

θ(x) < ω(x), η(x) > dHn(x).

The boundary of an n–current T is the (n− 1)–current ∂T acting as follows:

< ∂T, ω >=< T, dω > .

We define the norm of a differential form ω(x) with compact support in Ω as

‖ω‖ =
∑

0≤i1<...<in≤k

sup
x∈Ω
| < ω(x), ei1 ∧ ... ∧ ein > |

(compare with [9]) and the mass of a current T in an open Ω′ ⊂ Ω by duality as

MΩ′(T ) = sup
suppω⊂⊂Ω′

| < T, ω > |
‖ω‖

.

Now we can state the famous theorem of Federer and Fleming.

Theorem C (Boundary Rectifiability Theorem). If T is an integral n–current in
Ω and for every open Ω′ ⊂⊂ Ω

MΩ′(T ) +MΩ′(∂T ) < +∞

then ∂T is an integral (n− 1)–current in Ω.

For a proof, see [18].
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3. Curvature Varifolds with Boundary and Basic Properties

In this section we introduce the idea of Hutchinson and our generalization. We
work out the same calculation of [13] to get an integration by parts formula. The
only difference is that we consider an n–dimensional smooth manifold M with
smooth boundary ∂M , embedded in an open set Ω ⊂ Rk, while Hutchinson as-
sumed that the boundary was empty.

Suppose that ϕ ≡ ϕ(x, P ) : Ω×Rk2 → R is a C1
c function, we write respectively

Diϕ and D∗jkϕ

for the derivatives of ϕ with respect to the variables xi and Pjk.
Let {ei} be the canonical basis of Rk and P (x) ≡ {Pij(x)} the tangent space

function of the manifold M . Let us consider in the classical divergence formula the
smooth vector field X(x) = ϕ(x, P (x))πP (x)ei that is the orthogonal projection of
the vector field ϕ(x, P (x))ei on the tangent space.

As the mean curvature is a normal vector to the manifold,∫
M

divM X dHn = −
∫
∂M

< X, ν > dHn−1

where ν is the inner normal to ∂M .
Working out the calculation of the tangential divergence (see [13]) we obtain∫
M

Pij(x)Djϕ(x, P (x)) +Aijk(x)D∗jkϕ(x, P (x)) +Ajij(x)ϕ(x, P (x)) dHn(x)

= −
∫
∂M

ϕ(y, P (y))νi(y) dHn−1(y)

where the functions Aijk(x) that appear above, are defined by the formula (2.1) of
the previous section.

Representing the manifold as a varifold V ≡ VM,1 and introducing a Radon
boundary measure ∂V on Gn(Ω) with values in Rk, we can write the formula above
as ∫

Gn(Ω)

PijDjϕ+AijkD
∗
jkϕ+Ajijϕ dV = −

∫
Gn(Ω)

ϕ d∂V i

with

∂Vi = (Id× P )#(νiHn−1 ∂M).

This is the motivation for the following definition.

Definition 3.1. Let V ≡ VM,θ be an n–dimensional varifold in Ω ⊂ Rk, with
0 < n < k. We say that V is a curvature varifold with boundary if there exist
functions Aijk ∈ L1

loc(V ) and a Radon vector measure ∂V on Gn(Ω) with values in
Rk such that
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∫
Gn(Ω)

PijDjϕ(x, P ) +D∗jkϕ(x, P )Aijk(x, P ) + ϕ(x, P )Ajij(x, P ) dV (x, P )

= −
∫

Gn(Ω)

ϕ(x, P ) d ∂Vi(x, P ) ∀ϕ ≡ ϕ(x, P ) ∈ C1
c (Ω× Rk

2

)

(3.1)

for every index i.
In the extreme cases n = 0, k for sake the of coherence we define Aijk(x, P ) ≡ 0

and we look for a measure ∂V such that the formula above is true. We call ∂V
the boundary measure of the varifold V and we denote with AVn(Ω) the class of
n–dimensional curvature varifolds with boundary in Ω. Moreover we introduce the
subclasses AV pn (Ω) consisting of those varifolds in AVn(Ω) such that Aijk ∈ Lp(V ).

Remark 3.2. We point out that the extreme cases are not so interesting because
in dimension zero the varifold consists of a discrete set of points and the measure
∂V is the zero measure. In codimension zero (n = k) the theory is included in the
theory of sets with locally finite perimeter (developed by E. De Giorgi in [10] and
[11]) because the density function turns out to be an integer BV function and the
boundary measure is essentially its distributional derivative.

Note 3.3. Hutchinson’s definition of curvature varifolds of is analogous but assumes
that the right hand side of the formula (3.1) is identically zero. It is so clear that
the curvature varifolds in the sense of Hutchinson are the elements of AVn(Ω) with
zero boundary measure.

We define the generalized second fundamental form B from the functions Aijk,
using the relations in proposition 2.3. It is then easy to see that the Lp summability
of B and of the functions Aijk are equivalent.

Now we prove a theorem asserting that there are essentially unique second fun-
damental form and boundary.

Proposition 3.4 (Uniqueness). The functions Aijk and the measure ∂V are uniquely
determined by the formula (3.1).

Proof. Suppose there are two pairs (A1
ijk, ∂V

1) and (A2
ijk, ∂V

2) that satisfy the

definition. Setting Aijk = A1
ijk − A2

ijk and ∂V = ∂V 1 − ∂V 2, for every function

ϕ ∈ C1
c (Ω× Rk2) we have∫

Gn(Ω)

D∗jkϕ(x, P )Aijk(x, P ) + ϕ(x, P )Ajij(x, P ) dV (x, P )

= −
∫

Gn(Ω)

ϕ(x, P ) d ∂Vi(x, P ).

Then we can write∫
Gn(Ω)

D∗jkϕAijk dV =

∫
Gn(Ω)

ϕdσi ∀ϕ ∈ C1
c (Ω× Rk

2

)(3.2)



CURVATURE VARIFOLDS WITH BOUNDARY 9

where σi = −∂Vi −AjijV is a Radon measure on Gn(Ω).
By this formula we deduce that, for every φ(x) ∈ C1

c (Ω), the functional

Lφ(ψ) =

∫
Gn(Ω)

φ(x)Aijk(x, P )D∗jkψ(P ) dV

is a bounded linear functional from C1(Gn,k) to R, in the relative topology induced
by C0(Gn,k).

IfAijk 6≡ 0 we can find a Lebesgue point x0 for the functions P (x) andAijk(x, P (x))
such that Aijk(x0, P (x0)) 6= 0, at x0 the density and the tangent space P (x0) to
the varifold V exist and

lim sup
ρ→0

π#|σi|(Bρ(x0))

ωnρn
< +∞.(3.3)

Choose now χ(t) ∈ C1
c (R), χ ≥ 0 not identically zero and set

φh(x) =
χ(h|x− x0|)
ωnh−n

.

The functionals Lφh pointwise converge as h→ +∞ to the functional

L(ψ) = θ(x0)Aijk(x0, P (x0))D∗jkψ(P (x0))

∫
P (x0)

χ(|y|) dHn(y)(3.4)

on C1(Gn,k). Moreover we can extend Lφh to equibounded functionals defined in
all C0(Gn,k), because of the equations (3.2), (3.3) and the upper estimate

‖Lφh‖ ≤
∫
Ω

φh dπ#|σi|.

Hence the functional L is continuous in C1(Gn,k) with respect to convergent se-
quences in C0(Gn,k), in evident contradiction with the equation (3.4).
It follows that A ≡ 0 and σ = 0. The definition of σ implies that ∂V = 0 too. �

We state now some propositions about the formal and geometric properties of
the tensor Aijk and of the boundary measure ∂V . The proofs are postponed until
after theorem 5.4.

