MATERIAL VOIDS IN ELASTIC SOLIDS WITH
ANISOTROPIC SURFACE ENERGIES

IRENE FoONSECA* NicoLA Fuscof, GIOVANNI LEONIY, VINCENT MILLOTS

Abstract. This work discusses the role of highly anisotropic interfacial energy for problems involving a
material void in a linearly elastic solid. Using the calculus of variations it is shown that important qualitative
features of the equilibrium shape of the void may be deduced from smoothness and convexity properties of
the interfacial energy.

1. Introduction

Understanding surface roughening of materials plays a central role in many fields of physics, chemistry,
and metallurgy. Since the pioneer work of Asaro & Tiller [3] (see also [28,37], and the references
therein), it has been recognized that in continuous models of crystals surface instability is driven by
the competition between elastic energy and surface energy.

The stress, acting parallel to a flat surface of an elastic solid, causes atoms to diffuse on the
surface and the surface to undulate. In turn such a migration of atoms has an energetic prize in terms
of surface tension. This phenomenon may lead to the formation of isolated islands on the substrate
surface (see, e.g., [30,31], and [32]), or of cracks running into the bulk of the solid. Island formation
in systems such as In-GaAs/GaAs or SiGe/Si turns out to be useful in the fabrication of modern
semiconductor electronic and optoelectronic devices such as quantum dots laser.

Similarly, a void in a grain can collapse into a crack by surface diffusion when the applied stress
exceeds a critical value (see [9,19,20,33,35,36]). Note that, since the lattice diffusion is much slower as
compared to the surface diffusion, the evolving void in a grain can be assumed to conserve its volume,
only changes its shape.

In [36], Suo & Wang have conducted numerical experiments on the shape change of a pore in an
infinite solid. Assuming that the surface tension is isotropic and that the solid is under a uniaxial
stress o1, they observed that the pore changes shape as the atoms diffuse on the surface driven by
surface and elastic energy variation, expressed in term of the dimensionless number

. O’%RO

= Y—V ,
where Y is the Young’s modulus, Ry the initial circular pre radius, and -y the surface tension. Their
experiments showed that under no stress, the pore has a rounded shape maintained by surface tension.
On the other hand, if the applied stress is small (A small), the pore reaches an equilibrium shape
close to an ellipse (thus compromising the stress and the surface tension), while if the applied stress A
is large, the pore does not reach equilibrium and noses emerge, which sharpen into crack tips. Similar
results were also obtained for anisotropic surface tension.
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The purpose of this paper is to formulate a simple variational model describing the competition
between elastic energy and highly anisotropic surface energy for problems involving a material void
in a linearly elastic solid. Following the fundamental work of Herring [23] (see also [34]), we take the
surface free energy of a body to be an integral of the form

/(p(u) ds (1.1)

extended over the surface of the body, where the surface energy density ¢ is, for anisotropic bodies, a
function of the orientation of the outer unit normal v at each surface point. The shape that minimizes
(1.1) for fixed volume is known as the Wulff shape (see [14,17,21] and the references therein). Under
no stress, Herring [23] argued that if a given macroscopic surface of a crystal does not coincide in
orientation with some portion of the boundary of the Wulff shape, then there exists a hill-and-valley
structure that has a lower free energy than a flat surface.

On the other hand, the minimum energy configuration of the bulk material occurs at the stress-free
state for each solid. Thus, at the interface between the void and the elastic solid these two opposing
mechanisms compete to determine the resulting structure.

We now describe the model considered in this paper. Our formulation follows Siegel, Miksis, and
Voorhees [28]. Consider a starshaped void, which occupies a closed region F' C R?, embedded in an
elastic solid. The solid region is assumed to obey the usual laws of linear elasticity, so that the bulk
energy takes the form fBO\F W(E(u)) dz, where By is a large ball, W(E) = 1C(E) - E is the elastic
energy density, with C a constant positive definite fourth order tensor, and E(u) is the symmetrized
gradient, i.e.,

1
E(u) = 5(vu + (Vu)™) .
We assume that far from the void u = ug a.e. in R?\ Bp?®. Thus, we are led to minimize the functional

F(F,u) ::/ W(E(u)) dz+/ o) dH! (1.2)
Bo\F OF

over all pairs (F,u) for which u = ug a.e. in R?\ By and for which the void F has a fixed area. Notice

that, since the inner normal v% is equal to the outer normal to the elastic body, the surface integral

in (1.2) coincides with (1.1).

The paper is divided into two parts. In the first part we prove an integral representation result
for the relazed or effective energy of (1.2) (see Theorem 3.2). This result is closely related to recent
work of Braides, Chambolle, and Solci [4] (see also [6,8], and [15]), who proved a similar relaxation
result in the N-dimensional case but with Hausdorff convergence of sets replaced by L!-convergence
of their characteristics functions.

In the second part of this work we study the regularity of minimizers (F, u) of the relaxed functional
F (see (3.8)), under volume constraint. The strategy of the proof is similar to the one in [15], where
the case of isotropic surface energy was considered. As in that paper we are able to show that volume
constrained minimizers of the limiting energy F are also unconstrained minimizers if we add to F a
suitable volume penalization. This allows us to consider a larger class of variations of F' and to prove,
adapting an argument contained in [7], an exterior Wulff shape condition. It is at this point that our
analysis significantly departs from previous work [15] in the isotropic case (in which the Wulff shape
was a ball), see also [18].

aSince our approach is variational, here we depart sligthly from the work of [28], where the solid is assumed to occupy
the infinite region R? \ F and far from the void a state of biaxial stress is imposed, precisely,

TEw - (77,)

0 o2

as \/z2 + y2 — oo. Note that this condition would force the energy fRQ\F W(E(u)) dz to be infinite.
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We first study polygonal Wulff shapes. This is the appropriate setting to address physical crystals
(see [34]). Surface integrands ¢ for which the Wulff shape is a polygon are called crystalline and it
can be shown that if W C R? is a convex, bounded, closed set, then it is the Wulff shape of its support
function (see Proposition 3.5 in [14])

o(z) :=sup{y-z: ye Wi, 2z € R2.
5
we can prove that if (F,u) is a minimizer for the penalized functional F,, then OF is the union of

Under the assumption that the internal angles of the Wulff shape are strictly greater than

finitely many Lipschitz graphs. To the best of our knowledge these are the first regularity results in
this context. In the absence of the elastic energy but without the restriction that F' is starshaped, we
refer to the recent work of Ambrosio, Novaga, and Paolini [2], and of Novaga and Paolini [27] as well
as to the references contained therein.

We then study the case in which the anisotropy is weak, that is, the surface energy density ¢ in
(1.2) (extended to be 1-homogeneous) is strictly convex. For example, for helium the surface energy is
almost isotropic and its Wulff shape is nearly spherical (see [26]). For this type of surface energies the
Waulff shape is of class C'! and thus many of the arguments obtained in [15] can be adapted, although
the proofs are significantly more involved.

2. Preliminaries
2.1. Sets of finite perimeter, functions of finite pointwise variation, and polar coordinates.

First, we recall some basic properties of sets of finite perimeter. If £ C R” is a measurable set, then
E° and E' denote the set of points of density 0 with respect to E and the set of points of density 1,

respectively. Recall that the density of z € RN with respect to E is defined as
ENB,
L ENB()
r—0* |By|

whenever this limit exists, where B,.(z) denotes the ball of center z and radius r.

A set E C RY is said to be of finite perimeter if the distributional derivative of the characteristic
function x g is a Radon measure with finite total variation. Then, the reduced boundary 0* E is defined
as the set of points z € spt|Dxg| such that the limit

vp(z) :=— lim Dxn(Br(z))
- r=0t |Dxpl(B:(2))

exists and satisfies |[vg(2)| = 1. It may be verified that 9*E is a Borel set and that vg : 9*E — S! is
a Borel map (see e.g. [1]). We call vg the (generalized) outer normal, and
Vi = —ug
is the (generalized) inner normal.
We shall need the following lemma which is a consequence of Proposition 3.38, Example 3.68, and
Example 3.97 in [1], and [13, Lemma 2.2].

Lemma 2.1. Let A and B be sets of finite perimeter in RN. Then AN B, A\ B and AU B are sets
of finite perimeter. Moreover,

O*"(ANB) = (0"ANBYU (0*'BNA") U (0" ANO*BN{va =vE}) (mod. HN7'), (2.1)
and for HN"1-a.e. z € 9*(AN B),
va(z) ifz€0*AN DB,
vans(z) = qvp(z) ifz€0*BN AL,
va(z) if z€ 0*ANO*BN{va=vp}.
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In addition, if |AN B| =0, then
O*"(AUB) = (0*A\9*B) U (0"B\ 0*A) (mod. HN™'), (2.2)
and for HN"1-a.e. 2 € 9*(AU B),

va(z) ifz€0*A\0*B,
vaug(z) =

vp(z) if z€9*B\ 9*A. 23)

In this paper S! denotes the unit circle in R? centered at the origin and oriented counterclockwise.
Ifo= (01, 02) € S, then o+ is obtained rotating o counterclockwise by 7 /2, i.e.,

ot = (-0%a').
Given o1, 05 € S, we set
(01,02) := {UESl top <0< 02} , [01,09] := {a eSt: <0< 02} ,
and
A(oy,09) :={ro: o € (01,02), r >0}, Aloy,09) :={ro: o € [01,02], 7 >0},

where the order relation < between unit vectors is inherited from the orientation.

Similarly, the notions of left and right limits of sequences and functions defined on S' are to be
understood according to orientation, precisely, right convergence means clockwise convergence, and
left convergence means counterclockwise.

If p: S' — [0,00) is a given function, then for o € S! we define

n—00 n—oo

pt (o) :==sup {Hmsupp(an) Cop— 0, Op a} , p_ (o) :=inf {liminfp(an) Cop— 0, Op a} .

Note that p™ and p~ are upper and lower semicontinuous, respectively.
The pointwise total variation of p is defined by

n—1
pV(p,S') := sup{ Z lp(oiv1)—plog)|: oo <01 < - <0p1<0opn=00,0; €S fori=1,... ,n},
i=0

and we say that the function p has finite pointwise variation if pV(p,S') is finite.

If p has finite pointwise variation, then p has left and right limits at every o € S!, that we write
p(o—) and p(o+) respectively, and p* (o) = max{p(c—),p(c+)}, p~(¢) = min{p(c—), p(c+)}. In
addition, the 27-periodic function

0"(0) = plo(0)) (2.4
then belongs to BVj(R), where
o (0) := (cosf,sinb) , (2.5)

and the functions p*(o(-)) : R — R coincide with the the approximate upper and lower limits of p*
in the sense of Federer that we denote by (p*)T, respectively.
In the sequel it will be useful to consider polar coordinates, and to this purpose we introduce the
map ¥ : R x [0,00) — R? given by
U (0,7) :=ro(0) =r(cosh,sinb) .

If S C R x [0,00) is a countably H!-rectifiable set, since W is locally Lipschitz, then W (9) is also a
countably H'-rectifiable set. Moreover, if Vg is one-to-one and f : R? — [0, 00] is a Borel function,
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we have

/ f(2) dH(z) = / £ (0,7)) [V (8,) | dH (6, 7)
T(S) s

_ /S F (U (0,7))/r272 (0,7) + 73 (0.7) dH' (0,7), (2.6)

where 7 = (71 (0,7),72(6,7)) is the approximate tangent unit vector to S for H!-a.e. (6,7) € S.
Indeed, the first equality follows from the area formula proved in [1, Theorem 2.91], and then we
observe that the Jacobian of W g is given by |V, ¥| where V. V¥ denotes the tangential gradient of W
along S, i.e.,

Vo U(0,7) =7 VU0, r) = (—rr sind + 15 cos 0, 71 cos b + 7 sin ) = 10 (0) + 771 (o (0))" . (2.7)

2.2. Starshaped sets and radial functions.

Throughout the paper we consider Ry > 0 fixed, and we set By := Bp,(0) C R?. We are interested
in closed sets F' C By starshaped with respect to the origin. For such a set, we can write

FZ{TO’GR2: ogeSt, Ogrgpp(a)} ,
where pr : S! — [0, Ro] is the radial function of F, that is,
prp(0) :==sup{r>0: ro € F}.
It may be shown that pr is upper semicontinuous, and that the supremum in the definition of pp is
attained. Moreover, since p; is upper semicontinuous, the set
Fr={rceR*: 0€S", 0<r<pi(o)} (2.8)
is closed and starshaped with respect to the origin. In addition, pp+ = p;C.

Given a closed set F' C By starshaped with respect to the origin, in place of pp we will often use
the 2m-periodic function

pr (0) == pr (o (0)) (2.9)
where o(0) is defined in (2.5).

Lemma 2.2. Let F C By be a closed set starshaped with respect to the origin. Set
I:= {ra: aeSl,p;(U)grgpF(U)}.

Then OF =T is a connected set. In particular, OF is pathwise connected whenever H'(OF) < oo.

Proof. We first prove that 0F C I'. Let z € OF. If z = 0, then we claim that there exists o such that
pr(0) =0, which implies that 0 € I'. To prove the claim, assume by contradiction that pz (o) > 0 for
all ¢ € S'. Since pr is lower semicontinuous, we have that r¢ := inf g1 pz > 0, and thus B, (0) C F,
which is a contradiction. If z # 0, we may write z = ro with r > 0 and o € S!. Let 7,0, ¢ F be such
that r, — r and 0, — o, with o, # 0. We have

pr (0) <liminf pp(o,) < lim 7, =7 < pr (o) .
n—oo n—oo

Hence, z € T', and we conclude that OF C T

Since I' C F, to show that I' C OF, it is enough to prove that for every ro € I' there exists a
sequence r,o, ¢ F converging to ro. Let o,, — 0, 0, # o, such that pp(o,) — pr (0). Then the
points oy, [pr(on) + (r — pp (o)) + %] do not belong to F and converge to ro. Thus, I' = 9F.

To prove that I' is connected, assume that U and V are two disjoint open sets such that ' C UUV
and I'NU # (. Without loss of generality, we may assume that pg (00) 09 € I'NU, where o9 = (1,0).
Set

0 :=sup {0 € [0,27): T'N Afog, ()] CU} .
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We claim that § = 27. Indeed, if § < 27, consider the segment

Sg = {ro(0): pp (c()) <r < pr(c(0)} .

Since Sg is connected and contained in I'; we have that either Sz C U or Sz C V. Assume first that
S; C U and let 0,, = 0(6,,) be such that 6,, — 6+ and r,, > 0, with 7,0, € T NV. Since I' = OF is
closed, up to a subsequence, we may assume that r,0, — r0(f) € Sz C U. Therefore for n sufficiently
large we would get that r,0, € U NV, which is a contradiction. Taking into account the fact that
So C U, a similar argument ensures that > 0.

Finally, if S; C V, since § > 0, there exist o, = 0(6,) such that 6, — 6~ and r, > 0, with
rnon € DN U. As before, r,o, — ro(é) € S5 C V, and so rpo,, € V for all n large, which is again a
contradiction. This shows that § = 27, so that I' NV = (), thus proving that I" is connected.

If H! (OF) < oo, then the connectedness of OF implies that OF is pathwise connected by Theo-

rem 4.46 in [24]. |
Remark 2.3. Arguing as in the proof above, if H! (OF) < oo, we also obtain that OF N Aoy, 02] is
pathwise connected for every o1, 09 € S’
Let us now define the class
A= {F C By closed, starshaped with respect to the origin, and H'(9F) < oo} )

We endow A with the topology induced by the Hausdorff distance dy. We recall that given two sets
A, B C R2, the Hausdorff distance between A and B is defined by

dy(A,B) :=inf{e >0: AC A (B)and B C A,(A)},
where AZ(C) denotes the e—neighborhood of a set C' C R?, i.e.,
Ne(C) = {z e R?: dist(z,0) <e} .
In the sequel, we also consider the subfamily

Avip :={F € A: pp € Lip(S")}. (2.10)

Consider now a closed set F' C By starshaped with respect to the origin. In Lemma 2.4 below we
will prove that pr has finite pointwise variation if and only if H!(0F) < o (i.e., F' € A). In this
case, pr has a left and right limit at every point o € S! and, as mentioned in Subsection 2.1, the 27-
periodic function p}.(0) defined in (2.9) belongs to BWec(R). Therefore, its distributional derivative
Dp3: can be decomposed into three mutually singular measures,

Dpf = Dy + Dpp + D piz

where D%p% =: (p})’d@ stands for the absolutely continuous part of Dpj}, with respect to the 1-
dimensional Lebesgue measure on R, D7 p%. is the jump part or purely atomic part of Dp%, and Dp
is the remaining part or Cantor part of Dp}.. We denote by D?p}. the singular part of Dpj, i.e.,
DJpy + D¢p. In addition, it is well known that there is a £'-negligible (Borel) set % C R such
that D*p% = Dp%| X%

Since pp is upper semicontinuous, if o is a point of discontinuity of pp, then o € Jp U Sp, where

Jr={0€S": pp(o) <pf(o)} and Sp:={oceS": pf(o) <pr(o)}. (2.11)

Note that the sets Jp and Sr may not be disjoint and, in view of Lemma 2.2, 0F can be decomposed
as

OF = Tcyt U jump U Treg (2.12)
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with
Tewt := {TO‘ c 0 €8k, ph(o) <r<pr(o) } ,
Diump == {ro: o € Jp, pp(o) <r < ph(o) },
Lreg := OF \ (Tjump U Tcut) -
In view of (2.9), if pr has finite pointwise variation, then the sets Jp, Sp are countable. Also
Je = {o(0): D3l ({6}) > 0},
and we define
Mp:={c(0): 0I5} \ Jr.
Finally, we denote by G’ the subgraph of p}, i.e.,
Gr={(0,r) eR*: r < pp(0)}.

