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Abstract. This work discusses the role of highly anisotropic interfacial energy for problems involving a
material void in a linearly elastic solid. Using the calculus of variations it is shown that important qualitative
features of the equilibrium shape of the void may be deduced from smoothness and convexity properties of
the interfacial energy.

1. Introduction

Understanding surface roughening of materials plays a central role in many fields of physics, chemistry,

and metallurgy. Since the pioneer work of Asaro & Tiller [3] (see also [28,37], and the references

therein), it has been recognized that in continuous models of crystals surface instability is driven by

the competition between elastic energy and surface energy.

The stress, acting parallel to a flat surface of an elastic solid, causes atoms to diffuse on the

surface and the surface to undulate. In turn such a migration of atoms has an energetic prize in terms

of surface tension. This phenomenon may lead to the formation of isolated islands on the substrate

surface (see, e.g., [30,31], and [32]), or of cracks running into the bulk of the solid. Island formation

in systems such as In-GaAs/GaAs or SiGe/Si turns out to be useful in the fabrication of modern

semiconductor electronic and optoelectronic devices such as quantum dots laser.

Similarly, a void in a grain can collapse into a crack by surface diffusion when the applied stress

exceeds a critical value (see [9,19,20,33,35,36]). Note that, since the lattice diffusion is much slower as

compared to the surface diffusion, the evolving void in a grain can be assumed to conserve its volume,

only changes its shape.

In [36], Suo & Wang have conducted numerical experiments on the shape change of a pore in an

infinite solid. Assuming that the surface tension is isotropic and that the solid is under a uniaxial

stress σ1, they observed that the pore changes shape as the atoms diffuse on the surface driven by

surface and elastic energy variation, expressed in term of the dimensionless number

Λ =
σ2

1R0

Y γ
,

where Y is the Young’s modulus, R0 the initial circular pre radius, and γ the surface tension. Their

experiments showed that under no stress, the pore has a rounded shape maintained by surface tension.

On the other hand, if the applied stress is small (Λ small), the pore reaches an equilibrium shape

close to an ellipse (thus compromising the stress and the surface tension), while if the applied stress Λ

is large, the pore does not reach equilibrium and noses emerge, which sharpen into crack tips. Similar

results were also obtained for anisotropic surface tension.
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Italy, n.fusco@unina.it
‡Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA, U.S.A., giovanni@andrew.cmu.edu
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The purpose of this paper is to formulate a simple variational model describing the competition

between elastic energy and highly anisotropic surface energy for problems involving a material void

in a linearly elastic solid. Following the fundamental work of Herring [23] (see also [34]), we take the

surface free energy of a body to be an integral of the form
∫
ϕ (ν) dS (1.1)

extended over the surface of the body, where the surface energy density ϕ is, for anisotropic bodies, a

function of the orientation of the outer unit normal ν at each surface point. The shape that minimizes

(1.1) for fixed volume is known as the Wulff shape (see [14,17,21] and the references therein). Under

no stress, Herring [23] argued that if a given macroscopic surface of a crystal does not coincide in

orientation with some portion of the boundary of the Wulff shape, then there exists a hill-and-valley

structure that has a lower free energy than a flat surface.

On the other hand, the minimum energy configuration of the bulk material occurs at the stress-free

state for each solid. Thus, at the interface between the void and the elastic solid these two opposing

mechanisms compete to determine the resulting structure.

We now describe the model considered in this paper. Our formulation follows Siegel, Miksis, and

Voorhees [28]. Consider a starshaped void, which occupies a closed region F ⊂ R2, embedded in an

elastic solid. The solid region is assumed to obey the usual laws of linear elasticity, so that the bulk

energy takes the form
∫

B0\F
W
(
E(u)

)
dz, where B0 is a large ball, W(E) = 1

2C(E) · E is the elastic

energy density, with C a constant positive definite fourth order tensor, and E(u) is the symmetrized

gradient, i.e.,

E(u) =
1

2

(
∇u+ (∇u)T

)
.

We assume that far from the void u = u0 a.e. in R2 \B0
a. Thus, we are led to minimize the functional

F(F, u) :=

∫

B0\F

W
(
E(u)

)
dz +

∫

∂F

ϕ(νi
F ) dH1 (1.2)

over all pairs (F, u) for which u = u0 a.e. in R2 \B0 and for which the void F has a fixed area. Notice

that, since the inner normal νi
F is equal to the outer normal to the elastic body, the surface integral

in (1.2) coincides with (1.1).

The paper is divided into two parts. In the first part we prove an integral representation result

for the relaxed or effective energy of (1.2) (see Theorem 3.2). This result is closely related to recent

work of Braides, Chambolle, and Solci [4] (see also [6,8], and [15]), who proved a similar relaxation

result in the N -dimensional case but with Hausdorff convergence of sets replaced by L1-convergence

of their characteristics functions.

In the second part of this work we study the regularity of minimizers (F, u) of the relaxed functional

F (see (3.8)), under volume constraint. The strategy of the proof is similar to the one in [15], where

the case of isotropic surface energy was considered. As in that paper we are able to show that volume

constrained minimizers of the limiting energy F are also unconstrained minimizers if we add to F a

suitable volume penalization. This allows us to consider a larger class of variations of F and to prove,

adapting an argument contained in [7], an exterior Wulff shape condition. It is at this point that our

analysis significantly departs from previous work [15] in the isotropic case (in which the Wulff shape

was a ball), see also [18].

aSince our approach is variational, here we depart sligthly from the work of [28], where the solid is assumed to occupy
the infinite region R2 \ F and far from the void a state of biaxial stress is imposed, precisely,

T (E (u)) →

„

σ1 0
0 σ2

«

as
p

x2 + y2 → ∞. Note that this condition would force the energy
R

R2\F
W

`

E(u)
´

dz to be infinite.
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We first study polygonal Wulff shapes. This is the appropriate setting to address physical crystals

(see [34]). Surface integrands ϕ for which the Wulff shape is a polygon are called crystalline and it

can be shown that if W ⊂ R2 is a convex, bounded, closed set, then it is the Wulff shape of its support

function (see Proposition 3.5 in [14])

ϕ(z) := sup {y · z : y ∈W} , z ∈ R
2 .

Under the assumption that the internal angles of the Wulff shape are strictly greater than π
2 ,

we can prove that if (F, u) is a minimizer for the penalized functional Fℓ0 , then ∂F is the union of

finitely many Lipschitz graphs. To the best of our knowledge these are the first regularity results in

this context. In the absence of the elastic energy but without the restriction that F is starshaped, we

refer to the recent work of Ambrosio, Novaga, and Paolini [2], and of Novaga and Paolini [27] as well

as to the references contained therein.

We then study the case in which the anisotropy is weak, that is, the surface energy density ϕ in

(1.2) (extended to be 1-homogeneous) is strictly convex. For example, for helium the surface energy is

almost isotropic and its Wulff shape is nearly spherical (see [26]). For this type of surface energies the

Wulff shape is of class C1 and thus many of the arguments obtained in [15] can be adapted, although

the proofs are significantly more involved.

2. Preliminaries

2.1. Sets of finite perimeter, functions of finite pointwise variation, and polar coordinates.

First, we recall some basic properties of sets of finite perimeter. If E ⊂ RN is a measurable set, then

E0 and E1 denote the set of points of density 0 with respect to E and the set of points of density 1,

respectively. Recall that the density of z ∈ RN with respect to E is defined as

lim
r→0+

|E ∩Br(z)|
|Br|

whenever this limit exists, where Br(z) denotes the ball of center z and radius r.

A set E ⊂ RN is said to be of finite perimeter if the distributional derivative of the characteristic

function χE is a Radon measure with finite total variation. Then, the reduced boundary ∂∗E is defined

as the set of points z ∈ spt|DχE | such that the limit

νE(z) := − lim
r→0+

DχE(Br(z))

|DχE |(Br(z))

exists and satisfies |νE(z)| = 1. It may be verified that ∂∗E is a Borel set and that νE : ∂∗E → S1 is

a Borel map (see e.g. [1]). We call νE the (generalized) outer normal, and

νi
E := −νE

is the (generalized) inner normal.

We shall need the following lemma which is a consequence of Proposition 3.38, Example 3.68, and

Example 3.97 in [1], and [13, Lemma 2.2].

Lemma 2.1. Let A and B be sets of finite perimeter in RN . Then A∩B, A \B and A∪B are sets

of finite perimeter. Moreover,

∂∗(A ∩B) =
(
∂∗A ∩B1

)
∪
(
∂∗B ∩A1

)
∪
(
∂∗A ∩ ∂∗B ∩ {νA = νB}

)
(mod. HN−1) , (2.1)

and for HN−1-a.e. z ∈ ∂∗(A ∩B),

νA∩B(z) =





νA(z) if z ∈ ∂∗A ∩B1 ,

νB(z) if z ∈ ∂∗B ∩A1 ,

νA(z) if z ∈ ∂∗A ∩ ∂∗B ∩ {νA = νB} .
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In addition, if |A ∩B| = 0, then

∂∗(A ∪B) =
(
∂∗A \ ∂∗B

)
∪
(
∂∗B \ ∂∗A

)
(mod. HN−1) , (2.2)

and for HN−1-a.e. z ∈ ∂∗(A ∪B),

νA∪B(z) =

{
νA(z) if z ∈ ∂∗A \ ∂∗B ,
νB(z) if z ∈ ∂∗B \ ∂∗A .

(2.3)

In this paper S1 denotes the unit circle in R2 centered at the origin and oriented counterclockwise.

If σ =
(
σ1, σ2

)
∈ S1, then σ⊥ is obtained rotating σ counterclockwise by π/2, i.e.,

σ⊥ :=
(
−σ2, σ1

)
.

Given σ1, σ2 ∈ S1, we set

(σ1, σ2) :=
{
σ ∈ S

1 : σ1 < σ < σ2

}
, [σ1, σ2] :=

{
σ ∈ S

1 : σ1 ≤ σ ≤ σ2

}
,

and

A(σ1, σ2) := {rσ : σ ∈ (σ1, σ2), r > 0} , A[σ1, σ2] := {rσ : σ ∈ [σ1, σ2] , r ≥ 0} ,

where the order relation ≤ between unit vectors is inherited from the orientation.

Similarly, the notions of left and right limits of sequences and functions defined on S1 are to be

understood according to orientation, precisely, right convergence means clockwise convergence, and

left convergence means counterclockwise.

If ρ : S1 → [0,∞) is a given function, then for σ ∈ S1 we define

ρ+(σ) := sup

{
lim sup

n→∞
ρ(σn) : σn → σ , σn 6= σ

}
, ρ−(σ) := inf

{
lim inf
n→∞

ρ(σn) : σn → σ , σn 6= σ
}
.

Note that ρ+ and ρ− are upper and lower semicontinuous, respectively.

The pointwise total variation of ρ is defined by

pV(ρ, S1) := sup

{ n−1∑

i=0

|ρ(σi+1)−ρ(σi)| : σ0 < σ1 < · · · < σn−1 < σn = σ0 , σi ∈ S
1 for i = 1, . . . , n

}
,

and we say that the function ρ has finite pointwise variation if pV(ρ, S1) is finite.

If ρ has finite pointwise variation, then ρ has left and right limits at every σ ∈ S1, that we write

ρ(σ−) and ρ(σ+) respectively, and ρ+(σ) = max{ρ(σ−), ρ(σ+)}, ρ−(σ) = min{ρ(σ−), ρ(σ+)}. In

addition, the 2π-periodic function

ρ∗(θ) := ρ(σ(θ)) (2.4)

then belongs to BVloc(R), where

σ (θ) := (cos θ, sin θ) , (2.5)

and the functions ρ±(σ(·)) : R → R coincide with the the approximate upper and lower limits of ρ∗

in the sense of Federer that we denote by (ρ∗)±, respectively.

In the sequel it will be useful to consider polar coordinates, and to this purpose we introduce the

map Ψ : R × [0,∞) → R2 given by

Ψ (θ, r) := rσ (θ) = r (cos θ, sin θ) .

If S ⊂ R × [0,∞) is a countably H1-rectifiable set, since Ψ is locally Lipschitz, then Ψ (S) is also a

countably H1-rectifiable set. Moreover, if Ψ|S is one-to-one and f : R2 → [0,∞] is a Borel function,
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we have ∫

Ψ(S)

f (z) dH1(z) =

∫

S

f (Ψ (θ, r)) |∇τΨ (θ, r) | dH1(θ, r)

=

∫

S

f (Ψ (θ, r))
√
r2τ2

1 (θ, r) + τ2
2 (θ, r) dH1(θ, r) , (2.6)

where τ = (τ1 (θ, r) , τ2 (θ, r)) is the approximate tangent unit vector to S for H1-a.e. (θ, r) ∈ S.

Indeed, the first equality follows from the area formula proved in [1, Theorem 2.91], and then we

observe that the Jacobian of Ψ|S is given by |∇τΨ| where ∇τΨ denotes the tangential gradient of Ψ

along S, i.e.,

∇τΨ(θ, r) = τ · ∇Ψ(θ, r) = (−rτ1 sin θ + τ2 cos θ, rτ1 cos θ + τ2 sin θ) = τ2σ (θ) + rτ1 (σ (θ))
⊥
. (2.7)

2.2. Starshaped sets and radial functions.

Throughout the paper we consider R0 > 0 fixed, and we set B0 := BR0(0) ⊂ R2. We are interested

in closed sets F ⊂ B0 starshaped with respect to the origin. For such a set, we can write

F =
{
rσ ∈ R

2 : σ ∈ S
1 , 0 ≤ r ≤ ρF (σ)

}
,

where ρF : S1 → [0, R0] is the radial function of F , that is,

ρF (σ) := sup
{
r ≥ 0 : rσ ∈ F

}
.

It may be shown that ρF is upper semicontinuous, and that the supremum in the definition of ρF is

attained. Moreover, since ρ+
F is upper semicontinuous, the set

F+ :=
{
rσ ∈ R

2 : σ ∈ S
1 , 0 ≤ r ≤ ρ+

F (σ)
}

(2.8)

is closed and starshaped with respect to the origin. In addition, ρF+ = ρ+
F .

Given a closed set F ⊂ B0 starshaped with respect to the origin, in place of ρF we will often use

the 2π-periodic function

ρ∗F (θ) := ρF (σ (θ)) , (2.9)

where σ(θ) is defined in (2.5).

Lemma 2.2. Let F ⊂ B0 be a closed set starshaped with respect to the origin. Set

Γ :=
{
rσ : σ ∈ S

1 , ρ−F (σ) ≤ r ≤ ρF (σ)
}
.

Then ∂F = Γ is a connected set. In particular, ∂F is pathwise connected whenever H1(∂F ) <∞.

Proof. We first prove that ∂F ⊂ Γ. Let z ∈ ∂F . If z = 0, then we claim that there exists σ such that

ρ−F (σ) = 0, which implies that 0 ∈ Γ. To prove the claim, assume by contradiction that ρ−F (σ) > 0 for

all σ ∈ S1. Since ρ−F is lower semicontinuous, we have that r0 := infσ∈S1 ρ−F > 0, and thus Br0(0) ⊂ F ,

which is a contradiction. If z 6= 0, we may write z = rσ with r > 0 and σ ∈ S1. Let rnσn /∈ F be such

that rn → r and σn → σ, with σn 6= σ. We have

ρ−F (σ) ≤ lim inf
n→∞

ρF (σn) ≤ lim
n→∞

rn = r ≤ ρF (σ) .

Hence, z ∈ Γ, and we conclude that ∂F ⊂ Γ.

Since Γ ⊂ F , to show that Γ ⊂ ∂F , it is enough to prove that for every rσ ∈ Γ there exists a

sequence rnσn /∈ F converging to rσ. Let σn → σ, σn 6= σ, such that ρF (σn) → ρ−F (σ). Then the

points σn

[
ρF (σn) +

(
r − ρ−F (σ)

)
+ 1

n

]
do not belong to F and converge to rσ. Thus, Γ = ∂F .

To prove that Γ is connected, assume that U and V are two disjoint open sets such that Γ ⊂ U ∪V
and Γ∩U 6= ∅. Without loss of generality, we may assume that ρF (σ0)σ0 ∈ Γ∩U , where σ0 = (1, 0).

Set

θ̄ := sup {θ ∈ [0, 2π) : Γ ∩A[σ0, σ(θ)] ⊂ U} .
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We claim that θ̄ = 2π. Indeed, if θ̄ < 2π, consider the segment

Sθ̄ :=
{
rσ(θ̄) : ρ−F

(
σ(θ̄)

)
≤ r ≤ ρF

(
σ(θ̄)

)}
.

Since Sθ̄ is connected and contained in Γ, we have that either Sθ̄ ⊂ U or Sθ̄ ⊂ V . Assume first that

Sθ̄ ⊂ U and let σn = σ(θn) be such that θn → θ̄+ and rn ≥ 0, with rnσn ∈ Γ ∩ V . Since Γ = ∂F is

closed, up to a subsequence, we may assume that rnσn → rσ(θ̄) ∈ Sθ̄ ⊂ U . Therefore for n sufficiently

large we would get that rnσn ∈ U ∩ V , which is a contradiction. Taking into account the fact that

S0 ⊂ U , a similar argument ensures that θ̄ > 0.

Finally, if Sθ̄ ⊂ V , since θ̄ > 0, there exist σn = σ(θn) such that θn → θ̄− and rn ≥ 0, with

rnσn ∈ Γ ∩ U . As before, rnσn → rσ(θ̄) ∈ Sθ̄ ⊂ V , and so rnσn ∈ V for all n large, which is again a

contradiction. This shows that θ̄ = 2π, so that Γ ∩ V = ∅, thus proving that Γ is connected.

If H1 (∂F ) < ∞, then the connectedness of ∂F implies that ∂F is pathwise connected by Theo-

rem 4.46 in [24].

Remark 2.3. Arguing as in the proof above, if H1 (∂F ) <∞, we also obtain that ∂F ∩A[σ1, σ2] is

pathwise connected for every σ1, σ2 ∈ S1.

Let us now define the class

A :=
{
F ⊂ B0 closed, starshaped with respect to the origin, and H1(∂F ) <∞

}
.

We endow A with the topology induced by the Hausdorff distance dH. We recall that given two sets

A,B ⊂ R2, the Hausdorff distance between A and B is defined by

dH(A,B) := inf {ε > 0 : A ⊂ Nε(B) and B ⊂ Nε(A)} ,

where Nε(C) denotes the ε–neighborhood of a set C ⊂ R2, i.e.,

Nε(C) :=
{
z ∈ R

2 : dist(z, C) < ε
}
.

In the sequel, we also consider the subfamily

ALip :=
{
F ∈ A : ρF ∈ Lip(S1)

}
. (2.10)

Consider now a closed set F ⊂ B0 starshaped with respect to the origin. In Lemma 2.4 below we

will prove that ρF has finite pointwise variation if and only if H1(∂F ) < ∞ (i.e., F ∈ A). In this

case, ρF has a left and right limit at every point σ ∈ S1 and, as mentioned in Subsection 2.1, the 2π-

periodic function ρ∗F (θ) defined in (2.9) belongs to BVloc(R). Therefore, its distributional derivative

Dρ∗F can be decomposed into three mutually singular measures,

Dρ∗F = Daρ∗F +Dcρ∗F +Djρ∗F ,

where Daρ∗F =: (ρ∗F )′ dθ stands for the absolutely continuous part of Dρ∗F with respect to the 1-

dimensional Lebesgue measure on R, Djρ∗F is the jump part or purely atomic part of Dρ∗F , and Dcρ∗F
is the remaining part or Cantor part of Dρ∗F . We denote by Dsρ∗F the singular part of Dρ∗F , i.e.,

Djρ∗F + Dcρ∗F . In addition, it is well known that there is a L1-negligible (Borel) set Σ∗
F ⊂ R such

that Dsρ∗F = Dρ∗F ⌊Σ∗
F .

Since ρF is upper semicontinuous, if σ is a point of discontinuity of ρF , then σ ∈ JF ∪ SF , where

JF :=
{
σ ∈ S

1 : ρ−F (σ) < ρ+
F (σ)

}
and SF :=

{
σ ∈ S

1 : ρ+
F (σ) < ρF (σ)

}
. (2.11)

Note that the sets JF and SF may not be disjoint and, in view of Lemma 2.2, ∂F can be decomposed

as

∂F = Γcut ∪ Γjump ∪ Γreg , (2.12)
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with

Γcut :=
{
rσ : σ ∈ SF , ρ

+
F (σ) < r ≤ ρF (σ)

}
,

Γjump :=
{
rσ : σ ∈ JF , ρ

−
F (σ) < r < ρ+

F (σ)
}
,

Γreg := ∂F \
(
Γjump ∪ Γcut

)
.

In view of (2.9), if ρF has finite pointwise variation, then the sets JF , SF are countable. Also

JF =
{
σ (θ) : |Dρ∗F |({θ}) > 0

}
,

and we define

MF :=
{
σ (θ) : θ ∈ Σ∗

F

}
\ JF .

Finally, we denote by G−
F the subgraph of ρ∗F , i.e.,

G−
F :=

{
(θ, r) ∈ R

2 : r ≤ ρ∗F (θ)
}
.

Recall that ρ∗F ∈ BVloc(R) if and only if G−
F has locally finite perimeter in R2. The extended graph of

ρ∗F will be the set

GF :=
{
(θ, r) ∈ R

2 : (ρ∗F )
−

(θ) ≤ r ≤ (ρ∗F )
+

(θ)
}
. (2.13)

Lemma 2.4. Let F ⊂ B0 be a closed set starshaped with respect to the origin. Then H1(∂F ) <∞ if

and only if ρF has finite pointwise variation. Moreover, in this case,

∂∗F = ∂∗F+ and H1(∂F+∆∂∗F+) = 0 . (2.14)

Proof. We start by proving that H1(∂F ) <∞ implies that ρF has finite pointwise variation. To this

purpose, it suffices to prove that for any distinct points σ1, σ2 ∈ S1, we have

|ρF (σ1) − ρF (σ2)| ≤ H1(∂F ∩A) (2.15)

where A := A[σ1, σ2]. The estimate above then yields

pV
(
ρF , S

1
)
≤ 2H1(∂F ) .

To prove (2.15), denote by P : R2 → R+ the function P (z) = |z|. Since P is Lipschitz continuous

with Lipschitz constant equal to 1, we have

H1
(
P (∂F ∩A)

)
≤ H1(∂F ∩A) .

Hence it suffices to prove that the interval [ρF (σ1), ρF (σ2)] ⊂ P (∂F ∩ A), assuming, without loss of

generality, that ρF (σ1) < ρF (σ2). Indeed, given ρF (σ1) < r < ρF (σ2), let z := rσ3, where

σ3 := sup
{
σ : σ1 ≤ σ ≤ σ2 , rσ 6∈ F

}
.