Proposition 3.5 (Singularity of |∂V |). If the pair (Aijk, ∂V ) satisfy the definition
3.1 then the measure ∂V has support included in the support of the measure V
and the projection of its total variation |∂V | is singular with respect to the weight
measure µV of the varifold V .

Proposition 3.6 (Formal Properties). For V − a.e. (x, P ) ∈ Gn(Ω) it is true that:

• Aijk(x, P ) = Aikj(x, P );
•
∑
j Aijj(x, P ) = 0;

• Aijk(x, P ) = PjrAirk(x, P ) + PrkAijr(x, P ).

Proposition 3.7 (Tangential Properties). The boundary measure ∂V is tangential,
in the sense that for every index i ∈ {1, . . . , k}

Pil∂Vl(x, P ) = ∂Vi(x, P )
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as measures on Gn(Ω).
The functions Aijk(x, P ) satisfy the relations:

PilAljk(x, P ) = Aijk(x, P )

and defining

Hi(x, P ) =
∑
j

Ajij(x, P ) we have PilHl(x, P ) = 0

for V − a.e. (x, P ) ∈ Gn(Ω). That is, the functions Aijk are tangential and the
(formal) mean curvature vector is normal to the varifold.

Note 3.8. These propositions extend to this class of varifolds formal and geometric
results that hold in the classical case of a smooth manifold.

Remark 3.9. We wrote “formal” mean curvature vector because this is only the
trace of the generalized second fundamental form and, at this point, has nothing
in common with Allard’s definition. The connection between these notions will be
shown below.

We want to describe now the differences between this class of varifolds and
Allard’s varifolds with locally bounded first variation. First of all, it is obvious that
a curvature varifold with boundary has first variation given by the Radon measure

δVi = −π#(Ajij V + ∂Vi)

where π is as usual the projection from Gn(Ω) on Ω. This can be seen considering in
the formula (3.1) functions ϕ depending only on the x variable. More precisely we
can write respectively Allard’s mean curvature and boundary, as we could expect,
using the functions Aijk and the boundary measure ∂V .

Proposition 3.10. A curvature varifold with boundary is a varifold with locally
bounded first variation. The generalized mean curvature vector is given by

Hi(x) =
∑
j

Ajij(x, P (x))

and the generalized boundary by

σ = π#∂V

where P (x) is the approximate tangent space at x.

One of the advantages of our definition is that ∂V carries much more information
on the local structure of V , while Allard’s boundary, being the projection of ∂V ,
can be even equal to zero.

Example 3.11. Consider the varifold in R2 formed by three halflines from the origin,
forming three angles of 120◦. According to Allard’s definition this varifold has mean
curvature and boundary measure equal to zero, because at the origin the sum of
the three inner normals is zero. For our definition the boundary measure is the sum
of three Dirac deltas supported in the points (0, Pi) in Gn(Ω), where Pi denote the
1–spaces determined by the halflines in R2.
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Another difference, as we will see in section 7, is concerned with the set where
the boundary measure is supported. The only thing we can say about Allard’s
boundary measure is that it is singular with respect to µV . We will show that the
projection of |∂V | is supported in a countably (n − 1)–rectifiable subset of Ω for
every n–curvature varifold with boundary V .

4. Localization

In this section we introduce a basic tool for the study of this class of varifolds
that could be interesting by itself. We prove that curvature varifolds are stable
under localization in (x, P ).

Lemma 4.1 (Localization Lemma). Let V be an n–dimensional curvature varifold
with boundary in Ω ⊂ Rk and let x0 ∈ Ω, P0 ∈ Gn,k and ρ′, δ′ > 0. Then there exist
ρ′/2 ≤ ρ ≤ ρ′, δ′/2 ≤ δ ≤ δ′ such that, defining Bρδ = Bρ(x

0) × Bδ(P0) ⊂ Gn(Ω),
we have that V ρδ = V Bρδ is a curvature varifold with boundary.

Proof. Let be given x0, P0, δ′, ρ′ as in the statement.
We study the localization in the x variable. Consider in the formula (3.1) a

function ϕ(x, P ) = ψ(x, P )χ(x), where ψ is an arbitrary function in C1
c (Ω × Rk2)

and χ is a cut-off function so defined: χ(x) = h(r), r = |x − x0| and h(t) is a
function in C∞(R), with the properties, h(t) = 1 for t < ρ/2, h(t) = 0 for t > ρ,
h′(t) ≤ 0.

Computing the derivatives we get∫
Gn(Ω)

χ(x)PijDjψ(x, P ) + χ(x)D∗jkψ(x, P )Aijk(x, P ) + χ(x)ψ(x, P )Ajij(x, P ) dV (x, P )

= −
∫

Gn(Ω)

χ(x)ψ(x, P ) d ∂Vi(x, P )−
∫
Ω

ψ(x, P (x))PijDjχ(x) dµV (x)

= −
∫

Gn(Ω)

χ(x)ψ(x, P ) d ∂Vi(x, P )−
∫

Gn(Ω)

ψ(x, P )h′(r)Pij
xj − x0

j

r
dV (x, P ).

We take a sequence of functions hm(t) with the properties above such that hm(t) = 1
for t < ρ − 1/m and |h′(t)| < 4m. The sequence hm pointwise converges to the
characteristic function of (−∞, ρ) as m→∞.

Defining the Radon measures on Gn(Ω)

σm = V

{
h′m(r)Pij(x)

xj − x0
j

r

}
we can see that σm is supported in the set Gn(Bρ(x

0) \ Bρ−1/m(x0)), so we have
the following estimate for its total variation

|σm|(Gn(Ω)) = |σm|(Gn(Bρ(x
0) \Bρ−1/m(x0)))

≤ 4mµV (Bρ(x
0) \Bρ−1/m(x0)) = 4

µV (Bρ(x
0))− µV (Bρ−1/m(x0))

1/m
.

(4.1)
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Now we note that the real function f(ρ) = µV (Bρ(x
0)) is monotone hence dif-

ferentiable for almost every ρ ∈ R. At any differentiability point it follows that the
total variations of the measures σm are equibounded. We use the Banach–Alaoglu
Theorem to infer that there exists a subsequence weakly∗ converging to a Radon
measure σ on Gn(Ω). For these values of ρ the restricted varifold V Bρ(x

0)×Gn,k
is again a curvature varifold with boundary.

The study of localization in the P variable is quite similar: using a cut–off
function χ(P ) = h(|P − P0|) we get an extra boundary measure σ given by the
weak∗ limit of a subsequence of the family

σm = V
{
h′m(|P − P0|)Aijk(x, P )D∗jk|P − P0|

}
.(4.2)

�

Remark 4.2. Note that this stability property under localization is not true in the
context of Hutchinson’s curvature varifolds, not even if we assume that the varifolds
correspond to smooth embedded manifolds without boundary.

5. Approximate Differentiability of the Tangent Space Functions

In this section we are going to show that the functions Pjk(x) are approxi-
mately differentiable and that their approximate gradients are precisely the func-
tions Aijk(x, P ) of definition 3.1, in accordance with the classical case of a regular
manifold. This result implies all the formal properties of Aijk stated in proposition
3.6 and leads to an estimate of the extra boundary created by the localization in
lemma 4.1.

The basic result leading to the approximate differentiability of Pjk is the follow-
ing:

Theorem 5.1. Let V ≡ VM,θ be a curvature varifold with boundary and ψ ∈
C1
c (Ω× Rk2). Then there exists an Hn–negligible set M0 such that

{(x, ψ(x, P (x))) |x ∈M \M0}
is countably n–rectifiable in Ω× R.