Recall that p} € BViec(R) if and only if G has locally finite perimeter in R?. The extended graph of
p7 will be the set

Gr={(0,r) €R*: (o) (8) <7 < (p1)" ()} (2.13)

Lemma 2.4. Let F C By be a closed set starshaped with respect to the origin. Then H'(OF) < oo if
and only if pr has finite pointwise variation. Moreover, in this case,

O*F =0*F" and H'(OFTAO*FT)=0. (2.14)
Proof. We start by proving that H!(0F) < oo implies that pr has finite pointwise variation. To this
purpose, it suffices to prove that for any distinct points o1, 09 € S', we have
i (1) — pr(o2)] < HYOF 1 A) (2.15)
where A := A[o1,02]. The estimate above then yields
pV (pr,S') < 2H'(OF).

To prove (2.15), denote by P : R? — R, the function P(z) = |z|. Since P is Lipschitz continuous
with Lipschitz constant equal to 1, we have

HY(P(OF NA)) <H'(OFNA).

Hence it suffices to prove that the interval [pr(o1), pr(o2)] C P(OF N A), assuming, without loss of
generality, that pr(o1) < pr(02). Indeed, given pp(o1) < r < pr(o2), let z := ros, where

UgZ:Sup{O' : 01§J§02,TJ¢F}.

Then z lies on OF N A.

Conversely, assume that pp has finite pointwise variation. Then pf € BVioc (R) and the extended
graph G of p% defined in (2.13) has locally finite H!'-measure (see [11]). On the other hand, it can
be checked that H' (Iewt) < pV (pr,S'). Observe that Lemma 2.2 yields

OF T ={ro eR*: 0 €S", pp(o) <r < pfi(o)} = ¥(Gr). (2.16)
In view of (2.12), we have
OF =Ty UT(Gr) .
Since Gr C R x [0, Rp] and ¥ is globally Lipschitz in R x [0, Ro], we conclude that H! (9F) < oc.
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Finally, we prove (2.14) assuming that H!(0F) < oo. Since FAFT = T'¢yy C OF we have
H! (Tews) < 00, and then |[FAFT| = 0. Hence 0*F = §*FT. Next, denote by OMF the measure-
theoretic boundary of F, ie., OMF = R?\ (FO U Fl), and notice that 0™ F = 0™ F+. By Theo-
rem 3.61 in [1], *F C OMF and HY(0M F\ 0*F) = 0. Therefore, to prove the assertion, it is enough
to show

HY(OFTAOMF)=0. (2.17)
We claim that
OMF\ {0} =T (MG N (R x (0,00))) - (2.18)
Let us assume that the claim holds, and complete the proof of (2.17). Since M G5 C R x [0, R,
¥ is Lipschitz in R x [0, Ry], and ¥(R x {0}) = {0}, we infer from (2.16),

HYOFTAIMF) = HY (U (Gr) AV (0MGR)) < CHYGrAIMGR) = CHYGRAD*GR),
where the last equality follows from the fact that H!(0M Gy \ 9*Gr) = 0 (see [1]). On the other
hand, it follows from in [12, Theorem 4.5.9 (5)] that

H' (GrAD*Gy) =0, (2.19)

which would give (2.17).
It remains to prove the claim. Fix a point 7 (cosfp,sin ) = roog € F° \ {0}. Since the map ¥

is a local diffeomorphism in Rx (0, 00), and G5 is the subgraph of p}., the area formula yields
lim |G% N B: ((6o,70))| 1

e—0t g2 - 81—1>%1+ 5_2 /
F+n¥(B:((60,70)))

|JU! ()] dz =0,

where the last equality follows from the assumption rqo9 € F?\ {0} (note that there exists ¢ > 0
such that for all € > 0 small enough, ¥ (B: ((0o,70))) C Bee (roop)). This proves the inclusion
v (FO\{0}) C (G;)O N (R x (0,00)). The opposite one is proved in a similar way. The same
argument yields =1 (F1\ {0}) = (Gr)' N (R x (0,00)), and (2.18) is proved. O

In the next two lemmas we relate the inner normal to 3*F and the length of 9*F to the derivative
of p}, extending well known formulas in the case of a smooth radial function.

Lemma 2.5. Let F € A. Then for H'-a.e. z =ro (0) € 0*F, we have

(DO O) 00 ) o) €S\ (JrUMp).
sy = 4 VRO + (1)) )
dDSp} 1 .
C”TSPH(H) (0 (9)) ifo(0) € Jp UMp.

Proof. Since G is the subgraph of the BV, function p}., using Theorems 3 and 4 in Section 1.5
of Chapter 4 in [22], we have that for Ll-a.e. § € R\ %,

ve (0,p7:(0)) = ((p3)' (), 1), (2.20)

while for |Dp}]-a.e. 0 € R with o(0) ¢ Jp,

vy (0.7 (0) = e (0).0) (2.21)

Finally for every 6 € R such that |D7p%|({6}) > 0, and every 7 € |(05)” (), (%)™ (0)[, we have

; dD*p
L = — . 2.22
vy (0.0) = (e (0).0) (222)
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Since 9*Gp C MG C R x [0, Ro), H*(OMF\ 0*F) = 0, and H'(0M G} \ 9*GR) = 0, we infer
from (2.18) and the Lipschitz continuity of ¥ in R x [0, Rg] that
I*FAY ("GN (R x (0,00)) = E, (2.23)

with H! (E) = 0.
From the proof of Theorem 2.90 in [1] it follows that for H!-a.e. 2 = ro (0) € §*F, a counter-
clockwise oriented tangent vector to 0*F at z is given by V. ¥(0,r), where 7 = (71,72) is the unit

_ I
tangent vector to 0*Gy at (6,7) given by (l/é; (9,r)) =: (—v2,11). By (2.7),

VU (0,7) = 720 (0) + 71r (o (0)) "
and so

_ (VYO0 (@) —nra(6) _ o (0) (2.24)

7'2 TlT A/ 1/1 VQT

Set I : (6,7) € R? 0 to be the projection on the §-axis. Since the periodic function p} belongs to
BVioc(R), we have (see e.g. [22], Chapter 4, Section 1.5, Theorem 1)

)

vi(2) = V00, 7)]

I (H[0*G7) = \/1+ ((p3))* d6 + |D*pl| = (2.25)
ie., u(A) = H'|90*Gr (AxR) for any Borel set A C R. It follows that if £ C R is such that £! (E) =0
and |D®p%| (E) = 0, then

H({(6,p5 (0) : 0 € B}) = 0. (2.26)
Therefore the result follows from (2.20)-(2.22), (2.24), and (2.26). O

Remark 2.6. Note that in view of (2.7), for £'-a.e. € R\ X%,

VLU0, 0 (6)) = = ((05) 0)7 0) + 0 (0) (0 (0))") (2.27)
((5))? (0) +1

while for |D¢p%.|-a.e. 0 € R with () ¢ Jp, then

dD*pp

V(0. 0k (0)) = g e ()0 (6) (2.28)
Finally for any 6 € R such that [Dp%|({0}) > 0 and any 7 € | (p%)~ (0), (pF)" (0)],
V,0(0,r) = d‘fgzzF|(9)a(9) . (2.29)
Lemma 2.7. For every F € A, we have
F) = /0277 \/(p})Q(G) + ((p3)")* (0) dO + |D* | ([0, 27)) - (2.30)
Proof. Set
§*:=0"Gn (([0,27) \ BF) x R) , (2.31)

= 0*Gr N (([0,2mr) N E%) x R).
In view of (2.23) the area formula (2.6) yields

HY(O*F) = / V(0 r)| dH (0, 7)
0*GoN{r>0}

| V20 + (o)) ) IH(0,7) + HL (S O {r > 0})
San{r>0} ((p5))? () +1
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where we have used (2.27), (2.28), (2.29) in the last equality. Since H*(S* N {r =0}) =0, (p%) =0
Ll-a.e. in {p} = 0}, and p} is nonnegative, we infer that

V)2 0) + (o)) (0)
HYO*F) = dH(0,7) + H(S*),
/ © W) o) 1

which combined with (2.25) yields (2.30). m|

We conclude this section with a compactness result for sequences of sets in A (note that any se-
quence {F,,} C A is relatively compact for the Hausdorff distance between compact sets by Blaschke’s
theorem, see Theorem 6.1 in [1]).

Lemma 2.8. Let {F,}nen C A be such that F,, — F as n — oo in the Hausdorff metric for some
F C By. Then F is closed and starshaped with respect to the origin. Moreover, if sup,, H'(0F,) < oo,
then HY(OF) < co and

(i) pr(o) = sup { limsup pp, (o) : 04y — 0},

(i) pf, — pp in L'((0,27)), |F,AF| — 0 and Dxr, X Dxr weakly* in the sense of measures.

Proof. Step 1. The closedness of F' is a consequence of Blaschke’s theorem. To prove that F' is
starshaped with respect to the origin, we assume by contradiction that there exists op € S! and
ro € (0, pr(00)) such that roog does not belong to F. Since F' is closed, there exists B. (rgog) C R?\ F,
and so, by Hausdorff convergence, B. (roo¢) C R? \ F,, for all n sufficiently large.

Consider the smallest infinite cone C' with vertex at the origin containing Be (roop). Note that
the axis of the cone is the half-line {tog : ¢ > 0}. By the definition of pr (o) there exists r > g + ¢
such that rog € F. Let § > 0 be such that B;s (rog) C C. Let z, € F,, be such that z, — rog, and
consider n so large that z,, € Bs (rog). Since F,, is starshaped with respect to the origin, the segment
joining z, to the origin must be contained in F),. However, this segment must intersect B. (rgog) in
a segment of positive length and this contradicts the fact that B. (rgo¢) C R? \ F,.

Step 2. We prove (i). Let o, — o. Since pp, (o0,)o, € F,, and F,, — F in the Hausdorff metric, we
have that (limsup,,_,, pr, (0n)) o € F. This proves that

pr(0) = sup { limsup pp, (on) : 07y — 0} .
n—oo

To show the opposite inequality, it is enough to consider the case in which pg (o) > 0. In this case, there
exist r,0, € F, such that r,, — pr(o) and 0, — 0. Thus pp(0) = lim, o0 1, < limsup,,_, . pr, (on).

Step 3. Since F,, € A, we infer from (2.30) that

27
D0 | 0.20) < [\ 05,02+ (05,) 0+ D%}, [0.27) < H!(OF).

so that the sequence {p}, } is bounded in BV ((0,27)). Therefore, up to a subsequence (not relabeled),
we may assume that p, — p* in L' ((0,27)) and L'-a.e. in (0,2n).

We claim that p* = p} L'-a.e. in (0,27). Let Ng C (0,27) be such that £'(Ny) = 0 and
PF, (0) — p* () for all 0 € (0,27)\ No. From (i) it follows that p* (6) < p () for all 6 € (0,27)\ No.
Next we prove the opposite inequality. Up to a subsequence (not relabeled), there exists a compact
set K such that 0F,, — K in the Hausdorff metric. Since dF;, is connected, by Golab’s theorem it
follows that K is connected and

HY(K) <liminf H'(OF,) < co. (2.32)

n—oo

We claim that OF C K. Indeed, assume that there exists z € JF \ K. Then, for n large enough
B:(2)NOF, = for some ¢ > 0 independent of n. In other words, B.(z) C int F}, or B.(z) C R?\ F,,
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for n large. Since F,, — F in the Hausdorff metric, we deduce that B.(z) C F or B.(z) C R\ F,
which is impossible. Therefore (2.32) yields H!(OF) < oo.

Fix 0 € St and set K, := K N {ro: r>0}. We claim that K, is connected. Indeed, if 7,0,
roo € K,, with 0 < 7 < 7o, and 7 € (r1,72), then there exist two sequences r; ,,0;,, € OF,, i =1,2,
such that r; 04, — 130 as n — oo. Up to a subsequence, we may assume that Hl((O’Ln, o2.n)) — 0
(the opposite case H((02,n,01,,)) — 0 is analogous) and r1,, < r < ra, for all n. By Remark 2.3
OF, N A[o1,n,02,] is pathwise connected, and thus for every n there exists o, € [01,n,02.4] such
that ro, € OF,. Using the fact that ro, — ro, we deduce that ro € K, thus proving that K, is
connected.

Denote by Nj the set of points o € S* such that H? (Ky) > 0. Then N; is at most countable
since H!(K) < oo. Moreover, since K,, is connected and pr(c)o € OF C K for every o, we infer that
K, = {pr (0) o} for all o € S\ Ny such that pp(o) > 0. Consider Ny := {0 € (0,27) : 0(f) € N,}.
Then the set V7 is at most countable.

Take 6 € (0,27) \ (No U N7). We claim that p* (8) > p% (0). Indeed, assume that p* () < p% (0).
By (i) there exists 0, — 6 such that PE,, (On,,) — p5(0). Fix r € (p* (0), p% (0)). Since 0 ¢ Ny,
pr, (0) — p* (0). Hence, for all k large enough, PP, 0)<r< PF., (0, ). Note that ro(6,, ) € OF,,
for finitely many &’s. Indeed, if the opposite case were true we would conclude that ro(f) € K, which
contradicts our assumption since K, ) = {p} (0) o(0)}. Thus we may assume that for all & large
enough, ro(6,,) ¢ OF,, . Since r < PE,, (0, ), we deduce that ro(6,,) € int F,,, . On the other hand,
since 7 > pp, (0), we have ro(0) ¢ F,,. Using the fact that 9F,, is connected, we conclude that
there exist 0;, — 6 such that ro(6,,,) € 0F,,, but this would imply that ro(¢) € K, which again
contradicts the fact that K,y = {p% () o(0)}. Hence we have shown that p* (0) = pp (0) for all
AS (0,271') \ (NO U Nl)

To prove that |F,AF| — 0, it suffices to observe that

2
EAAF| = [F \FI+ [FAFA| < Bo [ [, 6) = o (0)] db — 0.
0

Consequently, xp, — xr in L' (R?). Since sup, H'(0F,) < oo, it follows from (2.14) that xp, is
bounded in BV(RQ), and thus Dxp, = Dxr weakly* in the sense of measures. O

3. The minimization problem

Let us fix a Lipschitz map ug : R2 — R2. For every F € A, we set
C(F) = {u € HE (R?\ F;R?): u=ug ae. in R*\ By } :
We define a class of admissible pairs set-function as
X:={(Fu: FeA uelC(F)}
and its subspace (see (2.10))
Xup ={(Fu) e X: FeALp}. (3.1)
On the class X we shall consider the following notion of convergence motivated by Lemma 2.8.

Definition 3.1. A sequence of pairs {(Fn’u")}neN C X is said to converge to (Fyu) € X asn — oo,
and we write (Fy, uy) = (F,u), if the following conditions hold:

(i) sup,, H'(OF,) < oo;

(i) F,, — F for the Hausdorff metric;

(ii3) un, — u weakly in H'(w; R?) for any bounded open set w compactly contained in R? \ F.
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Let us now consider a functional F : Xy, — [0, 00) defined by

F(F,u) = /BO\FW(E(U)) der/aF o(vp)dH, (3.2)

where E(u) is the symmetrized gradient, i.e.,

E(u) =

N | —

(Vu+ (Vu)') .
Throughout the paper, we assume that
(H1) W(E) = C(E) - E for some constant positive definite fourth order tensor C;
(H2) ¢ :R? — [0, 00) is Lipschitz continuous and positively 1-homogeneous.
Note that, by homogeneity, ¢ satisfies
ml2] < o) < Mz (3.3)
for all z € R? and some positive constants m and M.

We are interested in minimizing the functional F over the class X1, under a volume constraint on
the admissible sets. But we note that such minimization problem might be ill-posed since an arbitrary
sequence in Xy, with uniformly bounded energy is not precompact in Xr,i,. However such sequences
always admit a converging subsequence in X in the sense of Definition 3.1, thanks to Lemma 2.8 (see
the proof of Theorem 3.3). To effectively address the minimization problem, we introduce the relaxed
energy F : X — [0, 00| defined by

n—oo

F(F,u) ::inf{liminf F(Fpun): (Fpotin) € Xvip, (Foytin) = (F, u)}.

The first main result of this paper is an integral representation of F (see Theorem 3.2 below). Define
the function ® : S x R x R — (0, 00) by

®(0,p,q) == ¢(g0" — po). (3.4)
Note that if v € S! then

o) = ®(o,—v-o,v-0t)
for all o € S*. We denote by ® the convexification of ® with respect to the ¢—variable, i.e.,

2
(o, p, q) = inf { > ni®(o,p,ai): mum Ry, M+ =1, q1,02 €R, 11g1 + 02ga = q} , (35)
=1

and if (z,v) € (R?\ {0}) x S, then we set

— z z ZL
) (AN .
Kev) <|z|’ VY |z|> (3.6)
Observe that
z z ZJ_
K(zv) < @(m, v m) — o(v) (3.7)

for all (z,v) € (R?*\ {0}) x St.
By (3.3),

0 < ®(a,p,q) <M (1+q])
for all o € S, p € [-1,1], and every ¢ € R. Hence, by Proposition 4.64 in [16],

’6(@])7 (JI) _E(Uap7 (Z2)‘ S M |(J1 - (J2|
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for all o € St, p € [~1,1], and every q1, g2 € R. This, together with (9.1) and Lemma 9.1 in the
Appendix, implies that K is continuous in (R?\ {0}) x S!.

The next two sections will be devoted to the proof of the following theorem.

Theorem 3.2. Assume (H1)-(H2). Then

JF(F,u)z/B\FV\/(E(u))dzJr IC(z,u})dHl—f—/F K(z,vi) dH? (3.8)

o*F cut
for every (F,u) € X, where 1/}'F denotes a normal unit vector on I'cyt, and

K(z,vk) = K(z,vh) + K(z, —v%) . (3.9)

A straightforward argument based on Theorem 3.2 and Lemma 2.8 yields the following existence
result.

Theorem 3.3. Assume (H1)-(H2). Then F is lower semicontinuous with respect to the convergence
introduced in Definition 3.1 and, given 0 < d < wR3, the constrained minimization problem

min {?(F,u) : (Fu) € X, |F|= d} (3.10)
admits at least one solution.

