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Abstract

We prove a general convergence result for singular perturbations with an arbitrary number of scales of
fully nonlinear degenerate parabolic PDEs. As a special case we cover the iterated homogenization for such
equations with oscillating initial data. Explicit examples, among others, are the two-scale homogenization of
quasilinear equations driven by a general hypoelliptic operator and the n-scale homogenization of uniformly
parabolic fully nonlinear PDEs.
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0. Introduction

This paper is devoted to singular perturbation problems with an arbitrary finite number of
scales for fully nonlinear degenerate parabolic PDEs, and to the iterated homogenization of such
PDEs with oscillating initial data, in the framework of viscosity solutions. Some new results on
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the case of two scales are given for their own interest and because they are needed in the proof
of the general n-scale case.

The theory of homogenization of fully nonlinear PDEs by viscosity methods started with the
seminal paper by P.-L. Lions, Papanicolaou, and Varadhan [46] on first-order Hamilton–Jacobi
equations

∂tv
ε + G

(
x,

x

ε
,Dxv

ε

)
= 0 in (0, T ) × R

n, vε(0, x) = h(x), (1)

and with the work of L.C. Evans [31,32], who introduced the perturbed test function method
for first-order and second-order elliptic equations. It was continued by many authors to cover a
number of different issues, such as problems without equicontinuity estimates [15], perforated
domains [3,9,36], nonperiodic homogenization [10,20,38,47], elliptic and parabolic equations
in divergence form [28,35], Neumann boundary conditions [16]. A recent important addition to
the theory is the stochastic homogenization of PDEs in stationary ergodic media [29,48,52,54].
The main motivation of all this theory is understanding the macroscopic properties of models
with high oscillations at a microscopic scale, as in the classical homogenization of variational
problems, see, e.g., the monographs [19,25,41,56].

Some related asymptotic problems are the singular perturbations of degenerate parabolic
equations of the form

∂tu
ε + H

(
x, y,Dxu

ε,
1

ε
Dyu

ε,D2
xxu

ε,
1

ε
D2

yyu
ε,

1√
ε
D2

xyu
ε

)
= 0 in (0, T ) × R

n × R
m,

uε(0, x, y) = h(x, y) on R
n × R

m, (2)

where one seeks a limit u(t, x) of uε(t, x, y) independent of y and solving a suitable Cauchy
problem in (0, T ) × R

n. They arise in the optimal control of deterministic or stochastic systems
whose state variables evolve on two different time-scales, namely,

dxs = f (xs, ys, as) ds + σ(xs, ys, as) dWs, 0 < s < t, x0 = x ∈ R
n,

ε dys = g(xs, ys, as) ds + √
ετ(xs, ys, as) dWs, y0 = y ∈ R

m,

where Ws is a multidimensional Brownian motion and as an admissible control function. If one
minimizes an integral cost functional plus a terminal cost h(xt , yt ), the corresponding value
function uε(t, x, y) solves (2) with a Hamilton–Jacobi–Bellman Hamiltonian H (i.e., the sup
of a family of linear degenerate elliptic operators parametrized by a). Here the macroscopic
variable x in (2) has the meaning of the slow variable in the dynamical system, whereas the
microscopic variable y corresponds to the fast variable of the control system. Passing to the limit
as ε → 0+ in this problem amounts to reducing the dimension of a large system by decoupling
the behavior of the fast and the slow variables. These problems have a large literature, see the
books [13,17,42,44] and the references therein. A viscosity solutions approach to these problems
was developed by the first two authors of the present paper [4,5,7], using some of the ideas of
the homogenization theory quoted above.

In fact, many homogenization problems can be seen as special cases of singular perturbations.
For instance, the PDE in (1) is transformed into
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
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by setting vε(t, x) = uε(t, x, x
ε
) and y = x

ε
. In the same way the second-order equation
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ε + F
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ε
,Dxv

ε,D2
xxv

ε

)
= 0 in (0, T ) × R

n (3)

becomes

uε
t + F

(
x, y,Dxu

ε + Dyu
ε

ε
,D2

xxu
ε + D2

yyu
ε

ε2
+ D2

xyu
ε

ε
+ (D2

xyu
ε)T

ε

)
= 0

in (0, T ) × R
n × R

n.

After replacing ε with
√

ε, this is also of the form (2) in the case F is independent of the
first-order terms. The general homogenization problem with first and second-order terms can
be written as an equation of the form (2) if H is replaced by a suitable Hε with

Hε → H as ε → 0 uniformly on the compact sets.

With this motivation, and as a tool for the asymptotic problems with more than two scales,
we first prove a convergence theorem for regular perturbations of the singular perturbation prob-
lem, that is, for (2) with H is replaced by Hε and h replaced by hε , hε → h uniformly. The
assumptions are only on the unperturbed Hamiltonian H and are the same as in [5], namely, the
properties of ergodicity and stabilization to a constant that we recall in the next sections. These
assumptions allow to define the effective PDE and initial data that should be satisfied by the
limit of uε as ε → 0. The local uniform convergence of uε to the unique solution of the effec-
tive Cauchy problem is desired. However, this strong convergence does not hold in general, as
shown by the example in Section 11 of [7]. Our result then states the weak convergence of uε , in
the sense that the relaxed upper (respectively lower) semi-limit is a viscosity sub- (respectively
super-) solution of the limit equation. Strong convergence will be shown under suitable additional
assumptions on the Hamiltonian that guarantee that the limit equation satisfies the Comparison
Principle. We give several examples and refer to [5] and [7] for more details.

This theorem embeds homogenization theory into singular perturbations, at least for
Hamilton–Jacobi–Bellman–Isaacs equations. It allows an approach to homogenization that is
a fully nonlinear counterpart of the two-scale convergence by Allaire and Nguetseng [1] for
variational problems. An immediate consequence is a new general treatment of the degenerate
parabolic equations (3) with oscillating initial data, that is, under the initial condition

vε(0, x) = h

(
x,

x

ε

)
.

Of course there is a boundary layer at t = 0 and one must find the effective initial condition h so
that vε converges as ε → 0 to the solution of

∂tv + F
(
x,Dxv,D2

xxv
) = 0, v(0, x) = h(x),
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where F is the effective Hamiltonian associated to F . The definitions are recalled in the next
sections and some methods for determining h and F can be found in [5,7,12,32].

We give three examples: the first is the case of uniformly elliptic F , for which we improve the
existing theory. The second is a very degenerate case where F satisfies a nonresonance condition
introduced by Arisawa and Lions [12]. The third concerns the equation

∂tv
ε − tr

(
σσT

2

(
x

ε

)
D2

xxv
ε

)
+ G

(
x,

x

ε
,Dxv

ε

)
= 0, vε(0, x) = h

(
x,

x

ε

)
,

where tr denotes the trace, under a full rank bracket generating condition on the columns of
the matrix σ . We prove the uniform convergence of vε over compact sets to the solution of the
effective limit problem

∂tu −
∫

(0,1)n

[
tr

(
σσT

2
(y)D2

xxu

)
− G(x,y,Dxu)

]
dμ(y) = 0, u(0, x) =

∫
(0,1)n

h(x, y) dμ(y),

where dμ(y) = ϕ(y)dy is the invariant measure associated to the diffusion process generated by
σ and ϕ ∈ C∞(Rn). Although the PDE is quasilinear with a hypoelliptic principal part, this result
seems to be completely new; indeed, all the results we know involving subelliptic operators treat
only variational and stationary equations on the Heisenberg group and use completely different
methods, see Biroli, Mosco and Tchou [21,22] as well as [23,34] and the references therein.

The second and main part of the paper is devoted to singular perturbations with more than two
scales. The simplest situation is the three-scale problem

∂tu
ε + Hε

(
x, y, z,Dxu

ε,
Dyu

ε

ε
,
Dzu

ε

ε2
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xxu
ε,

D2
yyu
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ε
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D2

zzu
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,
D2

xyu
ε

ε1/2
,
D2

xzu
ε

ε
,
D2

yzu
ε

ε3/2

)
= 0,

uε(0, x, y, z) = hε(x, y, z),

still with Hε → H and hε → h locally uniformly. It arises, in the special case Hε = H , in
the study via Dynamic Programming of the value function in optimal control and differential
games for multiscale stochastic systems of the form

dxs = f ds + σ dWs,

ε dys = g ds + √
ε τ dWs,

ε2 dzs = ϕ ds + ε υ dWs,

where the drift vectors f,g,ϕ and the dispersion matrices σ, τ,υ depend on the state variables
xs, ys, zs and on the control functions of one or two controllers, and Ws is a multidimensional
Brownian motion. It applies also, for a suitable choice of Hε → H locally uniformly, to the
iterated homogenization problem

∂tv
ε + F

(
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,
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,Dxv

ε,D2
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)
= 0, vε(0, x) = h

(
x,
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)
,
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if uε(t, x, x
ε
, x

ε2 ) = vε(t, x). Here we work out in detail the case of uniformly elliptic F . The
applications to first-order equations are made in our paper [8].

Our methods are general and allow to attack singular perturbation and homogenization prob-
lems with an arbitrary number of scales. As far as we know, this is the first paper treating
problems with more than two scales for fully nonlinear equations. Up to now iterated homog-
enization was addressed only in the variational setting, starting with the pioneering work of
Bensoussan, J.-L. Lions and Papanicolaou [19] for linear equations and, afterwards, for semi-
linear equations, using the Γ -convergence approach, see [25,49] and the references therein, or
G-convergence techniques [2,14,45].

The plan of the paper is as follows. The standing assumptions are listed in Section 1. Section 2
recalls the notions of ergodicity and stabilization for a Hamiltonian. In Section 3, we improve
the convergence result of [5] by considering the regular perturbation of a singular perturbation
problem. Applications to problems with a noncritical scale factor and to homogenization are
given in Section 4. In Section 5, we present the regular–singular perturbation result for three
scales, then apply it to iterated homogenization, and finally extend it to an arbitrary number of
scales.

1. Standing assumptions

In order to avoid a long list of assumptions on the Hamiltonian and the initial data that may
seem technical to the reader nonexpert in viscosity solutions, we shall specialize to the case of
Hamilton–Jacobi–Bellman–Isaacs (HJBI) operators. This is an expedient to get easily existence
and the Comparison Principle (which implies uniqueness) for a few ancillary problems. We leave
it to the reader to extend our results to Hamiltonians in the general form (as in [5]). We therefore
assume that the Hamiltonian is given by

H(x,y,px,py,Xxx,Xyy,Xxy) := min
β∈B

max
α∈A

Lα,β(x, y,px,py,Xxx,Xyy,Xxy),

for the family of linear operators

Lα,β(x, y,px,py,Xxx,Xyy,Xxy) := − tr
(
Xxxa(x, y,α,β)

) − tr
(
Xyyb(x, y,α,β)

)
− 2 tr

(
Xxyc(x, y,α,β)

) − px · f (x, y,α,β)

− py · g(x, y,α,β) − �(x, y,α,β)

with

a := σ σT /2, b := τ τT /2, c := τ σT /2,

where tr(M) denotes the trace of the matrix M . HJBI operators arise in the dynamic program-
ming approach to stochastic optimal control problems and stochastic differential games (see
Section 4.2). But it actually concerns far more general situations, as a wide class of elliptic oper-
ators can be represented as HJBI operators [43].

The following standing assumptions are very classical, apart perhaps for the last one, which
will be discussed below. They will hold throughout this paper.

– The control sets A and B are compact metric spaces.
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
Hamilton–Jacobi equations, J. Differential Equations (2007), doi:10.1016/j.jde.2007.05.027
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– The functions f , g, σ , τ , and � are bounded continuous functions in R
n × R

m ×A×B with
values, respectively, in R

n, R
m, M

n,r (the set of the n × r real matrices), M
m,r , and R.

– The drift vectors f and g and the dispersion matrices σ and τ are Lipschitz continuous in
(x, y), uniformly in (α,β).

– The running cost � is uniformly continuous in (x, y), uniformly in (α,β).
– The initial data h is a bounded continuous function in R

n × R
m with values in R.

– The functions f , g, σ , τ , � and h are Z
m-periodic in the fast variable y.

