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Abstract

Given an open bounded domain Q C R?>™ with smooth boundary, we
consider a sequence (ug)xren of positive smooth solutions to

(—A)Muy = Apure™ "k in Q
up = Oy = ... = &’,"ﬂuk =0 on 01,

where A\, — 0%. Assuming that the sequence is bounded in H{* (), we

study its blow-up behavior. We show that if the sequence is not precom-
pact, then

lim inf Huk”%an = liminf/ ug(—A)"ugdx > A4,
k—oo k—oo Jo

where A1 = (2m — 1)!vol(S?™) is the total Q-curvature of S*™.

Introduction and statement of the main result

Let 2 € R?™ be open, bounded and with smooth boundary, and let a sequence
A — 07 be given. Consider a sequence (uy)ren of smooth solutions to

(—A)up = Ayuge™ in Q
up >0 in
’uk:auukzu.za;nilukzo on 0f2.

Assume also that

/ up(—A) " updr = )\k/ uiem“idac —A>0 ask— oo.
Q Q

In this paper we shall prove
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Theorem 1 Let (u) be a sequence of solutions to (1), (2). Then either
(i) A =0 and up — 0 in C?m=L2(Q),! or

(i) We have supg ur, — 00 as k — o0o. Moreover there exists I € N\{0} such
that A > IAq, where Ay := (2m—1)vol(S?™), and up to a subsequence there are
I converging sequences of points x; — =9 and of positive numbers r; , — 0,
the latter defined by

)\krfﬁui(x@k)em“i(li’“ = 22m(2m —1)! (3)

such that the following is true:

dist (s 1,09)

1. For every 1 <1¢ < I we have limy_, p—

= +00.
2. If we define
Nk () = wr (@i k) (U (@i p + 75 82) — ug(Tik)) + log2
for 1 <i <1, then

2 . m— m
771'7k(x) — no(x) = log TLL‘P m 0120C 1(R2 ) (k: — 00). (4)

ik =250l _

3. For every 1 <i# j < I we have limg_, o —- - Q.
4. Set Ri(z) :=infi<i<y | — x| Then
B (@) (2)e™ ) < €, (5)

where C' does not depend on x or k.
Finally u, — 0 in H™(Q) and ug, — 0 in C’mel’a(ﬁ\{x(l), e z(I)}).

loc

Solutions to (1) arise from the Adams-Moser-Trudinger inequality [Ada] (see
also [Mos], [Tru] and [BW]):

sup ][emuzdas = co(m) < +00, (6)
weHg (@), <A1 )

where ¢o(m) is a dimensional constant, and H{* () is the Beppo-Levi defined
as the completion of C'°(Q) with respect to the norm?

lullrge = 1A% uf) e = < /Q |A’?u|2dz> , )

and we used the following notation:

] A" eR if m = 2n is even, (8)
YT VAT e R if m=2n+1 s odd.

w3

A

IHere and in the following a € [0, 1) is an arbitrary Hélder exponent.
1
2The norm in (7) is equivalent to the usual Sobolev norm |lul|gm = (372, ||VFul|12) 2

thanks to elliptic estimates.

)



In fact (1) is the Euler-Lagrange equation of the functional

1 m A
F(u) := 5/ |A7u|2dx—2—/em“2d$
Q m.Jq

(where A = \; plays the role of a Lagrange multiplier), which is well defined
and smooth thanks to (6), but does not satisfy the Palais-Smale condition. For
a more detailed discussion, in the context of Orlicz spaces, we refer to [Str3].

