
HOMOGENIZATION OF FIBER REINFORCED BRITTLE

MATERIALS: THE EXTREMAL CASES

MARCO BARCHIESI & GIANNI DAL MASO

Abstract. We analyze the behavior of a fragile material reinforced by a
reticulated elastic unbreakable structure in the case of antiplane shear. The
microscopic geometry of this material is described by means of two small
parameters: the period ε of the grid and the ratio δ between the thickness
of the fibers and the period ε. We show that the asymptotic behavior as
ε → 0+ and δ → 0+ depends dramatically on the relative size of these
parameters. Indeed, in the two cases considered, i.e., ε ≪ δ and ε ≫ δ, we
obtain two different limit models: a perfectly elastic model and an elastic
model with macroscopic cracks, respectively.
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1. Introduction

The aim of this paper is to study the asymptotic behavior of a fragile material reinforced
by a reticulated elastic structure (the dark and the white part in Figure 1, respectively) in
the case of antiplane shear. The reinforcement consists of thin unbreakable fibers disposed
periodically along two orthogonal directions of the plane. Two parameters are involved:
the period ε of the grid and the ratio δ between the thickness of the fibers and the period ε.

We show that the overall behavior of the structure depends dramatically on these rel-
ative size of the parameters. If δ/ε → +∞, the asymptotic behavior is perfectly elastic
without cracks. Instead, if δ/ε → 0+, we obtain in the limit an elastic material with
macroscopic brittle cracks.

Let Ω ⊆ R
2 be the reference configuration, representing a cross section of the material.

Since we are taking into account the presence of cracks, the natural mathematical setting
for our problem is the space GSBV (Ω), introduced by De Giorgi and Ambrosio [9], for
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Figure 1. A representation of the composite material.

which we refer to Section 2. The behavior of the composite can be described by the
following family of functionals:

Fε(u) :=





∫

Ω
|∇u(x)|2 dx+H1(Su) if Su ⊆ Ωε,

+∞ otherwise,
(1.1)

where Ωε := Ω ∩ ε
(
[δ, 1 − δ]2 + Z

2
)
, H1 is the one-dimensional Hausdorff measure, and

δ = δ(ε) ∈ (0, 1/2).
The scalar function u denotes the displacement, while its discontinuity set Su represents

the crack. In addition to the integral over Ω, which gives the standard stored energy for
linear elasticity in the antiplane case, Fε includes a length term, which accounts for the
energy needed to open the crack. The set Ωε represents the brittle region where the crack
could develop, while the set Ω \ Ωε represents the unbreakable fibers inside the material.

Our purpose is to determine the Γ-limit Fhom of Fε as ε → 0+ and to distinguish the
different asymptotic models according to the limit ϑ of δ(ε)/ε. More precisely, we analyze
the extremal cases

ϑ = +∞ and ϑ = 0.

In the first case, we show that

Fhom(u) =





∫

Ω
|∇u(x)|2 dx if u ∈ H1(Ω),

+∞ otherwise.

This functional describes a material without cracks. Indeed, even if there are microscopic
cracks in the material at scale ε, they cannot merge into a macroscopic crack and have no
effect on the limit, since the elastic fibers separate the brittle regions in an effective way.

In the second case we prove that

Fhom(u) =

∫

Ω
|∇u(x)|2 dx+H1(Su).

This means that, despite the presence of the unbreakable fibers, the collective behavior of
microscopic cracks is equivalent in the limit to a macroscopic crack.
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In the intermediate case ϑ ∈ (0,+∞), under the assumption that the Γ-limit has an
integral representation, we obtain that the surface term depends also on the size [u] of the
jump.

Remark 1.1. Homogenization in SBV setting has been developed in previous works [5, 3].
Yet, these results do not apply to our case, because the surface energy in (1.1) does not
satisfy their hypotheses.

Remark 1.2. Another interesting situation occurs when the parameter δ is fixed and
independent of ε and the family of functionals has the form

Fε(u) :=





∫

Ω
|∇u(x)|2 dx+ a(ε)H1(Su) if Su ⊆ Ωε,

+∞ otherwise,

where a(ε) → 0+ as ε → 0+. In this case the asymptotic behavior as ε → 0+ leads to a
damage problem, recently studied in [12, 13].

2. Problem setting

In the following we assume that Ω is a bounded open subset of R2 with Lipschitz boundary.
We recall here some notation about the space of special functions of bounded variation on
Ω, briefly SBV (Ω), and we refer to [1] for the definitions and the standard theory.

If u ∈ SBV (Ω),

• Du is the distributional gradient of u,
• ∇u is the approximate gradient of u,
• Su is the approximate discontinuity set of u,
• νu is the generalized normal to Su,
• u± are the traces of u on both sides of Su,
• [u] := |u+ − u−| is the size of the jump.

The same notation is used when u ∈ GSBV (Ω), the space of generalized special functions
of bounded variation on Ω. We recall that u ∈ GSBV (Ω) if and only if u : Ω → R is
measurable and (u ∧m) ∨ (−m) ∈ SBV (U) for every m ∈ N and every open set U with
U ⊆ Ω.

