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Abstract: We consider weak solutions of second order nonlinear elliptic systems in divergence form under
standard subquadratic growth conditions with boundary data of class C1. In dimensions n ∈ {2, 3} we
prove that u is locally Hölder continuous for every exponent λ ∈ (0, 1 − n−2

p ) outside a singular set of
Hausdorff dimension less than n − p. This result holds up to the boundary both for non-degenerate
and degenerate systems. In the proof we apply the direct method and classical Morrey-type estimates
introduced by Campanato.

1 Introduction and result

In this paper we consider weak solutions u ∈W 1,p(Ω,RN ) of a general inhomogeneous system of second
order elliptic equations in divergence form{

−div a( · , u,Du) = b( · , u,Du) in Ω ,

u = g on ∂Ω .
(1.1)

Here n,N ≥ 2, p ∈ (1, 2), Ω ⊂ Rn denotes a bounded domain of class C1, and we assume boundary
values g ∈ C1(Ω,RN ). As usual this boundary condition is to be understood in the sense of traces. For
the coefficients a : Ω × RN × RnN → RnN we impose standard boundedness, differentiability, growth
and ellipticity conditions: z 7→ a(·, ·, z) is of class C0(RnN ,RnN ) ∩ C1(RnN \ {0},RnN ), and for fixed
0 < ν ≤ L and all x, x̄ ∈ Ω, u, ū ∈ RN , and z, z̄, λ ∈ RnN we have

∣∣a(x, u, z)
∣∣+
∣∣Dza(x, u, z)

∣∣ (µ2 + |z|2
) 1

2 ≤ L
(
µ2 + |z|2

) p−1
2 ,

Dza(x, u, z)λ · λ ≥ ν
(
µ2 + |z|2

) p−2
2 |λ|2 ,∣∣a(x, u, z)− a(x̄, ū, z)

∣∣ ≤ L
(
µ2 + |z|2

) p−1
2 ω

(
|x− x̄|+ |u− ū|

)
,

(1.2)

where ω : R+ → R+ is a modulus of continuity, i. e. bounded by 1 (without loss of generality), concave
and non-decreasing with limρ→0 ω(ρ) = 0. The parameter µ ∈ [0, 1] specifies whether the system is
non-degenerate, µ 6= 0, or degenerate, µ = 0. We have excluded z = 0 in conditions (1.2)1 and (1.2)2

in order to deal also with degenerate systems. Condition (1.2)3 means that the coefficients a(x, u, z)
are continuous with respect to (x, u), uniformly for fixed z. Moreover, we assume the inhomogeneity
b : Ω× RN × RnN → RN to be a Carathéodory map (that is, it is continuous with respect to (u, z) and
measurable with respect to x) and that b(·, ·, ·) satisfies one of the following growth conditions:

(B1) Controllable growth condition: for all (x, u, z) ∈ Ω× RN × RnN we have

|b(x, u, z)| ≤ L
(
µ2 + |z|2

) p−1
2 ,

(B2) Natural growth condition: there exists a constant L2 (possibly depending on M2 > 0)
such that for all (x, u, z) ∈ Ω× RN × RnN with |u| ≤M2 we have

|b(x, u, z)| ≤ L2 |z|p + L .

In this work we are interested in obtaining Morrey-type estimates up to the boundary, and the question
of partial regularity of the weak solution u in low dimensions where n ∈ (p, p+ 2]. For this purpose we
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2 L. Beck

define the set of regular and singular points of u via

Regu(Ω) :=
{
x ∈ Ω : u ∈ C0(Ω ∩A,RN ) for some neighbourhood A of x

}
,

Singu(Ω) := Ω \ Regu(Ω) .

In this setting of low-dimensional analysis various results have been proved: under a controllable growth
assumption, Campanato [7] obtained local Hölder continuity of the weak solution on the regular set in
the interior of Ω, and he gave an upper bound on the Hausdorff dimension of the singular set. He further
achieved similar results for systems of higher order [8]. Moreover, Campanato [9, 10] presented global
Morrey-estimates for the weak solution of systems with coefficients not depending explicitly on u, i. e.,
a(x, u, z) ≡ a(x, z), for p ≥ 2 (further higher order Morrey-type and Hölder estimates can be found e. g.
in [32]). Under a natural growth condition, Arkhipova [2, 3] proved a partial regularity result up to the
boundary for non-degenerate systems in the superquadratic case.

In this paper we are concerned with low order regularity in the subquadratic case: we prove that the
weak solution u to the nonlinear system (1.1) is locally Hölder continuous on Regu(Ω) for some Hölder
exponent λ > 0 under the assumption that the inhomogeneity obeys either a controllable or a natural
growth condition (in the latter case we require additionally that u is bounded and that a standard
smallness assumption on ‖u‖L∞ holds). Moreover, we show that the set of singular points is of Hausdorff
dimension strictly less than n − p, which implies immediately that Hn−1-almost every boundary point
is regular. For arbitrary dimension n, under such a mild continuity assumption on the coefficients, this
property has only been proved for quasilinear systems, see for example [12, 31, 21, 26], whereas in the
general setting partial Hölder regularity of Du (as opposed to the regularity of u) can be proved outside
a set of Lebesgue measure zero (for subquadratic growth problems in the interior we refer to [11]); the
related problem of dimension reduction of the singular set SingDu(Ω) was a long-standing issue which was
recently tackled by Mingione [28, 29] under additional assumptions on ω(·), and by Duzaar, Kristensen
and Mingione [16] for the dimension reduction up to the boundary. To return to the low-dimensional
case we now state our main theorem:

Theorem 1.1: Let Ω ⊂ Rn be a bounded domain of class C1 and g ∈ C1(Ω,RN ). Let u ∈W 1,p(Ω,RN ),
p ∈ (1, 2), be a weak solution of (1.1) with coefficients a : Ω×RN×RnN → RnN satisfying the assumptions
(1.2), and inhomogeneity b : Ω× RN × RnN → RN . If one of the following assumptions is fulfilled:

1. b(·, ·, ·) obeys a controllable growth condition (B1),

2. b(·, ·, ·) obeys a natural growth condition (B2); additionally, we assume u ∈ L∞(Ω,RN ) with
‖u‖L∞(Ω,RN ) ≤M and 2L2M < ν,

then there exists δ > 0 depending only on n,N, p and L
ν such that for n ∈ [2, p+ 2 + δ) there hold

dimH

(
Ω \ Regu(Ω)

)
< n− p and u ∈ C0,λ

loc

(
Regu(Ω),RN

)
for all λ ∈

(
0,min{1− n−2−δ

p , 1}
)
. Moreover, the singular set Singu(Ω) of u is contained in

Σ :=
{
x0 ∈ Ω : lim inf

R↘0
Rp−n

∫
BR(x0)∩Ω

(
1 + |Du|p

)
dx > 0

}
.

We mention that the number δ arises from the application of Gehring’s lemma on higher integrability
and depends only on the structure constants (see e. g. [5, Remark 3] for an explicit possible choice of
the higher integrability exponent). Therefore, the condition n ∈ [2, p + 2 + δ) mostly means n ∈ {2, 3}
unless p is close to 2 or δ happens to be large.

Taking into account the general form of the coefficients (i. e., their u-dependency) and the counterexam-
ples given in [13, 24, 19, 30] (for n ≥ 3), it is well known that we cannot expect full Hölder continuity. In
contrast, due to the global higher integrability of the weak solution and the Sobolev embedding theorem,
we see that full Hölder regularity up to the boundary holds true provided that p is close to n. However,
since the literature lacks appropriate counterexamples in the two-dimensional case (all the counterexam-
ples mentioned above are for codimension ≥ 3), it is still an open question whether there might exist a
singular point in dimension n = 2 and arbitrary p ∈ (1, 2).
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We note that we have included partial Hölder continuity of weak solutions to degenerate systems. A
model case of the degenerate situation is given by the p-Laplacian

div
(
|Du|p−2Du

)
= 0 in Ω .

Finally we briefly comment on the techniques used within this paper: the strategy for the proof of the
partial regularity result stated in Theorem 1.1 above relies on the direct method and the application of
classical techniques pioneered by Campanato, see e. g. [7, 8, 9, 10]. For the examination of both the
boundary situation and the interior, we define adequate comparison maps which are solutions of a frozen
homogeneous system and for which we provide good a priori estimates. The major difficulty here lies
in establishing an appropriate Caccioppoli-type inequality up to the boundary. The decay estimates for
the comparison map then allow us to deduce Morrey-type estimates for the gradient Du, namely that
Du belongs to a suitable Morrey space Lp,γ(Ω,RnN ), which yields the desired Hölder continuity of u (in
view of the Campanato-Meyer embedding theorem). In the case of natural growth of the inhomogeneity
these techniques require some modifications for which we adapt Arkhipova’s cut-off procedure from [2, 3,
Proof of Theorem 1]. The upper bound for the Hausdorff dimension of the singular set then follows
immediately from the characterization of the singular set and a measure density result due to Giusti.

Lastly we mention that, for the sake of brevity, we only sketch some of the proofs or refer to other papers,
but the proofs of all statements can be found in detail in the author’s PhD thesis [4].

2 Notation and preliminaries

We start with some remarks on the notation used below: we write Bρ(y) = {x ∈ Rn : |x − y| < ρ} and
B+
ρ (y) = {x ∈ Rn : xn > 0, |x− y| < ρ} for a ball or the intersection of a ball with the upper half-space

Rn−1 × R+, centred at a point y ∈ Rn (respectively ∈ Rn−1 × R+
0 in the latter case) with radius ρ > 0.