Then z lies on ∂F ∩A.

Conversely, assume that ρF has finite pointwise variation. Then ρ∗F ∈ BVloc (R) and the extended

graph GF of ρ∗F defined in (2.13) has locally finite H1-measure (see [11]). On the other hand, it can

be checked that H1 (Γcut) ≤ pV
(
ρF , S

1
)
. Observe that Lemma 2.2 yields

∂F+ =
{
rσ ∈ R

2 : σ ∈ S
1 , ρ−F (σ) ≤ r ≤ ρ+

F (σ)
}

= Ψ
(
GF

)
. (2.16)

In view of (2.12), we have

∂F = Γcut ∪ Ψ
(
GF

)
.

Since GF ⊂ R × [0, R0] and Ψ is globally Lipschitz in R × [0, R0], we conclude that H1 (∂F ) <∞.
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Finally, we prove (2.14) assuming that H1 (∂F ) < ∞. Since F∆F+ = Γcut ⊂ ∂F we have

H1 (Γcut) < ∞, and then |F∆F+| = 0. Hence ∂∗F = ∂∗F+. Next, denote by ∂MF the measure-

theoretic boundary of F , i.e., ∂MF := R2 \
(
F 0 ∪ F 1

)
, and notice that ∂MF = ∂MF+. By Theo-

rem 3.61 in [1], ∂∗F ⊂ ∂MF and H1(∂MF \ ∂∗F ) = 0. Therefore, to prove the assertion, it is enough

to show

H1(∂F+∆∂MF ) = 0 . (2.17)

We claim that

∂MF \ {0} = Ψ
(
∂MG−

F ∩ (R × (0,∞))
)
. (2.18)

Let us assume that the claim holds, and complete the proof of (2.17). Since ∂MG−
F ⊂ R × [0, R0],

Ψ is Lipschitz in R × [0, R0], and Ψ(R × {0}) = {0}, we infer from (2.16),

H1(∂F+∆∂MF ) = H1(Ψ (GF )∆Ψ(∂MG−
F )) ≤ CH1(GF ∆∂MG−

F ) = CH1(GF ∆∂∗G−
F ) ,

where the last equality follows from the fact that H1(∂MG−
F \ ∂∗G−

F ) = 0 (see [1]). On the other

hand, it follows from in [12, Theorem 4.5.9 (5)] that

H1
(
GF ∆∂∗G−

F

)
= 0 , (2.19)

which would give (2.17).

It remains to prove the claim. Fix a point r0 (cos θ0, sin θ0) = r0σ0 ∈ F 0 \ {0}. Since the map Ψ

is a local diffeomorphism in R× (0,∞), and G−
F is the subgraph of ρ∗F , the area formula yields

lim
ε→0+

∣∣G−
F ∩Bε ((θ0, r0))

∣∣
ε2

= lim
ε→0+

1

ε2

∫

F+∩Ψ(Bε((θ0,r0)))

∣∣JΨ−1 (z)
∣∣ dz = 0 ,

where the last equality follows from the assumption r0σ0 ∈ F 0 \ {0} (note that there exists c > 0

such that for all ε > 0 small enough, Ψ (Bε ((θ0, r0))) ⊂ Bcε (r0σ0)). This proves the inclusion

Ψ−1
(
F 0 \ {0}

)
⊂
(
G−

F

)0 ∩ (R × (0,∞)). The opposite one is proved in a similar way. The same

argument yields Ψ−1
(
F 1 \ {0}

)
= (GF )1 ∩ (R × (0,∞)), and (2.18) is proved.

In the next two lemmas we relate the inner normal to ∂∗F and the length of ∂∗F to the derivative

of ρ∗F , extending well known formulas in the case of a smooth radial function.

Lemma 2.5. Let F ∈ A. Then for H1-a.e. z = rσ (θ) ∈ ∂∗F , we have

νi
F (z) =





1√
(ρ∗F )2(θ) + ((ρ∗F )′)

2
(θ)

(
(ρ∗F )′(θ) (σ (θ))

⊥ − ρ∗F (θ)σ (θ)
)

if σ(θ) ∈ S1 \ (JF ∪MF ) ,

dDsρ∗F
d|Dsρ∗F |

(θ) (σ (θ))
⊥

if σ(θ) ∈ JF ∪MF .

Proof. Since G−
F is the subgraph of the BVloc function ρ∗F , using Theorems 3 and 4 in Section 1.5

of Chapter 4 in [22], we have that for L1-a.e. θ ∈ R \ Σ∗
F ,

νi
G−

F

(θ, ρ∗F (θ)) =
1√

((ρ∗F )′)2 (θ) + 1
((ρ∗F )′(θ),−1) , (2.20)

while for |Dcρ∗F |-a.e. θ ∈ R with σ(θ) /∈ JF ,

νi
G−

F

(θ, ρ∗F (θ)) =

(
dDsρ∗F
d|Dsρ∗F |

(θ), 0

)
. (2.21)

Finally for every θ ∈ R such that |Djρ∗F |({θ}) > 0, and every r ∈ ](ρ∗F )
−

(θ), (ρ∗F )
+

(θ)[ , we have

νi
G−

F

(θ, r) =

(
dDsρ∗F
d|Dsρ∗F |

(θ), 0

)
. (2.22)
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Since ∂∗G−
F ⊂ ∂MG−

F ⊂ R × [0, R0], H1(∂MF \ ∂∗F ) = 0, and H1(∂MG−
F \ ∂∗G−

F ) = 0, we infer

from (2.18) and the Lipschitz continuity of Ψ in R × [0, R0] that

∂∗F∆Ψ
(
∂∗G−

F ∩ (R × (0,∞)
)

= E , (2.23)

with H1 (E) = 0.

From the proof of Theorem 2.90 in [1] it follows that for H1-a.e. z = rσ (θ) ∈ ∂∗F , a counter-

clockwise oriented tangent vector to ∂∗F at z is given by ∇τΨ(θ, r), where τ = (τ1, τ2) is the unit

tangent vector to ∂∗G−
F at (θ, r) given by

(
νi

G−

F

(θ, r)
)⊥

=: (−ν2, ν1). By (2.7),

∇τΨ(θ, r) = τ2σ (θ) + τ1r (σ (θ))
⊥
,

and so

νi
F (z) =

(∇τΨ(θ, r))
⊥

|∇τΨ(θ, r)| =
τ2 (σ (θ))

⊥ − τ1rσ (θ)√
τ2
2 + (τ1r)

2
=
ν1 (σ (θ))

⊥
+ ν2rσ (θ)√

ν2
1 + (ν2r)

2
. (2.24)

Set Π : (θ, r) ∈ R2 7→ θ to be the projection on the θ-axis. Since the periodic function ρ∗F belongs to

BVloc(R), we have (see e.g. [22], Chapter 4, Section 1.5, Theorem 1)

Π♯

(
H1⌊∂∗G−

F

)
=

√
1 + ((ρ∗F )′)

2
dθ + |Dsρ∗F | =: µ , (2.25)

i.e., µ(A) = H1⌊∂∗G−
F (A×R) for any Borel set A ⊂ R. It follows that if E ⊂ R is such that L1 (E) = 0

and |Dsρ∗F | (E) = 0, then

H1 ({(θ, ρ∗F (θ)) : θ ∈ E}) = 0 . (2.26)

Therefore the result follows from (2.20)-(2.22), (2.24), and (2.26).

Remark 2.6. Note that in view of (2.7), for L1-a.e. θ ∈ R \ Σ∗
F ,

∇τΨ(θ, ρ∗F (θ)) =
1√

((ρ∗F )′)2 (θ) + 1

(
(ρ∗F )′(θ)σ (θ) + ρ∗F (θ) (σ (θ))⊥

)
, (2.27)

while for |Dcρ∗F |-a.e. θ ∈ R with σ(θ) /∈ JF , then

∇τΨ(θ, ρ∗F (θ)) =
dDsρ∗F
d|Dsρ∗F |

(θ)σ (θ) . (2.28)

Finally for any θ ∈ R such that |Dρ∗F |({θ}) > 0 and any r ∈
]
(ρ∗F )

−
(θ), (ρ∗F )

+
(θ)
[
,

∇τΨ(θ, r) =
dDsρ∗F
d|Dsρ∗F |

(θ)σ (θ) . (2.29)

Lemma 2.7. For every F ∈ A, we have

H1(∂∗F ) =

∫ 2π

0

√
(ρ∗F )2(θ) + ((ρ∗F )′)2 (θ) dθ + |Dsρ∗F |([0, 2π)) . (2.30)

Proof. Set

Sa := ∂∗G−
F ∩

(
([0, 2π) \ Σ∗

F ) × R
)
,

Ss := ∂∗G−
F ∩

(
([0, 2π) ∩ Σ∗

F ) × R
)
.

(2.31)

In view of (2.23) the area formula (2.6) yields

H1(∂∗F ) =

∫

∂∗G−

F ∩{r>0}

|∇τΨ(θ, r)| dH1(θ, r)

=

∫

Sa∩{r>0}

√
(ρ∗F )2(θ) + ((ρ∗F )′)

2
(θ)

√
((ρ∗F )′)

2
(θ) + 1

dH1(θ, r) + H1
(
Ss ∩ {r > 0}

)
,
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where we have used (2.27), (2.28), (2.29) in the last equality. Since H1(Ss ∩ {r = 0}) = 0, (ρ∗F )′ = 0

L1-a.e. in {ρ∗F = 0}, and ρ∗F is nonnegative, we infer that

H1(∂∗F ) =

∫

Sa

√
(ρ∗F )2(θ) + ((ρ∗F )′)

2
(θ)

√
((ρ∗F )′)

2
(θ) + 1

dH1(θ, r) + H1(Ss) ,

which combined with (2.25) yields (2.30).

We conclude this section with a compactness result for sequences of sets in A (note that any se-

quence {Fn} ⊂ A is relatively compact for the Hausdorff distance between compact sets by Blaschke’s

theorem, see Theorem 6.1 in [1]).

Lemma 2.8. Let {Fn}n∈N ⊂ A be such that Fn → F as n → ∞ in the Hausdorff metric for some

F ⊂ B0. Then F is closed and starshaped with respect to the origin. Moreover, if supn H1(∂Fn) <∞,

then H1(∂F ) <∞ and

(i) ρF (σ) = sup
{

lim sup
n→∞

ρFn
(σn) : σn → σ

}
,

(ii) ρ∗Fn
→ ρ∗F in L1((0, 2π)), |Fn∆F | → 0 and DχFn

∗
⇀ DχF weakly* in the sense of measures.

Proof. Step 1. The closedness of F is a consequence of Blaschke’s theorem. To prove that F is

starshaped with respect to the origin, we assume by contradiction that there exists σ0 ∈ S1 and

r0 ∈ (0, ρF (σ0)) such that r0σ0 does not belong to F . Since F is closed, there exists Bε (r0σ0) ⊂ R2\F ,

and so, by Hausdorff convergence, Bε (r0σ0) ⊂ R2 \ Fn for all n sufficiently large.

Consider the smallest infinite cone C with vertex at the origin containing Bε (r0σ0). Note that

the axis of the cone is the half-line {tσ0 : t ≥ 0}. By the definition of ρF (σ0) there exists r > r0 + ε

such that rσ0 ∈ F . Let δ > 0 be such that Bδ (rσ0) ⊂ C. Let zn ∈ Fn be such that zn → rσ0, and

consider n so large that zn ∈ Bδ (rσ0). Since Fn is starshaped with respect to the origin, the segment

joining zn to the origin must be contained in Fn. However, this segment must intersect Bε (r0σ0) in

a segment of positive length and this contradicts the fact that Bε (r0σ0) ⊂ R2 \ Fn.

Step 2. We prove (i). Let σn → σ. Since ρFn
(σn)σn ∈ Fn and Fn → F in the Hausdorff metric, we

have that (lim supn→∞ ρFn
(σn)) σ ∈ F . This proves that

ρF (σ) ≥ sup
{

lim sup
n→∞

ρFn
(σn) : σn → σ

}
.

To show the opposite inequality, it is enough to consider the case in which ρF (σ) > 0. In this case, there

exist rnσn ∈ Fn such that rn → ρF (σ) and σn → σ. Thus ρF (σ) = limn→∞ rn ≤ lim supn→∞ ρFn
(σn).

Step 3. Since Fn ∈ A, we infer from (2.30) that

∣∣Dρ∗Fn

∣∣ (0, 2π) ≤
∫ 2π

0

√
(ρ∗Fn

)2 +
(
(ρ∗Fn

)′
)2
dθ + |Dsρ∗Fn

|(0, 2π) ≤ H1(∂Fn) ,

so that the sequence
{
ρ∗Fn

}
is bounded in BV ((0, 2π)). Therefore, up to a subsequence (not relabeled),

we may assume that ρ∗Fn
→ ρ∗ in L1 ((0, 2π)) and L1-a.e. in (0, 2π).

We claim that ρ∗ = ρ∗F L1-a.e. in (0, 2π). Let N0 ⊂ (0, 2π) be such that L1 (N0) = 0 and

ρ∗Fn
(θ) → ρ∗ (θ) for all θ ∈ (0, 2π)\N0. From (i) it follows that ρ∗ (θ) ≤ ρ∗F (θ) for all θ ∈ (0, 2π)\N0.

Next we prove the opposite inequality. Up to a subsequence (not relabeled), there exists a compact

set K such that ∂Fn → K in the Hausdorff metric. Since ∂Fn is connected, by Golab’s theorem it

follows that K is connected and

H1(K) ≤ lim inf
n→∞

H1(∂Fn) <∞ . (2.32)

We claim that ∂F ⊂ K. Indeed, assume that there exists z ∈ ∂F \ K. Then, for n large enough

Bε(z)∩ ∂Fn = ∅ for some ε > 0 independent of n. In other words, Bε(z) ⊂ intFn or Bε(z) ⊂ R2 \Fn
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for n large. Since Fn → F in the Hausdorff metric, we deduce that Bε(z) ⊂ F or Bε(z) ⊂ R2 \ F ,

which is impossible. Therefore (2.32) yields H1(∂F ) <∞.

Fix σ ∈ S1 and set Kσ := K ∩ {rσ : r > 0}. We claim that Kσ is connected. Indeed, if r1σ,

r2σ ∈ Kσ, with 0 < r1 < r2, and r ∈ (r1, r2), then there exist two sequences ri,nσi,n ∈ ∂Fn, i = 1, 2,

such that ri,nσi,n → riσ as n → ∞. Up to a subsequence, we may assume that H1((σ1,n, σ2,n)) → 0

(the opposite case H1((σ2,n, σ1,n)) → 0 is analogous) and r1,n < r < r2,n for all n. By Remark 2.3

∂Fn ∩ A [σ1,n, σ2,n] is pathwise connected, and thus for every n there exists σn ∈ [σ1,n, σ2,n] such

that rσn ∈ ∂Fn. Using the fact that rσn → rσ, we deduce that rσ ∈ K, thus proving that Kσ is

connected.

Denote by Ñ1 the set of points σ ∈ S1 such that H1 (Kσ) > 0. Then N1 is at most countable

since H1(K) <∞. Moreover, since Kσ is connected and ρF (σ)σ ∈ ∂F ⊂ K for every σ, we infer that

Kσ = {ρF (σ) σ} for all σ ∈ S1 \ Ñ1 such that ρF (σ) > 0. Consider N1 := {θ ∈ (0, 2π) : σ(θ) ∈ Ñ1}.
Then the set N1 is at most countable.

Take θ ∈ (0, 2π) \ (N0 ∪N1). We claim that ρ∗ (θ) ≥ ρ∗F (θ). Indeed, assume that ρ∗ (θ) < ρ∗F (θ).

By (i) there exists θnk
→ θ such that ρ∗Fnk

(θnk
) → ρ∗F (θ). Fix r ∈ (ρ∗ (θ) , ρ∗F (θ)). Since θ /∈ N0,

ρ∗Fn
(θ) → ρ∗ (θ). Hence, for all k large enough, ρ∗Fnk

(θ) < r < ρ∗Fnk
(θnk

). Note that rσ(θnk
) ∈ ∂Fnk

for finitely many k’s. Indeed, if the opposite case were true we would conclude that rσ(θ) ∈ K, which

contradicts our assumption since Kσ(θ) = {ρ∗F (θ) σ(θ)}. Thus we may assume that for all k large

enough, rσ(θnk
) /∈ ∂Fnk

. Since r < ρ∗Fnk
(θnk

), we deduce that rσ(θnk
) ∈ intFnk

. On the other hand,

since r > ρ∗Fnk
(θ), we have rσ(θ) /∈ Fnk

. Using the fact that ∂Fnk
is connected, we conclude that

there exist θ′nk
→ θ such that rσ(θ′nk

) ∈ ∂Fnk
, but this would imply that rσ(θ) ∈ K, which again

contradicts the fact that Kσ(θ) = {ρ∗F (θ) σ(θ)}. Hence we have shown that ρ∗ (θ) = ρ∗F (θ) for all

θ ∈ (0, 2π) \ (N0 ∪N1).

To prove that |Fn∆F | → 0, it suffices to observe that

|Fn∆F | = |Fn \ F | + |F \ Fn| ≤ R0

∫ 2π

0

∣∣ρ∗Fn
(θ) − ρ∗F (θ)

∣∣ dθ → 0 .

Consequently, χFn
→ χF in L1

(
R2
)
. Since supn H1(∂Fn) < ∞, it follows from (2.14) that χFn

is

bounded in BV (R2), and thus DχFn

∗
⇀ DχF weakly* in the sense of measures.

3. The minimization problem

Let us fix a Lipschitz map u0 : R2 → R2. For every F ∈ A, we set

C(F ) :=

{
u ∈ H1

loc(R
2 \ F ; R2) : u = u0 a.e. in R

2 \B0

}
.

We define a class of admissible pairs set-function as

X :=
{
(F, u) : F ∈ A , u ∈ C(F )

}

and its subspace (see (2.10))

XLip :=
{
(F, u) ∈ X : F ∈ ALip

}
. (3.1)

On the class X we shall consider the following notion of convergence motivated by Lemma 2.8.

Definition 3.1. A sequence of pairs
{
(Fn, un)

}
n∈N

⊂ X is said to converge to (F, u) ∈ X as n→ ∞,

and we write (Fn, un)
X−→ (F, u), if the following conditions hold:

(i) supn H1(∂Fn) <∞;

(ii) Fn → F for the Hausdorff metric;

(iii) un ⇀ u weakly in H1(ω; R2) for any bounded open set ω compactly contained in R2 \ F .
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Let us now consider a functional F : XLip → [0,∞) defined by

F(F, u) :=

∫

B0\F

W
(
E(u)

)
dz +

∫

∂F

ϕ(νi
F ) dH1 , (3.2)

where E(u) is the symmetrized gradient, i.e.,

E(u) =
1

2

(
∇u+ (∇u)T

)
.

Throughout the paper, we assume that

(H1) W(E) = C(E) ·E for some constant positive definite fourth order tensor C;

(H2) ϕ : R2 → [0,∞) is Lipschitz continuous and positively 1-homogeneous.

Note that, by homogeneity, ϕ satisfies

m|z| ≤ ϕ(z) ≤M |z| (3.3)

for all z ∈ R2 and some positive constants m and M .

We are interested in minimizing the functional F over the class XLip under a volume constraint on

the admissible sets. But we note that such minimization problem might be ill-posed since an arbitrary

sequence in XLip with uniformly bounded energy is not precompact in XLip. However such sequences

always admit a converging subsequence in X in the sense of Definition 3.1, thanks to Lemma 2.8 (see

the proof of Theorem 3.3). To effectively address the minimization problem, we introduce the relaxed

energy F : X → [0,∞] defined by

F(F, u) := inf

{
lim inf
n→∞

F(Fn, un) : (Fn, un) ∈ XLip , (Fn, un)
X−→ (F, u)

}
.

The first main result of this paper is an integral representation of F (see Theorem 3.2 below). Define

the function Φ : S1 × R × R → (0,∞) by

Φ(σ, p, q) := ϕ
(
qσ⊥ − pσ

)
. (3.4)

Note that if ν ∈ S1 then

ϕ(ν) = Φ(σ,−ν · σ, ν · σ⊥)

for all σ ∈ S1. We denote by Φ the convexification of Φ with respect to the q–variable, i.e.,

Φ(σ, p, q) = inf

{ 2∑

i=1

ηiΦ(σ, p, qi) : η1, η2 ∈ R+ , η1 + η2 = 1 , q1, q2 ∈ R , η1q1 + η2q2 = q

}
, (3.5)

and if (z, ν) ∈ (R2 \ {0}) × S1, then we set

K(z, ν) := Φ

(
z

|z| ,−ν ·
z

|z| , ν ·
z⊥

|z|

)
. (3.6)

Observe that

K(z, ν) ≤ Φ

(
z

|z| ,−ν ·
z

|z| , ν ·
z⊥

|z|

)
= ϕ(ν) (3.7)

for all (z, ν) ∈ (R2 \ {0}) × S1.

By (3.3),

0 ≤ Φ(σ, p, q) ≤M (1 + |q|)

for all σ ∈ S1, p ∈ [−1, 1], and every q ∈ R. Hence, by Proposition 4.64 in [16],
∣∣Φ(σ, p, q1) − Φ(σ, p, q2)

∣∣ ≤M |q1 − q2|
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for all σ ∈ S1, p ∈ [−1, 1], and every q1, q2 ∈ R. This, together with (9.1) and Lemma 9.1 in the

Appendix, implies that K is continuous in (R2 \ {0})× S1.

The next two sections will be devoted to the proof of the following theorem.

Theorem 3.2. Assume (H1)-(H2). Then

F(F, u) =

∫

B0\F

W
(
E(u)

)
dz +

∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 (3.8)

for every (F, u) ∈ X, where νi
F denotes a normal unit vector on Γcut, and

K̃(z, νi
F ) := K(z, νi

F ) + K(z,−νi
F ) . (3.9)

A straightforward argument based on Theorem 3.2 and Lemma 2.8 yields the following existence

result.

Theorem 3.3. Assume (H1)-(H2). Then F is lower semicontinuous with respect to the convergence

introduced in Definition 3.1 and, given 0 < d < πR2
0, the constrained minimization problem

min

{
F(F, u) : (F, u) ∈ X , |F | = d

}
(3.10)

admits at least one solution.