We shall frequently use the spaces

SBV 2(Ω) :=
{
u ∈ SBV (Ω) : ∇u ∈ L2(Ω,R2) and H1(Su) < +∞

}
,

Up(Ω) :=
{
u ∈ GSBV (Ω) ∩ Lp(Ω) : ∇u ∈ L2(Ω,R2) and H1(Su) < +∞

}
,

where p ∈ [1,+∞). Note that Up(Ω) ∩ L∞(Ω) ⊆ SBV 2(Ω).
We say that a sequence uk in SBV 2(Ω) converges weakly to some u ∈ SBV 2(Ω), and

we write uk ⇀ u in SBV 2(Ω) if





uk is bounded in L∞(Ω),

uk → u strongly in L1(Ω),

∇uk ⇀ ∇u weakly in L2(Ω,R2),

H1(Suk
) is bounded.
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We define the Mumford-Shah functional MS : Lp(Ω) → [0,+∞] as

MS(u) :=





∫

Ω
|∇u(x)|2 dx+H1(Su) if u ∈ Up(Ω),

+∞ otherwise.

We make explicit the dependence on the domain Ω with the notation MS(·,Ω).
Remark 2.1. Let uk be a sequence in Up(Ω) such that uk → u strongly in Lp(Ω) and
MS(uk) is bounded. By the compactness result in GSBV (Ω) stated in [1, Theorem 4.36],
it follows that u ∈ Up(Ω), ∇uk ⇀ ∇u weakly in L2(Ω,R2), and lim infk MS(uk) ≥ MS(u).

Finally, we consider the family of functionals Fε : L
p(Ω) → [0,+∞] defined by

Fε(u) :=





∫

Ω
|∇u(x)|2 dx+H1(Su) if u ∈ Up(Ω) and Su ⊆ Ωε,

+∞ otherwise,
(2.1)

where Ωε := Ω ∩ ε
(
[δ, 1 − δ]2 + Z

2
)
and δ = δ(ε) ∈ (0, 1/2).

The goal of this paper is to analyze the Γ-limit, as ε → 0+, of Fε in the space Lp(Ω)
endowed with the strong topology. We refer to [4] for the definition and properties of
Γ-convergence. In Theorem 4.1 and Theorem 5.1 we show that the Γ-limit depends on
ϑ := limε δ(ε)/ε.

Throughout the paper the characteristic function χA of a set A is defined by χA(x) = 1
for x ∈ A and χA(x) = 0 for x /∈ A. The Lebesgue measure on R

2 (resp., R) is denoted
by L2 (resp., L1).

3. A lower bound estimate

The aim of this section is to provide a lower bound for the Γ-limit of Fε on the characteristic
functions of half-spaces, when the domain Ω is the unit square Q := (−1/2, 1/2)2 . We will
use this estimate in Section 4 for the perfectly elastic case.

Theorem 3.1. Assume Ω = Q. Given t ≥ 0 and ν ∈ R
2, with |ν| = 1, we define the

function ut,ν : Q → R by

ut,ν := tχ{x∈Q:x·ν≤0}.

Then, for any sequence εk → 0+ and any sequence uk in Lp(Q) such that uk → ut,ν
strongly in Lp(Q), we have the estimate

lim inf
k→+∞

Fεk(uk) ≥ c0
√
ϑ t, (3.1)

where c0 > 0 is an absolute constant.

In the proof of Theorem 3.1 we will use the following two lemmas. The first is a well-
known trick that allows us to modify a sequence uk keeping the limit. The second is an
ad hoc adaptation of the idea used in [11, Subsection 4.2]. For the readers convenience,
we prefer to present here a simplified proof with suitable modifications.

Lemma 3.2. Let B be a Borel subset of (0, 1)2, with L2(B) > 0, and let εk → 0+. Given

two sequences uk and vk in L1(Ω) such that uk → u and vk → v strongly in L1(Ω), suppose
that

uk = vk in Bk := Ω ∩ εk(B + Z
2).

Then u = v L2-a.e. on Ω.
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Proof. By the Riemann-Lebesgue lemma, χBh
tends to b := L2(B) weakly* in L∞(Ω).

Since the sequence (uk−vk)χBk
converges to (u−v)b weakly in L1(Ω), and (uk−vk)χBk

= 0
L2-a.e. on Ω, we deduce that (u − v)b = 0 L2-a.e. on Ω. Since b > 0, we conclude that
u = v L2-a.e. on Ω. �

Lemma 3.3 (patching lemma). Let Q := (−1/2, 1/2)2. For any u ∈ SBV 2(Q)∩L∞(Q),
with H1(Su) ≤ 1/28, there exists v ∈ SBV 2(Q) ∩ L∞(Q) such that

(i) v is constant in (−1/2, 1/2) × (−2/7, 2/7),
(ii) v = u in (−1/2, 1/2) × [(−1/2,−3/7) ∪ (3/7, 1/2)],
(iii) ‖∇v‖L2(Q,R2) ≤ c1 ‖∇u‖L2(Q,R2) for an absolute constant c1 > 0,

(iv) ‖v‖L∞(Q) ≤ ‖u‖L∞(Q),

(v) Sv ⊆ Su,

(vi) if u(−1/2, ·) = u(1/2, ·) on (−1/2, 1/2), the same property holds for v.

