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Abstract. Several new 1D results for solutions of possibly singular or degenerate
elliptic equations, inspired by a conjecture of De Giorgi, are provided. In particular,
1D symmetry is proven under the assumption that either the profiles at infinity are
2D, or that one level set is a complete graph, or that the solution is minimal or, more
generally, Q-minimal.
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1. Introduction

Given u : RN → R and k ∈ N, with 1 6 k 6 N , we say that u possesses k-dimensional
symmetry (or, for short, that u is kD), if there exists ω1, . . . , ωk ∈ SN−1 which are
mutually orthogonal and a function uo : Rk → R in such a way that

u(x) = uo(ω1 · x, . . . , ωk · x)
for any x ∈ RN .
Roughly speaking, u is kD if it depends only on k variables – namely, the ones in the
coordinate directions ω1, . . . , ωk.
On page 175 of [DG79], the following striking question was posed. Suppose that u ∈
C2(RN , [−1, 1]) is a solution of

(1.1) ∆u+ u− u3 = 0 in the whole RN ,

satisfying

(1.2) ∂xN
u(x) > 0 for any x ∈ RN .

Is it true that u is 1D, at least for N 6 8?
The answer to this question is known to be positive for N = 2, 3, thanks to the results
in [BCN97, GG98, AC00, AAC01] and, recently, [dPKW08] have constructed, when
N > 9, an example of a solution of (1.1) satisfying (1.2) which is not 1D.
To the best of our knowledge, the question is still open when 4 6 N 6 8, though a
positive answer holds under the additional assumption that

(1.3) lim
xN→±∞

u(x′, xN) = ±1

for any x′ ∈ RN−1, due to [Sav03].
The scope of this paper is to give some new 1D results when 4 6 N 6 8 under
assumptions less restrictive than (1.3).



1D SYMMETRY FOR ELLIPTIC EQUATIONS 3

We will, in fact, deal with a slightly more general form of (1.1), which encompasses
possibly singular or degenerate p-Laplacian operators ∆p, where, as usual, p ∈ (1,+∞)
is fixed once for all and ∆pu := div (|∇u|p−2∇u).
Roughly speaking, we present here essentially three kinds of main results, which will
deduce the 1D symmetry of the solution by one of the following hypotheses1:

(*1): the 2D symmetry of limit profiles,
(*2): the complete graph of a level set,
(*3): the Q-minimality of the solution and the sublinearity of level sets.

Here is the formal framework we work in.
We take W to be a double-well potential. More precisely, we suppose that W ∈
C1,a

loc (R) ∩ C1,1
loc ((−1, 1)) for some a ∈ (0, 1), that W (r) > 0 for any r ∈ R \ {−1,+1}

and that W (−1) = W (+1) = 0.
We also suppose that W ′(r) = 0 if and only if r ∈ {−1, κ, 1}, for a suitable κ ∈ (−1, 1).
Moreover, we take the following growth conditions near the two wells ofW . We suppose
that there exist some 0 < c < 1 < C and some θ? ∈ (0, 1) such that:

• For any θ ∈ [0, 1],

c θp 6 W (−1 + θ) 6 C θp and c θp 6 W (1− θ) 6 C θp.

• For any θ ∈ [0, θ∗),

cθp−1 6 W ′(−1 + θ) 6 Cθp−1 and − Cθp−1 6 W ′(1− θ) 6 −cθp−1.

• W ′ is monotone increasing in (−1,−1 + θ?) ∪ (1− θ?, 1).

The above assumptions on W are quite common in the literature (see, e.g., [VSS06])
and they are satisfied by the standard model W (r) = (1− r2)p.

1Typical examples of cases (*1), (*2) and (*3) will be Theorems 1.1, 1.3 and 1.10, respectively.
Though the proof of our results will be quite technical, the expert reader may find it useful to get

an idea of the methods used from the beginning.

In case (*1), one of the main steps is to prove that the limit profiles (that we will formally introduce
in (1.5) below) are 1D. This will be accomplished by using inequality (4.17) in [FSV08], then by showing
that these profiles are global minimizers and so is u.

Accordingly, if one profile is not constant, then a rescaling argument (which shows that a typical
level set of the solution converges to a minimal surface) implies that the solution is 1D, thanks to
Corollary 7 of [FV08]. Finally, this gives that the two profiles are constant and equal to ±1 and so
the solution itself is 1D up to dimension N 6 8, because of the results in [VSS06].

In case (*2), the main idea is that if one level set of the solution is a complete graph, then one of
the limit profiles is constant, due to some results in [Far99, Far03]. Then, an energy estimate shows
that the other profile is also constant and this reduces the situation to the one treated in case (*1),
which implies the 1D symmetry result.

As for case (*3), minimal solutions are well-understood (up to dimension 7, or 8 when they are
monotone), see [VSS06]. Here, we extend the symmetry result to Q-minimizers which are either
low-dimensional or with sublinear level sets. To do this, we will rescale the solution and use again
Corollary 7 of [FV08].
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We will prove 1D symmetry results for

weak solutions u ∈ W 1,p
loc (RN , [−1, 1]) of

∆pu−W ′(u) = 0 in the whole RN .
(1.4)

For this, we first observe that (1.2) and standard regularity results imply the existence
of (N − 1)D profiles at ±∞, meaning that there exist u, u : RN−1 → R in such a way
that

(1.5) lim
xN→+∞

u(x′, xN) = u(x′) and lim
xN→−∞

u(x′, xN) = u(x′)

for any x′ ∈ RN−1.
In fact, well-know regularity results give that the above limits hold in C1,α

loc (see [DiB83,
Tol84]). Condition (1.3) requires u and u to be simply ±1. Theorem 1.1 below will
show that such condition can be weakened and still 1D symmetry holds.
We recall that particularly important solutions of our PDE are the minimizers, namely
the ones that satisfy

(1.6)

∫
BN

R

1

p
|∇(u+ η)|p +W (u+ η) dx >

∫
BN

R

1

p
|∇u|p +W (u) dx

for any η ∈ C∞
0 (BN

R ) and any R > 0.
As usual, BN

R is used to denote the open N -dimensional ball centered at the origin with
radius R. In jargon, condition (1.6) is stated by saying that u is a global minimizer,
following [JM04], or a class A minimizer, according to the nomenclature of [VSS06].
Of course, if u ∈ W 1,p

loc (RN , [−1, 1]) satisfies (1.6), then it satisfies (1.4).

1.1. Symmetry from the profiles. We now present some results obtaining the 1D
symmetry from a symmetry assumptions on the profiles u and u:

Theorem 1.1 (Symmetry if both the profiles are 2D). Let u be as in (1.2) and (1.4).
Let u and u be as in (1.5).
Suppose that both u and u are 2D.
Then, u is identically +1, u is identically −1 and u satisfies (1.6).
Also, if N 6 8, then u is 1D.

In dimension N 6 4, under the additional assumptions that W ∈ C2(R) and p = 2 (as
in the classical case of [DG79]), the claim of Theorem 1.1 holds true also when only
one profile is 2D, according to the following result:

Theorem 1.2 (Symmetry if one profile is 2D). Let u be as in (1.2) and (1.4).
Let u and u be as in (1.5).
Suppose that 2 6 N 6 4, that p = 2 and that W ∈ C2(R).
Assume that either u or u is 2D.
Then, u is 1D and it satisfies (1.6).



1D SYMMETRY FOR ELLIPTIC EQUATIONS 5

1.2. Symmetry from level sets being graphs. Next result proves 1D symmetry
under the assumption that one level set, say {u = c}, is a complete graph over the
entire RN−1, meaning that there exists Γ : RN−1 → R in such a way that

(1.7) {u = c} = {(x′, xN) ∈ RN−1 × R s.t. xN = Γ(x′)} .

We remark that condition (1.7) is, of course, compatible with (1.2), but it is not implied
by it (a counterexample being u(x′, xN) = γ(x1 + exN ), for a monotone and bounded
function γ).

Theorem 1.3 (Symmetry if one level set is a complete graph in the semilinear case).
Suppose that p = 2 and W (r) = (1− r2)2. Let u be as in (1.2) and (1.4).
Let u and u be as in (1.5) and suppose that (1.7) holds.
Then, u is identically +1, u is identically −1 and u satisfies (1.6).
Moreover, if 2 6 N 6 8, then u is 1D.