Proof. Let {(Fn, un)} ⊂ X be such that (Fn, un)
X−→(F, u). Without loss of generality, we may

assume that

C := lim inf
n→∞

F(Fn, un) = lim
n→∞

F(Fn, un) <∞ . (3.11)

For every n ∈ N find (F
(n)
m , u

(n)
m ) ∈ XLip such that (F

(n)
m , u

(n)
m )

X−→(Fn, un) as m→ ∞, and

sup
m

F(F (n)
m , u(n)

m ) ≤ F(Fn, un) +
1

n
, (3.12)

By (H2), (3.11), and (3.12), we have that

sup
n,m

H1(∂F (n)
m ) <∞ , sup

n

∫

B0\F
(n)
m

|E(un,m)|2 dz <∞ . (3.13)

Let {ωi} be an increasing sequence of open sets compactly contained in R2 \ F and such that

R
2 \ F =

∞⋃

i=1

ωi . (3.14)

Since

lim
n→∞

lim
m→∞

dH(F (n)
m , F ) = 0 ,

for every fixed i ∈ N, we have that ωi is compactly contained in R2 \ F (n) for all n ≥ n̄i and in turn

for every n ≥ n̄i, ωi is compactly contained in R2 \ F (n)
m for all m ≥ m̄i,n. Hence, we have that

lim
n→∞
n≥n̄i

lim
m→∞

m≥m̄i,n

∥∥∥u(n)
m − u

∥∥∥
L2(ωi;R2)

= 0 .

Recursively, we construct two increasing sequences {ni}i and {mi}i with ni ≥ n̄i and mi ≥ m̄i,ni

such that

dH(F (ni)
mi

, F ) +
∥∥∥u(ni)

mi
− u
∥∥∥

L2(ωi;R2)
≤ 1

i
. (3.15)

Set vi := u
(ni)
mi and Gi := F

(ni)
mi . We claim that (Gi, vi)

X−→(F, u). Indeed, properties (i) and (ii) in

Definition 3.1 follow from (3.13) and (3.15). In order to establish (iii), let ω be a open set compactly
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contained in R2 \ F . Let ω ⊂ ω̃ ⊂⊂ R2 \ F , with ω̃ an open set with Lipschitz boundary and choose

i1 so large that ω̃ ⊂ ωi ∩
(
R2 \Gi

)
for all i ≥ i1. Hence, for all i ≥ i1,

‖vi − u‖L2(eω;R2) ≤ ‖vi − u‖L2(ωi;R2) ≤
1

i

and by Korn’s inequality and (3.13),

sup
i≥i1

‖vi‖H1(eω;R2) ≤ C (ω̃, u0) sup
i

(
1 +

∫

B0\Gi

|E(vi)|2 dz
)
<∞ .

This proves the claim. Therefore,

F(F, u) ≤ lim inf
i→∞

F(Gi, vi) ≤ lim
i→∞

F(Fni
, uni

) = C ,

where we have used (3.11) and (3.12).

To prove the second part of the statement, let {(Fn, un)} ⊂ X be a minimizing sequence. Since

Fn ⊂ B0, by Blaschke’s Theorem (see Theorem 6.1 in [1]), up to a subsequence, not relabeled, Fn → F

in the Hausdorff metric for some set F . By Lemma 2.8, F is closed and starshaped with respect to

the origin. Since supn H1(∂Fn) <∞ by (H2), Lemma 2.8 yields F ∈ A and |F | = d.

Let {ωi} be as in (3.14), with ωi Lipschitz. Since

lim
n→∞

dH(Fn, F ) = 0 ,

for every fixed i ∈ N, we have that ωi is compactly contained in R2 \ Fn for all n ≥ ni, where {ni}i

is increasing. Recalling that un = u0 in R2 \B0, since by (H1),

sup
n≥ni

∫

B0∩ωi

|E(un)|2 dz <∞ ,

an application of Korn’s inequality implies that {un}n≥ni
is bounded inH1(ωi; R

2). Hence, there exists

a subsequence converging to some function vi ∈ H1(ωi; R
2). A standard diagonalization argument

and the fact that {ωi} is increasing yield the existence of a subsequence, not relabeled, of {un} and

of a function u ∈ H1
loc(R

2 \ F ; R2) such that u = vi a.e. in ωi for every i, and un ⇀ u weakly in

H1(ω; R2) for every bounded open set ω compactly included in R2 \ F . The conclusion follows the

first part of the theorem.

Remark 3.4. Note that the formula (3.2) defining F actually makes sense for starshaped sets F

with smooth (Lipschitz) boundary and for which ρF is not necessarily Lipschitz continuous. In other

words, we could have defined (in a more natural way)

G(F, u) := inf

{
lim inf
n→∞

F(Fn, un) : (Fn, un) ∈ X , ∂Fn Lipschitz , (Fn, un)
X−→(F, u)

}
,

for (F, u) ∈ X , in place of F . It turns out that

F = G .

Indeed, it follows from the definitions of F and G that G(F, u) ≤ F(F, u) for every (F, u) ∈ X . To

prove the opposite inequality, let (Fn, un) ∈ X be such that ∂Fn is Lipschitz and (Fn, un)
X−→(F, u).

Since K(z, ν) ≤ ϕ(ν), we have that F(Fn, un) ≤ F(Fn, un), and using the lower semicontinuity of F
(see Theorem 3.3), we infer that

F(F, u) ≤ lim inf
n→∞

F(Fn, un) ≤ lim inf
n→∞

F(Fn, un) .

Given the arbitrariness of {(Fn, un)}, we conclude that F(F, u) ≤ G(F, u).
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4. Lower bound of the relaxed energy

The purpose of this section is to prove the lower bound in Theorem 3.2, precisely,

Theorem 4.1. Assume (H1)-(H2). Then

F(F, u) ≥
∫

B0\F

W
(
E(u)

)
dz +

∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1

for every (F, u) ∈ X, where the functions K and K̃ are given in (3.6) and (3.9).

To prove Theorem 4.1, we begin by studying the lower semicontinuous envelope of the surface

energy with respect to the Hausdorff convergence of sets. More precisely, for F ∈ A, we consider

J (F ) := inf

{
lim inf
n→∞

∫

∂Fn

ϕ(νi
Fn

) dH1 : Fn ∈ ALip , dH(Fn, F ) −→
n→∞

0

}
. (4.1)

The key point for proving Theorem 4.1 is the following lower inequality on J (F ).

Proposition 4.2. Assume (H2). Then for every F ∈ A,

J (F ) ≥
∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 . (4.2)

We start with some preliminary results.

Lemma 4.3. Assume (H2). Then for every F ∈ A,
∫

∂∗F

K(z, νi
F ) dH1 =

∫ 2π

0

Φ(σ(θ), ρ∗F , (ρ
∗
F )′) dθ +

∫

[0,2π)

Φ

(
σ(θ), 0,

dDsρ∗F
d|Dsρ∗F |

)
d|Dsρ∗F | .

Proof. Consider the sets Sa and Ss given by (2.31). Arguing as in the proof of Lemma 2.7, the area

formula yields
∫

∂∗F

K(z, νi
F (z)) dH1 (z) =

∫

(Sa∪Ss)∩{r>0}

K
(
Ψ (θ, r) , νi

F (Ψ (θ, r))
)
|∇τΨ (θ, r)| dH1 (θ, r) . (4.3)

We split the integral on the right-hand side in two parts. Arguing again as in the proof of Lemma 2.7

and using Lemma 2.5, (2.27) and (2.25), we get
∫

Sa∩{r>0}

K
(
Ψ (θ, r) , νi

F (Ψ (θ, r))
)
|∇τΨ (θ, r)| dH1(θ, r)

=

∫

Sa∩{r>0}

Φ
(
σ (θ) ,−σ (θ) · νi

F (Ψ (θ, r)) , σ⊥ (θ) · νi
F (Ψ (θ, r))

)
√

(ρ∗F )2(θ) + ((ρ∗F )′)2 (θ)
√

1 + ((ρ∗F )′)2 (θ)
dH1(θ, r)

=

∫

Sa∩{r>0}

Φ


σ(θ),

ρ∗F√
(ρ∗F )2 + ((ρ∗F )′)

2
,

(ρ∗F )′√
(ρ∗F )2 + ((ρ∗F )′)

2




√
(ρ∗F )2 + ((ρ∗F )′)

2

√
1 + ((ρ∗F )′)

2
dH1(θ, r)

=

∫ 2π

0

Φ (σ(θ), ρ∗F , (ρ
∗
F )′) dθ ,

where we have used the fact that Φ (σ, ·, ·) is positively homogeneous of degree one.

Similarly, we infer from (2.28), (2.29) and (2.25) that
∫

Ss∩{r>0}

K
(
Ψ (θ, r) , νi

F (Ψ (θ, r))
)
|∇τΨ (θ, r)| dH1(θ, r) =

∫

Ss

Φ

(
σ (θ) , 0,

dDsρ∗F
d|Dsρ∗F |

(θ)

)
dH1(θ, r)

=

∫

[0,2π)

Φ

(
σ(θ), 0,

dDsρ∗F
d|Dsρ∗F |

)
d|Dsρ∗F | ,
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and the proof is complete.

We shall also need the following (local) lower semicontinuity result for the surface energy.

Proposition 4.4. Assume (H2). Let {Fn}n∈N ⊂ A and F ∈ A be such that ρ∗Fn
→ ρ∗F in L1((0, 2π))

as n→ ∞ and supn H1(∂Fn) <∞. Then for every ζ ∈ Cc(R
2) with ζ ≥ 0,

lim inf
n→∞

∫

∂∗Fn

ζ(z)K(z, νi
Fn

(z)) dH1(z) ≥
∫

∂∗F

ζ(z)K(z, νi
F (z)) dH1(z) .

In particular,

lim inf
n→∞

∫

∂∗Fn

K(z, νi
Fn

(z)) dH1(z) ≥
∫

∂∗F

K(z, νi
F (z)) dH1(z) .

Proof. Step 1. Fix δ > 0 and ζ ∈ Cc(R
2) with ζ ≥ 0. Given ρ ∈ BVloc(R) and a bounded interval

I ⊂ R, we define

G(ρ, I) :=

∫

I

g(θ, ρ, ρ′) dθ+

∫

I

g∞
(
θ, ρ,

dDcρ

d|Dcρ|

)
d|Dcρ|+

∫

I

(
−
∫ ρ+(θ)

ρ−(θ)

g∞
(
θ, r,

dDjρ

d|Djρ|

)
dr

)
d|Djρ| ,

where (see (3.5))

g(θ, p, q) :=
(
ζ(pσ(θ)) + δ

)
Φ(σ(θ), p, q) ,

and

g∞(σ(θ), p, q) := lim
t→+∞

g(θ, p, tq)

t

= lim
t→+∞

(
ζ(pσ(θ)) + δ

)
Φ(σ(θ), p/t, q) =

(
ζ(pσ(θ)) + δ

)
Φ(σ(θ), 0, q) , (4.4)

since Φ(σ(θ), ·, ·) is positively homogeneous of degree one.

We claim that for every F ∈ A,
∫

∂∗F

(ζ(z) + δ)K(z, νi
F (z)) dH1(z) = G

(
ρ∗F , [0, 2π)

)
. (4.5)

Indeed, consider the sets Sa and Ss given by (2.31), and write Ss = Sc ∪ Sj with

Sc := Ss ∩ ({θ ∈ [0, 2π) : σ(θ) /∈ JF } × R) , Sj := Ss ∩ ({θ ∈ [0, 2π) : σ(θ) ∈ JF } × R) .

As in (4.3), we have

∫

∂∗F

(ζ(z) + δ)K(z, νi
F (z)) dH1(z)

=

∫

S∩{r>0}

(
ζ(Ψ(θ, r)) + δ

)
K
(
Ψ (θ, r) , νi

F (Ψ (θ, r))
)
|∇τΨ (θ, r)| dH1(θ, r) ,

where S = Sa ∪ Ss, and we split the integral in the right hand-side in two parts. Arguing exactly as

in the proof of Lemma 4.3 and using (4.4), we first obtain

∫

(Sa∪Sc)∩{r>0}

(
ζ(Ψ(θ, r)) + δ

)
K
(
Ψ (θ, r) , νi

F (Ψ (θ, r))
)
|∇τΨ (θ, r)| dH1(θ, r)

=

∫ 2π

0

g(θ, ρ∗F , (ρ
∗
F )′) dθ +

∫

[0,2π)

g∞
(
θ, ρ∗F ,

dDcρ∗F
d|Dcρ∗F |

)
d|Dcρ∗F | .
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On the other hand, we have by (2.19),
∫

Sj∩{r>0}

(
ζ(Ψ(θ, r)) + δ

)
K
(
Ψ (θ, r) , νi

F (Ψ (θ, r))
)
|∇τΨ (θ, r)| dH1(θ, r)

=

∫

Sj∩{r>0}

(
ζ(rσ(θ)) + δ

)
Φ

(
σ (θ) , 0,

dDjρ∗F
d|Djρ∗F |

(θ)

)
dH1(θ, r)

=
∑

{θ∈[0,2π):σ(θ)∈JF}

∫

GF ∩({θ}×R)

(
ζ(rσ(θ)) + δ

)
Φ

(
σ (θ) , 0,

dDjρ∗F
d|Djρ∗F |

(θ)

)
dH1(θ, r)

=
∑

{θ∈[0,2π):σ(θ)∈JF}

∫ (ρ∗

F )+(θ)

(ρ∗

F )−(θ)

g∞
(
θ, r,

dDjρ∗F
d|Djρ∗F |

)
dr

=

∫

[0,2π)

(
−
∫ (ρ∗

F )+(θ)

(ρ∗

F
)−(θ)

g∞
(
θ, r,

dDjρ∗F
d|Djρ∗F |

)
dr

)
d|Djρ∗F | ,

and (4.5) follows.

Step 2. Without loss of generality, we may assume that H1(∂∗F ∩ {(x, 0) : x ≥ 0}) = 0. By (4.5) we

have that ∫

∂∗F

(ζ(z) + δ)K(z, νi
F (z)) dH1(z) = G

(
ρ∗F , (0, 2π)

)
,

and for all n,
∫

∂∗Fn

(ζ(z) + δ)K(z, νi
Fn

) dH1(z) ≥ G
(
ρ∗Fn

, (0, 2π)
)
.

In view of Lemma 9.1 in the Appendix, and the fact that g(θ, p, q) ≥ δm |q|, it follows that g satisfies

the hypotheses of Theorem 3.1 in [10], and thus G(·, (0, 2π)) is lower semicontinuous with respect to

convergence in L1 ((0, 2π)). Therefore,

lim inf
n→∞

∫

∂∗Fn

(ζ(z) + δ)K(z, νi
Fn

(z)) dH1(z) ≥
∫

∂∗F

ζ(z)K(z, νi
F (z)) dH1(z) . (4.6)

Since supn H1(∂Fn) <∞, we have

sup
n

∫

∂∗Fn

K(z, νi
Fn

(z)) dH1(z) ≤ C <∞ .

Hence (4.6) yields
∫

∂∗F

ζ(z)K(z, νi
F (z)) dH1(z) ≤ lim inf

n→∞

∫

∂∗Fn

ζ(z)K(z, νi
Fn

(z)) dH1(z) + Cδ ,

and the conclusion follows from the arbitrariness of δ.

Proof of Proposition 4.2. Step 1. Let {Fn}n∈N ⊂ ALip be such that Fn → F as n → ∞ in the

Hausdorff metric. Without loss of generality, we may assume that

lim inf
n→∞

∫

∂Fn

ϕ(νi
n) dH1 = lim

n→∞

∫

∂Fn

ϕ(νi
n) dH1 <∞ ,

where νi
n := νi

Fn
for all n. Since K(z, ν) ≤ ϕ(ν) by (3.7) and K(z, ν) ≥ m > 0 for every (z, ν) ∈

R2 \ {0} × S1, we have

sup
n∈N

∫

∂Fn

K(z, νi
n) dH1 <∞ and sup

n∈N

H1(∂Fn) <∞ .

Extracting a subsequence (not relabeled), we find a nonnegative Radon measure µ such that

µn := K(z, νi
n(z))H1⌊∂Fn

∗
⇀µ as n→ ∞ ,
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weakly* in the sense of measures. Since ∂F+ ∩ Γcut = ∅ by (2.8), by Lemma 2.4 we have that

∂∗F ∩ Γcut = ∅. Hence, the measures H1⌊Γcut and H1⌊∂∗F are mutually singular and to prove (4.2),

it suffices to show that

dµ

dH1⌊Γcut
(z0) ≥ K̃(z0, ν

i
F (z0)) for H1-a.e. z0 ∈ Γcut , (4.7)

and

dµ

dH1⌊∂∗F (z0) ≥ K(z0, ν
i
F (z0)) for H1-a.e. z0 ∈ ∂∗F . (4.8)

Step 2. By the Besicovitch derivation theorem (see, e.g. Theorem 1.153 in [16]), we have

dµ

dH1⌊Γcut
(z0) = lim

ε→0+

µ
(
Qν0(z0, ε)

)

2ε
for H1-a.e. z0 ∈ Γcut , (4.9)

where ν0 := (z0/|z0|)⊥ and Qν0(z0, ε) is the square of side length 2ε, centered at z0 with two sides

parallel to ν0. Observe that (2.12) implies

ρ+
F (σ0) < |z0| < ρF (σ0) for H1-a.e. z0 ∈ Γcut , (4.10)

where σ0 := z0/|z0|, because SF is at most countable (see (2.11)). Now fix z0 ∈ Γcut such that (4.9)

and (4.10) hold. We may assume without loss of generality that σ0 = (0, 1) and ν0 = (−1, 0). Then

we write z0 = r0σ0 and Qν0(z0, ε) = Q(z0, ε). We claim that that there exists ε0 > 0 such that

F ∩Q(z0, ε) = {0} × (r0 − ε, r0 + ε) for every 0 < ε ≤ ε0 . (4.11)

Indeed, consider the function ρ̃F : S1 → R+ defined by ρ̃F (σ) = ρF (σ) if σ 6= σ0 and ρ̃F (σ0) = ρ+
F (σ0).

Then ρ̃F is upper semicontinuous. Hence, the set F̃ =
{
rσ : σ ∈ S1 , 0 ≤ r ≤ ρ̃F (σ)

}
is closed in R2.

Since z0 6∈ F̃ by (4.10), there exists ε0 > 0 such that F̃ ∩Q(z0, ε0) = ∅, and so (4.11) follows because

F = F̃ ∪
(
{0} × (ρ+

F (σ0), ρF (σ0)]
)
.

Next we choose a sequence {εk} such that εk → 0+, εk << ε0, and µ
(
∂Q(z0, εk)

)
= 0 for every

k ∈ N. Then

dµ

dH1⌊Γcut
(z0) = lim

k→∞

µ
(
Q(z0, εk)

)

2εk
= lim

k→∞
lim

n→∞

1

2εk

∫

∂Fn∩Q(z0,εk)

K(z, νi
n) dH1 . (4.12)

Since Fn → F in the Hausdorff sense, there exists nk ∈ N such that Fn ⊂ Nεk/2(F ) for every n ≥ nk.

By (4.11) we have

Nεk/2(F ) ∩Q(z0, εk) = Nεk/2(F ∩Q(z0, ε0)) ∩Q(z0, εk)

= (−εk/2, εk/2) × (r0 − εk, r0 + εk)

for εk small enough (see Figure 1). Therefore

Fn ∩Q(z0, εk) ⊂ (−εk/2, εk/2) × (r0 − εk, r0 + εk) (4.13)

for εk small enough and n ≥ nk. Set

pk := (εk/2, r0 − εk) , qk := (−εk/2, r0 − εk) , σ−
k :=

pk

|pk|
, σ+

k :=
qk
|qk|

,

and note that, in view of (4.13), ρn(σ−
k ) ≤ |pk| and ρn(σ+

k ) ≤ |qk| with ρn := ρFn
. Denoting by Π2

the projection z = (x, y) 7→ y, we deduce that

Π2

(
ρn(σ−

k )σ−
k

)
≤ r0 − εk and Π2

(
ρn(σ+

k )σ+
k

)
≤ r0 − εk . (4.14)

Now we fix some 0 < δ ≪ 1/2 and we consider zk = (0, r0 + (1 − δ)εk) ∈ Γcut ∩ Q(z0, εk). Since

Fn → F , for n large enough, we may find zn,k ∈ Fn ∩Bδεk
(zk). Setting σn,k := zn,k/|zn,k|, we have

σ−
k < σn,k < σ+

k and Π2

(
ρn(σn,k)σn,k

)
≥ r0 + (1 − 2δ)εk . (4.15)
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Fig. 1. The construction described in the proof of Proposition 4.2.

Consider the Lipschitz continuous scalar function Hn defined on S1 by Hn(σ) := Π2

(
ρn(σ)σ

)
. By

(4.14) and (4.15), we have that [r0 − εk, r0 + (1 − 2δ)εk] ⊂ Hn([σ−
k , σn,k]).

Therefore, there exists at least one arc [σ1
n,k, σ

2
n,k] ⊂ [σ−

k , σn,k] with σ1
n,k < σ2

n,k such that

Hn([σ1
n,k, σ

2
n,k]) = [r0 − εk, r0 + (1 − 2δ)εk], Hn(σ1

n,k) = r0 − εk, and Hn(σ2
n,k) = r0 + (1 − 2δ)εk. By

construction, it follows that

Γup
n,k :=

{
ρn(σ)σ : σ1

n,k ≤ σ ≤ σ2
n,k

}
⊂ ∂Fn ∩Q(z0, εk) .

Arguing in the same way, we find an arc [σ3
n,k, σ

4
n,k] ⊂ [σn,k, σ

+
k ] with σ3

n,k < σ4
n,k such thatHn(σ3

n,k) =

r0 + (1 − 2δ)εk, Hn(σ4
n,k) = r0 − εk, and

Γdown
n,k :=

{
ρn(σ)σ : σ3

n,k ≤ σ ≤ σ4
n,k

}
⊂ ∂Fn ∩Q(z0, εk) .

From the construction of Γup
n,k and Γdown

n,k , we infer that

∫

∂Fn∩Q(z0,εk)

K(z, νi
n) dH1 ≥

∫

Γup
n,k

K(z, νi
n) dH1 +

∫

Γdown
n,k

K(z, νi
n) dH1 ,

and consequently,

lim
n→∞

∫

∂Fn∩Q(x0,εk)

K(z, νi
n) dH1 ≥ lim inf

n→∞

∫

Γup
n,k

K(z, νi
n) dH1 + lim inf

n→∞

∫

Γdown
n,k

K(z, νi
n) dH1 . (4.16)

Now we claim that

lim inf
n→∞

∫

Γup
n,k

K(z, νi
n) dH1 ≥

∫

Γ⋆,k

K(z, ν0) dH1 , (4.17)

and

lim inf
n→∞

∫

Γdown
n,k

K(z, νi
n) dH1 ≥

∫

Γ⋆,k

K(z,−ν0) dH1 , (4.18)

where Γ⋆,k := {rσ0 ∈ R2 , r0 − εk ≤ r ≤ r0 + (1 − 2δ)εk}. Before proving (4.17) and (4.18), we

complete the proof of (4.7). Since K is 0-homogeneous with respect to the z-variable, we have
∫

Γ⋆,k

K(z, ν0) dH1 = K(z0, ν0)H1(Γ⋆,k) = 2εk(1 − δ)K(z0, ν0) ,
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and
∫

Γ⋆,k

K(z,−ν0) dH1 = K(z0,−ν0)H1(Γ⋆,k) = 2εk(1 − δ)K(z0,−ν0) ,

so that (4.12) , (4.16) , (4.17), and (4.18) lead to

dµ

dH1⌊Γcut
(z0) ≥ (1 − δ)K̃(z0, ν0) .

