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Abstract. We study singular perturbations of a class of stochastic control problems under
assumptions motivated by models of financial markets with stochastic volatilities evolving on a fast
time scale. We prove the convergence of the value function to the solution of a limit (effective)
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1. Introduction. In this paper we consider stochastic control systems with a
small parameter ε > 0

dXt = φ̃(Xt, Yt, ut)dt+
√

2σ̃(Xt, Yt, ut)dWt,

dYt = 1
ε b(Yt)dt+

√
2
ετ(Yt)dWt

(1.1)

where Xt ∈ IRn, Yt ∈ IRm, ut is the control taking values in a given compact set U , Wt

is a multi-dimensional Brownian motion, and the components of drift and diffusion
of the slow variables Xt have the form

φ̃i := xiφi(x, y, u), σ̃ij := xiσj
i (x, y, u),

with φi, σj
i bounded and Lipschitz continuous uniformly in u, so that Xi

t ≥ 0 for
t > to if Xi

to
≥ 0. On the fast process Yt we will assume that the matrix ττT is

positive definite and a condition implying the ergodicity (see (1.3)). We also take
payoff functionals of the form

E[eλ(t−T )g(XT , YT ) | Xt = x, Yt = y], 0 ≤ t ≤ T, λ ≥ 0,

with g continuous and growing at most quadratically at infinity, and call V ε(t, x, y)
the value function of this optimal control problem, i.e.

V ε(t, x, y) := sup
u·

E[eλ(t−T )g(XT , YT ) | Xt = x, Yt = y, (X·, Y·) satisfy (1.1) with u·].

We are interested in the limit V as ε → 0 of V ε, in particular in understanding the
PDE satisfied by V and interpreting it as the Hamilton-Jacobi-Bellman equation for
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an effective limit control problem. This is a singular perturbation problem for the
system (1.1) and for the HJB equation associated to it. We treat it by methods of
the theory of viscosity solutions to such equations.

Our motivations are the models of pricing and trading derivative securities in
financial markets with stochastic volatility. The book by Fleming and Soner [21]
is a general presentation of viscosity solution methods in stochastic control, and in
Chapter 10 it gives an excellent introduction to the applications of this theory to the
mathematical models of financial markets. In such markets with stochastic volatility
the asset prices are affected by correlated economic factors, modelled as diffusion
processes. This is motivated by empirical studies of stock price returns in which the
estimated volatility exhibits random behaviour. So, typically, volatility is assumed to
be a function of an Ito process Yt driven by another Brownian motion, which is often
negatively correlated with the one driving the stock prices (this is the empirically
observed leverage effect, i.e., asset prices tend to go down as volatility goes up).
This approach seems to have success in taking into account the so called smile effect,
due to the discrepancy between the predicted and market traded option prices, and in
reproducing much more realistic returns distributions (i.e. with fatter and asymmetric
tails).

An important extension of the stochastic volatility approach was introduced re-
cently by Fouque, Papanicolaou, and Sircar in the book [24] (see in particular Chapter
3). The idea is trying to describe the bursty behaviour of volatility: in empirical ob-
servations volatility often tends to fluctuate to high level for a while, then to a low
level for another small time period, then again at high level and so on, for several
times during the life of a derivative contract. These phenomena are also related to
another feature of stochastic volatility, which is mean reversion. A mathematical
framework which takes into account both bursting and mean reverting behaviour of
the volatility is that of multiple time scales systems and singular perturbations. In
this setting volatility is modelled as a process which evolves on a faster time scale
than the asset prices and which is ergodic, in the sense that it has a unique invariant
distribution (the long-run distribution) and asymptotically decorellates (in the sense
that it becomes independent of the initial distribution). We refer to the book [24]
and to the references therein for a detailed presentation of these models and for their
empirical justification.

Several extensions and applications to a variety of financial problems appeared
afterward, see [32, 25, 26, 23, 42, 31, 40, 30, 38] and the references therein.

According to the previous discussion, stochastic control systems of the form (1.1)
are appropriate to study financial problems in this setting. Indeed, here the slow
variables represent prices of assets or the wealth of the investor, whereas Yt is an
ergodic process representing the volatility and evolving on a faster time scale for ε
small. The main example for Yt is the Ornstein-Uhlenbeck process. The asymptotic
analysis of such systems as ε → 0 yields then a simple pricing and hedging theory
which provides a correction to classical Black-Scholes formulas, taking into account
the effect of uncertain and changing volatility.

Most of the papers we cited on fast mean reverting stochastic volatility use formal
asymptotic expansions of the value function in powers of ε and compute the first
terms of the expansions by solving suitable auxiliary elliptic and parabolic PDEs.
These methods are closely related to homogenization theory and can be found in
earlier papers of Papanicolaou and coauthors and, e.g., in the book [9]. They are
particularly fit to problems without control, such as the pricing of many options,
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so that the price function is smooth and satisfies a linear PDE. In these cases the
accuracy of the expansion can often be proved.

There is a wide literature on singular perturbations of diffusion processes, with
and without controls. For results based on probabilistic methods we refer to the
books [34, 33], the recent papers [39, 12], and the references therein. An approach
based on PDE-viscosity methods for the HJB equations was developed by Alvarez
and one of the authors in [1, 2, 3], see also [4] for problems with an arbitrary number
of scales. It allows to identify the appropriate limit PDE governed by the effective
Hamiltonian and gives general convergence theorems of the value function of the
singularly perturbed system to the solution of the effective PDE, under assumptions
that include deterministic control (i.e., σ ≡ 0 and/or τ ≡ 0) as well as differential
games, deterministic and stochastic. However, this theory originating in periodic
homogenization problems [36, 19] was developed so far for fast variables restricted to
a compact set, mostly the m-dimensional torus. As we already observed, though, an
a priori assumption of boundedness does not appear natural to model volatility in
financial markets, according to the empirical data and on the discussion presented in
[24] and references therein.

The goal of this paper is extending the methods based on viscosity solutions of
[1, 2, 3] to singular perturbation problems of the form (1.1), including several models
of mathematical finance. The main new difficulty is that the fast variables Yt are
unbounded.

We first check that the value function V ε is the unique (viscosity) solution to a
Cauchy problem for the HJB equation under very general assumptions on the data.
In particular, the diffusion matrix of the slow variables σσT may degenerate and V ε

may be merely continuous. The possible degeneration of the diffusion matrix σσT

can also have interesting financial applications, e.g., to path-dependent options and
to interest rate models in the Heath–Jarrow–Morton framework (see Section 6.5 for
more comments on this).

Next we assume that the fast subsystem

dYt = b(Yt)dt+
√

2τ(Yt)dWt (1.2)

has a Lyapunov-like function w satisfying

−Lw(y) ≥ k > 0 for |y| > R0, lim
|y|→+∞

w(y) = +∞, (1.3)

where L is the infinitesimal generator of the process (1.2). We prove a Liouville
property for sub- and supersolution of Lv = 0, the existence of a unique invariant
measure µ for (1.2) (by exploiting the theory of Hasminskii [29]), and some crucial
properties of the effective Hamiltonian and terminal cost

H(x,DxV,D
2
xxV ) :=

∫
IRm

H(x, y,DxV,D
2
xxV, 0)dµ(y) g(x) :=

∫
IRm

g(x, y)dµ(y),

where H is the Bellman Hamiltonian associated to the slow variables of (1.1) and its
last entry is for the mixed derivatives Dxy. The condition (1.3) is easier to check and
looks weaker than other known sufficient conditions for ergodicity [29, 37]. It appears
also in a remark of [35], where the proof of the existence of µ is different from ours.
Lions and Musiela [35] also state that (1.3) is indeed equivalent to the ergodicity of
(1.2) and to the classical Lyapunov-type condition of Hasminskii [29].
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Our main result is the convergence of V ε(t, x, y) to V (t, x) as ε→ 0 uniformly on
compact subsets of [0, T )× IRn

+ × IRm, where V is the unique (viscosity) solution to

−Vt +H
(
x,DxV,D

2
xxV

)
+ λV (x) = 0 in (0, T )× IRn

+, (1.4)

with final data V (T, x) = g(x) in IRn
+. Note that there is a boundary layer at the

terminal time T if the utility g depends on y.
We test this convergence theorem on two examples of financial models chosen

from [24]. The first is the problem of pricing n assets with a m-dimensional vector
of volatilities. The second is Merton portfolio optimization problem with one riskless
bond and n risky assets. The control system driving wealth and volatility is

dWt = Wt

(
r +

∑n
i=1(α

i − r)ui
t

)
dt+

√
2Wt

∑n
i=1 u

i
tfi(Yt) · dW t

dYt = 1
ε b(Yt)dt+

√
2
εν(Yt)dZt,

(1.5)

with Wto
= w > 0, where W t, Zt are possibly correlated Brownian motions, and the

value function is

V ε(t, w, y) := sup
u·

E[g(WT , YT ) | Wt = w, Yt = y].

Our convergence result for this problem appears to be new, to the best of our knowl-
edge, although the formula for the limit is derived in [24] (by a different method and
for n = 1, g independent of y; another term of an asymptotic expansion in powers of ε
is also computed in [24]). We also show that we can handle a periodic day effect, i.e.,
fi = fi( t

ε , Yt) periodic in the first entry, as in Section 10.2 of [24], and the presence of
a component of the volatility evolving on a very slow time scale (dependent or not on
ε), as in [26, 38]. A similar result for the infinite horizon Merton problem of optimal
consumption [20, 21] is under investigation.

Finally we observe that our methods work if an additional unknown disturbance
ũt affects the dynamics of Xt and we maximize the payoff under the worst possible
behaviour of ũt. This situation is modeled as a 0−sum differential game: its value
function is characterized by a Hamilton-Jacobi-Isaacs PDE that can be analyzed in
the framework of viscosity solutions [22, 3]. In [1, 2, 3] the disturbance ũt and/or the
controls ut may also affect the fast variables Yt (constrained to a compact set). Then
there is no invariant measure and the definition of effective Hamiltonian and terminal
cost is less explicit, but the convergence theorem still holds.

Our conclusion is that the theory of viscosity solutions is the appropriate mathe-
matical framework for fully nonlinear Bellman-Isaacs equations that provides general
methods for treating singular perturbation problems (relaxed semilimits, perturbed
test function method, comparison principles, etc.). These can be useful additional
tools for the rigorous analysis of multiscale financial problems with stochastic volatil-
ity, in particular when some variables are controlled, the value function is not smooth,
or the complexity of the model prevents more explicit calculations.

The paper is organized as follows. Section 2 presents the standing assumptions
and the HJB equation. Section 3 studies the initial value problem satisfied by V ε.
Section 4 is devoted to the ergodicity of a diffusion process in the whole spaces and the
properties of the effective Hamiltonian and terminal cost. In Section 5 we prove our
main result, Theorem 5.1, on the convergence of V ε to the solution of the effective
Cauchy problem. In Section 6 we apply our results to a multidimensional option
pricing model and to Merton portfolio optimization problem, and then illustrate some
extensions. Section 7 is the Conclusion.
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2. The two-scale stochastic control problem.

2.1. The control system. We consider stochastic control problems that can be
written in the form

dXi
t = Xi

tφ
i(Xt, Yt, ut)dt+

√
2Xi

tσi(Xt, Yt, ut) · dWt i = 1, . . . n,

dY k
t = 1

ε b
k(Yt)dt+

√
2
ετk(Yt) · dWt k = 1, . . .m.

(2.1)

with Xi
to

= xi ≥ 0, Y k
to

= yk, where ε > 0, U is a given compact set, φ = (φ1, . . . , φn) :
IRn × IRm × U → IRn, σi : IRn × IRm × U → IRr are bounded continuous functions,
Lipschitz continuous in (x, y) uniformly w.r.t. u ∈ U , b = (b1, . . . , bm) : IRm → IRm,
τk : IRm → IRr are locally Lipschitz continuous functions with linear growth, i.e.,

for some Kc > 0 |b(y)|, ‖τk(y)‖ ≤ Kc(1 + |y|), for all y ∈ IRm, k = 1, . . .m,
(2.2)

and Wt is a r-dimensional standard Brownian motion. These assumptions will hold
throughout the paper.