Though2 we do not have a complete extension of Theorem 1.3 to the quasilinear case
and to more wild double-well potentials, we can prove the results contained in the
subsequent Theorems 1.4 and 1.5:

Theorem 1.4 (Symmetry if one level set is a complete graph in the quasilinear case).
Suppose that either

(1.8) N 6 4

or

(1.9) p = 2 and N 6 5.

Let u be as in (1.2) and (1.4). Assume that (1.7) holds.
Then, u is identically +1, u is identically −1, u is 1D and it satisfies (1.6).

Theorem 1.5 (Symmetry if the κ-level set is a complete graph). Suppose that p > N−3
and let u be as in (1.2) and (1.4).
Suppose that {u = κ} is a complete graph over the entire RN−1.
Then, the theses of Theorem 1.3 hold true.

We note that Theorem 1.5 requires both a bound on p with respect to the dimension
N and that the level set corresponding to the maximum of W is a complete graph,
while Theorem 1.4 under assumption (1.8) works when any level set is a graph and for
any p > 1, but it requires, for p 6= 2, a stronger assumption on the dimension.

2In the statement of Theorem 1.3, the assumption that W is exactly the standard double-well po-
tential can be weakened. Indeed, following [Far03], the structural assumption needed for Theorem 1.3
is that there exist µ, δ > 0 such that

W ′(r)
r − κ

6 −µ

for any r ∈ (κ− δ, κ + δ) \ {κ}.
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1.3. Symmetry for minimizers. Next result deals with the profiles of the minimizing
solutions:

Proposition 1.6. Let u ∈ W 1,p
loc (RN , [−1, 1]) be as in (1.2) and (1.6).

Let u be as in (1.5) and suppose that

(1.10) u is 7D.

Then, u is constantly equal to +1.
Analogously, if u is 7D, then it is constantly equal to −1.

Of course, if N 6 8, then condition (1.10) is automatically satisfied. In this spirit, we
now present a result for the case of minimizers in dimension 8:

Theorem 1.7 (Symmetry for monotone minimizers). Let N = 8. Let u ∈ W 1,p
loc (RN , [−1, 1])

be as in (1.2), satisfying (1.6). Then, u is 1D.

Theorem 1.7 is a non-trivial generalization of Theorem 1.4 of [VSS06]. More precisely,
Theorem 1.4 of [VSS06] proved the claim in Theorem 1.7 here under the additional
assumption (1.3) (such additional assumption was crucial in [VSS06] to obtain a graph
property for level sets: see page 80 there).

1.4. Symmetry from uniform limits. Next result deals with the uniform limit case
for minimal solutions (no monotonicity assumption is needed): we will point out in
such results that the control of only one limit is enough to obtain the 1D symmetry.

Theorem 1.8 (Symmetry if one limit is uniform). Let u ∈ W 1,p
loc (RN , [−1, 1]) satisfy

(1.6). Suppose that either

(1.11) lim
xN→+∞

u(x′, xN) = 1 uniformly for x′ ∈ RN−1

or

(1.12) lim
xN→−∞

u(x′, xN) = −1 uniformly for x′ ∈ RN−1.

Then, u is 1D.

We recall that, for p = 2, any solution of (1.1) satisfying both (1.11) and (1.12),
also satisfies (1.2) (see, for instance, [GG98, Far99, Far01]) and so (1.6) (see, e.g.,
[AC00, AAC01] and Lemma 9.1 in [VSS06]): therefore, Theorem 1.8 contains, as a
particular case, the fact that, for p = 2, solutions of (1.1) with uniform limits ±1
are 1D in any dimension N . This statement, known in the literature under the name
of Gibbons conjecture, was first proven independently and with different methods
by [Far99, BBG00, BHM00].

1.5. Symmetry for Q-minima. We now deal with Q-minima, with the intention of
carrying out the research started in [FV08]. For this, we recall that, given Q > 1, u is
said to be a Q-minimum in the bounded domain Ω ⊂ RN if

(1.13) Q

∫
Ω

1

p
|∇(u+ η)|p +W (u+ η) dx >

∫
Ω

1

p
|∇u|p +W (u) dx

for any η ∈ C∞
0 (Ω).
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Of course, for Q = 1, (1.13) boils down to (1.6).

Theorem 1.9 (Symmetry for Q-minimal monotone solutions). Let 2 6 N 6 4. Let u
be as in (1.2) and (1.4). Suppose that (1.13) holds. Then, u is 1D.

For minimal solutions or, more generally, for Q-minimal solutions with Q close to 1,
it is possible to obtain the 1D symmetry in any dimension, provided that one level set
grows less than linearly, according to the subsequent Theorem 1.10.
For this, given ξ ∈ SN−1 we denote by πξ the projection along ξ⊥ := {v ∈ RN s.t. v·ξ =
0}, that is

πξw := w − (w · ξ)ξ
for any w ∈ RN .
With the above notation, we have the following result:

Theorem 1.10 (Symmetry for Q-minimal solutions with Q close to 1). Let u be as
in and (1.4), with W (r) = (1 − r2)p. Suppose that (1.13) holds and that there exists
θ ∈ (−1, 1), ξ ∈ SN−1 and Φ : RN → [0,+∞) in such a way that

(1.14) {u = θ} ⊆
{
|x · ξ| 6 Φ(πξx)

}
and, for any K > 0,

(1.15) lim
ε→0

(
ε sup

w∈ξ⊥, |w|6K

Φ(w/ε)

)
= 0.

Then, there exists a suitable constant κo > 0 such that if Q 6 1 + κo, we have that u
is 1D.

The proofs of our results will rely on a profile analysis and they will combine several
results3 of [Far03, VSS06, FV08, FSV08].
We remark that the results of this paper are, to the best of our knowledge, new even
in the semilinear case p = 2.
This paper is organized as follows. We present some preliminary results, some of them
interesting in themselves, in §2.1–2.4. These auxiliary results are proven in §2.5–2.18.
Two proofs of Theorem 1.1 are given in §3 and §4: the first one uses some calibration
results, the second one is calibration independent. The other main results are proven
in §5–13.

2. Preliminary results

2.1. Comparison and calibration results. The proof of our main results will make
use of some preliminary considerations. We list here such auxiliary tools, postponing
the proofs for the reader’s convenience.
First, we consider a strong comparison principle in the form needed for this paper:

3We observe that, in our general setting, W ′ is not locally Lipschitz when p < 2, thus the results of
[FSV08] are not, in principle, directly applicable. However, we will obtain from the strong comparison
principle of Lemma 2.1 that |u| < 1. Then, since W ′ is locally Lipschitz inside (−1, 1), we will be in
the position of using the results of [FSV08].

Also, we point out that the ODE analysis of [FSV08] is valid for continuous nonlinearities f := −W ′.
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Lemma 2.1. Let Ω ⊆ RN be an open connected set. For i = 1, 2, let ui ∈ C1(Ω, [−1, 1])
be weak solutions of ∆pui = W ′(ui) in Ω, with u1(x) 6 u2(x) for any x ∈ Ω.
Assume that one of the following conditions holds:

(i): p = 2,
(ii): {|∇u1|+ |∇u2| = 0} = ∅,
(iii): u1 is identically −1,
(iv): u2 is identically +1.

Then, either u1(x) < u2(x) for any x ∈ Ω or u1 is identically equal to u2.

We then point out some preliminary considerations on how the Q-minimality of a
solution reflects into the same property for the profiles. These observations will lead
to the subsequent Proposition 2.3, which is interesting in itself, being a generalization
of Theorem 1.3 of [JM04], where an analogous result is obtained in the case p = 2
and Q = 1.
We first recall the calibration result asserting that monotone solutions are minimizers
for perturbations staying between u and u:

Lemma 2.2. Suppose that u is as in (1.2) and (1.4).
Then, u satisfies (1.6) for any η ∈ C∞

0 (BN
R ), for any R > 0, provided that

u(x′) 6 u(x) + η(x) 6 u(x′)

for any x = (x′, xn) ∈ RN .

Next is the generalization of Theorem 1.3 of [JM04] which fits our scopes:

Proposition 2.3. Suppose that u is as in (1.2) and (1.4).
Suppose also that there exists Q > 1 such that

Q

∫
Ω′

1

p
|∇(u+ η)|p +W (u+ η) dx′ >

∫
Ω′

1

p
|∇u|p +W (u) dx′

and Q

∫
Ω′

1

p
|∇(u+ η)|p +W (u+ η) dx′ >

∫
Ω′

1

p
|∇u|p +W (u) dx′

(2.1)

for any bounded domain Ω′ ⊂ RN−1 and any η ∈ C∞
0 (Ω′).