Proof. We first suppose that the support of the varifold V ≡ V (M, θ) ∈ AVn(Ω) is
included in Ω × Bδ/2(P0), where P0 is the n–space generated by e1, ..., en. If δ is
small enough then any P ∈ Bδ(P0) can be oriented by the unit n–vector η defined
by

η =
η1 ∧ . . . ∧ ηn

|η1 ∧ . . . ∧ ηn|
ηi = πP ei =

∑
j

Pijej .

We take a nonnegative function ψ(x, P ) ∈ C1
c (Ω × Rk2) and we consider the

(n + 1)–integral current T ≡ (T, θ′, η′) in the space Ω × R, where T is the set
{(x, y) |x ∈ M 0 ≤ y ≤ ψ(x, P (x))}, θ′(x, y) = θ(x) and, calling ε the unit
vertical vector, η′ = ε ∧ η. It is clear that T is a Hn+1–measurable set so the
current is well defined. Now we prove that this current has a boundary of finite
mass, hence it can be represented as an integral n–current.

To do this we have to test two kind of differential forms:
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ω1(x, y) = ϕ1(x, y) dy ∧ dxi2 ∧ . . . ∧ dxin

ω2(x, y) = ϕ2(x, y) dxj1 ∧ . . . ∧ dxjn .

For multi–indexes I ≡ (i2, . . . , in) and J ≡ (j1, . . . , jn) we define the functions

βIs (P ) =< dxi2 ∧ . . . ∧ dxin , η
1 ∧ . . . ∧ η̂s ∧ . . . ∧ ηn

|η1 ∧ . . . ∧ ηn|
>(5.1)

βJ(P ) =< dxj1 ∧ . . . ∧ dxjn , η
1 ∧ . . . ∧ ηn

|η1 ∧ . . . ∧ ηn|
>(5.2)

that belong, by our choice of δ, to C∞(Bδ(P0)).
Then for ω1 we have,

∂T (ω1) = T (dω1) = −
k∑
i=1

T

(
∂ϕ1

∂xi
(x, y) dy ∧ dxi ∧ dxi2 ∧ . . . ∧ dxin

)

∂T (ω1) =−
k∑
i=1

∫
M

( ψ(x,P (x))∫
0

∂ϕ1

∂xi
(x, y) dy

)
< dy ∧ dxi ∧ dxi2 ∧ . . . ∧ dxin , ε ∧ η > dµV (x)

=

k∑
i=1

n∑
s=1

(−1)s+1

∫
Gn(Ω)

Pis

( ψ(x,P )∫
0

∂ϕ1

∂xi
(x, y) dy

)
βIs (P ) dV (x, P ).

Now we extend the functions βIs (P ) and βJ(P ) to smooth functions on Gn,k
without modifying them in Bδ/2(P0). Carrying the derivative out of the integral,
using the formula (3.1) and taking into account that the support of V is contained
in Bδ/2(P0), we obtain



14 CARLO MANTEGAZZA

∂T (ω1) =

k∑
i=1

n∑
s=1

(−1)s+1

∫
Gn(Ω)

Pis
∂

∂xi

( ψ(x,P )∫
0

ϕ1(x, y) dy

)
βIs (P ) dV (x, P )

−
k∑
i=1

n∑
s=1

(−1)s+1

∫
Gn(Ω)

Pis
∂ψ

∂xi
(x, P )ϕ1(x, ψ(x, P ))βIs (P ) dV (x, P )

=

n∑
s=1

(−1)s

{ ∫
Gn(Ω)

AsjkD
∗
jk

(
βIs (P )

ψ(x,P )∫
0

ϕ1(x, y) dy

)
dV (x, P )

+

∫
Gn(Ω)

Ajsj β
I
s (P )

( ψ(x,P )∫
0

ϕ1(x, y) dy

)
dV (x, P )

+

∫
Gn(Ω)

βIs (P )

( ψ(x,P )∫
0

ϕ1(x, y) dy

)
d ∂Vs(x, P )

+

k∑
i=1

∫
Gn(Ω)

Pis
∂ψ

∂xi
(x, P )ϕ1(x, ψ(x, P ))βIs (P ) dV (x, P )

}

=

n∑
s=1

(−1)s

{ ∫
Gn(Ω)

Asjk ϕ1(x, ψ(x, P ))D∗jkψ(x, P )βIs (P ) dV (x, P )

+

∫
Gn(Ω)

Asjk

( ψ(x,P )∫
0

ϕ(x, y) dy

)
D∗jkβ

I
s (P ) dV (x, P )

+

∫
Gn(Ω)

Ajsj β
I
s (P )

( ψ(x,P )∫
0

ϕ1(x, y) dy

)
dV (x, P )

+

∫
Gn(Ω)

βIs (P )

( ψ(x,P )∫
0

ϕ1(x, y) dy

)
d ∂Vs(x, P )

+

k∑
i=1

∫
Gn(Ω)

Pis
∂ψ

∂xi
(x, P )ϕ1(x, ψ(x, P ))βIs (P ) dV (x, P )

}
.

As the functions βIs and ψ are bounded with their derivatives, it is now clear
that we can have an estimate

|∂T (ω1)| ≤ c‖ϕ1‖

with c depending only on δ and ψ.
Now we test the differential form ω2
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∂T (ω2) = T (dω2) =

k∑
i=1

T

(
∂ϕ2

∂xi
(x, y) dxi ∧ dxj1 ∧ . . . ∧ dxjn

)
+ T

(
∂ϕ2

∂y
(x, y) dy ∧ dxj1 ∧ . . . ∧ dxjn

)
= T

(
∂ϕ2

∂y
(x, y) dy ∧ dxj1 ∧ . . . ∧ dxjn

)
because T has a vertical orientation. Hence

∂T (ω2) =

∫
Ω

( ψ(x,P (x))∫
0

∂ϕ2

∂y
(x, y) dy

)
< dy ∧ dxj1 ∧ . . . ∧ dxjn , ε ∧ η > dµV (x)

=

∫
Gn(Ω)

(ϕ2(x, ψ(x, P ))− ϕ2(x, 0))βJ(P ) dV (x, P )

(5.3)

so, also in this case we have the estimate

|∂T (ω2)| ≤ c‖ϕ2‖.

This calculation shows that T is an integral current with integral boundary ∂T
(by the Boundary Rectifiability Theorem), so ∂T is represented by (N, τ, ξ), where
N is a countably n–rectifiable set, τ is an integer valued function defined on N and
Hn–measurable, ξ is a simple unit n–vector field orienting N .

Now we consider the sets of points N1 ≡ {(x, y) ∈ N | ξ(x, y) ∧ ε = 0} and
N2 = N \N1, that is, N1 is the set of points of N where the tangent space contains
a vertical vector. Defining the integral current G = (N2, τ, ξ) + (M, θ, η), it is clear
that G can be represented as an integration on a countably n–rectifiable set. Now,
by (5.3) we get

G(ω2) =

∫
M

ϕ2(x, ψ(x, P (x)))βJ(P (x)) dµV (x)

=

∫
N2

τ(x, y)ϕ2(x, y) < dxj1∧, . . . ∧ dxjn , ξ(x, y) > dHn(x, y).