Periodicity in the fast variable y is a simplification that permits to ignore boundary conditions
or conditions at infinity since y will remain in a compact manifold without boundary (the torus).
Most of the results we prove here extend to the case of a fast variable y living in a compact set
with appropriate boundary conditions, such as Neumann conditions or the boundary conditions
arising in problems with state constraints (see Section 1 in [4]). The adaptations require suitable
assumptions on g and τ near the boundary.

Given the above Hamiltonian H , we associate its recession function, or homogeneous part, in
the fast derivatives (py,Xyy) given by

H ′(x, y,py,Xyy) := min
β∈B

max
α∈A

{− tr
(
Xyy b(x, y,α,β)

) − py · g(x, y,α,β)
}
.

We note that H ′ is positively 1-homogeneous in (py,Xyy), i.e.

H ′(x, y,λpy,λXyy) = λH ′(x, y,py,Xyy), λ > 0,

and that, for every x ∈ R
n, px ∈ R

n, Xxx ∈ S
n (the set of the n × n symmetric matrices), there is

a constant C so that

∣∣H(x,y,px,py,Xxx,Xyy,0) − H ′(x, y,py,Xyy)
∣∣ � C

∀(y,py,Xyy) ∈ R
m × R

m × S
m, (4)

for every (x,px,Xxx) in a neighborhood of (x,px,Xxx).

2. Ergodicity and stabilization

2.1. Ergodicity and the effective Hamiltonian

In this subsection we briefly recall the definition of ergodicity of the operator H from [5].
We refer to [6,7] for a discussion of the notion with numerous examples arising from stochastic
optimal control and differential games.

We fix a slow variable (x,px,Xxx). By the standard viscosity solution theory, under the cur-
rent assumptions, the cell δ-problem with discounting parameter δ > 0

δwδ + H
(
x, y,px,Dywδ,Xxx,D

2
yywδ,0

) = 0 in R
m, wδ periodic, (CPδ)
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
Hamilton–Jacobi equations, J. Differential Equations (2007), doi:10.1016/j.jde.2007.05.027



ARTICLE IN PRESS YJDEQ:5340
JID:YJDEQ AID:5340 /FLA [m1+; v 1.73; Prn:10/07/2007; 12:43] P.7 (1-39)

O. Alvarez et al. / J. Differential Equations ••• (••••) •••–••• 7
has a unique viscosity solution. We denote the solution by wδ(y;x,px,Xxx) so as to display its
dependence on the frozen slow variables. We say that the Hamiltonian is (uniquely) ergodic in
the fast variable at (x,px,Xxx) if

δwδ(y;x,px,Xxx) → const as δ → 0, uniformly in y.

We say that the Hamiltonian is ergodic if it is ergodic at every (x,px,Xxx). When the operator
is ergodic at (x,px,Xxx), we put

H(x,px,Xxx) = − lim
δ→0

δwδ(y;x,px,Xxx).

The function H is called the effective operator, or effective Hamiltonian.
In general, there is no explicit formula for the effective Hamiltonian, but it can be proved

that it inherits several properties from the Hamiltonian H [5]. In particular, H is automatically
continuous in R

n × R
n × S

n and degenerate elliptic, that is,

H(x,px,Xxx) � H
(
x,px,X

′
xx

)
if Xxx � X′

xx.

A more natural definition of effective Hamiltonian, following the classical homogenization
theory for Hamilton–Jacobi equation [32,46], is in terms of the true cell problem

H
(
x, y,px,Dyχ,Xxx,D

2
yyχ,0

) = λ in R
m, χ periodic. (5)

There is at most one λ ∈ R such that (5) has a continuous solution χ . When it exists, λ is called
the effective Hamiltonian and χ a corrector. This definition is less general than ours. If the true
cell problem has a solution, then the Hamiltonian is ergodic with effective Hamiltonian λ, but in
the current generality the converse is false, i.e. there may be no corrector associated to a given
ergodic Hamiltonian, see [12] and [7] for a simple example with a linear Hamiltonian. In fact,
the solution of (CPδ) can be used to construct approximate correctors, an idea used also by other
authors, such as Arisawa [10] and Ishii [38].

There are many papers on sufficient conditions for ergodicity, see [6,7,12] and the references
therein; [7] gives also a characterization of ergodicity in terms of the validity of the Strong Maxi-
mum Principle. The two most classical examples are the following. The first is the nondegeneracy
of the fast diffusion

for some ν > 0, b(x, y,α,β) � νIm for all (x, y,α,β). (6)

It entails the uniform ellipticity of the Hamiltonian in Xyy . The second is the existence of A′ ⊆ A

such that

B(0, ν) ⊂ conv
{
g(x, y,α,β)

∣∣ α ∈ A′}, τ (x, y,α,β) = 0 for all x, y,β and α ∈ A′, (7)

where B(0, ν) ⊂ R
m denotes the open ball of radius ν centered at the origin. It means the ex-

istence of a deterministic fast subsystem with a strong property of small-time controllability by
the player acting on α. It implies that the Hamiltonian is of first-order with respect to the fast
variable (i.e. it is independent of Xyy and Xxy ) and that it is coercive with respect to the fast
gradient py .
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
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We close this subsection with a technical lemma on ergodicity that will be used later. It states
that the uniform limit of ergodic Hamiltonians is ergodic. We emphasize that the result is global.
Indeed, ergodicity is not preserved by local uniform convergence (any Hamiltonian, whether
ergodic or not, is locally uniformly the limit of uniformly elliptic Hamiltonians, all of which are
ergodic). We shall write ‖f ‖∞ for the uniform norm of the function f .

Lemma 1. Let Hk(y,py,Xyy) be a sequence of ergodic Hamiltonians with effective Hamil-
tonian Hk . Then, for every k and k′, we have the inequality

|Hk − Hk′ | � ‖Hk − Hk′ ‖∞.

In particular, if Hk converges uniformly to H , then H is ergodic with effective Hamiltonian
H = limHk .

Proof. Let wδ,k be the solution of (CPδ) with Hamiltonian Hk . By the Comparison Principle,
we immediately get that

‖δwδ,k − δwδ,k′ ‖∞ � ‖Hk − Hk′ ‖∞.

Sending δ → 0, we obtain the inequality stated in the lemma.
If Hk uniformly converges to H , the inequality implies that Hk must converge to some con-

stant L. The inequality above applied to Hk and H gives that

‖δwδ,k − δwδ‖∞ � ‖Hk − H‖∞.

Hence,

‖δwδ − L‖∞ � ‖Hk − H‖∞ + ‖δwδ,k − Hk‖∞ + |Hk − L|.

By choosing k large enough we see that δwδ converges to L uniformly as δ → 0 . Hence, H is
ergodic with effective Hamiltonian L. �
Technical remark. In the study of multiscale problems in Section 5 we need the ergodicity
of some intermediate effective Hamiltonian that in general is merely continuous. Therefore the
cell problem (CPδ) for this Hamiltonian may not satisfy the Comparison Principle. As it is well
known, this implies that (CPδ) may have several viscosity solutions, possibly discontinuous (ex-
istence follows from Perron’s method). We say that such a Hamiltonian is ergodic if, for every
collection of solutions (wδ)δ>0 of (CPδ), δwδ converges uniformly as δ → 0 to a constant that is
independent of the collection. This extended definition allows us to prove the weak convergence
for n-scale problems under minimal assumptions. In the applications presented here, however,
we shall mainly deal with cases for which all the effective Hamiltonians satisfy the Comparison
Principle and therefore we will get strong convergence results. For these examples the standard
definition of ergodicity would be enough.
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
Hamilton–Jacobi equations, J. Differential Equations (2007), doi:10.1016/j.jde.2007.05.027
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2.2. Stabilization and the effective initial data

The notion of stabilization to a constant for degenerate equations was introduced in [5]. For x

fixed, the cell Cauchy problem for the homogeneous Hamiltonian H ′

∂tw + H ′(x, y,Dyw,D2
yyw

) = 0 in (0,+∞) × R
m, w(0, y) = h(x, y), w periodic,

(CP′)

has a unique bounded viscosity solution w(t, y;x). Using the Comparison Principle and the fact
that the constants are solutions of the equation by virtue of the positive homogeneity of H ′, we
have the uniform bound ‖w(t, ·)‖∞ � ‖h(x, ·)‖∞ for all t � 0.

We say that the pair (H,h) is stabilizing (to a constant) at x if

w(t, y;x) → const as t → +∞, uniformly in y. (8)

In this case, we set

h(x) := lim
t→+∞w(t, y;x). (9)

We say that the Hamiltonian is stabilizing if it is stabilizing at every x ∈ R
n and for every con-

tinuous h. The function h is called the effective initial data. It can be proved that h is continuous
and bounded [5].

Sufficient conditions for stabilization are, for instance, uniform ellipticity (6) or coercivity (7)
[7,12]; [7] gives other examples and a characterization of stabilization via the parabolic Strong
Maximum Principle.

Technical remark. As for ergodicity, we need to define stabilization under the assumption that
the Hamiltonian H ′ is merely continuous. This will imply that (CP′) has discontinuous solu-
tions, and they can be nonunique. By stabilization, we mean here that, for every discontinuous
viscosity solution w of (CP′) , w(t, ·) converges as t → +∞ uniformly in y to a constant that is
independent of the solution. This remark will only apply on Section 5.

3. Regular perturbation of singular perturbation problems

In this section, we prove a general convergence result for the regular perturbation of a singular
perturbation problem

∂tu
ε + Hε

(
x, y,Dxu

ε,
1

ε
Dyu

ε,D2
xxu

ε,
1

ε
D2

yyu
ε,

1√
ε
D2

xyu
ε

)
= 0 in (0, T ) × R

n × R
m,

uε(0, x, y) = hε(x, y) on R
n × R

m. (HJε)

By regular perturbation, we mean that

Hε → H and hε → h as ε → 0 uniformly on all compact sets.

We assume that H , h and every Hε , hε satisfy the standard assumptions of Section 1. For ex-
ample, the Hamiltonian Hε will be a regular perturbation of H if the control sets A and B are
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
Hamilton–Jacobi equations, J. Differential Equations (2007), doi:10.1016/j.jde.2007.05.027
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independent of ε and if the functions f ε , gε , σε , τ ε and �ε converge uniformly on the compact
sets to f , g, σ , τ and �. Under these assumptions on the Hamiltonian, and because the scaling
generates a Hamiltonian of the same form (with fast drift ε−1gε and fast diffusion ε−1/2τ ε), the
equation (HJε) has a unique bounded viscosity solution.

We suppose also that

∣∣hε(x, y)
∣∣ � C for all (x, y), (10)

and

∣∣Hε(x, y,0, . . . ,0)
∣∣ � C for all (x, y), (11)

for some constant C independent of ε small. These assumptions are satisfied for instance if the
initial costs hε and running costs �ε are equibounded.

We finally assume that condition (4) holds uniformly in ε, in the following sense. For every
ε > 0, there is a function Hε,′(x, y,py,Xyy) that is positively 1-homogeneous in (py,Xyy),
which fulfills the following property: for every (x,px,Xxx), there is a constant C so that

∣∣Hε(x, y,px,py,Xxx,Xyy,0) − Hε,′(x, y,py,Xyy)
∣∣ � C for every (y,py,Xyy), (12)

for every (x,px,Xxx) in a neighborhood of (x,px,Xxx) and every ε. This is satisfied for in-
stance if the functions f ε , σε and �ε are bounded uniformly in ε. The uniformity of the condition
in ε implies of course that the recession function H ′ of H is the uniform limit on the compact
sets of Hε,′ as ε → 0.

The convergence result we prove extends the result of [5] which corresponds to the case when
Hε = H . It says roughly that whenever the limit Hamiltonian H is ergodic and stabilizing in the
fast variable, uε will converge to the solution of the effective equation

∂tu + H
(
x,Dxu,D2

xxu
) = 0 in (0, T ) × R

n, u(0, x) = h(x) on R
n, (HJ)

where H and h are the effective Hamiltonian and data associated to H and h by the ergodicity
and stabilization assumptions.

In most cases the convergence is locally uniform. This happens when the limit equation sat-
isfies the Comparison Principle. However, this is not true in the current generality, see [7] for a
counterexample. Therefore we state the main result in terms of relaxed semi-limits.