Then the conclusion follows from the arbitrariness of δ.

Proof of (4.17)-(4.18). We only present the proof of (4.17) since the proof of (4.18) is similar. Observe

first that, by construction and by the convergence of Fn to F in the Hausdorff metric, we have

Γup
n,k → Γ⋆,k in the Hausdorff metric as n→ ∞ ,

and

σi
n,k → σ0 for i = 1, 2 , ρn(σ1

n,k) → r0 − εk and ρn(σ2
n,k) → r0 + (1 − 2δ)εk as n→ ∞ . (4.19)

Next we construct a test function ρ̂n ∈ Lip(S1) in the following way. Write σi
n,k = σ(θi

n,k) for i = 1, 2

with θ1n,k ∈ (0, π) and θ2n,k ∈ (θ1n,k, 2π). Note that in view of (4.19),

θ1n,k → π/2 and θ2n,k → π/2 as n→ ∞ . (4.20)

Set (see (2.4))

ρ̂∗n(θ) :=





ρ∗n(θ1n,k)
θ

θ1n,k

+
R0

2

θ1n,k − θ

θ1n,k

if θ ∈ [0, θ1n,k) ,

ρ∗n(θ) if θ ∈ [θ1n,k, θ
2
n,k] ,

ρ∗n(θ2n,k)
2π − θ

2π − θ2n,k

+
R0

2

θ − θ2n,k

2π − θ2n,k

if θ ∈ (θ2n,k, 2π] .

By (4.19) and (4.20), we have that ρ̂∗n → ρ̂∗ in L1((0, 2π)), where

ρ̂∗(θ) :=





(r0 − εk)
2θ

π
+
R0

2

π − 2θ

π
if θ ∈ [0, π/2) ,

(r0 + (1 − 2δ)εk)
4π − 2θ

3π
+
R0

2

2θ − π

3π
if θ ∈ [π/2, 2π] .

Setting F̂n ∈ ALip and F̂ ∈ A to be the closed set generated by ρ̂n and ρ̂, respectively, (note that F̂

has a Lipschitz boundary), we deduce from Proposition 4.4 that

lim inf
n→∞

∫

∂F̂n

K(z, νi
F̂n

) dH1 ≥
∫

∂F̂

K(z, νi
F̂
) dH1 . (4.21)

Then we observe that we can split ∂F̂n and ∂F̂ as

∂F̂n = Γup
n,k ∪ Γ̂n , ∂F̂ = Γ⋆,k ∪ Γ̂ (4.22)

with disjoint unions, Γ̂n and Γ̂ are smooth and ν0 is the inner normal to F̂ along Γ⋆,k. Now straight-

forward computations using polar coordinates yield

∫

Γ̂n

K(z, νi
F̂n

) dH1 =

∫ θ1
n,k

0

Φ

(
σ(θ), ρ̂∗n(θ),

ρ∗n(θ1n,k) −R0/2

θ1n,k

)
dθ

+

∫ 2π

θ2
n,k

Φ

(
σ(θ), ρ̂∗n(θ),

−ρ∗n(θ2n,k) +R0/2

2π − θ2n,k

)
dθ , (4.23)
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and

∫

Γ̂

K(z, νi
F̂
) dH1 =

∫ π
2

0

Φ

(
σ(θ), ρ̂∗(θ), (r0 − εk)

2

π
− R0

π

)
dθ

+

∫ 2π

π
2

Φ

(
σ(θ), ρ̂∗(θ),−(r0 + (1 − 2δ)εk)

2

3π
+
R0

3π

)
dθ . (4.24)

Using (4.23) and (4.24), by Lebesgue’s dominated convergence theorem, we derive that

∫

Γ̂n

K(z, νi
F̂n

) dH1 −→
n→∞

∫

Γ̂

K(z, νi
F̂
) dH1 . (4.25)

Then (4.17) follows from (4.21), (4.22) and (4.25).

Step 3: Proof of (4.8). Proving (4.8) is equivalent to show that

µ ≥ K(·, νi
F ) dH1⌊∂∗F . (4.26)

Fix ζ ∈ Cc(R
2; R) such that ζ ≥ 0. From the weak* convergence of K(·, νi

n) dH1⌊∂Fn to µ together

with Proposition 4.4 and Lemma 2.8 we obtain that
∫

R2

ζ dµ = lim
n→∞

∫

∂Fn

ζ(z)K(z, νi
n) dH1 ≥

∫

∂∗F

ζ(z)K(z, νi
F ) dH1 ,

which yields (4.26) since ζ is arbitrary.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Fix (F, u) ∈ X and let (Fn, un) ∈ XLip be such that (Fn, un)
X−→(F, u). Let

{ωi} be an increasing sequence of open sets compactly contained in B0 \ F and such that

B0 \ F =

∞⋃

i=1

ωi .

Since limn→∞ dH(Fn, F ) = 0, for every fixed i ∈ N, we have that ωi is compactly contained in R2 \Fn

for all n ≥ ni for some ni ∈ N. Since E(un) ⇀ E(u) in L2
(
ωi; R

2×2
)

and W is convex and nonnegative

by (H1),

lim inf
n→∞

∫

B0\Fn

W
(
E(un)

)
dz ≥ lim inf

n→∞

∫

ωi

W
(
E(un)

)
dz

≥
∫

ωi

W
(
E(u)

)
dz .

Using Lebesgue’s monotone convergence theorem, we conclude that

lim inf
n→∞

∫

B0\Fn

W
(
E(un)

)
dz ≥

∫

B0\F

W
(
E(u)

)
dz .

In turn, by Proposition 4.2,

lim inf
n→∞

∫

∂Fn

ϕ(νi
Fn

) dH1 ≥
∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 .

Therefore

lim inf
n→∞

F(Fn, un) ≥
∫

B0\F

W
(
E(u)

)
dz +

∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 ,

and the proof is complete.
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5. Upper bound of the relaxed energy

In this section we establish the upper bound in Theorem 3.2, precisely,

Theorem 5.1. Assume (H1)-(H2). Then

F(F, u) ≤
∫

B0\F

W
(
E(u)

)
dz +

∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 (5.1)

for every (F, u) ∈ X, where the functions K and K̃ are given in (3.6) and (3.9).

The proof relies on the following proposition.

Proposition 5.2. Let F ∈ A be such that F ⊂ B0. Then there exists a sequence {Fn}n∈N ⊂ ALip

such that F ⊂ Fn for every n, Fn → F as n→ ∞ in the Hausdorff metric and

lim sup
n→∞

∫

∂Fn

ϕ(νi
Fn

) dH1 ≤
∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 . (5.2)

In particular,

J (F ) =

∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 ,

where J is defined in (4.1).

To prove Proposition 5.2, we begin with two auxiliary lemmas.

Lemma 5.3. For every F ∈ A such that ρF = ρ+
F < R0, there exists a sequence {Fn}n∈N ⊂ ALip

such that F ⊂ Fn ⊂ B0 for every n, Fn → F in the Hausdorff metric, and H1(∂Fn) → H1(∂F ) as

n→ ∞.

Proof. Without loss of generality, we can assume that H1(GF ∩ ({0} × [0, R0))) = 0. Then, from

the proof of Lemma 1 in [6] (given in Subsections 5.1 and 5.2 of [6]) it follows that there exists a

sequence of 2π-periodic Lipschitz functions ρ∗n : R → [0,∞), ρ∗n ≥ ρ∗F , converging in L1
loc(R) to ρ∗F

and such that

dH(G−
Fn
, G−

F ) → 0 and H1(GFn
∩ ((0, 2π) × R)) → H1(GF ∩ ((0, 2π) × R)) , (5.3)

where Fn := {rσ(θ) : 0 ≤ r ≤ ρ∗n(θ)}. In particular from the Hausdorff convergence of G−
Fn

to G−
F it

follows that Fn → F in the Hausdorff metric and that Fn ⊂ B0 for all n sufficiently large.

Moreover, since ρ∗n → ρ∗F in L1((0, 2π)), from (5.3) and (2.19), we deduce that DχG−

Fn

∗
⇀ DχG−

F

in the sense of measures in (0, 2π) × (−∞, R0), and that

H1(GFn
∩ ((0, 2π) × R)) = |DχG−

Fn

|((0, 2π) × (−∞, R0))

→ |DχG−

F
|((0, 2π) × (−∞, R0)) = H1(GF ∩ ((0, 2π) × R)) .

Consider the function g : (0, 2π) × (−∞, R0) × S1 → R defined by

g (θ, r, ν) :=

{∣∣∇Ψ (θ, r) ν⊥
∣∣ if 0 < r < R0

|ν1| if r ≤ 0 .

Since g is a continuous bounded function, by Reshetnyak continuity theorem (see Theorem 2.39 in [1]

or [29]) we have
∫

GFn∩((0,2π)×(−∞,R0))

g(θ, r, νG−

Fn

) dH1(θ, r) →
∫

GF ∩((0,2π)×(−∞,R0))

g(θ, r, νG−

F
) dH1(θ, r) (5.4)

as n→ ∞. Arguing as in the proof Lemma 2.7, and using the fact that H1 (GF ∩ ({0} × (−∞, R0))) =

0, we obtain

H1 (∂∗F ) =

∫

GF ∩((0,2π)×(−∞,R0))

|∇τΨ (θ, r)| dH1(θ, r) =

∫

GF ∩((0,2π)×(−∞,R0))

g(θ, r, νG−

F
) dH1(θ, r) ,



Material voids in elastic solids with anisotropic surface energies 23

and similarly for Fn. In view of (5.4) we deduce that

H1 (∂Fn) → H1 (∂∗F ) = H1 (∂F ) ,

and the proof is complete.

Lemma 5.4. For every F ∈ ALip such that F ⊂ B0, there exists a sequence {Fn}n∈N ⊂ ALip such

that F ⊂ Fn for every n, Fn → F in the Hausdorff metric, and
∫

∂Fn

ϕ(νi
Fn

) dH1 →
∫

∂F

K(z, νi
F ) dH1 (5.5)

as n→ ∞.

Proof. By Lemma 4.3, (9.1) and (9.4), there exists a sequence of closed sets Fn starshaped with

respect to the origin such that ρFn

∗
⇀ ρF in W 1,∞

(
S1
)

and such that (5.5) holds. Since ρFn
→ ρF

uniformly, and ρF < R0, we may replace ρFn
by ρFn

+ ‖ρFn
− ρF ‖∞ and since ρFn

< R0 for n

sufficiently large, the conclusion follows.

We now turn to the proof of Proposition 5.2.

Proof of Proposition 5.2. Step 1. First, we prove (5.2) for F ∈ A such that ρF = ρ+
F < R0. We

consider the sequence {Fn}n∈N ⊂ ALip given by Lemma 5.3 and the associated ρn’s, so that

lim
n→∞

|DχFn
|(R2) = lim

n→∞
H1(∂Fn) = H1(∂F ) .

On the other hand, since ρF = ρ+
F = ρF+ , we have

H1
⌊
∂F = H1

⌊
∂F+ = H1

⌊
∂∗F

where we used Lemma 2.4 in the second equality. Hence,

lim
n→∞

|DχFn
|(R2) = H1(∂∗F ) = |DχF |(R2) . (5.6)

Since

|DχFn
|
(
R

2 \ {0}
)

= H1(∂Fn\{0}) = H1(∂Fn) and |DχF |
(
R

2 \ {0}
)

= H1(∂∗F\{0}) = H1(∂∗F ) ,

by (5.6), we have that

lim
n→∞

|DχFn
|
(
R

2 \ {0}
)

= |DχF |
(
R

2 \ {0}
)
.

Moreover, by Lemma 2.8, DχFn

∗
⇀ DχF weakly* in the sense of measures. Thus, by applying Reshet-

nyak continuity theorem to the measures |DχFn
| and |DχF | in R2 \ {0} (see Theorem 2.39 in [1] or

[29]), and recalling that K is continuous on R2 \ {0} × S1, we derive

lim
n→∞

∫

∂Fn

K(z, νi
n) dH1 =

∫

∂∗F

K(z, νi
F ) dH1 ,

where we have set νi
n = νi

Fn
.

Since Fn ⊂ B0 for all n sufficiently large, we may use Lemma 5.4 to construct sequences

{Fn,k}k∈N ⊂ ALip such that F ⊂ Fn ⊂ Fn,k, with

lim
n→∞

lim
k→∞

dH(F, Fn,k) = lim
n→∞

dH(F, Fn) = 0

and

lim
n→∞

lim
k→∞

∫

∂Fn,k

ϕ(νi
n,k) dH1 = lim

n→∞

∫

∂Fn

K(z, νi
n) dH1 =

∫

∂∗F

K(z, νi
F ) dH1 ,

where νi
n,k = νi

Fn,k
. By diagonalizing, we obtain (5.2).
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Step 2. Next we consider F ∈ A, F ⊂ B0, such that the set SF is finite (see 2.11), i.e., SF =

{σ1, . . . , σN} with

σ1 < σ2 < · · · < σN .

We claim that there exists a sequence {Fn}n∈N ⊂ A such that ρ+
Fn

= ρFn
, Fn ⊃ F , Fn → F as

n→ ∞ in the Hausdorff metric, and

lim
n→∞

∫

∂∗Fn

K(z, νi
n) dH1 =

∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 . (5.7)

Let ε0 := 1/2 min
{
dS1(σi, σj) : i, j = 1, . . .N, i 6= j

}
, where dS1 denotes the geodesic distance on

S1, and select a decreasing sequence εn → 0+ as n→ ∞, εn ≤ ε0, such that the points σ−
n,i and σ+

n,i

defined by [σ−
n,i, σ

+
n,i] = BS1(σi, εn), belong to S1 \ (JF ∪ SF ). Note that here we are using the fact

that JF is countable. Define

cn,i := max
σ∈[σ−

n,i,σ
+
n,i]

ρF (σ)

and

ρn(σ) :=

{
cn,i if σ ∈ [σ−

n,i, σ
+
n,i] for some i ∈ {1, . . . , N} ,

ρF (σ) otherwise ,

and Fn :=
{
rσ : σ ∈ S1 , 0 ≤ r ≤ ρn(σ)

}
. Since ρF is upper semicontinuous, ρn is upper semicontin-

uous, ρn converges pointwise to ρF , and R0 > ρn ≥ ρF for all n. Hence, Fn ∈ A and B0 ⊃ Fn ⊃ F .

Moreover, from the construction of ρn it follows that Fn → F in the Hausdorff metric. Setting

Ξn :=
{
rσ ∈ R2 : r ∈ R+ , σ ∈ S1 \ ⋃N

i=1[σ
−
n,i, σ

+
n,i]
}
, a straightforward computation using the

0-homogeneity of K with respect to the z variable, yields

∫

∂∗Fn

K(z, νi
n) dH1 =

∫

∂∗F∩Ξn

K(z, νi
F ) dH1 +

N∑

i=1

(
cn,i − ρF (σ−

n,i)
)
K
(
σ−

n,i, (σ
−
n,i)

⊥)

+

N∑

i=1

(
cn,i − ρF (σ+

n,i)
)
K
(
σ+

n,i,−(σ+
n,i)

⊥
)

+

N∑

i=1

cn,i

∫

[σ−

n,i,σ
+
n,i]

K(σ,−σ) dH1 .

Observe that Ξn ր Ξ⋆ :=
{
rσ ∈ R2 : r ∈ R+ , σ ∈ S1 \ SF

}
as n → ∞ so that, by the Lebesgue

monotone convergence theorem,

lim
n→∞

∫

∂∗F∩Ξn

K(z, νi
F ) dH1 =

∫

∂∗F∩Ξ⋆

K(z, νi
F ) dH1 .

Since ρF (σ−
n,i) → ρF (σi−), ρF (σ+

n,i) → ρF (σi+), and cn,i → ρF (σi) as n → ∞, we derive that for

every i = 1, . . . , N ,
(
cn,i − ρF (σ−

n,i)
)
K
(
σ−

n,i, (σ
−
n,i)

⊥) +
(
cn,i − ρF (σ+

n,i)
)
K
(
σ+

n,i,−(σ+
n,i)

⊥
)

−→
n→∞

(
ρF (σi) − ρF (σi−)

)
K
(
σi, σ

⊥
i

)
+
(
ρF (σi) − ρF (σi+)

)
K
(
σi,−σ⊥

i

)

=
(
ρF (σi)− ρ+

F (σi)
)
K̃
(
σi, σ

⊥
i

)
+
(
ρ+

F (σi)− ρF (σi−)
)
K
(
σi, σ

⊥
i

)
+
(
ρ+

F (σi)− ρF (σi+)
)
K
(
σi,−σ⊥

i

)
.

In addition, we have

N∑

i=1

cn,i

∫

[σ−

n,i,σ
+
n,i]

K(σ,−σ) dH1 ≤ CNR0εn ,

and consequently

lim
n→∞

∫

∂∗Fn

K(z, νi
n) dH1 =

∫

∂∗F∩Ξ⋆

K(z, νi
F ) dH1 +

N∑

i=1

(
ρF (σi) − ρ+

F (σi)
)
K̃
(
σi, σ

⊥
i

)
(5.8)

+

N∑

i=1

(
ρ+

F (σi) − ρF (σi−)
)
K
(
σi, σ

⊥
i

)
+

N∑

i=1

(
ρ+

F (σi) − ρF (σi+)
)
K
(
σi,−σ⊥

i

)
.
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Note that Γcut =
⋃N

i=1{rσi : ρ+
F (σi) < r ≤ ρF (σi)} and this union is disjoint. Hence, using the

0-homogeneity of K with respect to the z variable, we derive

∫

Γcut

K̃(z, νi
F ) dH1 =

N∑

i=1

∫ ρF (σi)

ρ+
F

(σi)

K̃(rσi, σ
⊥
i ) dr =

N∑

i=1

(
ρF (σi) − ρ+

F (σi)
)
K̃
(
σi, σ

⊥
i

)
. (5.9)

Hence, in view of (5.8) and (5.9), (5.7) follows, provided we show that

∫

∂∗F\Ξ⋆

K(z, νi
F ) dH1 =

N∑

i=1

(
ρ+

F (σi) − ρF (σi−)
)
K
(
σi, σ

⊥
i

)
+

N∑

i=1

(
ρ+

F (σi) − ρF (σi+)
)
K
(
σi,−σ⊥

i

)
.

To see this, observe that by Lemma 2.4, ∂∗F = ∂F+ except for a set of null H1-measure so that

∂∗F \ Ξ⋆ = ∂F+ \ Ξ⋆ except for a set of null H1-measure. In view of Lemma 2.4,

∂F+ \ Ξ⋆ =
{
rσ ∈ R

2 : σ ∈ SF , ρ
−
F (σ) ≤ r ≤ ρ+

F (σ)
}

=

N⋃

i=1

{rσi ∈ R
2 : ρ−F (σi) ≤ r ≤ ρ+

F (σi)} ,

where the sets in the union are disjoint except possibly at the origin. By Lemma 2.5 on each segment

Γi := {rσi ∈ R2 : ρ−F (σi) ≤ r ≤ ρ+
F (σi)}, i = 1, . . . , N , we have νi

F = σ⊥
i if ρ+

F (σi) = ρF (σi+) and

νi
F = −σ⊥

i otherwise. This concludes the proof of this step.

Step 3. Finally, if the set SF is countable, then we claim that there exists a decreasing sequence

{Fn}n∈N ⊂ A such that for every n ∈ N, SFn
is finite, F ⊂ Fn ⊂ B0, Fn → F in the Hausdorff

metric, and

lim sup
n→∞

(∫

∂∗Fn

K(z, νi
n) dH1 +

∫

Γcut,n

K̃(z, νi
n) dH1

)
≤
∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 .

Since ρF is upper semicontinuous and less than R0, for all n sufficiently large, we have that

ρn(σ) := max
{
ρ+

F (σ) + 1/n, ρF (σ)
}
< R0

for all σ ∈ S1. Note that ρn is upper semicontinuous and has finite pointwise variation, so that the

closed set Fn generated by ρn belongs to A. From the construction we have that Fn → F in the

Hausdorff metric. We also observe that ρ+
n = ρ+

F + 1/n so that

SFn
=
{
σ ∈ S

1 : ρF (σ) > ρ+
F (σ) + 1/n

}
⊂ SF (5.10)

and SFn
is finite because ρF has finite pointwise variation. Moreover, χFn

→ χF in L1(R2) and

H1(∂F+
n ) → H1(∂F+). Hence, arguing as in Step 1, we obtain

lim
n→∞

∫

∂Fn

K(z, νi
n) dH1 =

∫

∂∗F

K(z, νi
F ) dH1 .

Moreover, from (5.10), it follows that Γcut,n ⊂ Γcut and K̃(z, νi
n) = K(z, νi

F ) on Γcut,n. Hence,

lim sup
n→∞

∫

Γcut,n

K̃(z, νi
n) dH1 ≤

∫

Γcut

K̃(z, νi
F ) dH1 ,

and this completes the proof of the claim.

End of the proof. Combining Step 1, Step 2, and Step 3 and applying a standard diagonalization

argument, we obtain the required sequence.

Finally, we prove Theorem 5.1.

Proof of Theorem 5.1. To prove (5.1), given (F, u) ∈ X , we have to construct a sequence

{(Fn, un)}n∈N ⊂ XLip such that (Fn, un)
X−→(F, u) and

lim sup
n→∞

F(Fn, un) ≤
∫

B0\F

W
(
E(u)

)
dz +

∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 . (5.11)
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Assume first that F ⊂ B0 and let {Fn}n∈N be a sequence as in Proposition 5.2. By (H3),

H1(∂Fn) ≤ 1

m

∫

∂Fn

ϕ(νi
Fn

) dH1 ,

therefore
{
H1(∂Fn)

}
is bounded in view of (5.2). Then, since F ⊂ Fn, we have (Fn, u) ∈ XLip (see

(3.1)) and consequently (Fn, u)
X−→(F, u). By Lebesgue’s dominated convergence theorem,

∫

B0\Fn

W
(
E(u)

)
dz −→

n→∞

∫

B0\F

W
(
E(u)

)
dz ,

and so (5.11) holds for the sequence {(Fn, u)}.
Suppose now that ∂F ∩ ∂B0 6= ∅ and let αk > 0 be such that αk ր 1. Set Fk := αkF ⊂ B0 and

define

uk (z) :=





u

(
z

αk

)
if z ∈ αkB0 \ Fk ,

u0

(
zR0

|z|

)
if z ∈ B0 \ αkB0 .