Furthermore, we write
Γρ(y) =

{
x ∈ Rn : |x− y| < ρ, xn = 0

}
,

for y ∈ Rn−1 × {0}. In the case y = 0 we set Bρ := Bρ(0), B := B1 as well as B+
ρ := B+

ρ (0), B+ := B+
1

with Γρ := Γρ(0), Γ := Γ1. We introduce the following notation for W 1,p-functions defined on a half-ball
B+
ρ (y) and which vanish on the flat part of the boundary (in the sense of traces):

W 1,p
Γ (B+

ρ (y),RN ) :=
{
u ∈W 1,p(B+

ρ (y),RN ) : u = 0 on Γ√
ρ2−(y)2n

(x′′0)
}
.

where yn < ρ is satisfied and where y′′ := (y1, . . . , yn−1, 0) denotes the projection of y onto Rn−1 × {0}.
Sometimes, it will be convenient to treat the tangential derivative D′u := (D1u, . . . ,Dn−1u) and the
normal derivative Dnu of a function u ∈W 1,p(B+

ρ (y),RN ) separately.

For a given set X ⊂ Rn we write Ln(X) = |X| and dimH(X) for its n-dimensional Lebesgue-measure
and its Hausdorff dimension, respectively. Furthermore, if h ∈ L1(X,RN ) and 0 < |X| <∞, we denote
the average of h by (h)X =

∫
−
X
h dx. The constants c appearing in the different estimates will all be

chosen greater than or equal to 1, and they may vary from line to line. For ease of notation, some of the
constants are labelled by the superscript (i) and refer to the growth condition (Bi) for i = 1, 2.

In what follows, we shall use the following definitions of Morrey and Campanato spaces:

Definition: Let Ω ⊂ Rn be a bounded open set and let 1 ≤ p < ∞. By Lp,ς(Ω,RN ), ς ≥ 0, we denote
the Morrey space of all functions u ∈ Lp(Ω,RN ) such that

‖u‖p
Lp,ς(Ω,RN )

:= sup
y∈Ω,0<ρ≤diam Ω

ρ−ς
∫
Bρ(y)∩Ω

|u|p dx < ∞ .

By Lp,ς(Ω,RN ), 0 ≤ ς ≤ n+p, we denote the Campanato space of all functions u ∈ Lp(Ω,RN ) such that

[u]p
Lp,ς(Ω,RN )

:= sup
y∈Ω,0<ρ≤diam Ω

ρ−ς
∫
Bρ(y)∩Ω

∣∣u− (u)Bρ(y)∩Ω

∣∣p dx < ∞ .
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To handle the subquadratic case the V -function is very useful. For ξ ∈ Rk, k ∈ N, µ ∈ [0, 1] and p > 1
it is defined by

Vµ(ξ) =
(
µ2 + |ξ|2

) p−2
4 ξ ,

which is a locally bi-Lipschitz bijection on Rk. When we deal with the Vµ-function, we will need some
technical lemmas:

Lemma 2.1: Let ξ, η be vectors in Rk, µ ∈ [0, 1] and q > −1. Then there exist constants c1(q), c2(q) ≥ 1
not depending on µ such that

c−1
1

(
µ+ |ξ|+ |η|

)q ≤ ∫ 1

0

(
µ+ |ξ + tη|

)q
dt ≤ c2

(
µ+ |ξ|+ |η|

)q
.

A proof of the latter statement can be found in [1, Lemma 2.1] and for the case µ = 1 also in [6]. The
second lemma collects some basic inequalities:

Lemma 2.2: Let ξ, η be vectors in Rk, µ ∈ [0, 1] and p ∈ (1, 2). Then there exist constants c1(k, p) and
c2(p) such that the following inequalities hold true:

(i) c−1
1 |ξ − η| (µ2 + |ξ|2 + |η|2)

p−2
4 ≤ |Vµ(ξ)− Vµ(η)| ≤ c1 |ξ − η| (µ2 + |ξ|2 + |η|2)

p−2
4

(ii) (µ2 + |ξ|2)
p
2 ≤ c2 (µ2 + |η|2)

p
2 + c2 (µ2 + |ξ|2 + |η|2)

p−2
2 |ξ − η|2 ,

(iii) (µ2 + |ξ|2)
p−2
2 |ξ| |η| ≤ ε (µ2 + |ξ|2)

p−2
2 |ξ|2 + ε1−p(µ2 + |η|2)

p
2 for ε ∈ (0, 1) .

Proof: The inequality in (i) is proved in [1, Lemma 2.2], while the other inequalities are easily obtained
by distinguishing cases: for (ii) we consider max{µ, |η|} > 1

2 |ξ| and max{µ, |η|} ≤ 1
2 |ξ|, and for (iii) we

study the cases |η| > ε|ξ| and |η| ≤ ε|ξ|. �

3 Comparison estimates

In this section we provide some up-to-the-boundary comparison estimates concerning degenerate and
non-degenerate homogeneous elliptic system which do not depend on (x, u). We here restrict ourselves
to the model case of a half-ball and we thus turn our attention to weak solutions v ∈W 1,p

Γ (B+
R(x0),RN ),

x0 ∈ Rn−1 × {0}, R < 1 and p ∈ (1, 2), of the system

div a0(Dv) = 0 in B+
R(x0) , (3.1)

where the coefficients a0 : RnN → RnN are class C0(RnN ,RnN )∩C1(RnN \{0},RnN ) and satisfy bound-
edness, differentiability, growth and ellipticity conditions corresponding to the assumptions (1.2)1 and
(1.2)2 above. We now prove the existence of second order derivatives for the solution v of (3.1) using
a difference quotients method. Furthermore, we derive a Caccioppoli-type estimate for second order
derivatives, where a certain integral involving second derivatives is bounded by only the tangential part
of V (Dv). Then, via a global version of Gehring’s lemma, this improved representation of the Cacciop-
poli inequality allows to obtain a higher integrability result up to the boundary which in turn yields a
decay estimate for the weak derivative Dv.

Theorem 3.1: Let v ∈W 1,p
Γ (B+

R(x0),RN ) be a weak solution to the system (3.1), whose coefficients a0(·)
satisfy the conditions (1.2)1 and (1.2)2, and let µ ∈ [0, 1] be arbitrary. Then v is twice differentiable
in the weak sense, more precisely v ∈ W 2,p(B+

R′(x0),RN ) for all R′ < R, and there exists a constant c
depending only on n,N, p and L

ν such that there hold

a) (close to the boundary) for all y ∈ B+
R(x0) ∪ ΓR(x0) and 0 < r < R− |y − x0| with yn ≤ 3

4r∫
B+
r/2(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c r−2

∫
B+
r (y)

∣∣V ′µ(Dv)
∣∣2 dx , (3.2)

where V ′µ(Dv) :=
(
Vµ,1(Dv), . . . , Vµ,n−1(Dv)

)
is the tangential part of Vµ(Dv),
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b) (in the interior) for all y ∈ B+
R(x0) and 0 < r < R− |y − x0| with yn > 3

4r∫
Br/2(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c r−2

∫
B3r/4(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B3r/4(y)

∣∣2 dx . (3.3)

Remark 3.2: We note that in statement a) the normal derivative of v is not involved in the quadratic
term on the right-hand side. If we pass to systems with coefficients which additionally depend explicitly
on x (as in the original formulation), this result can no longer be expected because a dependence only
on the xn-variable of the solution might occur: consider for example the coefficients a(x, z) defined by

a(x, z) =

(
1 + |z|2

) p−2
2 z(

1 + (1 + xαn)2
) p−2

2 (1 + xαn)

for some number α ∈ (0, 1). Then, v(x) = 1
1+α x

1+α
n + xn is a weak solution of div a(x,Dv) = 0

in B+ ⊂ Rn, n ≥ 2, but the statement of the theorem obviously does not hold on any (half-)ball
B+
r (y) ⊂ B+, and even v ∈ W 2,p(B+

ρ ,RN ) does not hold for some 0 < ρ < 1 (in fact, v only belongs to
a suitable fractional Sobolev space).

Proof: We proceed in several steps, concentrating on the estimates close to the boundary:

Step 1: A preliminary estimate. We begin by deriving the following Caccioppoli-type inequalities: close
to the boundary, we have for all y ∈ B+

R(x0) ∪ ΓR(x0) and 0 < r < R− |y − x0| with yn ≤ 3
4r∫

B+
ρ (y)

∣∣D′(Vµ(Dv))
∣∣2 dx ≤ c(n, p, Lν ) (r − ρ)−2

∫
B+
r (y)

(
µ2 + |Dv|2

) p
2 dx (3.4)

for all ρ < r, whereas in the interior, we obtain for all y ∈ B+
R(x0) and 0 < r < R−|y−x0| with yn > 3

4r∫
Bρ(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c(n, p, Lν ) (r − ρ)−2

∫
B+

3r/4(y)

(
µ2 + |Dv|2

) p
2 dx

for all ρ < 3
4r. In order to prove (3.4) we proceed similarly to the proof of [23, Theorem 8.1], merely

adjusting it to the boundary situation and µ ∈ [0, 1]. We fix y, r, ρ as above and consider a standard
cut-off function η ∈ C∞0 (B(r+ρ)/2(y), [0, 1]) satisfying η ≡ 1 on Bρ(y) and |Dη|2 + |D2η| ≤ c (r−ρ)−2. In
the sequel, we abbreviate the usual difference quotient of v with respect to xs and stepsize h by 4s,hv,
i. e., 4s,hv(x) := (v(x + hes) − v(x))/h, where es, s = 1, ..., n, denotes the standard basis of Rn. Let
|h| < r−ρ

2 . Then, since tangential difference quotients preserve the zero boundary values of v on Γr(y),
we observe that η24s,hv ∈ W 1,p

0 (B(r+ρ)/2(y),RN ) for all tangential directions s = 1, . . . , n − 1. Hence,
the function

ϕ = 4s,−h
(
η24s,hv

)
∈W 1,p

0 (B+
r (y),RN )

is admissible for testing the system (3.1). Integration by parts for finite differences yields∫
B+
r (y)

4s,h a0(Dv) ·D4s,hv η2 dx = −2
∫
B+
r (y)

4s,h a0(Dv) · (4s,hv ⊗Dη) η dx . (3.5)