The family {uε} is equibounded under (10) and (11) for ε small. Indeed, the Comparison
Principle gives the a priori bound

∥∥uε(t, ·)∥∥∞ � sup
ε

∥∥hε
∥∥∞ + Ct.

We can therefore define the upper semi-limit u of uε as follows

u(t, x) := lim sup
ε→0, (t ′,x′)→(t,x)

sup
y

uε(t ′, x′, y) if t > 0,

u(0, x) := lim sup
′ ′ ′

u(t ′, x′) if t = 0.
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
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It is a bounded u.s.c. function. We define analogously the lower semi-limit u by replacing lim sup
with lim inf and sup with inf. The two-steps definition of the semi-limit for t = 0 is necessary to
sweep away an expected initial layer.

Theorem 1. Assume that Hε and hε converge, respectively, to H and to h uniformly on the
compact sets. Assume the equiboundedness conditions (10), (11), and (12). Assume also that the
limit Hamiltonian H is ergodic and stabilizing. Then, the semi-limits u and u are, respectively,
a subsolution and a supersolution of the effective Cauchy problem (HJ).

Before giving the proof, let us stress that from the weak convergence stated by this theorem
it is easy to deduce the strong convergence of uε if the Comparison Principle holds for the limit
equation (HJ), i.e.

if u is a bounded u.s.c. subsolution of (HJ) and v is a bounded l.s.c. supersolution,

then u � v on [0, T ) × R
n. (13)

This will imply indeed that u � u. Since the reverse inequality is always true by definition, we
deduce that u = u. This implies that uε converges locally uniformly to the function u = u which
is the unique continuous viscosity solution of (HJ). We thus have the following corollary.

Corollary 1. Besides the hypotheses of Theorem 1, assume also that the effective Hamiltonian H

satisfies the Comparison Principle (13). Then, uε converges uniformly on the compact subsets of
(0, T ) × R

n × R
m to the unique viscosity solution of (HJ).

In general, however, (HJ) does not satisfy the Comparison Principle without further assump-
tions on the data. In Section 11 of [7] it is shown that uε may have a discontinuous limit under
the mere assumptions of Theorem 1. In the next section we give explicit conditions that imply
the Comparison Principle, and therefore the uniform convergence, for homogenization problems,
see Corollaries 2, 3, 4, and 5. We give next two simple examples that do not come from homog-
enization and extend the pioneering work of Jensen and P.-L. Lions [40] motivated by stochastic
control theory. We refer the reader to the papers [4,5,7] for other singular perturbation problems.

Examples. Consider first the problem

∂tu
ε + Fε

(
x, y,Dxu

ε,D2
xxu

ε
) − 1

ε
Δyyu

ε = 0, uε(0, x, y) = hε(x, y),

with Fε → F , hε → h locally uniformly and Fε , F satisfying the structural conditions for the
Comparison Principle [30]. Then the Hamiltonian H := F(x, y,px,Xxx) − trXyy is ergodic
because it is uniformly elliptic in the fast variables and the effective Cauchy problem is

∂tu +
∫

(0,1)m

F
(
x, y,Dxu,D2

xxu
)
dy = 0, u(0, x) =

∫
(0,1)m

h(x, y) dy,

see [5,7]. The explicit formula for H allows to check easily that it verifies the structural condi-
tions for the Comparison Principle, and then uε → u locally uniformly on (0, T ) × R

n × R
m.
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
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The second example is

∂tu
ε + Fε

(
x, y,Dxu

ε,D2
xxu

ε
) + 1

ε

∣∣Dyu
ε
∣∣ = 0, uε(0, x, y) = hε(x, y),

with the same assumptions on Fε and hε . Then the Hamiltonian H := F(x, y,px,Xxx) + |py |
is ergodic because it is coercive with respect to the gradient of the fast variables and the effective
Cauchy problem is

∂tu + max
y∈[0,1]m

F
(
x, y,Dxu,D2

xxu
) = 0, u(0, x) = min

y∈[0,1]m h(x, y),

see [5,7]. The structural conditions for the Comparison Principle are again easy to check and
uε → u locally uniformly on (0, T ) × R

n × R
m.

Remark. In the case when the initial data h are independent of y, one easily adapts the above con-
vergence results to show that convergence is uniform on the compact subsets of [0, T )×R

n×R
m.

This follows from a simple change in the definition of the semi-limits (see [5, Remark 3]).

Proof of Theorem 1. The proof of the convergence result is close to the main result in [5,
Theorem 1]. However, since the ideas will be used later for the multiscale problem, we prefer to
give the complete proof instead of referring to the steps that are common with [5, Theorem 1].
A key observation in the proof is that we do not require the correctors to be smooth.

We begin by proving that the upper semi-limit u is a subsolution of (HJ) in (0, T ) × R
n by

contradiction. We therefore assume that there are a point (t, x) ∈ (0, T ) × R
n and a smooth test

function ϕ such that: u(t, x) = ϕ(t, x), (t, x) is a strict maximum point of u − ϕ and there holds

∂tϕ(t, x) + H
(
x,Dxϕ(t, x),D2

xxϕ(t, x)
)
� 3η

for some η > 0. For every r > 0, we define

Hε
r (y,py,Xyy) := min

{
Hε

(
x, y,Dxϕ(t, x),py,D

2
xxϕ(t, x),Xyy,0

) ∣∣ |t − t | � r, |x − x| � r
}
.

We put H := H(x,px,Xxx) with px = Dxϕ(t, x) and Xxx = D2
xxϕ(t, x) and we fix r0 > 0 so

that

∣∣∂tϕ(t, x) − ∂tϕ(t, x)
∣∣ � η as |t − t | < r0, |x − x| � r0.

We claim that, for every r > 0 small enough, there is a parameter ε′ > 0 and an equibounded
family of functions {χε | 0 < ε < ε′} so that

Hε
r

(
y,Dyχ

ε,D2
yyχ

ε
)
� H − 2η in R

m. (14)

The function χε will be referred to as a corrector (by analogy with the true cell problem (5)).
To construct the corrector, we first fix a small parameter δ > 0 so that

‖δwδ + H‖∞ � η,
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
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where wδ is the solution of the cell δ-problem (CPδ). This is possible by virtue of the ergodicity
of H . Then, as

Hε
r (y,py,Xyy) → H(x,y,px,py,Xxx,Xyy,0) as (ε, r) → (0,0)

uniformly on the compact sets, we deduce from the stability properties of viscosity solutions that
the solution wε

δ,r of

δwε
δ,r + Hε

r

(
y,Dyw

ε
δ,r ,D

2
yyw

ε
δ,r

) = 0 in R
m, wε

δ,r periodic,

converges uniformly to wδ as (ε, r) → (0,0). Thus, for ε′ > 0 and 0 < r ′ < min{r0, t}, we shall
have ∥∥δwε

δ,r + H
∥∥∞ � 2η when 0 < ε < ε′ and 0 < r < r ′.

The function χε = wε
δ,r is clearly a supersolution of (14). Moreover, by the Comparison Princi-

ple, the family {χε} is equibounded with the bound∥∥χε
∥∥∞ � δ−1 sup

{∣∣Hε
r (y,0,0)

∣∣ ∣∣ y ∈ R
m, 0 < ε < ε′}.

Once the corrector is constructed, the rest of the proof is like the one of [5, Theorem 1]. We
consider the perturbed test function

ψε(t, x, y) = ϕ(t, x) + εχε(y).

In the cylinder Qr = ]t − r, t + r[ × Br(x) × R
m, the function ψε is a supersolution of

∂tψ
ε(t, x, y) + Hε

(
x, y,Dxψ

ε, ε−1Dyψ
ε,D2

xxψ
ε, ε−1D2

yyψ
ε, ε−1/2D2

xyψ
ε
)

= ∂tϕ(t, x) + Hε
(
x, y,Dxϕ(t, x),Dyχ

ε(y),D2
xxϕ(t, x),D2

yyχ
ε(y),0

)
� ∂tϕ(t, x) + Hε

r

(
y,Dyχ

ε(y),D2
yyχ

ε(y)
)

� ∂tϕ(t, x) + H − 2η

� ∂tϕ(t, x) + H − 3η

� 0.

This formal computation was derived as if the corrector were differentiable and the inequalities
hold pointwise. Actually, in full generality, the corrector may be nonsmooth; in this case, the
above computation is justified by the argument given in [5]. For the sake of completeness, we
shall provide the rigorous computation at the end of the proof.

Since {ψε} converges uniformly to ϕ on Qr because of the equiboundedness of {χε}, we have

lim sup
ε→0, t ′→t, x′→x

sup
y

(
uε − ψε

)
(t ′, x′, y) = u(t, x) − ϕ(t, x).

But (t, x) is a strict maximum point of u−ϕ, so the above relaxed upper limit is < 0 on ∂Qr . By
compactness, one can find η′ > 0 so that uε − ψε � −η′ on ∂Qr for ε small, i.e., ψε � uε + η′
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
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on ∂Qr . Since ψε is a supersolution in Qr , we deduce from the Comparison Principle that ψε �
uε +η′ in Qr for ε small. Taking the upper semi-limit, we get ϕ � u+η′ in (t −r, t +r)×B(x, r).
This is impossible, for ϕ(t, x) = u(t, x). Thus, we have reached the desired contradiction.

One can show similarly that u is a supersolution of (HJ) in (0, T ) × R
n.

We now verify the initial condition. We define the homogeneous Hamiltonian in the fast deriv-
atives (py,Xyy)

Hε,′
r (y,py,Xyy) = min

{
Hε,′(x, y,py,Xyy)

∣∣ |x − x| � r
}

as well as the initial data

hε
r (y) = max

{
hε(x, y)

∣∣ |x − x| � r
}
.

Let wε
r be the unique solution of the following Cauchy problem

∂tw
ε
r + Hε,′

r

(
y,Dyw

ε
r ,D

2
yyw

ε
r

) = 0 in (0,+∞) × R
m, wε

r (0, y) = hε
r (y), wε

r periodic in y.

Since H
ε,′
r → H ′(x, ·) and hε

r → h(x, ·) as (ε, r) → (0,0) uniformly on the compact sets, we
can show that

lim sup
r→0, ε→0, t→∞

sup
y

∣∣wε
r (t, y) − h(x)

∣∣ = 0. (15)

Indeed, let w′ be the solution of the Cauchy problem

∂tw + H ′(x, y,Dyw,D2
yyw

) = 0 in (0,+∞) × R
m,

w(0, y) = h(x, y) on R
m, w periodic.

Fix η > 0. By the definition of h(x), we can find some time T > 0 so that∥∥w(T , ·) − h(x)
∥∥∞ � η.

By the stability properties of viscosity solutions, we know that wε
r → w′ uniformly on the com-

pact sets as (ε, r) → (0,0). Therefore there are ε′ and r ′ so that∥∥wε
r (T , ·) − h(x)

∥∥∞ � 2η for all 0 < ε < ε′, 0 < r < r ′.

Noting that H
ε,′
r (·,0,0) ≡ 0 by positive homogeneity, we deduce from the Comparison Principle

that ∥∥wε
r (t, ·) − h(x)

∥∥∞ � 2η for all t � T , 0 < ε < ε′, 0 < r < r ′.

This gives (15).
The rest of the proof is similar to that of [5, Theorem 1]. We fix η > 0 arbitrarily and then

r > 0, ε′ > 0, T > 0 so that

sup
′
sup sup

y

∣∣wε
r (t, y) − h(x)

∣∣ � η.
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
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We put Q+
r (x) = (0, r) × Br(x) × R

m and we fix M so that M � ‖uε‖L∞(Q+
r (x)) for all ε < ε′.

Then, we construct a bump function ψ0 that is nonnegative, smooth, with ψ0(x) = 0 and ψ0 �
2M on ∂Br(x). Finally, we choose the constant C > 0 given by (12) so that

∣∣Hε
(
x, y,Dxψ0(x),py,D

2
xxψ0(x),Xyy,0

) − Hε,′(x, y,py,Xyy)
∣∣ � C

for every (y,py,Xyy), x ∈ Br(x), 0 < ε < ε′. The function

ψε(t, x, y) = wε
r

(
t

ε
, y

)
+ ψ0(x) + Ct

is a supersolution of

∂tψ
ε + Hε

(
x, y,Dxψ

ε, ε−1Dyψ
ε,D2

xxψ
ε, ε−1D2

yyψ
ε, ε−1/2D2

xyψ
ε
) = 0 in Q+

r (x),

ψε = hε on {0} × Br(x) × R
m, ψε = M on [0, r) × ∂Br(x) × R

m.