Proof. A similar result in Sobolev spaces can be obtained by taking the constant in (i)
equal to the mean value m of u on Q, and defining v := φ(u−m) +m for a suitable cut-
off function φ. Estimate (iii) follows from the Poincaré-Wirtinger inequality. The same
technique cannot be applied directly in the SBV setting, because the Poincaré-Wirtinger
inequality provided by De Giorgi, Carriero and Leaci [10, Theorem 3.1] requires a trunca-
tion of u. If we truncate on the whole square Q, condition (ii) may not be satisfied. On
the other hand, if we truncate on only an intermediate strip, we may introduce additional
cracks, in contrast with condition (v).

Therefore, the first step in our proof is a careful choice of the truncation strip, based
on the behavior of the one-dimensional slices. Then the estimate on the oscillation will be
obtained from the Poincaré-Wirtinger inequality for Sobolev functions in dimension one.

Step 1: Truncation. Since we are going to use the slicing procedure, we need to fix
the precise representative u∗ of u as defined in [1, Definition 3.63 and Corollary 3.80]. We
make use of the following notation:

• Lr := (−1/2, 1/2) × {r} and Lr := {r} × (−1/2, 1/2), r ∈ R,
• I :=

{
r ∈ (5/14, 3/7) : Lr ∩ Su∗ = Ø

}
,

• J :=
{
r ∈ (−3/7,−5/14) : Lr ∩ Su∗ = Ø

}
,

• H :=
{
r ∈ (−1/2, 1/2) : Lr ∩ Su∗ = Ø

}
,

• oscr(u
∗) := supLr

u∗ − infLr u
∗ the oscillation of u∗ along Lr, r ∈ (−1/2, 1/2),

• oscr(u∗) := supLr u∗ − infLr u∗ the oscillation of u∗ along Lr, r ∈ (−1/2, 1/2).

Since H1(Su) ≤ 1/28 we have L1(I) ≥ 1/28, L1(J) ≥ 1/28, and L1(H) ≥ 27/28.
Moreover, by [1, Theorems 3.28, 3.107, and 3.108], for L1-a.e. r ∈ I the function u∗(·, r)
is absolutely continuous with derivative given L1-a.e. by ∂x1

u∗(·, r). Then

oscr(u
∗) ≤

∫ 1

0
|∂x1

u∗(x1, r)| dx1,

and so, integrating over I, we obtain
∫
I oscr(u

∗)dr ≤ ‖∇u‖L1(Q,R2). As L1(I) ≥ 1/28, by

the mean value theorem there exists r1 ∈ (5/14, 3/7) such that

oscr1(u
∗) ≤ 28 ‖∇u‖L1(Q,R2) .

Similarly, it is possible to prove that there exist r2 ∈ (−3/7,−5/14) and r3 ∈ (−1/2, 1/2)
such that oscr2(u

∗) ≤ 28 ‖∇u‖L1(Q,R2) and oscr3(u∗) ≤ 2 ‖∇u‖L1(Q,R2). Since L := Lr1 ∪
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Figure 3

Lr2 ∪ Lr3 is connected, if mu∗ := (supL u∗ + infL u∗)/2, we have that

|u∗(x)−mu∗ | ≤ cu∗ for H1-a.e. x ∈ L,

where cu∗ := 30 ‖∇u‖L1(Q,R2).

In this way we can truncate the function u∗ on (−1/2, 1/2)× [r2 , r1] (the light gray part
of Figure 2) without generating a new crack along Lr1 and Lr2 :

w :=




[u∗ ∧ (mu∗ + cu∗)] ∨ (mu∗ − cu∗) in (−1/2, 1/2) × [r2, r1],

u∗ in (−1/2, 1/2) × [(−1/2, r2) ∪ (r1, 1/2)].

Obviously w satisfies (ii)-(vi) and |w(x)−mu∗| ≤ 30 ‖∇u‖L1(Q,R2) for x2 ∈ (−5/14, 5/14).

Step 2: Cut-Off. Let φ ∈ C1((−1/2, 1/2), [0, 1]) be a cut-off function such that

φ(t) =

{
0 if t ∈ (−2/7, 2/7),

1 if t ∈ (−1/2,−5/14) ∪ (5/14, 1/2),

and |φ′

(t)| ≤ 15. If we define the function v on Q as v(x) := φ(x2)[w(x)−mu∗] +mu∗ , by
construction v satisfies (i), (ii), and (iv)-(vi). In particular v is constant on (−1/2, 1/2)×
(−2/7, 2/7) (the light gray part of Figure 3).

Let U := (−1/2, 1/2)×[(−5/14,−2/7)∪(2/7, 5/14)]. Since∇v = φ∇w+(w−mu∗)(0, φ′)
and ‖φ′(w −mu∗)‖L∞(Q) ≤ 15 supU |w −mu∗ | ≤ 450 ‖∇u‖L1(Q,R2) ≤ 450 ‖∇u‖L2(Q,R2), we

have that v satisfies also (iii): ‖∇v‖L2(Q,R2) ≤ 451 ‖∇u‖L2(Q,R2). �

Proof of Theorem 3.1. Let Θ := lim infk Fεk(uk). If Θ is finite, by extracting a subse-
quence we may assume that the liminf is a limit, that uk ∈ Up(Q), and that MS(uk) is
bounded. By truncating uk between 0 and t, we may also have uk ∈ SBV 2(Q) ∩ L∞(Q)
and ‖uk‖L∞(Q) bounded.