We will use the symbols Mk,j and Sk to denote, respectively, the set of k × j
matrices and the set of k × k symmetric matrices, and we set

IRn
+ := {x ∈ IRn : xi > 0 ∀i = 1, . . . , n}.

To shorten the notation we call φ̃ : IRn×IRm×U → IRn the drift of the slow variables
Xt, σ̃ ∈ Mn,r the matrix whose i-th row is xiσi, and τ ∈ Mm,r the matrix whose k-th
row is τk, i.e.,

φ̃i := xiφi, σ̃ij := xiσj
i , τkj := τ j

k , j = 1, . . . , r.

Then the system (2.1) can be rewritten with vector notations


dXt = φ̃(Xt, Yt, ut)dt+

√
2σ̃(Xt, Yt, ut)dWt Xto = x ∈ IRn

+,

dYt = 1
ε b(Yt)dt+

√
2
ετ(Yt)dWt Yto

= y.

(2.3)

The set of admissible control functions is

U := {u· progressively measurable processes taking values in U}.

In the following we will assume the uniform non-degeneracy of the diffusion driving
the fast variables Yt, i.e.,

∃ e(y) > 0 such that ξτ(y)τT (y) · ξ = |ξτ(y)|2 ≥ e(y)|ξ|2 for every y, ξ ∈ IRm. (2.4)

We will not make any non-degeneracy assumption on the matrix σ and remark that,
in any case, σ̃ degerates near the boundary of IRn

+.

2.2. The optimal control problem. We consider a payoff functional depend-
ing only on the position of the system at a fixed terminal time T > 0 (Mayer problem).
The utility function g : IR

n

+ × IRm → IR is continuous and satisfies

∃Kg > 0 such that sup
y∈IRd

|g(x, y)| ≤ Kg(1 + |x|2) ∀x ∈ IRn
+, (2.5)
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and the discount factor is

λ ≥ 0.

Therefore the value function of the optimal control problem is

V ε(t, x, y) := sup
u·∈U

E[eλ(t−T )g(XT , YT ) | Xt = x, Yt = y], 0 ≤ t ≤ T, (2.6)

where E denotes the expectation. This choice of the payoff is sufficiently general for
the application to finance models presented in this paper, but we could easily include
in the payoff an integral term keeping track of some running costs or earnings.

2.3. The HJB equation. For a fixed control u ∈ U the generator of the diffu-
sion process is

trace
(
σ̃σ̃TD2

xx

)
+

2√
ε
trace

(
σ̃τT (D2

xy)T
)

+ φ̃ ·Dx +
1
ε
trace

(
ττTD2

yy

)
+

1
ε
b ·Dy

where the last two terms give the generator of the fast process Yt.
The HJB equation associated via Dynamic Programming to the value function of

this control problem is

−Vt +H

(
x, y,DxV,D

2
xxV,

D2
xyV√
ε

)
− 1
ε
L(y,DyV ,D

2
yyV ) + λV = 0, (2.7)

in (0, T )× IRn
+ × IRm, where

H(x, y, p,X,Z) := min
u∈U

{
−trace

(
σ̃σ̃TX

)
− φ̃ · p− 2trace

(
σ̃τTZT

)}
(2.8)

with σ̃ and φ̃ computed at (x, y, u), τ = τ(y), and

L(y, q, Y ) := b(y) · q + trace(τ(y)τT (y)Y ). (2.9)

This is a fully nonlinear degenerate parabolic equation (strictly parabolic in the
y variables by the assumption (2.4)).

The HJB equation is complemented with the obvious terminal condition

V (T, x, y) = g(x, y).

However, there is no natural boundary condition on the space-boundary of the domain,
i.e.,

(0, T )× ∂IRn
+ × IRm = {(t, x, y) : 0 < t < T, xi = 0 for some i}.

We will prove in the next section that the initial-boundary value problem is well posed
without prescribing any boundary condition because the PDE ”holds up to boundary”,
namely, the value function is a viscosity solution in the set (0, T )×IRn

+×IRm, and there
is at most one such solution. The irrelevance of the space boundary (0, T )×∂IRn

+×IRm

is essentially due to the fact that IR
n

+ × IRm is an invariant set for the system (2.1)
for all admissible control functions (almost surely), that is, the state variables cannot
exit this closed domain.
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2.4. The main assumption. Consider the diffusion process in IRm obtained
putting ε = 1 in (1.1)

dYt = b(Yt)dt+
√

2τ(Yt)dWt, (2.10)

called the fast subsystem, and observe that its infinitesimal generator is Lw :=
L(y,Dyw,D

2
yyw), with L defined by (2.9) . We assume the following condition:

there exist w ∈ C(IRd), and constants k,R0 > 0 such that

−Lw ≥ k for |y| > R0 in viscosity sense, and w(y) → +∞ as |y| → +∞. (2.11)

It is reminiscent of other similar conditions about ergodicity of diffusion processes
in the whole space, see for example [29], [9], [35], [12], [37].

Remark 2.1. Condition (2.11) can be interpreted as a weak Lyapunov condition
for the process (2.10) relative to the set {|y| ≤ R0}. Indeed, a Lyapunov function
for the system (2.10) relative to a compact invariant set K is a continuous, positive
definite function L such that L(x) = 0 if and only if x ∈ K, the sublevel sets {y |L(y) ≤
k} are compact and −LL(x) = l(x) in IRm, where l is a continuous function with l = 0
on K and l > 0 outside. For more details see [29].

Example 2.1. The motivating model problem studied in [24] is the Ornstein-
Uhlenbeck process with equation

dYt = (m− Yt)dt+
√

2τdWt,

where the vector m and matrix τ are constant. In this case it is immediate to check
condition (2.11) by choosing w(y) = |y|2 and R0 sufficiently big.

Example 2.2. More generally, condition (2.11) is satisfied if

lim sup
|y|→+∞

[
b(y) · y + trace(ττT (y))

]
< 0.

Indeed also in this case it is sufficient to choose w(y) = |y|2. Pardoux and Vereten-
nikov [39] assume ττT bounded and lim|y|→+∞ b(y) · y = −∞, and call it recurrence
condition.

3. The Cauchy problem for the HJB equation. We characterize the value
function V ε as the unique continuous viscosity solution with quadratic growth to the
parabolic problem with terminal data{

−Vt + F
(
x, y, V,DxV,

DyV
ε , D2

xxV,
D2

yyV

ε ,
D2

xyV
√

ε

)
= 0 in (0, T )× IRn

+ × IRm,

V (T, x, y) = g(x, y) in IR
n

+ × IRm

(3.1)
where the Hamiltonian F : IRn × IRm × IR × IRn × IRm × Sn × Sm × Mn,m → IR is
defined as

F (x, y, s, p, q,X, Y, Z) := H(x, y, p,X,Z)− L(y, q, Y ) + λs. (3.2)

This is a variant of a standard result (see [21] and the references therein) where we
must take care of the lack of boundary condition on ∂IRn

+ and the unboundedness of
the solution.
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Proposition 3.1. For any ε > 0, the function V ε defined in (2.6) is the unique
continuous viscosity solution to the Cauchy problem (3.1) with at most quadratic
growth in x and y. Moreover the functions V ε are locally equibounded.

Proof. The proof is divided in several steps.
Step 1 (bounds on V ε ).

Observe that, using definition of V ε and (2.5),

|V ε(t, x, y)| ≤ KgE(1 + |XT (t, x, y)|2).

So, using standard estimates on the second moment of the solution to (6.1) (see, for
instance, [28, Thm 1,4, Ch 2] or [21, Appendix D]) and the boundedness of φ̃ and σ̃
with respect to y, we get that there exist C, c > 0

|V ε(t, x, y)| ≤ CecT (1 + |x|2) = KV (1 + |x|2) t ∈ [0, T ], x ∈ IRn
+, y ∈ IRm. (3.3)

This estimate in particular implies that the sequence V ε is locally equibounded.
Step 2 (The semicontinuous envelopes are sub and supersolutions).

We define the lower and upper semicontinuous envelope of V ε as

V ε
∗ (t, x, y) = lim inf

(t′,x′,y′)→(t,x,y)
V ε(t′, x′, y′)

(V ε)∗(t, x, y) = lim sup
(t′,x′,y′)→(t,x,y)

V ε(t′, x′, y′)

where (t′, x′, y′) ∈
(
[0, T ]× IRn

+ × IRm
)
. By definition V ε

∗ (t, x, y) ≤ V ε(t, x, y) ≤
(V ε)∗(t, x, y) and moreover both V ε

∗ and (V ε)∗ satisfy the growth condition (3.3). A
standard argument in viscosity solution theory, based on the dynamic programming
principle (see, e.g., [21, ch. V, sec. 2]), gives that V ε

∗ and (V ε)∗ are, respectively, a
viscosity supersolution and a viscosity subsolution to (3.1), at every point (t, x, y) ∈
(0, T )× IRn

+ × IRm.
Step 3 (Behaviour of V ε

∗ and (V ε)∗ at time T ).
We show that the value function Vε attains continuously the final data (locally uni-
formly with respect to (x, y)). This means that limt→T V

ε(t, x, y) = g(x, y) locally
uniformly in (x, y) ∈ IR

n

+ × IRm. This result is well known and follows from (2.5),
(3.3), and from the continuity in mean square of Xt, Yt. Indeed for every K > 0 and
δ > 0 there exists a constant C(K, δ) depending also on the Lipschitz constants of the
coefficients of the equation (see [28, Th 1,4 ch 2] or [21, Appendix D]), such that

P (|XT − x| ≥ δ | Xt = x, Yt = y) ,P (|YT − y| ≥ δ | Xt = x, Yt = y) ≤ C(K, δ)(T−t)

for all x ∈ IRn
+, y ∈ IRm such that |x|, |y| ≤ K Define A := {|XT − x| ≥ δ} ∪

{|YT − y| ≥ δ} so that

P(A | Xt = x, Yt = y) ≤ 2C(K, δ)(T − t).

Then for every η > 0 there exists an admissible control u such that

|V ε(t, x, y)− V ε(T, x, y)| ≤ E (|g(Xu
T , YT )− g(x, y)| |Xt = x, Yt = y) + η

≤ E
(
χΩ\A |g(Xu

T , YT )− g(x, y)| | Xt = x, Yt = y
)

+ η (3.4)
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+21/2C(K, δ)1/2(T − t)1/2
(
E
(
|g(Xu

T , YT )− g(x, y)|2 | Xt = x, Yt = y
))1/2

. (3.5)

Term (3.5) can be computed using (2.5) and the estimates on the mean square of XT

and YT in terms of the initial data:

(3.5) ≤ [2C(K, δ)(T − t)(2Kg)]1/2
[
(1 + |x|2) +

(
E
(
1 + |XT |2 | Xt = x, Yt = y

))1/2
]

≤ 2C(K, δ)1/2(T − t)1/2K1/2
g C(1 + |x|2) ≤ H(K, δ, g)(T − t)1/2 → 0

uniformly as T → t. Term (3.4) can be estimated as follows

(3.4) ≤ E (ωg,K(|Xu
T − x|, |YT − y|) | Xt = x, Yt = y ) + η → η

uniformly as T → t, where δ < K and ωg,K is the continuity modulus of g restricted
to {(x, y) ||x| ≤ 2K, |y| ≤ 2K}. We conclude by the arbitrariness of η.

Finally, using the definitions, it is easy to show that V ε
∗ (T, x, y) = (V ε)∗(T, x, y) =

g(x, y) for every (x, y) ∈ IRn
+ × IRm.