Indeed, the initial and boundary conditions are clearly satisfied by the definition of wε
r and by

the construction of M (note in particular that ‖wε
r ‖∞ � ‖hε‖∞ � M). Moreover, in Q+

r (x), we
have that

∂tψ
ε + Hε

(
x, y,Dxψ

ε, ε−1Dyψ
ε,D2

xxψ
ε, ε−1D2

yyψ
ε, ε−1/2D2

xyψ
ε
)

= ε−1∂tw
ε
r + C + Hε

(
x, y,Dxψ0, ε

−1Dyw
ε
r ,D

2
xxψ0, ε

−1D2
yyw

ε
r ,0

)
� ε−1(∂tw

ε
r + Hε,′(x, y,Dyw

ε
r ,D

2
yyw

ε
r

))
� ε−1(∂tw

ε
r + Hε,′

r

(
y,Dyw

ε
r ,D

2
yyw

ε
r

))
= 0.

By the Comparison Principle, we deduce that

uε(t, x, y) � ψε(t, x, y) = wε
r

(
t

ε
, y

)
+ ψ0(x) + Ct in Q+

r (x).

Taking the supremum over y and sending ε → 0, we obtain the inequality

u(t, x) � h(x) + η + ψ0(x) + Ct for all t > 0, x ∈ Br(x).

Sending t → 0+, x → x, we get u(0, x) � h(x)+η. The arbitrariness of η yields u(0, x) � h(x).
One shows similarly that u(0, x) � h(x).
Finally, let us provide the rigorous argument of [5] for showing that ψε is a viscosity super-

solution to (HJε) in Qr . We denote by J−ψε(t, x, y) and by J−ψε(t, x, y), respectively, the
parabolic subdifferential of ψε in (t, x, y) and its closure (see the User’s guide [30] for the pre-
cise definitions); in particular, a vector (π,p, q,Θ) ∈ R × R

n × R
m × S

n+m, with Θ := (
X Z

ZT Y

)
(where S

i is the set of i × i symmetric real matrices) belongs to J−ψε(t, x, y) if the Taylor
inequality
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
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ψε(t + ht , x + hx, y + hy) � ψε(t, x, y) + πht + (p,hx) + (q,hy) + 1

2
(Xhx,hx)

+ 1

2
(Yhy,hy) + (Zhy,hx) − o

(|ht | + |hx |2 + |hy |2
)

is fulfilled for every ht , hx and hy sufficiently small.
Our aim is to show that, for every (t, x, y) ∈ Qr and (π,p, q,Θ) ∈ J−ψε(t, x, y) there holds

π + Hε
(
x, y,p, ε−1q,X, ε−1Y, ε−1/2Z

)
� 0. (16)

We apply [30, Theorem 8.3] on the characterization of the subdifferential of the sum of two
functions with independent variables: for every δ > 0, there are X̃ ∈ S

n and Ỹ ∈ S
m so that

(π,p, X̃) ∈ J−ϕ(t, x) and (q, Ỹ ) ∈ εJ−χε(y) with
(

X̃ 0
0 Ỹ

)
� Θ − δΘ2. We set Θ2 =: ( X′ Z′

(Z′)T Y ′
)
.

Since it is regular, the function ϕ satisfies:

π = ϕt (t, x), p = Dxϕ(t, x) and X̃ � D2
xxϕ(t, x).

By the properties of X̃ and Ỹ and by the degenerate ellipticity of Hε , we infer

π + Hε
(
x, y,p, ε−1q,X − δX′, ε−1(Y − δY ′), ε−1/2(Z − δZ′)

)
� π + Hε

(
x, y,p, ε−1q, X̃, ε−1Ỹ ′,0

)
� ϕt (t, x) + Hε

(
x, y,Dxϕ(t, x), ε−1q,D2

xxϕ(t, x), ε−1Ỹ ′,0
)

� ϕt (t, x) + Hε
r

(
y, ε−1q, ε−1Ỹ ′)

(where, in the last inequality, the definition of Hε
r has been used). Since χε is a solution to (14)

and (q, Ỹ ) ∈ εJ−χε(y), we deduce

Hε
r

(
y, ε−1q, ε−1Ỹ

)
� H − 2η.

By the last two inequalities, we conclude

π + Hε
(
x, y,p, ε−1q,X − δX′, ε−1(Y − δY ′), ε−1/2(Z − δZ′)

)
� ϕt (t, x) + H − 2η � ϕ(t, x) + H − 3η � 0.

Letting δ → 0, we accomplish the proof of our claim (16). �
4. Applications: Noncritical scalings and homogenization

4.1. Singular perturbations with noncritical scalings

Most applications we have in mind for regular perturbations of the Hamiltonian correspond
to a singular perturbation problem depending on a scale factor γ > 0,

∂tu
ε + H

(
x, y,Dxu

ε,
1

ε
Dyu

ε,D2
xxu

ε,
1

ε2γ
D2

yyu
ε,

1

εγ
D2

xyu
ε

)
= 0 in (0, T ) × R

n × R
m,

uε(0, x, y) = h(x, y) on R
n × R

m, (HJε
γ )
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where the Hamiltonian H fulfills the assumptions of Section 1. To simplify the writing, we take
the initial data independent of ε. The purpose of this subsection is to explain what the limit will
be according to the values of γ .

The critical value is γ = 1/2 because the derivatives Dy and Dyy are multiplied by the same
power of ε so they both appear in the cell problem. This corresponds to the situation studied in
[5]. It is the natural scaling in most singular perturbations problems arising in optimal stochastic
control theory [4,17,44]. But, noncritical values for the scale factor, i.e. γ = 1/2, are also impor-
tant for the applications. In this case, the first-order term and the second-order term will not have
the same power. One of them will therefore dominate the other and will determine the cell prob-
lem. The case 0 < γ < 1/2 appears in optimal control and corresponds to weak diffusion; in the
limit, the stochastic fast variable will behave like a deterministic process. This will be considered
in Section 4.2. On the contrary, when γ > 1/2, the fast process will behave like a pure diffusion,
with no drift. The case γ = 1 is most important as it arises in periodic homogenization and in
problems in very thin domains. This will be explained in Sections 4.4 and 4.3.

Let us now state precise results. When 0 < γ < 1/2, the leading term in the operator is the
first-order term in the fast variable. Therefore we expect the situation be the same as if we had
started with the Hamiltonian

Hf (x, y,px,py,Xxx) := H(x,y,px,py,Xxx,0,0).

Note that Hf is first-order with respect to the fast variable, and the subscript f recalls this fact.
The proof is obtained by applying Theorem 1 to

Hε(x, y,px,py,Xxx,Xyy,Xxy) := H
(
x, y,px,py,Xxx, ε

1−2γ Xyy, ε
1/2−γ Xxy

)
.

Indeed, Hε satisfies the standing assumptions together with (11) and (12) with recession func-
tion Hε,′ = H ′(x, y,py, ε

1−2γ Xyy), and Hε converges uniformly on the compact sets to Hf .
We therefore have the following result.

Proposition 1. Assume 0 < γ < 1/2. Assume that the Hamiltonian Hf is ergodic and stabilizing
and denote with Hf and hf the corresponding effective Hamiltonian and initial data. Then the
semi-limits u and u of the solutions uε of (HJε

γ ) are, respectively, a subsolution and a supersolu-
tion of the effective Cauchy problem

∂tu + Hf

(
x,Dxu,D2

xxu
) = 0 in (0, T ) × R

n, u(0, x) = hf (x) on R
n. (HJ1)

When γ > 1/2, the leading term in the operator is the second-order term in the fast variable.
The situation is now expected to be the same as if we had started with the Hamiltonian

Hs(x, y,px,Xxx,Xyy,Xxy) := H(x,y,px,0,Xxx,Xyy,Xxy).

Note that Hs only involves second-order derivatives with respect to the fast variable. To prove
the claim, we put

Hε(x, y,px,py,Xxx,Xyy,Xxy) := H
(
x, y,px, ε

1−1/(2γ )py,Xxx,Xyy,Xxy

)
.

We note that Hε satisfies the standing assumptions as well as (11) and (12) with recession func-
tion Hε,′ = H ′(x, y, ε1−1/(2γ )py,Xyy) and that Hε converges uniformly on the compact sets
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to Hs . We denote by uε the solution of (HJε
γ ) and vε the solution of (HJε) with hε = h. An im-

mediate computation reveals that v(ε2γ ) solves (HJε
γ ). By uniqueness, we deduce that uε = v(ε2γ ).

Theorem 1 thus gives the following:

Proposition 2. Assume γ > 1/2. Assume that the Hamiltonian Hs is ergodic and stabilizing and
denote with Hs and hs the corresponding effective Hamiltonian and initial data. Then the semi-
limits u and u of the solutions uε of (HJε

γ ) are, respectively, a subsolution and a supersolution of
the effective Cauchy problem

∂tu + Hs

(
x,Dxu,D2

xxu
) = 0 in (0, T ) × R

n, u(0, x) = hs(x) on R
n. (HJ2)

4.2. Example: Systems with weak or strong diffusion in the fast dynamics

In this subsection we provide an interpretation of the preceding results in the context of sto-
chastic control problems and differential games. Consider the controlled stochastic differential
equation

dxs = f (xs, ys, αs, βs) ds + σ(xs, ys, αs, βs) dWs, x0 = x,

dys = 1

ε
g(xs, ys, αs, βs) ds + 1

εγ
τ (xs, ys, αs, βs) dWs, y0 = y,

for s � 0, where Ws is a r-dimensional Brownian motion. The admissible controls αs and βs

take values, respectively, in the sets A and B . We also define a payoff functional on each time
interval [0, t] of the form

J ε(t, x, y,α,β) := E(x,y)

[ t∫
0

�(xs, ys, αs, βs) ds + h(xt , yt )

]
,

where E(x,y) denotes the expectation, � represents a running cost for the players and h is the
terminal payoff depending of the position of the system at the final time t . The first player wants
to minimize the criterion by acting on α while the second player wants to maximize it by acting
on β . There are two value functions, whose definition depends on the information available to
each player. The lower value is

uε(t, x, y) := inf
α∈Γ (t)

sup
β∈B(t)

J ε
(
t, x, y,α[β], β)

,

where B(t) denotes the set of admissible controls of the second player in the interval [0, t]
and Γ (t) denotes the set of admissible strategies of the first player in the same interval (i.e.,
nonanticipating maps from B(t) into the admissible controls of the first player), see Fleming and
Souganidis [33] or Swiech [55] for the precise definitions. Symmetrically, one can define the
upper value function by switching the information pattern and allowing the second player to use
strategies, instead of the first. Under the assumptions of Section 1 the lower value is the unique
viscosity solution of the Hamilton–Jacobi–Bellman–Isaacs equation (HJε

γ ) [33,55], whereas the
upper value solves the same equation with min and max switched in the definition of H .
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As mentioned above, the classical scaling is the critical value γ = 1/2. It is treated in [4] for a
single player. Theorem 1 extends that result to two players, initial data depending also on y, and
regular perturbations of the vector fields and the running cost.

If 0 < γ < 1/2, we say that the diffusion in the fast dynamic is weak. Problems of this type
were studied for instance by Kabanov and Pergamenshchikov [42] without periodicity assump-
tions, see also the references therein. Proposition 1 states that the singular perturbation converges
if there is ergodicity and stabilization of the corrected Hamiltonian

Hf (x, y,px,py,Xxx)

= min
β∈B

max
α∈A

{−tr
(
Xxxa(x, y,α,β)

) − px · f (x, y,α,β) − py · g(x, y,α,β) − �(x, y,α,β)
}
.