The difference quotient 4s,h a0(Dv(x)) = [a0

(
Dv(x+ hes)

)
− a0

(
Dv(x)

)
]/h can be rewritten as follows:

4s,h a0

(
Dv(x)

)
=
∫ 1

0

Dza0

(
Dv(x) + th4s,hDv(x)

)
dt4s,hDv(x) . (3.6)

Here, the term involving the derivative Dza0(·) might not be well defined for some t̃ ∈ [0, 1] for degenerate
systems (µ = 0), but the integral in (3.6) exists, see the justification in [17, p. 749]. Using the ellipticity
condition (1.2)2, Young’s inequality and p < 2, we deduce the following inequality for the right-hand
side of the previous identity (3.6):∫ 1

0

Dza0

(
Dv(x) + th4s,hDv(x)

)
dt4s,hDv(x) · 4s,hDv(x)

≥ 2
p−2
2 ν

(
µ2 + |Dv(x)|2 + |Dv(x+ hes)|2

) p−2
2 |4s,hDv(x)|2

=: 2
p−2
2 ν Zµ(x)p−2 |4s,hDv(x)|2 (3.7)
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with the obvious abbreviation of Zµ(x). Combining (3.7) with the identities (3.6) and (3.5), we find

2
p−2
2 ν

∫
B+
r (y)

Zp−2
µ |4s,hDv|2 η2 dx ≤

∫
B+
r (y)

∫ 1

0

Dza0(Dv + th4s,hDv) dt4s,hDv · 4s,hDv η2 dx

= −2
∫
B+
r (y)

4s,h a0(Dv) · (4s,hv ⊗Dη) η dx . (3.8)

In view of spt η ⊂ B(r+ρ)/2(y) and the restriction |h| < r−ρ
2 we rewrite the right-hand side of the latter

inequality using partial integration for finite differences, and we then apply the growth condition (1.2)1,
Young’s inequality and standard properties of difference quotients (see e. g. [22, Chapter 7.11]) to find

−2
∫
B+
r (y)

4s,h a0(Dv) · (4s,hv ⊗Dη) η dx = 2
∫
B+
r (y)

a0(Dv) · 4s,−h
(
(4s,hv ⊗Dη) η

)
dx

≤ 2L (r − ρ)−2

∫
B+
r (y)

(
µ2 + |Dv|2

) p
2 dx+ 2L (r − ρ)2p−2

∫
B+
r (y)

∣∣Ds

(
(4s,hv ⊗Dη) η

)∣∣p dx
≤ 2L (r − ρ)−2

∫
B+
r (y)

(
µ2 + |Dv|2

) p
2 dx+ cL (r − ρ)−2

∫
B+

(r+ρ)/2(y)

|4s,hv|p dx

+ cL (r − ρ)p−2

∫
B+
r (y)

|4s,hDsv|p ηp dx ,

where we have applied Young’s inequality and the properties of the cut-off function η in the last line.
We now observe from Young’s inequality that we have

|4s,hDv(x)|p ≤ Zµ(x)p + Zµ(x)p−2|4s,hDv(x)|2 (3.9)

(note: if Zµ(x) = 0 then both sides vanish and the inequality trivially holds true). Using adequate
modifications of inequality (3.9), we thus infer from (3.8):

2
p−2
2 ν

∫
B+
r (y)

Zp−2
µ |4s,hDv|2 η2 dx

≤ c(Lε )L (r − ρ)−2
(∫

B+
(r+ρ)/2(y)

(
Zpµ + |4s,hv|p

)
dx+

∫
B+
r (y)

(
µ2 + |Dv|2

) p
2 dx

)
+ ε

∫
B+
r (y)

Zp−2
µ |4s,hDv|2 η2 dx . (3.10)

Keeping in mind the definition of the function Zµ, B+
(r+ρ)/2(y) ⊃ spt(η) and |h| ≤ r−ρ

2 , we observe∫
B+

(r+ρ)/2(y)

(
Zpµ + |4s,hv|p

)
dx ≤ 3

∫
B+
r (y)

(
µ2 + |Dv|2

) p
2 dx . (3.11)

Therefore, choosing ε = 2
p−4
2 ν in (3.10), dividing through by 2

p−4
2 ν, recalling that η = 1 on Bρ(y), we

finally arrive at ∫
B+
ρ (y)

Zp−2
µ |4s,hDv|2 dx ≤ c (r − ρ)−2

∫
B+
r (y)

(
µ2 + |Dv|2

) p
2 dx , (3.12)

and the constant c depends only on L
ν . We mention here: in order to conclude that the tangential

derivatives belong to the space Lp, we deduce analogously to [23, Proof of Theorem 8.1] from inequality
(3.9): the family

(
4s,hDv

)
h
, h ∈ R with |h| < r−ρ

2 , is bounded in Lp(Bρ(y),RnN ) (see (3.11), (3.12))
and therefore converges in Lp(B+

ρ′(y),RnN ) to DsDv for all ρ′ < ρ (see e.g. [18], Chapter 5.8.2, Proof
of Theorem 3 and the remark immediately after). Keeping in mind s ∈ {1, . . . , n − 1}, we end up with
D′v ∈W 1,p(B+

R′(x0),R(n−1)N ) for all R′ < R.

We now apply Lemma 2.2 (i) and obtain∫
B+
ρ (y)

∣∣4s,hVµ(Dv)
∣∣2 dx

≤ c(p)h−2

∫
B+
ρ (y)

(
µ2 + |Dv(x)|2 + |Dv(x+ hes)|2

) p−2
2
∣∣Dv(x+ hes)−Dv(x)

∣∣2 dx
= c(p)

∫
B+
ρ (y)

Zµ(x)p−2|4s,hDv(x)|2 dx ≤ c
(
p, Lν

)
(r − ρ)−2

∫
B+
r (y)

(
µ2 + |Dv|2

) p
2 dx .
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As above, the sequence
(
4s,hVµ(Dv)

)
h

is uniformly bounded in L2(Bρ(y),RnN ) and therefore converges
strongly to Ds(Vµ(Dv)), s = 1, . . . , n − 1. Thus we obtain the tangential estimate, and summing up
yields the desired inequality (3.4) for the boundary situation. Finally we note that the proof of the
corresponding inequality in the interior case is achieved in the same way, but we do not need any
constraint of the direction, i. e., we can take s = 1, . . . , n.

Step 2: An improved estimate. We again start with the boundary situation and consider y ∈ B+
R(x0) ∪

ΓR(x0) and 0 < r < R−|y−x0| with yn ≤ 3
4r. We first note that inequality in (3.4) is for the tangential

derivatives already the desired estimate, apart from the fact that the bound stated in (3.2) is sharper.
To prove the inequality in the final form we proceed similarly to the first step, but with the important
difference that we already may take advantage of the fact Dsv ∈ W 1,p

Γ (B+
R′(x0),RN ) for all 0 < R′ < R

and for all tangential derivatives (s = 1, . . . , n− 1). Thus, the function

ϕ = 4s,−h(η2Dsv) ∈W 1,p
0 (B+

r (y),RN )

is admissible for testing the system (3.1), where s ∈ {1, . . . , n− 1}, |h| < r
4 and η ∈ C∞0 (B3r/4(y), [0, 1])

is a standard cut-off function satisfying η ≡ 1 on Br/2(y) and Dη ≤ c r−1 (cf. the previous test function).
With integration by parts for finite differences we infer the identity∫

B+
r (y)

4s,h a0(Dv) ·
(
DDsv η + 2Dsv ⊗Dη

)
η dx = 0 .

Therefore, instead of inequality (3.8), we now obtain

ν

∫
B+
r (y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx ≤

∫
B+
r (y)

Dza0(Dv)DDsv ·DDsv η
2 dx

=
∫
B+
r (y)

(
Dsa0(Dv)−4s,ha0(Dv)

)
·
(
DDsv η + 2Dsv ⊗Dη

)
η dx

− 2
∫
B+
r (y)

Dsa0(Dv) · (Dsv ⊗Dη) η dx (3.13)

(note: all integrands vanish on the set {x ∈ B+
r (y) : Dv(x) = 0}). We rewrite the first integral on the

right-hand side as
∫
B+
r (y)

fh · g dx, where we have abbreviated

fh :=
(
Dsa0(Dv)−4s,ha0(Dv)

) (
µ2 + |Dv|2

) 2−p
4 η ,

g :=
(
µ2 + |Dv|2

) p−2
4
(
DDsv η + 2Dsv ⊗Dη

)
,

and in what follows, we will show that it vanishes as h tends to zero using a weak convergence argument.
Taking into account(

µ2 + |Dv|2
) p−2

4 |DsDv| ≤ 2
∣∣Ds(Vµ(Dv))

∣∣ ≤ 4
(
µ2 + |Dv|2

) p−2
4 |DsDv| , (3.14)

we infer g ∈ L2(B+
3r/4(y),RnN ) from the first step. Furthermore, the sequence {fh} is uniformly bounded

in L2(B+
3r/4(y),RnN ): to this aim we first employ the identity (3.6), use condition (1.2)1, the technical

Lemma 2.1 and a reasoning similar to the justification for (3.6), and we deduce∣∣4s,ha0(Dv(x))
∣∣ ≤ Lc(p)

(
µ2 + |Dv(x)|2 + |Dv(x+ hes)|2

) p−2
2 |4s,hDv(x)|

(for µ = 0 this inequality is trivially satisfied if Dv(x) = 4s,hDv(x) = 0). From (1.2)1 we further infer
|Dsa0(Dv(x))| ≤ L(µ2 + |Dv(x)|2)(p−2)/2|DDsv(x)| for all x ∈ B+

3r/4(y) (note that if Dv(x) = 0 then
DDsv(x) = 0 and hence, this inequality also holds true). Hence, we end up with∫

B+
3r/4(y)

|fh|2 dx ≤ 2
∫
B+

3r/4(y)

(∣∣Dsa0(Dv(x))
∣∣2 +

∣∣4s,ha0(Dv(x))
∣∣2) (µ2 + |Dv(x)|2

) 2−p
2 dx

≤ Lc(p)
∫
B+

3r/4(y)

((
µ2 + |Dv(x)|2

) p−2
2 |DDsv(x)|2

+
(
µ2 + |Dv(x)|2 + |Dv(x+ hes)|2

) p−2
2 |4s,hDv(x)|2

)
dx

≤ Lc
(
p, Lν

)
r−2

∫
B+
r (y)

(
µ2 + |Dv|2

) p
2 dx ,
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where we have applied the estimates (3.12), (3.4) with ρ = 3
4r and (3.14) in the last line. Thus, we find

f ∈ L2(B+
3r/4(y),RnN ) such that a subsequence of {fh} converges weakly in L2(B+

3r/4(y),RnN ) to f .
Furthermore, we estimate via Hölder’s inequality for every φ ∈ Lp/(p−1)(B+

3r/4(y),RnN ):∫
B+

3r/4(y)

|fh · φ| dx ≤
(∫

B+
3r/4(y)

∣∣Dsa0(Dv)−4s,ha0(Dv)
∣∣2 dx) 1

2

·
(∫

B+
3r/4(y)

(
µ2 + |Dv|2

) p
2 dx

) 2−p
2p
(∫

B+
3r/4(y)

|φ|
p
p−1

) p−1
p

.