Step 4 (Behaviour of V ε
∗ and (V ε)∗ at the boundary of IRn

+).
We check that all the points of the boundary of IRn

+ are irrelevant, according to Fichera
type classification of boundary points for elliptic problems. This means the following.
Suppose that φ is smooth and (V ε)∗ − φ has a local maximum (resp., V ε

∗ − φ has a
local minimum) relative to (0, T ) × IRn

+ × IRm at (t, x, y) with the i−th coordinate
xi = 0 for some i ∈ {1, . . . , n} and 0 < t < T . Then

−φt + F

(
x, y, V,Dxφ,

Dyφ

ε
,D2

xxφ,
D2

yyφ

ε
,
D2

xyφ√
ε

)
≤ 0 (resp., ≥ 0) at (t, x, y).

(3.6)
We give the proof of this claim only for the subsolution inequality and for the

case that only two components, say x1 and x2, are null. All the other cases can be
proved in the same way with obvious changes.

Therefore we fix (t, x, y) with 0 < t < T , x ∈ IRn with x1 = x2 = 0 and xi > 0,
for i 6= 1, 2, y ∈ IRm and a smooth function ψ such that the maximum of (V ε)∗ − ψ
in B = B((t, x, y), r) ∩ ([0, T ] × IRn

+ × IRm) is attained at (t, x, y). Without loss of
generality we can assume that the maximum is strict, xi > r for every i = 3, . . . , n,
and 0 < t− r < t+ r < T . For δ > 0 we define

ψδ(t, x, y) := ψ(t, x, y) +
δ

x1
+

δ

x2

and (tδ, xδ, yδ) a maximum point of (V ε)∗ − ψδ in B. Note that xδ ∈ IRn
+ and

0 < tδ < T . By taking a subsequence we can assume that

(tδ, xδ, yδ) → (t̃, x̃, ỹ) ∈ B and ((V ε)∗ − ψδ)(tδ, xδ, yδ) → s as δ → 0.

Observe that, since (V ε)∗ − ψδ ≤ (V ε)∗ − ψ by definition, we get

s ≤ ((V ε)∗ − ψ)(t̃, x̃, ỹ) ≤ ((V ε)∗ − ψ)(t, x, y).

Moreover, for δ < r2, we get

((V ε)∗ − ψδ)(tδ, xδ, yδ) ≥ ((V ε)∗ − ψδ)(t,
√
δ,
√
δ, x3, . . . , xn, y).
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By letting δ → 0 we obtain s ≥ ((V ε)∗ − ψ)(t, x, y). Therefore,

(t̃, x̃, ỹ) = (t, x, y), s = ((V ε)∗ − ψ)(t, x, y) and
δ

x1
δ

,
δ

x2
δ

→ 0 as δ → 0.

Now we use the fact that (V ε)∗ is a subsolution to (3.1), that (V ε)∗ − ψδ has a
maximum at (tδ, xδ, yδ) and that xδ ∈ IRn

+ and 0 < tδ < T , so the PDE holds at such
point. We get

−ψt+H

(
xδ, yδ, Dxψ − δpδ, D

2
xxψ + 2δXδ,

D2
xyψ√
ε

)
−1
ε
L(yδ, Dyψ,D

2
yyψ)+λ(V ε)∗ ≤ 0

(3.7)
where all the derivatives of ψ and (V ε)∗ are computed at (tδ, xδ, yδ),

pδ :=
(

1
(x1

δ)2
,

1
(x2

δ)2
, 0, . . . , 0

)
,

and Xδ is the diagonal matrix with

(Xδ)ii =
1

(xi
δ)3

for i = 1, 2; (Xδ)ii = 0 for i = 3, . . . , n.

By the definition of H, φ̃ and σ̃, the second term on the left hand side of (3.7) is

min
u∈U

{
−φ̃Dxψ +

δ

x1
δ

φ1 +
δ

x2
δ

φ2 − tr
(
σ̃σ̃TD2

xxψ
)

(3.8)

−2δ
x1

δ

|σ1|2 −
2δ
x2

δ

|σ2|2 −
2√
ε
tr
(
τ σ̃TD2

x,yψ
)}

where φ̃, φi, σ̃, σi are computed at (xδ, yδ, u), the derivatives of ψ at (tδ, xδ, yδ), and
τ at yδ. Since δ/xi

δ → 0 as δ → 0 for i = 1, 2, the quantity in (3.8) tends to

H

(
x, y,Dxψ,D

2
xxψ,

D2
xyψ√
ε

)
,

where all the derivatives are computed at (t, x, y). Therefore the limit of (3.7) as
δ → 0 gives (3.6) at (t, x, y), as desired.

Step 5 (Comparison principle and conclusion).
We use now a recent comparison result between sub and supersolutions to parabolic
problems satisfying the quadratic growth condition

|V (t, x, y)| ≤ C(1 + |x|2 + |y|2)

proved in [16, Thm 2.1]. We already observed that the estimate (3.3) holds also for
V ε
∗ and (V ε)∗, so they both satisfy the appropriate growth condition. Moreover we

proved in Step (3) that (V ε)∗(T, x, y) = V ε
∗ (T, x, y) = g(x, y). The comparison result

is stated in [16] for parabolic problems in the whole spaces [0, T ]× IRk. Nevertheless,
because of the fact that our sub and supersolution (V ε)∗ and V ε

∗ satisfies the equation
also on the boundary of IRn

+ as proved in Step (4), their argument applies without
relevant changes to our case. Therefore (V ε)∗(t, x, y) ≤ V ε

∗ (t, x, y), for every (t, x, y) ∈
([0, T ] × IRn

+ × IRm). Using the definition of upper and lower envelopes and the
comparison result in Step (5), we get (V ε)∗(t, x, y) = V ε

∗ (t, x, y) = V ε(t, x, y), for
every (t, x, y) ∈ ([0, T ] × IRn

+ × IRm). Then V ε is the unique continuous viscosity
solution to (3.1) satisfying a quadratic growth condition.
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4. Ergodicity of the fast variables and the effective Hamiltonian and
initial data. In this section we consider an ergodic problem in IRm whose solution will
be useful to define the limit problem as ε→ 0 of the singularly perturbed Hamilton-
Jacobi-Bellman equation with terminal condition (3.1). We consider the diffusion
process in IRm

dYt = b(Yt)dt+
√

2τ(Yt)dWt (4.1)

and the infinitesimal generator L of the process Yt. Our standing assumptions are
those of Section 2. It is well known that such conditions imply the existence of a
unique global solution for (4.1) (see [28], Chapter 2, §6, Theorems 3, 4).

The first result of this section is a Liouville property that replaces the standard
strong maximum principle of the periodic case and is the key ingredient for extending
some results of [3] to the non-periodic setting.

Lemma 4.1. Consider the problem

−L(y,DV (y), D2V (y)) = 0 y ∈ IRm (4.2)

under the assumption (2.11). Then
i) every bounded viscosity subsolution to (4.2) is constant;
ii) every bounded viscosity supersolution to (4.2) is constant.
Remark 4.1. This result holds also under a weaker condition than (2.11), namely,

∃w ∈ C(IRm) and R0 > 0
such that − Lw ≥ 0 for |y| > R0 and |w(y)| → +∞ as |y| → +∞.

(4.3)

Proof. This proof uses an argument borrowed from [35]. We start proving i). Let
V be a bounded subsolution to (4.2). We can assume, without loss of generality, that
V ≥ 0. Define, for every η > 0, Vη(y) = V (y)− ηw(y), where w is as in (2.11).

We fix R > R0 and we claim that Vη is a viscosity subsolution to (4.2) in |y| > R
for every η > 0. Indeed consider y ∈ IRm, |y| > R, and a smooth function ψ such
that Vη(y) = ψ(y) and Vη − ψ has a strict maximum at y.

Assume by contradiction that −L(y,Dψ(y), D2ψ(y)) > 0. By the regularity of ψ
and of L, there exists 0 < k < R − R0 such that −L(y,Dψ(y), D2ψ(y) > 0 for every
y with |y − y| ≤ k. Now we prove that ηw + ψ is a supersolution to (4.2) in B(y, k).
Take ỹ ∈ B(y, k) and ξ smooth such that ηw+ ψ− ξ has a minimum at ỹ. Using the
fact that w is a supersolution to (4.2) in |y| > R0 and the linearity of the differential
operator L, we obtain

0 ≤ −L
(
ỹ,

1
η
D(ξ − ψ)(ỹ),

1
η
D2(ξ − ψ)(ỹ)

)
=

= −1
η
L
(
ỹ, Dξ(ỹ), D2ξ(ỹ)

)
+

1
η
L
(
ỹ, Dψ(ỹ), D2ψ(ỹ)

)
< −L

(
ỹ, Dξ(ỹ), D2ξ(ỹ)

)
,

where in the last inequality we used that ψ is a supersolution in B(y, k). Recall that
by our assumption V − (ηw+ψ) has a strict maximum at y and V (y) = (ηw+ψ)(y).
Then there exists α > 0 such that V (y)− (ηw+ψ)(y) < −α on ∂B(y, k). A standard
Comparison Principle gives that V (y) ≤ ηw(y)+ψ(y)−α on B(y, k), a contradiction
with our assumptions. This proves the claim: Vη is a viscosity subsolution to (4.2) in
|y| > R for every η > 0.



12 M. Bardi, A. Cesaroni, L. Manca

Now, observing that Vη(y) → −∞ as |y| → +∞, for every η we fix Mη > R
such that Vη(y) ≤ sup|z|=R Vη(z) for every y such that |y| ≥ Mη. By the Maximum
Principle applied in {y,R ≤ |y| ≤Mη},

Vη(y) ≤ sup
|z|=R

Vη(z) ∀ |y| ≥ R ∀ η > 0. (4.4)

Next we let η → 0 in (4.4) and obtain V (y) ≤ sup|z|=R V (z) for every y such that
|y| > R. Therefore V attains its global maximum at some interior point, so it is
a constant by the Strong Maximum Principle (see [7] for its extension to viscosity
subsolutions).

The proof of ii) for bounded supersolutions U is analogous, with minor changes. It
is sufficient to define Uη(y) as U(y)+ηw(y) and to prove that Uη → +∞ as |y| → +∞
and that it is a viscosity supersolution to (4.2) in |y| > R. So, the same argument
holds exchanging the role of super and subsolutions and using the Strong Minimum
Principle [7].

The second result is about the existence of an invariant measure.
Proposition 4.2. Under the standing assumptions, there exists a unique invari-

ant probability measure µ on IRm for the process Yt.
Proof. Hasminskii in [29, ch IV] proves that there exists an invariant probability

measure for Yt (see Thm IV.4.1 in [29]) if, besides the standing assumptions of Section
2, the following condition is satisfied: there exists a bounded set K with smooth
boundary such that

EτK(y) is locally bounded for y ∈ IRm \K, (4.5)

where τK(y) is the first time at which the path of the process (4.1) issuing from y
reaches the set K. We claim that condition (2.11) implies (4.5), with K = B(0, R),
with R > R0. We fix w as in (2.11) and R > R0 such that w(y) ≥ 0 for |y| > R. A
standard Superoptimality Principle for viscosity supersolutions to equation −Lw ≥ k
(see e.g. [21, Section V.2]) implies that

w(y) ≥ kEτK(y) + Ew(YτK(y)) ≥ kEτK(y), for every y ∈ IRm \K.

This gives immediately our claim, because w is locally bounded.
The uniqueness of the invariant measure is a standard result under the current

assumptions, because the diffusion is nondegenerate, see, e.g., [29, Corollary IV.5.2]
or [17].

The previous two results - the Liouville property in Lemma 4.1 and the existence
and uniqueness of the invariant measure in Proposition 4.2 - are the main tools used
to define the candidate limit Cauchy problem of the singularly perturbed problem
(3.1) as ε → 0. The underlying idea is that Proposition 4.2 provides the ergodicity
of the process Yt. This property allows us to construct the effective Hamiltonian and
the effective terminal data. In the following we will perform such constructions in
Theorem 4.3 and Proposition 4.4 using mainly PDE methods; nevertheless it must be
noted that the same results could also be obtained using direct probabilistic arguments
(see Remark 4.2).