Since Hf does not depend on Xyy , the needed assumptions are only on the drift g of the fast
variables and correspond to setting τ ≡ 0. In other words, we must look at the ergodic properties
of the controlled deterministic system

dys = g(x, ys, αs, βs) ds

for each slow variable x fixed. As recalled in Section 2, a simple sufficient condition for Hf

to be ergodic and stabilizing is its coercivity in py , which corresponds to the assumption (7)
on the dynamical system. We refer to [7] for weaker assumptions that guarantee ergodicity and
stabilization for Hf . Whenever Hf is ergodic, it admits a representation formula as the lower
value of an ergodic differential game for the preceding deterministic system, see [4,6,7].

If γ > 1/2, we say that the diffusion is strong. Though less studied in the context of singular
perturbations, this case is natural in homogenization. In this case we have to consider the ergod-
icity and stabilization properties of the Hamiltonian Hs , i.e. the ergodic properties of the purely
stochastic control system

dys = τ(x, ys, αs, βs) dWs.

As recalled in Section 2, a sufficient condition for ergodicity and stabilization for Hs is the
uniform nondegeneracy of τ (6). Finally, when Hs is ergodic it can be represented as the lower
value of an ergodic stochastic differential game for the preceding controlled diffusion process
[4,6,7].

4.3. Example: Thin domains

Proposition 2 applies also to HJBI equations in a very thin domain. In the case of homoge-
neous Neumann boundary conditions, the problem was studied by Arisawa and Giga [11] for
operators modeling the propagation of fronts. In the periodic setting, the problem is a slight
variant of homogenization. The equation now has the form

∂tu
ε + F

(
x,

z

ε
,Dxu

ε,Dzu
ε,D2

xxu
ε,D2

zzu
ε,D2

xzu
ε

)
= 0 in (0, T ) × R

n × R
m,

uε(0, x) = h

(
x,

z
)

on (x, z) ∈ R
n × R

m.
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The functions F and h are periodic in the variable y = z/ε. By uniqueness, the solu-
tion uε(t, x, z) is periodic in z with period ε. This models the situation where the state variable
(x, z) lies in a very thin strip with width ε (namely R

n × (0, ε)m) and it can be extended peri-
odically in the z direction so as to live in R

n × R
m. Then, vε(t, x, y) = uε(t, x, εy) is a solution

of (HJε
γ ) with scale factor γ = 1. Proposition 2 applies in a trivial manner.

4.4. Periodic homogenization for uniformly parabolic equations

In this subsection, we specialize to the case γ = 1 and explain how it covers homogenization
problems. We are given the Cauchy problem

∂tu
ε + F

(
x,

x

ε
,Dxu

ε,D2
xxu

ε

)
= 0 in (0, T ) × R

n, uε(0, x) = h

(
x,

x

ε

)
on R

n, (17)

where the functions F and h are periodic in the y = x/ε variable. We assume that F is a HJBI
operator

F(x, y,px,Xxx) := min
β∈B

max
α∈A

{−tr
(
Xxxa(x, y,α,β)

) − px · f (x, y,α,β) − �(x, y,α,β
)}

where a = σσT /2 and the coefficients σ , f , �, and the initial datum h satisfy the assumptions of
Section 1. The recession function needed for the cell Cauchy problem is defined as

F ′(x, y,Xxx) := min
β∈B

max
α∈A

{−tr
(
Xxxa(x, y,α,β)

)}
.

(It is independent of the gradient because we are in the case γ > 1/2.)
The relationship between homogenization and singular perturbations is the following. In ho-

mogenization for differential games, the dynamical system is

dxs = f

(
xs,

xs

ε
,αs, βs

)
ds + σ

(
xs,

xs

ε
,αs, βs

)
dWs, x0 = x. (18)

Introducing the shadow variable y = x/ε, we see, by uniqueness, that the system can be written
as

dxs = f (xs, ys, αs, βs) ds + σ(xs, ys, αs, βs) dWs, x0 = x,

dys = 1

ε
f (xs, ys, αs, βs) ds + 1

ε
σ (xs, ys, αs, βs) dWs, y0 = y,

for the initial data y = x/ε.
Let us interpret this observation in terms of the HJBI equation and explain how Proposition 2

applies. Consider the solution vε of (HJε
γ ) with scale factor γ = 1 and Hamiltonian

H(x,y,px,py,Xxx,Xyy,Xxy) = F
(
x, y,px + py,Xxx + Xyy + Xxy + XT

xy

)
.

It clearly satisfies the assumptions of Section 1. By uniqueness, one sees immediately that

uε(t, x) = vε(t, x, x/ε).
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Now define the relaxed semi-limits of vε , that is, for t > 0,

v(t, x) := lim sup
ε→0, (t ′,x′)→(t,x)

sup
y

vε(t ′, x′, y), v(t, x) := lim inf
ε→0, (t ′,x′)→(t,x)

inf
y

vε(t ′, x′, y),

extended for t = 0 by taking their u.s.c. and l.s.c. envelopes, respectively, and call them two-scale
semi-limits associated to the homogenization problem (17). Their connection with the relaxed
semi-limits of the solution uε to (17), namely u(t, x) := lim supε→0, (t ′,x′)→(t,x) u

ε(t ′, x′) and
the symmetric definition for u, is given by the inequalities v � u � u � v. Consequently, if
Proposition 2 applies and the effective Hamiltonian Hs satisfies the Comparison Principle, we
shall deduce that v = v and conclude that uε converges uniformly on the compact sets.

Let us give some explicit conditions on the operator F that allow to apply Proposition 2 to
periodic homogenization. We need the ergodicity and stabilization of the Hamiltonian

Hs(x, y,px,Xxx,Xyy,0) = F(x, y,px,Xxx + Xyy).

The effective Hamiltonian for F is defined by F(x,px,Xxx) := Hs(x,px,Xxx). More explicitly,

F(x,px,Xxx) = − lim
δ→0+ δwδ(y;x,px,Xxx), (19)

where, for the fixed parameters x,px,Xxx , wδ solves

δwδ + min
β∈B

max
α∈A

{−tr
(
D2

yywδa(x, y,α,β)
) − L(y,α,β)

} = 0 in R
n, wδ periodic,

and

L(y,α,β) = L(y,α,β;x,px,Xxx) := tr
(
Xxxa(x, y,α,β)

) + px · f (x, y,α,β) + �(x, y,α,β).

Since Hs does not depend on py , a natural sufficient condition for ergodicity is the uniform
ellipticity

for some ν > 0, a(x, y,α,β) � νIn for all (x, y,α,β) (20)

(this is (6) of course, since σ = τ here).
The effective initial condition is

hs(x) := lim
t→∞w(t, y;x), (21)

where w solves

∂tw − max
β∈B

min
α∈A

tr
(
D2

yyw a(x, y,α,β)
) = 0 in (0,+∞) × R

n, w(0, y) = h(x, y).

In order to guarantee that the Comparison Principle holds for the limit Cauchy problem

∂tu + F
(
x,Dxu,D2

xxu
) = 0 in (0, T ) × R

n, u(0, x) = hs(x) on R
n, (22)
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we can make one of the following assumptions. Either F is concave in Xxx and Hölder continu-
ous in y, i.e.

a ≡ a(x, y,β), � is Hölder continuous in y, uniformly in (x, y,α,β), (23)

or F is uniformly continuous in x, uniformly in Xxx (see (25) below), i.e., in terms of the dy-
namics,

a ≡ a(y,α,β). (24)

We therefore obtain the following result.

Corollary 2. If F is uniformly elliptic (20), then the two-scale semi-limits v and v are, respec-
tively, a supersolution and a subsolution of the effective Cauchy problem (22) with F and hs

given by (19) and (21).
If, in addition, F satisfies either (23) or (24), then the solution uε of the homogenization

problem (17) converges uniformly on the compact subsets of (0, T ) × R
n as ε → 0 to the unique

solution of (22).

Proof. The first part of the corollary follows from the ergodicity and stabilization of Hs un-
der (20) and from Proposition 2.

By Corollary 1 we prove the second part once we show that the effective Hamiltonian F is
regular enough to ensure the Comparison Principle for the effective equation (22). It is classical
to check that F is uniformly elliptic. Under (23), the regularity of F follows from the results
of [7]. Under (24), this follows from the inequality

∣∣F(x′,px,Xxx) − F(x,px,Xxx)
∣∣ � C|x′ − x|(1 + |px |

) + ω
(|x′ − x|).

This is a simple consequence of the inequality∣∣F(x′, y,px,Xxx) − F(x, y,px,Xxx)
∣∣ � C|x′ − x|(1 + |px |

) + ω
(|x′ − x|)

for all x, x′, y,px,Xxx. (25)

(See e.g. the argument of [4, Proposition 12] for a proof of this implication.) These regularity
properties for F imply the Comparison Principle for (22), see, e.g., [39]. �
Remark. A different characterization of the effective data F and hs can be given in terms of
differential games. By the results of Swiech [55], wδ is the lower value function of the stochastic
game for the system

dys = σ(x, ys, αs, βs) dWs, y0 = y,

with infinite horizon cost functional

Ey

[ +∞∫
L(ys,αs, βs)e

−δs ds

]
.
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Therefore F is the lower value of an ergodic game, see [6]. Similarly, w is the lower value func-
tion of the stochastic game for the same system with finite horizon cost functional Ey[h(x, yt )],
so we can write a representation formula for hs .

Remark. Under the assumption (20) it is possible to prove that also the semi-limits u and u are
a sub- and a supersolution to the effective Cauchy problem.

4.5. Periodic homogenization under a nonresonance condition

In this subsection we give a homogenization theorem where uniform ellipticity is replaced by
a nonresonance condition (introduced by Arisawa, Lions [12] for optimal control problems). It
concerns the HJB equation

∂tu
ε + max

α∈A

{
−tr

(
σσT

2
(x,α)D2

xxu
ε

)
− Dxu

ε · f
(

x,
x

ε
,α

)
− �

(
x,

x

ε
,α

)}
= 0

in (0, T ) × R
n,

uε(0, x) = h

(
x,

x

ε

)
on R

n. (26)

The nonresonance condition is, for each fixed x,

for every k ∈ Z
n \ {0}, there is α ∈ A such that σT (x,α)k = 0. (27)

It is the natural counterpart for controlled diffusions of the classical nonresonance condition
for the ergodicity of the translations on the torus. It allows for very degenerate diffusions. For
instance, if ξ is a vector with rationally independent coordinates and if the diffusion matrix is of
the form a(α) = ξ ⊗ ξ , then the nonresonance condition is satisfied (and the matrix has rank 1).
We refer to Arisawa, Lions [12] for a complete discussion of this hypothesis and for a proof of
the ergodicity of the associated Hamiltonian Hs , and to [5,7] for the proofs that Hs is stabilizing
and the Comparison Principle holds for F if σ is independent of x.

Corollary 3. Assume (27) for all x ∈ R
n. Then there exist a continuous degenerate elliptic F and

a continuous hs such that the two-scale semi-limits v and v associated to (26) are, respectively,
a supersolution and a subsolution of the effective Cauchy problem (22).

If, in addition, σ = σ(α) is independent of x, then the solution uε of the homogenization
problem (26) converges uniformly on the compact subsets of (0, T ) × R

n as ε → 0 to the unique
solution of (22).

Remark. The same statement holds if we replace the PDE in (26) with

∂tu
ε − min

α∈A
tr

(
σσT

2
(x,α)D2

xxu
ε

)
+ G

(
x,

x

ε
,Dxu

ε

)
= 0

with

G : R
n × R

n × R
n → R Lipschitz continuous and Z

n periodic in y. (28)
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No convexity in the px variables is needed. Therefore it applies to stochastic differential games
for the system (18) if the dispersion matrix σ depends at most on x and on one of the players,
and it satisfies the nonresonance condition.

A more precise result can be obtained if σ in independent of the controls. Then we have a
quasilinear equation of the form

∂tu
ε − tr

(
σσT

2
(x)D2

xxu
ε

)
+ G

(
x,

x

ε
,Dxu

ε

)
= 0

and the nonresonance condition reads

σT (x)k = 0 for every k ∈ Z
n \ {0}. (29)

For quasilinear equations the effective data are obtained by averaging with respect to the invari-
ant measure associated to the diffusion process, and it was shown in [5] that the unique invariant
probability measure of a nonresonant diffusion is the Lebesgue measure. This leads to the fol-
lowing.