Keeping in mind Dsa0(Dv) ∈ L2(B+
R′(x0),RnN ), s ∈ {1, . . . , n− 1}, for all R′ < R due to Step 1, there

holds 4s,ha0(Dv)→ Dsa0(Dv) strongly in L2(B+
3r/4(y),RnN ) as h→ 0, i. e., we have {fh}h ⇀ 0 weakly

in Lp(B+
3r/4(y),RnN ). Since weak limits are unique, we conclude fh ⇀ f ≡ 0 in L2(B+

3r/4(y),RnN ).
Hence, in view of g ∈ L2(B+

3r/4(y),RnN ) we finally arrive at
∫
B+
r (y)

fh · g dx → 0 as h → 0, and taking
this limit in (3.13), we obtain

ν

∫
B+
r (y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx ≤ −2

∫
B+
r (y)

Dsa0(Dv) · (Dsv ⊗Dη) η dx

= −2
∫
B+
r (y)

Dza0(Dv)DDsv · (Dsv ⊗Dη) η dx .

Evaluating the integral on the right-hand side in a standard manner and keeping in mind (3.14) reveals
the stronger tangential estimate∫

B+
r/2(y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 dx ≤ c

(
L
ν

)
r−2

∫
B+
r (y)

(
µ2 + |Dv|2

) p−2
2 |Dsv|2 dx . (3.15)

In contrast to inequality (3.4) only the tangential part of Vµ(Dv) appears on the right-hand side; this
will be a crucial point for later applications. In the interior of B+

R(x0) we proceed similarly, but we need
a modification of the arguments to obtain the mean value version: Step 1 applied in the interior shows
that partial derivatives of Dv exist in Lp for every direction. We thus may choose 4s,−h(η2(Dsv−ξs)) as
a test function, s = 1, . . . , n. Here, η ∈ C∞0 (B5r/8(y), [0, 1]) is once again an appropriate cut-off function,
and ξ ∈ RnN is determined via Vµ(ξ) = (Vµ(Dv))B3r/4(y) (note that Vµ is surjective). Calculations
similar to the boundary situation then yield the Caccioppoli-type inequality (3.3).

Step 3: The normal direction for the boundary estimate. At the boundary it still remains to find an
estimate for the normal derivative. To this end we make use of the differentiated system (3.1), see e. g.
[10, Section 5]. We first recall that a0 : RnN → RnN consists of N -dimensional vectors (a0)i, i = 1, . . . , n.
In components div a0(Dv) =

∑n
i=1Di

(
(a0)i(Dv)

)
= 0 can be rewritten as

N∑
β=1

∂(a0)αn
∂zβn

(Dv)Dnnv
β = −

N∑
β=1

n∑
i,j=1

(i,j) 6=(n,n)

∂(a0)αi
∂zβj

(Dv)Dijv
β

for α = 1, . . . , N almost everywhere in B+
r/2(y) ∩ {xn > ε} for every ε > 0. An estimate for Dnnv is

then derived as follows: since all second derivatives exist in the interior, we may multiply the previous
relation by Dnnv

α and sum up upon α; using the growth and ellipticity conditions (1.2)1, (1.2)2, we get

ν
(
µ2 + |Dv|2

) p−2
2 |Dnnv|2 ≤

N∑
α,β=1

∂(a0)αn
∂zβn

(Dv)Dnnv
β Dnnv

α

= −
N∑

α,β=1

n∑
i,j=1

(i,j)6=(n,n)

∂(a0)αi
∂zβj

(Dv)Dijv
β Dnnv

α

≤ c(n,N)L
(
µ2 + |Dv|2

) p−2
2 |DD′v| |Dnnv|

almost everywhere in B+
r/2(y)∩{xn > ε} (in order to apply (1.2)1 and (1.2)2 also for degenerate systems,

we recall that all integrands above vanish if Dv(x) = 0). Then Young’s inequality and absorbing the
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term involving |Dnnv| implies(
µ2 + |Dv|2

) p−2
2 |Dnnv|2 ≤ c

(
µ2 + |Dv|2

) p−2
2 |DD′v|2

for a constant c depending only on n,N and L
ν . Since the right-hand side of the last inequality exists

and belongs to L1(B+
r/2(y)), we hence integrate the previous inequality on B+

r/2(y) ∩ {xn > ε}. Letting
ε→ 0 and employing the tangential estimate (3.15), we gain∫

B+
r/2(y)

(
µ2 + |Dv|2

) p−2
2 |Dnnv|2 dx ≤ c

(
L
ν

)
r−2

∫
B+
r (y)

(
µ2 + |Dv|2

) p−2
2 |Dsv|2 dx .

Combined with (3.14) and (3.15), this is the desired Caccioppoli-type inequality at the boundary. Finally,
we note that the decomposition |D2v|p ≤ (µ2 + |Dv|2)p/2 + (µ2 + |Dv|2)(p−2)/2 |D2v|2, cf. (3.9), gives
v ∈W 2,p(B+

R′(x0),RN ) for all R′ < R. Thus, the proof of the theorem is complete. �

Starting from the Caccioppoli inequalities close to the boundary and in the interior in Theorem 3.1, we
next apply the Sobolev-Poincaré inequality, see e. g. [23, Chapter 3.6], to the right-hand side of (3.2)
and (3.3), respectively, and obtain a reverse Hölder inequality of the form∫

−
B+
r/2(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c(n,N, p, Lν )

(∫
−
B+
r (y)

|D(Vµ(Dv))|
2n
n+2 dx

)n+2
n

for all points y ∈ B+
R(x0) ∪ ΓR(x0) and radii 0 < r < R − |y − x0|. If we fix a ball Bρ(z) with centre

z ∈ B+
R(x0)∪ΓR(x0) and radius 0 < ρ < R− |x0− z|, we thus have verified assumption (9) of the up-to-

the-boundary version of Gehring’s lemma [15, Theorem 2.4] for every ball Br(y)∩ ∂Bρ(z)∩B+
R(x0) = ∅.

Applying the latter theorem with

g =
∣∣DVµ(Dv)

∣∣ 2n
n+2 , p = n+2

n , Ω = Bρ(z) ∩B+
R(x0) and A = ∂Bρ(z) ∩B+

R(x0) ,

we then deduce an appropriate higher integrability result, namely that there exists a number t0 =
t0(n,N, p, Lν ) > 1 such that for all z ∈ B+

R(x0)∪ΓR(x0) and 0 < ρ < R−|x0−z| there holds |D(Vµ(Dv))| ∈
L2t0(B+

ρ/2(z)) with(∫
−
B+
ρ/2(z)

|D(Vµ(Dv))|2t0 dx
) 1
t0 ≤ c

(
n,N, p, Lν

) ∫
−
B+
ρ (z)

∣∣D(Vµ(Dv))
∣∣2 dx . (3.16)

The previous higher integrability result enables us to bound the L2-norm of D(Vµ(Dv)) on half-balls of
different radii. To this end we argue as follows: for fixed τ ∈ (0, 1

2 ) we estimate via Jensen’s inequality
and the higher integrability estimate (3.16) for D(Vµ(Dv)):∫

B+
τρ(z)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c(n) (τρ)n (2τ)−

n
t0

(∫
−
B+
ρ/2(z)

∣∣D(Vµ(Dv))
∣∣2t0 dx) 1

t0

≤ c
(
n,N, p, Lν

)
τε
∫
B+
ρ (z)

∣∣D(Vµ(Dv))
∣∣2 dx , (3.17)

where we have defined ε := n(1−1/t0) > 0 in the last line. We note that inequality (3.17) trivially holds
true for c = τ−ε ≤ 2ε ≤ 2n if τ ∈ [ 1

2 , 1). This result for D(Vµ(Dv)) is now carried over to an estimate
for Vµ(Dv): With some minor modifications to adapt it for the boundary situation, the next estimate
is achieved following the line of arguments in the proof of [10, Theorem 3.I], where the corresponding
estimate is shown for the interior situation in the superquadratic case (note that our function V is called
W in Campanato’s paper).

Lemma 3.3: Let v ∈ W 1,p
Γ (B+

R(x0),RN ) be a weak solution of the system (3.1) under the assumptions
(1.2)1 and (1.2)2 with µ ∈ [0, 1]. Then for every B+

ρ (y) ⊂ B+
R(x0) with y ∈ B+

R(x0) ∪ ΓR(x0), 0 < ρ <
R− |x0 − y| and for all τ ∈ (0, 1) we have∫

B+
τρ(y)

∣∣Vµ(Dv)
∣∣2 dx ≤ c τγ0

∫
B+
ρ (y)

∣∣Vµ(Dv)
∣∣2 dx (3.18)

with γ0 = min{2 + ε, n} (where ε := n(1 − 1
t0

) > 0 is given above), and the constant c depends only on
n,N, p and L

ν .