We start showing the existence of an effective Hamiltonian giving the limit PDE.
In principle, for each (x, p,X) one expects the effective Hamiltonian H(x, p,X) to be
the unique constant c ∈ IR such that the cell problem

−L(y,Dχ,D2χ) +H(x, y, p,X, 0) = c in IRm (4.6)
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has a viscosity solution χ, called corrector (see [36], [19], [1]). Actually, for our
approach, it is sufficient to consider, as in [2], a δ-cell problem

δwδ − L(y,Dwδ, D
2wδ) +H(x, y, p,X, 0) = 0 in IRm, (4.7)

whose solution wδ is called approximate corrector. The next result states that δwδ

converges to −H and it is smooth.
Theorem 4.3. For any fixed (x, p,X) and δ > 0 there exists a solution wδ =

wδ;x,p,X(y) in C2(IRm) of (4.7) such that

− lim
δ→0

δwδ = H(x, p,X) :=
∫

IRm

H(x, y, p,X, 0)dµ(y) locally uniformly in IRm,

(4.8)
where µ is the invariant probability measure on IRm for the process Yt.

Proof. We borrow some ideas from ergodic control theory in periodic environ-
ments, see [5].

The PDE (4.7) is linear with locally Lipschitz coefficients and forcing term

f(y) := H(x, y, p,X, 0)

bounded and Lipschitz by the assumptions of Section 2. The existence and uniqueness
of a viscosity solution satisfying

|wδ(y)| ≤ C(1 + |y|2) (4.9)

for some C follows from the Perron-Ishii method and the comparison principle in
[16] (here we are using the growth assumption (2.2) on the coefficients). Moreover
wδ ∈ C2(IRm) by standard elliptic regularity theory.

By comparison with constant sub- and supersolutions we get the uniform bound

|δwδ(y)| ≤ sup |f | =: Cf .

Then the functions vδ := δwδ are uniformly bounded and satisfy

|L(y,Dvδ, D
2vδ)| ≤ 2δCf .

By the Krylov-Safonov estimates for elliptic equations, in any compact set the
family {vδ} with δ ≤ 1 is equi Hölder continuous for some exponent and constants
depending only on Cf and the coefficients of L. Therefore by Ascoli-Arzelà there is a
sequence δn → 0 such that vδn

→ v locally uniformly and

L(y,Dv,D2v) = 0 in IRm

in viscosity sense. By Lemma 4.1 v is constant.
To complete the proof we show that on any subsequence the limit of vδ := δwδ is

the same and it is given by the formula (4.8). We claim that

wδ(y) = E
∫ +∞

0

f(Yt)e−δt dt, (4.10)

where Yt is the process defined by the fast subsystem (4.1) with initial condition
Y0 = y. In fact, the right hand side is a viscosity solution of (4.7) by Ito’s rule
and other standard arguments [21]. Moreover, it is bounded by Cf/δ and so the
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growth assumption (4.9) is satisfied. Therefore it is the viscosity solution of (4.7)
by the comparison principle in [16], which proves the claim. Next we recall that by
definition of invariant measure

E
∫

IRm

f(Yt) dµ(y) =
∫

IRm

f(y) dµ(y) ∀ t > 0.

As a consequence, by integrating both sides of (4.10) with respect to µ and exchanging
the order of integration we get∫

IRm

wδ(y) dµ(y) =
∫ +∞

0

∫
IRm

f(y) dµ(y)e−δt dt =

∫
IRm f(y) dµ(y)

δ
.

Therefore the constant limit v of δwδ must be
∫

IRm f(y) dµ(y).
We end this section by defining the effective terminal value for the limit as ε→ 0

of the singular perturbation problem (3.1). We fix x and consider the following Cauchy
initial problem: {

wt − L(y,Dw,D2w) = 0 in (0,+∞)× IRm

w(0, y) = g(x, y), (4.11)

where g satisfies assumption (2.5).
Proposition 4.4. Under our standing assumptions, for every x there exists a

unique bounded classical solution w(·, ·;x) to (4.11) and

lim
t→+∞

w(t, y;x) =
∫

IRm

g(x, y)dµ(y) =: g(x) locally uniformly in y. (4.12)

Proof. The PDE in (4.11) is parabolic with coefficients which are locally Lipschitz
and grow at most linearly, wheras the initial data are bounded and continuous, by the
assumptions of Section 2. Classical results on these equations give the existence of a
bounded classical solution to the Cauchy problem (4.11) (see, e.g., Theorem 1.2.1 in
[37] and references therein), whereas uniqueness among viscosity solutions is given by
Theorem 2.1 in [16]. This solution can be represented as w(t, y;x) = Eg(x, Yt), where
Yt is the process starting at y and satisfying (4.1). Moreover the function w(t, y;x)
is uniformly continuous in every domain [t0,+∞)×K, where K ⊆ IRm is a compact
set: see [27, Thm 3.5] or [29, Lemma 4.6.2].

To complete the proof it is enough to show that w(y) = lim sups→+∞ w(s, y;x)
and w(y) = lim infs→+∞ w(s, y;x) are constants, i.e. w(y) = w and w(y) = w for
every y, and that they both coincide with g(x), i.e. w = w = g(x).

The proof that w(y) and w(y) are constants is the same as in the periodic case,
Theorem 4.2 in [3], once we replace the Strong Maximum (and Minimum) Principle
with the Liouville property Lemma 4.1.

To conclude we show that w = g(x) = w. We detail the argument only for w, since
it is completely analogous for w. We fix a subsequence such that w = limn w(tn, 0;x)
and define wn(t, y) = w(t + tn, y;x). Since wn is equibounded and equicontinuous,
by taking a subsequence we can assume that wn(t, y) → w̃(t, y) locally uniformly.
Note that by construction w̃(t, y) ≥ w for every (t, y) and w̃(0, 0) = w. By stability
results of viscosity solutions, w̃ is a viscosity solution to wt − L(y,Dw,D2w) = 0 in
(−∞,+∞)× IRm. Then, by Strong Minimum Principle, we get that w̃(0, y) = w for
every y. This means that w(tn, y;x) converges to w locally uniformly in y, in particular
w(tn, y;x) → w µ-almost surely, where µ is the invariant probability measure for
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Yt (see Proposition 4.2). Moreover |w(tn, y)| ≤ ‖w‖∞ ∈ L1(IRm, µ) and then, by
Lebesgue theorem and the definition of invariant measure,

w =
∫

IRm

w dµ(y) = lim
n

∫
IRm

Eg(x, Ytn
)dµ(y) =

∫
IRm

g(x, y)dµ(y).

Remark 4.2. The results in Theorem 4.3 and Proposition 4.4 could also be
proved using direct probabilistic methods and semigroup theory.

We consider the infinitesimal generator L of the Markov semigroup in Cb(IRm)
associated to the diffusion process Yt. In this abstract setting, the cell problem (4.6)
can be seen as the Poisson equation Lχ = c − c(y), where c(y) := H(x, y, p,X), and
the δ-cell problem (4.7) is the resolvent equation (δ−L)wδ = −c(y). Finally the initial
layer problem (4.11) is the abstract Cauchy problem wt − Lw = 0, w(0, y) = g(x, y)
(for more details see the monograph [37]). In particular, thanks to the existence of
a unique invariant probability measure µ (see Proposition 4.2), the solution of the
Poisson equation Lχ = c− c(y) is given by the representation formula

w(y) =
∫ ∞

0

∫
IRn

f(z) (P (t, y, dz)− µ(dz)) dt,

where P (t, y, ·) are the transition probabilities associated to Yt, provided the con-
vergence of P (t, y, ·) to µ is fast enough. Using the same approach and appropriate
representation formulas, the convergence results (4.8) and (4.12) can be obtained as
consequences of a sufficiently strong convergence result of the transition probabilities
to the invariant measure.

Related results on the (exponential) convergence of the transition probabilities
to the unique invariant measure were obtained in [18, Thm 5.2] under a stronger
condition than (2.11), namely, the existence of a positive function w and positive
constants b, c such that lim|y|→+∞ w(y) = +∞ and −Lw ≥ cw − b in IRm.

5. The convergence theorem. We state now the main result of the paper,
namely, the convergence theorem for the singular perturbation problem. We will prove
that the value function V ε(t, x, y), solution to (3.1), converges locally uniformly, as
ε→ 0, to a function V (t, x) which can be characterized as the unique solution of the
limit problem −Vt +H

(
x,DxV,D

2
xxV

)
+ λV (x) = 0 in (0, T )× IRn

+

V (T, x) = g(x) in IRn
+.

(5.1)

The Hamiltonian H and the terminal data g have been defined respectively in (4.8)
and in (4.12) as the averages ofH (see (2.8)) and g with respect to the unique invariant
measure µ for the process Yt, defined in (2.10).

Theorem 5.1. The solution V ε to (3.1) converges uniformly on compact subsets
of [0, T )×Rn

+ × IRm to the unique continuous viscosity solution to the limit problem
(5.1) satisfying a quadratic growth condition in x, i. e.,

∃K > 0 s.t. ∀(t, x) ∈ [0, T ]× IRn
+ |V (t, x)| ≤ K(1 + |x|2). (5.2)

Moreover, if g is independent of y then the convergence is uniform on compact subsets
of [0, T ]×Rn

+ × IRm and g = g.
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Proof. The proof is divided in several steps.
Step 1 (Relaxed semilimits ).

Recall that by (3.3) the functions V ε are locally equibounded in [0, T ] × IRn
+ × IRm,

uniformly in ε. We define the half-relaxed semilimits in [0, T ]× IRn
+× IRm (see [6, Ch

V]):

V (t, x, y) = lim inf
ε→0

t′→t,x′→x,y′→y

V ε(t′, x′, y′), V (t, x, y) = lim sup
ε→0

t′→t,x′→x,y′→y

V ε(t′, x′, y′)

for t < T , x ∈ IRn
+ and y ∈ IRd,

V (T, x, y) = lim inf
t′→T−,x′→x,y′→y

V (t′, x′, y′), V (T, x, y) = lim sup
t′→T−,x′→x,y′→y

V (t′, x′, y′).

It is immediate to get by definitions that the estimates (3.3) hold also for V and V .
This means that

|V (t, x, y)|, |V (t, x, y)| ≤ KV (1 + |x|2) for all t ∈ [0, T ], x ∈ IRn
+, y ∈ IRm. (5.3)

Step 2 (V , V do not depend on y).
We check that V (t, x, y), V (t, x, y) do not depend on y, for every t ∈ [0, T ) and x ∈ IRn

+.
We claim that V (t, x, y) (resp., V (t, x, y)) is, for every t ∈ (0, T ) and x ∈ IRn

+, a
viscosity subsolution (resp., supersolution) to

−L(y,DyV,D
2
yyV ) = 0 in IRd (5.4)

where L is the differential operator defined in (2.9). If the claim is true, we can use
Lemma 4.1, since V , V are bounded in y according to estimates (5.3), to conclude that
the functions y → V (t, x, y), y → V (t, x, y) are constants for every (t, x) ∈ (0, T )×IRn

+.
Finally, using the definition it is immediate to see that this implies that also V (T, x, y)
and V (T, x, y) do not depend on y. We prove the claim only for V , since the other
case is completely analogous.