Corollary 4. Assume that in (26) σ = σ(x) and (29) holds for all x ∈ R
n. Then the solution uε

converges uniformly on the compact subsets of (0, T ) × R
n as ε → 0 to the unique solution of

∂tu − tr

(
σσT

2
(x)D2

xxu

)
+

∫
(0,1)n

G(x, y,Dxu)dy = 0 in (0, T ) × R
n,

u(0, x) =
∫

(0,1)n

h(x, y) dy on R
n.

4.6. Periodic homogenization under a hypoellipticity condition

In this subsection we give a homogenization theorem for a quasilinear equation where uniform
ellipticity is replaced by a hypoellipticity assumption. We consider the problem

∂tu
ε − tr

(
σσT

2

(
x,

x

ε

)
D2

xxu
ε

)
+ G

(
x,

x

ε
,Dxu

ε

)
= 0 in (0, T ) × R

n,

uε(0, x) = h

(
x,

x

ε

)
on R

n, (30)

where G is Lipschitz continuous and periodic in y, and the principal part of the operator is
hypoelliptic in the oscillating variables, which means the following. Denote with σ i the ith
column of the matrix σ . For each frozen x, consider the operator Xi := σ i(x, y) · ∇y associated
to the vector field σ i(x, ·), i = 1, . . . , r . We assume these vector fields are C∞ and, for all x ∈ R

n,

⎧⎨
⎩

X1, . . . ,Xr and their commutators

up to a certain fixed order r

n n

(31)
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Under this Hörmander-type condition it is known that there is a unique probability measure μx

invariant for the diffusion process dys = σ(x, ys) dWs, see [37] for a probabilistic proof and [7]
for an analytic one. Moreover μx is the unique solution in the sense of distributions of

∑
i,j,k

∂2

∂yi∂yj

(
σik(x, y)σjk(x, y)μx

) = 0 in R
n, μx periodic,

∫
(0,1)n

dμx(y) = 1,

and μx has a density ϕ(x, ·) ∈ C∞(Rn), dμx(y) = ϕ(x, y) dy. Therefore the Hamiltonian Hs

associated to our homogenization problem is ergodic and stabilizing and the effective data are
obtained by averaging with respect to μx [7].

Corollary 5. Assume (28), σ(x, ·) is C∞ and satisfies (31) for all x ∈ R
n. Then the two-scale

semi-limits v and v associated to (30) are, respectively, a supersolution and a subsolution of the
effective Cauchy problem

∂tu −
∫

(0,1)n

[
tr

(
σσT

2
(x, y)D2

xxu

)
− G(x,y,Dxu)

]
ϕ(x, y) dy = 0 in (0, T ) × R

n,

u(0, x) =
∫

(0,1)n

h(x, y)ϕ(x, y) dy on R
n.

If, in addition, σ = σ(x
ε
) is independent of x, then ϕ = ϕ(y) is independent of x and the

solution uε of the homogenization problem (30) converges uniformly on the compact subsets
of (0, T ) × R

n as ε → 0 to the unique solution of the effective Cauchy problem.

4.7. Bibliographical remarks on periodic homogenization

We outline here the main differences of our results from the literature on periodic homoge-
nization for nonlinear nonvariational elliptic or parabolic equations. Our main improvement is
the general treatment of oscillating initial data. To our knowledge they were considered before
us only in the linear case [24,41]. Our related papers [5,50] anticipate some special nonlinear
cases (and the third author [50] treats also operators oscillating in t).

The first papers for HJB equations [15,18,31], deal with the Dirichlet problem for quasilin-
ear uniformly elliptic equations in bounded domains. Evans’ seminal paper [32] for the fully
nonlinear case considers uniformly elliptic equations under structural assumptions on F more
restrictive than ours for Bellman–Isaacs operators. Our methods apply to the Dirichlet problem
for uniformly elliptic equations, at least for boundary data depending only on x, as soon as at
each point of the boundary there exist barriers uniform in ε. So the results of [18,31,32] can
be extended to operators satisfying the milder conditions of this paper, at least in the uniformly
elliptic case.

The paper [4] by the first two authors contains the results of Sections 4.4 and 4.5 in the
context of optimal control problems with nonoscillating initial data, h = h(x). The articles by
Pardoux [51] and Buckdahn et al. [26,27] concern probabilistic methods for the homogenization
of nonlinear parabolic equations. Finally, the recent paper of Lions and Souganidis [47] studies
degenerate elliptic equations with coefficients of the second derivatives vanishing at the same
rate as the space oscillations in almost periodic environment.
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5. Singular perturbations with multiple scales

5.1. The three-scale problem

In this subsection, we consider the three-scale Cauchy problem

∂tu
ε + Hε

(
x, y, z,Dxu

ε,
Dyu

ε

ε
,
Dzu

ε

ε2
,D2

xxu
ε,

D2
yyu

ε

ε
,
D2

zzu
ε

ε2
,
D2

xyu
ε

ε1/2
,
D2

xzu
ε

ε
,
D2

yzu
ε

ε3/2

)
= 0

(32)

in (0, T ) × R
n × R

m × R
p , with the initial condition

uε(0, x, y, z) = hε(x, y, z) on R
n × R

m × R
p.

The problem is assumed to be 1-periodic in y and z. Each variable corresponds to a certain scale
of the problem. To avoid any confusion in the name of the variables, we prefer the space scale
interpretation to the time scale interpretation. We shall therefore call x the macroscopic variable
(or the slow variable), y is the mesoscopic variable (or the not so fast variable) and z is the
microscopic variable (or the fast variable).

Let us briefly explain the idea of how we take the limit in (32). In a first approximation the
problem can be viewed as a singular perturbation problem in the microscopic variable z, because
the power of ε in front of the derivatives with respect to z dominates. Under suitable ergodicity
and stabilization assumptions in the microscopic variable giving rise to a mesoscopic effective
Hamiltonian H1 and initial data h1, this suggests that the solution uε(t, x, y, z) of (32) should be
close to the solution vε(t, x, y) of the mesoscopic problem

∂tv
ε + H1

(
x, y,Dxv

ε,
Dyv

ε

ε
,D2

xxv
ε,

D2
yyv

ε

ε
,
D2

xyv
ε

ε1/2

)
= 0 in (0, T ) × R

n × R
m,

vε(0, x, y) = h1(x, y) on R
n × R

m. (33)

But this singular perturbation problem falls within the theory of [5]. If the mesoscopic Hamil-
tonian H1 is ergodic and stabilizing and if we call H and h the effective macroscopic Hamiltonian
and initial data, we know that vε will converge to the solution u of the limit problem (HJ). In
conclusion, we expect that uε(t, x, y, z) will converge to u(t, x) where the effective quantities
are defined iteratively. This viewpoint that consists in regarding the three-scale problem (32) as
the singular perturbation of a two-scale problem is the key idea in our proof of convergence.

Let us list the precise assumptions of the subsection. As before, we assume that

Hε → H and hε → h as ε → 0 uniformly on the compact sets.

We also suppose that H , h and every Hε , hε satisfy the standard assumptions of Section 1, i.e.
they are 1-periodic in (y, z) and Hε , H are HJBI operators with the regularity in the coefficients
suitably extended to the additional variable z. In order to keep the notations reasonable, we shall
not write down the explicit form of the HJBI operator for the three-scale problem in terms of the
underlying differential game problem. This will be done however for iterated homogenization in
the next subsection.
Please cite this article in press as: O. Alvarez et al., Multiscale problems and homogenization for second-order
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We also assume that the functions Hε and hε are equibounded in the sense of (10)
and (11). We finally suppose that there is a recession function with respect to the variables
(y, z), i.e. a function Hε,′ = Hε,′(x, y, z,py,pz,Xyy,Xzz,Xyz) positively 1-homogeneous in
(py,pz,Xyy,Xzz,Xyz), which satisfies for some constant C∣∣Hε(x, y, z,px,py,pz,Xxx,Xyy,Xzz,0,0,Xyz) − Hε,′(x, y, z,py,pz,Xyy,Xzz,Xyz)

∣∣ � C

(34)

for every (y, z,py,pz,Xyy,Xzz,Xyz) ∈ R
m × R

p × R
m × R

p × S
m × S

p × M
m,p , for every

(x,px,Xxx) in a neighborhood of (x,px,Xxx) and for every ε. Let us recall that this unifor-
mity in ε implies that H has a recession function H ′ and that this is the uniform limit on the
compact sets of Hε,′ as ε → 0. As mentioned in Section 3, a sufficient condition for (34) is the
equiboundedness in ε of the data of the differential game.

These assumptions guarantee that the problem (32) admits a unique bounded viscosity so-
lution uε ∈ C([0, T ] × R

n × R
m × R

p), that it is periodic in (y, z) and that the family {uε} is
equibounded. We can therefore define the upper and lower semi-limit u and u. For instance, we
shall have

u(t, x) := lim sup
ε→0, (t ′,x′)→(t,x)

sup
y,z

uε(t ′, x′, y, z) if t > 0.

The second set of assumptions is necessary to define the effective Hamiltonian. They require
the ergodicity of suitable problems.

– Microscopic ergodicity. The Hamiltonian H is ergodic with respect to the microscopic
variable z. Namely, for every macro- and mesoscopic variables (x, y,px,py,Xxx,Xyy), the
unique periodic viscosity solution of the microscopic cell problem

δwδ,2 + H
(
x, y, z,px,py,Dzwδ,2,Xxx,Xyy,D

2
zzwδ,2,0,0,0

) = 0

is such that δwδ,2 converges uniformly to a constant as δ → 0. The constant is denoted by
−H1(x, y,px,py,Xxx,Xyy) and the function H1 is called the effective mesoscopic Hamil-
tonian.

– Mesoscopic ergodicity of the effective mesoscopic Hamiltonian. The Hamiltonian H1 is
ergodic with respect to the mesoscopic variable y. Namely, for every macroscopic variables
(x,px,Xxx), all periodic viscosity solutions of the mesoscopic cell problem

δwδ,1 + H1
(
x, y,px,Dywδ,1,Xxx,D

2
yywδ,1

) = 0 (35)

are such that δwδ,1 converges uniformly to a constant as δ → 0. The constant is denoted by
−H(x,px,Xxx) and the function H is called the effective (macroscopic) Hamiltonian.

We recall that the Comparison Principle may not hold for the mesoscopic cell problem, because
in general H1 is merely continuous. This is the reason why we extended the definition of ergod-
icity to all discontinuous viscosity solutions, as explained in the Technical Remark of Section 2.
An alternative way would be to keep the classical assumption of ergodicity and suppose that the
Comparison Principle holds for the mesoscopic problem. This would give a less general result,
though suitable for most applications.
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In order to define the effective initial condition, we have to construct the recession functions
of suitable Hamiltonians. We first note that

H ′′(x, y, z,pz,Xzz) = H ′(x, y, z,0,pz,0,Xzz,0)

is the recession function of H with respect to the microscopic variable for frozen macro- and
mesoscopic variables. It is indeed positively homogeneous in (pz,Xzz) and, because H is an
HJBI operator with bounded coefficients, we have that: for every (x, y,px,py,Xxx,Xyy), there
is a constant C so that∣∣H(x,y, z,px,py,pz,Xxx,Xyy,Xzz,0,0,0) − H ′′(x, y, z,pz,Xzz)

∣∣ � C

for every (z,pz,Xzz), (36)

for every (x, y,px,py,Xxx,Xyy) in a neighborhood of (x, y,px,py,Xxx,Xyy).
We shall also need the recession function of the effective mesoscopic Hamiltonian H1. Its

existence is guaranteed by the following lemma.

Lemma 2. Assume that the Hamiltonian H is ergodic with respect to the microscopic variable z.
Then, so is the recession Hamiltonian H ′. Moreover, the associated effective Hamiltonian H ′

1 is
the recession function of the mesoscopic effective Hamiltonian H1.

Proof. We first show that the recession Hamiltonian H ′ is ergodic in z. For every λ > 0, define

Hλ(x, y, z,py,pz,Xyy,Xzz,Xyz) = λ−1H(x,y, z,0, λpy,λpz,0, λXyy,λXzz,0,0, λXyz).

One deduces easily from the ergodicity of H in the microscopic variable that Hλ is ergodic with
effective Hamiltonian

Hλ(x, y,py,Xyy) = λ−1H1(x, y,0, λpy,0, λXyy).