The function ny which appears in (4) is a solution of the higher-order Liou-
ville’s equation
(=A)™n9 = (2m — 1)!le?™™  on R*™, 9)

We recall (see e.g. [Marl]) that if u solves (—A)™u = Ve?™ on R?™, then
the conformal metric ¢, := e?“ggzm has Q-curvature V, where ggzm denotes the
Euclidean metric. This shows a surprising relation between Equation (1) and
the problem of prescribing the @-curvature. In fact 7y has also a remarkable
geometric interpretation: If m : S?™ — R2?™ is the stereographic projection,
then

€1 ggam = (11)"ggom, (10)

where ggzm is the round metric on S?™. Then (10) implies

(2m — 1)!/ e2mm dy = Q g2mdvol =(2m — DIS*™| = Ay, (11)
RZTVL

9s2m
S2m

This is the reason why A > IA; in case (ii) of Theorem 1 above, compare
Proposition 7.

Theorem 1 has been proven by Adimurthi and M. Struwe [AS] and Adimurthi
and O. Druet [AD] in the case m = 1, and by F. Robert and M. Struwe [RS]
for m = 2. The extraction of a blow-up profile from a concentrating sequence
of solutions to a nonlinear PDE was pioneered by J. Sack and K. Uhlenbeck
[SU] and Wente [Wen]. Their ideas were later expanded in various ways by M.
Struwe [Strl], [Str2], H. Brezis and J. M. Coron [BC1], [BC2] who, in particular,
first wrote down separation conditions like conditions 1 and 3 in part (ii) of
Theorem 1 (see also the works of T. H. Parker [Par|, E. Hebey and F. Robert
[HR] and many others). For further motivations and references we refer to M.
Struwe [Str5]. Here, instead, we want to point out the main ingredients of
our approach. Crucial to the proof of Theorem 1 are the gradient estimates in
Lemma 6 and the blow-up procedure of Proposition 7. For the latter, we rely
on a concentration-compactness result from [Mar2] and a classification result
from [Marl], which imply, together with the gradient estimates, that at the
finitely many concentration points {z(1), ... 21}, the profile of uy, is 1y, hence
an energy not less that A; accumulates, namely

k—o0

lim lim sup/ )\kuiem“idx > Ay, foreveryl <i<I.
R— Br(z®)

As for the gradient estimates, if one uses (1) and (2) to infer ||A™ug||z1 ) < C,
then elliptic regularity gives ||[Vfuy||1») < C(p) for every p € [1,2m/(). These
bounds, though, turn out to be too weak for Lemma 6 (see also the remark after
Lemma 5). One has, instead, to fully exploit the integrability of A™uy given by



(2), namely [|A™ug|f,10g £)1/2(0) < C, where L(log L)% C L' is the Zygmund
space. Then an interpolation result from [BS] gives uniform estimates for V¢uy
in the Lorentz space L(*™/%2(Q), 1 < ¢ < 2m — 1, which are sharp for our
purposes (see Lemma 5).

We remark that when m = 1, things simplify dramatically, as we can simply
integrate by parts (2) and get

[VukllLe2 @) = Vurlzz@) < C.

In the case m = 2, F. Robert and M. Struwe [RS] proved a slightly weaker form of
our Lemma 6 by using subtle estimates in the BM O space, whose generalization
to arbitrary dimensions appears quite challenging. Our approach, on the other
hand, is simpler and more transparent.

Recently O. Druet [Dru] for the case m = 1, and M. Struwe [Str4] for m = 2
improved the previous results by showing that in case (ii) of Theorem 1 we have
A = LA, for some positive L € N. Whether the same holds true for m > 2 is
still an open question. In is also unknown whether L = I in case m =1, 2.

In the following, the letter C' denotes a generic positive constant, which may
change from line to line and even within the same line.

I'm grateful to Prof. Michael Struwe for many useful discussions.

2 Proof of Theorem 1

Assume first that supg ur < C. Then A™uy — 0 uniformly, since A\, — 0. By
elliptic estimates we infer uy — 0 in W2™P(Q) for every 1 < p < oo, hence
ur — 0 in C?m=Le(Q), A = 0 and we are in case (i) of Theorem 1.