First of all we show that the function V (t, x, y) is a viscosity subsolution to (5.4).
To do this, we fix a point (t, x, y) and a smooth function ψ such that V − ψ has a
maximum at (t, x, y). Using the definition of weak relaxed semilimits it is possible to
prove (see [6, Lemma V.1.6]) that there exists εn → 0 and B 3 (tn, xn, yn) → (t, x, y)
maxima for V εn − ψ in B such that V εn(tn, xn, yn) → V (t, x, y). Therefore, recalling
that V ε is a subsolution to (3.1), we get

−ψt +H

(
xn, yn, Dxψ,D

2
xxψ,

1
√
εn
D2

xyψ

)
− 1
εn
L(yn, Dyψ,D

2
yyψ) + λV εn ≤ 0,

where V εn and all the derivatives of ψ are computed in (tn, xn, yn). This implies

−L(yn, Dyψ,D
2
yyψ) ≤ εn

[
ψt −H

(
xn, yn, Dxψ,D

2
xxψ,

1
√
εn
D2

xyψ

)
− λV εn

]
. (5.5)

We observe that the term in square brackets is uniformly bounded with respect to n
in B, and using the regularity properties of ψ and of the coefficients in the equation
we get the desired conclusion as εn → 0.
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We show now that if V (t, x, y) is a subsolution to (5.4), then for every fixed (t, x)
the function y 7→ V (t, x, y) is a subsolution to (5.4), which was our claim. To do this,
we fix y and a smooth function φ such that V (t, x, ·)− φ has a strict local maximum
at y in B(y, δ) and such that φ(y) ≥ 1 for all y ∈ B(y, δ). We define, for η > 0,
φη(t, x, y) = φ(y)

(
1 + |x−x|2+|t−t|2

η

)
and we consider (tη, xη, yη) a maximum point of

V − φη in B((t, x, y), δ). Repeating the same argument as in [6, Lemma II.5.17], it is
possible to prove, eventually passing to subsequences, that, as η → 0, (tη, xη, yη) →
(t, x, y) and Kη :=

(
1 + |xη−x|2+|tη−t|2

η

)
→ K > 0. Moreover, using the fact that V is

a subsolution to (5.4), we get −L(yη,KηDφ(yη),KηD
2φ(yη) ≥ 0, which gives, using

the linearity of L and passing to the limit as η → 0, −L(y,Dφ(y), D2φ(y)) ≥ 0.
Step 3 (V and V are sub and supersolutions of the limit PDE).

First we claim that V and V are sub and supersolution to the PDE in (5.1) in (0, T )×
IRn

+. We prove the claim only for V since the other case is completely analogous. The
proof adapts the perturbed test function method introduced in [19] for the periodic
setting. We fix (t, x) ∈ ((0, T ) × IRn

+) and we show that V is a viscosity subsolution
at (t, x) of the limit problem. This means that if ψ is a smooth function such that
ψ(t, x) = V (t, x) and V − ψ has a maximum at (t, x) then

−ψt(t, x) +H(x,Dxψ(t, x), D2
xxψ(t, x)) + λV (t, x) ≤ 0. (5.6)

Without loss of generality we assume that the maximum is strict in B((t, x), r) ∩
([0, T ] × IRn

+) and that xi > r for every i and 0 < t − r < t + r < T . We fix
y ∈ IRm, η > 0 and consider a solution χ = wδ ∈ C2 of the δ-cell problem (4.7) at
(x,Dxψ(t, x), D2

xxψ(t, x)) (see Proposition 4.3) such that

|δχ(y) +H(x,Dxψ(t, x), D2
xxψ(t, x))| ≤ η ∀ y ∈ B(y, r). (5.7)

We define the perturbed test function as

ψε(t, x, y) := ψ(t, x) + εχ(y).

Observe that

lim sup
ε→0,t′→t,x′→x,y′→y

V ε(t′, x′, y′)− ψε(t′, x′, y′) = V (t, x)− ψ(t, x).

By a standard argument in viscosity solution theory (see [6, Lemma V.1.6]) we get that
there exist sequences εn → 0 and (tn, xn, yn) ∈ B := B((t, x, y), r)∩([0, T ]×IRn

+×IRm)
such that:
(tn, xn, yn) → (t, x, y), for some y ∈ B(y, r),
V εn(tn, xn, yn)− ψεn(tn, xn, yn) → V (t, x)− ψ(t, x),
(tn, xn, yn) is a strict maximum of V εn − ψεn in B.

Then, using the fact that V ε is a subsolution to (3.1), we get

−ψt +H
(
xn, yn, Dxψ,D

2
xxψ, 0

)
+ λV εn(tn, xn, yn)− L(yn, Dyχ,D

2
yyχ) ≤ 0 (5.8)

where the derivatives of ψ and χ are computed respectively in (tn, xn) and in yn.
Using the fact that χ solves the δ-cell problem (4.7), we obtain

−ψt(tn, xn) +H(xn, yn, Dxψ(tn, xn), D2
xxψ(tn, xn), 0)− δχ(yn)

−H(x, yn, Dxψ(t, x), D2
xxψ(t, x), 0) + λV εn(tn, xn, yn) ≤ 0.
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By taking the limit as n → +∞ the second and third term of the l.h.s. of this
inequality cancel out. Next we use (5.7) to replace −δχ with H − η and get that the
left hand side of (5.6) is ≤ η. Finally, by letting η → 0 we obtain (5.6).

Now we claim that V and V are respectively a super and a subsolution to (5.1)
also at the boundary of IRn

+. In this case it is sufficient to repeat exactly the same
argument of Step 4 in the proof of Proposition 3.1 to get the conclusion, recalling that
the Hamiltonian H is defined as

H(x, p,X) =
∫

IRm

min
u∈U

{
−trace

(
σ̃σ̃T (x, y, u)X

)
− φ̃(x, y, u) · p

}
dµ(y).

Step 4 (Behaviour of V and V at time T ).
The arguments in this step are based on analogous results given in [2, Thm 3] in the
periodic setting, with minor corrections due to the unboundedness of our domain. We
repeat briefly the proof for convenience of the reader. We prove only the statement
for subsolution, since the proof for the supersolution is completely analogous.

We fix x ∈ IRn
+ and consider the unique bounded solution wr to the Cauchy

problem {
wt − L(y,Dw,D2w) = 0 in (0,+∞)× IRm

w(0, y) = sup{|x−x|≤r, x≥0} g(x, y).
(5.9)

Using stability properties of viscosity solutions it is not hard to see that wr converges,
as r → 0, to wx, solution to (4.11), uniformly on compact sets.
We fix k > 0. Using the definition of g given in (4.12) and the uniform convergence
of wr to wx, it is easy to see that for every η > 0 there exists t0 > 0 and r0 such that
|wr(t0, y) − g(x)| ≤ η for every r < r0 and |y| ≤ k. Moreover, since L(y, 0, 0) = 0,
using comparison principle, we get that

|wr(t, y)− g(x)| ≤ η for every r < r0, t ≥ t0, |y| ≤ k. (5.10)

We fix now r < r0 and a constant M such that V ε(t, x, y) ≤ M for every ε > 0 and
x ∈ B := B(x, r)∩ IRn

+. Observe that this is possible by estimates (3.3). Moreover we
fix a smooth nonnegative function ψ such that ψ(x) = 0 and ψ(x) + infy g(x, y) ≥M
for every x ∈ ∂B (using condition (2.5)). Let C be a positive constant such that

|H(y, x,Dψ(x), D2ψ(x))| ≤ C for x ∈ B and y ∈ IRm

where H is defined in (2.8). We define the function

ψε(t, x, y) = wr

(
T − t

ε
, y

)
+ ψ(x) + C(T − t)

and we claim that it is a supersolution to the parabolic problem
−Vt + F

(
x, y, V,DxV,

DyV
ε , D2

xxV,
D2

yyV

ε ,
D2

xyV
√

ε

)
= 0 in (T − r, T )×B × IRm

V (t, x, y) = M in (T − r, T )× ∂B × IRm

V (T, x, y) = g(x, y) in B × IRm

(5.11)
where F is defined in (3.2). Indeed if wr is smooth

−ψε
t + F

(
x, y,Dxψ

ε,
Dyψ

ε

ε
,D2

xxψ
ε,
D2

yyV ψ
ε

ε
,
D2

xyψ
ε

√
ε

)
=
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=
1
ε
(wr)t + C +H(y, x,Dψ(x), D2ψ(x))− 1

ε
L(y,Dwr, D

2wr) ≥

≥ 1
ε

(
(wr)t − L(y,Dwr, D

2wr)
)
≥ 0.

This computation is made in the case wr is smooth, but can be easily generalized to
wr continuous using test functions (see [2, Thm 3]). Moreover

ψε(T, x, y) = sup
|x−x|≤r

g(x, y) + ψ(x) ≥ g(x, y).

Finally, recalling that by comparison principle, wr(t, y) ≥ infy sup|x−x|≤r g(x, y), we
get

ψε(t, x, y) ≥ inf
y

sup
|x−x|≤r

g(x, y) +M − inf
y
g(x, y) + C(T − t) ≥M

for every x ∈ B. For our choice of M , we get that V ε is a subsolution to (5.11).
Moreover, note that both V ε and ψε are bounded in [0, T ]×B × IRm, because of the
estimate (3.3), of the boundedness of wr and of the regularity of ψ. So, a standard
comparison principle for viscosity solutions gives

V ε(t, x, y) ≤ ψε(t, x, y) = wr

(
T − t

ε
, y

)
+ ψ(x) + C(T − t) (5.12)

for every ε > 0, (t, x, y) ∈ ([0, T ]×B × IRm). We compute the upper limit both sides
of (5.12) as (ε, t′, x′, y′) → (0, t, x, y) for t ∈ (t0, T ), x ∈ B, |y| < k and get, recalling
(5.10),

V (t, x) ≤ g(x) + η + ψ0(x) + C(T − t).

This permits to conclude, taking the upper limit for (t, x) → (T, x) and recalling that
η is arbitrary.

Step 5 (Uniform convergence).
Observe that by definition V ≤ V and that both V and V satisfy the same quadratic
growth condition (5.3). Moreover the Hamiltonian H defined in (4.8) and the terminal
data g in (4.12) inherit all the regularity properties of H, in (2.8), and g in (2.5), as
it is easily seen by their definitions. Therefore we can use again the comparison
result between sub and supersolutions to parabolic problems satisfying a quadratic
growth condition, given in [16, Thm 2.1], to deduce V ≥ V . Therefore V = V =: V .
In particular V is continuous and by the definition of half-relaxed semilimits, this
implies that V ε converges locally uniformly to V (see [6, Lemma V.1.9]).

Remark 5.1. The result in Theorem 5.1 still holds if the fast variables Yt have an
extra term such as Λ(y)/

√
ε in the drift, with Λ : IRm → IRm bounded and Lipschitz

continuous. This means that fast variables in the singularly perturbed system (2.1)
satisfy

dY k
t =

1
ε
bk(Yt)dt+

1√
ε
Λk(Yt)dt+

√
2
ε
τk(Yt) · dWt Y k

to
= yk, k = 1, . . .m.

and the singularly perturbed HJB equation is

−V ε
t +H

(
x, y,DxV

ε, D2
xxV

ε,
D2

xyV
ε

√
ε

)
− 1
ε
L(y,DyV

ε, D2
yyV

ε)−Λ ·DyV
ε

√
ε

+λV ε = 0.
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The new term 1√
ε
Λ(y) · DyV

ε appearing in the equation is a lower order term with
respect to 1

εL(y,DyV
ε, D2

yyV
ε) and does not affect the convergence argument. In

particular it is sufficient to check the validity of Steps 2, 3, 4 in the proof of Theorem
5.1.

In Step 2, we substitute formula (5.5) with

−L(yn, Dyψ,D
2
yyψ) ≤

≤ εn

[
ψt −H

(
xn, yn, Dxψ,D

2
xxψ,

1
√
εn
D2

xyψ

)
− λV εn

]
+
√
εnΛ(yn) ·Dyψ

and observe that the right hand side is vanishing as εn → 0 since Dyψ is locally
bounded and Λ is bounded.

In Step 3, we replace formula (5.8) with

−ψt +H
(
xn, yn, Dxψ,D

2
xxψ, 0

)
+ λV εn − L(yn, Dyχ,D

2
yyχ) ≤

√
εnΛ(yn) ·Dyχ

and repeat the same argument since the last term right hand side is vanishing as
εn → 0, due again to the boundedness of Λ and the smoothness of the approximate
corrector χ.

