A threshold phenomenon for embeddings of H_{0}^{m} into Orlicz spaces

Luca Martinazzi*
ETH Zurich
Rämistrasse 101, CH-8092
luca@math.ethz.ch

March 5, 2009

Abstract

Given an open bounded domain $\Omega \subset \mathbb{R}^{2 m}$ with smooth boundary, we consider a sequence $\left(u_{k}\right)_{k \in \mathbb{N}}$ of positive smooth solutions to $$
\begin{cases}(-\Delta)^{m} u_{k}=\lambda_{k} u_{k} e^{m u_{k}^{2}} & \text { in } \Omega \\ u_{k}=\partial_{\nu} u_{k}=\ldots=\partial_{\nu}^{m-1} u_{k}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\lambda_{k} \rightarrow 0^{+}$. Assuming that the sequence is bounded in $H_{0}^{m}(\Omega)$, we study its blow-up behavior. We show that if the sequence is not precompact, then

$$
\liminf _{k \rightarrow \infty}\left\|u_{k}\right\|_{H_{0}^{m}}^{2}:=\liminf _{k \rightarrow \infty} \int_{\Omega} u_{k}(-\Delta)^{m} u_{k} d x \geq \Lambda_{1}
$$

where $\Lambda_{1}=(2 m-1)!\operatorname{vol}\left(S^{2 m}\right)$ is the total Q-curvature of $S^{2 m}$.

1 Introduction and statement of the main result

Let $\Omega \subset \mathbb{R}^{2 m}$ be open, bounded and with smooth boundary, and let a sequence $\lambda_{k} \rightarrow 0^{+}$be given. Consider a sequence $\left(u_{k}\right)_{k \in \mathbb{N}}$ of smooth solutions to

$$
\begin{cases}(-\Delta)^{m} u_{k}=\lambda_{k} u_{k} e^{m u_{k}^{2}} & \text { in } \Omega \tag{1}\\ u_{k}>0 & \text { in } \Omega \\ u_{k}=\partial_{\nu} u_{k}=\ldots=\partial_{\nu}^{m-1} u_{k}=0 & \text { on } \partial \Omega\end{cases}
$$

Assume also that

$$
\begin{equation*}
\int_{\Omega} u_{k}(-\Delta)^{m} u_{k} d x=\lambda_{k} \int_{\Omega} u_{k}^{2} e^{m u_{k}^{2}} d x \rightarrow \Lambda \geq 0 \quad \text { as } k \rightarrow \infty \tag{2}
\end{equation*}
$$

In this paper we shall prove

[^0]Theorem 1 Let $\left(u_{k}\right)$ be a sequence of solutions to (1), (2). Then either
(i) $\Lambda=0$ and $u_{k} \rightarrow 0$ in $C^{2 m-1, \alpha}(\Omega),{ }^{1}$ or
(ii) We have $\sup _{\Omega} u_{k} \rightarrow \infty$ as $k \rightarrow \infty$. Moreover there exists $I \in \mathbb{N} \backslash\{0\}$ such that $\Lambda \geq I \Lambda_{1}$, where $\Lambda_{1}:=(2 m-1)!\operatorname{vol}\left(S^{2 m}\right)$, and up to a subsequence there are I converging sequences of points $x_{i, k} \rightarrow x^{(i)}$ and of positive numbers $r_{i, k} \rightarrow 0$, the latter defined by

$$
\begin{equation*}
\lambda_{k} r_{i, k}^{2 m} u_{k}^{2}\left(x_{i, k}\right) e^{m u_{k}^{2}\left(x_{i, k}\right)}=2^{2 m}(2 m-1)! \tag{3}
\end{equation*}
$$

such that the following is true:

1. For every $1 \leq i \leq I$ we have $\lim _{k \rightarrow \infty} \frac{\operatorname{dist}\left(x_{i, k}, \partial \Omega\right)}{r_{i, k}}=+\infty$.
2. If we define

$$
\eta_{i, k}(x):=u_{k}\left(x_{i, k}\right)\left(u_{k}\left(x_{i, k}+r_{i, k} x\right)-u_{k}\left(x_{i, k}\right)\right)+\log 2
$$

for $1 \leq i \leq I$, then

$$
\begin{equation*}
\eta_{i, k}(x) \rightarrow \eta_{0}(x)=\log \frac{2}{1+|x|^{2}} \quad \text { in } C_{\mathrm{loc}}^{2 m-1}\left(\mathbb{R}^{2 m}\right) \quad(k \rightarrow \infty) . \tag{4}
\end{equation*}
$$

3. For every $1 \leq i \neq j \leq I$ we have $\lim _{k \rightarrow \infty} \frac{\left|x_{i, k}-x_{j, k}\right|}{r_{i, k}}=\infty$.
4. Set $R_{k}(x):=\inf _{1 \leq i \leq I}\left|x-x_{i, k}\right|$. Then

$$
\begin{equation*}
\lambda_{k} R_{k}^{2 m}(x) u_{k}^{2}(x) e^{m u_{k}^{2}(x)} \leq C \tag{5}
\end{equation*}
$$

where C does not depend on x or k.
Finally $u_{k} \rightharpoonup 0$ in $H^{m}(\Omega)$ and $u_{k} \rightarrow 0$ in $C_{\operatorname{loc}}^{2 m-1, \alpha}\left(\bar{\Omega} \backslash\left\{x^{(1)}, \ldots, x^{(I)}\right\}\right)$.
Solutions to (1) arise from the Adams-Moser-Trudinger inequality [Ada] (see also [Mos], [Tru] and [BW]):

$$
\begin{equation*}
\sup _{u \in H_{0}^{m}(\Omega),\|u\|_{H_{0}^{m}}^{2} \leq \Lambda_{1}} f_{\Omega} e^{m u^{2}} d x=c_{0}(m)<+\infty \tag{6}
\end{equation*}
$$

where $c_{0}(m)$ is a dimensional constant, and $H_{0}^{m}(\Omega)$ is the Beppo-Levi defined as the completion of $C_{c}^{\infty}(\Omega)$ with respect to the norm${ }^{2}$

$$
\begin{equation*}
\|u\|_{H_{0}^{m}}:=\left\|\Delta^{\frac{m}{2}} u\right\|_{L^{2}}=\left(\int_{\Omega}\left|\Delta^{\frac{m}{2}} u\right|^{2} d x\right)^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

and we used the following notation:

$$
\Delta^{\frac{m}{2}} u:= \begin{cases}\Delta^{n} u \in \mathbb{R} & \text { if } m=2 n \text { is even } \tag{8}\\ \nabla \Delta^{n} u \in \mathbb{R}^{2 m} & \text { if } m=2 n+1 \text { is odd. }\end{cases}
$$

[^1]In fact (1) is the Euler-Lagrange equation of the functional

$$
F(u):=\frac{1}{2} \int_{\Omega}\left|\Delta^{\frac{m}{2}} u\right|^{2} d x-\frac{\lambda}{2 m} \int_{\Omega} e^{m u^{2}} d x
$$

(where $\lambda=\lambda_{k}$ plays the role of a Lagrange multiplier), which is well defined and smooth thanks to (6), but does not satisfy the Palais-Smale condition. For a more detailed discussion, in the context of Orlicz spaces, we refer to [Str3].