Proof. Let {(F,,u,)} C X be such that (F,,u,) i>(F, u). Without loss of generality, we may
assume that

C := liminf F(F,,u,) = lim F(F,,u,) < o00. (3.11)

n—oo n—oo

For every n € N find (F”, uln)) € X1y such that (B9, ul) =5 (F,, u,) as m — oo, and

— 1
sup F(F, ul)) < F(Foyun) + — (3.12)
m n
By (H2), (3.11), and (3.12), we have that
sup HL(OF(™M) < o0, Sup/ B (tp,m)|? dz < 0. (3.13)
n,m n JBo\FS”
Let {w;} be an increasing sequence of open sets compactly contained in R? \ F' and such that
R\ F = Jw. (3.14)
i=1

Since

lim lim dy(FEMY, F) =0,

n—oo m—oo
for every fixed i € N, we have that w; is compactly contained in R? \ F (") for all n > f; and in turn

for every n > fi;, w; is compactly contained in R? \ F,SL") for all m > m, . Hence, we have that

L2(wiiR?)

lim lim |[u{ —u
n—oo Mm—0oo m
N2, MM n

Recursively, we construct two increasing sequences {n;}, and {m;}, with n; > n; and m; > M,
such that

< 3.15
L2?(w;;R?) - ( )

1
dr(Fm) | F) + Huggy fu’ -
7

Set v; == u'n?) and G; := F). We claim that (Gi, vy) i>(F,u) Indeed, properties (i) and (ii) in
Definition 3.1 follow from (3.13) and (3.15). In order to establish (iii), let w be a open set compactly
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contained in R? \ F. Let w C @ CC R?\ F, with @ an open set with Lipschitz boundary and choose
i1 so large that @ C w; N (RQ \ Gi) for all 4 > i1. Hence, for all ¢ > i1,

1

||Ui - UHLQ(Q;RZ) < ”Ui - uHLZ(wi;]RQ) < ;

and by Korn’s inequality and (3.13),

Sup [|vil| g1 (z;r2) < C (@, uo) sup (1 —|—/ |E(v;)|? dz) < 00.
> Bo\Gi

1>11 i
This proves the claim. Therefore,

F(F,u) < liminf F(Gy,v;) < lim F(Fy,,,up,) = C,

where we have used (3.11) and (3.12).

To prove the second part of the statement, let {(F,,u,)} C X be a minimizing sequence. Since
F,, C By, by Blaschke’s Theorem (see Theorem 6.1 in [1]), up to a subsequence, not relabeled, F,, — F
in the Hausdorff metric for some set F'. By Lemma 2.8, F' is closed and starshaped with respect to
the origin. Since sup,, H'(0F},,) < oo by (H2), Lemma 2.8 yields F' € A and |F| = d.

Let {w;} be as in (3.14), with w; Lipschitz. Since

lim dy(F,, F) =0,

for every fixed i € N, we have that w; is compactly contained in R? \ F,, for all n > n;, where {n;},
is increasing. Recalling that u,, = ug in R?\ By, since by (H1),

sup / |E(u,)?dz < o0,
n>n; J BoNw;

an application of Korn’s inequality implies that {uy },>n, is bounded in H'(w;; R?). Hence, there exists
a subsequence converging to some function v; € H'(w;; R?). A standard diagonalization argument
and the fact that {w;} is increasing yield the existence of a subsequence, not relabeled, of {u,} and
of a function u € H _(R?\ F;R?) such that u = v; a.e. in w; for every i, and u, — u weakly in
H'(w;R?) for every bounded open set w compactly included in R?\ F. The conclusion follows the
first part of the theorem. O

Remark 3.4. Note that the formula (3.2) defining F actually makes sense for starshaped sets F
with smooth (Lipschitz) boundary and for which pp is not necessarily Lipschitz continuous. In other
words, we could have defined (in a more natural way)

n—oo

G(F,u) := inf { liminf F(F,,uy) : (Fn,un) € X, OF, Lipschitz, (Fn,un) i>(F, u) } ,

for (F,u) € X, in place of F. It turns out that
F=g.

Indeed, it follows from the definitions of F and G that G(F,u) < F(F,u) for every (F,u) € X. To
prove the opposite inequality, let (F,,u,) € X be such that OF, is Lipschitz and (F,,, uy) i>(F, u).
Since K(z,v) < ¢(v), we have that F(F,,,u,) < F(F,,u,), and using the lower semicontinuity of F
(see Theorem 3.3), we infer that

F(F,u) < liminf F(F,,u,) < liminf F(F,,uy).

n—oo n—oo

Given the arbitrariness of {(F},,u,)}, we conclude that F(F,u) < G(F,u).
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4. Lower bound of the relaxed energy

The purpose of this section is to prove the lower bound in Theorem 3.2, precisely,

Theorem 4.1. Assume (H1)-(H2). Then

]-'(F,u)z/B\FW(E(u))dz—i— IC(z,u})dHl—F/F K(z,vi) dH?

O*F cut
for every (F,u) € X, where the functions K and K are given in (3.6) and (3.9).
To prove Theorem 4.1, we begin by studying the lower semicontinuous envelope of the surface

energy with respect to the Hausdorff convergence of sets. More precisely, for F' € A, we consider

J(F) = inf{liminf/ e(p )dH' : Fn € Avip, dn(Fn, F) — 0}. (4.1)
OFy,

n—oo n—oo

The key point for proving Theorem 4.1 is the following lower inequality on J(F).

Proposition 4.2. Assume (H2). Then for every F € A,

J(F) > /C(z,u;)dH1+/ K(z,vi) dH' . (4.2)

o*F

cut

We start with some preliminary results.

Lemma 4.3. Assume (H2). Then for every F € A,

) 2m _ _ dD? o*
[ kG = [TBeon Gy o+ [ T (o0).0. 400 ) ap)
O F 0 [0,27) d|D#p|

Proof. Consider the sets S® and S* given by (2.31). Arguing as in the proof of Lemma 2.7, the area
formula yields

K(z, Vi (2)) dH! (2) = / K (U (0,7),vp (¥ (0,7)) VP (0,r)] dH' (0,r) . (4.3)

o F (SeuS=)N{r>0}

We split the integral on the right-hand side in two parts. Arguing again as in the proof of Lemma 2.7
and using Lemma 2.5, (2.27) and (2.25), we get

/ K(¥(0,r),vp(¥(0,r)) VP (0,r)| dH'(0,7)
Sen{r>0}

= / @ (a(0),—0(0) v (U (0,r)), 0 (0) v (¥ (0,7 dH (6, 7)
Saen{r>0}

dH (0, r)

B ot (o) (03)2 + ((p5))?
_ / B | 0(0), . = 5

senfr>o) V@2 + o)) e+ ) 1+ (o))
A”@awﬁmﬁww,

where we have used the fact that @ (o, -, ) is positively homogeneous of degree one.
Similarly, we infer from (2.28), (2.29) and (2.25) that
dD* p

/SSQ{DO}’C(‘I’ (0,7) v (¥ (60,7))) |V, (8,7)] dH" (6,7) =/ B (a 0).0, g (9)) dH (0, 7)

= o (0(6),0, f)stp* ,
/[0,27r) ( ( d|D*p| D7k

s
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and the proof is complete. O

We shall also need the following (local) lower semicontinuity result for the surface energy.

Proposition 4.4. Assume (H2). Let {F,}nen C A and F € A be such that p}, — p} in L*((0,27))
as n — oo and sup,, HY(OF,) < co. Then for every ¢ € C.(R?) with { >0,

lim inf /B*F C(2)K(z, v, (2)) dH (2) > C(2)K(z,vk(2)) dH (2) .

n—oo 9*F

In particular,

lim inf K(z,vj (2)) dH'(2) > K(z,ve(2)) dH (2) .

n—oo Jorrp, O*F

Proof. Step 1. Fix § > 0 and ¢ € C.(R?) with ¢ > 0. Given p € BVjo(R) and a bounded interval
I C R, we define

+ .
dD¢p , pT(0) dD7p )
gpvl ::/geapapl d9+/goo (eapa—) dDCp +/(][ gOO 9,7",—. dr dDJP )
(. 1) I ( ) I d|Depl | | 1 \Jp—(8) d| D7 p| | |

where (see (3.5))

9(0,p,9) == (¢(po(0)) + 8)@(a(0), p,q),

and
o0 (0).pq) = tim LO2ID
= lim _(C(po(9)) +0)2(0(6),p/t,q) = (C(po(0)) +0)2(0(6),0,q), (4.4)

since ®(c(f), -, -) is positively homogeneous of degree one.
We claim that for every F' € A,

/B*F(C(Z) +0)K(z,vp(2)) dH (2) = G(pj. [0, 27)) - (4.5)
Indeed, consider the sets S and S® given by (2.31), and write S° = S¢U S/ with
S¢:=8"N({0€0,2m): a(f) ¢ Jr} xR), S :=8°n({Hec0,2r): o(f) € Jr} x R).
As in (4.3), we have
| €@+ oK k@) ane)
O*F
_ /Sm{ ,, COO.0) K 0.r) v (¥ 0:0) V20 (0.0)] a1 0.r),

where S = 5% U S*, and we split the integral in the right hand-side in two parts. Arguing exactly as
in the proof of Lemma 4.3 and using (4.4), we first obtain

(€U0, 7)) + 8K (¥ (0,7),vp (¥ (0,7)) |V (0,7)] dH' (0,7)

27 .
dD°p%

= 9(0, ok, (p; ’)d9+/ g”(é’,p*, . )chp* :

/0 (0, 0% (PF) 0.2m) F d|Dep] | 7l

/(5au5c)n{r>0}
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On the other hand, we have by (2.19),
/ (COU(0, 7)) + 6)KC (¥ (6,r) , s (¥ (0,1))) [V ¥ (0,7)] dH(6, r)
Sin{r>0}

= ro P g dDjp} ! r
Loy €700+ 0% (00,5525 0) e

- ro D (o dD? p .

{0€[0,27): 0(0)EJF}

_ [ (o 2
{6elo, 271') S (0)eTpy ) (PE)( " d| DI py|
(P3)* (9) dDi o |
- / <][ 9% (9’r’ 7%) d7’> d|D? ppl,
[0.2m) \J(p})=(0) d|Di p|
and (4.5) follows.

Step 2. Without loss of generality, we may assume that H'(9*F N {(z,0) : z > 0}) = 0. By (4.5) we
have that

| €@+ O (:) a1 ) = G o 0.2m).

and for all n,
| €+ Kk, M) 2 6o, (0.2m).

In view of Lemma 9.1 in the Appendix, and the fact that g(0,p, q) > dm|q|, it follows that g satisfies
the hypotheses of Theorem 3.1 in [10], and thus G(-, (0, 27)) is lower semicontinuous with respect to
convergence in L! ((0,2n)). Therefore,

timint [ (C)+ Kk, (D) 2 [ Rk () (o). (46)
P, “F
Since sup,, H'(0F,,) < oo, we have
sup K(z,vj (2))dH'(2) < C < 0.

n Jo-F,
Hence (4.6) yields
C(2)K (2, via(2)) dH () < lim inf / C(2)K(z, v () dH(z) + C5,
O*F n—oo “F,

and the conclusion follows from the arbitrariness of §. O

Proof of Proposition 4.2. Step 1. Let {F,}nen C Awip be such that F,, — F as n — oo in the
Hausdorff metric. Without loss of generality, we may assume that

lim inf/ o(vl)dH" = lim p(vh)dH' < o0,
OF,

n

where vi, = v}, for all n. Since K(z,v) < ¢(v) by (3.7) and K(z,v) > m > 0 for every (z,v) €
R%\ {0} x S, we have

sup/ K(z,v.)dH' < 0o and supH'(0F,) < oo
neN JOF, neN

Extracting a subsequence (not relabeled), we find a nonnegative Radon measure u such that

= K(z, Vi (2))HOF, > asn — oo,
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weakly* in the sense of measures. Since OF* N T¢y = @ by (2.8), by Lemma 2.4 we have that
O*F NTeyt = 0. Hence, the measures H! |y and H!|[0* F are mutually singular and to prove (4.2),
it suffices to show that

dp

m (z0) > I@(zo, Vi(z0)) for H'-a.e. 2o € Teus (4.7)
and
d/L i *
T0F (20) > K(20,Vi(20)) for H'-a.e. 2o € O*F. (4.8)

Step 2. By the Besicovitch derivation theorem (see, e.g. Theorem 1.153 in [16]), we have

d,LL (ZO) — lim H(QVU(ZOaE))

_ fi Lae. T 4.
T Tom im, 5 or H -a.e. zg € b, (4.9)

where vy 1= (20/|20])* and Q,,(20,¢) is the square of side length 2¢, centered at zo with two sides
parallel to vy. Observe that (2.12) implies

pi(00) < |z0| < pr(oo) for H'-a.e. 20 € Deus, (4.10)

where o := 2¢/|20|, because S is at most countable (see (2.11)). Now fix zg € T'cyt such that (4.9)
and (4.10) hold. We may assume without loss of generality that oo = (0,1) and vy = (—1,0). Then
we write zg = 1909 and @, (20,¢) = Q(20,¢). We claim that that there exists 9 > 0 such that

FNQ(z0,¢) ={0} x (rgp —e,70 +¢) forevery 0 <e<e¢g. (4.11)

Indeed, consider the function jr : St — R defined by pr(0) = pr(0) if o # 00 and jpr(09) = ph(00).
Then j is upper semicontinuous. Hence, the set F = {ro :ceS',0<r <pr(o)} is closed in R2.
Since zop € F' by (4.10), there exists 9 > 0 such that F' N Q(z9,20) = @, and so (4.11) follows because
F=FU ({0} x (p5(00), pr(c0)]).

Next we choose a sequence {ej} such that g — 07, g, << g9, and ;L((?Q(zo,sk)) = 0 for every
k € N. Then

) 1 )
9 ()= lim mQEo) —/ K(z,08) dH! . (4.12)
dH chut k—o00 25k k—o00 n—o00 2€k 6ana(2015k)

Since F,, — F'in the Hausdorff sense, there exists nj, € N such that F,, C A;, /o(F) for every n > ng.
By (4.11) we have

N 12(F) N Q(20,€x) = A2, y2(F N Q(20,€0)) N Q(20, 1)
= (—¢er/2,ex/2) X (10 — €k, 70 + €)

for €5, small enough (see Figure 1). Therefore

F, N Q(Zo,é‘k) C (75]6/2,516/2) X (7’0 — Ek,To + Ek) (413)
for €5 small enough and n > ng. Set
Pk = (Ek/Q,TO*Ek)a qk ‘= (7516/257,07516)5 o—k_ = p—kv O';: = q_ka
Pk |q|

and note that, in view of (4.13), p, (o) < |pk| and pn(0;") < |gx| With p, := pp,. Denoting by Il,
the projection z = (z,y) — y, we deduce that

II, (pn(a,;)a,;) <rg—er and Il (pn(a,j)olj) <7rg—Ecp. (4.14)

Now we fix some 0 < § < 1/2 and we consider z;, = (0,79 + (1 — d)eg) € Teur N Q(20,€x). Since
F, — F, for n large enough, we may find z, 1 € F,, N Bse, (2k). Setting oy, 1 := 2n.k/|2n.k|, we have

o < onk < U,j and Il (pn(an,k)amk) >7ro+ (1 —20)ey . (4.15)
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I_‘cut

Béeﬁzk)F\ ‘
" Qlzy.)

down
Lx

oFt

Fig. 1. The construction described in the proof of Proposition 4.2.

Consider the Lipschitz continuous scalar function H,, defined on S' by H,(c) := Ilx(pn(c)o). By

(4.14) and (4.15), we have that [rg — eg, 70 + (1 — 20)e] C Hy([o} , on k)

Therefore, there exists at least one arc [0} ,,02,] C [0} ,0nk] With o}, < o2, such that

Ho ([0}, 1500 1) = [ro — ek, 70 + (1 — 20)ex], Hn(o), ;) = 10 — €k, and Hy (07, ;) = 70 + (1 — 20)ex. By
construction, it follows that

sz’k = {pn(a)a : a,lm <og< ai,k} C OF, N Q(z0,¢k) -

Arguing in the same way, we find an arc [0} ,, o ;] C [0k, o] with oy < op such that Hy (o) ) =
ro + (1 — 20)ey, Hn(”i,k) =171y — €k, and

Fflf’,:m = {pn(0)o: 07311,c <o < Uﬁ,k} C OF, N Q(z0,¢r) -

From the construction of I'y", and I'0%™, we infer that

/ K(z,v8)dH! > /
oF, ﬁ@(zo,sk) T

and consequently,

K(z,v.) dH + / K(z,v.)dH*,
ok Lo

lim K(z,v.)dH > liminf/ K(z, L) dH* +liminf/ K(z,v.)dH. (4.16)
n—oo aana(onsk) n—oo F:f:k n—oo Fi(,)zm
Now we claim that
hminf/ K(z, L) dH* Z/ K(z,v0) dH*, (4.17)
n—oo F:f:k F*,k
and
liminf/ K(z, L) dH* z/ K(z, —1vp) dH*, (4.18)
n—oo Fi?;:n F*,k

where Ty := {rog € R*, rg — e, < r < rg + (1 — 28)ex}. Before proving (4.17) and (4.18), we
complete the proof of (4.7). Since K is 0-homogeneous with respect to the z-variable, we have

/ Kz, v0) dH! = K(z0, vo)HA (T ) = 2ex(1 — 8)K (20, v0)
F*,k
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and
/ ’C(Z, 71/0) dHl = IC(Z(), 71/0)7'(1 (F*ﬁk) = 2€k(1 — 5)’C(Zo, 71/0) y
Ty k

so that (4.12) , (4.16) , (4.17), and (4.18) lead to

cm?ifrm (20) > (1 — 8)K (20, 10) -

Then the conclusion follows from the arbitrariness of §.