Finally in Step 4, we substitute the Cauchy problem (5.9) with{
wt − L(y,Dw,D2w)−

√
εΛ(y) ·Dw = 0 in (0,+∞)× IRm

w(0, y) = sup{|x−x|≤r, x≥0} g(x, y).

and denote with wr,ε its unique bounded solution. Stability properties of viscosity
solutions imply that wr,ε converges, as r → 0, ε → 0, to wx, solution to (4.11),
uniformly on compact sets.

6. Examples and extensions.

6.1. The model problem: risky assets with stochastic volatility . We
consider N underlying risky assets with price Xi evolving according to the standard
lognormal model:{

dXi
t = αiXi

tdt+
√

2Xi
tfi(Yt) · dW t Xi

to
= xi ≥ 0 i = 1, . . . , n

dY j
t = 1

ε b
j(Yt)dt+

√
2
ενj(Yt)dZ

j

t Y j
to

= yj ∈ IR j = 1, . . . ,m ε > 0,
(6.1)

where fi : IRm → IRk is a bounded Lipschitz continuous function, with each com-
ponent bouded away from 0, bi : IRm → IR and νj : IRm → IR are locally Lipschitz
continuous functions with linear growth (see (2.2)). We assume that

ν2
j (y) > 0 ∀y ∈ IRm, j = 1, . . . ,m. (6.2)

The processes W t and Zt are, respectively, standard k and m-dimensional Brow-
nian motions, and they are correlated. In particular we assume that there exists a
m-dimensional standard Brownian motion Zt such that Wt = (W t, Zt) is a k + m
dimensional standard Brownian motion and

Z
j

t =
k∑

i=1

ρijW
i

t +

(
1−

k∑
i=1

ρ2
ij

) 1
2

Zj
t , ∀j = 1, . . . ,m, ∀t ≥ 0. (6.3)
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This model problem is essentially the one described in [24, Sect 10.6 ], where k = n =
m.

We denote with ρ the correlation k ×m-matrix (ρij) and with cj the quantity

cj :=

(
1−

k∑
i=1

ρ2
ij

) 1
2

. (6.4)

In the following Proposition we describe the main properties of ρ.
Proposition 6.1.
(i) −1 ≤ ρij ≤ 1, for every i ∈ {1, . . . , k} and j ∈ {1, . . . ,m};
(ii)

∑k
i=1 ρ

2
ij ≤ 1 for every j ∈ {1, . . . ,m};

(iii)
∑k

i=1 ρijρil = 0 for every l 6= j ∈ {1, . . . ,m}.
Proof. Items (i), (ii) can be easily proved by exploiting the definition of ρij . To

show (iii), we multiply
∑k

i=1 ρijρil by t, for fixed l 6= j ∈ {1, . . . ,m}, and use the
properties of W . to get

t
k∑

i=1

ρijρil = E
k∑

i=1

ρijW
i

tρilW
i

t = E

(
k∑

i=1

ρijW
i

t

k∑
i=1

ρilW
i

t

)
(6.5)

since the components of W t are independents. Substituing (6.3) in (6.5) we get

t
k∑

i=1

ρijρil = E
[(
Z

j

t − cjZj
t

)(
Z

l

t − clZl
t

)]
=

= E(Z
j

tZ
l

t)− cjE(Zj
tZ

l

t)− clE(Z
j

tZ
l
t) + cjclE(Zj

tZ
l
t) = 0

for j 6= l, since the components of the Brownian motions Zt and Zt are independent
and moreover

E(Zj
tZ

l

t) = 0

as can be easily obtained using (6.3) and the fact that Zt and W t are independent
Brownian motions. Substituing (6.3) in (6.1) we get{

dXt = φ̃(Xt)dt+
√

2σ̃(Xt, Yt)dWt

dYt = 1
ε b(Yt)dt+

√
2
ετ(Yt)dWt.

(6.6)

where φ̃ : IRn → IRn and σ̃ : IRn × IRm → Mn,k+m are defined as φ̃i(x) = αixi and
σ̃ij(x, y) = xif j

i (y) for j = 1, . . . , k and σ̃ij(x, y) = 0 for j = k + 1, . . . , k +m, while
τ : IRm → IRm×(k+m) is the m× (k +m) matrix

τ(y) =


ρ11ν1(y) · · · ρk1ν1(y) c1ν1(y) 0 · · · 0
ρ12ν2(y) · · · ρk2ν2(y) 0 c2ν2(y) · · · 0

...
. . .

...
...

...
. . .

...
ρ1mνm(y) · · · ρkmνm(y) 0 0 0 cmνm(y)

 . (6.7)

We consider now the matrix τ(y)τT (y). An easy computation shows that the diagonal
terms of this matrix are

(τ(y)τT (y))jj = ν2
j (y)

(
k∑

i=1

ρ2
ij + (cj)2

)
= ν2

j (y)
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by definition of cj in (6.4). The extra diagonal terms are given by

(τ(y)τT (y))jl = νj(y)νl(y)

(
k∑

i=1

ρijρil

)
= 0,

by item (iii) in Proposition 6.1. Then the matrix ττT is the diagonal matrix

τ(y)τT (y) =

ν
2
1(y) · · · 0
...

. . .
...

0 · · · ν2
m(y)


and in particular satisfies (2.4) by (6.2).

Observe that the system (6.6) fits in our basic assumptions of Section 2. It includes
as a special case the multidimensional option pricing model of [24, Sect 10.6] where
each Y i

t is a standard one dimensional Ornstein-Uhlenbeck processes. Here we are only
assuming, besides standard regularity conditions on b and τ and non-degeneracy (6.2),
that the infinitesimal generator of the process satisfies the Lyapunov-like condition
(2.11).

The problem we consider here is the pricing of an European option given by a
nonnegative payoff function g depending on the underlying Xi and by a maturity
time T . According to risk-neutral theory, to define a no arbitrage derivative price we
have to use an equivalent martingale measure P∗ under which the discounted stock
prices e−rtXi

t are martingales, where r is the istantaneous interest rate for lending
or borrowing money. For a brief review of no arbitrage price theory in the context
of stochastic volatility we refer to [24, Section 2.5]. The system (6.6) can be written,
under a risk-neutral probability P∗ , as{

dXt = rXtdt+
√

2σ̃(Xt, Yt)dW ∗
t

dYt = 1
ε [b(Yt)−

√
εΛ(Yt)] dt+

√
2
ετ(Yt)dW ∗

t .
(6.8)

for some volatility risk premium Λ(Y ) chosen by the market and describing the rela-
tionship between the physical measure P under which the stock prices are observed
and the risk-neutral measure P∗ (see [24], Section 10.6, and [25]). In (6.8) W ∗ is a
k+m dimensional standard Brownian motion obtained by an appropriate shift of W ,
and Λ can be assumed bounded and smooth. In this setting, an European contract
has no-arbitrage price given by the formula

V ε(t, x, y) := E∗[eλ(t−T )g(XT ) | Xt = x, Yt = y], 0 ≤ t ≤ T (6.9)

where λ > 0 and the payoff function g satisfies (2.5). When there is only one asset
Xt (say n = 1 in the system (6.8)), typically the payoff function g is defined as
g(x) = max{(x−K), 0} for call options and g(x) = max{(K − x), 0} for put options,
where K is the contracted strike price.

The (linear) HJB equation associated to the price function is

−V ε
t +HP

(
x, y,DxV

ε, D2
xxV

ε,
D2

xyV
ε

√
ε

)
+ λV ε =

=
1
ε

[
L(y,DyV

ε, D2
yyV

ε)−
√
εΛ(y) ·DyV

ε
]
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in (0, T )× IRn
+ × IRm complemented with the obvious terminal condition

V ε(T, x, y) = g(x),

where

HP (x, y, p,X,Z) := −trace
(
σ̃σ̃TX

)
− φr · p− 2trace

(
σ̃τTZT

)
and L is defined in (2.9). The prices V ε(t, x, y, ) converge locally uniformly, as ε→ 0,
to the unique viscosity solution V of the limit equation (5.1), due to our convergence
result Theorem 5.1 (see also Remark 5.1 describing the slight modifications to the
argument in the proof needed to treat this case). V can be represented as

V (t, x) := E∗
[
eλ(t−T )g(XT ) | Xt = x

]
, 0 ≤ t ≤ T,

where µ is the unique invariant measure associated to the fast subsystem (see Section
4) and Xt satisfies the averaged effective system

dXt = rXtdt+
√

2σ(Xt)dW ∗
t (6.10)

whose volatility is the so-called mean historical volatility

σ(x) :=

√∫
IRm

σ̃(x, y)σ̃T (x, y)dµ(y).

Therefore the limit of the pricing problem as ε → 0 is a new pricing problem for
the effective system (6.10). This convergence result complements and extends a bit
Section 10.6 of [24] on multidimensional problems.

Let us recall also that µ(y) is explicitly known in some interesting cases, in partic-
ular when the fast variables are a Ornstein-Uhlenbeck process, as in [24]. For instance,
if Yt and Zt are scalar processes, the measure µ has the Gaussian density

dµ(y) =
1√

2πτ2
e−(y−m)2/2τ2

dy,

with the notations of Example 2.1.

6.2. Merton portfolio optimization problem. We consider now another
classical problem in finance, the Merton optimal portfolio allocation, under the as-
sumption of fast oscillating stochastic volatility.

We consider a financial market consisting of a non risky asset X0 evolving ac-
cording to the deterministic equation dX0

t = rX0
t dt, with r > 0, and n risky assets

Xi
t evolving according to the stochastic system (6.6). We denote by W the wealth of

an investor. The investment policy-which will be the control input- is defined by a
progressively measurable process u taking values in a compact set U , and ui

t repre-
sents the proportion of wealth invested in the asset Xi

t at time t. Then the wealth
process evolves according to the following system

dWt = Wt

(
r +

∑n
i=1(α

i − r)ui
t

)
dt+

√
2Wt

∑n
i=1 u

i
tfi(Yt) · dW t Wto

= w > 0

dYt = 1
ε b(Yt)dt+

√
2
εν(Yt)dZt,

(6.11)
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with the same notations and assumptions as in the preceding Section 6.1. Also this
system is a special case of (2.1), now with a one-dimensional slow state variable Wt,
and it satisfies the assumptions of Section 2 .

The Merton problem consists in choosing a strategy u· which maximize a given
utility function g at some final time T . In particular the problem can be described in
terms of the value function

V ε(t, w, y) := sup
u·∈U

E[g(WT , YT ) | Wt = w, Yt = y]. (6.12)

Typically the utility functions in financial applications are chosen in the class of HARA
(Hyperbolic Absolute Risk Aversion) functions g(w, y) = a(bw+ c)γ , where a, b, c are
bounded and continuous given functions of y, and γ ∈ (0, 1) is a given coefficient called
the relative risk premium coefficient. Observe that the function g satisfies assumption
(2.5).

We remark also that in the classical HARA functions typically a, b, c are constants.
We choose to consider y dependent coefficients since our method permits to manage
also this general case and moreover utilities of such form are employed in the pricing
of derivatives with non-traded assets (see [43]).

The HJB equation associated to the Merton value function is

−V ε
t +HM

(
w, y, V ε

w, V
ε
ww,

DyV
ε
w√
ε

)
− 1
ε
L(y,DyV

ε, D2
yyV

ε) = 0 (6.13)

in (0, T )×IR+×IRm complemented with the terminal condition V ε(T, x, y) = g(x, y).
In (6.13) L is as in (2.9) and HM (w, y, p,X,Z) is defined as

inf
u∈U

−[r +
n∑

i=1

(αi − r)ui)]wp−
k∑

j=1

∣∣∣∣∣
n∑

i=1

uif j
i (y)

∣∣∣∣∣
2

w2X +

−2
m∑

h=1

k∑
j=1

n∑
i=1

uif j
i (y)τhj(y)wZh

 ,

with the matrix τ given by (6.7). Our main Theorem 5.1 applies also in this case and
says that the value function V ε converges locally uniformly to the unique solution of
the limit problem −Vt +

∫
IRm HM (w, y, Vw, Vww, 0) dµ(y) = 0 for t ∈ (0, T ), w > 0

V (T,w) =
∫

IRm g(w, y) dµ(y) for w > 0
(6.14)

where µ(y) is the invariant measure associated to the fast subsystem (2.10).
This convergence result is new, also in the case of a single risky asset and g

independent of y that is studied in [24]. Next we interpret it in terms of stochastic
control.