The function η_{0} which appears in (4) is a solution of the higher-order Liouville's equation

$$
\begin{equation*}
(-\Delta)^{m} \eta_{0}=(2 m-1)!e^{2 m \eta_{0}}, \quad \text { on } \mathbb{R}^{2 m} \tag{9}
\end{equation*}
$$

We recall (see e.g. [Mar1]) that if u solves $(-\Delta)^{m} u=V e^{2 m u}$ on $\mathbb{R}^{2 m}$, then the conformal metric $g_{u}:=e^{2 u} g_{\mathbb{R}^{2 m}}$ has Q-curvature V, where $g_{\mathbb{R}^{2 m}}$ denotes the Euclidean metric. This shows a surprising relation between Equation (1) and the problem of prescribing the Q-curvature. In fact η_{0} has also a remarkable geometric interpretation: If $\pi: S^{2 m} \rightarrow \mathbb{R}^{2 m}$ is the stereographic projection, then

$$
\begin{equation*}
e^{2 \eta_{0}} g_{\mathbb{R}^{2 m}}=\left(\pi^{-1}\right)^{*} g_{S^{2 m}} \tag{10}
\end{equation*}
$$

where $g_{S^{2 m}}$ is the round metric on $S^{2 m}$. Then (10) implies

$$
\begin{equation*}
(2 m-1)!\int_{\mathbb{R}^{2 m}} e^{2 m \eta_{0}} d x=\int_{S^{2 m}} Q_{S^{2 m}} \operatorname{dvol}_{g_{S^{2}}}=(2 m-1)!\left|S^{2 m}\right|=\Lambda_{1} \tag{11}
\end{equation*}
$$

This is the reason why $\Lambda \geq I \Lambda_{1}$ in case (ii) of Theorem 1 above, compare Proposition 7.

Theorem 1 has been proven by Adimurthi and M. Struwe [AS] and Adimurthi and O. Druet [AD] in the case $m=1$, and by F. Robert and M. Struwe [RS] for $m=2$. The extraction of a blow-up profile from a concentrating sequence of solutions to a nonlinear PDE was pioneered by J. Sack and K. Uhlenbeck [SU] and Wente [Wen]. Their ideas were later expanded in various ways by M. Struwe [Str1], [Str2], H. Brezis and J. M. Coron [BC1], [BC2] who, in particular, first wrote down separation conditions like conditions 1 and 3 in part (ii) of Theorem 1 (see also the works of T. H. Parker [Par], E. Hebey and F. Robert $[\mathrm{HR}]$ and many others). For further motivations and references we refer to M. Struwe [Str5]. Here, instead, we want to point out the main ingredients of our approach. Crucial to the proof of Theorem 1 are the gradient estimates in Lemma 6 and the blow-up procedure of Proposition 7. For the latter, we rely on a concentration-compactness result from [Mar2] and a classification result from [Mar1], which imply, together with the gradient estimates, that at the finitely many concentration points $\left\{x^{(1)}, \ldots, x^{(I)}\right\}$, the profile of u_{k} is η_{0}, hence an energy not less that Λ_{1} accumulates, namely

$$
\lim _{R \rightarrow 0} \limsup _{k \rightarrow \infty} \int_{B_{R}\left(x^{(i)}\right)} \lambda_{k} u_{k}^{2} e^{m u_{k}^{2}} d x \geq \Lambda_{1}, \quad \text { for every } 1 \leq i \leq I
$$

As for the gradient estimates, if one uses (1) and (2) to infer $\left\|\Delta^{m} u_{k}\right\|_{L^{1}(\Omega)} \leq C$, then elliptic regularity gives $\left\|\nabla^{\ell} u_{k}\right\|_{L^{p}(\Omega)} \leq C(p)$ for every $p \in[1,2 m / \ell)$. These bounds, though, turn out to be too weak for Lemma 6 (see also the remark after Lemma 5). One has, instead, to fully exploit the integrability of $\Delta^{m} u_{k}$ given by
(2), namely $\left\|\Delta^{m} u_{k}\right\|_{L(\log L)^{1 / 2}(\Omega)} \leq C$, where $L(\log L)^{1 / 2} \subsetneq L^{1}$ is the Zygmund space. Then an interpolation result from $[\mathrm{BS}]$ gives uniform estimates for $\nabla^{\ell} u_{k}$ in the Lorentz space $L^{(2 m / \ell, 2)}(\Omega), 1 \leq \ell \leq 2 m-1$, which are sharp for our purposes (see Lemma 5).

We remark that when $m=1$, things simplify dramatically, as we can simply integrate by parts (2) and get

$$
\left\|\nabla u_{k}\right\|_{L^{(2,2)}(\Omega)}=\left\|\nabla u_{k}\right\|_{L^{2}(\Omega)} \leq C
$$

In the case $m=2$, F. Robert and M. Struwe [RS] proved a slightly weaker form of our Lemma 6 by using subtle estimates in the $B M O$ space, whose generalization to arbitrary dimensions appears quite challenging. Our approach, on the other hand, is simpler and more transparent.

Recently O. Druet [Dru] for the case $m=1$, and M. Struwe $[\operatorname{Str} 4]$ for $m=2$ improved the previous results by showing that in case (ii) of Theorem 1 we have $\Lambda=L \Lambda_{1}$ for some positive $L \in \mathbb{N}$. Whether the same holds true for $m>2$ is still an open question. In is also unknown whether $L=I$ in case $m=1,2$.

In the following, the letter C denotes a generic positive constant, which may change from line to line and even within the same line.

I'm grateful to Prof. Michael Struwe for many useful discussions.

2 Proof of Theorem 1

Assume first that $\sup _{\Omega} u_{k} \leq C$. Then $\Delta^{m} u_{k} \rightarrow 0$ uniformly, since $\lambda_{k} \rightarrow 0$. By elliptic estimates we infer $u_{k} \rightarrow 0$ in $W^{2 m, p}(\Omega)$ for every $1 \leq p<\infty$, hence $u_{k} \rightarrow 0$ in $C^{2 m-1, \alpha}(\Omega), \Lambda=0$ and we are in case (i) of Theorem 1.

From now on, following the approach of [RS], we assume that, up to a subsequence, $\sup _{\Omega} u_{k} \rightarrow \infty$ and show that we are in case (ii) of the theorem. In Section 2.1 we analyze the asymptotic profile at blow-up points. In Section 2.2 we sketch the inductive procedure which completes the proof.