Then, u satisfies (1.13) for any bounded domain Ω ⊂ RN and any η ∈ C∞
0 (Ω).

2.2. Barriers. The proofs of Theorem 1.1 and 1.3 will also rely on the following aux-
iliary results. The first deals with a barrier. The second is a flatness result. These
results are first stated and proved later on, in order not to interrupt the thread of the
argument.

Lemma 2.4. Let a ∈ (0, 1), λ ∈ (−1, 1) and µ ∈ (−1, λ). Let W̃ ∈ C1,a
loc (R) ∩

C1,1
loc ((−1, 1)) be such that

(2.2) W̃ (r) > W̃ (−1) for any r 6 µ,

(2.3) W̃ (r) = W (r) for any r > λ
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and

(2.4) inf
(−∞,λ]

W̃ > 0.

Given any R > 1, there exists βR ∈ C1(BN
R , (−1, 1)), such that βR = −1 on ∂BN

R ,

(2.5) ∆pβR − W̃ ′(βR) = 0

in BN
R and

(2.6) lim
R→+∞

(
sup
BN

R

βR

)
= +1.

Lemma 2.5. Let v ∈ W 1,p
loc (RN , [−1, 1]) be a weak solution of (1.4) such that

(2.7) sup
RN

v = 1.

Assume that either p = 2 or {∇v = 0} = ∅.
Then, either infRN v = −1 or v(x) = 1 for any x ∈ RN .

Given R > 0 and v ∈ W 1,p(BN
R ) ∩ L∞(BN

R ), we define

(2.8) ER(v) :=

∫
BN

R

1

p
|∇v(x)|p +W (v(x)) dx .

A consequence of Lemma 2.5 is the following

Corollary 2.6. Suppose that v ∈ W 1,p
loc (RN , [−1, 1]) is a weak solution of (1.4) so that

(2.9) inf
RN

v > −1 and

(2.10) lim inf
R→+∞

ER(v)

RN
= 0.

Assume that either p = 2 or {∇v = 0} = ∅.
Then, v(x) = 1 for any x ∈ RN .

2.3. ODE analysis. We classify solutions of the associated ODE, as follows:

Lemma 2.7. Let h ∈ W 1,p
loc (R, [−1, 1]) be a weak solution of

(2.11) (|h′|p−2h′)′ −W ′(h) = 0

in the whole R.
Then, h must satisfy one of the following possibilities:

(P1): h is constantly equal to either −1, κ or +1,
(P2): {h′ = 0} = ∅, and h attains at infinity limits −1 (on one side) and +1 (on the

other side),
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(P3): h′(t) 6= 0 for any t in a bounded interval of the form (β1, β2) with

h′(β1) = h′(β2) = 0,

W (h(β1)) = W (h(β2)) = W
(

inf
R
h
)

= W
(

sup
R
h
)
,

h(β1), h(β2) ∈ (−1, 1),

{h(β1), h(β2)} =
{

inf
R
h, sup

R
h
}

=
{

min
R
h, max

R
h
}
.

We remark that Lemma 2.7 heavily depends on the growth and shape assumptions we
took on W . For more general potential, the result is actually false and, for instance,
plateaus may be developed (see, e.g., Propositions 7.2 and 7.3 in [FSV08]).
The result in Lemma 2.7 may also be strengthened as follows:

Corollary 2.8. Let the setting of Lemma 2.7 hold. Then, the following conditions are
equivalent:

(S1): either (P2) or (P3) holds,
(S2): there exists t−, t+ ∈ R for which h(t−) < κ < h(t+).

We now classify the minimal solutions of the associated ODE:

Lemma 2.9. Let h ∈ W 1,p
loc (R, [−1, 1]) be a weak solution of (2.11) in the whole R.

Then, the following conditions are equivalent:

(a): h is either constantly equal to −1 or +1, or {h′ = 0} = ∅ with limits +1 and
−1 at infinity,

(b): h satisfies (1.6).

2.4. Profile analysis. We present some geometric properties and minimality features
for 1D profiles. For this, we take u as in (1.2) and (1.4), and u, u as in (1.5).

Proposition 2.10. Suppose that both u and u are 1D.
Then:

(C1): either u is identically equal to −1 or it does not have any critical points and it
converges to −1 and +1 at infinity, and

(C2): either u is identically equal to +1 or it does not have any critical points and it
converges to −1 and +1 at infinity.

Also, u and u satisfy (1.6) and

(2.12)

∫
BN

R

1

p
|∇u|p +W (u) dx +

∫
BN

R

1

p
|∇u|p +W (u) dx 6 CRN−1

for a suitable C > 0, for any R > 0.

We remark that, in our general setting, a statement as the one in Proposition 2.10
does not follow easily from standard arguments. Indeed, since W is not assumed to be
in C2(R), the linearized equation may not behave continuously at infinity. Moreover,
since we allow the possibility of W ′′(κ) to vanish, the function constantly equal to
κ may be a stable profile which could not be excluded by the stability methods in
[AC00, AAC01].
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A byproduct of our analysis is that energy bounds imply 1D symmetries of the profiles:

Proposition 2.11. Suppose that

(2.13)

∫
BN−1

R

|∇u(x′)|p dx′ 6 CR2

for some C > 0.
Then, u is 1D.
Also, if N 6 4 and

(2.14)

∫
BN−1

R

1

p
|∇u(x′)|p +W (u) dx′ 6 CR2

for some C > 0, then, both u and u are 1D.
Analogous results hold by exchanging the roles of u and u.

Here is another criterion for 1D symmetry of profiles:

Proposition 2.12. If u is 2D, then it is 1D. Analogously, if u is 2D, then it is 1D.

Below we rule out strictly monotone profiles for minimal solutions:

Proposition 2.13. Let u satisfy (1.2) and (1.6).
If u is 1D, then it is constantly equal to +1.
Analogously, if u is 1D, then it is constantly equal to −1.

A similar result can be proven without the minimality assumption, when both the
profiles are 1D, according to the following result:

Proposition 2.14. Let u ∈ W 1,p
loc (RN , [−1, 1]) be as in (1.2) and (1.4).

Let u and u be as in (1.5) and suppose that they are both 1D.
Then, u is constantly equal to +1 and u is constantly equal to −1.

Note that in Proposition 2.13, where minimality is assumed, it is possible to control
independently any profile. On the contrary, in Proposition 2.14, minimality is not
assumed, but then we need to suppose that both the profiles are 1D to fully classify
them. Lemma 2.9 and Proposition 2.10 also reflect a similar feature.

2.5. Proof of Lemma 2.1. Case (i) is classical.
If either (iii) or (iv) holds, the claim of Lemma 2.1 follows from [Váz84].
If (ii) holds, we first use (iii) and (iv) to deduce that |u(x)| < 1 for any x ∈ Ω. Then,
the claim of Lemma 2.1 is a consequence of [Dam98].
For related results and further comments, the interested reader may also look at [PSZ99,
SV05].

2.6. Proof of Lemma 2.2. See Theorem 4.5 in [AAC01], as exploited, for instance,
in Theorem 10.4 of [DG02].
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2.7. Proof of Proposition 2.3. Given any bounded domain U ⊂ RN and any φ ∈
C∞

0 (U), we write φxN
(x′) := φ(x′, xN) for any fixed xN ∈ R. We also denote UxN

:=
{x′ ∈ RN−1 s.t. (x′, xN) ∈ U}. Note that UxN

is bounded, since so is U , and that
φxN

∈ C∞
0 (UxN

).
Therefore, we deduce from (2.1) that

Q

∫
U

1

p
|∇(u+ φ)|p +W (u+ φ) dx

= Q

∫
R

∫
UxN

1

p
|∇(u(x′) + φxN

(x′))|p +W (u(x′) + φxN
(x′)) dx′ dxN

>
∫

R

∫
UxN

1

p
|∇(u(x′))|p +W (u(x′)) dx′ dxN

=

∫
U

1

p
|∇(u(x′))|p +W (u(x′)) dx.