Since ϕ2 is arbitrary, arguing as in [4] we can show that

{(x, ψ(x, P (x))) |x ∈M \M0} ⊂ N2(5.4)

for a suitable Hn–negligible set M0 ⊂M .
Consider now a curvature varifold with boundary V ≡ VM,θ without conditions

on its support; we can apply the localization lemma 4.1 to find out a countable
family of curvature varifolds with boundary V i ≡ V iMi,θi

satisfying (up to a rotation)

the hypotheses at the beginning of the proof and such that
∑
i V

i ≥ V . Applying
(5.4) to all the varifolds V i we infer the theorem. �

Now we introduce the approximate differentiability property.
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Definition 5.2. Suppose V ≡ VM,θ is an n–varifold with weight measure µV
and f : M → R is a µV –measurable function. We say that f is approximately
differentiable at x0 ∈M with approximate gradient ∇Mf(x0) = v if:

• at x0 there exists the tangent space Tx0M to the varifold and v ∈ Tx0M ;
• for every ε > 0 the set

Lε =

{
x ∈M \ {x0} | |f(x)− f(x0)− < v, x− x0 > |

|x− x0|
> ε

}
has zero density at x0:

lim
ρ→0

µV (Lε ∩Bρ(x0))

ρn
= 0.

For this definition and basic properties we refer to [9].
It is not hard to show the following lemma.

Lemma 5.3. Let V ≡ VM,θ and f as in the definition above. Let us assume that
there exists an Hn–negligible set M0 such that

{(x, f(x)) |x ∈M \M0}

is countably n–rectifiable in Ω × R. Then f is approximately differentiable µV –
almost everywhere in Ω.

The proof of the lemma basically follows covering the graph of f on M \M0 with
C1 manifolds Γi of dimension n and taking the nonvertical parts of Γi.

Now we can state the main result of this section.

Theorem 5.4 (Approximate Differentiability). If V ≡ VM,θ is a curvature vari-
fold with boundary, then the components of the tangent space function Pjk(x) are
approximately differentiable for µV –almost all points x0 ∈ M , with approximate
gradients

∇Mi Pjk(x0) = Aijk(x0, P (x0)).

Proof. By theorem 5.1 we know that f(x) = Pjk(x) satisfies the assumptions of
lemma 5.3. Hence, we know that the functions Pjk are approximately differentiable
µV –almost everywhere in Ω.

Let Bijk = ∇Mi Pjk; we will show that Bijk = Aijk by a blow up argument.
We define as usual two cut-off functions χ, τ ∈ C1

c (R) with the properties χ(t),
τ(t) = 1 for |t| ≤ 1/2, χ(t), τ(t) = 0 for |t| ≥ 1. We consider in (3.1) a function

ϕρ(x, P ) = χ

(
|x− x0|

ρ

)
τ

(
Pjk − Pjk(x0)

ρ

)
so that



CURVATURE VARIFOLDS WITH BOUNDARY 17

1

ρ

∫
Gn(Ω)

Pil
xl − x0

l

|x− x0|
χ′
(
|x− x0|

ρ

)
τ

(
Pjk − Pjk(x0)

ρ

)
dV (x, P )

+
1

ρ

∫
Gn(Ω)

Aijk(x, P )χ

(
|x− x0|

ρ

)
τ ′
(
Pjk − Pjk(x0)

ρ

)
dV (x, P )

=−
∫

Gn(Ω)

Alil(x, P )χ

(
|x− x0|

ρ

)
τ

(
Pjk − Pjk(x0)

ρ

)
dV (x, P )

+

∫
Gn(Ω)

χ

(
|x− x0|

ρ

)
τ

(
Pjk − Pjk(x0)

ρ

)
d ∂Vi(x, P ).

Dividing each side by ρn−1, if x0 is chosen in such a way that

• x0 is a point where the tangent space P (x) to the varifold V exists.
• x0 is a point of approximate differentiability of the function Pjk(x) and the

approximate gradient has components Bijk.
• x0 is a Lebesgue point for all the functions Aijk(x, P (x)) with respect to

the measure µV .
• π#|∂V |(Bρ(x0)) tends to zero faster than ρn−1.

We remark that this happens for µV –almost all points x0 ∈ M . Under these
conditions we have

lim
ρ→0

1

ρn

{ ∫
Gn(Ω)

Pil
xl − x0

l

|x− x0|
χ′
(
|x− x0|

ρ

)
τ

(
Pjk − Pjk(x0)

ρ

)
dV (x, P )

+
1

ρn

∫
Ω

Aijk(x, P (x))χ

(
|x− x0|

ρ

)
τ ′
(
Pjk(x)− Pjk(x0)

ρ

)
dµV (x)

}
= 0.

As x0 is a Lebesgue point for the functions Aijk it is clear that we can replace
Aijk(x, P (x)) with Aijk(x0, P (x0)) in the second term of the limit above. Moreover
because of the existence of the approximate tangent plane P (x0) and the fact that
the function Pjk(x) is approximately differentiable at x0 with gradient Bijk we have

θ(x0)

∫
P (x0)

Pil(x
0)
xl
|x|
χ′(|x|)τ(Bijkxi) dHn(x)

+Aijk(x0, P (x0))θ(x0)

∫
P (x0)

χ(|x|)τ ′(Bijkxi) dHn(x) = 0.

(5.5)
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The first term in (5.5) is equal to

θ(x0)

∫
P (x0)

Pil(x
0)

∂

∂xl
{χ(|x|)τ(Bijkxi)} dHn(x)

−θ(x0)

∫
P (x0)

Pil(x
0)χ(|x|)τ ′(Bijkxi)Bljk dHn(x).

(5.6)

We note that the first term in (5.6) is zero, being a divergence on the tangent space.
In the second Pil(x

0)Bljk = Bijk because the Bijk–vector is tangent to the varifold,
hence substituting in (5.5) and adding we have

(Aijk(x0, P (x0))−Bijk)θ(x0)

∫
P (x0)

χ(|x|)τ ′(Bijkxi) dHn(x) = 0.

We can always choose χ and τ in such a way that the integral is different from zero,
therefore Aijk(x0, P (x0)) = Bijk.

We remark that this also proves that the functions Aijk(x, P ) are tangential. �

Now we can prove the propositions stated in section 3.

Proof of proposition 3.6. The thesis follows immediately by the linear properties of
the approximate gradient. �

Proof of proposition 3.7. The tangential properties of the functions Aijk are in the
final part of the proof of the theorem 5.4.

We now see that the “formal” mean curvature vector Hi(x) = Ajij(x, P (x)) is
orthogonal to the tangent space P (x) for µV − a.e. x ∈ Ω. As we know that

Aijk(x, P (x)) = Pil(x)∇Ml Pjk(x)

for µV − a.e. x ∈ Ω, using the linear properties of the approximate gradient the
following holds

Phi(x)Hi(x) = Phi(x)Pjl(x)∇Ml Pij(x)

= Pjl(x)∇Ml (Phi(x)Pij(x))− Pij(x)Pjl(x)∇Ml Phi(x)

= Ajhj(x, P (x))−Aihi(x, P (x)) = 0

summing over the indexes i and j. That is, the projection on P (x) of the (formal)
mean curvature vector H(x) is zero for µV − a.e. x ∈ Ω, hence the thesis.

The fact that ∂V is tangent is a consequence of the orthogonality of H and of
the uniqueness theorem 3.4. Indeed, considering in the formula (3.1) a function
ψ(x, P ) = Psiϕ(x, P ) and summing over the index i we obtain

∫
Gn(Ω)

PsjDjϕ(x, P ) +D∗jkϕ(x, P )Asjk(x, P ) +Aisiϕ(x, P ) + ϕ(x, P )PsiHi(x, P ) dV

= −
∫

Gn(Ω)

ϕ(x, P )Pis d ∂Vi(x, P ).