2.1 Analysis of the first blow-up

Let $x_{k}=x_{1, k} \in \Omega$ be a point such that $u_{k}\left(x_{k}\right)=\max _{\Omega} u_{k}$, and let $r_{k}=r_{1, k}$ be as in (3). Integrating by parts in (2), we find $\left\|\Delta^{\frac{m}{2}} u_{k}\right\|_{L^{2}(\Omega)} \leq C$ which, together with the boundary condition and elliptic estimates (see e.g. [ADN]), gives

$$
\begin{equation*}
\left\|u_{k}\right\|_{H^{m}(\Omega)} \leq C \tag{12}
\end{equation*}
$$

Lemma 2 We have

$$
\lim _{k \rightarrow \infty} \frac{\operatorname{dist}\left(x_{k}, \partial \Omega\right)}{r_{k}}=+\infty
$$

Proof. Set

$$
\bar{u}_{k}(x):=\frac{u_{k}\left(r_{k} x+x_{k}\right)}{u_{k}\left(x_{k}\right)} \quad \text { for } x \in \Omega_{k}:=\left\{r_{k}^{-1}\left(x-x_{k}\right): x \in \Omega\right\}
$$

Then \bar{u}_{k} satisfies

$$
\begin{cases}(-\Delta)^{m} \bar{u}_{k}=\frac{2^{2 m}(2 m-1)!}{u_{k}^{2}\left(x_{k}\right)} \bar{u}_{k} e^{m u_{k}^{2}\left(x_{k}\right)\left(\bar{u}_{k}^{2}-1\right)} & \text { in } \Omega_{k} \\ \bar{u}_{k}>0 & \text { in } \Omega_{k} \\ \bar{u}_{k}=\partial_{\nu} \bar{u}_{k}=\ldots=\partial_{\nu}^{m-1} \bar{u}_{k}=0 & \text { on } \partial \Omega_{k}\end{cases}
$$

Assume for the sake of contradiction that up to a subsequence we have

$$
\lim _{k \rightarrow \infty} \frac{\operatorname{dist}\left(x_{k}, \partial \Omega\right)}{r_{k}}=R_{0}<+\infty
$$

Then, passing to a further subsequence, $\Omega_{k} \rightarrow \mathcal{P}$, where \mathcal{P} is a half-space. Since

$$
\left\|\Delta^{m} \bar{u}_{k}\right\|_{L^{\infty}\left(\Omega_{k}\right)} \leq \frac{C}{u_{k}^{2}\left(x_{k}\right)} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

we see that, up to a subsequence, $\bar{u}_{k} \rightarrow \bar{u}$ in $C_{\mathrm{loc}}^{2 m-1, \alpha}(\overline{\mathcal{P}})$, where

$$
\bar{u}(0)=\bar{u}_{k}(0)=1
$$

and

$$
\begin{cases}(-\Delta)^{m} \bar{u}=0 & \text { in } \mathcal{P} \\ \bar{u}=\partial_{\nu} \bar{u}=\ldots=\partial_{\nu}^{m-1} \bar{u}=0 & \text { on } \partial \mathcal{P} .\end{cases}
$$

By (12) and the Sobolev imbedding $H^{m-1}(\Omega) \hookrightarrow L^{2 m}(\Omega)$, we find

$$
\int_{\Omega_{k}}\left|\nabla \bar{u}_{k}\right|^{2 m} d x=\frac{1}{u_{k}\left(x_{k}\right)^{2 m}} \int_{\Omega}\left|\nabla u_{k}\right|^{2 m} d x \leq \frac{C}{u_{k}\left(x_{k}\right)^{2 m}} \rightarrow 0, \quad \text { as } k \rightarrow \infty .
$$

Then $\nabla \bar{u} \equiv 0$, hence $\bar{u} \equiv$ const $=0$ thanks to the boundary condition. That contradicts $\bar{u}(0)=1$.

Lemma 3 We have

$$
\begin{equation*}
u_{k}\left(x_{k}+r_{k} x\right)-u_{k}\left(x_{k}\right) \rightarrow 0 \quad \text { in } C_{\mathrm{loc}}^{2 m-1}\left(\mathbb{R}^{2 m}\right) \text { as } k \rightarrow \infty . \tag{13}
\end{equation*}
$$

Proof. Set

$$
v_{k}(x):=u_{k}\left(x_{k}+r_{k} x\right)-u_{k}\left(x_{k}\right), \quad x \in \Omega_{k}
$$

Then v_{k} solves

$$
\begin{equation*}
(-\Delta)^{m} v_{k}=2^{2 m}(2 m-1)!\frac{\bar{u}_{k}(x)}{u_{k}\left(x_{k}\right)} e^{m u_{k}^{2}\left(x_{k}\right)\left(\bar{u}_{k}^{2}-1\right)} \leq 2^{2 m} \frac{(2 m-1)!}{u_{k}\left(x_{k}\right)} \rightarrow 0 . \tag{14}
\end{equation*}
$$

Assume that $m>1$. By (12) and the Sobolev embedding $H^{m-2}(\Omega) \hookrightarrow L^{m}(\Omega)$, we get

$$
\begin{equation*}
\left\|\nabla^{2} v_{k}\right\|_{L^{m}\left(\Omega_{k}\right)}=\left\|\nabla^{2} u_{k}\right\|_{L^{m}(\Omega)} \leq C \tag{15}
\end{equation*}
$$

Fix now $R>0$ and write $v_{k}=h_{k}+w_{k}$ on $B_{R}=B_{R}(0)$, where $\Delta^{m} h_{k}=0$ and w_{k} satisfies the Navier-boundary condition on B_{R}. Then, (14) gives

$$
\begin{equation*}
w_{k} \rightarrow 0 \quad \text { in } C^{2 m-1, \alpha}\left(B_{R}\right) . \tag{16}
\end{equation*}
$$

This, together with (15) implies

$$
\begin{equation*}
\left\|\Delta h_{k}\right\|_{L^{m}\left(B_{R}\right)} \leq C . \tag{17}
\end{equation*}
$$

Then, since $\Delta^{m-1}\left(\Delta h_{k}\right)=0$, we get from Proposition 12

$$
\begin{equation*}
\left\|\Delta h_{k}\right\|_{C^{\ell}\left(B_{R / 2}\right)} \leq C(\ell) \quad \text { for every } \ell \in \mathbb{N} . \tag{18}
\end{equation*}
$$

By Pizzetti's formula (45),

$$
{\underset{B}{B_{R}}} h_{k} d x=h_{k}(0)+\sum_{i=1}^{m-1} c_{i} R^{2 i} \Delta^{i} h_{k}(0),
$$

and (18), together with $\left|h_{k}(0)\right|=\left|w_{k}(0)\right| \leq C$ and $h_{k} \leq-w_{k} \leq C$, we find

$$
f_{B_{R}}\left|h_{k}\right| d x \leq C .
$$

Again by Proposition 12 it follows that

$$
\begin{equation*}
\left\|h_{k}\right\|_{C^{\ell}\left(B_{R / 2}\right)} \leq C(\ell) \quad \text { for every } \ell \in \mathbb{N} \tag{19}
\end{equation*}
$$

By Ascoli-Arzelà's theorem, (16) and (19), we have that up to a subsequence

$$
v_{k} \rightarrow v \quad \text { in } C^{2 m-1, \alpha}\left(B_{R / 2}\right),
$$

where $\Delta^{m} v \equiv 0$ thanks to (14). We can now apply the above procedure with a sequence of radii $R_{k} \rightarrow \infty$, extract a diagonal subsequence $\left(v_{k^{\prime}}\right)$, and find a function $v \in C^{\infty}\left(\mathbb{R}^{2 m}\right)$ such that

$$
\begin{equation*}
v \leq 0, \quad \Delta^{m} v \equiv 0, \quad v_{k^{\prime}} \rightarrow v \quad \text { in } C_{\mathrm{loc}}^{2 m-1, \alpha}\left(\mathbb{R}^{2 m}\right) \tag{20}
\end{equation*}
$$

By Fatou's Lemma

$$
\begin{equation*}
\left\|\nabla^{2} v\right\|_{L^{m}\left(\mathbb{R}^{2 m}\right)} \leq \liminf _{k \rightarrow \infty}\left\|\nabla^{2} v_{k^{\prime}}\right\|_{L^{m}\left(\Omega_{k}\right)} \leq C \tag{21}
\end{equation*}
$$

By Theorem 13 and (20), v is a polynomial of degree at most $2 m-2$. Then (20) and (21) imply that v is constant, hence $v \equiv v(0)=0$. Therefore the limit does not depend on the chosen subsequence $\left(v_{k^{\prime}}\right)$, and the full sequence $\left(v_{k}\right)$ converges to 0 in $C_{\text {loc }}^{2 m-1}\left(\mathbb{R}^{2 m}\right)$, as claimed.