Then, from the first part of the prood for every fixed k there exists a sequence {Fk,n}n∈N ⊂ ALip

such that (Fk,n, uk) −→
n→∞

(Fk, uk) and

lim sup
n→∞

F(Fk,n, uk) ≤
∫

B0\Fk

W
(
E(uk)

)
dz +

∫

∂∗Fk

K(z, νi
Fk

) dH1 +

∫

(Γk)cut

K̃(z, νi
Fk

) dH1 .

Letting k → ∞, we obtain

lim sup
k→∞

lim sup
n→∞

F(Fk,n, uk) ≤
∫

B0\F

W
(
E(u)

)
dz +

∫

∂∗F

K(z, νi
F ) dH1 +

∫

Γcut

K̃(z, νi
F ) dH1 ,

and so (5.11) follows by a standard diagonalization argument.

6. The exterior Wulff condition

We now start to investigate the regularity issue for solutions of (3.10). In the remaining of the paper

we assume that

(H3) ϕ : R2 → [0,∞) is convex.

The convexity of ϕ is justified by the fact that the Wulff set of ϕ is also the Wulff set of ϕ∗∗ (see

Proposition 3.5 in [14]).

Note that, (H3) implies that K(z, ν) = ϕ(ν) (see (3.5) and (3.6)) and thus by Theorem 3.2,

F (F, u) =

∫

B0\F

W (E (u)) dz +

∫

∂∗F

ϕ
(
νi

F

)
dH1 +

∫

Γcut

(
ϕ
(
νi

F

)
+ ϕ

(
−νi

F

))
dH1 .

Given 0 < d < πR2
0 and ℓ > 0, we set

Fℓ (F, u) := F (F, u) + ℓ ||F | − d| .

As in [15], we shall prove that if ℓ is sufficiently large the constrained minimization problem for F is

equivalent to the unconstrained minimization problem for the penalized energy Fℓ. The advantage of

working with Fℓ is that we are allowed more freedom in admissible variations.

Proposition 6.1. Assume that (H1)-(H3) hold. There exists ℓ0 > 0 such that for all ℓ ≥ ℓ0, (F, u) ∈
X is a minimizer of the constrained problem (3.10) if and only if it is a minimizer in X of Fℓ.

We start with a minimality property of line segments. To fix ideas in what follows a Lipschitz

function γ : [a, b] → R2 is a parametrization of a curve if γ is injective, γ′ (t) 6= 0 for a.e. t ∈ [a, b],
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and |γ′| is constant. With a slight abuse of notations we shall identify a parametrization γ with its

image γ([a, b]).

Lemma 6.2. Let ψ : R2 → [0,+∞) be a positively 1-homogenous convex function. Let z1, z2 ∈ R2 be

two distinct points, and let γ, χ : [0, 1] → R2 be parametrizations of curves such that γ (0) = χ (0) = z1
and γ (1) = χ (1) = z2, with γ([0, 1]) = [z1, z2]. Then

∫

χ

ψ (νχ) dH1 ≥
∫

γ

ψ (νγ) dH1 ,

where νγ :=
(γ′)

⊥

|γ′| and νχ :=
(χ′)

⊥

|χ′| .

Proof. Let zi = (xi, yi), i = 1, 2, and χ (t) = (χ1 (t) , χ2 (t)). From Jensen’s inequality and the

homogeneity of ψ, we get
∫

χ

ψ (νχ) dH1 =

∫ 1

0

ψ (−χ′
2 (t) , χ′

1 (t)) dt

≥ ψ

(∫ 1

0

(−χ′
2 (t) , χ′

1 (t)) dt

)
= ψ (y1 − y2, x2 − x1) =

∫

γ

ψ (νγ) dH1 ,

which completes the proof.

Proof of Proposition 6.1. Let (Fℓ, uℓ) be a minimizer of Fℓ. The existence of minimizers is guar-

anteed via an argument similar to the one used in the proof of Theorem 3.3. Then for every ℓ > 0,

Fℓ (Fℓ, uℓ) ≤ Fℓ (F, u) = F (F, u) ≤ F
(
BRd

, u0

)
=: Λ ,

where πR2
d = d, and so by (H2),

ℓ ||Fℓ| − d| ≤ Λ , H1 (∂Fℓ) ≤
Λ

m
. (6.1)

Thus, there exist ℓ1 > 0 depending only on d and Λ, such that

|Fℓ| >
d

2
and

∣∣∣∣
d

|Fℓ|
− 1

∣∣∣∣ < 1 (6.2)

for all ℓ ≥ ℓ1.

We claim that |Fℓ| = d for ℓ large enough. Note that this being the case, then

F (F, u) ≤ F (Fℓ, uℓ) = Fℓ (Fℓ, uℓ) ≤ Fℓ (F, u) = F (F, u) .

Step 1. For ℓ > ℓ1, assume first that |Fℓ| > d. Set

α :=

(
d

|Fℓ|

) 1
2

< 1 , F̃ℓ := αFℓ ∈ A ,

so that |F̃ℓ| = d, and consider

ũℓ (w) :=





uℓ

(w
α

)
if w ∈ αB0 \ F̃ℓ ,

u0

(
wR0

|w|

)
if w ∈ B0 \ αB0 .

Since J (F̃ℓ) = αJ (Fℓ) < J (Fℓ), we infer that

Fℓ(F̃ℓ, ũℓ) −Fℓ (Fℓ, uℓ) ≤
∫

B0\αB0

W (E (ũℓ)) dw +

∫

αB0\ eFℓ

W (E (ũℓ)) dw

−
∫

B0\Fℓ

W (E (uℓ)) dz − ℓ (|Fℓ| − d) .
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Since the second and third integrals on the right-hand side are equal, recalling (6.2), we have, for

some constant c0 > 0 depending only on d, u0, R0, C and ϕ,

Fℓ(F̃ℓ, ũℓ) −Fℓ (Fℓ, uℓ) ≤ c0

(
1 − d

|Fℓ|

)
− ℓ (|Fℓ| − d) ≤ (|Fℓ| − d)

(c0
d

− ℓ
)
< 0

provided ℓ > ℓ2 := max {ℓ1, c0/d}. This contradicts the minimality of (Fℓ, uℓ), and thus |Fℓ| ≤ d for

all ℓ > ℓ2.

Step 2. To conclude the proof assume by contradiction that there exist a sequence ℓk > ℓ2, k = 3, 4, . . .

and a sequence of minimizers {(Fℓk
, uℓk

)} of Fℓk
such that ℓk → ∞ and |Fℓk

| < d for all k ≥ 3. By

Blaschke’s Theorem (see Theorem 6.1 in [1]), (6.1) and Lemma 2.8, we may assume without loss of

generality that the sets Fℓk
converge for the Hausdorff metric to some F ∈ A , with 0 < |F | = d < πR2

0

and that ρFℓk
→ ρF in L1(S1).

We now distinguish two different cases.

Case 1: Assume that there exists a point σ0 such that ρF is continuous at σ0 and 0 < ρF (σ0) < R0.

Fix 0 < ε < R0 − ρF (σ0) and let δ > 0 be such that 0 < ρF (σ) < R0 − ε whenever |σ − σ0| < δ. By

taking ε > 0 smaller if necessary, we can assume that ε < δ. By the Hausdorff convergence of {Fℓk
}

to F there exists k0 such that ρFℓk
(σ) < R0 − ε for all k ≥ k0 and for all |σ − σ0| < ε.

For such k’s, define F̃ℓk
by taking ρ eFℓk

(σ) := ρFℓk
(σ) if |σ − σ0| > ε and ρ eFℓk

(σ) := ρFℓk
(σ) + ηk if

|σ − σ0| ≤ ε, where ηk > 0 is chosen such that |F̃ℓk
| ≤ d and ηk → 0.

Since we are adding two segments at σ0 ± ε, we have that

Fℓk
(F̃ℓk

, uℓk
) −Fℓk

(Fℓk
, uℓk

) ≤ c0ηk − ℓk|F̃ℓk
\ Fℓk

|

= c0ηk − ℓk
2

∫ σ0+ε

σ0−ε

(
2ηkρFℓk

(σ) + η2
k

)
dσ ≤ ηk

(
c0 − ℓk

∫ σ0+ε

σ0−ε

ρFℓk
(σ) dσ

)
,

for a constant c0 > 0 independent of k. Since
∫ σ0+ε

σ0−ε

ρFℓk
(σ) dσ −→

k→∞

∫ σ0+ε

σ0−ε

ρF (σ) dσ > 0 ,

we conclude that Fℓk
(F̃ℓk

, uℓk
) − Fℓk

(Fℓk
, uℓk

) < 0 for k sufficiently large, which contradicts again

the minimality of (Fℓk
, uℓk

).

Case 2: Assume that ρF only takes a.e. the two values 0 and R0. Since H1(∂F ) <∞, by Lemma 2.4,

ρF has finite pointwise variation, and thus it is piecewice constant with finitely many jump points

in S1. We claim that the sets Fℓk
, and hence also F , are convex (note that this fact immediately rules

out that d > πR2
0/2). In particular, Fℓk

has a Lipschitz boundary.

We argue by contradiction, i.e., we assume that Fℓk
is not convex. Then there exist two distinct

points z0, z1 ∈ ∂Fℓk
such that the segment [z0, z1] is not contained in Fℓk

(observe that neither z0 nor

z1 can be origin and that z0 and z1 cannot be on the same ray from the origin). Moreover, using the

upper semicontinuity of ρFℓk
, we can choose the points z0 and z1 in such a way that the open segment

(z0, z1) is contained in R2 \ Fℓk
. Then, the new domain F̃ℓk

obtained by the union of Fℓk
and the

closed triangle T of vertices {0, z0, z1} belongs to A and |F̃ℓk
| > |Fℓk

|. In addition, moving the points

z0 and z1 on ∂Fℓk
if necessary, we may always construct the set F̃ℓk

in such a way that |F̃ℓk
| ≤ d. As in

Remark 2.3, it can be shown that ∂Fℓk
∩T is a connected set. Hence (see Theorem 4.46 in [24]), there

exists a curve γ ⊂ ∂Fℓk
∩ T connecting z0 and z1. By Lemma 6.2 we have that the resulting surface

energy decreases, i.e., J (F̃ℓk
) ≤ J (Fℓk

). Therefore Fℓk
(F̃ℓk

, uℓk
) < Fℓk

(Fℓk
, uℓk

), which contradicts

the minimality of (Fℓk
, uℓk

), and thus proves the convexity of each Fℓk
.

Since F is convex, as observed before we have necessarily that |F | = d ≤ πR2
0/2. Therefore,

without loss of generality, we may assume that ρF (σ) = R0 if σ ∈ [σ0, σ1] and ρF (σ) ≡ 0 elsewhere,

for some σ0 = σ(θ0), σ1 = σ(π−θ0), with 0 ≤ θ0 < π/2. Then, setting z0 = (0, y0) for some y0 > 0, by

the Hausdorff convergence of Fℓk
to F , there exists a ball Br0(z0) ⊂ F ∩Fℓk

, for all k large enough. By
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Fig. 2. The set eFℓk
is obtained by adding to Fℓk

the region enclosed by the dotted curves .

the convexity of F and Fℓk
, we can consider the radial functions of the sets F and Fℓk

with respect to

z0, respectively denoted by ρF,z0(τ) and ρFℓk
,z0(τ) where τ ∈ S1. As before, we shall write for θ ∈ R,

τ(θ) := (cos θ, sin θ). We construct the sets F̃ℓk
as follows.

First observe that there exists θ ∈ (−π/2, π/2) such that, setting τ1 := τ(θ) and τ2 := τ(π − θ),

z0 +ρF,z0(τ)τ ∈ ∂B0 if and only if τ ∈ [τ1, τ2]. Then, by the Hausdorff convergence of Fℓk
to F , given

θ̂ ∈ (−π/2, θ) and setting τ ′1 := τ(θ̂), τ ′2 := τ(π − θ̂), there exists δ > 0 such that for k large enough

z0 + ρFℓk
,z0(τ)(1 + δ)τ ∈ B0 whenever τ 6∈ (τ ′1, τ

′
2). Then, for k large, choose 0 < δk < δ such that

1

2

∫ 3π
2

−π
2

ρ2
Fℓk

,z0
(τ(θ))(1 + δk)2 dθ = d

(i.e., δk ≈ c(d − |Fℓk
|)). Next denote by ζ the function defined on S1 satisfying ζ(τ) := 0 in (τ ′1, τ

′
2),

and ζ(τ) := 1 if τ 6∈ (τ ′1, τ
′
2). Since the sets {z = z0 + rτ : 0 ≤ r ≤ ρFℓk

,z0(τ)(1 + δk), τ ∈ S1} are all

convex, and thus starshaped with respect to the origin, it follows that the sets

F̃ℓk
:=
{
z = z0 + rτ : 0 ≤ r ≤ ρ eFℓk

,z0
(τ) := ρFℓk

,z0(τ)(1 + δkζ(τ)) , τ ∈ S
1
}
,

which are not convex, are still starshaped with respect to the origin (see Figure 2). Moreover, from

the definition and the choice of δk and ζ, it is clear that F̃ℓk
∈ A, |F̃ℓk

| ≤ d, Fℓk
⊂ F̃ℓk

⊂ B0 for all k

large enough, and that F̃ℓk
has a Lipschitz boundary. Then straightforward computations yield

Fℓk
(F̃ℓk

, uℓk
) −Fℓk

(Fℓk
, uℓk

) ≤
∫

∂ eFℓk

ϕ(νi
eFℓk

) dH1 −
∫

∂Fℓk

ϕ(νi
Fℓk

) dH1 − ℓk
∣∣F̃ℓk

\ Fℓk

∣∣

≤ δk
(
ϕ(−(τ ′1)

⊥) + ϕ((τ ′2)
⊥)
)

+ δk

∫

∂Fℓk
∩{z0+rτ :τ 6∈(τ ′

1,τ
′

2)}

ϕ(νi
Fℓk

) dH1

− ℓk
2

∫

(−π
2 , 3π

2 )\(θ̂,π−θ̂)

ρ2
Fℓk,z0

(τ(θ))(2δk + δ2k) dθ .

Recalling that ρFℓk,z0
(τ) ≥ r0 for all τ ∈ S1, from (6.1) we deduce that

Fℓk
(F̃ℓk

, uℓk
) −Fℓk

(Fℓk
, uℓk

) ≤ δk

[(
2M + Λ

M

m

)
− ℓkr

2
0(π + 2θ̂)

]
< 0

whenever k is large enough. This contradicts again the minimality of (Fℓk
, uℓk

) and concludes the

proof.

Next we prove that if (F, u) is a minimum for the penalized problem, then it satisfies an exterior

Wulff shape condition, i.e., there exists ̺0 > 0 such that for every z ∈ ∂F there exists a translation

of ̺0W contained in R2 \ F such that its boundary either touches ∂F only at z or it coincides with

∂F near z. We recall that, given a function ϕ : S1 → (0,∞), the (open) Wulff set is defined by

W :=
{
w ∈ R

2 : ϕ◦ (w) < 1
}
, (6.3)
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where ϕ◦ is the polar function of ϕ, i.e.,

ϕ◦ (w) := max
|z|=1

z · w
ϕ (z)

, w ∈ R
2 .

It can be shown (see [14,17,34]) that up to translations, the Wulff set is the unique solution of the

minimization problem

min

{∫

∂E

ϕ (νE) dH1 : E ⊂ R
2 has finite perimeter, |E| = |W |

}
=: cW |W | 12 . (6.4)

We begin with an auxiliary result, which is of interest in itself.

Proposition 6.3. There exists a constant c0 > 0, depending only on W , such that the following

holds. Let F ∈ A and let C := z0 + ̺0W with z0 ∈ R2 and ̺0 > 0, be such that 0 6∈ ∂C, C ⊂ R2 \ F ,

and ∂C ∩ ∂F contains at least two points P1 = r1σ1, P2 = r2σ2, with r1 > 0, r2 > 0, and σ1 6= σ2.

Let G be the bounded component of A(σ1, σ2) ∩ (R2 \ C) and let D := G \ F . Then,

∫

∂∗D\∂C

ϕ (νD) dH1 −
∫

∂C∩∂∗D

ϕ (νC) dH1 ≥ c0
̺0

|D| , (6.5)

where νD and νC denote the exterior normals to D and C, respectively.

Proof. By rescaling we may assume, without loss of generality, that ̺0 = 1, so that |C| = |W |.
Consider a function ρ0 : (σ1, σ2) ⊂ S1 → R+ such that σ ∈ (σ1, σ2) 7→ ρ0(σ)σ is a parametrization of

∂G ∩A(σ1, σ2).

Since D = G ∩ (R2 \ F ) and by Lemma 2.4, ∂F+ = ∂∗F = ∂∗(R2 \ F ) (mod. H1), using (2.1) we

infer that

∂∗D =
(
∂G ∩ F 0

)
∪
(
∂F+ ∩G1

)
∪
(
∂G ∩ ∂F+ ∩ {νG = νi

F }
)

(mod. H1) . (6.6)

In addition, setting r′i := min{rσi : rσi ∈ ∂C} for i = 1, 2, we have that, up to a set of vanishing

H1-measure,

∂∗D ∩ {rσ1 : r ≥ 0} = {rσ1 : ρF (σ1+) ≤ r ≤ r′1} ,
∂∗D ∩ {rσ2 : r ≥ 0} = {rσ2 : ρF (σ2−) ≤ r ≤ r′2} .

(6.7)

Step 1. We assume, as in Figure 3, that ∂C ∩ ∂F+ ∩ A(σ1, σ2) = ∅, i.e., ρ+
F (σ) < ρ0(σ) for all

σ ∈ (σ1, σ2).

Assume first that
∫

∂∗D\∂C

ϕ (νD) dH1 ≤ 2

∫

∂W

ϕ(νW ) dH1 . (6.8)

Then we have

cW |C ∪D| 12 ≤
∫

∂∗(C∪D)

ϕ (νC∪D) dH1 =

∫

∂∗D\∂C

ϕ (νD) dH1 +

∫

∂C\∂∗D

ϕ (νC) dH1

≤ 3

∫

∂W

ϕ(νW ) dH1 = 3cW |W |
1
2 = 3cW |C|

1
2 ,

where in the first inequality and in the last equality we used (6.4), while in the first equality we

applied (2.2) and (2.3) to the (disjoint) union of C and D, and the second inequality is a consequence
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Fig. 3. In the above picture ρ+
F < ρ0 in (σ1, σ2). D is enclosed by ∂C and ∂F+ and G is the shaded region.

of (6.8). In turn, by (6.4),
∫

∂∗D\∂C

ϕ (νD) dH1−
∫

∂C∩∂∗D

ϕ (νC) dH1

=

∫

∂∗(C∪D)

ϕ (νC∪D) dH1 −
∫

∂C\∂∗D

ϕ (νC) dH1 −
∫

∂C∩∂∗D

ϕ (νC) dH1

=

∫

∂∗(C∪D)

ϕ (νC∪D) dH1 −
∫

∂C

ϕ (νC) dH1

≥ cW |C ∪D| 12 − cW |C| 12 ≥ cW |D|
|C ∪D| 12 + |C| 12

≥ cW

4|C| 12
|D| .

This concludes the proof in this case.

If the opposite inequality to (6.8) holds, then
∫

∂∗D\∂C

ϕ (νD) dH1 −
∫

∂C∩∂∗D

ϕ (νC) dH1 ≥ 1

2

∫

∂∗D\∂C

ϕ (νD) dH1 ≥ m

2
H1 (∂∗D \ ∂C) . (6.9)

From (6.6), (6.7), and the assumption ρ+
F < ρ0 in (σ1, σ2), we deduce that up to a set of H1-measure

zero,

∂∗D \ ∂C =
(
∂F+ ∩A(σ1, σ2)

)
∪ {rσ1 : ρF (σ1+) ≤ r ≤ r′1} ∪ {rσ2 : ρF (σ2−) ≤ r ≤ r′2} .

Setting r̄ := max{r′1, r′2} and r0 := dist(∂F+ ∩A[σ1, σ2], 0), it follows that

H1(∂∗D \ ∂C) ≥ r̄ − r0 . (6.10)

Note that D is contained in the region inside A[σ1, σ2] bounded from above by the segment with

endpoints r′1σ1 ∈ C and r′2σ2 ∈ C whose length is smaller than diamW , and from below by the open

disc of radius r0. Therefore, from (6.10) we get that

|D| ≤ c(r̄ − r0) ≤ cH1(∂∗D \ ∂C) ,

where the constant c > 0 only depends on W , and in view of (6.9), we conclude (6.5).

Step 2. We now consider the general case. Since ρ0 − ρ+
F is a lower semicontinuous function, the set

{ρ0 − ρ+
F > 0} ∩ (σ1, σ2) is open, therefore it can be written as the union of countably many open

intervals (σ′
i, σ

′′
i ), i ∈ J ⊂ N. For each i ∈ J , the set Di := D ∩ A(σ′

i, σ
′′
i ) satisfies the hypotheses of

Step 1, and (6.5) follows observing that |D| =
∑

i |Di| and that, by (6.6), ∂∗D coincides with the

essentially disjoint union of the ∂∗Di’s, up to a set of H1-measure zero.
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Proposition 6.4. Let (F, u) ∈ X be a minimizer for the penalized functional Fℓ0 and let 0 < ̺0 <
c0

ℓ0
,

where c0 and ℓ0 are the constants given in Propositions 6.3 and 6.1, respectively. If C := z0 + ̺0W

is contained in R2 \ F , then ∂F ∩ ∂C is a connected closed arc (possibly empty).

Proof. If ∂F ∩ ∂C is empty or contains just one point there is nothing to prove. Otherwise assume

that ∂F ∩∂C contains two distinct points P1 and P2. We want to show that one of the two arcs on ∂C

connecting P1 to P2 is contained in ∂F ∩ ∂C. If one of the two points coincides with the origin, since

C is convex and contained in R2 \ F and since F is starshaped with respect to 0, then the segment

[P1, P2] is contained in ∂F ∩ ∂C. A similar argument applies if P1 = r1σ1, P2 = r2σ2 with σ1 = σ2.

Therefore, we may assume that r1, r2 > 0 and σ1 6= σ2. If 0 ∈ ∂C, the union of the segments [P1, 0]

and [0, P2] is contained in ∂F ∩ ∂C so that we may also assume that 0 6∈ ∂C.