(5.7)
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because of the orthogonality of H we see that ∂̃V =
∑
s Pis∂Vs is a measure satis-

fying the definition too. Applying the uniqueness theorem we have the thesis. �

Proof of propositions 3.5 and 3.10. The fact that supp ∂V ⊂ suppV is obvious.
Setting λ = π#|∂V |, it is well known that there exist suitable vector measures

σx with values in Rk such that |σx|(Gn,k) = 1 and

∫
Gn(Ω)

ϕ(x, P ) d ∂V =

∫
Ω

( ∫
Gn,k

ϕ(x, P ) dσx(P )

)
dλ(x)

for every bounded Borel function ϕ(x, P ). The result that ∂V is tangential implies
that

Pij(σx)j = (σx)i(5.8)

as measures, for λ–almost every x ∈ Ω. Now let λ A be the absolutely continuous
part of λ with respect to µV . Using test functions depending only on the x variable
we see that the varifold V has generalized mean curvature vector given by

Hi(x)µV = Ajij(x, P (x))µV + (σx)i(Gn,k)λ A(5.9)

and generalized boundary

(σx)i(Gn,k)λ (Ω \A).(5.10)

The orthogonality of Ajij (see 3.7) and Brakke’s Theorem B imply that

Pij(x)(σx)j(Gn,k) = 0

for λ A–almost all points x ∈ Ω. If |σx| were supported in {P (x)} for λ A–
almost every x ∈ Ω (or equivalently for µV –almost all points x ∈ Ω) then the
equation above would be in contradiction with (5.8) yielding λ A = 0.

To prove that |σx| is an atomic measure we consider in the formula (3.1) a
function

ϕ(x, P ) = |P − P (x0)|2ξ(P )
χ(ρ−1|x− x0|)

ωnρn

where ξ ∈ C1(Gn,k), χ ∈ C1
c (R) is positive and the following properties hold:

• At x0 the approximate tangent space P (x0) to the varifold exists.
• The flattening property holds at x0:

lim
ρ→0

ρ−n−1

∫
Bρ(x0)

|P (x)− P (x0)|2 dµV = 0.

• At x0 the measure λ (Ω \A) has zero density with respect to µV .
• x0 is a Lebesgue point with respect to the measure µV for all the functions

x 7→
∫

Gn,k

ψ(P ) dσx(P ) ψ ∈ C0(Gn,k)
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By Brakke’s Theorem B these conditions hold for µV − a.e. x0 ∈ Ω.
Taking the limit as ρ→ 0 in equation (3.1) we find(

θ(x0)

∫
P (x0)

χ(|y|) dHn(y)

) ∫
Gn,k

|P − P (x0)|2ξ(P ) dσx0(P ) = 0.

Since ξ(P ) is an arbitrary function this implies that the support σx0 is {P (x0)}. �

The proposition 3.10 easily follows by formulas (5.9), (5.10) and by the fact that
the measure λ is singular with respect to µV .

Using the approximate differentiability property and a Lipschitz approximation
argument of Federer, we are now able to show that the extra boundary created by
the localization is an (n− 1)–dimensional measure.

Proposition 5.5. In the thesis of lemma 4.1 we can require that the extra boundary
measure σ

σ = ∂
(
V (Bρ(x

0)×Bδ(P0))
)
− ∂V (Bρ(x

0)×Bδ(P0))

has the property that

π#|σ| ∈ Rn−1(Ω)

Proof. We need two lemmas.

Lemma 5.6. Let µ = Hn τ be a Radon measure, f : M → Rm be µ–apdifferentiable
µ–almost everywhere. Then there exist a sequence of pairwise disjoint, compact sub-
sets Kh of M such that

Hn(M \
⋃
h

Kh) = 0

and f |Kh is Lipschitz for every index h.

The proof can be found in the book of Federer [9], Chapter 3.
Now given a finite positive measure µ on Ω, a Borel function f : Ω→ Rm, ρ ∈ R+

and a generic point y0 ∈ Rm, we define θρ(µ, f, y
0) as the class of weak∗ limits of

the family of Radon measures

µ f−1(Bρ(y
0) \Bρ−ε(y0))

ε
(5.11)

as ε tends to zero.

Remark 5.7. It is clear that for L1 − a.e. ρ ∈ R+ the set θρ(µ, f, y
0) is not empty.

In fact, this is true for every ρ such that the real monotone function M(ρ) =
µ(f−1(Bρ(y

0))) is differentiable at ρ, because of the fact that the family of Radon
measures above is equibounded.

Now the second lemma.

Lemma 5.8. Given µ and f as in the lemma 5.6, let Kh be the compact sets we
obtain. We set F (x) = |f(x) − y0| with y0 ∈ Rm. Then for L1 − a.e. ρ ∈ R+ we
have that

N =
⋃
h

Kh ∩ f−1(∂Bρ(y
0))
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is a countably (n− 1)–rectifiable set and

θρ(|∇MF |µ, f, y0) ≡
{
τHn−1 N

}
.(5.12)

Proof. Firstly we suppose that f is a Lipschitz function. With an abuse of notation
we denote with θρ(|∇MF |µ, f, y0) one of the weak∗ limits defined above (we have
seen that we can suppose the existence of at least one of them). The first part of
the thesis follows immediately by the general coarea formula (see [9]), moreover it
is clear that any measure in θρ(|∇MF |µ, f, y0) is supported in N , that in this case
is a relatively closed set in Ω. It remains to prove formula (5.12).

Applying the coarea formula to the Lipschitz function F we get that for every
positive Borel function ϕ : M → R∫

M

ϕ(x)|∇MF (x)| dHn(x) =

∫
R

∫
F−1(t)∩M

ϕ(x) dHn−1(x) dH1(t).

Considering ϕ(x) = ψ(x)τ(x) if ρ− ε ≤ F (x) < ρ and zero otherwise, we obtain

∫
F−1([ρ−ε,ρ))

ψ(x)|∇MF (x)| dµ(x) =

ρ∫
ρ−ε

∫
F−1(t)∩M

ψ(x)τ(x) dHn−1(x) dH1(t)

(5.13)

where ψ is an arbitrary positive Borel function. We take in the formula above
a dense countable family {ψi} of nonnegative continuous functions with compact
support and we choose ρ to be a Lebesgue point for all the real functions

gi(t) =

∫
F−1(t)∩M

ψi(x)τ(x) dHn−1(x)

(the fact that the functions gi belongs to L1(R) is given again by the coarea for-
mula). Dividing by ε each side of (5.13) and taking the limit as ε→ 0, we get∫

Ω

ψi dθρ(|∇MF |µ, f, y0) =

∫
F−1(ρ)∩M

ψiτ dHn−1.

By a density argument we can conclude that

θρ(|∇MF |µ, f, y0) = τHn−1 f−1(∂Bρ(y
0))

for L1 − a.e. ρ ∈ R+. It is clear this implies the thesis.
In the case of a function f which is only µ–apdifferentiable the thesis similarly

follows once we know (5.13).
To achieve this we use lemma 5.6 and consider the measures µh = µ Kh. They

satisfy the hypotheses of lemma and adding them together, by linearity in (5.13),
we prove also this case. �

Now we use the two lemmas to prove the proposition 5.5. We remind that the
localization in the x variable creates an extra boundary measure σ given by the
weak∗ limit of
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σm = h′m(r)Pij(x)
xj − x0

j

r
µV

as m → +∞. We can suppose that the total variations of σm converge to a
Radon measure λ, hence |σ| ≤ λ. By the equation (5.11) we deduce that π#λ �
θδ(µV , IdM , x

0), with the notations of lemma 5.8. As the last one belongs to
Rn−1(Ω) the same holds for the measure π#|σ|.