Proof of (4.17)-(4.18). We only present the proof of (4.17) since the proof of (4.18) is similar. Observe
first that, by construction and by the convergence of F;, to F' in the Hausdorff metric, we have

I'P — ', in the Hausdorff metric as n — oo,
and

O’,il,k —opfori=1,2, pn(J}%k) — 19 — € and Pn(Ui,k) —ro+ (1 —20)ep asn —o00. (4.19)
Next we construct a test function p,, € Lip(S') in the following way. Write afl’k = O‘(Gflﬁk) fori=1,2
with 6}, ;. € (0,7) and 07, , € (6}, ;,,27). Note that in view of (4.19),

97111kﬂ7r/2 and QzﬁkHﬂ/2 as n — 0o. (4.20)

Set (see (2.4))

0 | Rofpn,—0

(O 1) o= + 5

Tonk 2 O

5 (0) == 4 Pu(0) if 0 € [0, 07 4]

2
g T
ik lor — 02, 7 2 21— 602,

if 0 €10,0), ),

if 0 € (9721,1@’2”] .

By (4.19) and (4.20), we have that p¥ — p* in L1((0,27)), where

2 -2
(ro—sk)—e—i—&ﬂ- i if 0 € [0,7/2),
ﬁ*(@) — ™ 2 s 9 9
4 — 2 R02 - T .
(ro + (1 —26)ey) i + = . if 6 € [7/2,2n].

Setting E, € Avip and F € A to be the closed set generated by p,, and p, respectively, (note that F
has a Lipschitz boundary), we deduce from Proposition 4.4 that

liminf [ K(z, v JAH' > | K(z,vp)dH'. (4.21)
oF, oF
Then we observe that we can split OF, and OF as
oOF, =T Ul,, 90F=T,,UTl (4.22)

with disjoint unions, I',, and I' are smooth and v is the inner normal to F along I', ;. Now straight-
forward computations using polar coordinates yield

; evlL,k _ * 91 _ R 2
/ Ke,vg, ) it = / @(ow),ﬁ:;(o), Mf—o/)de
o 0 n,k

2 _ —pr(02 ) + Ro/2
+/ @(0—(9),,3;;(9), Pl "*’“)2 o/ )de, (4.23)
0 27T7077,,k

2
n,k
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and

/f’c(z’”;“)dHl = /0_ 5<0(9>,ﬁ*(9), (ro - Ek)% - %)d@

+/ﬂﬂ6<o(9),ﬁ*(9) (r0+(125)5k)33+%)d9. (4.24)

2

Using (4.23) and (4.24), by Lebesgue’s dominated convergence theorem, we derive that

/ K(z,vp, )dH! — IC(z Vi) dH* . (4.25)

n—oo

Then (4.17) follows from (4.21), (4.22) and (4.25).
Step 3: Proof of (4.8). Proving (4.8) is equivalent to show that

> K(,vh)dH [0 F . (4.26)

Fix ¢ € C.(R?%;R) such that ¢ > 0. From the weak* convergence of K(-, 1) dH'|OF,, to u together
with Proposition 4.4 and Lemma 2.8 we obtain that

Cdp = lim C(2)K(z, VL) dH > C(2)K (2, k) dH?,
R2 TR JOF, o*F
which yields (4.26) since ¢ is arbitrary. O
We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Fix (F,u) € X and let (F,,u,) € XL;p be such that (F,, u,) ——(F,u). Let
{w;} be an increasing sequence of open sets compactly contained in By \ F' and such that

Bo\F: [jwi.
i=1

Since lim,, oo d(Fy, F) = 0, for every fixed i € N, we have that w; is compactly contained in R?\ F},
for all n > n; for some n; € N. Since E(u,,) = E(u) in L? (w;; R**?) and W is convex and nonnegative
by (H1),

lim inf/ W(E(uy)) dz > lim inf/ W(E(uy)) dz
Bo\F, wi

n—oo n—oo

2/ W(E(u)) dz.

Using Lebesgue’s monotone convergence theorem, we conclude that

hminf/ W(E(uy)) dz > W(E(u)) d= .
Bo\F,

n—oo Bo\F

In turn, by Proposition 4.2,

n—oo

1iminf/ eV ) dH' > K(z,v%) dH* + / K(z,vh)dH! .
OF, o*F Teus

Therefore

n—oo

1iminf]—'(Fn,un)2/ W(E(u)) dz + K(z, Vi) dH! + / K(z,vi) dH',
Bo\F cut

O*F

and the proof is complete. |
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5. Upper bound of the relaxed energy

In this section we establish the upper bound in Theorem 3.2, precisely,

Theorem 5.1. Assume (H1)-(H2). Then

]-'(F,u)g/B\FW(E(u))dz—i— IC(z,u})dHl—i—/F K(z,vi) dH? (5.1)

o*F cut
for every (F,u) € X, where the functions K and K are given in (3.6) and (3.9).

The proof relies on the following proposition.
Proposition 5.2. Let F' € A be such that F' C By. Then there exists o sequence {Fy,}nen C ALip
such that F C F,, for everyn, F,, — F as n — oo in the Hausdorff metric and

1imsup/ o(vg ) dH' < / K(z,v%) dH* +/ K(z,v%)dH! . (5.2)
OF, ' o*F r

n—oo cut

In particular,

T(F) = / Kz, vle) dH' + / R(z vy dH'
o*F

1—‘cut

where J is defined in (4.1).
To prove Proposition 5.2, we begin with two auxiliary lemmas.

Lemma 5.3. For every F' € A such that pp = p;,i < Ry, there exists a sequence {Fy,}nen C ALip
such that F C F,, C By for every n, F, — F in the Hausdorff metric, and H*(0F,) — H(0F) as
n — oo.

Proof. Without loss of generality, we can assume that H'(Gr N ({0} x [0, Rg))) = 0. Then, from
the proof of Lemma 1 in [6] (given in Subsections 5.1 and 5.2 of [6]) it follows that there exists a
sequence of 2m-periodic Lipschitz functions p} : R — [0,00), p, > p}, converging in L{ (R) to p}
and such that

d1(Gp ,Gr) — 0 and H'(Gg, N((0,27) x R)) — H'(Gr N ((0,27) X R)), (5.3)

where F, := {ro(0) : 0 <7 < p;(0)}. In particular from the Hausdorff convergence of G, to G it
follows that F;,, — F' in the Hausdorff metric and that F,, C By for all n sufficiently large.
Moreover, since pf, — pi in L*((0,27)), from (5.3) and (2.19), we deduce that Dxg- A Dxg-

in the sense of measures in (0,27) x (—o0, Ry), and that
M (Gr, N ((0,27) x R)) = [Dxg. |((0,2m) x (—00, Ro))
— DG ((0,27) x (=59, Ro)) = KN (G 1 ((0,27) x R))
Consider the function g : (0,27) x (—o0, Rg) x S — R defined by

VW (0,r)vt| if0<r<Rg
g0,rv) =
|11 ] ifr<o0.

Since g is a continuous bounded function, by Reshetnyak continuity theorem (see Theorem 2.39 in [1]

or [29]) we have
9(97T7 VG; )dHl(o,T) - 9(9,7’, VG;)dHl(ovr) (54)

/GFTLI'W((O,27r)><(OO,Ro)) GrNn((0,2m)x (—o00,Rp))

asn — oo. Arguing as in the proof Lemma 2.7, and using the fact that H! (G N ({0} x (=00, Rp))) =
0, we obtain

HH(0°F) = VW (0,7)] dH'(0,7) :/

g(@, T VG* ) dH1(95 7’) )
Grn((0,2m) X (—o0,Ro)) F

/Gpﬁ((0,27r)><(oo,Rg))
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and similarly for F,. In view of (5.4) we deduce that
H' (OF,) — H' (0*F) = H' (OF) ,

and the proof is complete. |

Lemma 5.4. For every F € Arip, such that F' C By, there exists a sequence {F,}nen C Arip such
that F C F, for everyn, F,, — F in the Hausdorff metric, and

/ ey YdH' — | K(z,vp) dH' (5.5)
oF, oF

as n — oQ.

Proof. By Lemma 4.3, (9.1) and (9.4), there exists a sequence of closed sets F,, starshaped with
respect to the origin such that pg, — pp in W (S!) and such that (5.5) holds. Since pp, — pr
uniformly, and pr < Ry, we may replace pr, by pr, + ||pr, — prll, and since pp, < Rg for n
sufficiently large, the conclusion follows. O

We now turn to the proof of Proposition 5.2.

Proof of Proposition 5.2. Step 1. First, we prove (5.2) for F' € A such that pp = pf. < Ry. We
consider the sequence {F, }nen C Avip given by Lemma 5.3 and the associated p,’s, so that

lim [Dyr,|(R?*) = lim H'(OF,) = H'(OF).

On the other hand, since pp = p; = pp+, we have
H'|OF = H'|oFT = H'|0*F

where we used Lemma 2.4 in the second equality. Hence,

lim_ Dy, |(R?) = H (9" F) = [Dxr|(R?). (5.6)
Since
|DxF,| (R*\ {0}) = H'(0F\{0}) = H'(0F,) and [Dxp|(R*\{0}) =H'(9"F\{0}) =H'(0"F),
by (5.6), we have that

T [Dyr, | (B2 {0}) = [Dxe| (B*\ {0) .

Moreover, by Lemma 2.8, Dxr, X Dxr weakly* in the sense of measures. Thus, by applying Reshet-
nyak continuity theorem to the measures |Dxp,| and |Dxr| in R? \ {0} (see Theorem 2.39 in [1] or
[29]), and recalling that K is continuous on R? \ {0} x S!, we derive

lim K(zvp)dH' = | K(z,vp)dH',
N JOF, o*F
where we have set v}, = v}, .
Since F, C By for all n sufficiently large, we may use Lemma 5.4 to construct sequences
{Fn,k}keN C ALip such that F' C F,, C F, i, with

lim lim dy(F,F, ) = lim dy(F, F,) =0

n—oo k—oo

and

lim lim go(u,i,k) dH' = lim K(z,vL)dH = K(z,ve)dH*,

n—oo k—oo 6Fn,k n— oo oF, 9*F

where V:-Lk = v} . By diagonalizing, we obtain (5.2).
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Step 2. Next we consider F' € A, F' C By, such that the set Sp is finite (see 2.11), i.e., Sp =
{o1,...,0n} with
o1 <092 <---<ON.

We claim that there exists a sequence {F,} ey C A such that p;,Cn =ypp, F, D F, F, —» F as
n — oo in the Hausdorff metric, and

lim /C(z,y;)dle/ /C(z,yg)dH1+/ K(z,vh) dH! . (5.7)
6* * 1—‘cut

n—oo

Let g¢ := 1/2 min {dSl (0i,05) 4,5 =1,...N, i # j}, where dg1 denotes the geodesic distance on
St, and select a decreasing sequence &, — 07 as n — o0, &, < &g, such that the points o, and 0:{71

defined by [0, ;, 0,7 ;] = Bgi(04,€,), belong to S'\ (Jp U Sp). Note that here we are using the fact
that Jg is countable Define
Cnyi= max pp(o)
o€lo, O'j;i]

and

pnl() = {cnﬁi if o € lo,, ;0. ,] for some i€ {1,...,N},
pr(o) otherwise,

and F,, := {ro co0eSH0<r<p, (o)}. Since pr is upper semicontinuous, p,, is upper semicontin-

uous, p, converges pointwise to pp, and Ry > p, > pp for all n. Hence, F,, € A and By D F;, D F.

Moreover, from the construction of p, it follows that F, — F in the Hausdorff metric. Setting

Epni={rc e R?: reRy,oecS)\ U, lon 0,04}, a straightforward computation using the

0-homogeneity of I with respect to the z variable, yields

N
/ K(z i) dH = / Koot dH + 3 (ni — pp(07.)) Ko 52 (07 )
*Fp O*FNZ,

=1
N
+Z (Cn,i _pF(UTT,i))IC(UJ’_ chz/ IC(U, _U) dHl .
i=1 (PR

Observe that =, " E, := {7“0 ER?: rcRy,0cS! \SF} as n — oo so that, by the Lebesgue
monotone convergence theorem,

lim K(z,v%) dH* :/ K(z,vh)dH! .
nmee JorFnE, 0*FNE,
Since pr(o, ;) — pr(oi—), pp(a:{,i) — pr(oi+), and ¢,; — pp(o;) as n — oo, we derive that for
everyi=1,..., N,
(eni = pr(07, ) K (0755 (07,)7) + (eni = pr(o ) K(or i — (o))
— (pr(oi) = pr(oi=))K (01, 07) + (pr(i) — pr(oit) ) K(oi, —0;)
= (pr(0s) = p(00))K (03, 07") + (p£(01) = pr(0i=)) K (03, 07) + (pF(0i) = pr(oi+)) K (03, —07") -

In addition, we have

N
> en / K(o,—0)dH' < CNRoe,,
i=1 (07 1200 ]
and consequently
N
lim K(z,vi)dH = / K(z,v%) dH* + Z (pr(os) — p;(oi))lﬁ(m, Jf) (5.8)
T JoxF, 0*FNE, i1

N N

+3 (ph(0i) = pr(oi=))K(oi, i) + Y (ph(03) — pr(oit)) K (o3, —07") .

i=1 i=1
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Note that T'eyy = vazl{rai : p;(oi) < r < pp(o;)} and this union is disjoint. Hence, using the
0-homogeneity of K with respect to the z variable, we derive

B ) N rpr(oi) _ N ~
/F. K(z,vh)dH! = Z/ K(roi, o) dr = Z (pr(o:) — pi(0:))K(oi,07) . (5.9)

i=17Pr() i=1
Hence, in view of (5.8) and (5.9), (5.7) follows, provided we show that

N N
/6*F\= K(z,v)dH = Z (pf(0s) — pF(O'if))IC(O'i,O'iL) + Z (pf(05) — pr(oi+))K (o, —Jf) .

i=1
To see this, observe that by Lemma 2.4, 0*F = OFT except for a set of null H'-measure so that
O*F\ 2, = OF T \ 2, except for a set of null H!-measure. In view of Lemma 2.4,

OFT\E,={roc €eR*: g€ Sp, pp(o) <r<pf(o)} = U{TJZ- eR?: pp(oy) <7 < ph(ow)},

where the sets in the union are disjoint except possibly at the origin. By Lemma 2.5 on each segment
L= {ro; € R?: pp(oi) <r < pf(oi)},i=1,...,N, we have v, = o;- if pi(0;) = pr(oi+) and
vt = —o;t otherwise. This concludes the proof of this step.

Step 3. Finally, if the set Sp is countable, then we claim that there exists a decreasing sequence
{F,}nen C A such that for every n € N, S is finite, F C F,, C By, F,, — F in the Hausdorff
metric, and

lim sup (/ K(z,v.) dH? +/ K(z, %) d’H1> S/ K(z,v5) dH* +/ K(z,vh)dH! .
n—oo o* Fn Fcut,n o*F 1—‘cut

Since pp is upper semicontinuous and less than Ry, for all n sufficiently large, we have that
pu(0) = max {pf(0) + 1/n, pr(o)} < Ro

for all o € S'. Note that p,, is upper semicontinuous and has finite pointwise variation, so that the
closed set F), generated by p, belongs to A. From the construction we have that F,, — F in the
Hausdorff metric. We also observe that p} = pj. + 1/n so that

Sp, ={oc€S": pp(0) > pf(oc) +1/n} C Sp (5.10)

and Sg, is finite because pr has finite pointwise variation. Moreover, xr, — xr in L'(R?) and
HY(OF) — HY(OFT). Hence, arguing as in Step 1, we obtain

lim K(z, VL) dH = / K(z,vk)dH.

n— JoF, O*F

Moreover, from (5.10), it follows that Tcyg.n C Teus and l@(z, vi) = K(z,v%) on eyt . Hence,

limsup/ K(z,vl)dH' < / K(z,v%) dH*,
n—oo Fcut,n 1—‘cut

and this completes the proof of the claim.

End of the proof. Combining Step 1, Step 2, and Step 3 and applying a standard diagonalization
argument, we obtain the required sequence. O

Finally, we prove Theorem 5.1.

Proof of Theorem 5.1. To prove (5.1), given (F,u) € X, we have to construct a sequence
{(Fp, ) }nen C Xpip such that (F,, u,) ——(F,u) and

lim sup F(F,, un) S/B\FW(E(U)) dz+/

n— oo O*F

IC(z,y})dHlnL/ K(z,vi) dH' . (5.11)
Ceut
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Assume first that F' C By and let {F), },en be a sequence as in Proposition 5.2. By (H3),

1 )
H' (OF,) < — oV, ) dH'
m JoF,

therefore {H!(0F,)} is bounded in view of (5.2). Then, since F' C F,,, we have (F,,u) € Xrip (see

(3.1)) and consequently (F,,u) L(F, u). By Lebesgue’s dominated convergence theorem,

/ W(E(u))dz — W(E(u))dz,
Bo\F, =00 JBo\F
and so (5.11) holds for the sequence {(F,,u)}.
Suppose now that OF N dBy # O and let ag > 0 be such that oy 1. Set Fy := apF C By and
define

u(i) if z € apBo \ F,

ag
ug (2) = R
() <|—|O) ifZGBo\OékBo.
z
Then, from the first part of the prood for every fixed k there exists a sequence {Fj n}nen C Awip
such that (Fj p,ur) — (Fk,ur) and

n—oo

lim sup F(Fy pn, ur) §/ W(E(uk)) der/
Bo\F

n— 00 0* Fy,

K(z,vp, ) dH' + / K(z, Vi) dH' .

(Fk )cut

Letting £ — oo, we obtain

K(z,vk) dH? +/ K(z,v%) dH',
&*F Teut

k—oo n— o0

lim sup lim sup F(Fi pn, ug) < / W(E(u)) dz +
Bo\F

and so (5.11) follows by a standard diagonalization argument. |

6. The exterior Wulff condition

We now start to investigate the regularity issue for solutions of (3.10). In the remaining of the paper
we assume that

(H3) ¢ : R? — [0, 00) is convex.