From now on, following the approach of [RS], we assume that, up to a
subsequence, supg, ux — 0o and show that we are in case (ii) of the theorem. In
Section 2.1 we analyze the asymptotic profile at blow-up points. In Section 2.2
we sketch the inductive procedure which completes the proof.

2.1 Analysis of the first blow-up

Let z = @11 €  be a point such that ux(zx) = maxg ug, and let r, = r1 5 be
asin (3). Integrating by parts in (2), we find || A% uy||2(q) < C which, together
with the boundary condition and elliptic estimates (see e.g. [ADN]), gives

|kl zrm ) < C (12)

Lemma 2 We have
. diSt(:L'k, 89)
lim ————=

k—o0 Tk

= +4o00.

Proof. Set

_ up(ree + k)

ug(x) = for v € Qp = {r; ' (z — ) 12 € Q.
uk(ack)



Then @, satisfies

m— 22m(2m — 1)'— mu? () (T2 — :
(—A) U, = Wuke w(@e) (W —1) mn Qk
up >0 in Qp

*...:a;jnilﬂk:() on 0.

Assume for the sake of contradiction that up to a subsequence we have

dist Q
m 8@ 00

li
Tk

k—o0

Then, passing to a further subsequence, Q) — P, where P is a half-space. Since

AU || oo < ———=0 k
I Uk || Loo () < Ui(ﬂﬁk) — as k — oo,

_ — . 2m—1,a /7y
we see that, up to a subsequence, u, — w in C|__ (P), where

and
(—A)"T =0 in P
T=...=0""'u=0 on dP.
By (12) and the Sobolev imbedding H™~1(Q) — L?>™(Q), we find

1
/ |V, > de = 72/ |Vug [*™dr < ——————0, ask — co.
O ug(zk)?*™ Jo ug ()™

Then Vu = 0, hence uw = const = 0 thanks to the boundary condition. That
O

contradicts u(0) = 1.

Lemma 3 We have
ug(vp +1w) — up(xg) — 0 in CEH(R*™) as k — oo. (13)
Proof. Set
vg(x) = ug(zk + 1) —up(zr), x € Qe
Then v solves
uk(xk)

(—A)" v, =2 (2m — 1)!Uk($k)

Assume that m > 1. By (12) and the Sobolev embedding H™~2(2) — L™(Q),
we get

IV20k || Lm0y = 1V2ur Lm (o) < C. (15)
Fix now R > 0 and write vy = hy + wr on Bg = Bg(0), where A™h;, = 0 and

wy, satisfies the Navier-boundary condition on Bg. Then, (14) gives

wy, — 0 in C*™~1(Bg). (16)



This, together with (15) implies
ARkl Lm (B < C. (17)
Then, since A™~1(Ahy) = 0, we get from Proposition 12
|Ahklloe(By,,) < C(€)  for every £ € N. (18)

By Pizzetti’s formula (45),

m—1

][hkdx = hi(0) + > ;R Alhy(0),

Br i=1

and (18), together with |hx(0)| = |wg(0)] < C and hy, < —wi, < C, we find

][|hk|d:n <c

Br

Again by Proposition 12 it follows that
hillot(By,,) < C(€)  for every £ € N. (19)
By Ascoli-Arzela’s theorem, (16) and (19), we have that up to a subsequence
v — v in C2m_17a(BR/2>,

where A™v = 0 thanks to (14). We can now apply the above procedure with
a sequence of radii Ry — oo, extract a diagonal subsequence (vy), and find a
function v € C°>°(R?*™) such that

v<0, A™v=0, vy —ov inCHYR™). (20)

loc

By Fatou’s Lemma

||V2’UHLm(R2m) S hknig;f ||v2vk/HLnL(Qk) S C. (21)

By Theorem 13 and (20), v is a polynomial of degree at most 2m — 2. Then
(20) and (21) imply that v is constant, hence v = v(0) = 0. Therefore the limit
does not depend on the chosen subsequence (vg/), and the full sequence (vg)

converges to 0 in C27 1 (R?™), as claimed.