The plan of the proof is the following. In the first step we construct a new sequence uperk ,
with uperk (x1+εk, x2) = uperk (x1, x2), whose energy is controlled from above byMS(uk) and
whose limit uper has the special form uper = tχ(−1/2,1/2)×(−1/2,a) for some a ∈ (−1/2, 1/2).

In the second step we regularize uperk in the squares of size εk where the jump set is very
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small with respect to εk. In this way we construct a new periodic sequence uregk , with the
same limit uper, whose energy is still controlled from above by MS(uk), and whose cracks
are now concentrated only in a bounded number of horizontal strips of height εk. The
special form of the functions uregk and uper will allow us to prove estimate (3.1) for uregk ,
and the control of the energies will give (3.1) for uk.

We assume initially that

ε−1
k is an even integer. (3.2)

Step 1: Symmetrization. With suitable ninety degree rotations, we can suppose that
ν = (cos γ, sin γ) with γ ∈ [π/4, 3π/4]. We fix a small η > 0 and we choose a sequence
λk → +∞ such that

λk

∫

Q
|ut,ν − uk|p dx ≤ η. (3.3)

For any integer j ∈ {−ε−1
k , . . . , ε−1

k − 1} we consider the functional

F k
j (v

(1), v(2)) := MS(v(2),Xk
j ) + λk

∫

Xk
j

∣∣v(1) − v(2)
∣∣pdx,

defined for v(1), v(2) ∈ SBV 2(Q), whereXk
j denotes the vertical strip (j εk/2, (j+1)εk/2)×

(−1/2, 1/2).
For any k ∈ N let jk be an integer such that

F k
jk
(ut,ν , uk) = min

{
F k
j (ut,ν , uk) : j ∈ {−ε−1

k , . . . , ε−1
k − 1}

}
,

and let uperk (resp., wk) be the only extension of uk|Xk
jk

(resp., ut,ν |Xk
jk

) to R× (−1/2, 1/2)

that is symmetric with respect to all vertical lines x2 = jεk/2 with j ∈ Z. Note that
Super

k
⊆ εk

(
[δk, 1− δk]

2 + Z
2
)
and that

uperk (x1, x2) = uperk (x1 + εk, x2) (3.4)

for every (x1, x2) ∈ R× (−1/2, 1/2) and every k ∈ N.

Xk
jk

Sut,ν

Swk

Figure 4
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Obviously we have MS(wk, Q) = MS(ut,ν , Q). Moreover, from the minimality of Xk
jk

and (3.3) we deduce that

MS(uperk , Q) + λk

∫

Q

∣∣wk − uperk

∣∣p dx = 2ε−1
k

[
MS(uk,X

k
jk
) + λk

∫

Xk
jk

|ut,ν − uk|p dx
]

= 2ε−1
k F k

jk
(ut,ν , uk) ≤

ε−1

k
−1∑

j=−ε−1

k

F k
j (ut,ν , uk) = MS(uk, Q) + λk

∫

Q
|ut,ν − uk|p dx

≤ MS(uk, Q) + η. (3.5)

Since wk and uperk are also bounded in L∞(Q), we can apply the compactness result in

SBV (Q) stated in [1, Theorem 4.8], obtaining the existence of w and uper in SBV 2(Q) such
that (up to subsequences, not relabeled) wk ⇀ w and uperk ⇀ uper weakly in SBV 2(Q).
From (3.5) we deduce also that

sup
k

{
λk

∥∥wk − uperk

∥∥p
Lp(Q)

}
< +∞.

Since λk → +∞, we conclude that w = uper. Now let gk : (−1/2, 1/2) → (−1/2, 1/2) be
the Lipschitz function on (−1/2, 1/2) whose graph is Swk

(see Figure 4). The oscillation
of gk is bounded by εk |cot γ| /2 and, therefore, up to a subsequence (not relabeled), gk
converges uniformly to a certain constant a. If γ ∈ (π/4, 3π/4), then a ∈ (−1/2, 1/2).
Instead, if γ = π/4 or 3π/4, with the previous construction we could have a = ±1/2.
To avoid this possibility, when γ = π/4 or 3π/4 we slightly change the construction of
uperk . Recalling that ε−1

k is an even integer, we choose the vertical strips Xk
j only in

(−1/4, 1/4) × (−1/2, 1/2) so that a ∈ [−1/4, 1/4]. In this case (3.5) has to be modified
and we get

MS(uperk , Q) + λk

∫

Q

∣∣wk − uperk

∣∣p dx ≤ 2MS(uk, Q) + 2η. (3.6)

Given ξ > 0, for k sufficiently large

wk(x) =

{
0 if x ∈ (−1/2, 1/2) × [a+ ξ, 1/2),

t if x ∈ (−1/2, 1/2) × (−1/2, a − ξ],

therefore uper = tχ(−1/2,1/2)×(−1/2,a).