On the other hand, by assumption (34) written for H and H ′, we have that, for every x bounded
and every (py,pz,Xyy,Xzz,Xyz),∣∣Hλ(x, y, z,py,pz,Xyy,Xzz,Xyz) − H ′(x, y, z,py,pz,Xyy,Xzz,Xyz)

∣∣ � C/λ. (37)

Thus, Hλ converges to H ′ uniformly (for x bounded) as λ → +∞. We deduce easily from
Lemma 1 that H ′ is ergodic with effective Hamiltonian H ′

1 = limλ→0 Hλ.
It remains to show that H ′

1 is the recession function of H1. The positive homogeneity of H ′
1

in (py,Xyy) is inherited from that of H ′ by a standard argument. Since estimate (34) for H and
H ′ is uniform in the microscopic variable, we deduce from Lemma 1 that, for every (x,px,Xxx)

bounded and every (py,Xyy),∣∣H1(x, y,px,py,Xxx,Xyy) − H ′
1(x, y,py,Xyy)

∣∣ � C.

Hence, H ′
1 is the recession function of H1 in the mesoscopic variable y. �

We are now in a position to state the assumptions for micro and mesoscopic stabilization.
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– Microscopic stabilization. The pair (H ′′, h) is stabilizing for the microscopic variable z

at each point (x, y). Namely, for every macro- and mesoscopic variables (x, y), the unique
periodic viscosity solution of the microscopic Cauchy cell problem

∂tw2 + H ′′(x, y, z,Dzw2,D
2
zzw2

) = 0 in (0,+∞) × R
p,

w2(0, z) = h(x, y, z), w2 periodic,

is such that w2(t, ·) converges uniformly to a constant as t → +∞. The constant is denoted
by h1(x, y) and is called the effective mesoscopic initial data.

– Mesoscopic stabilization. The pair (H ′
1, h1) is stabilizing for the mesoscopic variable y at

each point x. Namely, all periodic viscosity solutions of the mesoscopic Cauchy cell problem

∂tw1 + H ′
1

(
x, y,Dyw1,D

2
yyw1

) = 0 in (0,+∞) × R
m,

w1(0, y) = h1(x, y), w1 periodic, (38)

are such that w1(t, ·) converges uniformly to a constant as t → +∞ (and the constant is
independent of the solution). The constant is denoted by h(x) and is called the effective
(macroscopic) initial data.

We recall that, since the Comparison Principle may not hold for the mesoscopic Cauchy cell
problem, stabilization has to be defined for all discontinuous viscosity solutions.

Examples and references about sufficient conditions for micro- and mesoscopic ergodicity
and stabilization are in Section 2. As an example, in the next subsection on three-scale homoge-
nization we will assume the uniform ellipticity of the operator.

Convergence for the three-scale singular perturbation problem is given in the following result.

Theorem 2. Under the above assumptions, the semi-limits u and u are, respectively, a subso-
lution and a supersolution of the effective Cauchy problem (HJ). Moreover, if H satisfies the
Comparison Principle, then uε converges uniformly on the compact subsets to the viscosity so-
lution of (HJ).

Proof. The proof adapts the arguments of Theorem 1 in Section 3. Consequently, we shall only
stress the main differences.

Let us first show that u is a subsolution to the effective equation. Fix a point (t, x) with t > 0.
Let ϕ be a smooth test function such that: u(t, x) = ϕ(t, x), (t, x) is a strict maximum point of
u − ϕ and

∂tϕ(t, x) + H
(
x,Dxϕ(t, x),D2

xxϕ(t, x)
)
� 3η. (39)

From now on, we put px = Dxϕ(t, x), Xxx = D2
xxϕ(t, x) and H := H(x,px,Xxx). We claim

that, for every r > 0 small enough, there is a parameter ε′ > 0 and an equibounded family of
continuous correctors {χε | 0 < ε < ε′} so that

Hε

(
x, y, z,Dxϕ(t, x),Dyχ

ε,
Dzχ

ε

,D2
xxϕ(t, x),D2

yyχ
ε,

D2
zzχ

ε

,0,0,
D2

yzχ
ε

1/2

)
� H − 2η
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in Qr(t, x) = (t − r, t + r) × Br(x) × R
m × R

p for all ε < ε′. This will imply that the perturbed
test function

ψε(t, x, y, z) = ϕ(t, x) + εχε(y, z)

is a supersolution of (32) in Qr(t, x) for all ε < ε′. Since {ψε} uniformly converges to ϕ on Qr ,
we obtain the desired contradiction by the Comparison Principle, as in the proof of Theorem 1.

To construct the family of the equibounded correctors χε , we first consider the solution wδ(y)

of the mesoscopic cell problem

δwδ + H1
(
x, y,px,Dywδ,Xxx,D

2
yywδ

) = 0. (40)

It has a maximal u.s.c. subsolution wδ,+ and a minimal l.s.c. supersolution wδ,−. By Perron’s
method, they are actually discontinuous viscosity solutions given by

wδ,+ = sup
{
w

∣∣ w is a periodic subsolution of (40)
}

and a symmetric formula for wδ,−. By the ergodicity of H1, there exists a parameter δ > 0
sufficiently small such that

‖δwδ,− + H‖∞ � η, ‖δwδ,+ + H‖∞ � η. (41)

For every ε > 0 and r > 0, we introduce the perturbed Hamiltonian

Hε
r (y, z,py,pz,Xyy,Xzz,Xyz)

:= min
(t,x)∈(t−r,t+r)×Br(x)

Hε
(
x, y, z,Dxϕ(t, x),py,pz,D

2
xxϕ(t, x),Xyy,Xzz,0,0,Xyz

)
.

We note that

Hε
r (y, z,py,pz,Xyy,Xzz,Xyz) → H(x,y, z,px,py,pz,Xxx,Xyy,Xzz,0,0,Xyz)

uniformly on the compact sets as (ε, r) → (0,0). Moreover, by the continuity of Hε
r , the singular

perturbation problem

δwε
δ,r + Hε

r

(
y, z,Dyw

ε
δ,r ,

Dzw
ε
δ,r

ε
,D2

yyw
ε
δ,r ,

D2
zzw

ε
δ,r

ε
,
D2

yzw
ε
δ,r

ε1/2

)
= 0

has a unique viscosity solution wε
δ,r that is periodic both in y and in z. By assumption, the limit

Hamiltonian H is ergodic in the microscopic variable z and its effective Hamiltonian is H1.
Hence, arguing as in Theorem 1, we deduce that the semi-limits

wδ(y) = lim inf
ε→0, r→0, y′→y

inf
z

wε
δ,r (y

′, z), wδ(y) = lim sup
ε→0, r→0, y′→y

sup
z

wε
δ,r (y

′, z)

are, respectively, a supersolution and a subsolution of (40). In particular,

wδ,− � wδ � wδ � wδ,+.
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By compactness and (41), we deduce that there are small ε′ and r ′ so that

∥∥δwε
δ,r + H

∥∥∞ � 2η for all 0 < ε < ε′, 0 < r < r ′.

For every 0 < r < r ′ fixed, we define the corrector

χε(y, z) = wε
δ,r (y, z).

Clearly, the correctors are equibounded with the bound

∥∥χε
∥∥∞ � δ−1 sup

{∣∣Hε
r (y, z,0, . . . ,0)

∣∣ ∣∣ y, z, ε
}

(this follows from testing χε against constants). Moreover, using the above mentioned properties
of wε

δ,r , we get that

Hε
r

(
y, z,Dyχ

ε,
Dzχ

ε

ε
,D2

yyχ
ε,

D2
zzχ

ε

ε
,
D2

yzχ
ε

ε1/2

)
= −δwε

δ,r � H − 2η.

The definition of Hε
r yields

Hε

(
x, y, z,Dxϕ(t, x),Dyχ

ε,
Dzχ

ε

ε
,D2

xxϕ(t, x),D2
yyχ

ε,
D2

zzχ
ε

ε
,0,0,

D2
yzχ

ε

ε1/2

)
� H − 2η

in Qr(t, x) for all ε < ε′. Therefore, we have constructed a family of correctors with the de-
sired properties. This completes the proof that u is a subsolution of the effective equation in
(0, T ) × R

n.
Now, let us turn to the proof that u is a subsolution to the effective initial condition. We

introduce the following notations:

Hε,′
r (y, z,py,pz,Xyy,Xzz,Xyz) := min|x−x|�r

Hε,′(x, y, z,py,pz,Xyy,Xzz,Xyz),

hε
r (y, z) := max

|x−x|�r
hε(x, y, z).

It can be easily checked that, as (ε, r) → (0,0), H
ε,′
r and hε

r converge locally uniformly, respec-
tively, to H ′(x, ·) and to h(x, ·). Let wε

r be the unique solution of the Cauchy problem

∂tw
ε
r + Hε,′

r

(
y, z,Dyw

ε
r ,

Dzw
ε
r

ε
,D2

yyw
ε
r ,

D2
zzw

ε
r

ε
,
D2

yzw
ε
r

ε1/2

)
= 0 in (0,+∞) × R

m × R
p,

wε
r (0, y, z) = hε

r (y, z), on R
m × R

p, wε
r periodic in y and in z.

By assumptions and by Lemma 2, the limit Hamiltonian H ′(x, ·) is ergodic and stabilizing
with respect to the microscopic variable z. We infer from Theorem 1 that the semi-limits w and
w of wε

r as (ε, r) → (0,0) are, respectively, a subsolution and a supersolution of the effective
problem
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∂tw + H ′
1

(
x, y,Dyw,D2

yyw
) = 0 in (0,+∞) × R

m,

w(0, y) = h1(x, y) on R
m, w periodic in y.

We denote by w+ and w− the maximal u.s.c. subsolution and minimal l.s.c. supersolution of the
cell problem (38). We therefore have that

w− � w � w � w+.

Since w+ and w− are discontinuous solutions and since H ′
1 is stabilizing, we know that for every

η > 0, there exists T > 0 such that∥∥w−(T , ·) − h(x)
∥∥∞,

∥∥w+(T , ·) − h(x)
∥∥∞ � η/2.

By compactness, the previous two relations entail that, for every η > 0 and for T sufficiently
large, there exist (ε′, r ′) so small that∥∥wε

r (T , ·,·) − h(x)
∥∥∞ � η for every ε � ε′, r � r ′.

Therefore, by the Comparison Principle, we obtain:∥∥wε
r (t, ·,·) − h(x)

∥∥∞ � η for every ε � ε′, r � r ′, t � T

(here, the relation H
ε,′
r (y, z,0,0,0,0,0) = 0 has been used). In other words,

wε
r (t, ·,·) → h(x) uniformly as (t, ε, r) → (+∞,0,0).

The rest of the proof is similar to the proof of Theorem 1. For each η > 0, we consider (ε′, r ′)
and T so that

sup
0<ε<ε′,0<r<r ′

sup
t�T

sup
y,z

∣∣wε
r (t, y, z) − h(x)

∣∣ � η.

Then, we construct the function ψ0 as in the proof of Theorem 1 and choose the constant C > 0
so that

∣∣Hε
(
x, y, z,Dψ0(x),py,pz,D

2
xxψ0(x),Xyy,Xzz,0,0,Xyz

)
− Hε,′(x, y, z,py,pz,Xyy,Xzz,Xyz)

∣∣ � C

for every (y, z,py,pz,Xyy,Xzz,Xyz), x ∈ Br(x), 0 < ε < ε′. The function

ψε(t, x, y, z) := wε
r

(
t

ε
, y, z

)
+ ψ0(x) + Ct

is readily seen to be a supersolution of (32) in (0, r) × Br(x) × R
m × R

p , with boundary condi-
tion ψε � uε on (0, r) × ∂Br(x) × R

m × R
p . By the Comparison Principle, we conclude that

uε(t, x, y, z) � ψε(t, x, y, z) in (0, r) × Br(x) × R
m × R

p.
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Taking the supremum over (y, z), sending ε → 0 and then t → 0+, we obtain the inequality
u(0, x) � h(x) + η. The arbitrariness of η yields u(0, x) � h(x).