Analogously,

Q

∫
U

1

p
|∇(u+ φ)|p +W (u+ φ) dx

>
∫

U

1

p
|∇(u(x′))|p +W (u(x′)) dx

(2.15)

for any φ ∈ C∞
0 (U).

Let now Ω and η be as in the claim of Proposition 2.3. Given a bounded domain
U ⊂ RN and v ∈ W 1,p(U), we define

EU(v) :=

∫
U∩Ω

1

p
|∇v|p +W (v) dx .

We also denote by χS the characteristic function of a set S and

α := (u+ η)χ{u+η>u} + uχ{u+η6u},

β := uχ{u+η>u} + (u+ η)χ{u6u+η6u} + uχ{u+η<u},

γ := (u+ η)χ{u+η<u} + uχ{u+η>u}.

Notice that u(x′) 6 β(x′, xN) 6 u(x′) for any (x′, xN) ∈ RN and that β agrees with u
outside Ω. So, by Lemma 2.2,

EΩ(β) > EΩ(u).

Moreover, the set {u+ η > u} is contained in Ω, thence it is bounded, and α = u
outside {u+ η > u}. Consequently, by (2.15),

QE{u+η>u}(α) > E{u+η>u}(u).

Analogously,

QE{u+η<u}(γ) > E{u+η<u}(u).
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By collecting the above estimates, we gather that

QEΩ(u+ η) = QE{u+η>u}(u+ η)

+QE{u6u6u}(u+ η) +QE{u+η<u}(u+ η)

= QE{u+η>u}(α) +QE{u6u6u}(β) +QE{u+η<u}(γ)

> E{u+η>u}(u) + E{u6u6u}(β) + E{u+η<u}(u)

= EΩ(uχ{u+η>u} + βχ{u6u6u} + uχ{u+η<u})

= EΩ(β)

> EΩ(u) ,

as desired.

2.8. Proof of Lemma 2.4. By direct methods, we take βR to be the minimizer of

JR(v) :=

∫
BN

R

1

p
|∇v|p + W̃ (v) dx

over functions v ∈ W 1,p(BN
R ) with trace −1 on ∂BN

R . By (2.2) and (2.3), we may
suppose |βR| 6 1, and, in fact, |βR| < 1 by Lemma 2.1.
Thus, it only remains to prove (2.6). If, by contradiction, (2.6) were false, we would
have βR 6 a for infinitely many R’s, for a suitable a < 1. Hence, from (2.4),

W̃ (βR(x)) > inf
(−∞,a]

W̃ =: α > 0

for any x, for infinitely many R’s, and so

(2.16) JR(βR) > constαRN .

On the other hand, if we take w to be −1 on ∂BN
R and +1 in BN

R−1, we may achieve
the bound

(2.17) JR(w) 6 constRN−1 ,

due to (2.3).
The minimality of βR is in contradiction with (2.16) and (2.17), thus proving (2.6).

2.9. Proof of Lemma 2.5. We may suppose that

(2.18) inf
RN

v > −1,

otherwise we are done.
We claim that for any ε > 0 and ρ > 0

there exists x̄ = x̄(ε, ρ) ∈ RN such that

v(x) > 1− ε for any x ∈ BN
ρ (x̄) .

(2.19)

For this, making use of (2.7), we let xj ∈ RN be a sequence such that v(xj) approaches
1 as j → +∞. Then, by the regularity estimates of [DiB83, Tol84], if wj(x) := v(x+xj)
we have that, up to subsequence, wj converges locally uniformly to some w which is a
weak solution of (1.4) and so that w(0) = 1.
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By Lemma 2.1, w must be identically 1. Since wj tends to w uniformly in BN
ρ (0), we

take jε,ρ be so that
‖wj − w‖L∞(BN

ρ (0)) 6 ε

for any j > jε,ρ and we set x̄ := xjε,ρ .
Then,

|v(x)− 1| = |wjε,ρ(x− x̄)− 1| 6 ‖wjε,ρ − w‖L∞(BN
ρ (0)) 6 ε

for any x ∈ BN
ρ (x̄), proving (2.19).

We now consider the barrier in Lemma 2.4. For this scope, we use (2.18) to choose

λ :=
1

2

(
inf
RN

v − 1
)
∈ (−1, 0]

and to note that

(2.20) v is also a weak solution of (2.5),

because of (2.3). Then, we set βR(x; x̃) := βR(x− x̃) for any x̃ ∈ RN .
If we take

ε := 1− sup
BN

1 (0)

β1 > 0

and x̄ = x̄(ε, 2) in (2.19), we deduce that v(x) > β1(x; x̄) for any x ∈ BN
1 (x̄).

By enlarging R and sliding βR, Lemma 2.1, (2.6) and (2.20) imply the desired claim.

2.10. Proof of Corollary 2.6. We have that

sup
RN

v = 1.

Indeed, if not, we would have a0 6 v 6 a1, with −1 < a0 6 a1 < 1, due to (2.9), and
so

ER(v) >
∫

BN
R

W (v) dx > constRN inf
[a0,a1]

W

for any R > 0, in contradiction with (2.10).
Then, the result follows from Lemma 2.5.

2.11. Proof of Lemma 2.7. First of all, we observe that, for any ϑ > 0,

there cannot be more than

two points in {W = ϑ} ∩ [−1, 1].
(2.21)

Indeed, if, say W (r1) = W (r2) = W (r3) = ϑ with −1 6 r1 < r2 < r3 6 1, Rolle’s
Theorem yields that there would exist s1 ∈ (r1, r2) ⊆ (−1, 1) and s2 ∈ (r2, r3) ⊆ (−1, 1)
such that W ′(s1) = W ′(s2) = 0, hence s1 = s2 = κ, which gives the contradiction that
proves (2.21).
Now, we take h as in the statement of Lemma 2.7. We recall that, thanks to Corol-
lary 4.8 of [FSV08], we have

(2.22)
p− 1

p
|h′(τ)|p −W (h(τ)) =

p− 1

p
|h′(σ)|p −W (h(σ))

for any τ , σ ∈ R.
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Moreover, by Lemma 4.10 in [FSV08], we have that one of the following possibilities
holds:

I. h is constant,
II. {h′ = 0} = ∅,

III. h′(t) 6= 0 for any t in a bounded interval of the form (β1, β2) with h′(β1) =
h′(β2) = 0 and

(2.23) W (h(β1)) = W (h(β2)) = W
(

inf
R
h
)

= W
(

sup
R
h
)
.

IV. h′(t) 6= 0 for any t in an unbounded interval either of the form (β,+∞)
or (−∞, β), with β ∈ R, h′(β) = 0 and

(2.24) W (h(β)) = W
(

inf
R
h
)

= W
(

sup
R
h
)
.

Let us suppose that case I holds. Then, h is identically equal to some c, and, by (2.11),
we have thatW ′(c) = 0. Accordingly, c ∈ {−1, κ,+1} and we are in (P1) of Lemma 2.7.
Suppose now that case II holds, hence h is monotone and bounded. Let

`± := lim
t→±∞

h(t).

Note that

(2.25) `− < `+.

Also, by (2.11) and the regularity results of [DiB83, Tol84], we have that

(2.26) lim
t→±∞

h′(t) = 0

and that

W ′(`±) = 0.

Therefore,

(2.27) `−, `+ ∈ {−1, κ,+1}.

We claim that

(2.28) `− 6= κ and `+ 6= κ.

Indeed, suppose, by contradiction, that `− = κ (the case `+ = κ may be ruled out in
the same way). Then, by (2.25) and (2.27), we have that `+ = +1.
Thence, making use of (2.22) and (2.26), we have

0 = −W (`+) = lim
τ→+∞

p− 1

p
|h′(τ)|p −W (h(τ))

= lim
σ→−∞

p− 1

p
|h′(σ)|p −W (h(σ)) = −W (κ) < 0.

This contradiction proves (2.28).
Then, case II, (2.27) and (2.28) say that we are in case (P2) of Lemma 2.7.
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Let us now deal with case III. We set bi := h(βi). Note that b1 6= b2, because h is strictly
monotone in (β1, β2). For definiteness, we thus assume, without loss of generality, that

(2.29) b1 < b2.

Since h(t) ∈ [−1, 1] for any t ∈ R, the use of Lemma 2.1 gives that

(2.30) |bi| < 1.

We now define
ϑ∗ := W

(
inf
R
h
)
.