When $m=1$, Pizzetti's formula and (14) imply at once that, for every $R>0,\left\|v_{k}\right\|_{L^{1}\left(B_{R}\right)} \rightarrow 0$, hence $v_{k} \rightarrow 0$ in $W^{2, p}\left(B_{R / 2}\right)$ as $k \rightarrow \infty, 1 \leq p<\infty$.

Now set

$$
\begin{equation*}
\eta_{k}(x):=u_{k}\left(x_{k}\right)\left[u_{k}\left(r_{k} x+x_{k}\right)-u_{k}\left(x_{k}\right)\right]+\log 2 \leq \log 2 . \tag{22}
\end{equation*}
$$

An immediate consequence of Lemma 3 is the following
Corollary 4 The function η_{k} satisfies

$$
\begin{equation*}
(-\Delta)^{m} \eta_{k}=V_{k} e^{2 m a_{k} \eta_{k}} \tag{23}
\end{equation*}
$$

where

$$
V_{k}(x)=2^{m\left(1-\bar{u}_{k}\right)}(2 m-1)!\bar{u}_{k}(x) \rightarrow(2 m-1)!, \quad a_{k}=\frac{1}{2}\left(\bar{u}_{k}+1\right) \rightarrow 1
$$

in $C_{\mathrm{loc}}^{0}\left(\mathbb{R}^{2 m}\right)$.

Lemma 5 For every $1 \leq \ell \leq 2 m-1, \nabla^{\ell} u_{k}$ belongs to the Lorentz space $L^{(2 m / \ell, 2)}(\Omega)$ and

$$
\begin{equation*}
\left\|\nabla^{\ell} u_{k}\right\|_{(2 m / \ell, 2)} \leq C \tag{24}
\end{equation*}
$$

Proof. We first show that $f_{k}:=(-\Delta)^{m} u_{k}$ is bounded in $L(\log L)^{\frac{1}{2}}(\Omega)$, where

$$
L(\log L)^{\alpha}(\Omega):=\left\{f \in L^{1}(\Omega):\|f\|_{L(\log L)^{\alpha}}:=\int_{\Omega}|f| \log ^{\alpha}(2+|f|) d x<\infty\right\}
$$

Indeed, set $\log ^{+} t:=\max \{0, \log t\}$ for $t>0$. Then, using the simple inequalities

$$
\log (2+t) \leq 2+\log ^{+} t, \quad \log ^{+}(t s) \leq \log ^{+} t+\log ^{+} s, \quad t, s>0
$$

one gets

$$
\log \left(2+\lambda_{k} u_{k} e^{m u_{k}^{2}}\right) \leq 2+\log ^{+} \lambda_{k}+\log ^{+} u_{k}+m u_{k}^{2} \leq C\left(1+u_{k}\right)^{2} .
$$

Then, since $f_{k} \geq 0$, we have

$$
\begin{aligned}
\left\|f_{k}\right\|_{L(\log L)^{\frac{1}{2}}} & \leq \int_{\Omega} f_{k} \log ^{\frac{1}{2}}\left(2+f_{k}\right) d x \\
& \leq C \int_{\left\{x \in \Omega: u_{k}(x) \geq 1\right\}} \lambda_{k} u_{k}^{2} e^{m u_{k}} d x+C|\Omega| \leq C
\end{aligned}
$$

by (2), as claimed. Now (24) follows from Theorem 10.
Remark. The inequality (24) is intermediate between the L^{1} and the $L \log L$ estimates. Indeed, the bound of $f_{k}:=(-\Delta)^{m} u_{k}$ in L^{1} implies $\left\|\nabla^{\ell} u_{k}\right\|_{L^{p}} \leq C$ for every $1 \leq \ell \leq 2 m-1,1 \leq p<\frac{2 m}{\ell}$, and actually $\left\|\nabla^{\ell} u_{k}\right\|_{(2 m / \ell, \infty)} \leq C$ (compare [Hél, Thm. 3.3.6]), but that is not enough for our purposes (Lemma 6 below). On the other hand, was f_{k} bounded in $L(\log L)$, we would have $\left\|\nabla^{\ell} u_{k}\right\|_{(2 m / \ell, 1)} \leq C$, which implies $\left\|u_{k}\right\|_{L^{\infty}} \leq C$ (compare [Hél, Thm. 3.3.8]). But we know that this is not the case in general.

Actually, the cases $1 \leq \ell \leq m$ in (24) follow already from (12) and the improved Sobolev embeddings, see [O'N]. What really matters here are the cases $m<\ell<2 m$. In fact, when $m=1$ Lemma 5 reduces to (12).

The following lemma replaces and sharpens Proposition 2.3 in [RS].
Lemma 6 For any $R>0,1 \leq \ell \leq 2 m-1$ there exists $k_{0}=k_{0}(R)$ such that

$$
u_{k}\left(x_{k}\right) \int_{B_{R r_{k}}\left(x_{k}\right)}\left|\nabla^{\ell} u_{k}\right| d x \leq C\left(R r_{k}\right)^{2 m-\ell}, \quad \text { for all } k \geq k_{0}
$$

Proof. We first claim that

$$
\begin{equation*}
\left\|\Delta^{m}\left(u_{k}^{2}\right)\right\|_{L^{1}(\Omega)} \leq C \tag{25}
\end{equation*}
$$

To see that, observe that

$$
\begin{equation*}
\left|\Delta^{m}\left(u_{k}^{2}\right)\right| \leq 2 u_{k}(-\Delta)^{m} u_{k}+C \sum_{\ell=1}^{2 m-1}\left|\nabla^{\ell} u_{k}\right|\left|\nabla^{2 m-\ell} u_{k}\right| \tag{26}
\end{equation*}
$$

The term $2 u_{k}(-\Delta)^{m} u_{k}$ is bounded in L^{1} thanks to (2). The other terms on the right-hand side of (26) are bounded in L^{1} thanks to Lemma 5 and the Hölder-type inequality of O'Neil [O'N]. ${ }^{3}$ Hence (25) is proven.