10 L. Beck

We close this section by stating two relevant consequences of Lemma 3.3: we obtain a Morrey type decay-
estimate for Dv and we further find a fundamental estimate for v which is analogous to [10, Theorem
1.II] for the superquadratic setting:

Corollary 3.4: Let the assumptions of Lemma 3.3 be satisfied. Then there exists a constant c =
c
(
n,N, p, Lν

)
independent of v such that for every B+

ρ (y) ⊂ B+
R(x0) with centre y ∈ B+

R(x0)∪ΓR(x0) and
radius 0 < ρ < R− |x0 − y| there holds∫

B+
τρ(y)

(
µp + |Dv|p

)
dx ≤ c τγ0

∫
B+
ρ (y)

(
µp + |Dv|p

)
dx ∀ τ ∈ (0, 1] . (3.19)

Furthermore, if n ∈ [2, p+ γ0) is satisfied, we have∫
B+
τρ(y)

|v|p dx ≤ c τn
[ ∫

B+
ρ (y)

|v|p dx+ ρp
∫
B+
ρ (y)

(
µp + |Dv|p

)
dx
]

∀ τ ∈ (0, 1] . (3.20)

Proof: Using (3.18), the definition of Vµ(Dv) and keeping in mind γ0 ≤ n, we infer the decay estimate
(3.19) for Dv as follows:∫

B+
τρ(y)

(
µp + |Dv|p

)
dx ≤ 4

∫
B+
ρ (y)

[
τnµp + c τγ0

∣∣Vµ(Dv)
∣∣2] dx

≤ c
(
n,N, p, Lν

)
τγ0
∫
B+
ρ (y)

(
µp + |Dv|p

)
dx .

The decay estimate (3.20) is a straightforward adaptation of the arguments in [10, Chapter 4] where the
interior analogue is achieved in the superquadratic case. We mention that the assumption n ∈ [2, p+γ0)
is needed to be in a position to employ the isomorphy between the Campanato Lp,p+γ0 and the Hölder
space C0,1−(n−γ0)/p. �

Remark: For an appropriate reference estimate in the interior we consider a weak solution in v ∈
W 1,p(BR(x0),RN ), x0 ∈ Rn, R < 1 and p ∈ (1, 2), to the homogeneous system div a1(Dv) = 0 in
BR(x0). It is easy to see that all estimates achieved above remain true in the interior of BR(x0). In
particular, the higher integrability estimate (3.16) and the interior estimates analogous to the statements
in Lemma 3.3 and Corollary 3.4 still hold if B+

R(x0) is replaced by the full ball BR(x0).

4 Decay estimate for the solution

We now turn our attention to the model situation of an upper half-ball, i. e., we consider weak solutions
u ∈W 1,p(B+,RN ) or u ∈W 1,p(B+,RN ) ∩ L∞(B+,RN ) of the system{

−div a( · , u,Du) = b( · , u,Du) in B+ ,

u = g on Γ .
(4.1)

We first state a higher integrability result up to the boundary for Du which is valid in all dimensions:

Lemma 4.1 (Higher integrability): Let u ∈ g + W 1,p
Γ (B+,RN ), g ∈ C1(B+ ∪ Γ,RN ), be a weak

solution of (4.1), where the coefficients a(·, ·, ·) satisfy the growth and ellipticity conditions (1.2)1 and
(1.2)2 with µ ∈ [0, 1]. If one of the following assumptions is fulfilled:

1. the inhomogeneity b(·, ·, ·) obeys a controllable growth condition (B1),

2. the inhomogeneity b(·, ·, ·) obeys a natural growth condition (B2); additionally, there hold u ∈
L∞(B+,RN ) with ‖u‖L∞(B+,RN ) ≤M and 2L2M < ν,

then there exists an exponent s > p depending only on n,N, p,Lν , ‖Dg‖L∞ , and in case 2 additionally
on L2

ν and M such that u ∈ W 1,s(B+
ρ ,RN ) for all ρ < 1. Furthermore, for every y ∈ B+ ∪ Γ and all

ρ ∈ (0, 1− |y|) there holds:(∫
−
B+
ρ/2(y)

(
1 + |Du|

)s
dx
) p
s ≤ c(i)

∫
−
B+
ρ (y)

(
1 + |Du|p

)
dx

(for i = 1, 2) with constants c(1) = c(1)(n,N, p, Lν , ‖Dg‖L∞) and c(2) = c(2)(n,N, p, Lν ,
L2
ν , ‖Dg‖L∞ ,M).
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Proof: The proof is standard; therefore, we only sketch the proof and refer to [4, Chapter 6.2] for
detailed calculation. Testing the system (4.1) with ϕ = (u− g)η2 for an estimate close to the boundary
part Γ, we first deduce a weak version of a Caccioppoli-type inequality. We note that the arguments in
the proof of [14, Lemma 4.1] or [25, Lemma 4.3] may be adapted for the treatment of inhomogeneities
under a natural growth condition. We thus find∫

−
B+
r/2(z)

(
1 + |Du|p

)
dx ≤ ccacc

∫
−
B+
r (z)

(
1 +

∣∣∣u− g
r

∣∣∣p) dx , (4.2)

and the constant ccacc depends only on p, Lν , ‖Dg‖L∞ when considering (B1), and on n, p, Lν ,
L2
ν , ‖Dg‖L∞ ,

M when considering (B2), respectively. In the interior the corresponding estimate follows if g is replaced
by the mean-value of u in the definition of ϕ (and hence also on the right-hand side of (4.2)). Via
Poincaré’s inequality a reverse Hölder inequality follows which in turn allows to apply Gehring’s lemma
in an up-to-the-boundary version, see [15, Theorem 2.4]. Hence, we finally deduce the higher integrability
of Du with the dependencies stated above. �

Keeping in mind ‖u‖L∞(B+,RN ) ≤ M , the previous estimate (4.2) immediately allows us to state the
following Morrey-type estimate for bounded weak solutions of systems with inhomogeneities under a
natural growth condition (cf. [3, Lemma 2] in the superquadratic case):

Corollary 4.2: Assume u ∈ g + W 1,p
Γ (B+,RN ) ∩ L∞(B+,RN ) to be a weak solution to (4.1) with

g ∈ C1(B+ ∪ Γ,RN ), ‖u‖L∞(B+,RN ) ≤ M , where the coefficients a(·, ·, ·) satisfy the conditions (1.2)1

and (1.2)2 with µ ∈ [0, 1] and 2L2M < ν, and where the inhomogeneity b(·, ·, ·) obeys a natural growth
condition (B2). Then for fixed σ ∈ (0, 1) we have Du ∈ Lp,n−p(B+

1−σ,RN ) with

‖Du‖p
Lp,n−p(B+

1−σ,RN )
≤ cσ

and cσ depends on σ and the same parameters as the constant c(2) in the previous Lemma 4.1.

In the next step we deduce an appropriate decay estimate for the solution u of the original system (4.1)
by comparing u with the solution v ∈W 1,p(B+

R(x0),RN ) of the frozen system{
div a0(Dv) = 0 in B+

R(x0) ,
v = u− g on ∂B+

R(x0) ,
(4.3)

where a0(z) := a(x0, (u)B+
R(x0), z), x0 ∈ Γ, and 2R < 1− |x0|. Testing the latter system with u− g − v,

which is admissible, since the functions u− g and v have the same boundary values, we obtain

0 =
∫
B+
R(x0)

∫ 1

0

Dza0(tDv)Dv · (Du−Dg −Dv) dt dx .

Conditions (1.2)1 and (1.2)2 (applied on the set {x ∈ B+
R(x0) : Dv(x) 6= 0}), Young’s inequality, the

technical Lemmas 2.1 and 2.2 (iii) now yield

ν

∫
B+
R(x0)

(
µ2 + |Dv|2

) p−2
2 |Dv|2 dx ≤

∫
B+
R(x0)

∫ 1

0

Dza0(tDv)Dv ·Dv dt dx

=
∫
B+
R(x0)

∫ 1

0

Dza0(tDv)Dv · (Du−Dg) dt dx

≤ ε

∫
B+
R(x0)

(
µ2 + |Dv|2

) p−2
2 |Dv|2 dx+ c(p) ε1−p Lp

∫
B+
R(x0)

(
µp + |Du−Dg|p

)
dx .

Choosing ε = ν
2 , absorbing the first integral on the right-hand side and keeping in mind the inequality

µp + |Du|p ≤ 2 (µp + |Vµ(Du)|2), we end up with an estimate for the p-Dirichlet functional of Dv:∫
B+
R(x0)

|Dv|p dx ≤ c

∫
B+
R(x0)

(
µp + |Du−Dg|p

)
dx ≤ c

∫
B+
R(x0)

(
1 + |Du|p

)
dx (4.4)
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with c = c(p, Lν , ‖Dg‖L∞). Since div(−a0(Dv) + a( · , u,Du)) + b( · , u,Du) = 0 holds in the weak sense
in B+

R(x0), we also have

div
(
a0(Dv +Dg)− a0(Du)

)
= div

(
a0(Dv +Dg)− a0(Dv)

)
+ div

(
a( · , u,Du)− a0(Du)

)
+ b( · , u,Du) (4.5)

in B+
R(x0) in the weak sense. To go on we distinguish the different growth conditions concerning the

inhomogeneity.

4.1 Controllable growth of b(·, ·, ·)

The procedure is quite similar to the one established in [7, Section 4], where (partial) Hölder continuity
of the solution in the interior is discussed in low dimensions under similar assumptions concerning the
coefficients. By Young’s inequality combined with the ellipticity condition (1.2)2 (applied on the set
where Dv +Dg −Du 6= 0, otherwise all the relevant integrals vanish) we first infer

2
p−2
2 ν

∫
B+
R(x0)

(
µ2 + |Du|2 + |Dv +Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤
∫
B+
R(x0)

(
a0(Dv +Dg)− a0(Du)

)
·
(
Dv +Dg −Du

)
dx .