We observe that, by (2.23),

ϑ∗ = W
(

inf
R
h
)

= W
(

sup
R
h
)

= W (b1) = W (b2)

and therefore, by (2.30), ϑ∗ > 0. Consequently, from (2.21) and (2.29),

(2.31) b1 = inf
R
h and b2 = sup

R
h,

which says that such infimum and supremum are attained.
Hence, being in case III with (2.30) and (2.31), we have reduced the situation to
case (P3) of Lemma 2.7.
In order to complete the proof of Lemma 2.7, we now show that

(2.32) case IV cannot hold.

We argue by contradiction. If case IV held, we may suppose, without loss of generality,
that

(2.33) h′(t) > 0 for t > β.

Note that |h(β)| < 1 due to Lemma 2.1, and so

(2.34) W (h(β)) > 0.

Let also
` := lim

t→+∞
h(t).

By (2.33), we have that

(2.35) ` > h(β).

Also, (2.11) and the regularity results of [DiB83, Tol84] yield that

lim
t→±∞

h′(t) = 0

and

(2.36) W ′(`) = 0.

Therefore, recalling (2.22), we obtain

−W (`) = lim
τ→+∞

p− 1

p
|h′(τ)|p −W (h(τ))

=
p− 1

p
|h′(β)|p −W (h(β)) = −W (h(β)).

(2.37)
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As a consequence, using (2.35) and Rolle’s Theorem, we see that there exists s ∈
(h(β), `) ⊆ (−1, 1) for which W ′(s) = 0. By our assumption on the potential, this
gives that s = κ and so h(β) < κ < `.
Hence, by (2.36), ` = +1 and so a contradiction easily follows from (2.34) and (2.37).
This contradiction proves (2.32) and finishes the proof of Lemma 2.7.

2.12. Proof of Corollary 2.8. If (S2) in Corollary 2.8 holds, then (P1) in Lemma 2.7
cannot hold. So either (P2) or (P3) holds, due to Lemma 2.7.
If (P2) holds, then (S2) is obvious.
Suppose now, by contradiction, that (P3) holds and (S2) does not hold. Without loss of
generality, we may then suppose that h(t) > κ for any κ ∈ R. Thus, if we set bi := h(βi)
for i = 1, 2, we get that W (b1) = W (b2), with b1, b2 ∈ [κ, 1), in contradiction with our
shape assumption on W .

2.13. Proof of Lemma 2.9. Suppose that condition (a) in the statement of Lemma 2.9
holds. Our purpose is to show that (b) holds, i.e. that (1.6) is satisfied.
If h is constantly equal to +1 or −1, its energy vanishes and (1.6) trivially holds. Thus,
we just need to prove that if h is strictly monotone with limits ±1 then (1.6) holds.
We take v to agree with h outside [−R,R]. By an easy density argument, we may
suppose that

(2.38) v ∈ C1(R).

Also, without loss of generality, we may also assume that

(2.39) h′ > 0

and that R is so large that h(R) (resp., h(−R)) is very close to +1 (resp., −1), and so

(2.40) v(R) = h(R) > h(−R) = v(−R).

We denote by q the conjugate exponent of p, namely q := p/(p−1), and, for any θ ∈ R,
we define

G(θ) :=

∫ θ

−1

(
qW (s)

)1/q

ds.

From (2.38) and Young Inequality,∣∣∣∣ ddtG(v(t))

∣∣∣∣ = |v′(t)|
(
qW (v(t))

)1/q

6
1

p
|v′(t)|p +W (v(t)).

As a consequence, recalling (2.40),

G(v(R))−G(v(−R)) = |G(v(R))−G(v(−R))|

=

∣∣∣∣∫ R

−R

d

dt
G(v(t)) dt

∣∣∣∣ 6 ∫ R

−R

1

p
|v′(t)|p +W (v(t)) dt.

(2.41)
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Moreover, by Corollary 4.9 in [FSV08],

p− 1

p
|h′(t)|p −W (h(t)) = 0

for any t ∈ R, and so, recalling (2.39),

1

p
(h′(t))p +W (h(t)) =

(
qW (h(t))

)1/q

h′(t).

As a consequence, by using again (2.39) to change variable of integration,∫ R

−R

1

p
(h′(t))p +W (h(t)) dt =

∫ R

−R

(
qW (h(t))

)1/q

h′(t) dt

=

∫ h(R)

h(−R)

(
qW (τ)

)1/q

dτ = G(v(R))−G(v(−R)).

This and (2.41) show that h satisfies (1.6).
The above arguments have proven that condition (a) in the statement of Lemma 2.9
implies condition (b).
Viceversa, suppose that (b) holds.
Then,

(2.42) h cannot be constantly equal to κ.

Indeed, if h were constantly equal to κ, we let vR be such that vR(t) = 1 for any |t| 6 R,
vR(t) = κ for any |t| > R + 1 and |v′R| 6 2. Then,

0 6
∫ R+1

−(R+1)

1

p

(
|v′R|p − |h′|p

)
+W (vR)−W (h) dt

6
2p+1

p
+ 2 ‖W‖L∞([−1,1]) − 2(R + 1)W (κ),

in virtue of (1.6). A contradiction is then obtained by taking R sufficiently large,
recalling that W (κ) > 0. This proves (2.42).
Moreover,

(2.43) sup
R
|h| = +1.

Otherwise, we would have that h(t) ∈ [a, b] for any t ∈ R, with −1 < a 6 b < 1 and so

(2.44)

∫ R+1

−(R+1)

1

p
|h′(t)|p +W (h(t)) dt > 2(R + 1) inf

[a,b]
W,

while, if wR is such that wR(t) = 1 for any |t| 6 R, wR(t) = h(t) for any |t| > R + 1
and |w′R| 6 2,

(2.45)

∫ R+1

−(R+1)

1

p
|w′R(t)|p +W (wR(t)) dt 6

2p+1

p
+ 2‖W‖L∞([−1,1]).

From (1.6), (2.44) and (2.45), a contradiction easily follows by taking R large, and this
proves (2.43).
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Notice in particular that (2.43) implies that case (P3) in Lemma 2.7 cannot hold.
This observation, (2.42) and the classification in Lemma 2.7 imply that (a) holds, thus
ending the proof of Lemma 2.9.

Though we do not need it here, we would like to remark that our proof of Lemma 2.9
also shows that monotone 1D solutions with limits −1 and +1 are minimizing among
1D functions that have the same limits.

2.14. Proof of Proposition 2.10. We set

(2.46) cu := sup
r∈
[
inf
RN

u, sup
RN

u
] (−W (r)

)
= − inf

r∈
[
inf
RN

u, sup
RN

u
]W (r).

Since the roles of u and u are symmetrical in the statement of Proposition 2.10, we
may assume, for definiteness that

(2.47) W
(

inf
R
u
)

6 W
(

sup
R
u
)
,

so that, by Lemma 4.13 in [FSV08], formula (4.28) of [FSV08] holds true.
Consequently, we may apply Lemma 4.14 in [FSV08] and obtain that u must satisfy
one of the following possibilities:

A. u is constant,
B. {u′ = 0} = ∅,
C. There exist β ∈ R in such a way that u′(t) < 0 for t < β and u(t) = infR u

for t > β.
D. There exist β ∈ R in such a way that u′(t) > 0 for t > β and u(t) = infR u

for t 6 β.
E. There exist β1 6 β2 ∈ R in such a way that u′(t) < 0 for t < β1, u

′(t) > 0
for t > β2 and h(t) = infR u for t ∈ [β1, β2].

In fact, cases C, D and E cannot hold here, due to Lemma 2.7. Thus,

(2.48) either u is constant or {u′ = 0} = ∅.

We claim that

(2.49) u is not constantly equal to κ.

Indeed, otherwise, by (2.47),

W (κ) 6 W
(

sup
R
u
)

and so, by our hypotheses on W ,

sup
R
u = κ.

This is in contradiction with (1.2) and it thus proves (2.49).
In force of Lemma 2.7, (1.2), (2.48) and (2.49), we have thus proven that the claim
in (C1) of Proposition 2.10 holds true.
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We now use this information4 to prove (C2). For this purpose, we first show that

(2.50) sup
R
u = +1.

Indeed, if the contrary were true, (C1) and (1.2) would imply that u is constantly equal
to −1 and therefore

inf
RN

u = −1 and sup
RN

u < 1.