For simplicity we restrict ourselves to the case of a single risky asset and a scalar
fast process Yt, i.e., n = m = 1. The equation for the wealth becomes

dWt = Wt (r + (α− r)ut) dt+
√

2Wtutf(Yt) · dW t, α > r,
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and the HJB equation for V ε is

− ∂V ε

∂t
− sup

u∈U

[r + (α− r)u]w
∂V ε

∂w
+ u2|f |2w2 ∂

2V ε

∂w2
+

2uw√
ε

k∑
j=1

ρjf
jν
∂2V ε

∂w∂y


=

1
ε
L
(
y,
∂V ε

∂y
,
∂2V ε

∂y2

)
, (6.15)

where ρj is the correlation factor between Z
j

t and W t, see (6.3). The effective PDE is

−∂V
∂t

−
∫

IRm

max
u∈U

{
[r + (α− r)u]w

∂V

∂w
+ u2|f(y)|2w2 ∂

2V

∂w2

}
dµ(y) = 0. (6.16)

Effective utility. Note that since the utility depends also on y, we have an initial
boundary layer. The effective utility g can be interpreted as an averaged utility which
is robust with respect to fast mean reverting fluctuations and uncertainty in the
market (depending also, e.g., on non-traded assets). If g is independent of y than the
convergence is uniform up to time T .

Solution of the effective Cauchy problem. In some cases the effective Cauchy
problem (6.14) can be solved explicitly. As constraint on the control ut we take the
interval

U := [R1, R], with −R ≤ R1 ≤ 0 < R.

We also assume that the terminal cost is the HARA function

g(w, y) = a(y)
wγ

γ
, 0 < γ < 1, a(y) ≥ ao > 0.

Then the terminal condition in (6.14) is

V (T,w) = a
wγ

γ
, a :=

∫
IRm

a(y) dµ(y),

and we look for solutions of (6.14) of the form V (t, w) = wγ

γ v(t) with v(t) ≥ 0. By
plugging it into the Cauchy problem we get

v̇ = −γhv, v(T ) = a, h := r +
∫

IRm

max
u∈U

[
(α− r)u+ (γ − 1)|f(y)|2u2

]
dµ(y).

Therefore the uniqueness of solution to (6.14) gives

V (t, w) = aeγh(T−t)w
γ

γ
, 0 < t < T. (6.17)

We compute the rate of exponential increase h and get

h = r +
∫
{y : 2R(1−γ)|f(y)|2<α−r}

[
(α− r)R+ (γ − 1)R2|f(y)|2

]
dµ(y)

+
∫
{y : 2R(1−γ)|f(y)|2≥α−r}

(α− r)2

4(1− γ)|f(y)|2
dµ(y).
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The limit is a Merton problem. It is interesting to compare this solution
with the value function of the Merton problem with constant volatility σ > 0 where
the wealth dynamics is

dWt = Wt (r + (α− r)ut) dt+
√

2WtutσdW t,

and the utility function is awγ/γ.
In the case 2R(1− γ)σ ≥ α− r (in particular, for large or no upper bound on the

control) the value function is given by the classical Merton formula

a exp
[
γ

(
r +

(α− r)2

4(1− γ)σ2

)
(T − t)

]
wγ

γ
. (6.18)

It coincides with the solution (6.17) of the effective HJB equation (6.16) with terminal
condition g = awγ/γ if and only if a = a and

σ = σ :=
α− r

2
√

(1− γ)(h− r)
.

Therefore these are the correct parameters to use in a Merton model with constant
volatility if we consider it as an approximation of a model with fast and ergodic
stochastic volatility. We can call it the effective Merton model.

The effective volatility. The preceding formula for the effective volatility σ
simplifies considerably if the µ-probability of the set {y : 2R(1− γ)|f(y)|2 ≥ α − r}
is 1, e.g., for large upper bound R on the control. In fact we get

σ =
(∫

IRm

1
|f(y)|2

dµ(y)
)− 1

2

,

a formula derived in Section 10.1.2 of [24] in the case of unconstrained controls (R =
+∞).

We remark that σ for the Merton problem is the harmonically averaged long-run
volatility, that is smaller than the mean historical volatility derived in the previous
Section 6.1 for uncontrolled systems. Therefore using the correct parameter in the
model leads to an increase of the value function, i.e., of the optimal expected utility.

The limit of the optimal control. Consider the effective Merton problem
(a = a, σ = σ) and suppose the upper bound R on the control large enough to allow
all the usual calculations of the case R = +∞. The control where the Hamiltonian
attains the maximum is

u∗ :=
α− r

2(1− γ)σ2 =
α− r

2(1− γ)

∫
IRm

1
|f(y)|2

dµ(y),

which is then the optimal control. We want to compare it with the optimal control for
the problem with ε > 0. For the terminal condition V ε(T,w, y) = a(y)wγ/γ we expect
a solution of (6.15) of the form V ε(t, w, y) = vε(t, y)wγ/γ. Then we can compute the
maximum in the Hamiltonian of (6.15) and get

u∗ε(t, y) =
α− r

2(1− γ)|f(y)|2
+

Φ(y)√
εvε(t, y)

∂vε

∂y
(t, y), Φ(y) :=

∑k
j=1 ρjf

j(y)ν(y)
(1− γ)|f(y)|2

(6.19)
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By our main theorem vε(t, y) → v(t) locally uniformly in [0, T ) × IR as ε → 0, so
∂vε

∂y (t, y) → 0 in the sense of distributions with respect to y, locally uniformly in
t < T . Then we wonder if the second term of u∗ε vanishes in some sense, despite the√
ε at the denominator, therefore giving

lim
ε→0

u∗ε(t, y) =
α− r

2(1− γ)|f(y)|2
=: u∗0(y). (6.20)

Note that the candidate limit u∗0 is different from u∗, but u∗ =
∫

IRm u∗0(y) dµ(y).
Let us assume for simplicity that

µ has a density ϕ ∈ C1 and lim
|y|→∞

ϕ(y) = 0. (6.21)

The former assumption is satisfied, for instance, if the coefficients b, ν of L are
smooth, because L∗µ = 0 in the sense of distributions and the regularity theory for
elliptic equations applies (L∗ being the formal adjoint of L). The latter assumption is
natural for an integrable ϕ and it is satisfied, for instance, by the Ornstein-Uhlenbeck
process (ϕ is a Gaussian function). Then, when we take the integral of (6.19) with
respect to µ and integrate by parts the second term, we get∫

IRm

u∗ε(t, y) dµ(y) = u∗ + o

(
1√
ε

)
as ε→ 0,

which is again not very insightful. To get some convergence we write an asymptotic
expansion for v∗ε (t, y) in powers of

√
ε, in the spirit of Section 10.1.2 of the book

by Fouque, Papanicolaou, and Sircar [24] but under weaker assumptions and using
different arguments.

Proposition 6.2. Besides the standing assumptions of the section and (6.21)
suppose

vε(t, y) = v(t) +
√
εvε

1(t, y), v
ε
1(t, y) → v1(t, y) locally uniformly, v1 bounded. (6.22)

Then
i) v1 = v1(t), so 1√

ε
∂vε

∂y = ∂vε
1

∂y (t, y) → 0 in the sense of distributions with respect to
y;

ii) if, in addition,

|vε
1| ≤ C,

√
ε

∫
IRm

∣∣∣∣∂vε
1

∂y

∣∣∣∣ dµ(y) → 0 ∀ t < T, (6.23)

then

u∗ = lim
ε→0

∫
IRm

u∗ε(t, y) dµ(y) ∀ t < T ; (6.24)

iii) if, in addition,

vε
1(t, y) = v1(t) + ω(ε)vε

2(t, y), ω(ε) → 0,
∣∣∣∣∂vε

2

∂y
(t, y)

∣∣∣∣ ≤ C(t, y), (6.25)

then 1√
ε

∂vε

∂y → 0 and (6.20) holds uniformly on every set where C(·, ·) is bounded.
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Proof. i) By plugging the optimal control (6.19) into the HJB equation (6.15) we
get

−∂v
ε

∂t
− γrvε − F1(y)

(
(α− r)vε +

F2(y)√
ε

∂vε

∂y

)2

=
1
ε
L
(
y,
∂vε

∂y
,
∂2vε

∂y2

)
,

for suitable continuous Fi, i = 1, 2. Using the expansion (6.22) the equation becomes

−L
(
y,
∂vε

1

∂y
,
∂2vε

1

∂y2

)
=
√
ε

[
∂vε

∂t
+ γrvε + F1(y)

(
(α− r)vε + F2(y)

∂vε
1

∂y

)2
]
.

Letting ε→ 0 we obtain, by standard properties of viscosity solutions,

−L
(
y,
∂v1
∂y

,
∂2v1
∂y2

)
= 0 in IR,

so v1 is constant with respect to y by the Liouville property Lemma (4.1).

ii) First observe that vε is uniformly bounded and bounded away from 0. The
upper bound follows from (3.3). The lower bound is obtained by using the definition
(6.12) of V ε and computing the payoff of the control u. ≡ 0. We get

V ε(t, w, y) ≥ E[a(YT ) | Yt = y]eγr(T−t)w
γ

γ

and therefore

vε(t, y) ≥ aoe
γr(T−t) ≥ ao ∀ t ≤ T, ∀ y.

From (6.19) and the expansion (6.22) we get∫
IRm

u∗ε(t, y) dµ(y) = u∗ +
∫

IRm

Φ(y)
vε(t, y)

∂vε
1

∂y
(t, y)ϕ(y) dy.

Integrating by parts, the integral on the right hand side becomes

−
∫

IRm

∂

∂y

(
Φϕ
vε

)
vε
1 dy +

[
Φϕ

vε
1

vε

]y→+∞

y→−∞

and the second term is null by (6.21) and the uniform boundedness of Φvε
1/v

ε. The
first term can be written as

−
∫

IRm

∂ (Φϕ)
∂y

vε
1

vε
dy +

∫
IRm

√
ε
∂vε

1

∂y

Φvε
1

(vε)2
ϕdy

and we let ε→ 0: the second integral vanishes by (6.23) and the uniform boundedness
of Φvε

1/(v
ε)2, whereas the first converges to

−v1(t)
v(t)

∫
IRm

∂ (Φϕ)
∂y

(y) dy = 0

by (6.21). This completes the proof of (6.24).
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iii) By (6.25)

1√
ε

∂vε

∂y
= ω(ε)

∂vε
2

∂y
(t, y) → 0

uniformly on every set where ∂vε
2/∂y is uniformly bounded. By (6.19) u∗ε converges

uniformly on every such set to u∗0.
We can roughly summarize the preceding proposition by saying that an asymp-

totic expansion of vε of the form

vε = v +
√
εv1 + o(

√
ε)vε

2

implies that the optimal control u∗ of the effective Merton model is the limit of the
averages and the average of the limit of the optimal controls for the models with ε > 0,
i.e.,

u∗ = lim
ε→0

∫
IRm

u∗ε(t, y) dµ(y) =
∫

IRm

lim
ε→0

u∗ε(t, y) dµ(y).

The financial interpretation of this statement is clear: the optimal control for the
Merton problem with constant volatility σ approximates the expectation of the op-
timal control for the same problem with stochastic volatility, provided the volatility
evolves much faster than the assets.