The localization in P is a bit more involved. Let

σm = V
{
h′m(|P − P0|)Aijk(x, P )D∗jk|P − P0|

}
be converging to σ and let us suppose that |σm| converge to a positive Radon
measure λ on Gn(Ω). It is then evident that π#|σm| → π#λ and |σ| ≤ λ. We prove
the thesis showing that π#λ ∈ Rn−1(Ω).

Indeed the equality holds

π#|σm| = µV

{∣∣∣∣h′m(|P − P0|)Aijk(x, P (x))
Pjk(x)− P0jk

|P (x)− P0|

∣∣∣∣} .
We know that the tangent space function P : M → Gn,k is µV –apdifferentiable
hence we can estimate

π#|σm| ≤ 4|∇MF |
µV P−1(Bρ(P0) \Bρ−1/m(P0))

1/m

where F (x) = |P (x)− P0|.
It is now clear that applying lemma 5.8 with f(x) = P (x), µ = µV we get that for

L1 − a.e. ρ the weak∗ limit of any subsequence of π#|σm| belongs to Rn−1(Ω). �

Remark 5.9. Performing at the same time localizations in x and P it turns out that
for any (x0, P0) ∈ Gn(Ω) we have

V Bρ(x
0)×Bρ(P0) ∈ AVn(Ω)

σ = ∂
(
V (Bρ(x

0)×Bρ(P0))
)
− ∂V (Bρ(x

0)×Bρ(P0)) ∈ Rn−1(Ω)

for arbitrarily small ρ > 0.

6. Compactness Properties

In this section we prove a compactness–semicontinuity theorem in the class of
curvature varifolds with boundary such that the generalized second fundamental
form belongs to Lploc(V ) with p > 1.

Theorem 6.1. Let Vl be a sequence of curvature varifolds with boundary in AV pn (Ω),
with p > 1, such that for every open set W ⊂⊂ Ω

µVl(W ) +

∫
Gn(W )

‖A(l)‖
p
dVl + |∂ V (l)|(Gn(W )) ≤ c(W ) ∀l

where c(W ) is a real constant and ‖A(l)‖ =
∑
i,j,k |A

(l)
ijk|. Then
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(1) There exists a subsequence Vlh converging to a curvature varifold with bound-

ary V , with A
(lh)
ijk Vlh weakly∗ converging to Aijk V and ∂V (lh) weakly∗

converging to ∂V .

(2) For every convex and lower semicontinuous function f : Rk3 → [0,+∞] we
have the inequality∫

Gn(Ω)

f(Aijk) dV ≤ lim inf
h→∞

∫
Gn(Ω)

f(A
(lh)
ijk ) dVlh .

Proof. We remark that the hypotheses imply that the first variations of the varifolds
Vl are locally equibounded. Hence we can use Allard’s compactness theorem to get
a subsequence Vlh converging to an integer rectifiable varifold V .

By the Banach–Alaoglu theorem we can suppose that the measures ∂V (lh) weakly∗

converge to a Radon measure ∂V and the measures Vlh A
(lh)
ijk weakly∗ converge

to Radon measures σijk.
To conclude the proof we apply the following theorem (see [7], compare with the

measure function pairs of [13]).

Definition 6.2. Let f : Rs → [0,+∞] be a convex lower semicontinuous function
with a more than linear growth at infinity, i.e.

lim
|z|→+∞

f(z)

|z|
= +∞.

We define a functional G on pairs of Radon measures (ν, µ) on the open subset Ω
of a locally Euclidean space where µ is a positive measure and ν a vector measure
with values in Rs, setting

G(ν, µ) =

∫
Ω

f

(
dν

dµ
(x)

)
dµ(x)

if ν � µ and G(ν, µ) = +∞ otherwise (dν/dµ denotes the Radon–Nikodym deriv-
ative).

Theorem 6.3. The functional G is sequentially lower semicontinuous with respect
to the weak∗ convergence of measures, that is

νh → ν, µh → µ =⇒ G(ν, µ) ≤ lim inf
h→∞

G(νh, µh).

By this theorem (with f(z) = |z|p) we infer the existence of functions Aijk ∈
Lploc(V ) such that σijk = V Aijk, so we obtain that V is a curvature varifold with
boundary.

The lower semicontinuity of the curvature depending functionals follows again
by the theorem above if f is superlinear. In the general case we approximate f by
fε(z) = f(z) + ε|z|p. �

This theorem can be used to find weak minima of several functionals depending
on curvature of regular manifolds. We show an example of application which ex-
plains how this approach can be applied to study even more complex functionals,
involving also the curvature of the boundary.
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Let K be a compact subset of Ω ⊂ R3, p1, p2 > 1. Setting

A = {(V1, V2) | Vi ∈ AV pii (Ω), supp µVi ⊂ K, ∂V1 = 0, π#(|∂V2|) ≤ µV1}

we can consider the problem

min
(V1,V2)∈A

∫
Ω

|A1|p1 dµV1
+

∫
Ω

|A2|p1 dµV2
+ ‖µV2

− ν‖

for a fixed Radon measure ν on Ω. Notice that if V2 is a C2 surface M and V1 is
its C2 boundary ∂M , the functional essentially takes into account the difference
between the measure ν and the measure associated to the surface M , penalizing
the curvatures of M and of ∂M . Similar problems concerning stratified sets were
considered by F. Morgan in [17] and [15].

We want to prove the existence of minima using the compactness theorem. If
(V n1 , V

n
2 ) is a minimizing sequence, the masses and the Lp integrals of the second

fundamental forms of V n2 are obviously equibounded, moreover the fact that ∂V n1 =
0 and that the curvatures of V n1 are equibounded in Lp gives, by the isoperimetric
inequality for varifolds with equibounded supports (see [18]), a uniform bound on
µV n1 , hence on ‖∂V n2 ‖. This, with the compactness theorem, imply that passing
to a subsequence, we can suppose that V n1 → V1 and V n2 → V2 in varifold sense.
Every term of the functional is lower semicontinuous so the pair (V1, V2) gives a
minimum (notice that this pair belongs to the class A).

We remark that the condition π#(|∂V2|) ≤ µV1 is a weak formulation of the
relation holding between a manifold and its boundary, applied to the two varifolds
V1 and V2. Moreover it is simple to see that we could study the problem also
in the enlarged class of pairs (V1, V2) with ∂V1 6= 0, adding to the functional a
penalization depending on the mass of the boundary of V1. This example can be
obviously generalized considering chains of varifolds longer than two.

Finally we notice here that the iteration of the operation of taking the boundary,
behaves particularly well when applied to polyhedral sets, considered as curvature
varifolds with zero second fundamental form. Infact for a polyhedral set, if we take
k–times the operation of boundary, we get (with a suitable weight) the (n − k)–
skeleton.

7. A Boundary Rectifiability Result

In this section we prove that the boundary measure ∂V of a n–dimensional
curvature varifold V is supported in N × Gn,k for a suitable countably (n − 1)–
rectifiable set N . To this aim we fix in this section a curvature varifold V and we
denote with σ the positive Radon measure π#|∂V | on Ω.

Theorem 7.1 (Boundary Rectifiability). The measure σ belongs to Rn−1(Ω), i.e.,
there exists a countably (n− 1)–rectifiable set N in Ω and a positive Borel function
τ : N → R such that σ = τHn−1 N .

Remark 7.2. This property of the boundary measure is not shared by Allard’s
varifolds. For instance, if u : [0, 1]→ R is the Cantor function and U is a primitive
of u then the unit density varifold associated to the graph of U has a singular,
non atomic mean curvature in (0, 1)× R supported in the part of the graph which
projects on the Cantor set.
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In the end of the section we will describe the complete structure of the measure
∂V .