Let D be as in Proposition 6.3. The proof will be concluded provided we show that the open set

D is empty. Assume by contradiction that D 6= ∅, and set F̃ : = F ∪D. Then F̃ ∈ A and

∂F̃ ∩A(σ1, σ2) = γ ,

where γ := {rσ : r = ρ0(σ), σ1 < σ < σ2} with ρ0 is as in the proof of Proposition 6.3. By Lemma 2.4,

Lemma 2.1 and (6.6), we obtain (see Figure 3 again)

∂∗F ∩A(σ1, σ2) = ∂F+ ∩A(σ1, σ2) =
((
∂∗D \ ∂C

)
∩A(σ1, σ2)

)
∪ (∂∗F ∩ γ) (mod. H1)

with a disjoint union on the right-hand side, and

γ = ((∂∗D ∩ ∂C) ∩A(σ1, σ2)) ∪ (∂∗F ∩ γ) (mod. H1)

with an H1-essentially disjoint union. Consequently,
∫

∂∗F∩A(σ1,σ2)

ϕ(νi
F ) dH1 −

∫

∂∗ eF∩A(σ1,σ2)

ϕ(νi
eF
) dH1

=

∫

(∂∗D\∂C)∩A(σ1,σ2)

ϕ(νD) dH1 −
∫

∂∗D∩∂C

ϕ(νC) dH1 , (6.11)

where we have used the fact that ∂C∩∂∗D = ∂C∩∂∗D∩A(σ1, σ2) (mod. H1), which is a consequence

of (6.7).

Using (6.7) again and denoting by Γ̃cut the “cut part” of ∂F̃ (see (2.12)), we have for i = 1, 2,
∫

∂∗F∩{rσi: r≥0}

ϕ(νi
F ) dH1 +

∫

Γcut∩{rσi: r≥0}

(
ϕ(νi

F ) + ϕ(−νi
F )
)
dH1

=

∫

∂∗ eF∩{rσi: r≥0}

ϕ(νi
eF
) dH1 +

∫

eΓcut∩{rσi: r≥0}

(
ϕ(νi

eF
) + ϕ(−νi

eF
)
)
dH1

+

∫

∂∗D∩{rσi: r≥0}

ϕ(νD) dH1 . (6.12)

Combining (6.11) and (6.12) we obtain

J (F ) − J (F̃ ) ≥
∫

∂∗D\∂C

ϕ(νD) dH1 −
∫

∂∗D∩∂C

ϕ(νC) dH1

with equality if Γcut ∩A(σ1, σ2) = ∅. In view of Proposition 6.3 we conclude that

Fℓ0(F, u) −Fℓ0(F̃ , u) ≥ J (F ) − J (F̃ ) − ℓ0|F̃ \ F |

≥
∫

∂∗D\∂C

ϕ(νD) dH1 −
∫

∂∗D∩∂C

ϕ(νC) dH1 − ℓ0|D| ≥
(
c0
̺0

− ℓ0

)
|D| > 0 ,

which contradicts the minimality of (F, u). Therefore D = ∅ and the proof is complete.

Theorem 6.5 (Uniform Exterior Wulff Condition). Let (F, u) ∈ X be a minimizer for the

penalized functional Fℓ0 . Then for all z ∈ ∂F there exists w ∈ R2 such that w + ̺0W ⊂ R2 \ F and

z ∈ ∂ (w + ̺0W ), where ̺0 is as in Proposition 6.4.



Material voids in elastic solids with anisotropic surface energies 33

Proof. Set

U :=
⋃{

w + ̺0W : w + ̺0W ⊂ R
2 \ F

}
. (6.13)

Then U is an open set. To prove the statement, it suffices to show that

U = R
2 \ F . (6.14)

Indeed, in this case ∂F = ∂U , and so if z ∈ ∂F , there exist sequences {an}, {wn} ⊂ R2 such that

an ∈ wn + ̺0W ⊂ U and an → z. Then the sequence {wn} is bounded, and so, up to a subsequence,

wn → w for some w ∈ R2. Note that z ∈ w + ̺0W . We claim that w + ̺0W ⊂ R2 \ F . To see this,

assume that there exists w̄ ∈ F ∩ (w + ̺0W ) and let r > 0 be such that Br (w̄) ⊂ w+ ̺0W . Let n be

so large that |wn − w| < r/2. Then if z̄ ∈ Br/2 (w̄), we have that z̄ − wn + w ∈ Br (w̄) ⊂ w + ̺0W ,

therefore z̄ −wn ∈ ̺0W , i.e., z̄ ∈ wn + ̺0W , which shows that Br/2 (w̄) ⊂ wn + ̺0W ⊂ R2 \ F . This

contradicts the fact that w̄ ∈ F . Hence, the claim holds. Finally, using the facts that z ∈ w+ ̺0W =

(w + ̺0W ) ∪ ∂ (w + ̺0W ), z ∈ ∂U , and w + ̺0W ⊂ U , we conclude that z ∈ ∂ (w + ̺0W ).

The remaining of the proof is dedicated to prove that U = R2 \ F . Observe that, since R2 \ F is

pathwise connected, this is equivalent to having ∂U ∩
(
R2 \ F

)
= ∅. We argue by contradiction and

assume that there exists a ∈ ∂U ∩
(
R2 \ F

)
. Since a ∈ ∂U we may find two sequences {wn} and {an}

in R2 such that an ∈ wn + ̺0W ⊂ R2 \ F and an → a. Arguing as above, there exists w0 such that

C := w0 + ̺0W ⊂ R2 \ F and a ∈ ∂C. Observe that ∂C ∩ ∂F is nonempty, since otherwise we could

slightly translate C in such a way that the resulting set C′ would still be contained in R2 \ F and

would contain a. By the definition of U , this would imply that a belongs to (the interior of) C′ and

C′ is contained in U , and in turn that a ∈ U , which contradicts the fact that a ∈ ∂U . Hence, by

Proposition 6.4, ∂C ∩ ∂F is either a point or a connected arc.

Up to a rotation, we may assume that the projection of C on the (horizontal) x-axis is the interval

(α, β) with α < 0 < β, and that C is contained in the (vertical) half line {y > 0}. This is obvious if

0 6∈ ∂C, but it can be easily shown to be true also when 0 ∈ ∂C, by the convexity of C. Then there

exist two functions f , g : [α, β] → [0,∞) , with f convex and g concave such that

C =
{
(x, y) ∈ R

2 : x ∈ (α, β) , f (x) < y < g (x)
}
.

Since F is starshaped with respect to the origin, ∂F ∩ ∂C is contained in the graph of f . Denote by

z0 = (x0, f (x0)) and z1 = (x1, f (x1)) the left and right endpoints of ∂C ∩ ∂F , respectively, and set

γ := {(x, f (x)) : x0 ≤ x ≤ x1} . (6.15)

We now consider several cases:

Case 1: a = (x, g (x)) for some x ∈ (α, β). In this case and as before, by slightly translating C upwards

we would obtain a set C′ := w + ̺0W ⊂ R2 \ F containing a. This would contradict the fact that

a ∈ ∂U .

Case 2: a = (β, y) for some y ∈ (f (β) , g (β)], assuming that this interval is nonempty (the case

a = (α, y) with y ∈ (f (α) , g (α)] is analogous). In this case, to get a contradiction we first translate

C slightly upwards thus obtaining a set C′ with positive distance from ∂F and such that a ∈ ∂C′.

Then we translate C′ to the right to obtain a set C′′ that includes a in its interior and is contained

in R2 \ F . This again contradicts the fact that a ∈ ∂U .

We are now left with the situation in which a = (x, f (x)) for some x ∈ [α, β]. Since a /∈ F , by

(6.15), without loss of generality we may assume that x < x0 (the case x > x1 is analogous).

Case 3: Consider first the case in which f is not affine in the interval (x, x0) (see Figure 4). Then

there exists x̃ ∈ (x, x0) such that f is not affine in the interval (x, x̃). Note that the arc

γ′ := {(x, f (x)) : α ≤ x ≤ x̃}
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Fig. 4. The situation analyzed in Cases 3 and 4 of the proof of Theorem 6.5. Notice that in the left picture,
the quantity s defined by (6.16) is negative, hence C′′ is obtained translating C first upward and then to the
left.

lies at positive distance δ0 > 0 from the boundary of F . Observe also that there exist s ∈ R and

0 < δ1 < min{β − x̃, x̃− x} such that if 0 < δ < δ1, then

f (x+ δ) − f (x)

δ
< s < min

{
f (x+ δ) − f (x)

δ
: x ∈ [x̃− δ, β − δ]

}
. (6.16)

Therefore, if we choose

0 < δ < min

{
δ0√

1 + s2
, δ1

}
,

we may first translate C in the vertical direction by the vector (0,−sδ) to obtain C′, and then translate

C′ in the horizontal direction by (−δ, 0) thus obtaining a new set C′′ ⊂ R2 \ F containing a. Indeed,

after these translations the points of γ′ have been moved to a distance equal to δ
√

1 + s2 < δ0,

hence in their final position they are still away from ∂F . Note also that after these translations

the graph of f has been moved to the graph of the function f : [α− δ, β − δ] → R defined by

f (x) := f (x+ δ) − sδ. By (6.16), it follows that f (x) < f (x), hence a ∈ C′′, provided that δ is so

small that f(x) < g(x+δ)−sδ. Indeed, if f(x) < g(x), this choice of δ is obviously possible, otherwise,

if x = α and g(α) = f(α), this choice of δ is possible if one chooses s satisfying f ′
+(α) < s < g′+(α)

in addition to (6.16). Finally, we have that for every x ∈ [x̃− δ, β − δ], f (x) > f (x). Therefore we

may conclude that C′′ ⊂ R2 \ F and this is again a contradiction.

Case 4: Assume now that f is affine in some maximal interval (x, x′) where x0 ≤ x′ ≤ β, and let L

be the line containing the graph of f above (x, x′). In this case we can slide C in the left direction

along L in such a way that the point (x′, f (x′)) has been moved to the point z0. Note that this

is possible because, while sliding C, the set ∂C \ γ cannot touch the boundary of F otherwise, by

Proposition 6.4, there would be an arc in ∂C contained ∂F and containing a. Let C′ be the resulting

set. Note that now ∂C′∩∂F = {z0}, a ∈ ∂C′, and C′ ⊂ R2 \F . Therefore, with the same argument as

before, we may slide also C′ slightly to the left along L, thus getting a new set C′′ ⊂ R2 \F such that

∂C′′ ∩ ∂F = ∅ and a ∈ ∂C′′. Finally, by translating C′′ downward we obtain some set C′′′ ⊂ R2 \ F
containing a. This contradiction concludes the proof.

7. Regularity in the polygonal case

Throughout this section we will assume that W is a polygon with internal angles greater than π/2,

and we are going to prove that if (F, u) is a minimizer of the constrained problem (3.10), then the

boundary of F is the union of finitely many Lipschitz graphs. In particular, this will imply that the

number of cut segments is at most finite. The essential tool used to prove this regularity result is the

uniform exterior Wulff condition established in the previous section. As a first step, we show that
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Fig. 5. At every point z ∈ ∂F there exists an exterior sector with a radius and an angle uniformly bounded
from below.

this condition implies the existence of uniform exterior sectors at every point of ∂F , where the three

exterior sectors at a point z0 = r0σ(θ0) in R2 \ {0} determined by h > 0 and α ∈ (0, π] are defined by

S+
α,h (z0) := z0 +

{
rσ(θ) ∈ R

2 : θ0 < θ < θ0 + α , 0 < r < h
}
,

S−
α,h (z0) := z0 +

{
rσ(θ) ∈ R

2 : θ0 − α < θ < θ0 , 0 < r < h
}
,

Sα,h (z0) := z0 +
{
rσ(θ) ∈ R

2 : θ0 − α < θ < θ0 + α , 0 < r < h
}
.

Proposition 7.1. Assume that the Wulff set W (see (6.3)) is a polygon with internal angles greater

than π
2 . Let (F, u) ∈ X be a minimizer for the penalized functional Fℓ0 (see Proposition 6.1). Then

there exist α > π
2 , β > 0, and h > 0 such that for all z ∈ ∂F \ {0} at least one of the three exterior

sectors S+
α,h (z), S−

α,h (z), Sβ,h (z) is contained in R2 \ F .

Proof. Let α0 >
π
2 be the minimum of the internal angles of W and π

2 < α1 < α0. Let z ∈ ∂F \ {0},
and let C := w + ̺0W ⊂ R2 \ F be such that z ∈ ∂C, where ̺0 is as in Theorem 6.5. Without loss

of generality we may assume that z lies on the positive y-axis so that z = (0, r) with r > 0 (see

Figure 5).

Consider first the case in which z is a vertex of C. If the y-axis lies to the left of C, then there exists

an angle α ≥ α0 greater than or equal to the internal angle of C at z such that S−
α,h0

(z) ⊂ R2 \ F
for h0 := ̺0sW , where sW denotes the length of the shortest side of W . Similarly, S+

α,h0
(z) ⊂ R2 \ F

if the y-axis lies to the right of C. It remains to consider the case in which the y-axis crosses the

interior of C. In this case, either Sα0−α1,h0 (z) ⊂ R2 \ F or at least one of the two sectors S+
α1,h0

(z)

and S−
α1,h0

(z) is contained in R2 \ F .

Next suppose that z belongs to one of the sides of C, which we denote by S. Let z′ be the vertex

on S closest to z (if z is the middle point of S then take any of the two). Then a triangle T with one

vertex in z and two sides of length h0/2 departing from z and parallel to the two sides of C that

intersect at z′ is contained in C. Note that the angle of T at z is the same angle of C at z′, and so

it is greater than or equal to α0. Since the y-axis crosses the interior of T , we may argue as before

to conclude that either S
α0−α1,

h0
2

(z0) ⊂ R2 \ F or at least one of the two sectors S+

α1,
h0
2

(z) and

S−

α1,
h0
2

(z) is contained in R2 \ F .

Hence, the proposition holds with α := α1, β := α0 − α1, and h := h0/2.

Remark 7.2. In view of the uniformity of the size of the sectors, we can extend Proposition 7.1 to

the case z = 0 as follows. If 0 belongs to ∂F , then there exists θ0 such that one of the three sectors

S+
α,h,θ0

(0), S−
α,h,θ0

(0), Sβ,h,θ0(0) is contained in R2 \ F , where

S+
α,h,θ0

(0) :=
{
rσ(θ) ∈ R

2 : θ0 < θ < θ0 + α , 0 < r < h
}

and the two other sectors are defined similarly. Indeed, consider a sequence {zn} ⊂ ∂F \{0} converging

to 0. Applying Proposition 7.1 to each zn, we find that for every n at least one of the three exterior
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sectors S+
α,h (zn), S−

α,h (zn), Sβ,h (zn) is contained in R2\F . Therefore, there exists a subsequence (not

relabeled) such that, say, S+
α,h (zn) is contained in R2 \ F for every n. Moreover, we can assume that

zn/ |zn| → σ(θ0) for some θ0 ∈ [0, 2π). We claim that S+
α,h,θ0

(0) is contained in R2 \ F . If not, then

there would exist w ∈ S+
α,h,θ0

(0) ∩ F . Since S+
α,h,θ0

(0) is open, then for n large enough w ∈ S+
α,h (zn),

which is a contradiction.

Remark 7.3. If W is a polygon with internal angles greater than or equal to π
2 , denote by

(L1, L
′
1),. . . , (Lk, L

′
k) the pairs of adjacent sides of W forming an internal angle of π

2 and denote

by (σ1, σ
′
1),. . . , (σk, σ

′
k) their corresponding directions (observe that, by the convexity of W , k can be

at most 4). If [σ′, σ′′] does not contain any of the directions σi, σ
′
i, i = 1, . . . , k, then the conclusion

of the previous proposition holds for all z ∈ ∂F ∩ A(σ′, σ′′) (with parameters α, β and h depending

on σ′ and σ′′). It also holds for z = 0, provided that there exists a sequence zn ∈ ∂F ∩ A(σ′, σ′′)

converging to 0.

The following lemma will also be used in the next section.

Lemma 7.4. Let F ∈ A and let z ∈ ∂F+ \ {0} (see (2.8)). Assume that there exist δ > 0, ν ∈ S1,

and η > 0 such that for every z′ ∈ ∂F ∩Bδ (z) and for every ν′ ∈ S1 satisfying ν · ν′ ≥ η, the segment

{z′ + tν′ : 0 < t < 2δ} is contained in R2 \ F . Then there exist δ1, δ2 ∈ (0, δ) such that

∂F ∩
{
z + t1ν

⊥ + t2ν : −δi < ti < δi

}

is the graph of a Lipschitz function.

Proof. Step 1. Let L1 be the line through z orthogonal to ν oriented in the direction −ν⊥, and let

L2 be the line through z oriented in the direction ν. We claim that the set ∂F ∩Bδ (z) is contained

in the graph of a Lipschitz function defined on L1 in an open neighborhood of z. Let Π and Π⊥ be

the projection of R2 onto L1 and L2, respectively.

Let z1, z2 ∈ ∂F ∩ Bδ (z) and, without loss of generality, assume that Π⊥ (z2) ≥ Π⊥ (z1). Let

S := z1 + {rν : r ≥ 0}, and consider the two half-lines S1 and S2 with endpoint z1 and forming on

both sides of S an angle of arccosη. By assumption, the open sector of radius 2δ with center at z1,

bounded by the half-lines S1 and S2, and intersecting S, is contained in R2 \F . Hence, since z2 ∈ ∂F ,

we have that z2 does not belong to this sector, and so
∣∣Π⊥ (z2) − Π⊥ (z1)

∣∣ ≤ m |Π(z2) − Π(z1)| ,

where m := tan
(

π
2 − arccosη

)
. Note that this inequality implies that if z1, z2 ∈ ∂F ∩ Bδ (z) and

Π (z1) = Π (z2), then z1 = z2. Therefore, setting P := Π (∂F ∩Bδ (z)), it follows that Π|∂F∩Bδ(z) is

one-to-one, and the function f : P → L2, defined by f (w) := Π⊥
((

Π|∂F∩Bδ(z)

)−1
(w)
)
, is Lipschitz

continuous with Lipschitz constant less than or equal to m.

Step 2. To complete the proof it suffices to show that P contains an open neighborhood of z in L1.

Write z = rσ0 with r > 0, and assume without loss of generality that ρ+
F (σ0) = ρF (σ0−). Take δ > 0

so small that 0 < δ < r, and in such a way that if A(σ1, σ2) is the smallest sector containing Bδ(z),

then ρ−F (σ) > r/2 for all σ ∈ [σ1, σ2]. As in the proof of Lemma 2.2, we have that ∂F ∩A[σ1, σ0] is a

compact connected set. Consequently (see Theorem 4.46 in [24]), there exists a curve γ1 contained in

∂F ∩A[σ1, σ0] connecting ρF (σ1)σ1 to z. Similarly, there exists a curve γ2 contained in ∂F ∩A[σ0, σ2]

connecting ρF (σ2)σ2 to z. Observe that the two curves γ1 and γ2 intersect only at the point z. By

Step 1, we deduce that Π(γ1 ∩ Bδ(z)) contains a left or right open neighborhood N1 of z in L1,

while Π(γ2 ∩ Bδ(z)) contains an opposite side open neighborhood N2. We conclude that N1 ∪N2 is

a neighborhood of z in L1.

Remark 7.5. Arguing as in the previous proof, one can also show a one sided version of the lemma.

More precisely, let z = rσ0, for some σ0 ∈ S1, r ≥ 0. Assume that there exist δ > 0, ν ∈ S1, and η > 0
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such that for every z′ ∈ ∂F ∩A(σ0, σ0 + δ) and for every ν′ ∈ S1 satisfying ν · ν′ ≥ η, the segment

{z′ + tν′ : 0 < t < δ}

is contained in R2 \ F . Then there exists 0 < δ < δ such that ∂F ∩A(σ0, σ0 + δ) is the graph of a

Lipschitz function.

We are now in position to prove the regularity of ∂F .

Theorem 7.6. Assume that the Wulff set W is a polygon with internal angles greater than π
2 . Let

(F, u) ∈ X be a minimizer for the penalized functional Fℓ0 . Then ∂F is the union of finitely many

Lipschitz graphs. Precisely, ∂F contains finitely many cut segments, i.e., SF is finite, and there exists

a finite set Γsing ⊂ ∂F+ such that:

(i) if z ∈ ∂F+ \ Γsing, then there exists a neighborhood N (z) of z such that ∂F ∩ N (z) is the graph

of a Lipschitz function;

(ii) if z = r0σ0 ∈ Γsing \ {0}, then there exists a neighborhood N (z) of z such that
(
∂F ∩N (z)

)
\Γcut

is the union of two graphs of Lipschitz functions intersecting only at z;

(iii) if 0 ∈ Γsing, then there exists a neighborhood N0 of 0 such that ∂F ∩ N0 is the union of at most

six graphs of Lipschitz functions intersecting only at 0.

Proof. Let α > π
2 , β > 0, and h > 0 be as in Proposition 7.1. Then we can write

∂F \ {0} = Γ+ ∪ Γ− ∪ Γ0 ,

where

Γ+ :=
{
z ∈ ∂F \ {0} : S+

α,h (z) ⊂ R
2 \ F

}
,

Γ− :=
{
z ∈ ∂F \ {0} : S−

α,h (z) ⊂ R
2 \ F

}
,

Γ0 :=
{
z ∈ ∂F \ {0} : Sβ,h (z) ⊂ R

2 \ F
}
.

Step 1. Let z ∈ ∂F+ and assume that z 6= 0. We now consider all possible cases.

Case 1: Either z ∈ Γ+ \
(
Γ− ∪ Γ0

)
or z ∈ Γ− \

(
Γ+ ∪ Γ0

)
. We only consider the first case, since the

other one is analogous. We claim that there exists δ > 0 such that ∂F ∩Bδ (z) ⊂ Γ+. Indeed, if this

were not true, then there would exist a sequence {zn} ⊂ Γ− ∪ Γ0 converging to z, i.e., for infinitely

many n’s either S−
α,h (zn) ⊂ R2 \F or Sβ,h (zn) ⊂ R2 \F . Passing to the limit, either S−

α,h (z) ⊂ R2 \F
or Sβ,h (z) ⊂ R2 \ F , which contradicts the fact that z ∈ Γ+ \

(
Γ− ∪ Γ0

)
. Let ν ∈ S1 be the unit

vector parallel to the vector that bisects the sector S+
α,h (z) and points towards R2 \ F . By taking δ

smaller if necessary, the assumptions of Lemma 7.4 are satisfied in ∂F ∩Bδ (z) for some η > 0. Hence

∂F ∩N (z) is the graph of a Lipschitz function for some open neighborhood N (z) of z.