6.3. Periodic day effects and volatility with a slow component. Section
10.2 of [24] discusses a refinement of the model in Section 6.1 where the volatilities of
the prices depend on time on a fast periodic scale, thus modeling the daily oscillations.
This amounts to replacing fi(Yt) in (6.1) and (6.11) with

fi = fi

(
t

ε
, Yt

)
,

where fi is 1-periodic in the first entry. We incorporate this in our setting by adding
the new variable s := t/ε whose dynamics is ṡ := 1/ε. The fast subsystem now has
the additional variable st that is trivially ergodic on the unit circle with invariant
measure the Lebesgue measure. Now the effective Hamiltonian of the limit PDE is

H =
∫ 1

0

∫
IRm

H(x, y, s, p,X, 0) dµ(y) ds.

Another possible extension of the model in Sections 6.1 and 6.2 is the addition of
another stochastic quantity Zt affecting the volatilities of the prices and evolving on
a slower time scale than the prices:

fi = fi(Yt, Zt),

dZt = θc(Zt)dt+
√
θd(Zt)dWt, Z0 = z, (6.26)

with θ small, c, d Lipschitz and growing at most linearly at infinity. This is done,
for instance, in [26] and [38]. This modeling allows much more flexibility and is
motivated by various empirical studies (see [26] and reference therein) which outline
a volatility composed by one highly persistent factor and one quickly mean reverting
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factor. The slow volatility factor in particular is useful when considering option with
longer maturities.

The value function now depends also on the initial position z of the new variable
Zt and the Hamilton-Jacobi-Bellman equation (2.7) becomes

λV − Vt +H

(
x, y, z,DxV,D

2
xxV,

D2
xyV√
ε
,
√
θD2

xzV

)
− 1
ε
L(y,DyV ,D

2
yyV )−

−θ[c ·DzV + θtrace(ddTD2
zzV )]−

√
θ

ε
trace

[
τdTD2

yzV +D2
yzV τd

T (z)
]

= 0

In particular this can be seen as a regular perturbation of the equation (2.7). If θ is
independent of ε and we let it tend to 0, the basic properties of viscosity solutions
give the convergence of the value funtion V ε,θ(t, x, y, z) to the solution V (t, x, z) of the
same effective Cauchy problem as before, with the only difference that H now depends
also on z (but z appears only as a fixed parameter in the limit PDE). It possible to
check this result regardless of the order of taking the limits θ → 0 and ε→ 0. Indeed

the term −
√

θ
ε trace

[
τ(y)dT (z)D2

yzV +D2
yzV τ(y)d

T (z)
]

is a lower order term with

respect to 1
εL(y,DyV ,D

2
yyV ) and then a similar argument as in Remark 5.1 holds. If,

instead, θ = θ(ε), the same conclusion follows with a much more delicate argument,
following a theorem on regular perturbations of singular perturbation problems proved
in [4].

Of course the periodic oscillations in time and the slow component of the volatility
can also be treated simultaneously. As an example, we consider the scalar Merton
problem (6.2) with volatility and utility function given by

fi = fi

(
t

ε
, Yt, Zt

)
, g = a(YT , ZT )

Wγ
T

γ
,

Zt satisfying (6.26). Then the value function V ε,θ(t, x, y, z) converges locally uni-
formly to the classical Merton formula (6.18) for the problem with constant volatility

σ = σ(z) :=
(∫ 1

0

∫
IRm

1
|f(s, y, z)|2

dµ(y) ds
)− 1

2

,

at least when the upper bound R on the controls is large enough, and

a = a(z) :=
∫

IRm

a(y, z) dµ(y).

6.4. Worst case optimization under unknown disturbances. Assume that
the general stochastic control system (2.3) is affected by an additional disturbance
ũt taking values in a compact set Ũ and suppose you want to maximize the payoff
under the worst possible behaviour of ũt. There are several possible reasons for this
choice, such as the lack of statistical informations on the disturbance, or the desire
to avoid with probability one some catastrophic events caused by a particularly nasty
behaviour of ũt. The mathematical framework for modeling these problems is the
theory of two-person zero-sum differential games, where the controller is the first
player and the disturbance is considered as the control of a second player wishing to
minimize the payoff.
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For simplicity we suppose the following form of the drift and diffusion in (2.1):

φi = φi
1(x, y, u) + φi

2(x, y, ũ), σi = σi
1(x, y, u) + σi

2(x, y, ũ),

with φi
j , σ

i
j bounded, continuous, and Lipschitz in (x, y) uniformly in u, ũ. For the

system written in vector form (2.3) we then have φ̃i = φ̃i
1(x, y, u)+φ̃

i
2(x, y, ũ) and σ̃i =

σ̃i
1(x, y, u) + σ̃i

2(x, y, ũ) with the obvious definitions. The Isaacs equation associated
to the game is again of the form (2.7), but now the Hamiltonian is H = H1 +H2 with

H1(x, y, p,X,Z) := min
u∈U

{
−trace

(
σ̃1σ̃

T
1 X

)
− φ̃1 · p− 2trace

(
σ̃1τ

TZT
)}
,

H2(x, y, p,X,Z) := max
ũ∈Ũ

{
−trace

(
σ̃2σ̃

T
2 X

)
− φ̃2 · p− 2trace

(
σ̃2τ

TZT
)}
.

The precise definition of value function is more delicate for a stochastic differential
game, as well as the proof that it is a viscosity solution of (2.7), and we refer the
reader to [22]. We remark that the comparison principle of [16] still holds for the
Cauchy problem (3.1) with the new convex-concave Hamiltonian, and therefore there
is a unique viscosity solution V ε. The convergence Theorem 5.1 of V ε(t, x, y) to
V (t, x) holds with no changes, because its proof never uses the convexity of H with
respect to (p,X). The effective Hamiltonian now is

H =
∫

IRm

min
u∈U

{
−trace

(
σ̃1σ̃

T
1 X

)
− φ̃1 · p

}
+ max

ũ∈Ũ

{
−trace

(
σ̃2σ̃

T
2 X

)
− φ̃2 · p

}
dµ(y).

6.5. Applications to problems with degenerate diffusion. We pointed out
in the Introduction that we do not make any nondegeneracy assumption on the dif-
fusion matrix σσT for the slow variables Xt. This makes our methods applicable
to a wide range of models, even in deterministic control, if one wants to study the
sensitivity to random parameters evolving on a fast time scale. For instance, some
differential games arising in marketing and advertising are under investigation.

Within mathematical finance, path-dependent models, such as Asian options,
involve degenerate diffusion processes, see [41], [8], and the references therein. In
these models one augments the state space by a new variable As that is the time-
integral of some functions of a price Ss. Therefore an ODE is added to the system,
such as dAs = Ss ds for problems involving the arithmetic mean of the prices, or
dAs = log(Ss) ds for the geometric mean. Therefore the process Xs = (Ss, As) is
a degenerate diffusion. Models of Asian options with fast stochastic volatility are
studied in Chapter 8.3 of [26] and in [23], [42].

Interest rate models are another area where the uniform non-degeneracy of the
diffusion matrix would not be a reasonable assumption. The LIBOR models with
stochastic volatility reviewed in Chapter 11 of [13] all have a volatility function
σ(Xs, Ys) vanishing at Ys = 0. This event usually has null probability, by the choice of
the dynamics for Ys. So the associated PDE is parabolic but not uniformly parabolic.
Some of these models with two time-scales are studied in Chapter 11 of [26].

A stronger form of degeneracy occurs in the Heath–Jarrow–Morton framework for
forward rate models, where there are an infinite number of traded assets (one for each
maturity) and a finite number of sources of randomness (components of the Brownian
motion), see, e.g., Chapt. 23 of [10]. The possibility of arbitrage is ruled out by the
HJM drift condition. If one considers a large but finite number of maturities, the assets
evolve as a degenerate diffusion and our methods can be used for the asymptotics of
the fast stochastic volatility problem. HJM models with stochastic volatility (with
the same time scale as the prices) were studied in [11].
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7. Conclusion. In this paper we study stochastic control problems with random
parameters driven by a fast ergodic process. Our methods are based on viscosity so-
lutions theory and Hamilton-Jacobi approach to singular perturbations. The assump-
tions are chosen to fit problems of pricing derivative securities and optimizing the
portfolio allocation in financial markets with fast mean reverting stochastic volatility.

The main steps of our HJB approach to singular perturbations are the following:
• write the Hamilton-Jacobi-Bellman equation for the value function V ε and

characterize it as the unique viscosity solution of the Cauchy problem for such
equation (see Section 3);

• define a limit (effective) PDE and a limit (effective) initial data resolving
appropriate ergodic-type problems (see Section 4);

• prove the (locally) uniform convergence of V ε to a function V , which can
be characterized as the unique solution of the effective Cauchy problem (see
Section 5);

• interpret the effective PDE as the HJB equation for a limit (effective) control
problem. Such problem approximates the one with ε > 0 and it has lower
dimensional state variables, therefore it is easier to solve. There is no general
recipe for this step and we do it in Section 6 for a multidimensional option
pricing model and for Merton portfolio optimization problem.

The main contributions of the present paper are the following. On the mathemat-
ical side we extend the HJB approach from the setting of periodic fast variables (see
[1, 2, 3] and references therein) to the case of unbounded fast variables. The proba-
bilistic literature on singular perturbations in stochastic control (see the monographs
[33] and [34] and their bibliography) allows unbounded fast variables but makes other
restrictive assumptions that rule out some financial models such as Merton optimiza-
tion problem (e.g., in [34] the diffusion matrix σ̃ is assumed uncontrolled).

On the side of financial models our approach complements the methods of Fouque,
Papanicolaou, and Sircar [24]. They assume an asymptotic expansion for V ε of the
form

V ε = V +
√
εV1 + εV2 + . . . , (7.1)

plug it into the HJB PDE for V ε, set equal to 0 each term multiplying a power of ε,
and solve iteratively such PDEs to compute the correctors Vi. This gives informations
not only on the limit but also for ε positive with various orders of magnitude. The
validity of the expansion can be proved in some problems without control, this is done
for instance in [25] for the option pricing of a single asset. Our result in Section 6.1
complements it by treating the multi-asset problem, but only up to the first term of
the expansion. Since the PDE is linear we believe that the arguments can be carried
on to study further terms, but we do not try to do it here.

For problems with controls, however, the validity of the asymptotic expansion
(7.1) is not known, even for particular problems like Merton, and presumably it is not
true in general. Section 10.1 of [24] assumes (7.1) for the Merton problem and gets
some interesting insight on the correction of the optimal control. Our contribution in
Section 6.2 is a rigorous proof of the locally uniform convergence of the value function
with stochastic volatility to the value of the Merton problem with constant effective
volatility σ (instead of the historical volatility)

lim
ε→0

V ε(t, w, y) = V (t, w), σ2 =
∫

IRm

1
|f(y)|2

dµ(y),
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also for utility functions depending on the fast variable y. The problem of justifying
further terms of the asymptotic expansion is wide open in stochastic control and fully
nonlinear PDEs, even for the first corrector V1. The only related result we know is in
the very recent paper by Camilli and Marchi [14] and concerns the rate of convergence
in periodic homogenization. We plan to study this issue for particular models arising
in applications. As for the convergence of the optimal control, at the end of Section
6.2 we assume the expansion

V ε = V +
√
εV1 + o(

√
ε)V ε

2

and prove that

u∗ = lim
ε→0

E [u∗ε(t, Y )] = E
[
lim
ε→0

u∗ε(t, Y )
]
, Y ∼ µ,

which has a clear financial interpretation.
Finally, we remark that our method is very general and can be used for a number of

models, financial or not, including 0-sum differential games and degenerate diffusions.
The case of controls appearing also in the fast variables was studied in [1, 2, 3] and
references therein when the fast variables are bounded, see also [12]. We plan to
push the methods of the present paper further and treat problems with controlled
and unbounded fast variables.
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