Step 2: Regularization. We smooth out uperk on those squares where Super
k

is small by

using Lemma 3.3. For any i, j ∈ Ik := {−ε−1
k /2, . . . , ε−1

k /2 − 1} we define the following
sets:

• Qi,j := εk(0, 1)
2 + (iεk, jεk),

• Q
′

i,j := εk ((0, 1) × (1/14, 13/14)) + (iεk, jεk),

• Q
′′

i,j := εk ((0, 1) × (3/14, 11/14)) + (iεk, jεk),

• Tj := (−1/2, 1/2) × (jεk, (j + 1)εk).

Note that by the periodicity property (3.4), if

H1(Super
k

∩Qi,j) < εk/56 (3.7)

for a certain (i, j), then H1(Super
k

∩ Qh,j) < εk/56 for all h ∈ Ik, i.e., condition (3.7) is

satisfied by all squares in the strip Tj . Let Jk be the set of the indices j ∈ {1−ε−1
k , . . . , ε−1

k −
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2} such that all squares in the strips Tj−1, Tj and Tj+1 satisfy (3.7). Moreover, let

L1
k, . . . , L

mk

k be the connected components of Lk := int
(⋃

j∈Jk
T j

)
. We enumerate these

blocks from bottom to top.
Thanks to Lemma 3.3, together with a rescaling argument, in every square Qi,j satisfy-

ing (3.7) we can patch uperk on Q
′

i,j so that it becomes smooth (because constant) in Q
′′

i,j

(see Figure 5). We remark in particular that by keeping the periodicity condition (3.4),
we do not create new cracks along the vertical boundary of the squares Qi,j. Moreover,
since after this patching the Mumford-Shah energy remains bounded, by the compactness
result in SBV (Q) stated in [1, Theorem 4.8] we may assume that the modification of uperk

still converges weakly in SBV 2(Q). Since the sequence is unchanged on Qi,j \Q
′

i,j , thanks
to Lemma 3.2 the limit remains uper.

Q
′′

i,j

Figure 5

Q
′′

i,j − (0, εk/2)

Figure 6

For j ∈ Jk, since H1(Super
k

∩ (Qi,j ± (0, εk/2))) < εk/28, we can use Lemma 3.3 also in

Qi,j ± (0, εk/2) to further modify uperk , so that the modified function has no cracks in Tj

and is constant on the light gray strips of Figures 6 and 7:
⋃

i∈Ik

⋃

j∈Jk

Q
′′

i,j ± (0, εk/2).

Let uregk be the sequence obtained by regularizing uperk through the above two modifica-
tions. By construction uregk converges weakly to uper in SBV 2(Q),

∫

Q

∣∣∇uregk (x)
∣∣2 dx ≤ c41

∫

Q

∣∣∇uperk (x)
∣∣2 dx, and Sureg

k
⊆ Super

k
, (3.8)

where c1 is the constant in Lemma 3.3. Moreover, the function uregk belongs to H1(Lk)

and it is constant along the horizontal boundary of each block Lh
k for h ∈ {1, . . . ,mk}.

Now let vk ∈ H1(Q) be a function with zero average such that ∇vk = ∇uregk on Lk and
∇vk = 0 otherwise. Up to a subsequence, vk converges weakly to a certain v in H1(Q).
Since each vk is εk-periodic in x1, the function v depends only on x2. Let us define
ũk := uregk − vk. By construction ũk is constant on each block Lh

k for h ∈ {1, . . . ,mk}, and
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Figure 7

Uh
k

Lh+1
k

Lh
k

Figure 8

Dũk = Duregk otherwise, so that

|∇ũk| ≤ |∇uregk | L2-a.e. on Q and Sũk
= Sureg

k
. (3.9)

Moreover, ũk converges weakly to ũ := uper − v in SBV 2(Q), Sũ = Super = (−1/2, 1/2) ×
{a}, and [ũ] = t on Sũ.

Let nk be the number of strips Tj whose squares Qi,j do not satisfy (3.7). Since on
these strips uregk = uperk , resulting in ũk and uperk having the same cracks, we trivially have

H1(Sũk
) ≥ nk/56. (3.10)

In order to complete the proof we need also to estimate
∫
Q |∇ũk(x)|2dx. We start by

looking over the oscillation of ũk on Lk. Let us observe that a strip Tj is not included in
Lk if and only if it is contiguous to a strip of squares Qi,j not satisfying (3.7). Therefore,
by (3.10) it follows that

L2(Q \ Lk) ≤ 3nkεk ≤ 168εkH1(Sũk
). (3.11)

Since H1(Sũk
) is bounded, the previous inequality implies that L2(Q \ Lk) → 0, i.e., the

blocks L1
k, . . . , L

mk

k tend to invade the whole domain Q.

Let bhk be the constant value assumed by ũk on Lh
k. The function ũ is continuous in

(−1/2, 1/2)× (−1/2, a) and (−1/2, 1/2) × (a, 1/2) (because it is H1 and depends only on
x2), and [ũ] = t on (−1/2, 1/2)×{a}. Therefore, there exists τ > 0 such that the difference
between the infimum of ũ in (−1/2, 1/2) × (a− τ, a) and the supremum in (−1/2, 1/2) ×
(a, a + τ) is greater than t/2. Since ũk → ũ strongly in L1(Q) and L2(Q \ Lk) → 0, we
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have

Ok := max{b1k, . . . , bmk

k } −min{b1k, . . . , bmk

k } ≥ t/2 (3.12)

for k large enough.