When m = 1, Pizzetti’s formula and (14) imply at once that, for every
R >0, |Jvl|1(gr) — 0, hence vy — 0 in W2P(Bpg/s) as k — 00, 1 < p < co. O

Now set
() 1= ug(z) [ug (rex + xk) — uk(z)] + log 2 < log 2. (22)
An immediate consequence of Lemma 3 is the following
Corollary 4 The function ny satisfies
(—A) ™y, = Viemarne, (23)
where
Vi) = 2700 (2 — Dl (z) — (2m — 1)), ap = %(ak 1) =1

A0
n C,

(R2m).



Lemma 5 For every 1 < ¢ < 2m — 1, V'uy belongs to the Lorentz space
LEm/E2)(Q) and
IV Ukl 2mye,2) < C. (24)

Proof. We first show that fi := (—A)™uy, is bounded in L(log L) (), where
Log (@) i= { £ € /@) s llwp e i= [ 111082+ 1) < oo .

Indeed, set log™ ¢ := max{0,logt} for ¢ > 0. Then, using the simple inequalities
log(2+1t) <2+logtt, log™(ts) <logtt+logts, t,s>0,
one gets
log(2 + )\kuzcem“i) <2+ log™ A\ + log™ up +mui < C(1 4+ up)?

Then, since fr > 0, we have

1
illy gy < [ Felost @+ fi)da

< C/ Meuze™ " dy 4+ C|Q < C
{zeQug(x)>1}

by (2), as claimed. Now (24) follows from Theorem 10. O

Remark. The inequality (24) is intermediate between the L' and the Llog L
estimates. Indeed, the bound of fj := (—A)™uy, in L' implies ||Viug|/z» < C
forevery 1 </ <2m—-1,1<p< QTm, and actually HVZ’U/kH(Qm/LOO) <C
(compare [Hél, Thm. 3.3.6]), but that is not enough for our purposes (Lemma
6 below). On the other hand, was f; bounded in L(logL), we would have
[V ur||(2mye,1) < C, which implies |Jug|z~ < C (compare [Hél, Thm. 3.3.8]).
But we know that this is not the case in general.

Actually, the cases 1 < ¢ < m in (24) follow already from (12) and the
improved Sobolev embeddings, see [O’N]. What really matters here are the
cases m < £ < 2m. In fact, when m = 1 Lemma 5 reduces to (12).

The following lemma replaces and sharpens Proposition 2.3 in [RS].

Lemma 6 For any R >0, 1 <{<2m —1 there exists ko = ko(R) such that
uk(zk)/ |Vour|dz < C(Rry)>™ %, for all k > k.
Brr, (k)

Proof. We first claim that

JA™(ui)] L) < C. (25)
To see that, observe that
2m—1
A" ()] < 2up(—=A)"ug +C > | Viug| [V uy (26)
=1



The term 2uy(—A)™uy is bounded in L! thanks to (2). The other terms on
the right-hand side of (26) are bounded in L! thanks to Lemma 5 and the
Hélder-type inequality of O’Neil [O’N].?> Hence (25) is proven.

Now set fi, := (—A)™(u}), and for any z € €, let G, be the Green’s function
for (—A)™ on  with Dirichlet boundary condition. Then

ul(z) = / G () fu(y)dy.

Thanks to [DAS, Thm. 12], |[V*G,(y)| < Clz — y| =, hence

o

|z —yl¢

IV (ud)(z)] < [ V.G ()| fely)ldy < C /Q

|fx ()]

Let py denote the probability measure
IfellL1 ()

dy. By Fubini’s theorem

1
/ V) @l < Ol / / ()
Brry, (Tk) Brry (z1) JQ |‘T _y|
1
< ¢ / / — L drdu(y)
Q BRrk(zk) |:C7y|
1
<