Now set $f_{k}:=(-\Delta)^{m}\left(u_{k}^{2}\right)$, and for any $x \in \Omega$, let G_{x} be the Green's function for $(-\Delta)^{m}$ on Ω with Dirichlet boundary condition. Then

$$
u_{k}^{2}(x)=\int_{\Omega} G_{x}(y) f_{k}(y) d y
$$

Thanks to [DAS, Thm. 12], $\left|\nabla^{\ell} G_{x}(y)\right| \leq C|x-y|^{-\ell}$, hence

$$
\left|\nabla^{\ell}\left(u_{k}^{2}\right)(x)\right| \leq \int_{\Omega}\left|\nabla_{x}^{\ell} G_{x}(y)\right|\left|f_{k}(y)\right| d y \leq C \int_{\Omega} \frac{\left|f_{k}(y)\right|}{|x-y|^{\ell}} d y
$$

Let μ_{k} denote the probability measure $\frac{\left|f_{k}(y)\right|}{\left\|f_{k}\right\|_{L^{1}(\Omega)}} d y$. By Fubini's theorem

$$
\begin{aligned}
\int_{B_{R r_{k}}\left(x_{k}\right)}\left|\nabla^{\ell}\left(u_{k}^{2}\right)(x)\right| d x & \leq C\left\|f_{k}\right\|_{L^{1}(\Omega)} \int_{B_{R r_{k}}\left(x_{k}\right)} \int_{\Omega} \frac{1}{|x-y|^{\ell}} d \mu_{k}(y) d x \\
& \leq C \int_{\Omega} \int_{B_{R r_{k}\left(x_{k}\right)}} \frac{1}{|x-y|^{\ell}} d x d \mu_{k}(y) \\
& \leq C \sup _{y \in \Omega} \int_{B_{R r_{k}}\left(x_{k}\right)} \frac{1}{|x-y|^{d}} d x \leq C\left(R r_{k}\right)^{2 m-\ell .}
\end{aligned}
$$

To conclude the proof, observe that Lemma 3 implies that on $B_{R r_{k}}\left(x_{k}\right)$, for $1 \leq \ell \leq 2 m-1$, we have $r_{k}^{\ell} \nabla^{\ell} u_{k} \rightarrow 0$ uniformly, hence

$$
\begin{aligned}
u_{k}\left(x_{k}\right)\left|\nabla^{\ell} u_{k}\right| & \leq C u_{k}\left|\nabla^{\ell} u_{k}\right| \leq C\left(\left|\nabla^{\ell}\left(u_{k}^{2}\right)\right|+\sum_{j=1}^{\ell-1}\left|\nabla^{j} u_{k}\right|\left|\nabla^{\ell-j} u_{k}\right|\right) \\
& \leq C\left|\nabla^{\ell}\left(u_{k}^{2}\right)\right|+o\left(r_{k}^{-\ell}\right), \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

Integrating over $B_{R r_{k}}\left(x_{k}\right)$ and using the above estimates we conclude.

Proposition 7 Let η_{k} be as in (22). Then, up to selecting a subsequence, $\eta_{k}(x) \rightarrow \eta_{0}(x)=\log \frac{2}{1+|x|^{2}}$ in $C_{\mathrm{loc}}^{2 m-1}\left(\mathbb{R}^{2 m}\right)$, and

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{B_{R r_{k}}\left(x_{k}\right)} \lambda_{k} u_{k}^{2} e^{m u_{k}^{2}} d x=\lim _{R \rightarrow \infty}(2 m-1)!\int_{B_{R}(0)} e^{2 m \eta_{0}} d x=\Lambda_{1} \tag{27}
\end{equation*}
$$

Proof. Fix $R>0$, and notice that, thanks to Lemma 3 and (23),

$$
\begin{align*}
\int_{B_{R}(0)} V_{k} e^{2 m a_{k} \eta_{k}} d x & =\int_{B_{R r_{k}}\left(x_{k}\right)} u_{k}\left(x_{k}\right) u_{k} \lambda_{k} e^{m u_{k}^{2}} d x \tag{28}\\
& \leq(1+o(1)) \int_{B_{R r_{k}}\left(x_{k}\right)} u_{k}^{2} \lambda_{k} e^{m u_{k}^{2}} d x \leq \Lambda+o(1)
\end{align*}
$$

where V_{k} and a_{k} are as in Corollary 4, and $o(1) \rightarrow 0$ as $k \rightarrow \infty$.

$$
{ }^{3} \text { If } \frac{1}{p}+\frac{1}{p^{\prime}}=\frac{1}{q}+\frac{1}{q^{\prime}}=1, \text { and } f \in L^{(p, q)}, g \in L^{\left(p^{\prime}, q^{\prime}\right)}, \text { then }\|f g\|_{L^{1}} \leq\|f\|_{(p, q)}\|g\|_{\left(p^{\prime}, q^{\prime}\right)} .
$$

Step 1. We claim that $\eta_{k} \rightarrow \bar{\eta}$ in $C_{\mathrm{loc}}^{2 m-1}\left(\mathbb{R}^{2 m}\right)$, where $\bar{\eta}$ satisfies

$$
\begin{equation*}
(-\Delta)^{m} \bar{\eta}=(2 m-1)!e^{2 m \bar{\eta}} \tag{29}
\end{equation*}
$$

Then, letting $R \rightarrow \infty$ in (28), from Corollary 4 and Fatou's lemma we infer $e^{2 m \bar{\eta}} \in L^{1}\left(\mathbb{R}^{2 m}\right)$.

Let us prove the claim. Consider first the case $m>1$. From Corollary 4, Theorem 1 in [Mar2], and (28), together with $\eta_{k} \leq \log 2$ (which implies that $S_{1}=\emptyset$ in Theorem 1 of [Mar2]), we infer that up to subsequences either
(i) $\eta_{k} \rightarrow \bar{\eta}$ in $C_{\mathrm{loc}}^{2 m-1}\left(\mathbb{R}^{2 m}\right)$ for some function $\bar{\eta} \in C_{\mathrm{loc}}^{2 m-1}\left(\mathbb{R}^{2 m}\right)$, or
(ii) $\eta_{k} \rightarrow-\infty$ locally uniformly in $\mathbb{R}^{2 m}$, or
(iii) there exists a closed set $S_{0} \neq \emptyset$ of Hausdorff dimension at most $2 m-1$ and numbers $\beta_{k} \rightarrow+\infty$ such that

$$
\frac{\eta_{k}}{\beta_{k}} \rightarrow \varphi \text { in } C_{\mathrm{loc}}^{2 m-1}\left(\mathbb{R}^{2 m} \backslash S_{0}\right)
$$

where

$$
\begin{equation*}
\Delta^{m} \varphi \equiv 0, \quad \varphi \leq 0, \quad \varphi \not \equiv 0 \quad \text { on } \mathbb{R}^{2 m}, \quad \varphi \equiv 0 \text { on } S_{0} . \tag{30}
\end{equation*}
$$

Since $\eta_{k}(0)=\log 2$, (ii) can be ruled out. Assume now that (iii) occurs. From Liouville's theorem and (30) we get $\Delta \varphi \not \equiv 0$, hence for some $R>0$ we have $\int_{B_{R}}|\Delta \varphi| d x>0$ and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{B_{R}}\left|\Delta \eta_{k}\right| d x=\lim _{k \rightarrow \infty} \beta_{k} \int_{B_{R}}|\Delta \varphi| d x=+\infty \tag{31}
\end{equation*}
$$

On the other hand, we infer from Lemma 6

$$
\begin{equation*}
\int_{B_{R}}\left|\nabla^{\ell} \eta_{k}\right| d x=u_{k}\left(x_{k}\right) r_{k}^{\ell-2 m} \int_{B_{R r_{k}}\left(x_{k}\right)}\left|\nabla^{\ell} u_{k}\right| d x \leq C R^{2 m-\ell} \tag{32}
\end{equation*}
$$

contradicting (31) when $\ell=2$ and therefore proving our claim.
When $m=1$, Theorem 3 in $[\mathrm{BM}]$ implies that only Case (i) or Case (ii) above can occur. Again Case (ii) can be ruled out, since $\eta_{k}(0)=\log 2$, and we are done.