Now we need some additional notation:

• dhk is the distance between Lh
k and Lh+1

k ;

• Uh
k is the set composed of the vertical frames of the squares belonging to the strips

Tj lying between Lh
k and Lh+1

k (the dark gray vertical zones of Figure 8, see (3.13)
below);

• dk :=
∑mk

h=1 d
h
k and Uk :=

⋃mk

h=1 U
h
k .

In formulas, if Lh
k = (−1/2, 1/2)×(l1 , l2) and Lh+1

k = (−1/2, 1/2)×(l3 , l4), then dhk := l3−l2
and

Uh
k :=

⋃

i∈Ik

[
εk
(
[0, δk) ∪ (1− δk, 1]

)
+ iεk

]
× [l2, l3], (3.13)

so that L2(Uh
k ) = 2dhk δk.

On each set Uh
k we compare ũk with the affine function with the same boundary condi-

tions on ∂Uh
k ∩ (∂Lh

k ∪ ∂Lh+1
k ), which provides the lowest energy on Uh

k , and we get

∫

Uk

|∇ũk(x)|2 dx ≥
mk∑

h=1

L2(Uh
k )

∣∣∣∣
bh+1
k − bhk

dhk

∣∣∣∣
2

= 2δk

mk∑

h=1

|bh+1
k − bhk |2

dhk
. (3.14)

By the Schwarz inequality (applied to the vectors with components |bh+1
k −bhk |/(dhk)1/2 and

(dhk)
1/2) we have

mk∑

h=1

|bh+1
k − bhk |2

dhk
≥ 1

dk

(mk∑

h=1

|bh+1
k − bhk |

)2
≥ O2

k

dk
, (3.15)

where Ok is defined in (3.12). Since dk ≤ 3nkεk by (3.11), we obtain from (3.14) and (3.15)
∫

Uk

|∇ũk(x)|2 dx ≥ 2δkO
2
k

3nkεk
. (3.16)

Finally, combining (3.5), (3.6), (3.8)-(3.10), (3.12), and (3.16) we get

2(Θ + η) ≥ lim inf
k→+∞

MS(uperk , Q) ≥ lim inf
k→+∞

( 1

c41

∫

Q

∣∣∇uregk (x)
∣∣2 dx+H1(Sureg

k
)
)

≥ lim inf
k→+∞

( 1

c41

∫

Q
|∇ũk(x)|2 dx+H1(Sũk

)
)
≥ lim inf

k→+∞

( δk t
2

6c41nkεk
+

nk

56

)

≥ lim inf
k→+∞

√
δk

42 εk

t

c21
≥

√
ϑ t

7 c21
,

where the last inequality is obtained by minimizing with respect to nk. Being η > 0
arbitrary, we obtain (3.1).

In order to remove assumption (3.2) we consider, for k ∈ N, the largest even integer mk

such that mk ≤ ε−1
k . Let sk := mkεk. We define ûk : Q → R by

ûk(x) := uk(skx)/
√
sk.
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Since sk converges to 1, we have that ûk tends to ut,ν strongly in Lp(Q). Moreover,

Sûk
⊆ m−1

k

(
[δk, 1− δk]

2 + Z
2
)
and limk δkmk = ϑ. By applying the previous result we

have
lim inf
k→+∞

F (uk) ≥ lim inf
k→+∞

skMS(ûk) ≥ c0
√
ϑ t.

�

Remark 3.4. Given a sequence εk → 0+, by a well-known compactness argument (see
[4, Proposition 2.14]), there exists a subsequence εkj such that Fεkj

Γ-converges to some

functional F : Lp(Q) → [0,+∞]. When ϑ ∈ (0,+∞), it is proved in [8] that the functional
F admits an integral representation: there exists a Borel function g : [0,+∞) × R

2 →
[0,+∞) such that

F (u) :=





∫

Q
|∇u(x)|2 dx+

∫

Su

g
(
[u](x), νu(x)

)
dH1(x) if u ∈ Up(Q),

+∞ otherwise.
(3.17)

Estimate (3.1) shows that g(t, ν) cannot depend only on ν. Indeed, fix ν 6= 0 and let l be
the length of the segment {x ∈ Q : x · ν = 0}, which coincides with the jump set of the
functions ut,ν considered in Theorem 3.1. Then (3.1) and (3.17) give

g(t, ν)l = F (ut,ν) ≥ c0
√
ϑ t.

This shows that we cannot have g(t, ν) = g(1, ν) for every t.

4. The perfectly elastic case

In this section we prove the following result.

Theorem 4.1. Let Fε be defined as in (2.1). If ϑ = +∞, then Fε Γ-converges to

Fhom(u) :=





∫

Ω
|∇u(x)|2 dx if u ∈ H1(Ω),

+∞ otherwise,

as ε → 0+.

Proof. Let us fix εk → 0+. As Ω has Lipschitz boundary, if u ∈ H1(Ω), then u ∈ Lp(Ω). In
particular u ∈ Up(Ω) and Fεk(u) = Fhom(u) for any k. This provides the limsup inequality
with recovery sequence defined by uk := u.