Csup/ ﬁdl’ S C(RT}C)2m_Z.
yeN BRrk(mk) € y|

To conclude the proof, observe that Lemma 3 implies that on Bg,, (z)), for
1<¢<2m—1, we have rﬁveuk — 0 uniformly, hence

-1
up(zp)|[Viug| < Cup|Viug| < c(|vf(u§)| + |vjuk||vf—juk|)
j=1
< CIV' )| +o(ryY), ask — occ.
Integrating over Bpy, (x)) and using the above estimates we conclude. O

Proposition 7 Let n, be as in (22). Then, up to selecting a subsequence,
mk(x) — mo(x) = log 5o in Gt (R®™), and

loc

lim lim /\kuiem“idz = lim (2m — 1)!/ 2 dy = Ay, (27)
Br(0)

R—o0 k—o0 BRrk (1k) R—oo

Proof. Fix R > 0, and notice that, thanks to Lemma 3 and (23),
/ Vi e2maknk gy = / uk(xk)ukAkem“’Zv dx (28)
Br(0) Brry (21)

< (1+ 0(1))/ W™ hdz < A+ o(1),

BRTk (zk)

where Vj, and ay, are as in Corollary 4, and o(1) — 0 as k — occ.

/ !
L4l =1yl 1 and fe LW, g L), then [|fgll < 1] (prg) 9l oo



Step 1. We claim that 1, — 77 in C2™~*(R>™), where 7 satisfies

loc
(=A)™7 = (2m — 1)!e2™7, (29)
Then, letting R — oo in (28), from Corollary 4 and Fatou’s lemma we infer
eQmﬁ c Ll(R2m)
Let us prove the claim. Consider first the case m > 1. From Corollary 4,

Theorem 1 in [Mar2], and (28), together with 7, < log2 (which implies that
S1 = 0 in Theorem 1 of [Mar2]), we infer that up to subsequences either

(i) me — 7 in O™~ (R?™) for some function 77 € CE™~H(R?™), or

(ii) mx — —oo locally uniformly in R?*™, or

(ili) there exists a closed set Sy # 0 of Hausdorfl dimension at most 2m — 1
and numbers By — 400 such that

n—k — @ n Cﬁ)T_l(R2m\So),
Bk
where
A™p =0, ¢<0, ©#0 onR?*" ¢=0onSp. (30)

Since 7x(0) = log 2, (ii) can be ruled out. Assume now that (iii) occurs. From
Liouville’s theorem and (30) we get Ay # 0, hence for some R > 0 we have
[5,, |1A¢ldz > 0 and

lim |Ang|de = klim ﬂk/ |Ap|dr = +oo. (31)

k—o0 Br Br

On the other hand, we infer from Lemma 6
/ |V |dz = uk(xk)riﬁm/ |Viuy|de < CR*™¢, (32)
Br BRrk (zk)

contradicting (31) when ¢ = 2 and therefore proving our claim.

When m = 1, Theorem 3 in [BM] implies that only Case (i) or Case (ii)
above can occur. Again Case (ii) can be ruled out, since 7 (0) = log2, and we
are done.

Step 2. We now prove that 77 is a standard solution of (29), i.e. there are A > 0
and g € R?™ such that

2\

1+ X2z — x| (33)

7(x) = log

For m =1 this follows at once from [CL]. For m > 1, if 7 didn’t have the form
(33), according to [Marl, Thm. 2] (see also [Lin| for the case m = 2), there
would exist j € Nwith 1 <7 <m — 1, and a < 0 such that

lim (-A)7(z) = a.

|z]—o0



This would imply

klim |ATny|dx = |a| - vol(By (0))R*™ + o( R*™) as R — oo,
% JBR(0)

contradicting (32) for ¢ = 2j. Hence (33) is established. Since m, < 7,(0) =
log 2, it follows immediately that g = 0, A = 1, i.e. 7 = 1, and (27) follows
from (11), (28) and Fatou’s lemma. O