Proof of Theorem 7.1. We first need a lemma.

Lemma 7.3. Let V ≡ VM,θ be a curvature varifold with boundary supported in
Ω × Bδ(P0), where δ is smaller than a dimensional constant C = C(n, k) and
suppose that F : Gn,k → R is a C1 function in a neighbourhood of Bδ(P0). If we
take an orthonormal basis {vi} of P0, the n–rectifiable current

T ≡ T (M, θ(x)F (P (x)), η(x))

where

η(x) =
η1(x) ∧ . . . ∧ ηn(x)

|η1(x) ∧ . . . ∧ ηn(x)|
ηi(x) = πP (x)vi

is well defined and has a boundary of locally finite mass.

Proof. We can suppose that P0 =< e1, . . . , en >. If C is small enough, |P−P0| < C
implies that, denoting with πP : Rk → P the orthogonal projection on P , the
vectors ηi(P ) = πP (ei) i = 1, . . . , n are a basis of P and

β(P ) =
< dx1 ∧ . . . ∧ dxn, η1(P ) ∧ . . . ∧ ηn(P ) >

|η1(P ) ∧ ... ∧ ηn(P )|
> 1/2.(7.1)

It is hence clear that for µV − a.e. x ∈ Ω the vectors ηi(P (x)) are a basis of P (x),
so the current T is well defined.

We consider the differential forms

ω(x) = ϕ(x)dxi2 ∧ . . . ∧ dxin .

Setting I ≡ (i2, . . . , in) we have

< ∂T, ω > =< T, dω >=< T,
∂ϕ(x)

∂xi
dxi ∧ dxI >

=
k∑
i=1

∫
M

θ(x)F (P (x))
∂ϕ(x)

∂xi
< dxi ∧ dxI , η(x) > dHn(x)

=

k∑
i=1

∫
Ω×Bδ(P0)

∂ϕ(x)

∂xi
F (P ) < dxi ∧ dxI , η

1(P ) ∧ . . . ∧ ηn(P )

|η1(P ) ∧ . . . ∧ ηn(P )|
> dV (x, P )

=

n∑
s=1

k∑
i=1

(−1)s−1

∫
Ω×Bδ(P0)

∂ϕ(x)

∂xi
F (P )dxi(ηs(P ))βIs (P ) dV (x, P )

recalling the functions βIs defined in (5.1). As dxi(ηs(P )) = Pis we get

< ∂T, ω >=

n∑
s=1

k∑
i=1

(−1)s−1

∫
Ω×Bδ(P0)

Psi
∂ϕ(x)

∂xi
F (P )βIs (P ) dV (x, P ).

(7.2)
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It is now simple to see that extending the functions βIs (P ) to C1 functions all
over Gn,k without modifying them on BC(P0) and using the formula (3.1) we can
state the inequality

| < ∂T, ω > | ≤ K‖ϕ‖∞
where K is a positive constant dependent only on the support of the form ω. �

Now we take balls Bρδ = Bρ(x
0)×Bδ(P0) in Gn(Ω) such that V ρδ = V Bρδ are

again curvature varifolds with boundary in Ω (by the localization lemma 4.1) and
δ is smaller than the constant C in the lemma above. We can suppose as usual
that P0 =< e1, . . . , en >, so the current T ρδ associated to V ρδ with F (P ) ≡ 1 is an
integral current with boundary ∂T ρδ of locally finite mass. Applying the boundary
rectifiability theorem C, ∂T ρδ is an (n− 1)–integral current in Ω, ∂T ρδ ≡ (N, τ, ξ).

We now recall and continue the computation of lemma 7.3. Starting from (7.2)
and using the formula (3.1) we get

< ∂T ρδ , ϕ dx
I >=

n∑
s=1

(−1)s−1

{∫
Bρδ

ϕ(x)Asjk(x, P )D∗jkβ
I
s (P ) dV (x, P )

+

∫
Bρδ

ϕ(x)βIs (P )Ajsj(x, P ) dV (x, P )

+

∫
Bρδ

ϕ(x)βIs (P ) d∂Vs(x, P )

+

∫
Gn(Ω)

ϕ(x)βIs (P ) dσs(x, P )

}

=

∫
N

ϕ(x)τ(x) <dxI , ξ > dHn−1(x)

where σ is the extra boundary measure given by the localization lemma 4.1. We
suppose now that π#|σ| belongs to Rn−1(Ω) (proposition 5.5). Since π#|∂V | is
singular with respect to µV (proposition 3.5), the sum of the first two integrals is
zero. Hence the formula reduces to

n∑
s=1

(−1)s−1

{∫
Bρδ

ϕ(x)βIs (P ) d∂Vs(x, P ) +

∫
Gn(Ω)

ϕ(x)βIs (P ) dσs(x, P )

}

=

∫
N

ϕ(x)τ(x) < dxI , ξ > dHn−1(x).

Again since ϕ is arbitrary we deduce that

π#

( n∑
s=1

(−1)sβIs ∂Vs Bρδ + βIsσs

)
= τ < dxI , ξ > Hn−1 N
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so that, recalling that π#|σ| ∈ Rn−1(Ω), it follows

π#

( n∑
s=1

(−1)sβIs ∂Vs Bρδ

)
∈ Rn−1(Ω).(7.3)

We have proved that for any choice of (x0, P0) ∈ Gn(Ω) the formula (7.3) holds for
arbitrary small ρ and δ.

We denote now with ν(x, P ) the Radon–Nikodym derivative of ∂V with respect
to its total variation |∂V |, the fact that ∂V is tangential (lemma 3.7) implies that
ν(x, P ) ∈ P for |∂V |–almost every (x, P ) ∈ Gn(Ω), hence

n∑
j=1

|αj |(x, P ) > 0 |∂V | − a.e. in Gn(Ω)(7.4)

where α1, . . . , αn are the components of ν(x, P ) in the basis η1(P ), . . . , ηn(P ).
We fix j ∈ {1, . . . , n} and choose I such that I ∪ {j} = {1, . . . , n}. Since

∂Vs =
n∑
i=1

αiη
i
s|∂V |, the formula (7.3) can be written as

n∑
i=1

π#

( n∑
s=1

(−1)sαiη
i
sβ
I
s |∂V | Bρδ

)
∈ Rn−1(Ω).(7.5)

Noticing that ηis = ηsi and that

n∑
s=1

(−1)sηsi β
I
s = − < dxi ∧ dxI , η(P ) >(7.6)

the only term different from zero in (7.6) is the one with i = j, and it equals
(−1)jβ(P ) (see (7.1)). Hence we obtain

π# (αjβ|∂V | Bρδ ) ∈ Rn−1(Ω).

By the next lemma, remark 5.9 and the fact that β 6= 0 on Bδ(P0) we deduce that
π#|αj ||∂V | ∈ Rn−1(Ω) and by (7.4) we get π#|∂V | ∈ Rn−1(Ω). �

Lemma 7.4. If µ is a signed Radon measure on Gn(Ω) such that, for every pair
(x0, P0)

π#

(
µ Bρ(x

0)×Bρ(P0)

)
∈ Rn−1(Ω)

for arbitrarily small ρ, then

π#|µ| ∈ Rn−1(Ω).