Thus, by Lemma 2.5 (applied to v := −u), we would have that u is constant, in
contradiction with (1.2).
This proves (2.50), which, together with Lemma 2.7, gives that the claim in (C2) of
Proposition 2.10 holds true.
Notice that (C1), (C2) and Lemma 2.9 imply that both u and u satisfy (1.6).
We now check the energy bound in (2.12). We prove the bound for u, since the one for
u is analogous.
For this, we observe that (C1), (C2) and (2.46) imply that cu = 0. Thus, we exploit
Corollary 4.16 of [FSV08] to conclude that

constRN−1 >
∫

BN
R

1

p
|∇u|p +W (u) + cu dx

=

∫
BN

R

1

p
|∇u|p +W (u) dx.

From this, we obtain (2.12) and we end the proof of Proposition 2.10.

2.15. Proof of Proposition 2.11. We first show that (2.13) implies that u is 1D.
In the course of this proof, to match with the notation in [FSV08], we set λ1(t) :=
(p − 1)tp−2 and λ2(t) := tp−2. The tangential gradient of a smooth function ψ along
any regular level set of a smooth function v will be denoted by ∇Lψ (see (2.6) in
[FSV08] for further details). The sum of the square of the principal curvatures of any
regular level sets of v will be denoted by K2

v (see Section 2.3 of [FSV08] for additional
comments).
If we define Y (x′) :=

(
x′, u(x′)

)
, we deduce from (2.13) that∫

x′∈RN−1

|Y (x′)|6R

|∇u(x′)|p dx′ 6 constR2.

This and Lemma 5.1 in [FSV08] imply that

(2.51)

∫
√

R6|Y (x′)|6R

|∇u(x′)|p

|Y (x′)|2
dx′ 6 const lnR,

as long as R is appropriately large.

4Notice that, at this level of the proof, we cannot obtain (C2) just by exchanging u and u, since
their role is fixed by (2.47).
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We now define

φ(x′) :=

 1 if |Y (x′)| 6
√
R,

2 ln(R/|Y (x′)|)
ln R

if
√
R < |Y (x′)| < R,

0 if |Y (x′)| > R.

We observe that

|∇φ(x′)| 6 const
|(1,∇u(x′))|
|Y (x′)| lnR

6
const

|Y (x′)| lnR

for any x′ ∈ RN−1 such that
√
R < |Y (x′)| < R.

Therefore, exploiting (2.51) here above and (4.17) of [FSV08], we conclude5 that∫
BN−1√

R/2
∩{∇u 6=0}

(
λ1

∣∣∇L|∇u|
∣∣2 + λ2|∇u|2K2

u

)
dx′

6
∫

RN−1∩{∇u 6=0}

(
λ1

∣∣∇L|∇u|
∣∣2 + λ2|∇u|2K2

u

)
φ2 dx′

6 const

∫
R3

|∇u|p|∇φ|2 dx′

6
const

ln2R

∫
√

R6|Y (x′)|6R

|∇u(x′)|p

|Y (x′)|2
dx′

6
const

lnR
,

for R suitably large. Here above λi is short for λi(|∇u|).
Consequently, by taking R arbitrarily large, we obtain that both∇L|∇u| and Ku vanish
on {∇u 6= 0} and so, by Lemma 2.11 of [FSV08], u is 1D.
Of course, by exchanging the roles of u and u, we have also proven that

if

∫
BN−1

R

|∇u(x′)|p dx′ 6 CR2,

then, u is 1D.

(2.52)

We now prove that, if N 6 4 and (2.14) holds, then u and u are both 1D. In fact, since
(2.14) is stronger than (2.13), we already know that u is 1D, and we may therefore
focus on proving that u is 1D too.
To this end, we exploit Lemma 4.1 of [FSV08] (alternatively, if p = 2, the computations
in Section 2 of [AC00] could also be employed). From such a result, (2.8), (2.14) and

5We recall that (4.17) of [FSV08] in this setting reads∫
RN−1∩{∇u 6=0}

(
λ1

∣∣∇L|∇u|
∣∣2 + λ2|∇u|2K2

u

)
φ2 dx′

6
∫

RN−1∩{∇u 6=0}
|∇u|p

(
|∇φ|2 + (p− 2)

( ∇u

|∇u|
· ∇φ

)2
)

dx′.

Theorem 4.12 of [FSV08] proves that such formula holds for our solutions.
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the fact that N 6 4, we see that

ER(ut) 6 constR3 ,

where ut(x) := u(x′, xN − t), for any t ∈ R.
Consequently,

ER(u) 6 constR3

and this implies (2.52).
Therefore, by (2.52), we conclude that u is 1D, finishing the proof of Proposition 2.11.

We remark that the above proof may be easily adapted to a more general framework
and it shows that any function with bounded gradient satisfying both the geometric
estimate in (4.17) of [FSV08] and the kinetic energy growth in (2.13) here must be 1D.

2.16. Proof of Proposition 2.12. During this proof, we will use again the notation
of λ1, λ2, ∇Lv and Kv stated on page 20.
In order to prove Proposition 2.12, we suppose that u is 2D and we show that, in
fact, it is 1D. To this extent, we use formula (4.17) of [FSV08] (see also the previous
footnote 5) to get that∫

RN−1∩{∇u 6=0}

(
λ1

∣∣∇L|∇u|
∣∣2 + λ2|∇u|2K2

u

)
ϕ2 dx′

6 const

∫
RN−1

|∇u|p|∇ϕ|2 dx′(2.53)

for any Lipschitz and compactly supported function ϕ : RN−1 → R, where λi is short
for λi(|∇u|).
In fact, since we assumed u to be 2D, up to a change of coordinates, we write u(x′) =
u(x1, x2).
Therefore, supposing with no loss of generality that N > 4, we take an arbitrary
Lipschitz and compactly supported function φ : R2 → R and τ ∈ C∞

0 (RN−3), with∫
RN−3

τ 2(x3, . . . , xN−1) dx3 . . . dxN−1 = 1 ,

and we choose

ϕ(x′) := φ(x1, x2)θ
(N−3)/2τ(θx3, . . . , θxN−1)

as test function, where θ ∈ (0, 1) is a fixed parameter.
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Then, the estimate in (2.53) implies∫
R2∩{∇u 6=0}

(
λ1

∣∣∇L|∇u|
∣∣2 + λ2|∇u|2K2

u

)
φ2(x1, x2) dx1 dx2

= θN−3

∫
RN−1∩{∇u 6=0}

(
λ1

∣∣∇L|∇u|
∣∣2 + λ2|∇u|2K2

u

)
φ2(x1, x2)τ

2(θx3, . . . , θxN−1) dx
′

6 const

∫
RN−1

|∇u|p
(
θN−3τ 2(θx3, . . . , θxN−1)|∇φ(x1, x2)|2

+‖φ‖2
L∞(R2)θ

N−1|∇τ(θx3, . . . , θxN−1)|2
)
dx′

= const

∫
RN−1

|∇u|p
(
τ 2(x3, . . . , xN−1)|∇φ(x1, x2)|2

+‖φ‖2
L∞(R2)θ

2|∇τ(x3, . . . , xN−1)|2
)
dx′.

Therefore, by taking θ as close as we wish to 0, we conclude that∫
R2∩{∇u 6=0}

(
λ1

∣∣∇L|∇u|
∣∣2 + λ2|∇u|2K2

u

)
φ2 dx1 dx2

6 const

∫
R2

|∇u|p|∇φ|2 dx1 dx2

6 const

∫
R2

|∇φ|2 dx1 dx2

for any Lipschitz and compactly supported function φ : R2 → R.
As a consequence, by Corollary 2.6 of [FSV08], we conclude that ∇L|∇u| and Ku vanish
identically on {∇u 6= 0} and therefore, by Lemma 2.11 of [FSV08], that u is 1D. This
gives the claim of Proposition 2.12.

2.17. Proof of Proposition 2.13. The proof is by contradiction. Suppose that u is
not constantly equal to +1. Then, it is strictly monotone, thanks to Lemma 2.9.
Therefore, there exists ϑ ∈ (−1, 1), ω′ ∈ SN−2 and to ∈ R in such a way that u(x′) is,
respectively, strictly bigger or strictly less than ϑ when ω′ · x′ > to or ω′ · x′ < to.
Up to translation, we will assume to = 0.
From this and (1.2), we conclude that

(2.54) {u = ϑ} ⊆ {(ω′, 0) · x > 0}.