2.2 Exhaustion of the blow-up points and proof of Theo-
rem 1

For ¢ € N we say that (Hy) holds if there are ¢ sequences of converging points
x; — @, 1 < i < ¢ such that

sup A, B¢ (@)uj (m)em“%(m) <C, (34)
e
where
R p(x) := 11;122 |z — @i k-

We say that (F,) holds if there are £ sequences of converging points x; y — x(*)
such that, if we define r; 1, as in (3), the following hold true:

(E}) Forall 1 <i#j</

dist(z; 1, 00 ik — T
Jim SMTek, Y (@i x, 02) = 00, lim 7@1,1@ Lokl

k— o0 Tik k— o0 Tik

(E?) For 1 <i</{ (4) holds true.
(Eg’) limpg oo limg_ oo fuleBRTi,k(Ii,k) )\kuiem“idl‘ =/lA;.

To prove Theorem 1 we show inductively that (H;) and (E;) hold for some
positive I € N (with the same sequences z; ; — 1 < i < I), following the
approach of [AD] and [RS]. First observe that (Fj) holds thanks to Lemma 2
and Proposition 7. Assume now that for some ¢ > 1 (Ey) holds and (H;) does
not. Choose z¢41,1 € 2 such that

Ak RET (41,10 03 (41 1) €™ R 00410) = ) max REuie™t — 00 as k — oo
(35)
and define r,41  as in (3). It easily follows from (35) that
lim e Tkl _ ooy (36)
k—o0 To4+1,k
Moreover, thanks to (E7) and (35), we also have

lim |$e+1,k - xi,k|

=00 forl<i</.
k—o0 Tik

We now need to replace Lemma 2 and Lemma 3 with the lemma below.

10



Lemma 8 Under the above assumptions and notation, we have

lim dist ($g+17k , GQ)

k—oo To+1,k ( )

and
g (Tog1,k + Ter1,67) — uk(Tep1,6) — 0 in CEPTH(R®™),  ask — oo,  (38)

Proof. To simplify the notation, let us write yi := z¢41,%x and pr = ro41.
Evaluating the right-hand side of (35) at the point y; + prx we get

( inf |yk — T4k + pk$|2m)u%(yk + pkg;)emu%(yk'i‘pkm)

1<i<e
< ( inf — X 2m)u2 ek (ur)
< (1Si§é|yk ikl i (Yk) :
Hence, setting g1 k() := W, we have that

__ 1 f i — 2m
U%Jrl,k(-T)emui(yk)(“?ﬂ,k(m)—l) < Mhi<ice |yk r ’k| =1+ O(l)a (39)

~infi<i<e [yp — ik + prz|?m

where o(1) — 0 as k — oo locally uniformly in z, as (36) immediately implies.
Then (37) follows as in the proof of Lemma 2, since (39) implies

22m(2m — 1)!

Up 17k€mui(yk)(ﬁ?+1,k_1) = o(1), 40

(=A)""Upg1 1 =

where o(1) — 0 as k — oo uniformly locally in R*™.
Define now vy () := ug(Tes1,6 + 7o4+1,5%) — Ug(Tes1,%), and observe that
ug(yr + prz) — oo locally uniformly in R>™,

thanks to (35) and (36). This and (40) imply that we can replace (14) in the
proof of Lemma 3 with

—2
U

e W)k =1) 0 in L (R2™).

Then the rest of the proof of Lemma 3 applies without changes, and also (38)
is proved. (I

Still repeating the arguments of the preceding section with x¢y; j instead of
x, and 7¢41; instead of 71, we define

Ne+1,k(%) 1= k(o) [k (o167 + Togrk) — uk(Tes1,k)],

and we have
Proposition 9 Up to a subsequence
Ne+1.x(x) — no(z) = log 2 in C2M~H(R2™)
’ 1+ |.CC|2 loc
and

. . 2 .
lim lim Meuze™dr = lim e2mmody = Ay, (41)
R—oo k—oo BRTg+1’k(If+l,k) R—oo BR(O)

11



Summarizing, we have proved that (£, ), (E}, ) and (41) hold. These also
imply that (E},) holds, hence we have (E41). Because of (2) and (E}), the
procedure stops in a finite number I of steps, and we have (Hy).