Proof. Let A ⊂ Gn(Ω) be a Borel set such that µ A = µ+ and let K ⊂ A be an
arbitrary compact set. The family of balls Bρ = Bρ(x

0)×Bρ(P0) of the hypothesis
is a fundamental covering of Gn(Ω), so by the Besicovitch covering theorem (see
[16] p. 14) it is possible to find, for every ε > 0, a sequence of pairwise disjoint balls
Bερi included in the ε–neighbourhood of K such that their union covers |µ|–almost
all K. The measures
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µε =

∞∑
i=1

µ Bερi

strongly converge to µ K as ε → 0. Since π#µε ∈ Rn−1(Ω) it is clear that
π#µ K belongs to Rn−1(Ω) too. Since K ⊂ A is arbitrary we obtain that the
projection of the positive part of µ belongs to Rn−1(Ω). A similar argument for
the negative part concludes the proof. �

Let N and τ be given by theorem 7.1. By standard measure theoretical argu-
ments it is known that we can represent ∂V as

∫
Gn(Ω)

ϕ(x, P ) ∂V =

∫
N

( ∫
Gn,k

ϕ(x, P ) dτx(P )

)
dHn−1(x)(7.7)

where τx are Radon measures on Gn,k, univocally defined Hn−1 N–almost every-
where such that |τx|(Gn,k) = τ(x). Our next goal is the study of these measures;
to this aim we have to analyse the density properties of V .

Lemma 7.5. If V is a curvature n–varifold with boundary in Ω, the density ratios
of V

µV (Bρ(x))

ρn

are bounded for x ∈ Ω \ L where L is an (n − 1)–purely unrectifiable set in Ω (see
[9], Chapter 3). In the special case n = 1 the density ratio is bounded for every
point of Ω.

Proof. We first suppose that the varifold Ṽ ≡ ṼM,θ has support contained in
Bδ(x

0) × Bδ(P0) where δ is smaller than the constant C of lemma 7.3, we also
suppose P0 ≡< e1, . . . , en > to simplify the calculation.

We consider the rectifiable (not necessarily integral) current T ≡ T (M, θ(x)F (P (x)), η(x))
of lemma 7.3. We have seen that this current has a boundary of locally finite mass.

Let π : Rk → Rn be the projection map on the first n coordinates and S = π#T ,
so S is an n–current in Rn with compact support and boundary of finite mass. We
study now the current S.

Consider a differential form ω(y) = ϕ(y) dy1∧, . . . ,∧dyn on Rn and remind that
the function β(P ), defined in formula (7.1), represents the Jacobian of the projection
map π.
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< S,ω > =< T, π#ω >

=

∫
M

ϕ(x)θ(x)F (P (x))
< dx1∧, . . . ,∧dxn, η1(x)∧, . . . ,∧ηn(x) >

|η1(x)∧, . . . ,∧ηn(x)|
dHn(x)

=

∫
M

ϕ(x)θ(x)F (P (x))β(P (x)) dHn(x)

=

∫
Rn

ϕ(y)

( ∫
π−1(y)∩M

θ(x)F (P (x)) dH0(x)

)
dHn(y)

=

∫
Rn

ϕ(y)ψ(y) dHn(y)

using the coarea formula and defining the function

ψ(y) =

∫
π−1(y)∩M

θ(x)F (P (x)) dH0(x).

The fact that the current S has a boundary of finite mass implies that ψ is a
function in BV (Rn). Choosing F (P ) = β(P )−1 we have that the function

φ(y) =

∫
π−1(y)∩M

θ(x)
1

β(P (x))
dH0(x)

belongs to BV (Rn). We use this fact to give an upper estimate to the density
ratios: indeed

µV (Bρ(x
0)) ≤µV (π−1(Bρ(π(x0)))

=

∫
Bρ(π(x0))

( ∫
π−1(y)∩M

θ(x)
1

β(P (x))
dH0(x)

)
dHn(y)

=

∫
Bρ(π(x0))

φ(y) dHn(y).

So when at π(x0) the last term is bounded, we have an upper estimate for the
density ratios at x0.

We apply now the following theorem about BV functions in Rn.

Theorem D. If f : Rn → R is a BV function, in Hn−1–almost every point x ∈ Rn
the ratio

1

ρn

∫
Bρ(x)

|f(y)| dHn(y)

is bounded.
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For a proof of this fact see [9], Theorem 4.5.9.
Going back to an arbitrary varifold V ,we can choose a finite family of sets Si =

Ω × Bδi(Pi) such that their union is Gn(Ω), V i = V Si is again a curvature
varifold with boundary in Ω and δi < C.

Let us suppose by contradiction that there exists a (n−1)–dimensional embedded
C1 manifold M ′ and a subset of positive Hn−1–measure M where the density ratios
are not bounded. There exists a restriction varifold V i whose density ratios are not
bounded in a subset A of positive measure of M . Varying possibly a little bit the
projection space Pi, B is mapped on a set of positive Hn−1 measure in Rn and this
is a contradiction. So we proved the lemma. �

Before going on we need a definition.

Definition 7.6. Given a point x0 ∈ Ω we define the set V arTan(V, x0) as the
collection of the weak limits (as varifolds in Rk) when ρ goes to zero of the family

of rescaled varifolds Vx0,ρ ≡ ρ−n(x−x
0

ρ × Id)#V (see [18]). Sometimes, with an

abuse of notation, when V arTan(V, x) consists of an unique element T we denote
it with V arTan(V, x).

With this definition, Lemma 7.5 implies that V arTan(V, x) 6= ∅ for x ∈ Ω \ S.
We can now describe the complete structure of the boundary measure ∂V .

Proposition 7.7. Recalling the formula (7.7) the measures τx are described by

τx =

kx∑
i=1

νxi m
x
i δPxi (P )

where δPxi is the Dirac delta measure supported in some n–subspace P xi on the

Grassmannian Gn,k, mx
i are positive integers and νxi are unit vectors of Rk. More-

over the subspace P xi contains the tangent space to N at x and it is generated by
the linear combinations of its elements with the vector νxi .

Proof. By the lemma 7.5 for σ–a.e.x0 ∈ Ω the following conditions hold:

• at x0 there exist the density and the approximate tangent space S to the
(n− 1)–varifold defined by σ with support N .
• The density ratios are bounded at x0 so there exists a sequence ρi → 0

such that Vx0,ρi → T , and T ∈ V arTan(V, x0) is a curvature varifold with

boundary in Rk.
• The limit holds

lim
ρ→0

1

ρn−1

∫
Bρ(x0)

|A| dµV = 0.

• Along the sequence above the measures ∂Vx0,ρi converge to the measure
∂T that has the form∫

Gn(Ω)

ϕ(x, P ) ∂T =

∫
S

( ∫
Gn,k

ϕ(x, P ) dτx0(P )

)
dHn−1(x)

where S is the (n − 1)–vector subspace of Rk defined above and τx are
univocally defined at σ N–almost all x ∈ Ω by
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∫
Gn(Ω)

ϕ(x, P ) ∂V =

∫
N

( ∫
Gn,k

ϕ(x, P ) dτx(P )

)
dHn−1(x).

Considering T as a varifold in Rk \S, T is a curvature varifold without boundary
with zero second fundamental form. By a result of Hutchinson (see [12], p. 292)
T consists of an union (with multiplicities) of three kind of sets: 1) affine n–
subspaces not including the origin, 2) n–halfspaces Hi with boundary S and 3)
n–affine subspaces for the origin intersecting transversally S.

It is simple to see that the subspaces of kind 2) and 3) are finite because of the
upper bound of the density ratios.

From this we see that the boundary measure of T is described by∑
i

(
Hn−1 S

)
×miδPiνi

where Pi are the subspaces determined by the halfspaces Hi, mi are their integer
multiplicities, and νi are the inner normal vectors to S with respect to Hi.

It follows that

τx0(P ) =

kx0∑
i=1

νx
0

i mx0

i δPx0i

hence the thesis. �
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