The convexity of ¢ is justified by the fact that the Wulff set of ¢ is also the Wulff set of ¢** (see
Proposition 3.5 in [14]).
Note that, (H3) implies that K(z,v) = ¢(v) (see (3.5) and (3.6)) and thus by Theorem 3.2,

F(Fu) = W (E (u)) dz+/

Bo\F o*F

o (V1) dH' + / (¢ (V) + 0 (—vi)) dH*.

1—‘cut

Given 0 < d < 7R% and ¢ > 0, we set

Fo(F,u) = F (F,u) +£||F| —d|.
As in [15], we shall prove that if ¢ is sufficiently large the constrained minimization problem for F is
equivalent to the unconstrained minimization problem for the penalized energy F;. The advantage of
working with F; is that we are allowed more freedom in admissible variations.

Proposition 6.1. Assume that (H1)-(H3) hold. There exists £y > 0 such that for all £ > £y, (F,u) €
X is a minimizer of the constrained problem (3.10) if and only if it is a minimizer in X of Fy.

We start with a minimality property of line segments. To fix ideas in what follows a Lipschitz
function 7 : [a,b] — R? is a parametrization of a curve if v is injective, 7/ () # 0 for a.e. t € [a, b],
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and |y'| is constant. With a slight abuse of notations we shall identify a parametrization v with its
image v([a, b]).

Lemma 6.2. Let 1) : R? — [0,+00) be a positively 1-homogenous convex function. Let 21, z2 € R? be
two distinct points, and let vy, x : [0,1] — R? be parametrizations of curves such thaty (0) = x (0) = 2
and v (1) = x (1) = z2, with v([0, 1]) = [z1, 22]. Then

/¢VX ) dH! > /wV7 ) dH*,

/ ‘ .

() .,

g and vy =

where v, :=
\x

Proof. Let z; = (x5, v:), ¢ = 1,2, and x(¢) = (x1(t),x2 (t)). From Jensen’s inequality and the
homogeneity of ¥, we get

/ b () dH? = / B (b (8), 4 (1)) dt

1
>0 ([ 6004 @) at) =0t = gz =) = [0l art
0 gl
which completes the proof. O
Proof of Proposition 6.1. Let (Fy,u;) be a minimizer of Fy. The existence of minimizers is guar-
anteed via an argument similar to the one used in the proof of Theorem 3.3. Then for every ¢ > 0,
Fo (Fpyup) < Fp (Fyu) = ?(F,u) <F (ER,i;UO) =A,

where TR2 = d, and so by (H2),

A
C||F| —d) <A, H'(OF)< —. (6.1)
m

Thus, there exist £; > 0 depending only on d and A, such that
—1

d
|Fy| > 3 and <1 (6.2)

for all £ > ¢4.
We claim that |Fp| = d for ¢ large enough. Note that this being the case, then

F(Fyu) < F(Fp,up) = Fo (Fryug) < Fo(Fou) = F (Fyu) .

Step 1. For £ > {7, assume first that |Fy| > d. Set

d \? ~
= —_— 1 F = F
« (|Fe|) <1, ) «Q eGA,

so that |Fy| = d, and consider

UZ(E) iwaOzBo\ﬁg,
«
g (w) ==
U (,LT—RF) if’LUeBo\aBo.
w

Since J(Fy) = aJ (Fy) < J(Fy), we infer that
FFrt) - Fi(Feu) < [ WE@) dot [ WE@) do
Bo\aBo aBo\Fy

- W(E (’lu)) dz — f(|Fg| —

Bo\Fy
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Since the second and third integrals on the right-hand side are equal, recalling (6.2), we have, for
some constant ¢y > 0 depending only on d, ug, Ry, C and ¢,

Fo(Fy, i) — Fo (Fyyug) < co <1 - Ilf“l I) —U(|Fy| - d) < (|Fs| — d) (%0 fe) <0

provided £ > {3 := max {{1, co/d}. This contradicts the minimality of (Fy,u¢), and thus |Fy| < d for
all £ > £s.

Step 2. To conclude the proof assume by contradiction that there exist a sequence ¢ > fo, k = 3,4, ...
and a sequence of minimizers {(Fy, ,ug,)} of Fy, such that £ — oo and |Fy, | < d for all k& > 3. By
Blaschke’s Theorem (see Theorem 6.1 in [1]), (6.1) and Lemma 2.8, we may assume without loss of
generality that the sets F, converge for the Hausdorff metric to some F € A, with0 < |F| =d < 7R3
and that pr, — pp in L'(S).
We now distinguish two different cases.

Case 1: Assume that there exists a point og such that pp is continuous at o9 and 0 < pp(og) < Rp.
Fix 0 < e < Ry — pr(op) and let § > 0 be such that 0 < pp(0) < Ry — & whenever |0 — o¢| < §. By
taking € > 0 smaller if necessary, we can assume that ¢ < §. By the Hausdorff convergence of {Fy, }
to F' there exists ko such that pp, (0) < Ry —e for all k > kg and for all |0 — o¢| < €.

For such k’s, define Fy, by taking Py, (o) = pR, (0) if [0 — 09| > € and PE,, (o) = pr,, (o) + m if

|o — og| < e, where 7 > 0 is chosen such that |}~74k_| < d and n — 0.
Since we are adding two segments at oo £ €, we have that

ffk(ﬁekvuek> 7fek(F‘ek’u‘ek> < CcoNk 7£k|ﬁlk \Flk|

oo+e
(QUkPsz (o) + i) do < . <CO - gk/

oote

=CoNk — &

9 PFy, (J) do> )

op—E€ 0—E&

for a constant ¢y > 0 independent of k. Since

oo+e oo+e
/ Pr,, (0) dak—> pr(o)do >0,
oo—¢ 7 Jog—¢

we conclude that Fy, (Ek,wk) — Fu, (Fy, ,ug,) < 0 for k sufficiently large, which contradicts again
the minimality of (Fy, , ug, ).

Case 2: Assume that pr only takes a.e. the two values 0 and Ry. Since H!(OF) < oo, by Lemma 2.4,
pr has finite pointwise variation, and thus it is piecewice constant with finitely many jump points
in S'. We claim that the sets Fy,, and hence also F, are convex (note that this fact immediately rules
out that d > wR3/2). In particular, Fy, has a Lipschitz boundary.

We argue by contradiction, i.e., we assume that Fj, is not convex. Then there exist two distinct
points zg, z1 € OFy, such that the segment [z, z1] is not contained in Fy, (observe that neither zg nor
z1 can be origin and that zp and z; cannot be on the same ray from the origin). Moreover, using the
upper semicontinuity of p Fy, » We can choose the points zg and z; in such a way that the open segment
(20,21) is contained in R?\ Fy,. Then, the new domain ﬁek obtained by the union of Fy, and the
closed triangle T of vertices {0, zo, 21 } belongs to A and |F4k| > |Fy, |. In addition, moving the points
zp and z1 on 0Fy, if necessary, we may always construct the set F, in such a way that |ng| <d. Asin
Remark 2.3, it can be shown that 0F,, NT is a connected set. Hence (see Theorem 4.46 in [24]), there
exists a curve v C 0F;, NT connecting 2y and z;. By Lemma 6.2 we have that the resulting surface
energy decreases, i.e., J(Fy,) < J(Fp,). Therefore Fo, (Fy, ,u,) < Fo, (Fy,,ug, ), which contradicts
the minimality of (Fy, ,up, ), and thus proves the convexity of each Fy, .

Since F is convex, as observed before we have necessarily that |F| = d < wR3/2. Therefore,
without loss of generality, we may assume that pp(c) = Rg if o € [09,01] and pr(o) = 0 elsewhere,
for some o9 = o (bp), 01 = o(m—0p), with 0 < 6y < 7/2. Then, setting zg = (0, yo) for some yo > 0, by
the Hausdorff convergence of Fy, to F, there exists a ball B, (z9) C FNEy,, for all k large enough. By
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Fig. 2. The set ﬁ’gk is obtained by adding to Fj, the region enclosed by the dotted curves .

the convexity of F' and Fy, , we can consider the radial functions of the sets F' and Fy, with respect to
2o, respectively denoted by pp, ., (7) and pr,, »,(7) where 7 € St. As before, we shall write for § € R,
7(0) := (cos,sin ). We construct the sets Fy, as follows.

First observe that there exists § € (—n/2,7/2) such that, setting 7 := 7(0) and 7 := 7(7 — 0),
20+ pF.2, (T)T € 0By if and only if 7 € [11, 72]. Then, by the Hausdorff convergence of Fy, to F, given
0 € (—7/2,0) and setting 7] := 7(0), 74 := 7(m — 6), there exists § > 0 such that for k large enough
20 + PFy, 2 (T)(1 +6)7 € Bo whenever 7 ¢ (71, 75). Then, for k large, choose 0 < d), < ¢ such that

ofg

N | —

| byl @)1 4 80 0 = d

el

(ie., 6 ~ c(d — |Fy,|)). Next denote by ¢ the function defined on S! satisfying ¢(7) := 0 in (77, 75),
and ((7) := 1if 7 & (71, 73). Since the sets {z =20 +77: 0 <7 < pp, - (T)(1+ k), T € S} are all
convex, and thus starshaped with respect to the origin, it follows that the sets

ﬁék = {Z =zo+r7: 0<r< pﬁe‘,zo(T) = Png,zo(T)(l +0k¢(7)), T € Sl} )

which are not convex, are still starshaped with respect to the origin (see Figure 2). Moreover, from
the definition and the choice of 8 and C, it is clear that Fy, € A, |Fy | < d, Fy, C Fy, C B for all k
large enough, and that ng has a Lipschitz boundary. Then straightforward computations yield

Foo(Foprue,) = Fo, (Foy, uey) S/~ p(vy ) dH! —/ PV, ) dH' = b Fy, \ Fo |
OFy,

aFy, tr

<6 (el (1)) + (7)) + 61 [ ovh, ) dH!

OFy, N{zo+rr:7&(r{,75)}

4
_ Ik Py, - (T(0))(20% + 67) db .

2 J=5. 30\ 0m-0)
Recalling that pp, . (1) > 1o for all 7 € St, from (6.1) we deduce that

~ M ~
fgk(ng,qu) — Fu, (ng_,luk) < 0 {<2M+AE> 7€kT(2)(7T+ 29)] <0

whenever k is large enough. This contradicts again the minimality of (Fy, ,ue, ) and concludes the
proof. |

Next we prove that if (F,u) is a minimum for the penalized problem, then it satisfies an exterior
Wulff shape condition, i.e., there exists go > 0 such that for every z € OF there exists a translation
of goW contained in R? \ F such that its boundary either touches OF only at z or it coincides with
OF mnear z. We recall that, given a function ¢ : S* — (0, 00), the (open) Wulff set is defined by

Wi={weR?*: ¢°(w) <1}, (6.3)
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where ¢° is the polar function of ¢, i.e.,

I\

- w

(2)°

It can be shown (see [14,17,34]) that up to translations, the Wulff set is the unique solution of the
minimization problem

©° (w) := max w € R%.
=1

|2l

AS)

min {/ ¢ (vg) dH' : E C R? has finite perimeter, |E| = |W|} =:cw |W|% . (6.4)
OF

We begin with an auxiliary result, which is of interest in itself.

Proposition 6.3. There exists a constant cg > 0, depending only on W, such that the following
holds. Let F € A and let C := zo + oW with 29 € R? and g9 > 0, be such that 0 ¢ 0C, C C R?\ F,
and OC N OF contains at least two points Py = ri01, Py = roog, with 1y > 0, 72 > 0, and o1 # 03.
Let G be the bounded component of A(o1,02) N (R2\ C) and let D := G\ F. Then,

[ ewoyant = [ o) ant = 2], (6.5)
9*D\OC 8CNd* D 00
where vp and vo denote the exterior normals to D and C, respectively.

Proof. By rescaling we may assume, without loss of generality, that g9 = 1, so that |C| = |W]|.
Consider a function pg : (01,02) C St — Ry such that o € (01,02) — po(c)o is a parametrization of
0G N A(o1,02).

Since D = G N (R?\ F) and by Lemma 2.4, 0F T = 0*F = 9*(R? \ F) (mod. H'), using (2.1) we
infer that

9*D = (0GNF°) U (OFT nG") U (0GNOFT N{ve = vp}) (mod. H'). (6.6)

In addition, setting 7} := min{ro; : ro; € dC} for i = 1,2, we have that, up to a set of vanishing
H'-measure,

IF*DN{ror: r>0}={roy: pr(or+)<r<r

!
' (6.7)
I*DN{rog: r>0}={rog: prp(oa—) <r <rh}.

Step 1. We assume, as in Figure 3, that 9C N OFT N A(o1,02) = 0, ie., pf(c) < po(o) for all
o € (01,02).
Assume first that

/ ¢ (vp) dH' < 2/ o(vw) dH* . (6.8)
8*D\aC ow
Then we have
1
ew |CUD|? < / ¢ (veup) dH = ¢ (vp) dH! +/ ¢ (vo) dH?
9*(CUD) 9*D\oC AOC\o*D

< 3/ o(vw) dH! = 3ew |W|? = 3ew |C)?
oW

where in the first inequality and in the last equality we used (6.4), while in the first equality we
applied (2.2) and (2.3) to the (disjoint) union of C' and D, and the second inequality is a consequence



Material voids in elastic solids with anisotropic surface energies 31

Fig. 3. In the above picture p; < po in (01,02). D is enclosed by dC and AF and @ is the shaded region.

of (6.8). In turn, by (6.4),

/ ¢ (vp) d’Hl—/ v (ve) dH?
9+ D\oC 8CNd*D

= / ¢ (voup) dH! — ¢ (ve) dH?! —/ v (ve) dH?
&+ (CUD) 8C\8* D 8CNd* D

= / 2 (VCUD) dHl - (2 (Vc) dHl
o9*(CUD) oC

1 1 D
> ewlCUDJE —ewlot > — WPl v )
[CUD|z+|Cl2 — 4|C|2

This concludes the proof in this case.

If the opposite inequality to (6.8) holds, then

1

/ ¢ (vp) dH! —/ o (vo) dH > —/ o (vp) dH' > D (0*D\oC) . (6.9)

9= D\oC aCNd* D 2 Jo-pr\oc 2
From (6.6), (6.7), and the assumption p}: < po in (01, 02), we deduce that up to a set of H!-measure

zero,
0*D\ 0C = (8F+ N A(al,ag)) U{roy: pr(oi+) <r <ri}U{ros: pploa—) <7 <rh}.
Setting 7 := max{r},r5} and ro := dist(0F ™ N Aoy, 03], 0), it follows that
HY(O*D\OC) > 7 — 1. (6.10)

Note that D is contained in the region inside Aloy,02] bounded from above by the segment with
endpoints 70y € C and 702 € C whose length is smaller than diam W, and from below by the open
disc of radius rg. Therefore, from (6.10) we get that

|D| < ¢(F —10) < cHY(0*D \ 9C),

where the constant ¢ > 0 only depends on W, and in view of (6.9), we conclude (6.5).

Step 2. We now consider the general case. Since py — pJFr is a lower semicontinuous function, the set

{po — p;,C > 0} N (01,02) is open, therefore it can be written as the union of countably many open
intervals (o},07), i € J C N. For each i € J, the set D; := D N A(0},0}') satisfies the hypotheses of

Step 1, and (6.5) follows observing that |D| = >, |D;| and that, by (6.6), 0*D coincides with the
essentially disjoint union of the 9*D;’s, up to a set of H'-measure zero. |
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Proposition 6.4. Let (F,u) € X be a minimizer for the penalized functional Fy, and let 0 < go < g—g,
where ¢ and {y are the constants given in Propositions 6.3 and 6.1, respectively. If C := zq + ooW
is contained in R?\ F, then OF N AC is a connected closed arc (possibly empty).

Proof. If 9F N OC is empty or contains just one point there is nothing to prove. Otherwise assume
that OF NOC contains two distinct points P, and P,. We want to show that one of the two arcs on 9C
connecting Py to P» is contained in 0F NAC. If one of the two points coincides with the origin, since
C is convex and contained in R? \ F' and since F is starshaped with respect to 0, then the segment
[Py, P5] is contained in OF N 9C. A similar argument applies if Py = r101, Po = ra09 with o1 = os.
Therefore, we may assume that r1,72 > 0 and o1 # oo. If 0 € 9C, the union of the segments [Py, 0]
and [0, P2] is contained in OF N OC' so that we may also assume that 0 ¢ 0C.