=
∫
B+
R(x0)

(
a0(Dv +Dg)− a0(Dv)

)
·
(
Dv +Dg −Du

)
dx

+
∫
B+
R(x0)

(
a( · , u,Du)− a0(Du)

)
·
(
Dv +Dg −Du

)
dx

−
∫
B+
R(x0)

b( · , u,Du) · (v + g − u) dx =: I + II + III . (4.6)

where in the last inequality we have used u − g − v ∈ W 1,p
0 (B+

R(x0),RN ) as a test function in relation
(4.5). The terms on the right-hand side are bounded from above separately: via the growth condition
(1.2)1 on the set {x ∈ B+

R(x0) : Dg(x) 6= 0}, Lemma 2.1, Young’s inequality and the energy estimate
(4.4), we estimate term I and, in view of p < 2, we obtain

I ≤ c(p, Lν , ‖Dg‖L∞)L
(
δ

∫
B+
R(x0)

(
1 + |Du|p

)
dx+Rn δ1−p

)
(4.7)

for every δ ∈ (0, 1). For the second term we use assumption (1.2)3 (recalling the definition a0(·) of
the frozen coefficients) and Hölder’s inequality (note ω(·) ≤ 1) with p−1

p
s−p
s , p−1

p
p
s and 1

p where s > p

denotes the (up-to-the-boundary) higher integrability exponent of the gradient Du from Lemma 4.1
depending only on n,N, p,Lν and ‖Dg‖L∞ . In view of Young’s inequality we then obtain

II ≤ L

∫
B+
R(x0)

ω
(
|x− x0|+ |u− (u)B+

R(x0)|
)(
µ2 + |Du|2

) p−1
2 |Du−Dg −Dv| dx

≤
∣∣B+

R(x0)
∣∣L(∫−

B+
R(x0)

ω
(
R+ |u− (u)B+

R(x0)|
)
dx
) p−1

p
s−p
s

×
(∫
−
B+
R(x0)

(
µp + |Du|p

) s
p dx

) p−1
p

p
s
(

3p−1

∫
−
B+
R(x0)

(
|Du|p + ‖Dg‖pL∞ + |Dv|p

)
dx
) 1
p

.

To continue estimating term II we define

β :=
p− 1
p

s− p
s

, (4.8)

and recall that ω(·) is concave and monotone non-decreasing. Making use of the higher integrability
estimate for 1 + |Du|p from Lemma 4.1, the energy estimate (4.4), Jensen’s inequality and Poincaré’s
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inequality we then find

II ≤ Lcωβ
((∫
−
B+
R(x0)

(
Rp + |u− (u)B+

R(x0)|
p
)
dx
) 1
p
) ∫

B+
2R(x0)

(
1 + |Du|p

)
dx

≤ Lc
(
n,N, p, Lν , ‖Dg‖L∞

)
ωβ
((
Rp−n

∫
B+
R(x0)

(
1 + |Du|p

)
dx
) 1
p
) ∫

B+
2R(x0)

(
1 + |Du|p

)
dx . (4.9)

Finally, we estimate the remaining term III appearing on the right-hand side in inequality (4.6): we
first note that, since the functions u−g and v have the same values on the boundary ∂B+

R(x0), we obtain
via the Poincaré inequality and then (4.4):∫

B+
R(x0)

|v + g − u|p dx ≤ c
(
n,N, p, Lν , ‖Dg‖L∞

)
Rp
∫
B+
R(x0)

(
1 + |Du|p

)
dx .

Therefore, due to the growth condition imposed on b(x, u,Du) in (B1) and Hölder’s inequality, we
conclude

III ≤ L
(∫

B+
R(x0)

(
µp + |Du|p

)
dx
) p−1

p
(∫

B+
R(x0)

|v + g − u|p dx
) 1
p

≤ Lc
(
n,N, p, Lν , ‖Dg‖L∞

)
R

∫
B+
R(x0)

(
1 + |Du|p

)
dx . (4.10)

Merging the estimates for I, II and III, i. e., (4.7), (4.9) and (4.10), with (4.6), we find the comparison
estimate∫

B+
R(x0)

(
µ2 + |Du|2 + |Dv +Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤ c

[
ωβ
((
Rp−n

∫
B+
R(x0)

(
1 + |Du|p

)
dx
) 1
p
)

+R+ δ

] ∫
B+

2R(x0)

(
1 + |Du|p

)
dx+ cRn δ1−p (4.11)

for every δ ∈ (0, 1), and the constant c depends only on n,N, p, Lν and ‖Dg‖L∞ . We next transfer the
decay properties of v to the weak solution u of the original Dirichlet problem (4.1) in a standard way.
We recall the exponent γ0 defined by

γ0 = min{2 + ε, n} (4.12)

for some ε > 0 depending only on n,N, p and L
ν (for the precise derivation of γ0 we refer to Lemma 3.3).

Corollary 3.4 then provides the decay estimate∫
B+
ρ (x0)

|Dv|p dx ≤ c
(
n,N, p, Lν

) ( ρ
R

)γ0 ∫
B+
R(x0)

(
1 + |Dv|p

)
dx

for all radii ρ ∈ (0, R] where v is the solution of the comparison problem (4.3) with constant coefficients
(keep in mind v = 0 on Γρ(x0) by definition). In view of γ0 ≤ n we further note that∫

B+
ρ (x0)

(
1 + |Dg|p

)
dx ≤ c

(
‖Dg‖L∞

) ( ρ
R

)γ0 ∫
B+
R(x0)

1 dx

for all ρ ∈ (0, R]. We now observe from Lemma 2.2 (ii) that the inequality

1 + |Du|p ≤ c
(
n,N, p

)[(
1 + |Dv +Dg|p

)
+
(
µ2 + |Du|2 + |Dv +Dg|2

) p−2
2 |Du−Dv −Dg|2

]
holds true. Thus, combining the last three inequalities and taking advantage of the energy inequality
(4.4) and the comparison estimate (4.11), we finally arrive at a decay estimate for the gradient Du:∫

B+
ρ (x0)

(
1 + |Du|p

)
dx ≤ c

( ρ
R

)γ0 ∫
B+
R(x0)

(
1 + |Dv|p

)
dx

+ c

∫
B+
R(x0)

(
µ2 + |Du|2 + |Dv +Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤ c

[( ρ
R

)γ0
+ ωβ

((
(2R)p−n

∫
B+

2R(x0)

(
1 + |Du|p

)
dx
) 1
p
)

+R+ δ

]
×
∫
B+

2R(x0)

(
1 + |Du|p

)
dx+ cRn δ1−p
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for all x0 ∈ Γ, 2R < 1 − |x0| and every ρ ∈ (0, R]. The constant c depends only on n,N, p, Lν and
‖Dg‖L∞ , and the same inequality trivially holds if ρ ∈ (R, 2R]. We mention that this estimate is similar
to inequality (4.23) in [7], where regularity up to the boundary of weak solutions is considered in the
low-dimensional (non-degenerate) case with p > 2. We emphasize that the latter estimate also follows
in the interior, i. e., for balls BR(x0) contained in B+ (or for general problems in Ω). In this case we do
not need to take into account the function g which specifies the boundary values of u on Γ, and hence
term I does not appear in the calculations corresponding to (4.6). All other estimates above as well as
the conclusion of (4.13) below remain valid. Replacing 2R by R and introducing the excess functional

Φ(x0, r) :=
∫
B+
r (x0)∩B+

(
1 + |Du|p

)
dx ,

(for x0 ∈ B+ ∪ Γ) we thus conclude altogether

Lemma 4.3: Let β, γ0 be chosen as above in (4.8), (4.12), and let δ ∈ (0, 1). Furthermore, let u ∈
g + W 1,p

Γ (B+,RN ), 1 < p < 2, be a weak solution of the system (4.1) under the assumptions (1.2)
with µ ∈ [0, 1], (B1), and g ∈ C1(B+ ∪ Γ,RN ). Then, if x0 ∈ Γ, R < 1 − |x0| or if x0 ∈ B+,
R < min{1− |x0|, (x0)n}, there holds

Φ(x0, ρ) ≤ c(1)
ex

[( ρ
R

)γ0
+ ωβ

((
Rp−nΦ(x0, R)

) 1
p

)
+R+ δ

]
Φ(x0, R) + c(1)

ex R
n δ1−p (4.13)

for every ρ ∈ (0, R], and the constant c(1)
ex depends only on n,N, p, Lν and ‖Dg‖L∞ .