For ε > 0, we now consider the rescaled function uε(x) := u(x/ε).
By (2.54), we obtain

(2.55) {uε = ϑ} ⊆ {(ω′, 0) · x > 0}.

Due to [Bou90, PV05], we know that {uε = ϑ} approaches, locally uniformly, the
boundary of a set E which has minimal perimeter, and so, from (2.55),

∂E ⊆ {(ω′, 0) · x > 0}.
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As a consequence of this and of Theorem 17.4 in [Giu84], we thus infer that ∂E is a
hyperplane.
Thence, from Corollary 7 of [FV08], u is 1D.
Therefore, in force of (2.54), we have that {u = ϑ} is a hyperplane normal to (ω′, 0),
that is

{u = ϑ} = {(ω′, 0) · x = co}

for some co ∈ R.
Accordingly, u(coω

′, xN) = ϑ for any xN ∈ R, which is in contradiction with (1.2).

2.18. Proof of Proposition 2.14. By Proposition 2.10, u and u satisfy (1.6). Thus,
u satisfies (1.6), thanks to Proposition 2.3.
Then, the claim follows from Proposition 2.13.

3. Proof of Theorem 1.1

By means of Proposition 2.12, both u and u are 1D.
In fact, u is identically +1 and u is identically −1, thanks to Proposition 2.14, and u
satisfies (1.6) because of Proposition 2.3.
Then, Theorem 1.4 and Lemma 9.1 of [VSS06] imply that u is 1D, as long as N 6 8.

4. An alternative proof of Theorem 1.1

We would like to remark that another strategy would lead to the proof of Theorem 1.1
without using the calibration result in Lemma 2.2.
Indeed, Lemma 2.2 has been used in this paper to deduce Proposition 2.3 and the
latter was used in the above proof of Theorem 1.1 that u also satisfies (1.6).
But this latter property may be also obtained via the following argument, which does
not use either Lemma 2.2 or Proposition 2.3.
Suppose, by contradiction, that there exists R > 0 and η ∈ C∞(BN

R ) for which the
inequality in (1.6) is false.
By direct minimization we now take w ∈ W 1,p(BN

R ) to attain the minimum of∫
BN

R

1

p
|∇w|p +W (w) dx

under the trace condition that w = u on ∂BN
R .

Then, our contradictory assumption implies that

(4.1)

∫
BN

R

1

p
|∇w|p +W (w) dx <

∫
BN

R

1

p
|∇u|p +W (u) dx .
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Let w̃(x) := min{w(x), u(x′)}, for any x = (x′, xN) ∈ RN . Since, by Proposition 2.10,
we know that u satisfies (1.6), it follows that∫

BN
R

1

p
|∇w̃|p +W (w̃) dx

=

∫
BN

R ∩{w6u}

1

p
|∇w(x)|p +W (w(x)) dx

+

∫
BN

R ∩{w>u}

1

p
|∇u(x′)|p +W (u(x′)) dx

=

∫
BN

R ∩{w6u}

1

p
|∇w|p +W (w) dx

+

∫ R

−R

∫
BN−1

R ∩{w(x′)>u(x′,xN )}

1

p
|∇u(x′)|p +W (u(x′)) dx′ dxN

6
∫

BN
R ∩{w6u}

1

p
|∇w|p +W (w) dx

+

∫ R

−R

∫
BN−1

R ∩{w(x′,xN )>u(x′)}

1

p
|w(x′, xN)|p +W (w(x′, xN)) dx′ dxN

=

∫
BN

R

1

p
|∇w|p +W (w) dx ,

thence, possibly replacing w with w̃, we may suppose that w 6 u. Analogously, w > u.
Therefore,

(4.2) u(x′) 6 w(x) 6 u(x′)

for any x = (x′, xN) ∈ RN .
We extend w to agree with u outside BN

R and we define

ut(x) = ut(x
′, xN) = u(x′, xN − t).

Then, by construction, ut is a weak solution of (1.4) in RN and w is a weak solution
of (1.4) in RN \ ∂BN

R . Also, u and u are weak solutions of (1.4) in RN−1 and thus in
RN (when taken to be constant functions in the Nth direction).
We observe that a stronger version of (4.2) holds, namely

(4.3) u(x′) < w(x) < u(x′)

for any x = (x′, xn) ∈ RN . To prove (4.3), suppose that, say u(x̄′) = w(x̄′, x̄N) for
some (x̄′, x̄N) ∈ RN .
Note that w = u > u on ∂BN

R , due to (1.2), so (x̄′, x̄N) 6∈ BN
R . Then, the assumptions

of Lemma 2.1 are fulfilled, due to Proposition 2.10 and so w and u are identically equal.
In particular, w = u = u on ∂BN

R , in contradiction with (1.2). This proves (4.3).
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Since

(4.4) lim
t→−∞

ut(x
′, xN) = u(x′) > w(x′)

due to (4.3), we deduce that there exists t? 6 0 in such a way that ut(x) > w(x) for
any t < t? and any x ∈ RN , ut?(x) > w(x) for any x ∈ RN and ut?(x

?) = w(x?) for a
suitable x? ∈ RN .
We show that

(4.5) t? = 0.

Suppose t? < 0. Then,

(4.6) ut? > u = w on ∂BN
R ,

thus x? cannot lie on ∂BN
R . Therefore, recalling that {∇ut? = 0} = ∅ by (1.2), we

deduce from Lemma 2.1 that w agrees identically with ut? , in contradiction with (4.6).
This proves (4.5), which in turn shows that u > w.
By arguing in the same way, sending t→ +∞ in (4.4) (and exchanging u and u when
needed), we also see that u 6 w.
Therefore, u = w, in contradiction with (4.3).
This ends the alternative proof of Theorem 1.1.

5. Proof of Theorem 1.2

We suppose, for definiteness, that N = 4 and that u is 2D. In force of Proposition 2.12,
we know that

(5.1) u is, in fact, 1D.

Also, recalling that here p = 2, a well-known consequence of (1.2) (see, e.g., Lemma 7.1
in [FSV08] for a general result) is that∫

R4

|∇φ|2 +W ′′(u)φ2 dx > 0

for any smooth and compactly supported φ : R4 → R.
Accordingly, from (1.5), the compactness results of [DiB83, Tol84] and the assumption
that W ∈ C2(R), we conclude that∫

R4

|∇φ|2 +W ′′(u)φ2 dx > 0

for any φ ∈ W 1,2(R4).
Thence, from (5.1),

(5.2)

∫
R
|φ′(t)|2 +W ′′(u(t))φ2(t) dt > 0

for any φ ∈ W 1,2(R).
We now observe that

(5.3) u cannot be constantly equal to κ.
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The proof is by contradiction. If u is constantly equal to κ, then u(x) ∈ [−1, κ] for
any x ∈ R4 and so ∆u = W ′(u) > 0 in R4.
Consequently, by parabolicity estimates (see, for instance, [HKM06] or Theorem 9.11(b)
of [Far07]), ∫

B4
R

|∇u(x)|2 dx 6 constR2.

Thus, u must be 1D (see, e.g., Lemma 5.2 in [FSV08] for a general result).
The fact that u is 1D, strictly monotone, and approaches κ at infinity is in contradiction
with Lemma 2.7. This proves (5.3).
We now claim that

(5.4) u is non-increasing or non-decreasing, with sup
R
|u| = +1.

To check this, we argue by contradiction. If (5.4) were false, Lemma 2.7 and (5.3)
would say that |u′| > 0 in the interval (β1, β2), with u′(β1) = u′(β2) = 0.
Then, we define φ? := χ[β1,β2]u

′ and we observe that, in (β1, β2), we have that

(5.5) |φ?| > 0

and

(5.6) φ′′? = W ′′(u)φ?.

Also,

(5.7) φ′?(β1 − 1) = φ?(β1 − 1) = 0.

Integrating by parts and using (5.6), one sees that∫
R
|φ′?(t)|2 +W ′′(u(t))φ2

?(t) dt = 0,

thus φ? minimizes the left hand side of (5.2).
As a consequence, (5.6) holds in the whole R.
Therefore, recalling (5.7), Cauchy’s uniqueness result for ODEs implies that φ? vanishes
identically.
Since this is in contradiction with (5.5), we have proven (5.4).
From (5.4), we deduce that

(5.8)

∫
R
|u′(t)| dt = lim

a→+∞

∣∣∣∣∫ a

−a

u′(t) dt

∣∣∣∣ = lim
a→+∞

|u(a)− u(−a)| 6 2.