Let D be as in Proposition 6.3. The proof will be concluded provided we show that the open set
D is empty. Assume by contradiction that D # ), and set F:=FUD. Then F € A and

OF N A(o1,02) =7,
where v := {ro : r = po(0), 01 < 0 < 02} with pg is as in the proof of Proposition 6.3. By Lemma 2.4,
Lemma 2.1 and (6.6), we obtain (see Figure 3 again)
I*FNA(oy,02) = 0F T NA(oy,02) = ((0*D\ 0C) N A(o1,02)) U(9*F N) (mod. H')
with a disjoint union on the right-hand side, and
v =((0"DNaC)N A(o1,02)) U (0*FN~) (mod. H')

with an H!-essentially disjoint union. Consequently,

/ pwpyan - [ (i) dH*
a*FﬁA(Gl,Uz) B*FﬁA(O‘l,O'z)

o(vp)dH! —/ o(ve)dH', (6.11)

/(B*D\BC)QA(JI ,02) 8* DNAC

where we have used the fact that 9CN9*D = dCNI* DN A(o1,02) (mod. H'), which is a consequence
of (6.7). N N
Using (6.7) again and denoting by T'cyt the “cut part” of OF (see (2.12)), we have for i = 1,2,
/ pwp)ar! + [ (plok) + i)
o*FN{ro;: r>0}

TeweN{ro;: r>0}

- oty art + [ PlvE) + p(—v)) a0
/t9*ﬁﬁ{rai:r>0} B T ( F F)

TewtN{ro;: r>0}
+/ o(vp)dH. (6.12)
0*DN{ro;:r>0}
Combining (6.11) and (6.12) we obtain

J(F) — J(F) > /

90*D\oC @(VD) dHl - / QO(VC) dHl

o0*DNoC

with equality if Teyy N Ao, 09) = (0. In view of Proposition 6.3 we conclude that
Fuo(Fyu) = Fuo(Fu) > J(F) — T (F) — Lo F\ F|

> / o(vp) dH! —/ p(ve) dH' — 4| D] > (C—O - eo) |D| >0,
9*D\oC 0*DNoC Qo
which contradicts the minimality of (F,u). Therefore D = ) and the proof is complete. O

Theorem 6.5 (Uniform Exterior Wulff Condition). Let (F,u) € X be a minimizer for the
penalized functional Fy,. Then for all z € OF there exists w € R? such that w + goW C R?\ F and
z € 0 (w+ 0oW), where gg is as in Proposition 6.4.
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Proof. Set
U:=|J{w+oW: w+oW CR*\ F}. (6.13)
Then U is an open set. To prove the statement, it suffices to show that
U=R?>\F. (6.14)

Indeed, in this case OF = OU, and so if z € OF, there exist sequences {a,}, {w,} C R? such that
an € wy, + oW C U and a,, — z. Then the sequence {w,} is bounded, and so, up to a subsequence,
wy, — w for some w € R2. Note that z € w + goW. We claim that w + goW C R2?\ F. To see this,
assume that there exists @ € F N (w + goW) and let > 0 be such that B, (@) C w+ goW. Let n be
so large that |w, —w| < r/2. Then if Z € B, )5 (w), we have that Z — w, +w € B, (0) C w + oW,
therefore z —w,, € oW, i.e., Z € wy, + oW, which shows that B, /5 (@) C wy, + oW C R?\ F. This
contradicts the fact that w € F. Hence, the claim holds. Finally, using the facts that z € w+ goW =
(w~+ W)U (w+ 0oW), z € U, and w + goW C U, we conclude that z € 9 (w + goW).

The remaining of the proof is dedicated to prove that U = R? \ F. Observe that, since R? \ F is
pathwise connected, this is equivalent to having U N (R2 \ F ) = (). We argue by contradiction and
assume that there exists a € 9U N (R? \ F). Since a € U we may find two sequences {wy, } and {a, }
in R? such that a, € w, + 0oW C R?\ F and a,, — a. Arguing as above, there exists wq such that
C = wg + 0oW C R?\ F and a € 9C. Observe that 9C N JF is nonempty, since otherwise we could
slightly translate C' in such a way that the resulting set ¢’ would still be contained in R? \ F and
would contain a. By the definition of U, this would imply that a belongs to (the interior of) C’ and
C" is contained in U, and in turn that a € U, which contradicts the fact that a € OU. Hence, by
Proposition 6.4, C' N OF is either a point or a connected arc.

Up to a rotation, we may assume that the projection of C' on the (horizontal) a-axis is the interval
(o, B) with a < 0 < 3, and that C' is contained in the (vertical) half line {y > 0}. This is obvious if
0 & 9C, but it can be easily shown to be true also when 0 € 9C, by the convexity of C. Then there
exist two functions f, g : [a, 8] — [0,00) , with f convex and g concave such that

C={(z,y)eR’:ze(a,f), flx)<y<g(x)}.

Since F is starshaped with respect to the origin, 0F N 0C' is contained in the graph of f. Denote by
z0 = (xo, f (x0)) and z; = (21, f (x1)) the left and right endpoints of 9C N OF, respectively, and set

vi={(z, f(x)): o <z <21} . (6.15)

We now consider several cases:

Case 1: a = (z, g (x)) for some x € (a, B). In this case and as before, by slightly translating C' upwards
we would obtain a set C’ := w + goW C R?\ F containing a. This would contradict the fact that
a € oU.

Case 2: a = (B,y) for some y € (f(8),¢g(B)], assuming that this interval is nonempty (the case
a = (a,y) with y € (f (), g ()] is analogous). In this case, to get a contradiction we first translate
C slightly upwards thus obtaining a set C” with positive distance from dF and such that a € 9C’.
Then we translate C’ to the right to obtain a set C” that includes a in its interior and is contained
in R? \ F. This again contradicts the fact that a € OU.

We are now left with the situation in which a = (Z, f (%)) for some T € [a, §]. Since a ¢ F, by
(6.15), without loss of generality we may assume that T < zo (the case T > x; is analogous).

Case 3: Consider first the case in which f is not affine in the interval (Z,z¢) (see Figure 4). Then
there exists Z € (T, xo) such that f is not affine in the interval (%, z). Note that the arc

V=A@, f (@) a<z <7}
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Fig. 4. The situation analyzed in Cases 3 and 4 of the proof of Theorem 6.5. Notice that in the left picture,

the quantity s defined by (6.16) is negative, hence C”’ is obtained translating C first upward and then to the
left.

lies at positive distance §p > 0 from the boundary of F'. Observe also that there exist s € R and
0 < 61 < min{B — z,T — T} such that if 0 < § < 1, then

SO @ a2 DTE s} o)

Therefore, if we choose

. do

0<d <m1n{\/1+_52,51} ,
we may first translate C' in the vertical direction by the vector (0, —sd) to obtain C”, and then translate
C’ in the horizontal direction by (—4,0) thus obtaining a new set C” C R? \ F containing a. Indeed,
after these translations the points of 7/ have been moved to a distance equal to dv/1 + s2 < 4o,
hence in their final position they are still away from OF. Note also that after these translations
the graph of f has been moved to the graph of the function f : [a — 4,3 — 6] — R defined by
f(x):= f(x+6) — sd. By (6.16), it follows that f (T) < f (T), hence a € C”, provided that § is so
small that f(T) < g(T+0)—s0. Indeed, if f(T) < g(T), this choice of ¢ is obviously possible, otherwise,
if 7= a and g(a) = f(a), this choice of § is possible if one chooses s satisfying f (o) < s < ¢/, (a)
in addition to (6.16). Finally, we have that for every = € [# — 4,3 — 8], f(x) > f (z). Therefore we
may conclude that C” C R? \ F and this is again a contradiction.

Case 4: Assume now that f is affine in some maximal interval (Z,2") where xop < 2’ < 3, and let L
be the line containing the graph of f above (Z,2’). In this case we can slide C' in the left direction
along L in such a way that the point (2, f (z’)) has been moved to the point zo. Note that this
is possible because, while sliding C, the set dC \ v cannot touch the boundary of F' otherwise, by
Proposition 6.4, there would be an arc in dC' contained OF and containing a. Let C’ be the resulting
set. Note that now 0C'NOF = {2}, a € 9C’, and €’ C R?\ F'. Therefore, with the same argument as
before, we may slide also C” slightly to the left along L, thus getting a new set C”" C R?\ F such that
AC" NOF = () and a € AC". Finally, by translating C” downward we obtain some set C"" C R?\ F
containing a. This contradiction concludes the proof. O

7. Regularity in the polygonal case

Throughout this section we will assume that W is a polygon with internal angles greater than /2,
and we are going to prove that if (F,u) is a minimizer of the constrained problem (3.10), then the
boundary of F' is the union of finitely many Lipschitz graphs. In particular, this will imply that the
number of cut segments is at most finite. The essential tool used to prove this regularity result is the
uniform exterior Wulff condition established in the previous section. As a first step, we show that



Material voids in elastic solids with anisotropic surface energies 35
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Fig. 5. At every point z € OF there exists an exterior sector with a radius and an angle uniformly bounded
from below.

this condition implies the existence of uniform exterior sectors at every point of OF, where the three
exterior sectors at a point 29 = roo(fp) in R?\ {0} determined by h > 0 and « € (0, ] are defined by

S;h(zo)::ZOJF{TUw)GRQ:90<9<90+a,0<r<h}7
S;h(zo)::'z0+{ra(9)€R2!90—a<9<90,0<r<h}a
Sa.n (20) 5:Z()+{TJ(9)€R2:90—a<9<90+a,0<r<h}.

Proposition 7.1. Assume that the Wulff set W (see (6.3)) is a polygon with internal angles greater
than 5. Let (Fyu) € X be a minimizer for the penalized functional Fy, (see Proposition 6.1). Then
there exist a > %, 3> 0, and h > 0 such that for all z € OF \ {0} at least one of the three exterior
sectors S:;h (2), Sq (2), Sp.n (2) is contained in R\ F.

Proof. Let ag > § be the minimum of the internal angles of W and § < oy < . Let z € OF \ {0},
and let C := w + goW C R? \ F be such that z € C, where gg is as in Theorem 6.5. Without loss
of generality we may assume that z lies on the positive y-axis so that z = (0,r) with » > 0 (see
Figure 5).

Consider first the case in which z is a vertex of C. If the y-axis lies to the left of C, then there exists
an angle a > aq greater than or equal to the internal angle of C' at z such that S;ho (2) CR?\ F
for hg := ogsw, where sy denotes the length of the shortest side of W. Similarly, Satho (2) CR2\ F
if the y-axis lies to the right of C. It remains to consider the case in which the y-axis crosses the
interior of C. In this case, either Spy—a, o (2) C R?\ F or at least one of the two sectors S;'hho (2)
and S, . (z) is contained in R? \ F.

Next suppose that z belongs to one of the sides of C, which we denote by S. Let 2’ be the vertex
on S closest to z (if z is the middle point of S then take any of the two). Then a triangle T with one
vertex in z and two sides of length hg/2 departing from z and parallel to the two sides of C' that
intersect at z’ is contained in C. Note that the angle of T' at z is the same angle of C' at z’, and so
it is greater than or equal to «g. Since the y-axis crosses the interior of 7', we may argue as before
to conclude that either Saofah%o (20) € R2\ F or at least one of the two sectors 5:17%0 (z) and

S8~ ., (2) is contained in R? \ F.
@1, 5
Hence, the proposition holds with a := aq, 8 := ap — a1, and h := hg/2. O

Remark 7.2. In view of the uniformity of the size of the sectors, we can extend Proposition 7.1 to
the case z = 0 as follows. If 0 belongs to OF, then there exists 6y such that one of the three sectors
S 1.60(0), 8o 46, (0), S5.1.6,(0) is contained in R?\ F, where

S;hﬂo(()) = {TJ(9> ER?: fp<b<by+a,0<r< h}

and the two other sectors are defined similarly. Indeed, consider a sequence {z,} C dF\{0} converging
to 0. Applying Proposition 7.1 to each z,, we find that for every n at least one of the three exterior
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sectors S;r, n (#n), Sy (2n), Sg,n (2n) is contained in R?\ F. Therefore, there exists a subsequence (not
relabeled) such that, say, S;r, n (2n) is contained in R2\ F for every n. Moreover, we can assume that
zn/ |2n] — o(fp) for some Oy € [0,27). We claim that Sath,eo (0) is contained in R? \ F. If not, then
there would exist w € S;;hﬁo (0) N F. Since Sath,eo (0) is open, then for n large enough w € Soth (zn),
which is a contradiction.

Remark 7.3. If W is a polygon with internal angles greater than or equal to 7, denote by

(L1, LY),. .., (Lg, L},) the pairs of adjacent sides of W forming an internal angle of 7 and denote
by (o1,0%),..., (ok, 0y,) their corresponding directions (observe that, by the convexity of W, k can be
at most 4). If [0, 0”] does not contain any of the directions oy, o}, i = 1,...,k, then the conclusion

of the previous proposition holds for all z € 9F N A(o’,¢”) (with parameters «, 8 and h depending
on o’ and ¢”). Tt also holds for z = 0, provided that there exists a sequence z, € 9F N A(do’,0”)
converging to 0.

The following lemma will also be used in the next section.

Lemma 7.4. Let F € A and let z € OF* \ {0} (see (2.8)). Assume that there exist § > 0, v € St,
and 1 > 0 such that for every z' € OF N Bs (z) and for every v’ € St satisfying v-v' > n, the segment
{2/ +t': 0 <t <28} is contained in R?\ F. Then there exist 61,02 € (0,0) such that

OF N {Z+t11/J_ +tov: 731 < t; <gz}

is the graph of a Lipschitz function.

Proof. Step 1. Let L; be the line through z orthogonal to v oriented in the direction —v+, and let
L2 be the line through z oriented in the direction v. We claim that the set F N Bs (z) is contained
in the graph of a Lipschitz function defined on L; in an open neighborhood of z. Let IT and IT+ be
the projection of R? onto L; and Lo, respectively.

Let 21, 22 € OF N Bs (2) and, without loss of generality, assume that II+ (z2) > IIt (21). Let
S =z + {rv: r > 0}, and consider the two half-lines S; and Sy with endpoint z; and forming on
both sides of S an angle of arccosn. By assumption, the open sector of radius 26 with center at z1,
bounded by the half-lines S; and S, and intersecting S, is contained in R?\ F. Hence, since zo € OF,
we have that zo does not belong to this sector, and so

[T (2) — I (21)| < m I (22) — I1(21)]

where m := tan (% — arccos 77). Note that this inequality implies that if z1, zo € OF N Bs (z) and

II(21) = [T (22), then z; = 2z5. Therefore, setting P := I (OF N Bs (z)), it follows that Iljgpnp;(2) is
one-to-one, and the function f : P — Lo, defined by f (w) := II+ ((prmB&(Z))_l (w)), is Lipschitz

continuous with Lipschitz constant less than or equal to m.

Step 2. To complete the proof it suffices to show that P contains an open neighborhood of z in Lj.
Write 2z = 7o with 7 > 0, and assume without loss of generality that pf(00) = pr(o9—). Take § > 0
so small that 0 < 6 < r, and in such a way that if A(o1,02) is the smallest sector containing Bs(z),
then pr (o) > r/2 for all o € 01, 02]. As in the proof of Lemma 2.2, we have that 0F N Afo1, 0] is a
compact connected set. Consequently (see Theorem 4.46 in [24]), there exists a curve y; contained in
OF N Alo1, 0¢] connecting pp(o1)oy to z. Similarly, there exists a curve 2 contained in 9F N A[og, 03]
connecting pp(o2)oe to z. Observe that the two curves 77 and 7 intersect only at the point z. By
Step 1, we deduce that II(y; N Bs(z)) contains a left or right open neighborhood Ny of z in Ly,
while TI(y2 N B;s(z)) contains an opposite side open neighborhood Ny. We conclude that N1 U N is
a neighborhood of z in L;. O

Remark 7.5. Arguing as in the previous proof, one can also show a one sided version of the lemma.
More precisely, let z = rog, for some oy € S, 7 > 0. Assume that there exist § > 0, v € S, and n > 0
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such that for every 2’ € OF N A(oq, 00 + &) and for every v/ € St satisfying v - v/ > 1, the segment
{Z+t/:0<t<d}

is contained in R? \ F. Then there exists 0 < § < § such that 9F N A(og, 00 + §) is the graph of a
Lipschitz function.

We are now in position to prove the regularity of OF.

Theorem 7.6. Assume that the Wulff set W is a polygon with internal angles greater than 3. Let

(F,u) € X be a minimizer for the penalized functional Fy,. Then OF is the union of finitely many
Lipschitz graphs. Precisely, OF contains finitely many cut segments, i.e., Sg is finite, and there exists

a finite set Tsing C OF T such that:

(i) if z € OF T \ ging, then there exists a neighborhood N (z) of z such that OF NN (z) is the graph
of a Lipschitz function;
(it) if z = roog € Tsing \ {0}, then there exists a neighborhood N'(z) of z such that (OF NN (2)) \ Teus

is the union of two graphs of Lipschitz functions intersecting only at z;

(tii) if 0 € Tsing, then there exists a neighborhood Ny of 0 such that OF NNy is the union of at most
sixz graphs of Lipschitz functions intersecting only at 0.

Proof. Let a > %, 8> 0, and h > 0 be as in Proposition 7.1. Then we can write
OF\{0}=TTur-ur?,
where
It o= {zeaF\{O}: Sty (2) cR?\F} :
1= = {z € OF\{0}: S5, () CR*\ F},
I%:={2€0F\{0}: Sgu(z) CR*\ F} .

Step 1. Let z € OFT and assume that z # 0. We now consider all possible cases.

Case 1: Either z € Tt \ (I UT%) or 2 € I~ \ (I'" UT"). We only consider the first case, since the
other one is analogous. We claim that there exists 6 > 0 such that 0F N Bs (z) C I'". Indeed, if this
were not true, then there would exist a sequence {z,} C I'” UTY converging to z, i.e., for infinitely
many n’s either S, (2,) C R*\ F or Sg 1, (2,) C R?\ F. Passing to the limit, either S, (2) C R*\ F
or Sgn(z) C R?\ F, which contradicts the fact that z € I'" \ (" UT?). Let v € S' be the unit
vector parallel to the vector that bisects the sector S, (z) and points towards R? \ F. By taking &
smaller if necessary, the assumptions of Lemma 7.4 are satisfied in OF N By (z) for some n > 0. Hence
OF NN (z) is the graph of a Lipschitz function for some open neighborhood N (z) of z.

Case 2: Either z € (T NIY)\I'~ or z € (I” NT%)\I'". Again, we only consider the first case, since
the other is analogous. The same continuity argument as before shows that there exists § > 0 such
that F N Bs () C T UT?. Therefore at each point 2’ € dF N B; (z) we have S5, , (2') C R? \ F
with 3 := min {8, a}. Then we can argue as in the previous case to conclude that 9F N A/ (z) is the
graph of a Lipschitz function for some open neighborhood N (z) of .

Case 3: z € Y\ (I'" UT'™). Still by a continuity argument there exists § > 0 such that 9F N Bs (z) C
9\ (It UT'™). The conclusion then follows as in Case 1.
Case 4: Assume that z = ro(f) € I NI'~. Since z € OFt we have r = (p}.)"(0). We shall prove

that there exists a neighborhood N (z) of z such (OF NN (2))\ {r'a(8) : r <" < p3}.(0)} is the union
of two Lipschitz graphs intersecting only at z.