To prove the liminf inequality we consider a sequence uk in Up(Ω) such that uk tends
to u strongly in Lp(Ω) and

sup
k

Fεk(uk) =: A < +∞. (4.1)

By Remark 2.1, u ∈ Up(Ω), ∇uk ⇀ ∇u weakly in L2(Ω,R2) and

lim inf
k→+∞

Fεk(uk) ≥
∫

Ω
|∇u(x)|2 dx+H1(Su).

The liminf inequality is, therefore, proved when showing that u ∈ H1(Ω), i.e., H1(Su) = 0.
We proceed by contradiction, assuming that

H1(Su) > 0. (4.2)

The idea is to carry out a blow up around a suitable jump point of u, so that we can apply
Theorem 3.1.
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Since the sequence of measures H1 Suk
is bounded by (4.1), there exists a subsequence

(not relabeled) such that

µk := H1 Suk
⇀ µ weakly* in the sense of measures (4.3)

for some nonnegative Radon measure µ with µ(Ω) < +∞. For any x ∈ Ω we define

l(x) := lim sup
r→0+

µ
(
Br(x)

)

r
.

By applying [1, Theorem 2.56], if l(x) = +∞ on a Borel set B with H1(B) > 0, then
necessarily µ(B) = +∞, in contradiction with µ(Ω) < +∞. Therefore

l(x) < +∞ for H1-a.e. x ∈ Ω. (4.4)

Given x ∈ Su and r > 0, with Br(x) ⊆ Ω, we define the following functions on B1(0):

• urk(y) := uk(x+ ry),
• ur(y) := u(x+ ry),
• ũ := χ{y∈B1(0):y·νu(x)≤0}.

By a change of variables we deduce that urk → ur strongly in Lp(B1(0)) as k → +∞.
Moreover (see [1, Remark 3.72]), for H1-a.e. x ∈ Su we have that

ur → ũ strongly in Lp(B1(0)) as r → 0+. (4.5)

If (4.2) holds, by (4.4) we can choose x ∈ Su such that (4.5) holds and l(x) < +∞.

Let rh → 0+ be such that µ(∂Brh(x)) = 0 and µ(Brh(x))/rh → l(x) as h → +∞. By
(4.1) there exists a subsequence (not relabeled) such that for every h

lim
k→+∞

MS
(
urhk , B1(0)

)
= Ah +

µ(Brh(x))

rh

for some constant Ah ≤ A. Passing to a subsequence, we may assume that there exists

a constant Ã < +∞ such that Ah → Ã as h → +∞. Setting δk := δ(εk), we can
apply a diagonal argument (see, e.g., [2, Corollary 1.18]) to the double indexed sequence
(urhk ,MS(urhk , B1(0)),

εk
δkrh

), and we find a sequence hk → +∞ such that

u
rhk
k

Lp

−→ ũ, MS
(
u
rhk
k , B1(0)

)
→ Ã+ l(x), and

εk
δkrhk

→ 0+. (4.6)

Note that the last condition also implies that ε̃k := εk/rhk
→ 0+.

For any k ∈ N we choose a point xk in εkZ
2 with minimal distance from x, and we

define ũk : Q → R by

ũk(y) := u
rhk
k

(
y − x− xk

rhk

)
= uk(xk + rhk

y).

The function ũk is well defined: since (x − xk)/rhk
tends to zero as k → +∞, for

k sufficiently large we have y − (x− xk)/rhk
∈ B1(0) for every y ∈ Q. Note that

ũk tends to ũ strongly in Lp(Q) and MS(ũk, Q) is bounded by (4.6). Moreover, as
Suk

⊆ εk
(
[δk, 1− δk]

2 + Z
2
)
, we have Sũk

⊆ ε̃k
(
[δk, 1− δk]

2 + Z
2
)
. Since limk δk/ε̃k =

+∞, by (3.1) we should have MS(ũk, Q) → +∞, which contradicts the boundedness of
MS(ũk, Q). �
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5. The brittle case

In this section we prove the following result.

Theorem 5.1. Let Fε be defined as in (2.1). If ϑ = 0, then Fε Γ-converges to MS as

ε → 0+.

We shall use the following approximation argument.

Lemma 5.2. (See [7, Theorem 3.9 and Corollary 3.11]). Let R be an open rectangle and

let u ∈ SBV 2(R)∩L∞(R). For every τ > 0, there exists a function v ∈ SBV 2(R)∩L∞(R)
such that

(i) v ∈ W 1,∞(R \ Sv) and H1(Sv \ Sv) = 0,

(ii) Sv is a finite union of disjoint closed segments in R,

(iii) ‖u− v‖Lp(R) < τ ,

(iv) ‖∇u−∇v‖L2(R,R2) < τ ,

(v)
∣∣H1(Su)−H1(Sv)

∣∣ < τ .

LetW(R) be the space of the functions v ∈ SBV 2(R)∩L∞(R), which satisfy (i) and (ii).