Step 2. We now prove that $\bar{\eta}$ is a standard solution of (29), i.e. there are $\lambda>0$ and $x_{0} \in \mathbb{R}^{2 m}$ such that

$$
\begin{equation*}
\bar{\eta}(x)=\log \frac{2 \lambda}{1+\lambda^{2}\left|x-x_{0}\right|^{2}} . \tag{33}
\end{equation*}
$$

For $m=1$ this follows at once from [CL]. For $m>1$, if $\bar{\eta}$ didn't have the form (33), according to [Mar1, Thm. 2] (see also [Lin] for the case $m=2$), there would exist $j \in \mathbb{N}$ with $1 \leq j \leq m-1$, and $a<0$ such that

$$
\lim _{|x| \rightarrow \infty}(-\Delta)^{j} \bar{\eta}(x)=a
$$

This would imply

$$
\lim _{k \rightarrow \infty} \int_{B_{R}(0)}\left|\Delta^{j} \eta_{k}\right| d x=|a| \cdot \operatorname{vol}\left(B_{1}(0)\right) R^{2 m}+o\left(R^{2 m}\right) \quad \text { as } R \rightarrow \infty
$$

contradicting (32) for $\ell=2 j$. Hence (33) is established. Since $\eta_{k} \leq \eta_{k}(0)=$ $\log 2$, it follows immediately that $x_{0}=0, \lambda=1$, i.e. $\bar{\eta}=\eta_{0}$, and (27) follows from (11), (28) and Fatou's lemma.

2.2 Exhaustion of the blow-up points and proof of Theorem 1

For $\ell \in \mathbb{N}$ we say that $\left(H_{\ell}\right)$ holds if there are ℓ sequences of converging points $x_{i, k} \rightarrow x^{(i)}, 1 \leq i \leq \ell$ such that

$$
\begin{equation*}
\sup _{x \in \Omega} \lambda_{k} R_{\ell, k}^{2 m}(x) u_{k}^{2}(x) e^{m u_{k}^{2}(x)} \leq C \tag{34}
\end{equation*}
$$

where

$$
R_{\ell, k}(x):=\inf _{1 \leq i \leq \ell}\left|x-x_{i, k}\right|
$$

We say that $\left(E_{\ell}\right)$ holds if there are ℓ sequences of converging points $x_{i, k} \rightarrow x^{(i)}$ such that, if we define $r_{i, k}$ as in (3), the following hold true:
$\left(E_{\ell}^{1}\right)$ For all $1 \leq i \neq j \leq \ell$

$$
\lim _{k \rightarrow \infty} \frac{\operatorname{dist}\left(x_{i, k}, \partial \Omega\right)}{r_{i, k}}=\infty, \quad \lim _{k \rightarrow \infty} \frac{\left|x_{i, k}-x_{j, k}\right|}{r_{i, k}}=\infty .
$$

(E_{ℓ}^{2}) For $1 \leq i \leq \ell(4)$ holds true.
$\left(E_{\ell}^{3}\right) \lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{\cup_{i=1}^{\ell} B_{R r_{i, k}}\left(x_{i, k}\right)} \lambda_{k} u_{k}^{2} e^{m u_{k}^{2}} d x=\ell \Lambda_{1}$.
To prove Theorem 1 we show inductively that $\left(H_{I}\right)$ and $\left(E_{I}\right)$ hold for some positive $I \in \mathbb{N}$ (with the same sequences $x_{i, k} \rightarrow x^{(i)}, 1 \leq i \leq I$), following the approach of $[\mathrm{AD}]$ and $[\mathrm{RS}]$. First observe that $\left(E_{1}\right)$ holds thanks to Lemma 2 and Proposition 7. Assume now that for some $\ell \geq 1\left(E_{\ell}\right)$ holds and $\left(H_{\ell}\right)$ does not. Choose $x_{\ell+1, k} \in \Omega$ such that

$$
\begin{equation*}
\lambda_{k} R_{\ell, k}^{2 m}\left(x_{\ell+1, k}\right) u_{k}^{2}\left(x_{\ell+1, k}\right) e^{m u_{k}^{2}\left(x_{\ell+1, k}\right)}=\lambda_{k} \max _{\Omega} R_{\ell, k}^{2 m} u_{k}^{2} e^{m u_{k}^{2}} \rightarrow \infty \quad \text { as } k \rightarrow \infty \tag{35}
\end{equation*}
$$

and define $r_{\ell+1, k}$ as in (3). It easily follows from (35) that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\left|x_{\ell+1, k}-x_{i, k}\right|}{r_{\ell+1, k}}=\infty, \quad 1 \leq i \leq \ell \tag{36}
\end{equation*}
$$

Moreover, thanks to $\left(E_{\ell}^{2}\right)$ and (35), we also have

$$
\lim _{k \rightarrow \infty} \frac{\left|x_{\ell+1, k}-x_{i, k}\right|}{r_{i, k}}=\infty \quad \text { for } 1 \leq i \leq \ell
$$

We now need to replace Lemma 2 and Lemma 3 with the lemma below.

Lemma 8 Under the above assumptions and notation, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{\operatorname{dist}\left(x_{\ell+1, k}, \partial \Omega\right)}{r_{\ell+1, k}}=\infty \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{k}\left(x_{\ell+1, k}+r_{\ell+1, k} x\right)-u_{k}\left(x_{\ell+1, k}\right) \rightarrow 0 \quad \text { in } C_{\mathrm{loc}}^{2 m-1}\left(\mathbb{R}^{2 m}\right), \quad \text { as } k \rightarrow \infty . \tag{38}
\end{equation*}
$$

Proof. To simplify the notation, let us write $y_{k}:=x_{\ell+1, k}$ and $\rho_{k}:=r_{\ell+1, k}$. Evaluating the right-hand side of (35) at the point $y_{k}+\rho_{k} x$ we get

$$
\begin{aligned}
& \left(\inf _{1 \leq i \leq \ell}\left|y_{k}-x_{i, k}+\rho_{k} x\right|^{2 m}\right) u_{k}^{2}\left(y_{k}+\rho_{k} x\right) e^{m u_{k}^{2}\left(y_{k}+\rho_{k} x\right)} \\
& \leq\left(\inf _{1 \leq i \leq \ell}\left|y_{k}-x_{i, k}\right|^{2 m}\right) u_{k}^{2}\left(y_{k}\right) e^{m u_{k}^{2}\left(y_{k}\right)},
\end{aligned}
$$