First we show that It NI'™ N OF " contains at most finitely many points. Indeed, assume that
20 =190 (0p) and 21 = r10(#;1) are two distinct points in T NT~ NAFT. We claim that |29 — 21| > h



38 I. Fonseca, N. Fusco, G. Leoni, V. Millot

or |0p — 01| > min{2a — 7, §} from which the conclusion follows. To prove the claim, assume that
|z0 — 21| < h and |0y — 01| < min{2« — 7, T }. Observe that z; does not belong to Soth(zj) US, (%)
if ¢ # j, and o(6p) # o(01) since zg,21 & Tcut- Consider the triangle of vertices 0, z; and z.
Setting k to be the interior angle of this triangle at z;, we have that k > m — «a. Consequently,
20 € 81, (21) US, ;,(21) C R?\ F, which is impossible.

Assume first that (p3)~(0) = (p5)T(0). If there were a sequence z, = r,0(6,) € ' converging
to z counterclockwise, we would have for n sufficiently large |0,, — 6] < min{2a — 7, §} and thus we
would conclude, arguing as in the proof of the previous claim, that z € Sot 5 (2n), which is impossible.
Therefore, there exists € > 0 such that 9F N Ao (0 —€),0(0)] € T~ UT?. Arguing as in the previous
cases and using Remark 7.5, we conclude that OF N A (0(8 —¢),0(0)) is the graph of a Lipschitz
function for ¢ sufficiently small. A similar argument shows that 0F N A (o(0),0(0 + €’)) is the graph
of a Lipschitz function for a suitable small ¢/ > 0. In conclusion,

(OFNAlo(@—¢),0(0+N)\{r'a(d) :r <1’ <pp(0)}

is the union of two Lipschitz graphs intersecting only at z.

Finally, if (p%)~(0) < (p3) T (0), we assume without loss of generality that (p%) " (0) = pr(c(6)—).
Reasoning as in the case (p5)~(0) = (p)T(0), we deduce that OF N A (c(6 —€),0(0)) is the graph
of a Lipschitz function, while the jump segment gives the second graph.

Step 2. Assume that 0 € OF, i.e., pp(o) = 0 for some o € S'. We claim that the open set {c € S' :
pr (o) > 0} has at most three connected components. Indeed, let (oo, 01) be a connected component.
Then pr(c1) = 0. Let {r,} be a sequence of positive numbers converging to 0. Then the points
2z = rpoy are all contained in R\ F and, by (6.13) and (6.14), there exist C,, = w,, + 00W C R2\ F
such that z, € C,. Arguing as in the proof of Theorem 6.5, letting n — oo we conclude that there
exists C = w + goW C R?\ F such that 0 € dC and the half line {ro; : © > 0} crosses C. Since
C, C R?\ F for every n, we also derive that there exists oo > o1 such that A(oy1,02) C R?\ F and
the angle between o1 and o9 is greater than 7/2. In particular, pr(c) = 0 for every o € [o1,02].
Therefore the distance on S! between two connected component of {o € S : pr(c) > 0} is greater
than /2, which proves the claim.

Now let (0(6p), o(61)) be one of the connected components of {p,(c) > 0}. Note that pj.(c(fy)) =
pr(o(00)+) and pf(c(61)) = pr(c(61)—) since pr(a(fy)—) = pr(o(f1)+) = 0. Arguing as in Re-
mark 7.2 we have that at least one of the three sectors ST, 5 (0), S,1.0,(0), S5, 4, (0) is contained
in R?\ F. But since the first two intersect F', we conclude that S, 5 (0) C R*\ F. If pj.(o(6o)) = 0,
arguing as in the proof of Case 1 in the previous step, we get that there exists € > 0 such that
Sy n(2) CR*\ F for all z € 9F N Alo(6), (6o + €)]. Therefore, by Remark 7.5, we conclude that
OF NA(o(6p),0(00 +¢€)) is the graph of a Lipschitz function, for ¢ sufficiently small. On the other
hand, from the exterior Wulff condition and the fact that the interior angles of W are greater than
%, we have that o(6y) € Sr, and thus OF N A[o(6p),0(0 + €)] is the graph of a Lipschitz function.
If pL(c(6o)) > 0, then the segment from 0 to pf(c(6y))o(6p) provides the desired graph. A similar
argument applies at the angle 6, thus providing another Lipschitz graph intersecting the previous
one only at 0.

Step 3. It remains to prove that the set Sp is finite. Let ¢ € Sp and assume that pji(c) > 0. Since
o € Sp, OF does not coincide with the graph of a Lipschitz function in any neighborhood of pj.(c)o.
In view of Step 1, we then have p}.(c)o € IT NT~ NOFT, and thus {0 € Sr : pf(c) > 0} is finite
thanks to Case 4 of Step 1.

Next by Step 2 we have that the interior of {o € S! : pf(c) = 0}) is the union of at most finitely
many open arcs. Consider one such open arc (0g, 1), and observe that o9 and o1 do not belong to
Sr again by Step 2. Then assume that there exist 02,03 € S N (0g,01). Arguing as in Step 2, we
derive that the angle between the 0;’s, i = 0,1, 2, 3, are larger than 7/2. Consequently, the set (o¢, 1)
contains at most two elements in Sr, and the proof is complete. O
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Remark 7.7. From the proof of the previous theorem it is clear that Iy, is precisely given by the
finite set T NI~ NAFT to which one has to add the origin if more than one Lipschitz graph departs
from there.

Remark 7.8. If W is a polygon with internal angles greater than or equal to §, the conclusions of
the previous theorem hold for 9F N A(¢’, 0”") whenever [o0’, 0] does not contain any of the angles o,
ol,i=1,...,k considered in Remark 7.3.

8. Regularity in the strictly convex case
Throughout this section we assume that ¢ satisfies (H2) and that
(H3)’ the sublevel set {z € R? : ¢(z) < 1} is strictly convex.

A condition under which (H3)’ holds is the following: there exist € > 0 and a nonnegative positively
1-homogenous convex function v such that

¢ (a) =elal+¢(a) (8.1)

for all @ € R%. A function ¢ satisfying (8.1) is said to be elliptic. We refer to [26] and [34] for a
detailed analysis of this class of surface energies and their relevance in the physical literature.

We emphasize that, under assumptions (H2) and (H3)’, the function ¢ is convex (see Propo-
sition 8.1 below), and thus the results of Section 6 do hold. We shall prove that if (F,u) € X is
a minimizer for the penalized functional Fy,, then, apart from a finite singular set, OF \ {0} is a
C'-manifold. Moreover, the singular set may possibly contain the origin, from which at most two
Lipschitz branches of 0F may depart.

We begin with some auxiliary results. The next one will be proved in the appendix.

Proposition 8.1. Assume that ¢ satisfies (H2) and (H3)'. Then ¢ is convex and there ezists a
modulus of continuity w : [0,2] — [0, 00) such that

o (a) + ¢ (b) Z(p(a+b)+min{|a|,|b|}w(1_ﬁ.|_z|)
for all a, b € R?\ {0}.

Proposition 8.2. Assume that o satisfies (H2) and (H3)'. Then W is a C' open set.

Proof. By Theorem 3.7.3 in [38] (see also Proposition 3.3(2) in [26]), W has a unique tangent line at
any point of its boundary. Fix z € 0W. Then, in a neighborhood of z, the boundary of W is a graph
over the tangent line at z of a convex function f that is differentiable at every point. By well-known
properties of convex functions, it follows that f is actually of class C*. O

Lemma 8.3. Let ¢ satisfy (H2) and (H3)'. For every 0 < ¢ < 1 there exists 09 > 0 such that for
every z € OW and v € St satisfying v - vy (2) > €, the point z — dv belongs to W for all 0 < & < &g.

Proof. Since OW is a compact set, it is enough to show that for every zg € OW and 0 < € < 1 there
exist a neighborhood of zy and § = 6 (¢, z9) > 0 such that the statement holds in this neighborhood.
Up to a translation and a rotation, we may assume that zp = 0 and that there exist a neighborhood
U of the origin and a nonnegative convex function f € C!([—a,a]) for some a > 0 such that

£(0) = £ (0) =0 and
WwnU ={(z,f(z)): z€(—
WnU D {(z,y): = € (—a,a

\_/g
~
—
B

A
<

A
3
—

(8.2)

for some 1 > 0.
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Let 0 < 0 < min(§, 4) be such that if |z| < 2§, then |f' (z)| < § and |f(z)| < 2. Fix 29 € (—0,6)

and v € St satisfying v - v (o, f (29)) > €, or, equivalently,

vif' (zo) — ve > e/ 1+ |f' (z0)|°,

where v = (v1,12). Then for all x € (=24, 26) we have

nf' (@) —ve =wf (@) —va+ i (f'(2) = f'(20)) > e\/ L+ |f (20)]" e >0.  (83)

We claim that

[ (wo —dv1) < f(x0) — dv2 <1,

The second inequality is satisfied by the choice of §. To prove the first inequality, we use (8.3) and
the convexity of f, thus getting

f (SC()) —f (.CCO — 51/1) > f/ (.CCO — 51/1)51/1 > dvs .
Thus the claim holds, and so by (8.2) we have (zo, f (9)) — v € W. This concludes the proof. O

In the next proposition we study cuts segments. The additional hypothesis (H3)" will allow us to
obtain a result stronger than the one obtained in Proposition 7.1 for the polygonal case.

Proposition 8.4. Let ¢ satisfy (H2) and (H3)’. Let (F,u) € X be a minimizer for the penalized
functional Fy, and let 0 € Sp and z = ro € OF be such that p}. (o) < r < pr (o). Then there
exist C = w + oW, C' = w' + oW, where gq is given in Theorem 6.5, such that C, C' C R?\ F,
2€0CNIC, vo(2)-0=0,vc (2)-0 =0 and v (2) = —ve (2).

Proof. Without loss of generality, we may assume that pf(c) < 7 < pr(c). The cases r €
{p}(0), pr(0)} follow by a continuity argument.

Let {0, } be a sequence converging to o, with o,, < o, so that for n large z,, = ro,, € F. Arguing as
in the first part of the proof of Theorem 6.5, there exist C,, = w,, + 0oW C R?\ F such that z, € C,
and C,, converges in the Hausdorff metric to some C = w + goW C R? \ F with z € 9C. Since C is
of class C!, we have that vc (2) - 0 = 0. We claim that vc(z) = ot. Indeed, if vc(2) = —ot, then
for ¢t > 0 sufficiently small, the point w, := z + to- belongs to C' and, writing w, = 7,0, we may
assume that pj.(0) < r. < pr(c). Note that o, > 0. By Hausdorff convergence, w € C,, for all n
sufficiently large, and since C,, is convex, the segment S,, of endpoints w, and z, is contained in C,,.
Using the facts that 0, < 0 < o, and that pf(c) < 7, 7. < pr(0), it follows that S, intersects the
segment {r'c: pf(0) <1’ < pp(c)} C F. This contradicts the fact that C, is contained in R? \ F
and proves the claim.

In a similar way, considering {c,} converging to o, with o,, > o, we prove that there exists
C' =w' + oW C R?\ F such that z € 9C”" and ver(2) = —ot. O

Definition 8.5 (Cusp points). Given (F,u) € X and ¢ € S!, a point z = ro € OFT is called a
cusp point if there exist C = w + goW C R?2\ F, C" = w' + goW C R?\ F such that z € C N dC’
and vo (2) -0 =ver (2) -0 =0 and ve (2) = —v (%), where g is as in Theorem 6.5. The set of cusp
points in F T is denoted by Tcysp.

Remark 8.6. In view of Proposition 8.4, if 0 € Sr then p}?(o)o € Icusp. Moreover, we note that
the origin cannot be a cusp point. Indeed, if 0 were a cusp point, since the sets C' and C’ given in
Definition 8.5 are C! and F is starshaped, it would follow that F lies in the line through 0 in the
direction o. This would contradict the fact that |F| > 0. In particular, by Proposition 8.4 the origin
cannot be the endpoint of a cut segment, i.e., if pf(0) = 0 then pp(c) = 0.

Next we show that at every point of FT there exist left and right (classical) tangent vectors
according to the counterclockwise orientation, and that the number of cusp points is finite.
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Proposition 8.7. Let ¢ satisfy (H2) and (H3)'. Let (F,u) € X be a minimizer for the penalized
functional Fy,, and let z be a point on OF .

(i) If z = ro € Leysp, then OF T has a left tangent at z equal to o, and a right tangent equal to —o.

(ii) If z € OF " \ (Deusp U Ljump) and z # 0, then OF has a left and right tangent at z, while if z =0
then there exist at most two tangents forming an angle of at least .

Moreover, OF contains only finitely many cut segments and finitely many cusp points, i.e., the sets
Sr and I'cysp are finite.

Proof. (i). Let z € OF*" be a cusp point and let C' and C’ be given as in Definition 8.5. By
Remark 8.6, z # 0. Thus, up to a rotation, we may assume that z = (0,y) with y > 0 and that
ve(z) = (—1,0). Without loss of generality, we may also assume that

Jim pp (o) = i (0) - (8.4)

Take a sequence {z,} C OF converging to z from the left (i.e., counterclockwise). Hence, if z, =
(Tn,Yn), then z,, > 0 and y,, < y. Since C'is C*, the segment joining z, and z intersects dC at some
point wy, = (z,,y,,), with 0 < 2], < @, and y,, < y,, < y. Then

Z— Zn Z— Wp

= —(0,1) =o0.

|z — zn| |2 — wy] (0.1)

Thus, OF T has the left tangent o at 2. If pi (o) = pf (0), a similar argument shows that the right
tangent at z is —o. If instead pp (0) < pi (o), then o is a jump direction and the right tangent is
again —o.

(ii). Assume first that 2z # 0 and, without loss of generality, that z = p}. (¢) o, o = (0,1) and that
(8.4) holds. We argue by contradiction and assume that dF does not admit a right tangent at z.
Then there exist 0 < a < § < 7 such that, denoting by M and L the two half-lines

M:=z+{r'o(n/2—a): r >0}, L:=z+{ro(xn/2-08): 1" >0},

there exist two sequences {2} }, {z,} C OF converging to z such that

/

Zn

—z Zn —

—o(r/2—a),

z
2—-0).

7] o 20

By replacing a and 8 with 0 < a < o/ < ' < 8 < m, if necessary, and using the fact that dF is

pathwise connected (see Lemma 2.2), without loss of generality, we may assume that 2/, € 9FNM and

zn € OF N L, so that =2—= = o(7/2 — a) and 22=% = o(7/2 — 3). Denote by 71, := o(7/2 — 3) the

Tzt —2] Ten—z] —

tangential direction of L. We claim that there exists C := w + goW C R?\ F such that z € 0C N OF
and vo(z) = —71.

To prove the claim we argue as follows. For every n, let C,, := w,, + goW C R?\ F be such that
zn € 0C,. Up to a subsequence, {C}, } converges in the Hausdorff metric to some C' = w + goW such
that z € 9C. Fix e € (0,1). If ve, (z,)-71 > €, then by Lemma 8.3, z = 2z, — |z — 2z,|71 € C), whenever
|z, — 2| < &, which is impossible. If ve, (2,) 71, < —¢, then by Lemma 8.3, z,,, = 2z, +|2m — 2n |7 € C),
whenever |z — z,| < |z — 2| < d, which is again impossible. Therefore, |ve, (z,) - 71| < € for all n
large enough. Since W is C!, we have v¢, (2,) — ve(2) as n — oo, and consequently ve (2) - 7 = 0
by the arbitrariness of €. On the other hand, since 0 < 8 < m, Lemma 8.3 and the starshapedness of
F with respect to 0 imply that veo(z2) = —77-.

From this last equality, since 0 < a < 8 < 7, setting a7 := o(7/2 — @), we have that v (z) -7 <
—e¢ for some & > 0. Therefore, by Lemma 8.3, z/, = z + |2/, — z|tp € C whenever |z — 2/ | < § which
is impossible. This shows that o must coincide with 3, and so there exists a unique tangent line to
the left of z.

To prove the existence of a unique tangent line to the right of z, as before there are two possible
cases. If pj. (o) = p}. (o), we can repeat the argument just used above. If pj. (¢) < pf (o), then the
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existence of a unique tangent line at z from the right is trivial since in a small right neighborhood of
z, OF is a segment contained in the segment [p (o) 0, 2].

If 2 =0, ie., pp(c) =0 for some o € S', we argue as in the Step 2 of the proof of Theorem 7.6
to prove that the open set {0 € S! : pgr(0) > 0} has exactly one connected component. Indeed,
setting (0p,01) to be such a connected component, there exists C' = w + goW C R? \ F such that
0 € 9C and C belongs to the right of the direction o7. As consequence, there exists oo > o1 such
that A(o1,02) C R?\ F, and since C is of class C!, the angle between o1 and oy is greater than or
equal to 7. Therefore the distance on S' between two connected components of {o € S! : pL(c) > 0}
is greater than or equal to 7 and the conclusion follows, i.e., {o € S' : pL(c) > 0} = (09, 01). Then,
the two vectors ogp and —o1 are the two required tangents.

To prove the last part of the statement, we argue again by contradiction and we assume first
that there exist infinitely many cusps. Let z, = r,0, € I'cysp converging to some point z € OF T,
on — o with, say, 0, < o, and let {C,,}, {C/,} C R?\ F be translated sequences of goW such that
zn € 0C, NOC), ve, (2n) = —o and vy (2n) = oy . Passing to the limit, we conclude that there
exist C, ¢ C R?\ F, translations of goW, such that z € 0C NAC’, vc (2) = —o+ and ver (2) = o,
ie., z € Tcusp. In particular z # 0 by Remark 8.6 so that z = |z|o. The same argument used in part
(i) shows that =22 — g. On the other hand, {ro : r > 0} N C,, # () whenever n is large enough,

|z—zn]|

Z”Zn
|z—2zn|

and consequently |z| < inf{r : ro € C,}. Then arguing as in part (i), we deduce that — —0
which is a contradiction.
Finally, by Remark 8.6, for any o € Sg we have pf(0)o € [eysp, and thus Sp is finite, i.e., OF

contains finitely many cut segments. O

We now state the main regularity result for 0F.