4.2 Natural growth of b(·, ·, ·)

In what follows, we proceed analogously to the situation of the controllable growth condition (B1). For
the modifications necessary for natural growth we adapt the techniques used in [3, Proof of Theorem 1].
For fixed σ ∈ (0, 1) we consider the unique solution v ∈W 1,p(B+

R(x0),RN ), x0 ∈ Γ1−σ, 2R < 1−σ−|x0|,
to the Dirichlet problem (4.3), and we again aim for a comparison of the functions u and v. Furthermore,
let n < p + γ0. System (4.5) still holds in B+

R(x0) in the weak sense, but we may now test only with
bounded functions in W 1,p

0 (B+
R(x0),RN ) ∩ L∞(B+

R(x0),RN ) according to the growth condition (B2).
Hence, in order to be allowed to test with the function u − v − g as above, we start by proving an
L∞-estimate for v on B+

R/2(x0): Consider a ball Bρ(y) with centre y ∈ B+
R/2(x0) and radius ρ < R

2 .
According to Corollary 3.4 we have∫

−
B+
ρ (y)

|v|p dx ≤ c
(
n,N, p, Lν

) [
R−n

∫
B+
R/2(y)

|v|p dx+Rp−n
∫
B+
R/2(y)

(
µp + |Dv|p

)
dx
]

(it is obvious that we may allow |y − x0| = R/2). Thus, taking advantage of B+
R/2(y) ⊂ B+

R(x0), the
Poincaré inequality (keeping in mind v = 0 on ΓR(x0) by definition), and the estimate (4.4) for the
p-Dirichlet functional of Dv, we estimate the mean values of |v|p as follows:

sup
y∈B+

R/2(x0)

ρ∈(0,R/2)

∫
−
B+
ρ (y)

|v|p dx ≤ cRp−n
∫
B+
R(x0)

(
1 + |Du|p

)
dx

≤ c
(
n,N, p, Lν ,

L2
ν , ‖Dg‖L∞ ,M, σ) =: mp

0 ,

where we have used Corollary 4.2 in the last line. According to Lebesgue’s differentiation theorem this
yields v ∈ L∞(B+

R/2(x0),RN ), see also [23, Proposition 2.2], with

‖v‖L∞(B+
R/2(x0),RN ) ≤ mp

0 . (4.14)

Therefore, taking into account |g(x0)| = |u(x0)| ≤ M , we have u − v − g ∈ W 1,p
0 (B+

R(x0),RN ) ∩
L∞(B+

R/2(x0),RN ) with

‖u− v − g‖L∞(B+
R/2(x0),RN ) ≤ 2M + ‖Dg‖L∞ +m0 =: m > 0 .
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To obtain an admissible test-function for the system (4.5), we next modify the function u − v − g on
B+
R(x0) (for which we cannot expect an L∞-estimate) as follows: we set

h := (v + g − u)
(
T δ − (|v + g − u|+m)δ

)
+

for some exponent δ > 0 to be specified later and a number T = T (δ,m) > 0 determined by the condition

T δ − (2m)δ = 1
2 T

δ ⇔ T = 21+ 1
δ m.

In particular, δ → 0 implies T →∞, and via the estimate |u− v − g| ≤ m on B+
R/2(x0) found above we

have (
T δ − (|v + g − u|+m)δ

)
+
≥ 1

2 T
δ on B+

R/2(x0) .

Keeping in mind that h vanishes outside of the set θ+ := {x ∈ B+
R(x0) : |(v + g − u)(x)| < T −m}, we

observe that the weak differentiability of v + g − u is transferred to h, and hence, by construction we
have h ∈W 1,p

0 (B+
R(x0),RN )∩L∞(B+

R(x0),RN ). We next proceed similarly to (4.6), but we have to take
into account a new term which arises by this modification:

2
p−4
2 T δ ν

∫
B+
R/2(x0)

(
µ2 + |Du|2 + |Dv +Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤
∫
B+
R(x0)

(
a0(Dv +Dg)− a0(Du)

)
·
(
Dv +Dg −Du

) (
T δ − (|v + g − u|+m)δ

)
+
dx

=
∫
B+
R(x0)

(
a0(Dv +Dg)− a0(Du)

)
·Dhdx

+
∫
B+
R(x0)

(
a0(Dv +Dg)− a0(Du)

)
· (v + g − u)⊗ (Dv +Dg −Du) · (v + g − u)

|v + g − u|

× δ (|v + g − u|+m)δ−1
1θ+ dx .

Testing system (4.5) given above with h, we further estimate the first integral on the right-hand side of
the last inequality. Hence, we find exactly as in the calculations leading to (4.6):

2
p−4
2 T δ ν

∫
B+
R/2(x0)

(
µ2 + |Du|2 + |Dv +Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤
∫
B+
R(x0)

(
a0(Dv +Dg)− a0(Dv)

)
·Dhdx

+
∫
B+
R(x0)

(
a( · , u,Du)− a0(Du)

)
·Dhdx−

∫
B+
R(x0)

b( · , u,Du) · h dx

+
∫
B+
R(x0)

(
a0(Dv +Dg)− a0(Du)

)
· (v + g − u)⊗ (Dv +Dg −Du) · (v + g − u)

|v + g − u|

× δ (|v + g − u|+m)δ−1
1θ+ dx

=
∫
B+
R(x0)

(
a0(Dv +Dg)− a0(Dv)

)
·
(
Dv +Dg −Du

) (
T δ − (|v + g − u|+m)δ

)
+
dx

+
∫
B+
R(x0)

(
a( · , u,Du)− a0(Du)

)
·
(
Dv +Dg −Du

) (
T δ − (|v + g − u|+m)δ

)
+
dx

−
∫
B+
R(x0)

b( · , u,Du) · (v + g − u)
(
T δ − (|v + g − u|+m)δ

)
+
dx

+ δ

∫
B+
R(x0)

(
a0(Dv)− a( · , u,Du)

)
· (v + g − u)⊗ (Dv +Dg −Du) · (v + g − u)

|v + g − u|

× (|v + g − u|+m)δ−1
1θ+ dx

=: I ′ + II ′ + III ′ + IV ′ (4.15)

with the obvious abbreviations. We first note (T δ − (|v + g − u| + m)δ)+ ≤ T δ. Therefore, terms I ′

and II ′ are estimated as term I in (4.7) and term II in (4.9), respectively, in the controllable growth
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situation, and we get

|I ′| ≤ T δ cL
(
δ

∫
B+
R(x0)

(
1 + |Du|p

)
dx+Rn δ1−p

)
,

|II ′| ≤ T δ cLωβ
((
Rp−n

∫
B+
R(x0)

(
1 + |Du|p

)
dx
) 1
p
) ∫

B+
2R(x0)

(
1 + |Du|p

)
dx .

where the constants c depend only on n,N, p, Lν and ‖Dg‖L∞ . In view of the growth condition (B2),
Hölder’s inequality, Lemma 4.1 on higher integrability (where s denotes the higher integrability exponent
depending on n,N, p,Lν ,

L2
ν , ‖Dg‖L∞ and M), the basic inequality |v + g − u|1θ+ < T −m ≤ T and the

Poincaré inequality, term III ′ is estimated by

|III ′| ≤
∫
B+
R(x0)

(
L2|Du|p + L

)
|v + g − u|

(
T δ − (|v + g − u|+m)δ

)
+
dx

≤ T δ (L2 + L) |B+
R(x0)|

(∫
−
B+
R(x0)

(
1 + |Du|p

) s
p dx

) p
s
(∫
−
B+
R(x0)

(
|v + g − u|1θ+

) s
s−p dx

) s−p
s

≤ T δ c(2) (L2 + L)
∫
B+

2R(x0)

(
1 + |Du|p

)
dx

×
(
|v + g − u|1θ+

)1− p(s−p)s

(∫
−
B+
R(x0)

|v + g − u|p dx
) s−p

s

≤ T δ c (L2 + L)T 1− p(s−p)s

(
Rp−n

∫
B+
R(x0)

(
1 + |Du|p

)
dx
) s−p

s

∫
B+

2R(x0)

(
1 + |Du|p

)
dx

for c = c(n,N, p, Lν ,
L2
ν ,M, ‖Dg‖L∞). In the last line we have used once again the energy estimate (4.4).

For the last integral IV ′, we obtain via (1.2)1, Young’s inequality and (4.4):

|IV ′| ≤ 2 δ L
∫
B+
R(x0)

(
µp−1 + |Du|p−1 + |Dv|p−1

) (
|Du|+ |Dv|+ ‖Dg‖L∞

)
× |v + g − u| (|v + g − u|+m)δ−1

1θ+ dx

≤ T δ c
(
p, Lν , ‖Dg‖L∞

)
δ L

∫
B+
R(x0)

(
1 + |Du|p

)
dx .

Hence, combining the estimates for the terms I ′ − IV ′ with (4.15) we finally arrive at∫
B+
R/2(x0)

(
µ2 + |Du|2 + |Dv +Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤ c
[
ωβ
((
Rp−n

∫
B+
R(x0)

(
1 + |Du|p

)
dx
) 1
p
)

+ T 1− p(s−p)s

(
Rp−n

∫
B+
R(x0)

(
1 + |Du|p

)
dx
) s−p

s

+ δ
]

×
∫
B+

2R(x0)

(
1 + |Du|p

)
dx+ cRn δ1−p

for a constant c depending only on n,N, p, Lν ,
L2
ν , ‖Dg‖L∞ and M . This estimate corresponds to (4.11)

above for systems with inhomogeneities under a controllable growth assumption. For a similar up-to-
the-boundary estimate concerning the superquadratic case we refer to [3, inequality (36)]. Furthermore,
we note that the reasoning leading to the latter inequality also applies for balls BR(x0) ⊂ B+

1−σ, and
thus, a corresponding estimate holds in the interior (without the function g). Following the arguments
of the comparison principle above and recalling the definition Φ(x0, r) of the excess function, we deduce
the following decay estimate for the gradient Du:

Lemma 4.4: Let β, γ0 be chosen as above in (4.8), (4.12), and let δ ∈ (0, 1), σ ∈ (0, 1) and n <
p + γ0. Furthermore, let u ∈ g + W 1,p

Γ (B+,RN ) ∩ L∞(B+,RN ) with ‖u‖L∞(B+,RN ) ≤ M , 1 < p < 2,
g ∈ C1(B+ ∪ Γ,RN ), be a weak solution of the system (4.1) under the assumptions (1.2) with µ ∈ [0, 1],
(B2) and 2L2M < ν. Then, if x0 ∈ Γ1−σ, R < 1− σ− |x0| or if x0 ∈ B+, R < min{1− σ− |x0|, (x0)n},
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there holds

Φ(x0, ρ) ≤ c(2)
ex

[( ρ
R

)γ0
+ ωβ

((
Rp−nΦ(x0, R)

) 1
p

)
+ T 1− p(s−p)s

(
Rp−nΦ(x0, R)

) s−p
s + δ

]
Φ(x0, R) + c(2)

ex R
n δ1−p (4.16)

for every ρ ∈ (0, R]. Here, the constant c(2)
ex depends only on n,N, p, Lν ,

L2
ν , ‖Dg‖L∞ and M , s is the

higher integrability exponent from Lemma 4.1 admitting the same dependencies, and T is a positive
number additionally depending on σ and δ.