Case 2: Either z ∈
(
Γ+ ∩ Γ0

)
\Γ− or z ∈

(
Γ− ∩ Γ0

)
\Γ+. Again, we only consider the first case, since

the other is analogous. The same continuity argument as before shows that there exists δ > 0 such

that ∂F ∩ Bδ (z) ⊂ Γ+ ∪ Γ0. Therefore at each point z′ ∈ ∂F ∩ Bδ (z) we have S+
β′,h (z′) ⊂ R2 \ F

with β′ := min {β, α}. Then we can argue as in the previous case to conclude that ∂F ∩ N (z) is the

graph of a Lipschitz function for some open neighborhood N (z) of z.

Case 3: z ∈ Γ0 \ (Γ+ ∪ Γ−). Still by a continuity argument there exists δ > 0 such that ∂F ∩Bδ (z) ⊂
Γ0 \ (Γ+ ∪ Γ−). The conclusion then follows as in Case 1.

Case 4: Assume that z = rσ(θ) ∈ Γ+ ∩ Γ−. Since z ∈ ∂F+ we have r = (ρ∗F )+(θ). We shall prove

that there exists a neighborhood N (z) of z such (∂F ∩N (z)) \ {r′σ(θ) : r < r′ ≤ ρ∗F (θ)} is the union

of two Lipschitz graphs intersecting only at z.

First we show that Γ+ ∩ Γ− ∩ ∂F+ contains at most finitely many points. Indeed, assume that

z0 = r0σ(θ0) and z1 = r1σ(θ1) are two distinct points in Γ+ ∩Γ− ∩ ∂F+. We claim that |z0 − z1| ≥ h
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or |θ0 − θ1| ≥ min{2α − π, π
4 } from which the conclusion follows. To prove the claim, assume that

|z0 − z1| < h and |θ0 − θ1| < min{2α− π, π
4 }. Observe that zi does not belong to S+

α,h(zj) ∪ S−
α,h(zj)

if i 6= j, and σ(θ0) 6= σ(θ1) since z0, z1 6∈ Γcut. Consider the triangle of vertices 0, z1 and z0.

Setting κ to be the interior angle of this triangle at z1, we have that κ > π − α. Consequently,

z0 ∈ S+
α,h(z1) ∪ S−

α,h(z1) ⊂ R2 \ F , which is impossible.

Assume first that (ρ∗F )−(θ) = (ρ∗F )+(θ). If there were a sequence zn = rnσ(θn) ∈ Γ+ converging

to z counterclockwise, we would have for n sufficiently large |θn − θ| < min{2α− π, π
4 } and thus we

would conclude, arguing as in the proof of the previous claim, that z ∈ S+
α,h (zn), which is impossible.

Therefore, there exists ε > 0 such that ∂F ∩A [σ(θ − ε), σ(θ)] ⊂ Γ− ∪ Γ0. Arguing as in the previous

cases and using Remark 7.5, we conclude that ∂F ∩A (σ(θ − ε), σ(θ)) is the graph of a Lipschitz

function for ε sufficiently small. A similar argument shows that ∂F ∩A (σ(θ), σ(θ + ε′)) is the graph

of a Lipschitz function for a suitable small ε′ > 0. In conclusion,

(∂F ∩A [σ(θ − ε), σ(θ + ε′)]) \ {r′σ(θ) : r < r′ ≤ ρ∗F (θ)}

is the union of two Lipschitz graphs intersecting only at z.

Finally, if (ρ∗F )−(θ) < (ρ∗F )+(θ), we assume without loss of generality that (ρ∗F )+(θ) = ρF (σ(θ)−).

Reasoning as in the case (ρ∗F )−(θ) = (ρ∗F )+(θ), we deduce that ∂F ∩A (σ(θ − ε), σ(θ)) is the graph

of a Lipschitz function, while the jump segment gives the second graph.

Step 2. Assume that 0 ∈ ∂F , i.e., ρ−F (σ) = 0 for some σ ∈ S1. We claim that the open set {σ ∈ S1 :

ρ−F (σ) > 0} has at most three connected components. Indeed, let (σ0, σ1) be a connected component.

Then ρ−F (σ1) = 0. Let {rn} be a sequence of positive numbers converging to 0. Then the points

zn = rnσ1 are all contained in R2 \ F̊ and, by (6.13) and (6.14), there exist Cn = wn + ̺0W ⊂ R2 \F
such that zn ∈ Cn. Arguing as in the proof of Theorem 6.5, letting n → ∞ we conclude that there

exists C = w + ̺0W ⊂ R2 \ F such that 0 ∈ ∂C and the half line {rσ1 : r ≥ 0} crosses C. Since

Cn ⊂ R2 \ F for every n, we also derive that there exists σ2 > σ1 such that A(σ1, σ2) ⊂ R2 \ F and

the angle between σ1 and σ2 is greater than π/2. In particular, ρ−F (σ) = 0 for every σ ∈ [σ1, σ2].

Therefore the distance on S1 between two connected component of {σ ∈ S1 : ρ−F (σ) > 0} is greater

than π/2, which proves the claim.

Now let (σ(θ0), σ(θ1)) be one of the connected components of {ρ−F (σ) > 0}. Note that ρ+
F (σ(θ0)) =

ρF (σ(θ0)+) and ρ+
F (σ(θ1)) = ρF (σ(θ1)−) since ρF (σ(θ0)−) = ρF (σ(θ1)+) = 0. Arguing as in Re-

mark 7.2 we have that at least one of the three sectors S+
α,h,θ0

(0), Sβ,h,θ0(0), S−
α,h,θ0

(0) is contained

in R2 \F . But since the first two intersect F , we conclude that S−
α,h,θ0

(0) ⊂ R2 \F . If ρ+
F (σ(θ0)) = 0,

arguing as in the proof of Case 1 in the previous step, we get that there exists ε > 0 such that

S−
α,h(z) ⊂ R2 \ F for all z ∈ ∂F ∩ A[σ(θ0), σ(θ0 + ε)]. Therefore, by Remark 7.5, we conclude that

∂F ∩A (σ(θ0), σ(θ0 + ε)) is the graph of a Lipschitz function, for ε sufficiently small. On the other

hand, from the exterior Wulff condition and the fact that the interior angles of W are greater than
π
2 , we have that σ(θ0) 6∈ SF , and thus ∂F ∩ A [σ(θ0), σ(θ0 + ε)] is the graph of a Lipschitz function.

If ρ+
F (σ(θ0)) > 0, then the segment from 0 to ρ+

F (σ(θ0))σ(θ0) provides the desired graph. A similar

argument applies at the angle θ1, thus providing another Lipschitz graph intersecting the previous

one only at 0.

Step 3. It remains to prove that the set SF is finite. Let σ ∈ SF and assume that ρ+
F (σ) > 0. Since

σ ∈ SF , ∂F does not coincide with the graph of a Lipschitz function in any neighborhood of ρ+
F (σ)σ.

In view of Step 1, we then have ρ+
F (σ)σ ∈ Γ+ ∩ Γ− ∩ ∂F+, and thus {σ ∈ SF : ρ+

F (σ) > 0} is finite

thanks to Case 4 of Step 1.

Next by Step 2 we have that the interior of {σ ∈ S1 : ρ+
F (σ) = 0}) is the union of at most finitely

many open arcs. Consider one such open arc (σ0, σ1), and observe that σ0 and σ1 do not belong to

SF again by Step 2. Then assume that there exist σ2, σ3 ∈ SF ∩ (σ0, σ1). Arguing as in Step 2, we

derive that the angle between the σi’s, i = 0, 1, 2, 3, are larger than π/2. Consequently, the set (σ0, σ1)

contains at most two elements in SF , and the proof is complete.
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Remark 7.7. From the proof of the previous theorem it is clear that Γsing is precisely given by the

finite set Γ+ ∩Γ− ∩∂F+ to which one has to add the origin if more than one Lipschitz graph departs

from there.

Remark 7.8. If W is a polygon with internal angles greater than or equal to π
2 , the conclusions of

the previous theorem hold for ∂F ∩A(σ′, σ′′) whenever [σ′, σ′′] does not contain any of the angles σi,

σ′
i, i = 1, . . . , k considered in Remark 7.3.

8. Regularity in the strictly convex case

Throughout this section we assume that ϕ satisfies (H2) and that

(H3)’ the sublevel set {z ∈ R2 : ϕ(z) ≤ 1} is strictly convex.

A condition under which (H3)’ holds is the following: there exist ε > 0 and a nonnegative positively

1-homogenous convex function ψ such that

ϕ (a) = ε |a| + ψ (a) (8.1)

for all a ∈ R2. A function ϕ satisfying (8.1) is said to be elliptic. We refer to [26] and [34] for a

detailed analysis of this class of surface energies and their relevance in the physical literature.

We emphasize that, under assumptions (H2) and (H3)’, the function ϕ is convex (see Propo-

sition 8.1 below), and thus the results of Section 6 do hold. We shall prove that if (F, u) ∈ X is

a minimizer for the penalized functional Fℓ0 , then, apart from a finite singular set, ∂F \ {0} is a

C1-manifold. Moreover, the singular set may possibly contain the origin, from which at most two

Lipschitz branches of ∂F may depart.

We begin with some auxiliary results. The next one will be proved in the appendix.

Proposition 8.1. Assume that ϕ satisfies (H2) and (H3)′. Then ϕ is convex and there exists a

modulus of continuity ω : [0, 2] → [0,∞) such that

ϕ (a) + ϕ (b) ≥ ϕ (a+ b) + min {|a| , |b|}ω
(

1 − a

|a| ·
b

|b|

)

for all a, b ∈ R2 \ {0}.

Proposition 8.2. Assume that ϕ satisfies (H2) and (H3)′. Then W is a C1 open set.

Proof. By Theorem 3.7.3 in [38] (see also Proposition 3.3(2) in [26]), W has a unique tangent line at

any point of its boundary. Fix z ∈ ∂W . Then, in a neighborhood of z, the boundary of W is a graph

over the tangent line at z of a convex function f that is differentiable at every point. By well-known

properties of convex functions, it follows that f is actually of class C1.

Lemma 8.3. Let ϕ satisfy (H2) and (H3)’. For every 0 < ε < 1 there exists δ0 > 0 such that for

every z ∈ ∂W and ν ∈ S1 satisfying ν · νW (z) > ε, the point z − δν belongs to W for all 0 < δ ≤ δ0.

Proof. Since ∂W is a compact set, it is enough to show that for every z0 ∈ ∂W and 0 < ε < 1 there

exist a neighborhood of z0 and δ = δ (ε, z0) > 0 such that the statement holds in this neighborhood.

Up to a translation and a rotation, we may assume that z0 = 0 and that there exist a neighborhood

U of the origin and a nonnegative convex function f ∈ C1 ([−a, a]) for some a > 0 such that

f (0) = f ′ (0) = 0 and

∂W ∩ U = {(x, f (x)) : x ∈ (−a, a)} ,
W ∩ U ⊃ {(x, y) : x ∈ (−a, a) , f (x) < y < η} (8.2)

for some η > 0.
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Let 0 < δ < min(a
2 ,

η
2 ) be such that if |x| < 2δ, then |f ′ (x)| < ε

2 and |f(x)| < η
2 . Fix x0 ∈ (−δ, δ)

and ν ∈ S1 satisfying ν · νW (x0, f (x0)) > ε, or, equivalently,

ν1f
′ (x0) − ν2 > ε

√
1 + |f ′ (x0)|2 ,

where ν = (ν1, ν2). Then for all x ∈ (−2δ, 2δ) we have

ν1f
′ (x) − ν2 = ν1f

′ (x0) − ν2 + ν1 (f ′ (x) − f ′ (x0)) > ε

√
1 + |f ′ (x0)|2 − ε > 0 . (8.3)

We claim that

f (x0 − δν1) < f (x0) − δν2 < η ,

The second inequality is satisfied by the choice of δ. To prove the first inequality, we use (8.3) and

the convexity of f , thus getting

f (x0) − f (x0 − δν1) ≥ f ′ (x0 − δν1) δν1 > δν2 .

Thus the claim holds, and so by (8.2) we have (x0, f (x0)) − δν ∈W . This concludes the proof.

In the next proposition we study cuts segments. The additional hypothesis (H3)′ will allow us to

obtain a result stronger than the one obtained in Proposition 7.1 for the polygonal case.

Proposition 8.4. Let ϕ satisfy (H2) and (H3)’. Let (F, u) ∈ X be a minimizer for the penalized

functional Fℓ0 and let σ ∈ SF and z = rσ ∈ ∂F be such that ρ+
F (σ) ≤ r ≤ ρF (σ). Then there

exist C = w + ̺0W , C′ = w′ + ̺0W , where ̺0 is given in Theorem 6.5, such that C, C′ ⊂ R2 \ F ,

z ∈ ∂C ∩ ∂C′, νC (z) · σ = 0, νC′ (z) · σ = 0 and νC′ (z) = −νC (z).

Proof. Without loss of generality, we may assume that ρ+
F (σ) < r < ρF (σ). The cases r ∈{

ρ+
F (σ), ρF (σ)

}
follow by a continuity argument.

Let {σn} be a sequence converging to σ, with σn < σ, so that for n large zn = rσn 6∈ F . Arguing as

in the first part of the proof of Theorem 6.5, there exist Cn = wn + ̺0W ⊂ R2 \F such that zn ∈ Cn

and Cn converges in the Hausdorff metric to some C = w + ̺0W ⊂ R2 \ F with z ∈ ∂C. Since C is

of class C1, we have that νC (z) · σ = 0. We claim that νC(z) = σ⊥. Indeed, if νC(z) = −σ⊥, then

for t > 0 sufficiently small, the point w∗ := z + tσ⊥ belongs to C and, writing w∗ = r∗σ∗, we may

assume that ρ+
F (σ) < r∗ < ρF (σ). Note that σ∗ > σ. By Hausdorff convergence, w ∈ Cn for all n

sufficiently large, and since Cn is convex, the segment Sn of endpoints w∗ and zn is contained in Cn.

Using the facts that σn < σ < σ
∗

and that ρ+
F (σ) < r, r∗ < ρF (σ), it follows that Sn intersects the

segment
{
r′σ : ρ+

F (σ) < r′ < ρF (σ)
}
⊂ F . This contradicts the fact that Cn is contained in R2 \ F

and proves the claim.

In a similar way, considering {σn} converging to σ, with σn > σ, we prove that there exists

C′ = w′ + ̺0W ⊂ R2 \ F such that z ∈ ∂C′ and νC′(z) = −σ⊥.

Definition 8.5 (Cusp points). Given (F, u) ∈ X and σ ∈ S1, a point z = rσ ∈ ∂F+ is called a

cusp point if there exist C = w + ̺0W ⊂ R2 \ F , C′ = w′ + ̺0W ⊂ R2 \ F such that z ∈ ∂C ∩ ∂C′

and νC (z) · σ = νC′ (z) · σ = 0 and νC (z) = −ν′C (z), where ̺0 is as in Theorem 6.5. The set of cusp

points in ∂F+ is denoted by Γcusp.

Remark 8.6. In view of Proposition 8.4, if σ ∈ SF then ρ+
F (σ)σ ∈ Γcusp. Moreover, we note that

the origin cannot be a cusp point. Indeed, if 0 were a cusp point, since the sets C and C′ given in

Definition 8.5 are C1 and F is starshaped, it would follow that F lies in the line through 0 in the

direction σ. This would contradict the fact that |F | > 0. In particular, by Proposition 8.4 the origin

cannot be the endpoint of a cut segment, i.e., if ρ+
F (σ) = 0 then ρF (σ) = 0.

Next we show that at every point of ∂F+ there exist left and right (classical) tangent vectors

according to the counterclockwise orientation, and that the number of cusp points is finite.
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Proposition 8.7. Let ϕ satisfy (H2) and (H3)′. Let (F, u) ∈ X be a minimizer for the penalized

functional Fℓ0 , and let z be a point on ∂F+.

(i) If z = rσ ∈ Γcusp, then ∂F+ has a left tangent at z equal to σ, and a right tangent equal to −σ.
(ii) If z ∈ ∂F+ \ (Γcusp ∪ Γjump) and z 6= 0, then ∂F has a left and right tangent at z, while if z = 0

then there exist at most two tangents forming an angle of at least π.

Moreover, ∂F contains only finitely many cut segments and finitely many cusp points, i.e., the sets

SF and Γcusp are finite.

Proof. (i). Let z ∈ ∂F+ be a cusp point and let C and C′ be given as in Definition 8.5. By

Remark 8.6, z 6= 0. Thus, up to a rotation, we may assume that z = (0, y) with y > 0 and that

νC(z) = (−1, 0). Without loss of generality, we may also assume that

lim
σ′→σ−

ρF (σ′) = ρ+
F (σ) . (8.4)

Take a sequence {zn} ⊂ ∂F converging to z from the left (i.e., counterclockwise). Hence, if zn =

(xn, yn), then xn > 0 and yn < y. Since C is C1, the segment joining zn and z intersects ∂C at some

point wn = (x′n, y
′
n), with 0 < x′n < xn and yn < y′n < y. Then

z − zn

|z − zn|
=

z − wn

|z − wn|
→ (0, 1) = σ .

Thus, ∂F+ has the left tangent σ at z. If ρ−F (σ) = ρ+
F (σ), a similar argument shows that the right

tangent at z is −σ. If instead ρ−F (σ) < ρ+
F (σ), then σ is a jump direction and the right tangent is

again −σ.

(ii). Assume first that z 6= 0 and, without loss of generality, that z = ρ+
F (σ) σ, σ = (0, 1) and that

(8.4) holds. We argue by contradiction and assume that ∂F does not admit a right tangent at z.

Then there exist 0 < α < β < π such that, denoting by M and L the two half-lines

M := z + {r′σ(π/2 − α) : r′ ≥ 0} , L := z + {r′σ(π/2 − β) : r′ ≥ 0} ,
there exist two sequences {z′n}, {zn} ⊂ ∂F converging to z such that

z′n − z

|z′n − z| → σ(π/2 − α) ,
zn − z

|zn − z| → σ(π/2 − β) .

By replacing α and β with 0 < α < α′ < β′ < β < π, if necessary, and using the fact that ∂F is

pathwise connected (see Lemma 2.2), without loss of generality, we may assume that z′n ∈ ∂F∩M and

zn ∈ ∂F ∩ L, so that
z′

n−z
|z′

n−z| = σ(π/2 − α) and zn−z
|zn−z| = σ(π/2 − β). Denote by τL := σ(π/2 − β) the

tangential direction of L. We claim that there exists C := w+ ̺0W ⊂ R2 \ F such that z ∈ ∂C ∩ ∂F
and νC(z) = −τ⊥L .

To prove the claim we argue as follows. For every n, let Cn := wn + ̺0W ⊂ R2 \ F be such that

zn ∈ ∂Cn. Up to a subsequence, {Cn} converges in the Hausdorff metric to some C = w+ ̺0W such

that z ∈ ∂C. Fix ε ∈ (0, 1). If νCn
(zn) ·τL > ε, then by Lemma 8.3, z = zn−|z−zn|τL ∈ Cn whenever

|zn−z| < δ, which is impossible. If νCn
(zn)·τL < −ε, then by Lemma 8.3, zm = zn+|zm−zn|τL ∈ Cn

whenever |z − zn| < |z − zm| < δ, which is again impossible. Therefore, |νCn
(zn) · τL| ≤ ε for all n

large enough. Since W is C1, we have νCn
(zn) → νC(z) as n→ ∞, and consequently νC (z) · τL = 0

by the arbitrariness of ε. On the other hand, since 0 < β < π, Lemma 8.3 and the starshapedness of

F with respect to 0 imply that νC(z) = −τ⊥L .

From this last equality, since 0 < α < β < π, setting τM := σ(π/2−α), we have that νC(z) · τM <

−ε for some ε > 0. Therefore, by Lemma 8.3, z′n = z + |z′n − z|τM ∈ C whenever |z − z′n| < δ which

is impossible. This shows that α must coincide with β, and so there exists a unique tangent line to

the left of z.

To prove the existence of a unique tangent line to the right of z, as before there are two possible

cases. If ρ−F (σ) = ρ+
F (σ), we can repeat the argument just used above. If ρ−F (σ) < ρ+

F (σ), then the
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existence of a unique tangent line at z from the right is trivial since in a small right neighborhood of

z, ∂F is a segment contained in the segment [ρ−F (σ) σ, z].

If z = 0, i.e., ρ−F (σ) = 0 for some σ ∈ S1, we argue as in the Step 2 of the proof of Theorem 7.6

to prove that the open set {σ ∈ S1 : ρ−F (σ) > 0} has exactly one connected component. Indeed,

setting (σ0, σ1) to be such a connected component, there exists C = w + ̺0W ⊂ R2 \ F such that

0 ∈ ∂C and C belongs to the right of the direction σ1. As consequence, there exists σ2 > σ1 such

that A(σ1, σ2) ⊂ R2 \ F , and since C is of class C1, the angle between σ1 and σ2 is greater than or

equal to π. Therefore the distance on S1 between two connected components of {σ ∈ S1 : ρ−F (σ) > 0}
is greater than or equal to π and the conclusion follows, i.e., {σ ∈ S1 : ρ−F (σ) > 0} = (σ0, σ1). Then,

the two vectors σ0 and −σ1 are the two required tangents.

To prove the last part of the statement, we argue again by contradiction and we assume first

that there exist infinitely many cusps. Let zn = rnσn ∈ Γcusp converging to some point z ∈ ∂F+,

σn → σ with, say, σn < σ, and let {Cn}, {C′
n} ⊂ R2 \ F be translated sequences of ̺0W such that

zn ∈ ∂Cn ∩ ∂C′
n, νCn

(zn) = −σ⊥
n and νC′

n
(zn) = σ⊥

n . Passing to the limit, we conclude that there

exist C, C′ ⊂ R2 \ F , translations of ̺0W , such that z ∈ ∂C ∩ ∂C′, νC (z) = −σ⊥ and νC′ (z) = σ⊥,

i.e., z ∈ Γcusp. In particular z 6= 0 by Remark 8.6 so that z = |z|σ. The same argument used in part

(i) shows that z−zn

|z−zn| → σ. On the other hand, {rσ : r ≥ 0} ∩ Cn 6= ∅ whenever n is large enough,

and consequently |z| ≤ inf{r : rσ ∈ Cn}. Then arguing as in part (i), we deduce that z−zn

|z−zn| → −σ
which is a contradiction.

Finally, by Remark 8.6, for any σ ∈ SF we have ρ+
F (σ)σ ∈ Γcusp, and thus SF is finite, i.e., ∂F

contains finitely many cut segments.

We now state the main regularity result for ∂F .