Finally, we claim that Ay — 0 implies ux — 0 in H™(Q). This, (5) and
elliptic estimates then imply that
up — 0 in C2h@\{2®, L 2D,

loc

To prove the claim, we observe that for any o > 0

/|Amuk|dx = /Akukem“idx
Q Q

A
< 2k uiem“idz + )\k/ ukem“idx
@ J{zeQup>al {zeQur<a}
C
S —+ Akcav
«

where C, depends only on a. Letting £ and « go to infinity, we infer
A"y — 0 in LY(Q). (42)

Thanks to (12), we infer that up to a subsequence uy, — ug in H™(2). Then (42)
and the boundary condition imply that uyg = 0, in particular the full sequence
converges to 0 weakly in H™ (). This completes the proof of the theorem.

Appendix

An elliptic estimate for Zygmund and Lorentz spaces

Theorem 10 Let u solve A™u = f € L(log L)® in Q with Dirichlet boundary
condition, 0 < a < 1, Q C R™ bounded and with smooth boundary, n > 2m.

Then V2 ~ty € L("Ef’é) (Q),1<¢<2m—1 and

_n_ 1
n—~£7 a

92"l (o 1) < Ol gy (43)

Proof. Define
f: L f in
1 0 in R™M\Q,
and let w := K x f , where K is the fundamental solution of A™. Then
V2" | = [(V2 1K) # f < CLox | ),
where I (z) = |z|*™™. According to [BS, Cor. 6.16], |V?*™~lw| € L(ﬁ’é)(R")
and

n—17"a

|\V2m_1w||(i,i) < Ol fllaogy= = CllflLaog )= (44)
We now use (44) to prove (43), following a method that we learned from [Hé]].

Given g :  — R”™ measurable, let vg be the solution to A™v, = div g in 2, with
the same boundary condition as u, and set P(g) := |V*™~ly,|. By L? estimates

12



(see e.g. [ADN]), P is bounded from LP(€; R™) into LP(Q2) for 1 < p < co. Then,
thanks to the interpolation theory for Lorentz spaces, see e.g. [Hél, Thm. 3.3.3],
P is bounded from L™ (€Q;R") into L9 (Q) for 1 < p < oo and 1 < ¢ < oo.
Choosing now g = VA™ 1w, we get v, = u, hence |[V?" " lu| = P(VA™ 1w),
and from (44) we infer

|\V2m‘1UH( 2 < CHVA’"‘le( < Ol fllzqog L=

_n_ _n_ 1
n—1'o n—1'a

For 1 < £ <2m — 1 (43) follows from the Sobolev embeddings, see [O’N]. O

Other useful results

A proof of the results below can be found in [Marl]. The following Lemma can
be considered a generalized mean value identity for polyharmonic function.

Lemma 11 (Pizzetti [Piz]) Let u € C*"(Bg(z0)), Br(zo) C R", for some
m,n positive integers. Then there are positive constants ¢; = ¢;(n) such that

m—1

Br(zo) =0

for some & € Br(xo).

Proposition 12 Let A™h =0 in By CR™. For every 0 < a <1, p € [1,00)
and £ > 0 there are constants C(¢,p) and C(¢,a) independent of h such that

C(gvp)HhHLl(Bg)
C(l, )|l L1 (ps)-

1hllwers,) <
[hllceem) <

A simple consequence of Lemma 11 and Proposition 12 is the following
Liouville-type Theorem.

Theorem 13 Consider h : R* — R with A™h = 0 and h(z) < C(1 + |z|°) for
some £ > 0. Then h is a polynomial of degree at most max{¢,2m — 2}.
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