5 Proof of Theorem 1.1

We consider a bounded domain Ω ⊂ Rn, n ≥ 2, of class C1. This means that for every point x0 ∈ ∂Ω
there exist a radius r > 0 and a C1-function h : Rn−1 → R such that (up to an isometry) Ω is locally
represented by Ω ∩ Br(x0) = {x ∈ Br(x0) : xn > h(x1, . . . , xn−1)}. Thus we can locally straighten
the boundary ∂Ω by a C1-transformation. Via a covering argument, the proof of Theorem 1.1 is hence
reduced in a standard way to the proof of a partial regularity result in the model situation of the unit
half-ball B+. Therefore, it is sufficient to consider a weak solution u ∈ W 1,p(B+,RN ) of the partial
Dirichlet-problem (4.1) where g ∈ C1(B+ ∪ Γ,RN ), where the coefficients a : B+ × RN × RnN → RnN
satisfy the assumptions (1.2) and where the inhomogeneity b : B+ ×RN ×RnN → RN fulfills one of the
following assumptions

1. b(·, ·, ·) obeys a controllable growth condition (B1),

2. b(·, ·, ·) obeys a natural growth condition (B2); additionally, we assume u ∈ L∞(B+,RN ) with
‖u‖L∞(B+,RN ) ≤M and 2L2M < ν.

In order to prove Theorem 1.1 the objective is to find a number δ2 = δ2(n,N, p, Lν ) > 0 such that if
n ∈ [2, p+ 2 + δ2), then there hold

dimH

(
(B+ ∪ Γ) \ Regu(B+ ∪ Γ)

)
< n− p and u ∈ C0,λ

loc

(
Regu(B+ ∪ Γ),RN

)
for all λ ∈ (0,min{1− n−2−δ2

p , 1}). Moreover, we shall prove that the singular set Singu(B+ ∪ Γ) of u is
contained in

Σ̃ :=
{
x0 ∈ B+ ∪ Γ : lim inf

R↘0
Rp−n

∫
BR(x0)∩B+

(
1 + |Du|p

)
dx > 0

}
.

In the sequel we will discuss only the case of natural growth. The result for the controllable growth
condition follows completely analogously. We first fix ε in dependence of n,N, p and L

ν to be the positive
number stemming from the application of Gehring’s lemma (see Lemma 3.3) if n ≥ 3 and ε = 2p(1− λ),
λ ∈ (0, 1) arbitrary, if n = 2. We set γ0 = min{2 + ε, n} admitting the same dependencies and choose
κ0 < 1 according to [20, Chapter III, Lemma 2.1] in dependency of the exponents γ0, γ0 − ε

2 instead of
α, β and the constant c(2)

ex in (4.13) instead of A. Furthermore, let s be the higher integrability exponent
from Lemma 4.1 depending on n,N, p, Lν ,

L2
ν , ‖Dg‖L∞ and M , and β = p−1

p
s−p
s as above. Furthermore,

we fix σ ∈ (0, 1), and set δ = κ0
4 , which in turn fixes a number T > 0 (according to Lemma 4.4)

depending on n,N, p, Lν ,
L2
ν , ‖Dg‖L∞ ,M, σ and δ. Since ω(·) is a modulus of continuity, we then find a

positive number ς such that

ωβ
(
ς

1
p
)
<

κ0

4
and T 1− p(s−p)s ς

s−p
s <

κ0

4
.

We now consider a point x0 ∈ B+
1−σ \ Σ̃ where the excess quantity Rp−nΦ(x0, R) becomes arbitrarily

small for R↘ 0. Hence there exists a radius R0 > 0 such that BR0(x0) b B1−σ and

Rp−n0

∫
B+
R0

(x0)

(
1 + |Du|p

)
dx = Rp−n0 Φ(x0, R0) < ς .
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Since the function z 7→ Rp−n0 Φ(z,R0) is continuous, there exists a ball Br(x0) such that we have
BR0(z) b B1−σ for all z ∈ Br(x0) ∩ (B+ ∪ Γ) and such that the previous inequality is also satisfied for
x0 replaced by z, i. e., there holds

Rp−n0 Φ(z,R0) < ς for all z ∈ Br(x0) ∩ (B+ ∪ Γ) .

Our next goal is to show that the gradient Du belongs to an appropriate Morrey space on Br(x0) ∩
(B+ ∪ Γ). To this aim we will show Morrey-type estimates of the form

Φ(z, ρ) ≤ c
[( ρ

R0

)γ0−ε/2
Φ(z,R0) + ργ0−ε/2

]
(5.1)

for all balls B+
ρ (z) with centre z ∈ Br(x0) ∩ (B+ ∪ Γ), radius ρ ≤ R0, and a constant c depending only

on n,N, p, Lν ,
L2
ν ,M and ‖Dg‖L∞ . For this purpose, we combine the estimates at the boundary and in

the interior and need to distinguish several cases:

Case 1: z ∈ Γ, 0 < ρ ≤ R0: In view of the choices of σ, δ, κ0, ς and R0 made above, the boundary
version of Lemma 4.4 gives

Φ(z, ρ) ≤ c(2)
ex

[( ρ

R0

)γ0
+

3κ0

4

]
Φ(x0, R0) + 4p−1 c(2)

ex R
n
0 κ

1−p
0

≤ c
[( ρ

R0

)γ0
+

3κ0

4

]
Φ(x0, R0) + cR

γ0−ε/2
0

for all ρ ≤ R0, and the constant c has the dependencies stated above. Thus we are in a position to apply
[20, Chapter III, Lemma 2.1], an iteration scheme to be able to neglect κ0 by choosing the exponent γ0

slightly smaller, to deduce the claimed inequality (5.1) for every such centre z.

Case 2: z ∈ B+, 0 < ρ ≤ R0 ≤ zn: There holds BR0(z) ⊂ B+, hence we apply the interior version of
Lemma 4.4 and inequality (5.1) follows identically to Case 1.

Case 3: z ∈ B+, 0 < zn < ρ ≤ R0: Without loss of generality we may assume ρ ≤ R0/4, otherwise
(5.1) is trivially satisfied. Then we have the inclusions

B+
ρ (z) ⊂ B+

2ρ(z
′′) ⊂ B+

R0/2
(z′′) ⊂ B+

R0
(z)

where z′′ denotes the projection of z onto Rn−1 × {0}, and the boundary estimate in Case 1 yields the
desired inequality

Φ(z, ρ) ≤ Φ(z′′, 2ρ) ≤ c
[( 4ρ
R0

)γ0−ε/2
Φ(z′′, 1

2R0) + (2ρ)γ0−ε/2
]

≤ c
[( ρ

R0

)γ0−ε/2
Φ(z,R0) + ργ0−ε/2

]
where we have used the monotonicity of Φ with respect to the domain of integration.

Case 4: z ∈ B+, 0 < ρ ≤ zn < R0: Without loss of generality we may assume zn < R0/4, otherwise we
apply Case 2 for the inner ball BR0/4(z) ⊂ B+. We then take advantage of the inclusions

Bρ(z) ⊂ Bzn(z) ⊂ B+
2zn

(z′′) ⊂ B+
R0/2

(z′′) ⊂ B+
R0

(z),

the interior estimates in Case 2 and the boundary estimates in Case 1, and we find

Φ(z, ρ) ≤ c
[( ρ
zn

)γ0−ε/2
Φ(z, zn) + ργ0−ε/2

]
≤ c

[( ρ
zn

)γ0−ε/2
Φ(z′′, 2zn) + ργ0−ε/2

]
≤ c

[( ρ
zn

)γ0−ε/2
c
[(4zn

R0

)γ0−ε/2
Φ(z′′, 1

2R0) + (2zn)γ0−ε/2
]

+ ργ0−ε/2
]

≤ c
[( ρ

R0

)γ0−ε/2
Φ(z,R0) + ργ0−ε/2

]
.
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Combining the estimates above we see that we have covered all cases required to prove inequality (5.1).
Recalling the definition of the excess function Φ, this yields

Du ∈ Lp,γ0−ε/2
(
Br(x0) ∩ (B+ ∪ Γ),RnN

)
.

We define δ2 = ε
2 (with exactly the dependencies asserted in the statement of the theorem) and observe

that the low-dimensional assumption prescribes

n < p+ 2 + δ2 = p+ 2 + ε/2 .

We recall γ0 = 2 if n = 2 and γ0 = 2 + ε if n > 2. As a consequence (taking ε smaller if required) we
have γ0 − ε/2 ∈ (n − p, n], and, according to the Campanato-Meyer embedding, see e. g. [27, Theorem
2.2], we arrive at the conclusion that u is Hölder continuous on Br(x0) ∩ (B+ ∪ Γ), more precisely, we
have

u ∈ C0,λ
(
Br(x0) ∩ (B+ ∪ Γ),RN

)
with λ = 1− n− γ0 + ε/2

p
.

Using a covering argument and the fact that σ ∈ (0, 1) is chosen arbitrarily, we conclude immediately
the desired regularity result. Furthermore, since we have shown higher integrability of Du in Lemma
4.1, we can improve the condition of x0 being a regular point via

Rp−n
∫
B+
R(x0)

(
1 + |Du|p

)
dx ≤ c

(
Rs−n

∫
B+
R(x0)

(
1 + |Du|s

)
dx
) p
s

for R sufficiently small. As a consequence we get

B+ \ Σ̃ ⊇
{
x0 ∈ B+ ∪ Γ : lim inf

R→0
Rs−n

∫
BR(x0)∩B+

(
1 + |Du|s

)
dx = 0

}
which, in view of Giusti’s measure density result [23, Proposition 2.7] applied with µ(BR(x0)) :=∫
BR(x0)∩B+(1 + |Du|s) dx, proves the assertion on the upper bound for the Hausdorff dimension of the

singular set. �
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