In addition, from (5.4) and Corollary 4.9 in [FSV08], we obtain that

1

2
|u′(t)|2 −W (u(t)) = 0
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for any t ∈ R. This and (5.8) imply that∫
R

1

2
|u′(t)|2 +W (u(t)) dt

=

∫
R
|u′(t)|2 dt

6 ‖∇u‖C1(R4)

∫
R
|u′(x′)| dx′

6 const .

Consequently, ∫
B3

R

1

2
|∇u(t)|2 +W (u(t)) dt 6 constR2,

and so Proposition 2.11 implies that u is also 1D.
Then, the claim of Theorem 1.2 is, in this case, a consequence of Theorem 1.1.

6. Proof of Theorem 1.3

By (1.7) and Theorem 1.1 of [Far03], we have that either u is identically +1 or

(6.1) u is identically −1.

Without loss of generality, we suppose that the latter situation happens.
Hence, from Lemma 4.1 of [FSV08],

ER(ut) 6 ER(u) + constRN−1 6 constRN−1 ,

where ut(x) := u(x1, . . . , xN + t), for any t ∈ R and so

ER(u) 6 constRN−1 .

As a consequence, since u is (N − 1)D,

(6.2)

∫
BN−1

R

1

p
|∇u(x′)|p +W (u(x′)) dx′ 6 constRN−2 .

We also note that

(6.3) inf
RN−1

u > −1,

because of (1.2) and (1.7).
We now apply Corollary 2.6. More precisely, we take v to be u in Corollary 2.6, so N
in Corollary 2.6 is N − 1 here: then (2.9) and (2.10) hold true, thanks to (6.2) and
(6.3). Hence, from Corollary 2.6, we gather that u is identically +1.
Recalling (6.1), we obtain the first claim in Theorem 1.3, namely that u is identically
+1 and u is identically −1.
This and Lemma 9.1 of [VSS06] imply that u is minimal.
Then, the last claim in Theorem 1.3 follows from Theorem 1.4 in [VSS06].
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7. Proof of Theorem 1.4

Let c be as in (1.7). There are two cases, either c > κ or c 6 κ. We deal with the first
case, the second one being analogous.
By our assumptions on W , we have that W ′(r) 6 0 if r ∈ [c, 1] ⊆ [κ, 1].
Also, by (1.7), we know that

(7.1) u(x′) ∈ [c, 1] ⊆ [κ, 1] for any x′ ∈ RN−1.

The above observations give that

∆pu = W ′(u) 6 0 .

Then, parabolicity estimates (see, for instance, [HKM06] or Theorem 9.11(b) of [Far07])
and either (1.8) or (1.9) imply that∫

BN−1
R

|∇u(x′)|p dx′ 6 constRN−1−p 6 constR2

for large R.
Therefore, by Proposition 2.11, u is 1D.
This, (1.7), (7.1) and Corollary 2.8 imply that

(7.2) u is constantly equal to +1.

We now claim that

(7.3) u is constantly −1.

To prove (7.3) we need to distinguish between the case in which (1.8) holds and the
case in which (1.9) holds.
If (1.8) holds, we use Lemma 4.1 of [FSV08] and (7.2) to get∫

BN
R

|∇u|p +W (u) dx

6
∫

BN
R

|∇u|p +W (u) dx+ constRN−1

= 0 + constR3.

Then, Proposition 2.11 gives that u is 1D.
Accordingly, Proposition 2.10 and (1.7) imply (7.3).
Let us now prove (7.3) under assumption (1.9). For this scope, we make use of (7.2)
and of Lemma 2.5 (whose assumptions are fulfilled here since p = 2), to see that

inf
RN

u = −1,

that is
inf

RN−1
u = −1.

This and (1.7) imply that
sup
RN−1

u < +1.

Thus, applying Lemma 2.5 to v := −u, we obtain (7.3) in this case too.
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Having completed the proof of (7.3), the proof of Theorem 1.4 is finished, thanks
to (7.2), (7.3) and the results of [VSS06] (see in particular Theorem 1.4 and Lemma
9.1 there).

8. Proof of Theorem 1.5

First, we show that

(8.1) u is 1D.

To this extent, we use (1.2) and the assumption that {u = κ} is a complete graph to
obtain that u > κ and so

∆pu = W ′(u) 6 0 .

Consequently, by p-parabolicity estimates (see, for instance, [HKM06] or Theorem
9.11(b) of [Far07]), ∫

BN−1
R

|∇u(x′)|p dx′ 6 constRN−1−p

and so, by our assumptions on p,∫
BN−1

R

|∇u(x′)|p dx′ 6 constR2

for any R > 1. This and Proposition 2.11 give (8.1). Analogously, we see that u is 1D.
Using the fact that {u = κ} is a complete graph, (8.1) and Proposition 2.10, we deduce
that u is constantly equal to +1. Analogously, one proves that u is constantly equal
to −1.
Lemma 9.1 of [VSS06] then yields the minimality of u and, if N 6 8, Theorem 1.4 of
[VSS06] gives that u is 1D.

9. Proof of Proposition 1.6

By taking limits in (1.6), we have that u is also a global (or class A, depending on the
lingo) minimizer, thus it is 1D, thanks to (1.10) here and Theorem 1.3 in [VSS06].
As a consequence, Lemma 2.9 gives that either u is constantly equal to +1 or −1, or
it is strictly monotone.
That u is constantly equal to −1 is ruled out by (1.2).
Also, u cannot be strictly monotone, due to Proposition 2.13.
Hence, u is constantly equal to +1.

10. Proof of Theorem 1.7

In virtue of Proposition 1.6, we know that u is constantly equal to +1 and that u is
constantly equal to −1. Then, the claim of Theorem 1.7 follows from Theorem 1.4
of [VSS06].
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11. Proof of Theorem 1.8

Without loss of generality, we suppose that (1.11) holds and that u is not constant.
Then, {u = 0} 6= ∅ (see, e.g., Corollary 13 in [FV08] for a general result).
As a consequence, there exists α > 0 in such a way that u(x′, xN) > 1/2 for any
x′ ∈ RN−1, as long as xN > α.
Thus, if uε(x) := u(x/ε), we get that

(11.1) {uε = 0} ⊆ {xN 6 εα}.
By [Bou90, PV05], we know that {uε = 0} approaches, locally uniformly, the boundary
of a set E with minimal perimeter.
From (11.1),

∂E ⊆ {xN 6 1}
and so, by Theorem 17.4 of [Giu84], we have that ∂E is a hyperplane.
Thence, from Corollary 7 of [FV08], u is 1D.

12. Proof of Theorem 1.9

By taking limits in (1.13), we have that u and u are Q-minima too.
Therefore, recalling the notation in (2.8), we obtain from Lemma 10 of [FV08] that

ER(u) + ER(u) 6 constRN−1

as long as R is sufficiently large.
More precisely, since u and u are (N − 1)D and N 6 4,∫

BN−1
R

1

p
|∇u(x′)|p +W (u(x′)) dx′

+

∫
BN−1

R

1

p
|∇u(x′)|p +W (u(x′)) dx′ 6 constRN−2 6 constR2.

This and Proposition 2.11 imply that u and u are 1D.
Hence, from Theorem 1.1, we conclude that u is 1D.

13. Proof of Theorem 1.10

The proof will make use of the results of [FV08].
Up to translations, we may suppose that ξ = eN .
First of all, by Corollaries 2 and 3 of [FV08], we know that uε(x) := u(x/ε) converges
in L1

loc to the step function u0 := χE − χRN\E, while {uε = θ} approaches ∂E locally
uniformly, up to subsequences.
Fix now K > 0. Then, by (1.14),

{uε = θ} ∩ {|x′| 6 K} ⊆

{
|xN | 6 ε sup

|w′|6K

Φ(w′/ε, 0)

}
.

Therefore, by (1.15),

{uε = θ} ∩ {|x′| 6 K} ⊆ {|xN | 6 1/K}
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as long as ε is small enough.
As a consequence,

∂E ∩ {|x′| 6 K} ⊆ {|xN | 6 1/K}
and so, since K may be taken arbitrarily large,

∂E ⊆ {xN = 0}.

Corollary 7 of [FV08] then yields that u is 1D.
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