Proof of Theorem 5.1. The liminf inequality is a straight consequence of Remark 2.1, so
we need only construct a recovery sequence uk for any u ∈ Up(Ω). Thanks to a truncation
argument we can suppose that u ∈ SBV 2(Ω)∩L∞(Ω). Moreover, by a reflection argument
with respect to the Lipschitz boundary of Ω (see [6, Theorems 3.1 and 8.1, and the proof
of Theorem 1.2]), we can extend u to a suitable open bounded set U ⊇ Ω in such a way
that u ∈ SBV 2(U) ∩ L∞(U) and

H1(Su ∩ ∂Ω) = 0. (5.1)

Furthermore, given a rectangle R containing U , we can once again extend u, this time to
R, setting u = 0 in R \ U . Of course we could assume that U has Lipschitz boundary, so
u ∈ SBV 2(R) ∩ L∞(R).

Thanks to the liminf inequality on Ω and R \Ω, to construct a recovery sequence on Ω
it is enough to find a sequence uk in SBV 2(R) converging to u in Lp(R) such that

Suk
⊆ εk

(
[δk, 1− δk]

2 + Z
2
)
, (5.2)

lim sup
k→+∞

MS(uk, R) ≤ MS(u,R) . (5.3)

Indeed, (5.1), (5.2), and (5.3) give

MS(u,Ω) +MS(u,R \Ω) = MS(u,R) ≥ lim sup
k→+∞

MS(uk, R)

≥ lim sup
k→+∞

MS(uk,Ω) + lim inf
k→+∞

MS(uk, R \Ω)

≥ lim sup
k→+∞

MS(uk,Ω) +MS(u,R \ Ω) .

Since MS(u,R \ Ω) < +∞, this implies

MS(u,Ω) ≥ lim sup
k→+∞

MS(uk,Ω).

By Lemma 5.2, it is enough to obtain (5.2) and (5.3) when u ∈ W(R). According to
the definition of W(R), there exist disjoint closed segments S1, . . . , Sm ⊆ R such that
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⋃m
i=1 S

i = Su. If necessary, we may slightly modify u in a neighborhood of each Si so
that none of these segments are horizontal or vertical. This simplifies our exposition later,
avoiding the possibility that Si ⊆ R × εkZ or Si ⊆ εkZ × R, which would require an
additional argument. We denote the length of Si by li and the angle formed by Si with
the x1-axis by βi ∈ (0, π/2) ∪ (π/2, π). Let εk → 0+ and let δk := δ(εk). To construct a
recovery sequence uk, the idea is to smooth out the function u in the unbreakable zone
R \ εk

(
[δk, 1 − δk]

2 + Z
2
)
.

2ηεk

Si

Figure 9

Fix a small η > 0 and consider the sets Bηεk(Su) := {x ∈ R
2 : dist(x, Su) < ηεk} (see

Figure 9). There exists a constant c < +∞, depending on Su, but not on k and η, such
that the restriction u|R\Bηεk

(Su)
has Lipschitz constant c(ηεk)

−1 ‖∇u‖L∞(R,R2). Therefore

we can find a Lipschitz extension vk to R satisfying

‖vk‖L∞(R) ≤ ‖u‖L∞(R) , (5.4)

‖∇vk‖L∞(R,R2) ≤
c

ηεk
‖∇u‖L∞(R,R2) . (5.5)

Now we can obtain a recovery sequence uk for u on R by modifying the function u on
Bηεk(Su) \ εk

(
[δk, 1− δk]

2 + Z
2
)
(the gray zones in Figure 9) in the following way:

uk(x) :=

{
vk(x) if x ∈ Bηεk(Su) \ εk

(
[δk, 1− δk]

2 + Z
2
)
,

u(x) elsewhere in R.

By construction uk belongs to SBV 2(R) and Suk
⊆ εk

(
[δk, 1− δk]

2 + Z
2
)
. Note that uk

could present additional cracks along Bηεk(Su)∩ εk
(
∂[δk, 1− δk]

2 + Z
2
)
(the vertical and

horizontal boundary of the gray zones in Figure 9).
Each segment Si intersects R×εkZ at most li(sin βi)/εk+1 times and intersects εkZ×R

at most li |cos βi| /εk + 1 times. For εk small enough, this implies

L2
(
Bηεk(Su) \ εk

(
[δk, 1− δk]

2 + Z
2
))

≤ 9ηδkεkH1(Su), (5.6)

H1
(
Bηεk(Su) ∩ εk

(
∂[δk, 1− δk]

2 + Z
2
))

≤ 9ηH1(Su). (5.7)
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By (5.6), L2({u 6= uk}) → 0, and, hence, by (5.4), uk tends to u strongly in Lp(R).
Moreover, by (5.5) and (5.6) we get the estimate

∫

R
|∇uk(x)|2 dx ≤

∫

R
|∇u(x)|2 dx+

9c2δk
ηεk

H1(Su) ‖∇u‖2L∞(R,R2) , (5.8)

while by (5.7)

H1(Suk
) ≤ H1(Su) + 9ηH1(Su). (5.9)

Finally, combining (5.8) and (5.9), and using the fact that δk/εk → 0, we obtain

lim sup
k→+∞

MS(uk, R) ≤ MS(u,R) + 9ηH1(Su).

Being η > 0 arbitrary, by a diagonal argument we obtain (5.3). �
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