Hence, setting $\bar{u}_{\ell+1, k}(x):=\frac{u_{k}\left(y_{k}+\rho_{k} x\right)}{u_{k}\left(y_{k}\right)}$, we have that

$$
\begin{equation*}
\bar{u}_{\ell+1, k}^{2}(x) e^{m u_{k}^{2}\left(y_{k}\right)\left(\bar{u}_{\ell+1, k}^{2}(x)-1\right)} \leq \frac{\inf _{1 \leq i \leq \ell}\left|y_{k}-x_{i, k}\right|^{2 m}}{\inf _{1 \leq i \leq \ell}\left|y_{k}-x_{i, k}+\rho_{k} x\right|^{2 m}}=1+o(1) \tag{39}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $k \rightarrow \infty$ locally uniformly in x, as (36) immediately implies. Then (37) follows as in the proof of Lemma 2, since (39) implies

$$
\begin{equation*}
(-\Delta)^{m} \bar{u}_{\ell+1, k}=\frac{2^{2 m}(2 m-1)!}{u_{k}^{2}\left(y_{k}\right)} \bar{u}_{\ell+1, k} e^{m u_{k}^{2}\left(y_{k}\right)\left(\bar{u}_{\ell+1, k}^{2}-1\right)}=o(1), \tag{40}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $k \rightarrow \infty$ uniformly locally in $\mathbb{R}^{2 m}$.
Define now $v_{k}(x):=u_{k}\left(x_{\ell+1, k}+r_{\ell+1, k} x\right)-u_{k}\left(x_{\ell+1, k}\right)$, and observe that

$$
u_{k}\left(y_{k}+\rho_{k} x\right) \rightarrow \infty \quad \text { locally uniformly in } \mathbb{R}^{2 m}
$$

thanks to (35) and (36). This and (40) imply that we can replace (14) in the proof of Lemma 3 with

$$
(-\Delta)^{m} v_{k}=2^{2 m}(2 m-1)!\frac{\bar{u}_{k}^{2}}{u_{k}\left(y_{k}+\rho_{k} \cdot\right)} e^{m u_{k}^{2}\left(y_{k}\right)\left(\bar{u}_{\ell+1, k}^{2}-1\right)} \rightarrow 0 \quad \text { in } L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{2 m}\right)
$$

Then the rest of the proof of Lemma 3 applies without changes, and also (38) is proved.

Still repeating the arguments of the preceding section with $x_{\ell+1, k}$ instead of x_{k} and $r_{\ell+1, k}$ instead of r_{k}, we define

$$
\eta_{\ell+1, k}(x):=u_{k}\left(x_{\ell+1, k}\right)\left[u_{k}\left(r_{\ell+1, k} x+x_{\ell+1, k}\right)-u_{k}\left(x_{\ell+1, k}\right)\right],
$$

and we have
Proposition 9 Up to a subsequence

$$
\eta_{\ell+1, k}(x) \rightarrow \eta_{0}(x)=\log \frac{2}{1+|x|^{2}} \quad \text { in } C_{\mathrm{loc}}^{2 m-1, \alpha}\left(\mathbb{R}^{2 m}\right)
$$

and

$$
\begin{equation*}
\lim _{R \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{B_{R_{r_{\ell+1, k}}\left(x_{\ell+1, k}\right)}} \lambda_{k} u_{k}^{2} e^{m u_{k}^{2}} d x=\lim _{R \rightarrow \infty} \int_{B_{R}(0)} e^{2 m \eta_{0}} d x=\Lambda_{1} \tag{41}
\end{equation*}
$$

Summarizing, we have proved that $\left(E_{\ell+1}^{1}\right),\left(E_{\ell+1}^{2}\right)$ and (41) hold. These also imply that $\left(E_{\ell+1}^{3}\right)$ holds, hence we have $\left(E_{\ell+1}\right)$. Because of (2) and $\left(E_{\ell}^{3}\right)$, the procedure stops in a finite number I of steps, and we have $\left(H_{I}\right)$.

Finally, we claim that $\lambda_{k} \rightarrow 0$ implies $u_{k} \rightharpoonup 0$ in $H^{m}(\Omega)$. This, (5) and elliptic estimates then imply that

$$
u_{k} \rightarrow 0 \quad \text { in } \quad C_{\mathrm{loc}}^{2 m-1, \alpha}\left(\Omega \backslash\left\{x^{(1)}, \ldots, x^{(I)}\right\}\right)
$$

To prove the claim, we observe that for any $\alpha>0$

$$
\begin{aligned}
\int_{\Omega}\left|\Delta^{m} u_{k}\right| d x & =\int_{\Omega} \lambda_{k} u_{k} e^{m u_{k}^{2}} d x \\
& \leq \frac{\lambda_{k}}{\alpha} \int_{\left\{x \in \Omega: u_{k} \geq \alpha\right\}} u_{k}^{2} e^{m u_{k}^{2}} d x+\lambda_{k} \int_{\left\{x \in \Omega: u_{k}<\alpha\right\}} u_{k} e^{m u_{k}^{2}} d x \\
& \leq \frac{C}{\alpha}+\lambda_{k} C_{\alpha}
\end{aligned}
$$

where C_{α} depends only on α. Letting k and α go to infinity, we infer

$$
\begin{equation*}
\Delta^{m} u_{k} \rightarrow 0 \quad \text { in } L^{1}(\Omega) \tag{42}
\end{equation*}
$$

Thanks to (12), we infer that up to a subsequence $u_{k} \rightharpoonup u_{0}$ in $H^{m}(\Omega)$. Then (42) and the boundary condition imply that $u_{0} \equiv 0$, in particular the full sequence converges to 0 weakly in $H^{m}(\Omega)$. This completes the proof of the theorem.

Appendix

An elliptic estimate for Zygmund and Lorentz spaces

Theorem 10 Let u solve $\Delta^{m} u=f \in L(\log L)^{\alpha}$ in Ω with Dirichlet boundary condition, $0 \leq \alpha \leq 1, \Omega \subset \mathbb{R}^{n}$ bounded and with smooth boundary, $n \geq 2 m$. Then $\nabla^{2 m-\ell} u \in L^{\left(\frac{n}{n-\ell}, \frac{1}{\alpha}\right)}(\Omega), 1 \leq \ell \leq 2 m-1$ and

$$
\begin{equation*}
\left\|\nabla^{2 m-\ell} u\right\|_{\left(\frac{n}{n-\ell}, \frac{1}{\alpha}\right)} \leq C\|f\|_{L(\log L)^{\alpha}} \tag{43}
\end{equation*}
$$

Proof. Define

$$
\hat{f}:= \begin{cases}f & \text { in } \Omega \\ 0 & \text { in } \mathbb{R}^{n} \backslash \Omega\end{cases}
$$

and let $w:=K * \hat{f}$, where K is the fundamental solution of Δ^{m}. Then

$$
\left|\nabla^{2 m-1} w\right|=\left|\left(\nabla^{2 m-1} K\right) * \hat{f}\right| \leq C I_{1} *|\hat{f}|
$$

where $I_{1}(x)=|x|^{1-n}$. According to [BS, Cor. 6.16], $\left|\nabla^{2 m-1} w\right| \in L^{\left(\frac{n}{n-1}, \frac{1}{\alpha}\right)}\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\left\|\nabla^{2 m-1} w\right\|_{\left(\frac{n}{n-1}, \frac{1}{\alpha}\right)} \leq C\|\hat{f}\|_{L(\log L)^{\alpha}}=C\|f\|_{L(\log L)^{\alpha}} \tag{44}
\end{equation*}
$$

We now use (44) to prove (43), following a method that we learned from [Hél]. Given $g: \Omega \rightarrow \mathbb{R}^{n}$ measurable, let v_{g} be the solution to $\Delta^{m} v_{g}=\operatorname{div} g$ in Ω, with the same boundary condition as u, and set $P(g):=\left|\nabla^{2 m-1} v_{g}\right|$. By L^{p} estimates
(see e.g. [ADN]), P is bounded from $L^{p}\left(\Omega ; \mathbb{R}^{n}\right)$ into $L^{p}(\Omega)$ for $1<p<\infty$. Then, thanks to the interpolation theory for Lorentz spaces, see e.g. [Hél, Thm. 3.3.3], P is bounded from $L^{(p, q)}\left(\Omega ; \mathbb{R}^{n}\right)$ into $L^{(p, q)}(\Omega)$ for $1<p<\infty$ and $1 \leq q \leq \infty$. Choosing now $g=\nabla \Delta^{m-1} w$, we get $v_{g}=u$, hence $\left|\nabla^{2 m-1} u\right|=P\left(\nabla \Delta^{m-1} w\right)$, and from (44) we infer

$$
\left\|\nabla^{2 m-1} u\right\|_{\left(\frac{n}{n-1}, \frac{1}{\alpha}\right)} \leq C\left\|\nabla \Delta^{m-1} w\right\|_{\left(\frac{n}{n-1}, \frac{1}{\alpha}\right)} \leq C\|f\|_{L(\log L)^{\alpha}}
$$

For $1<\ell \leq 2 m-1$ (43) follows from the Sobolev embeddings, see [O'N].