Theorem 8.8. Let ¢ satisfy (H2) and (H3)'. Let (F,u) € X be a minimizer for the penalized
functional Fy, and zo € OF ™.

(1) If zo & Deusp and zo # 0, there exists a neighborhood N (zo) of zo such that OF NN (zg) coincides
with the graph of a Lipschitz function.

(1) If 0 € OF, there exists a neighborhood N of 0 such that OF NN is the union of at most two
graphs of Lipschitz functions intersecting only at 0.

(i11) If zo = roog € Leusp, there exist § > 0 and two Lipschitz functions h, g : (ro—9,r0] — R satisfying
g<0<h, h(rg) =g(ro) =0, h(r) > g(r) forr € (ro —6,r9) and h'_(ro) = ¢__ (r0) = 0, and
such that

{TO’O +g(r)yog : r € (ro— 96, 7’0]} U {7’00 +h(r)oy : € (rg — 6, 7’0]}

coincides with OF \ Tyt in an open neighborhood of zg.

Proof. (i). Given z = ro € 9F, r > 0, we observe that the set
N (2) =={vc(z): C=w+ W CR*\ F, z€0C}

is closed in S*. Note also that if v € N (z), then v-o < 0. Indeed, if v-o > 0, then let C' = w+ ggW C
R?\ F be such that 2z € 9C and v¢ (2) = v. By Lemma 8.3 we obtain that for some small § > 0 the
point z — do lies inside C, which is impossible.

Fix z9 = rgog € OFT \ Teusp with zo # 0, and let v_ (zp)and v4 (z9) denote the smallest and
largest element in N(zg), respectively. Note that since zo is not a cusp point, the distance in S!
between v_ (zg) and vy (2o) is strictly smaller than 7 and that N(zp) is contained in the smallest arc
in S* with endpoints v_ (2¢) and vy (20).

Let I = (v1,12) be an open arc in S! containing v_ (z9) and v (20) with H! (I) < w. We observe
that there exists § > 0 such that if |z — 29| < J, z € OF, then for all v € N (z) we have that v € I.
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0

Fig. 6. v— and v4 are the endpoints of N(zp).

Indeed, if not then there would exist {z,} C OF converging to zp and v, € N (z,,) \ I. But then, up
to a sequence, {v,,} would converge to some v € N (zg) \ I, which is impossible.

Let 7 be the midpoint of I (see Figure 6). Then the angle o := 1,7 = Ty is strictly smaller
than . Set n := 1 — %COS204 € (0,1). We claim that there exists 0 < § < 4 such that if v € S!
satisfies v -7 >, then {z —tv: 0 <t <&} CR?\ F for all z € OF N Bs(z9). Note that if the claim
holds, then by Lemma 7.4 (applied to —7 and —v in place of v and v in the lemma) we conclude
that OF NN (29) is the graph of a Lipschitz function for some neighborhood N(2g) of zg. The claim
follows from Lemma 8.3, provided we show that for any such v and z we have v - v (2) > 4 cosa. To

2
see this, note that vo(z) € I, since N(z) C I, and so

vve(z) =7 -ve(z)+ (v—7) -ve(z) > cosa— v —T7] .

Inturn, v -7 =2(1—v-7) <2(1—1n) = 1 cos? a. Therefore, v - ve(z) > 4 cosa.

(i1). Assume that 0 € OF. Then from the proof of Proposition 8.7 we know that the set {pz(c) > 0}
has just one connected component (o (0),0(0")), with 0 < 6" — 0" < 7. If (p5)" (') = 0 set

Ny (0) := {1/ = lim v, : vy € N(23), 2n = m0(0,) € OF \ {0}, r, — 07, 0, — 9'} .
Arguing as in the proof of (i) (use Ny (0) in place of N(zy) and apply Remark 7.5 instead of
Lemma 7.4), we conclude that there exists e > 0 such that 0F N A(c(¢),0(6’ +¢)) is the graph
of a Lipschitz function. The case (p5)T(6’) > 0 is trivial.

A similar argument shows the existence of another Lipschitz graph departing from 0 and contained
in some sector Afo (0" — ¢),0(0”)]. Then the conclusion follows from Remark 8.6 which excludes the
possibility of cut segments starting from the origin.

(iii). Assume first that pr(09) = pj(00). Observe that, since 2o a cusp point, v_ (29) = —og and
vy (20) = og form an angle equal to m and thus we cannot argue as before. Fix an open arc I
in S! containing v_ (29) with H! (I) < 7, and note that there exists a right neighborhood of 2
(according to the counterclockwise orientation) such that for all 2 € F in this neighborhood and
for all v € N (z), we have v € I. Indeed, from Proposition 8.7 it follows that if {z,} C OF converges
to zo from the right and v,, € N (2,), then v, — v_ (zp). The same argument used in part (i) (with
the one-sided version of Lemma 7.4 given in Remark 7.5) shows that there exists o1 > o¢ such that
OF N A(og,01) coincides in a neighborhood of zy with the graph of a Lipschitz function h defined
in {rog : r € [rg — §,r0]}. Similarly, there exists o3 < og such that F N A(o9,0p) coincides in a
neighborhood of zy with the graph of a Lipschitz function g. The fact that A’ (r9) = g_ (r9) is again
an immediate consequence of Proposition 8.7.
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Finally if pn(00) < pj(0o0) the proof is even simpler since one of two Lipschitz graphs now
coincides with the jump segment with endpoints py(c¢)oo and pj(c0)oo. m|

In the remainder of this paper we assume that W is the bulk energy density of a linearly isotropic
material, i.e.,

1
W (E) = §A[tr(E)]2 + ptr (E?)
where A and p are the (constant) Lamé moduli with

w>0, p+A>0.

The proof of following theorem is similar to the one of Theorem 3.12 in [15] and thus we omit it. Note
that Step 5 in that theorem is not needed in our case.

Theorem 8.9 (Blow-Up). Let ¢ satisfy (H2) and (H3)'. Let (F,u) € X be a minimizer for the
penalized functional Fy,. Assume that zg € OFNBo\ (Leus U Lcusp). Then there exist a constant ¢ > 0,

1
a radius ro and an exponent 3 < a <1 such that

/ Vul? dz < er?® (8.5)
B (z0)\F

for all0 < r <.

From Theorem 8.9 we now obtain an improved regularity of OF near its regular points.

Theorem 8.10. Let ¢ satisfy (H2) and (H3)'. Let (F,u) € X be a minimizer for the penalized
functional Fy,. Assume that zg € OF N By \ (Deut UTlcusp) and zo # 0. Then OF coincides in a
neighborhood of zy with the graph of a function of class C*.

Proof. By Theorem 8.8 there exists an open neighborhood A of zy such that 8F NN is the graph
of a Lipschitz function with Lipschitz constant L. Fix 71 > 0 such that B, (z0) € Bo N N. By a
standard extension argument we may extend u in By, (z0) to a function @ in such a way that for all
0<r<ry,

/ |Va|?dz < C(L)/ |Vu|*dz, (8.6)
Br(z0) By (20)\F
where the constant ¢(L) is independent of r and only depends on L. We also recall that by Proposi-
tion 8.7, OF admits a left and a right tangent vector at zg, respectively 7; and 7,.. To fix the ideas,
we assume without loss of generality that zo = (x¢,0) with 2y > 0. Then 7, = 0(6;) and 7. = o(6,)
for some 6,0, € [0, 7]. From the exterior Wulff condition and the fact that W is C*!, we infer that
0; < 0,.. Moreover, since JF is a Lipschitz graph in a neighborhood of zy, we have 6, — 0; < w. Now
we assume by contradiction that the two tangents are distinct, i.e., 8 := 6, — 6; > 0 (see Figure 7).
For r > 0 (sufficiently small) OF N 0B, (zo) contains exactly two points, say, z., zi. Let ., 7/ be
the open curves on OF N B, (zp) with endpoints 2/ and zp, and z!/ and zg, respectively. Denote by S,
the open segment (z7,z,), and «; the angle z;z/o\z;’, which is converging to m — 6 as r — 07. Define

a competing set F' such that
OF \ B,(20) = F \ (v, U~)), OF N By(2) =S, . (8.7)

Note that the assumption zg # 0 is necessary for F to be starshaped with respect to the origin. One
may easily check that F' € A. Let v, denote the normal to S, interior to the triangle of vertices z.., zo
and 2!/, and let v/, respectively v/, be the normal to the segment [z7., 2], respectively [z, zo], pointing



Material voids in elastic solids with anisotropic surface energies 45

Fig. 7. The construction of F in the proof of Theorem 8.10.

toward the exterior of the same triangle. We observe that |z — zo|v). + |2/ — z0|v)) = |z]. — 2/|v,. Then,
using Lemma 6.2, Proposition 8.1, Theorem 8.9, and (8.6), we have

flo(Fau)*}—lo(ﬁaa)Z/

QAR

¢ (V) dHl7|Z;72:|(p(l/r)fgo|ﬁAF}76/ |Va|? dz
BT(ZU)

> |z — 20l (1) + 12 — 20l 0 (V) — |27 — 2| @ (vr)

— wlor? fc/ |Vul|? dz
BT(ZO)\F

! /" 2a
>rw(l—v. -y

") — mlor? — cr

for a constant ¢ > 0 independent of r. Since o > % and .- — cosf < 1 asr — 07, for r sufficiently
small we have Fy, (F,u) — Fg,(F,%) > 0, which is a contradiction to the minimality of (F,u). This
contradiction proves the existence of a unique tangent line.

Since OW is C', using the exterior Wulff condition we infer that there exists a unique C' =
w+ 0oW C R?\ F such that zg € C and vo(20) = —vr(20). Then the continuity of vp(z0) in a
neighborhood of z easily follows. O

We now show that if ¢ is elliptic, then the regularity of OF can be further improved.

Theorem 8.11. Assume that ¢ satisfies (8.1). Let (F,u) € X be a minimizer for the penalized
functional Fg,. Assume that zo € OF N By \ (Deut UTlcusp) and zo # 0. Then OF coincides in a
neighborhood of zy with the graph of a function of class C*® for every 0 < a < %

Proof. By Theorem 8.10 we have that OF coincides in a neighborhood of zg with the graph of a C!
function. Hence (8.5) holds in a stronger form, see Theorem 3.16 in [15], namely for every 5 € (%, 1)
there exist a neighborhood U CC By \ {0} of 2o, and two constants ¢y > 0, 19 > 0 such that for every
z € OF NU and for every 0 <7 < rg,

/B o |Vul* dw < cor?? . (8.8)

Since dF N U is a graph of a C'—function, we can find 0 < rj < ro and extend as in the proof of
Theorem 8.10 the function u to a function % defined in an open neighborhood U’ cC U of zg in such
a way that for all z € OF NU’ and all 0 < r < 7,

/ Vil dw < c(L)/ Vul? dw (8.9)
B, (z)

BT(Z)\F
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for some constants ¢(L) > 0 independent of z and r. Moreover, by taking r{, smaller if necessary, we
may assume that OF crosses dB(z,1) at exactly two points for all z € OF NU’ and all 0 < r < ry.
Fix z € OF NU’, and for every 0 < r < r{ let z/, 2/ be the two points in OF N OB (z,7).
Then let ~,, 7/ be the two arcs of endpoints z.. and z, and 2z and z respectively, such that /. U
v = OF N B(z,r). Define F as in (8.7) and let v/, v/ be the normals to the segments (z/,z) and
2!, 2) respectively, pointing toward the exterior of the triangle of vertices 2/, z9 and 2. Then, usin
i tivel inting t d the exterior of the triangle of verti ! d z!/. Th ing

T

Lemma 6.2, Proposition 8.1, (8.8) and (8.9), we estimate
02 Fiy (o) = Fo(F) 2 [ o () it = |z = 2l 0 () = |27 = 2] 0 ()
YU
—KO‘}?’AF’—C/ |Va|? dw

BT(Z)

> e (v, Uy) — 2er +/ (Vi) dHY — |2] — 2 ()

vy

— |2/ — 2|y (V) — mlor? — c/ |Vu|? dw

>eH (v Uy) = 2er — wlor? — er?P

for a constant ¢ > 0 independent of z and 7. Hence H! (OF N B,.(z)) — 2r < Cr? for r sufficiently
small uniformly in z € U’. By Proposition 6.4 in [5] and the proof of Theorem 6.1 in [5], this fact

implies that 9F NU’ is of class O with a = 8 — 3. O

9. Appendix
Let us consider
f(0,p,q) = 2(c(6),p,9) ,
where @ is the function defined in (3.4), and note that the biconjugate f** (8, p, ) of f (6, p, -) coincides
with
7 (0,p.9) =2 (0 (0),p,9) , (9.1)

where ® is given by (3.5).
Observe that if F' € Arip, then

2m

| etwiyart = [ 16,00 0). 01 (0) a0,

oF 0

where we have used Lemma 2.5, the area formula, and the 1-homogeneity of .

Lemma 9.1. Let ¢ satisfy (H2). Then for all (09, po) and for all € > 0 there exists § > 0 such that

|f** (95p7 q) - f** (HOaPan” <e (1 + |q|)
for all (0, p) with |0 — 0y| <6 and |p —po| <6 and all ¢ € R.

Proof. Since f**(0,p,-) coincides with the convex envelope of f (6, p, ), we have

f70.p.q) =inf {Af(0,p,q1) + (1= A) f(0.p.q2) : A€[0,1] , 1, 2 €R, Aa + (1= A) g2 =g} .
Fix (0o, po) and € > 0, and let ¢ € R. Find A € [0,1], ¢1, g2 € Rsuch that Ag; + (1 — A) g2 = ¢ and

T (00,p0,9) > Af (B0,p0,q1) + (1 = X) f (0o, p0,q2) — % . (9.2)

By (H2) we have

m Mg+ (L= A)|g2]) = 5 < f* (00, p0,9) < f(00,p0,9) <M (|po| + |q]) - (9.3)

| ™
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From (9.2) and (9.3) we obtain, writing ¢ and o instead of o(6),(6y), and setting L = Lip ¢,

J0,p,9) — £ (60, p0,q) < M (0.p,q1) + (L= X) f(0,p,q2) — Af (6o, po, q1)

— (L= X) f (0o, p0,q2) +
€
2

Do ™

< L (Jpo — pooo| + (N |a1] + (1 = M) [ga]) [o - — a0™|) +

M € €
<L - - Lot — )+ .
< (Ipa podol + — (Ipol + la]) o= — oo™ | + Qm) +3
Then the result follows by taking § sufficiently small and by interchanging the roles of (6, p,q) and

(HOap()aq)' O

Theorem 9.2. Let ¢ be a Lipschitz continuous function satisfying (H2). Then for every nonnegative
2m-periodic Lipschitz function p,

2m 2m

77 (6.0(6), 0 (6)) d6 = int { imint [ F(0.pn (0). 0, (6)) dO: po € WHS(R),

n—oo 0

0

pn >0, py is 2w-periodic, pp, — p in Wl’OO(R)} . (9.4)

Proof. Note that since p > 0 and f(6,0,0) = 0, by a truncation argument, the infimum on the right
hand side of (9.4) coincides with the one obtained by removing the constraint p, > 0. Thus, the
representation (9.4) follows directly from Theorem 3.8 in [25]. m|

We conclude with the proof of Proposition 8.1.

Proof of Proposition 8.1. Since the set K := {p < 1} is strictly convex, and ¢ is positively
1-homogeneous, for any a,b € R? \ {0} with a # b, the point

atb pla) _a p) b

pla) + o)  pla)+9(b) pla) )+ (b))
belongs to the interior of K unless b = ta for some ¢ > 0. Hence, still by homogeneity,
pla+b) < pla) + ¢(b) (9.5)

for a,b € R? unless a = 0 or b = ta for some ¢t > 0. In this later case, the inequality above is an
equality, and the convexity of ¢ follows.

Since ¢ satisfies (9.5), a compactness argument shows that for any € > 0 there exists § > 0 such
that if a, b € R? are such that ¢ (a) = ¢ (b) = 1 and ¢ (a — b) > ¢, then

w(a;b) <1-9.

Hence there exists a modulus of continuity wy : [0,2] — [0, 00) such that if ¢ (a) = ¢ (b) = 1 then

pa) +o () Z¢(at+b)+wi(pla—0)).

Fix A € [0, %} The previous inequality and the convexity of ¢ yield

“;b) < (1209 () + A0 (a+b)

S@ =20 () +A(p(a) + (1) —Awi(p(a—b) =1—-Awi(p(a—b)).

Similarly, for A € [%, 1} we get

<p()\a+(1/\)b)<p<(12/\)b+2)\

eAa+ (1= <1—(1=Nw;i(p(a—D0)).
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From the last two inequalities we infer that if ¢ (a) = ¢ (b) =1 and A € [0, 1], then
Ap(a)+(1=Neb)=1>pMa+(1—=A)b)+min{\1—-A}tw; (¢(a—D>)).

(@) \we derive that

Now let a, b € R?\ {0}. By the previous inequality and (H2), setting A = m

p(a) + ¢ (b) = (¢(a) + (b)) (Np (ﬁ) +(1=A)e (ﬁ))
250 () s o (- 5)

=¢(a+b)+min{p(a),¢(b)}w <‘P (ﬁ - ﬁ))

> (o 0) + mumin ol pl)r (m |2 - 2= )

To conclude it remains to show that for every € > 0 there exists § > 0 such that if ‘ > e,

a b
wla) — @(d)
then 1 — \%I . % > §. We argue by contrdiction assuming that this is not true. Then there exist € > 0

2 —an _ _ _by an by an
and a,, b, € R*\ {0} such that Bl e ey L ey
pla)=p()=1,]a—bl >¢, and |Z—"| . % — 5 I_Z\ = 1. The last condition implies that a = tb for

some ¢ > 0. But since ¢ (a) = ¢ (b) = 1, we have that ¢t = 1, which contradicts the fact |a — b| > . O

— a, % — b. Hence,
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