Theorem 8.8. Let ϕ satisfy (H2) and (H3)′. Let (F, u) ∈ X be a minimizer for the penalized

functional Fℓ0 and z0 ∈ ∂F+.

(i) If z0 6∈ Γcusp and z0 6= 0, there exists a neighborhood N (z0) of z0 such that ∂F ∩N (z0) coincides

with the graph of a Lipschitz function.

(ii) If 0 ∈ ∂F , there exists a neighborhood N of 0 such that ∂F ∩ N is the union of at most two

graphs of Lipschitz functions intersecting only at 0.

(iii) If z0 = r0σ0 ∈ Γcusp, there exist δ > 0 and two Lipschitz functions h, g : (r0−δ, r0] → R satisfying

g ≤ 0 ≤ h, h (r0) = g (r0) = 0, h (r) > g (r) for r ∈ (r0 − δ, r0) and h′− (r0) = g′− (r0) = 0, and

such that
{
rσ0 + g(r)σ⊥

0 : r ∈ (r0 − δ, r0]
}
∪
{
rσ0 + h(r)σ⊥

0 : r ∈ (r0 − δ, r0]
}

coincides with ∂F \ Γcut in an open neighborhood of z0.

Proof. (i). Given z = rσ ∈ ∂F , r > 0, we observe that the set

N (z) :=
{
νC (z) : C = w + ̺0W ⊂ R

2 \ F , z ∈ ∂C
}

is closed in S1. Note also that if ν ∈ N (z), then ν ·σ ≤ 0. Indeed, if ν ·σ > 0, then let C = w+̺0W ⊂
R2 \ F be such that z ∈ ∂C and νC (z) = ν. By Lemma 8.3 we obtain that for some small δ > 0 the

point z − δσ lies inside C, which is impossible.

Fix z0 = r0σ0 ∈ ∂F+ \ Γcusp with z0 6= 0, and let ν− (z0)and ν+ (z0) denote the smallest and

largest element in N(z0), respectively. Note that since z0 is not a cusp point, the distance in S1

between ν− (z0) and ν+ (z0) is strictly smaller than π and that N(z0) is contained in the smallest arc

in S1 with endpoints ν− (z0) and ν+ (z0).

Let I = (ν1, ν2) be an open arc in S1 containing ν− (z0) and ν+ (z0) with H1 (I) < π. We observe

that there exists δ > 0 such that if |z − z0| < δ, z ∈ ∂F , then for all ν ∈ N (z) we have that ν ∈ I.
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Fig. 6. ν− and ν+ are the endpoints of N(z0).

Indeed, if not then there would exist {zn} ⊂ ∂F converging to z0 and νn ∈ N (zn) \ I. But then, up

to a sequence, {νn} would converge to some ν ∈ N (z0) \ I, which is impossible.

Let ν be the midpoint of I (see Figure 6). Then the angle α := ν̂1ν = ν̂ν2 is strictly smaller

than π
2 . Set η := 1 − 1

8 cos2 α ∈ (0, 1). We claim that there exists 0 < δ < δ such that if ν ∈ S1

satisfies ν · ν ≥ η, then {z − tν : 0 < t < δ} ⊂ R2 \ F for all z ∈ ∂F ∩Bδ(z0). Note that if the claim

holds, then by Lemma 7.4 (applied to −ν and −ν in place of ν and ν′ in the lemma) we conclude

that ∂F ∩ N (z0) is the graph of a Lipschitz function for some neighborhood N (z0) of z0. The claim

follows from Lemma 8.3, provided we show that for any such ν and z we have ν · νC(z) > 1
2 cosα. To

see this, note that νC(z) ∈ I, since N(z) ⊂ I, and so

ν · νC(z) = ν · νC(z) + (ν − ν) · νC(z) > cosα− |ν − ν| .

In turn, |ν − ν|2 = 2 (1 − ν · ν) ≤ 2 (1 − η) = 1
4 cos2 α. Therefore, ν · νC(z) > 1

2 cosα.

(ii). Assume that 0 ∈ ∂F . Then from the proof of Proposition 8.7 we know that the set {ρ−F (σ) > 0}
has just one connected component (σ(θ′), σ(θ′′)), with 0 < θ′′ − θ′ ≤ π. If (ρ∗F )+(θ′) = 0 set

Nθ′ (0) :=
{
ν = lim

n→∞
νn : νn ∈ N(zn) , zn = rnσ(θn) ∈ ∂F \ {0} , rn → 0+ , θn → θ′

}
.

Arguing as in the proof of (i) (use Nθ′ (0) in place of N(z0) and apply Remark 7.5 instead of

Lemma 7.4), we conclude that there exists ε > 0 such that ∂F ∩A(σ(θ′), σ(θ′ + ε)) is the graph

of a Lipschitz function. The case (ρ∗F )+(θ′) > 0 is trivial.

A similar argument shows the existence of another Lipschitz graph departing from 0 and contained

in some sector A[σ(θ′′ − ε), σ(θ′′)]. Then the conclusion follows from Remark 8.6 which excludes the

possibility of cut segments starting from the origin.

(iii). Assume first that ρ−F (σ0) = ρ+
F (σ0). Observe that, since z0 a cusp point, ν− (z0) = −σ⊥

0 and

ν+ (z0) = σ⊥
0 form an angle equal to π and thus we cannot argue as before. Fix an open arc I

in S1 containing ν− (z0) with H1 (I) < π, and note that there exists a right neighborhood of z0
(according to the counterclockwise orientation) such that for all z ∈ ∂F in this neighborhood and

for all ν ∈ N (z), we have ν ∈ I. Indeed, from Proposition 8.7 it follows that if {zn} ⊂ ∂F converges

to z0 from the right and νn ∈ N (zn), then νn → ν− (z0). The same argument used in part (i) (with

the one-sided version of Lemma 7.4 given in Remark 7.5) shows that there exists σ1 > σ0 such that

∂F ∩A(σ0, σ1) coincides in a neighborhood of z0 with the graph of a Lipschitz function h defined

in {rσ0 : r ∈ [r0 − δ, r0]}. Similarly, there exists σ2 < σ0 such that ∂F ∩A(σ2, σ0) coincides in a

neighborhood of z0 with the graph of a Lipschitz function g. The fact that h′− (r0) = g′− (r0) is again

an immediate consequence of Proposition 8.7.



44 I. Fonseca, N. Fusco, G. Leoni, V. Millot

Finally if ρ−F (σ0) < ρ+
F (σ0) the proof is even simpler since one of two Lipschitz graphs now

coincides with the jump segment with endpoints ρ−F (σ0)σ0 and ρ+
F (σ0)σ0.

In the remainder of this paper we assume that W is the bulk energy density of a linearly isotropic

material, i.e.,

W (E) =
1

2
λ [tr (E)]

2
+ µ tr

(
E2
)
,

where λ and µ are the (constant) Lamé moduli with

µ > 0 , µ+ λ > 0 .

The proof of following theorem is similar to the one of Theorem 3.12 in [15] and thus we omit it. Note

that Step 5 in that theorem is not needed in our case.

Theorem 8.9 (Blow-Up). Let ϕ satisfy (H2) and (H3)′. Let (F, u) ∈ X be a minimizer for the

penalized functional Fℓ0 . Assume that z0 ∈ ∂F ∩B0\(Γcut ∪ Γcusp). Then there exist a constant c > 0,

a radius r0 and an exponent
1

2
< α < 1 such that

∫

Br(z0)\F

|∇u|2 dz ≤ cr2α (8.5)

for all 0 < r < r0.

From Theorem 8.9 we now obtain an improved regularity of ∂F near its regular points.

Theorem 8.10. Let ϕ satisfy (H2) and (H3)′. Let (F, u) ∈ X be a minimizer for the penalized

functional Fℓ0 . Assume that z0 ∈ ∂F ∩ B0 \ (Γcut ∪ Γcusp) and z0 6= 0. Then ∂F coincides in a

neighborhood of z0 with the graph of a function of class C1.

Proof. By Theorem 8.8 there exists an open neighborhood N of z0 such that ∂F ∩ N is the graph

of a Lipschitz function with Lipschitz constant L. Fix r1 > 0 such that Br1(z0) ⊂ B0 ∩ N . By a

standard extension argument we may extend u in Br1(z0) to a function ũ in such a way that for all

0 < r < r1,
∫

Br(z0)

|∇ũ|2 dz ≤ c(L)

∫

Br(z0)\F

|∇u|2 dz , (8.6)

where the constant c(L) is independent of r and only depends on L. We also recall that by Proposi-

tion 8.7, ∂F admits a left and a right tangent vector at z0, respectively τl and τr. To fix the ideas,

we assume without loss of generality that z0 = (x0, 0) with x0 > 0. Then τl = σ(θl) and τr = σ(θr)

for some θl, θr ∈ [0, π]. From the exterior Wulff condition and the fact that W is C1, we infer that

θl ≤ θr. Moreover, since ∂F is a Lipschitz graph in a neighborhood of z0, we have θr − θl < π. Now

we assume by contradiction that the two tangents are distinct, i.e., θ := θr − θl > 0 (see Figure 7).

For r > 0 (sufficiently small) ∂F ∩ ∂Br (z0) contains exactly two points, say, z′r, z
′′
r . Let γ′r, γ

′′
r be

the open curves on ∂F ∩Br (z0) with endpoints z′r and z0, and z′′r and z0, respectively. Denote by Sr

the open segment (z′r, z
′′
r ), and αr the angle ẑ′rz0z

′′
r , which is converging to π − θ as r → 0+. Define

a competing set F̃ such that

∂F̃ \Br(z0) = ∂F \ (γ′r ∪ γ′′r ) , ∂F̃ ∩Br(z0) = Sr . (8.7)

Note that the assumption z0 6= 0 is necessary for F̃ to be starshaped with respect to the origin. One

may easily check that F̃ ∈ A. Let νr denote the normal to Sr interior to the triangle of vertices z′r, z0
and z′′r , and let ν′r, respectively ν′′r , be the normal to the segment [z′r, z0], respectively [z′′r , z0], pointing
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Fig. 7. The construction of eF in the proof of Theorem 8.10.

toward the exterior of the same triangle. We observe that |z′r−z0|ν′r + |z′′r −z0|ν′′r = |z′r −z′′r |νr. Then,

using Lemma 6.2, Proposition 8.1, Theorem 8.9, and (8.6), we have

Fℓ0 (F, u) −Fℓ0(F̃ , ũ) ≥
∫

γ′
r∪γ′′

r

ϕ
(
νi

F

)
dH1 − |z′r − z′′r |ϕ (νr) − ℓ0

∣∣F̃∆F
∣∣− c

∫

Br(z0)

|∇ũ|2 dz

≥ |z′r − z0|ϕ (ν′r) + |z′′r − z0|ϕ (ν′′r ) − |z′r − z′′r |ϕ (νr)

− πℓ0r
2 − c

∫

Br(z0)\F

|∇u|2 dz

≥ rω (1 − ν′r · ν′′r ) − πℓ0r
2 − cr2α

for a constant c > 0 independent of r. Since α > 1
2 and ν′r ·ν′′r → cos θ < 1 as r → 0+, for r sufficiently

small we have Fℓ0 (F, u) − Fℓ0(F̃ , ũ) > 0, which is a contradiction to the minimality of (F, u). This

contradiction proves the existence of a unique tangent line.

Since ∂W is C1, using the exterior Wulff condition we infer that there exists a unique C =

w + ̺0W ⊂ R2 \ F such that z0 ∈ ∂C and νC(z0) = −νF (z0). Then the continuity of νF (z0) in a

neighborhood of z0 easily follows.

We now show that if ϕ is elliptic, then the regularity of ∂F can be further improved.

Theorem 8.11. Assume that ϕ satisfies (8.1). Let (F, u) ∈ X be a minimizer for the penalized

functional Fℓ0 . Assume that z0 ∈ ∂F ∩ B0 \ (Γcut ∪ Γcusp) and z0 6= 0. Then ∂F coincides in a

neighborhood of z0 with the graph of a function of class C1,α for every 0 < α < 1
2 .

Proof. By Theorem 8.10 we have that ∂F coincides in a neighborhood of z0 with the graph of a C1

function. Hence (8.5) holds in a stronger form, see Theorem 3.16 in [15], namely for every β ∈
(

1
2 , 1
)

there exist a neighborhood U ⊂⊂ B0 \ {0} of z0, and two constants c0 > 0, r0 > 0 such that for every

z ∈ ∂F ∩ U and for every 0 < r < r0,
∫

Br(z)\F

|∇u|2 dw ≤ c0r
2β . (8.8)

Since ∂F ∩ U is a graph of a C1–function, we can find 0 < r′0 < r0 and extend as in the proof of

Theorem 8.10 the function u to a function ũ defined in an open neighborhood U ′ ⊂⊂ U of z0 in such

a way that for all z ∈ ∂F ∩ U ′ and all 0 < r < r′0,

∫

Br(z)

|∇ũ|2 dw ≤ c(L)

∫

Br(z)\F

|∇u|2 dw (8.9)
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for some constants c(L) > 0 independent of z and r. Moreover, by taking r′0 smaller if necessary, we

may assume that ∂F crosses ∂B(z, r) at exactly two points for all z ∈ ∂F ∩ U ′ and all 0 < r < r′0.

Fix z ∈ ∂F ∩ U ′, and for every 0 < r < r′0 let z′r, z
′′
r be the two points in ∂F ∩ ∂B (z, r).

Then let γ′r, γ
′′
r be the two arcs of endpoints z′r and z, and z′′r and z respectively, such that γ′r ∪

γ′′r = ∂F ∩ B (z, r). Define F̃ as in (8.7) and let ν′r, ν
′′
r be the normals to the segments (z′r, z) and

(z′′r , z) respectively, pointing toward the exterior of the triangle of vertices z′r, z0 and z′′r . Then, using

Lemma 6.2, Proposition 8.1, (8.8) and (8.9), we estimate

0 ≥ Fℓ0 (F, u) −Fℓ0(F̃ , ũ) ≥
∫

γ′
r∪γ′′

r

ϕ
(
νi

F

)
dH1 − |z′r − z|ϕ (ν′r) − |z′′r − z|ϕ (ν′′r )

− ℓ0
∣∣F̃∆F

∣∣− c

∫

Br(z)

|∇ũ|2 dw

≥ εH1 (γ′r ∪ γ′′r ) − 2εr +

∫

γ′
r∪γ′′

r

ψ
(
νi

F

)
dH1 − |z′r − z|ψ (ν′r)

− |z′′r − z|ψ (ν′′r ) − πℓ0r
2 − c

∫

Br(z)\F

|∇u|2 dw

≥ εH1 (γ′r ∪ γ′′r ) − 2εr − πℓ0r
2 − cr2β

for a constant c > 0 independent of z and r. Hence H1 (∂F ∩Br(z)) − 2r ≤ Cr2β for r sufficiently

small uniformly in z ∈ U ′. By Proposition 6.4 in [5] and the proof of Theorem 6.1 in [5], this fact

implies that ∂F ∩ U ′ is of class C1,α with α = β − 1
2 .

9. Appendix

Let us consider

f (θ, p, q) := Φ(σ(θ), p, q) ,

where Φ is the function defined in (3.4), and note that the biconjugate f∗∗ (θ, p, ·) of f (θ, p, ·) coincides

with

f∗∗ (θ, p, q) = Φ (σ (θ) , p, q) , (9.1)

where Φ is given by (3.5).

Observe that if F ∈ ALip, then
∫

∂F

ϕ(νi
F ) dH1 =

∫ 2π

0

f (θ, ρF (θ) , ρ′F (θ)) dθ ,

where we have used Lemma 2.5, the area formula, and the 1-homogeneity of ϕ.

Lemma 9.1. Let ϕ satisfy (H2). Then for all (θ0, p0) and for all ε > 0 there exists δ > 0 such that

|f∗∗ (θ, p, q) − f∗∗ (θ0, p0, q)| ≤ ε (1 + |q|)
for all (θ, p) with |θ − θ0| < δ and |p− p0| < δ and all q ∈ R.

Proof. Since f∗∗ (θ, p, ·) coincides with the convex envelope of f (θ, p, ·), we have

f∗∗ (θ, p, q) = inf {λf (θ, p, q1) + (1 − λ) f (θ, p, q2) : λ ∈ [0, 1] , q1 , q2 ∈ R , λq1 + (1 − λ) q2 = q} .
Fix (θ0, p0) and ε > 0, and let q ∈ R. Find λ ∈ [0, 1], q1, q2 ∈ R such that λq1 + (1 − λ) q2 = q and

f∗∗ (θ0, p0, q) ≥ λf (θ0, p0, q1) + (1 − λ) f (θ0, p0, q2) −
ε

2
. (9.2)

By (H2) we have

m (λ |q1| + (1 − λ) |q2|) −
ε

2
≤ f∗∗ (θ0, p0, q) ≤ f (θ0, p0, q) ≤M (|p0| + |q|) . (9.3)
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From (9.2) and (9.3) we obtain, writing σ and σ0 instead of σ(θ), σ(θ0), and setting L = Lip ϕ,

f∗∗ (θ, p, q) − f∗∗ (θ0, p0, q) ≤ λf (θ, p, q1) + (1 − λ) f (θ, p, q2) − λf (θ0, p0, q1)

− (1 − λ) f (θ0, p0, q2) +
ε

2

≤ L
(
|pσ − p0σ0| + (λ |q1| + (1 − λ) |q2|)

∣∣σ⊥ − σ0
⊥
∣∣)+

ε

2

≤ L

(
|pσ − p0σ0| +

M

m
(|p0| + |q|)

∣∣σ⊥ − σ0
⊥
∣∣+ ε

2m

)
+
ε

2
.

Then the result follows by taking δ sufficiently small and by interchanging the roles of (θ, p, q) and

(θ0, p0, q).

Theorem 9.2. Let ϕ be a Lipschitz continuous function satisfying (H2). Then for every nonnegative

2π-periodic Lipschitz function ρ,

∫ 2π

0

f∗∗ (θ, ρ (θ) , ρ′ (θ)) dθ = inf

{
lim inf
n→∞

∫ 2π

0

f (θ, ρn (θ) , ρ′n (θ)) dθ : ρn ∈W 1,∞(R) ,

ρn ≥ 0 , ρn is 2π-periodic, ρn
∗
⇀ ρ in W 1,∞(R)

}
. (9.4)

Proof. Note that since ρ ≥ 0 and f(θ, 0, 0) = 0, by a truncation argument, the infimum on the right

hand side of (9.4) coincides with the one obtained by removing the constraint ρn ≥ 0. Thus, the

representation (9.4) follows directly from Theorem 3.8 in [25].

We conclude with the proof of Proposition 8.1.

Proof of Proposition 8.1. Since the set K := {ϕ ≤ 1} is strictly convex, and ϕ is positively

1-homogeneous, for any a, b ∈ R2 \ {0} with a 6= b, the point

a+ b

ϕ(a) + ϕ(b)
=

ϕ(a)

ϕ(a) + ϕ(b)

a

ϕ(a)
+

ϕ(b)

ϕ(a) + ϕ(b)

b

ϕ(b)

belongs to the interior of K unless b = ta for some t > 0. Hence, still by homogeneity,

ϕ(a+ b) < ϕ(a) + ϕ(b) (9.5)

for a, b ∈ R2 unless a = 0 or b = ta for some t ≥ 0. In this later case, the inequality above is an

equality, and the convexity of ϕ follows.

Since ϕ satisfies (9.5), a compactness argument shows that for any ε > 0 there exists δ > 0 such

that if a, b ∈ R2 are such that ϕ (a) = ϕ (b) = 1 and ϕ (a− b) ≥ ε, then

ϕ

(
a+ b

2

)
< 1 − δ .

Hence there exists a modulus of continuity ω1 : [0, 2] → [0,∞) such that if ϕ (a) = ϕ (b) = 1 then

ϕ (a) + ϕ (b) ≥ ϕ (a+ b) + ω1 (ϕ (a− b)) .

Fix λ ∈
[
0, 1

2

]
. The previous inequality and the convexity of ϕ yield

ϕ (λa+ (1 − λ) b) = ϕ

(
(1 − 2λ) b+ 2λ

a+ b

2

)
≤ (1 − 2λ)ϕ (b) + λϕ (a+ b)

≤ (1 − 2λ)ϕ (b) + λ (ϕ (a) + ϕ (b)) − λω1 (ϕ (a− b)) = 1 − λω1 (ϕ (a− b)) .

Similarly, for λ ∈
[
1
2 , 1
]

we get

ϕ (λa+ (1 − λ) b) ≤ 1 − (1 − λ)ω1 (ϕ (a− b)) .
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From the last two inequalities we infer that if ϕ (a) = ϕ (b) = 1 and λ ∈ [0, 1], then

λϕ (a) + (1 − λ)ϕ (b) = 1 ≥ ϕ (λa+ (1 − λ) b) + min {λ, 1 − λ}ω1 (ϕ (a− b)) .

Now let a, b ∈ R2 \ {0}. By the previous inequality and (H2), setting λ = ϕ(a)
ϕ(a)+ϕ(b) we derive that

ϕ (a) + ϕ (b) =
(
ϕ(a) + ϕ(b)

)(
λϕ

(
a

ϕ (a)

)
+ (1 − λ)ϕ

(
b

ϕ (b)

))

≥
(
ϕ(a) + ϕ(b)

)(
ϕ

(
a+ b

ϕ (a) + ϕ (b)

)
+ min{λ, 1 − λ}ω1

(
ϕ

(
a

ϕ (a)
− b

ϕ (b)

)))

= ϕ (a+ b) + min {ϕ (a) , ϕ (b)}ω1

(
ϕ

(
a

ϕ (a)
− b

ϕ (b)

))

≥ ϕ (a+ b) +mmin {|a| , |b|}ω1

(
m

∣∣∣∣
a

ϕ (a)
− b

ϕ (b)

∣∣∣∣
)
.

To conclude it remains to show that for every ε > 0 there exists δ > 0 such that if
∣∣∣ a
ϕ(a) − b

ϕ(b)

∣∣∣ ≥ ε,

then 1− a
|a| · b

|b| ≥ δ. We argue by contrdiction assuming that this is not true. Then there exist ε > 0

and an, bn ∈ R2 \ {0} such that
∣∣∣ an

ϕ(an) − bn

ϕ(bn)

∣∣∣ ≥ ε, an

|an| · bn

|bn| → 1, an

ϕ(an) → a, bn

ϕ(bn) → b. Hence,

ϕ (a) = ϕ (b) = 1, |a− b| ≥ ε, and an

|an| · bn

|bn| → a
|a| · b

|b| = 1. The last condition implies that a = tb for

some t > 0. But since ϕ (a) = ϕ (b) = 1, we have that t = 1, which contradicts the fact |a− b| ≥ ε.
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