Other useful results

A proof of the results below can be found in [Mar1]. The following Lemma can be considered a generalized mean value identity for polyharmonic function.

Lemma 11 (Pizzetti [Piz]) Let $u \in C^{2 m}\left(B_{R}\left(x_{0}\right)\right), B_{R}\left(x_{0}\right) \subset \mathbb{R}^{n}$, for some m, n positive integers. Then there are positive constants $c_{i}=c_{i}(n)$ such that

$$
\begin{equation*}
f_{B_{R}\left(x_{0}\right)} u(x) d x=\sum_{i=0}^{m-1} c_{i} R^{2 i} \Delta^{i} u\left(x_{0}\right)+c_{m} R^{2 m} \Delta^{m} u(\xi) \tag{45}
\end{equation*}
$$

for some $\xi \in B_{R}\left(x_{0}\right)$.
Proposition 12 Let $\Delta^{m} h=0$ in $B_{2} \subset \mathbb{R}^{n}$. For every $0 \leq \alpha<1$, $p \in[1, \infty)$ and $\ell \geq 0$ there are constants $C(\ell, p)$ and $C(\ell, \alpha)$ independent of h such that

$$
\begin{aligned}
\|h\|_{W^{\ell, p}\left(B_{1}\right)} & \leq C(\ell, p)\|h\|_{L^{1}\left(B_{2}\right)} \\
\|h\|_{C^{\ell, \alpha}\left(B_{1}\right)} & \leq C(\ell, \alpha)\|h\|_{L^{1}\left(B_{2}\right)} .
\end{aligned}
$$

A simple consequence of Lemma 11 and Proposition 12 is the following Liouville-type Theorem.

Theorem 13 Consider $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with $\Delta^{m} h=0$ and $h(x) \leq C\left(1+|x|^{\ell}\right)$ for some $\ell \geq 0$. Then h is a polynomial of degree at most $\max \{\ell, 2 m-2\}$.

References

[Ada] D. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. of Math. 128 (1988), 385-398.
[AD] Adimurthi, O. Druet, Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality, Comm. Partial Differential Equations 29 (2004), 295-322.
[ARS] Adimurthi, F. Robert, M. Struwe, Concentration phenomena for Liouville's equation in dimension 4, J. Eur. Math. Soc. 8 (2006), 171-180.
[AS] Adimurthi, M. Struwe, Global compactness properties of semilinear elliptic equations with critical exponential growth, J. Functional Analysis 175 (2000), 125-167.
[ADN] S. Agmon, A. Douglis, L. Niremberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), 623-727.
[BS] C Bennett, R. Sharpley, Interpolation of operators, Pure and Applied Mathematics vol. 129, Academic Press (1988).
[BC1] H. Brézis, J. M. Coron, Convergence de solutions de H-systèmes et application aux surfaces à courbure moyenne constante, C. R. Acad. Sc. Paris 298 (1984), 389-392.
[BC2] H. Brézis, J. M. Coron, Convergence of solutions of H-Systems or how to blow bubbles, Arch. Rat. Mech. Anal. 89 (1985), 21-56.
[BM] H. Brézis, F. Merle, Uniform estimates and blow-up behaviour for solutions of $-\Delta u=V(x) e^{u}$ in two dimensions, Comm. Partial Differential Equations 16 (1991), 1223-1253.
[BW] H. Brézis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Comm. Partial Differential Equations, 5 (1980), 773-789.
[Cha] S-Y. A. Chang, Non-linear Elliptic Equations in Conformal Geometry, Zurich lecture notes in advanced mathematics, EMS (2004).
[CL] W. Chen, C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J. 63 (3) (1991), 615-622.
[DAS] A. Dall'Acqua, G. Sweers, Estimates for Green function and Poisson kernels of higher-order Dirichlet boundary value problems, J. Differential Equations 205 (2004), 466-487.
[Dru] O. Druet, Multibumps analysis in dimension 2: quantification of blowup levels, Duke Math. J. 132 (2006), 217-269.
[HR] E. Hebey, F. Robert, Coercivity and Struwe's compactness for Paneitz type operators with constant coefficients, Calc. Var. Partial Differential Equations 13 (2001), 491-517.
[Hél] F. HÉlein, Harmonic maps, conservation laws and moving frames, second edition, Cambridge University press (2002).
[Lin] C. S. Lin, A classification of solutions of conformally invariant fourth order equations in \mathbb{R}^{n}, Comm. Math. Helv 73 (1998), 206-231.
[Mar1] L. Martinazzi, Classification of the entire solutions to the higher order Liouville's equation on $\mathbb{R}^{2 m}$, to appear in Math. Z .
[Mar2] L. Martinazzi, Concentration-compactness phenomena in the higher order Liouville's equation, to appear in J. Functional Anal.
[Mos] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970/71), 1077-1092.
[O'N] R. O'Neil, Convolution operators and $L(p, q)$ spaces, Duke Math. J. 30 (1963), 129-142.
[Par] T. H. Parker, Bubble tree convergence for harmonic maps, J. Differential Geom. 44 (1996), 595-633.
[Piz] P. Pizzetti, Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie di una sfera, Rend. Lincei 18 (1909), 182-185.
[RS] F. Robert, M. Struwe, Asymptotic profile for a fourth order PDE with critical exponential growth in dimension four, Adv. Nonlin. Stud. 4 (2004), 397-415.
[SU] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2spheres, Ann. of Math. (2) 113 (1981), 1-24.
[Str1] M. Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), 511-517.
[Str2] M. Struwe, Large H-surfaces via the Mountain-Pass-Lemma, Math. Ann. 270 (1985), 441-459.
[Str3] M. Struwe, Critical points of embeddings of $H_{0}^{1, n}$ into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 425-464.
[Str4] M. Struwe, Quantization for a fourth order equation with critical exponential growth, Math. Z. 256 (2007), 397-424.
[Str5] M. Struwe, Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Fourth edition, SpringerVerlag, Berlin (2008).
[Tru] N. S. Trudinger, On embedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-483.
[Wen] H. C. Wente, Large solutions to the volume constrained Plateau problem, Arch. Rational Mech. Anal. 75 (1980/81), 59-77.

[^0]: *This work was supported by ETH Research Grant no. ETH-02 08-2.

[^1]: ${ }^{1}$ Here and in the following $\alpha \in[0,1)$ is an arbitrary Hölder exponent.
 ${ }^{2}$ The norm in (7) is equivalent to the usual Sobolev norm $\|u\|_{H^{m}}:=\left(\sum_{\ell=0}^{m}\left\|\nabla^{\ell} u\right\|_{L^{2}}\right)^{\frac{1}{2}}$, thanks to elliptic estimates.