The proof for u is similar so we shall omit it. �
5.2. Example: Iterated homogenization

Most applications we have in mind can be written as problems depending on a scalar factor
γ > 0:

∂tu
ε + H

(
x, y, z,Dxu

ε,
Dyu

ε

ε
,
Dzu

ε

ε2
,D2

xxu
ε,

D2
yyu

ε

ε2γ
,
D2

zzu
ε

ε4γ
,
D2

xyu
ε

εγ
,
D2

xzu
ε

ε2γ
,
D2

yzu
ε

ε3γ

)
= 0,

(42)

in (0, T ) × R
n × R

m × R
p , with initial data

uε(0, x, y, z) = h(x, y, z) on R
n × R

m × R
p.

As in Section 4, γ = 1/2 is the critical value; indeed, for γ < 1/2 the first-order terms are the
leading ones, while for γ > 1/2 the second-order terms become the most relevant. This gives
rise to three different possible effective Hamiltonians.

Let us work in detail a special important example, namely iterated homogenization for the
Cauchy problem

∂tv
ε + F

(
x,

x

ε
,

x

ε2
,Dxv

ε,D2
xxv

ε

)
= 0 in (0, T ) × R

n,

vε(0, x) = h

(
x,

x

ε
,

x

ε2

)
on R

n. (43)

In order to distinguish the various scales, we introduce the periodic (shadow) variables y = ε−1x

and z = ε−2x.
Our goal in this subsection is simply to give an illustration of how to apply the abstract conver-

gence result Theorem 2. We shall therefore restrict to the simple yet natural setting of uniformly
parabolic equations that are concave in the Hessian. We recall that, even in this favorable context
(the solutions are classical), the convergence for the value function with iterated homogenization
is entirely new.

The precise assumptions are as follows. In addition to the standing assumption that F is an
HJBI operator

F(x, y, z,px,Xxx)

:= min
β∈B

max
α∈A

{−tr
(
Xxxa(x, y, z,α,β)

) − px · f (x, y, z,α,β) − �(x, y, z,α,β)
}

with coefficients σ (a = σσT /2), f , � and h satisfying the assumptions of Section 1, we suppose
that F is uniformly elliptic, i.e.,

for some ν > 0, a(x, y, z,α,β) � νIn for all (x, y, z,α,β), (44)
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concave with respect to the Hessian Xxx and Hölder continuous in (y, z), i.e.,

a ≡ a(x, y, z,β), � is Hölder continuous in (y, z), uniformly in (x, y, z,α,β). (45)

These assumptions are particularly well adapted to stochastic optimal control. As recalled in
Section 4, the solution to (43) is the value function

vε(t, x) := inf
α∈Γ (t)

sup
β∈B(t)

Ex

{ t∫
0

�

(
xs,

xs

ε
,
xs

ε2
, αs, βs

)
ds + h

(
xt ,

xt

ε
,
xt

ε2

)}
,

where xs is the solution of the controlled stochastic differential equation

dxs = f

(
xs,

xs

ε
,
xs

ε2
, αs, βs

)
ds + σ

(
xs,

xs

ε
,
xs

ε2
, αs, βs

)
dWs, x0 = x,

B(t) is the set of admissible controls for the second player, and Γ (t) is the set of admissible
strategies for the first (see Section 4 and [33,55]).

Corollary 6. Assume that F is uniformly elliptic (44) and satisfies (45). Then, there exist a
continuous and uniformly elliptic F and a continuous hs , such that the solution vε of the homog-
enization problem (43) converges uniformly on the compact subsets of (0, T ) × R

n as ε → 0 to
the unique solution of (22).

Proof. Iterated homogenization (43) corresponds to a special case of the singular perturbation
problem (42) with scale factor γ = 1 for the Hamiltonian

H(x,y, z,px,py,pz,Xxx,Xyy,Xzz,Xxy,Xxz,Xyz)

= F
(
x, y, z,px + py + pz,Xxx + Xyy + Xzz + Xxy + Xxz + Xyz + XT

xy + XT
xz + XT

yz

)
.

Therefore, to apply the convergence result Theorem 2, we have to verify that the associated pure
second-order Hamiltonian

Hs(x, y, z,px,Xxx,Xyy,Xzz) := F(x, y, z,px,Xxx + Xyy + Xzz)

is ergodic and stabilizing at both the micro and the mesoscopic scales and that the limit equa-
tion (22) satisfies the Comparison Principle. We shall only justify the multiscale ergodicity of the
Hamiltonian since the proof of its stabilization follows from similar arguments.

By the uniform ellipticity of the Hamiltonian, we know that the microscopic true cell problem

F
(
x,y, z,px,Xxx + D2

zzχ2
) = F1(x, y,px,Xxx) in R

n

has a solution (see [5,7]). In particular, F is ergodic at the microscopic scale. Moreover, one can
show that the corrector χ2 is in C2,ρ for some ρ > 0 (depending only on the ellipticity constants
and the Hölder exponent of the running cost) with the a priori bound∥∥χ2 − χ2(0)

∥∥
2,ρ � C

(
1 + |px | + |Xxx |

)
(46)
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(see [7] as well as the theory of classical solutions for HJBI equations as exposed for instance in
Safonov [53]).

Using this information, one can verify that the mesoscopic effective Hamiltonian has the fol-
lowing properties

– F1(x, y,px,Xxx) is concave in Xxx and jointly continuous with respect to all variables;
– F1 is uniformly elliptic in Xxx , i.e. −C|ξ |2 � F1(x, y,px,Xxx + ξ ⊗ ξ) − F1(x, y,

px,Xxx) � −ν|ξ |2;
– F1 is Lipschitz continuous in (px,Xxx), i.e.

∣∣F1(x, y,px,Xxx) − F1
(
x, y,p′

x,X
′
xx

)∣∣ � C
(∣∣px − p′

x

∣∣ + ∣∣Xxx − X′
xx

∣∣);
– F1 is locally bounded, i.e. |F1(x, y,0,0)| � C;
– F1 is Hölder continuous in y, i.e.

∣∣F1(x, y,px,Xxx) − F1(x, y′,px,Xxx)
∣∣ � C

(
1 + |px | + |Xxx |

)|y − y′|ρ

(see [4] and [7] for similar arguments). In other words, F1 has the same structural properties
as F .

This guarantees that the mesoscopic true cell problem

F1
(
x, y,px,Xxx + D2

yyχ1
) = F(x,px,Xxx) in R

n

has a solution. This implies the mesoscopic ergodicity of F1 because the cell problem

δwδ,1 + F1
(
x, y,px,Xxx + D2

yywδ,1
) = 0

has a unique solution and satisfies the Comparison Principle. Moreover, the corrector χ1 is in
C2,ρ for some ρ > 0 with a priori estimates of the form (46). This implies that F enjoys the
same structural properties as F1. In particular, the Comparison Principle holds for the limit equa-
tion (22) (see e.g. [39]). �
5.3. Example: Iterated averaging

Let us also briefly mention another interesting application of our results that concerns iterate
averaging. We consider the following Cauchy problem

∂tv
ε + F

(
t

ε
,

t

ε2
, x,Dxv

ε,D2
xxv

ε

)
= 0 in (0, T ) × R

n, vε(0, x) = h(x) on R
n, (47)

where the Hamiltonian F = F(y, z, x,px,Xxx) is periodic both in y and in z and degenerate
elliptic with respect to Xxx . Taking into account the uniqueness of the solution, one can easily
establish the following relation: vε(t, x) ≡ uε(t, t/ε, t/ε2, x), where uε = uε(t, y, z, x) solves
the problem (42) with H(x,y, z,px,py,pz,Xxx) = py + pz + F(y, z, x,px,Xxx). Moreover,
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taking into account the linearity of H with respect to the microscopic gradient pz, one can ex-
plicitly solve the true microscopic cell problem. We deduce that the Hamiltonian is ergodic with
respect to the microscopic variable with effective mesoscopic Hamiltonian

H1(x, y,px,py,Xxx) = py +
1∫

0

F(y, z, x,px,Xxx) dz.

By analogous arguments, one can prove that the effective Hamiltonian H can be written as:

H(x,px,Xxx) =
1∫

0

( 1∫
0

F(y, z, x,px,Xxx) dz

)
dy.

Hence, Theorem 2 implies that vε converges locally uniformly to the solution of (HJ) with initial
data h = h. The point here is that we have an (elementary) explicit formula for the effective
Hamiltonian because of the very special structure of the problem.

5.4. The multiscale problem

In this subsection, we briefly explain how to generalize the preceding results to the singular
perturbation problem with an arbitrary number of scales. Let us consider the Cauchy problem
with j + 1 scales

∂tu
ε + Hε

(
x, y1, . . . , yj ,Dxu

ε, ε−1Dy1u
ε, . . . , ε−jDyj

uε,D2
xxu

ε, ε−1D2
y1y1

uε, . . . ,

ε−jD2
yj yj

uε,
(
ε−i/2−k/2D2

yiyk
uε

)
1�i<k�j

,
(
ε−i/2D2

xyi
uε

)
1�i�j

) = 0 (48)

in (0, T ) × R
n × R

m1 × · · · × R
mj , with the initial condition

uε(0, x, y1, . . . , yj ) = hε(x, y1, . . . , yj ) on R
n × R

m1 × · · · × R
mj .

As usual, we assume that Hε and hε converge locally uniformly to H and h as ε → 0. We
suppose that the functions H , h and Hε , hε are periodic in (y1, . . . , yj ), that they satisfy the
standard assumptions of Section 1 and that they are equibounded in the sense of (10) and (11).
We also assume that, for every ε, there exists a recession function

Hε,′ = Hε,′(x, y1, . . . , yj ,py1 , . . . , pyj
, (Xyiyk

)1�i�k�j

)
,

positively 1-homogeneous in (py1 , . . . , pyj
, (Xyiyk

)1�i�k�j ), which satisfies, for some constant
C > 0

∣∣Hε
(
x, y1, . . . , yj ,px,py1 , . . . , pyj

,Xxx,Xy1y1 , . . . ,Xyj yj
, (Xyiyk

)1�i<k�j ,0
)

− Hε,′(x, y1, . . . , yj ,py1, . . . , pyj
, (Xyiyk

)1�i�k�j

)∣∣ � C (49)

for every (yi,pyi
,Xyiyi

) ∈ R
mi × R

mi × S
mi (i = 1, . . . , j ), Xyiyk

∈ M
mi×mk (1 � i < k � j ),

for every (x,px,Xxx) in a neighborhood of (x,px,Xxx) and for every ε. This implies, we recall,
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that the Hamiltonian H has a recession function H ′ which is the uniform limit on the compact
sets of Hε,′ as ε → 0.

Our ergodicity and stabilization assumptions are defined by induction. We set Hj = H and
hj = h.

– Iterated ergodicity. For every i = j , . . . , 1, Hi is ergodic with respect to yi . We denote by
Hi−1 its effective Hamiltonian and we put H = H0.

Arguing as for the three-scale problem (Lemma 2), one can deduce from (49) that every ef-
fective Hamiltonian Hi has a recession function H ′

i , that every H ′
i is ergodic and that its effective

Hamiltonian is H ′
i−1.

– Iterated stabilization. For every i = j , . . . , 1, we set

H ′′
i := H ′

i (x, y1, . . . , yi,0, . . . ,0,pi,0, . . . ,0,Xyiyi
,0).

The pair (H ′′
i , hi) is stabilizing with respect to yi at each point (x, y1, . . . , yi−1). We denote

by hi−1 its effective initial data and we put h = h0.

As usual, the Cauchy problem (48) has exactly one continuous solution uε and the family {uε}
is equibounded; so the weak semi-limits u and u are well defined.

Theorem 3. Under the above assumptions, the semi-limits u and u are, respectively, a subso-
lution and a supersolution to problem (HJ). Furthermore, uε converges locally uniformly to the
solution of (HJ) provided that the effective Hamiltonian H satisfies the Comparison Principle.

The proof of the Theorem follows simply by induction and by using the arguments introduced
for the three-scale problem (Theorem 2). Since the modifications are only routine, we leave the
detailed proof to the reader.

Remark. The convergence result can be immediately extended to nonpower-like scales

∂tu
ε + Hε

(
x, y1, . . . , yj ,Dxu

ε, ε−1
1 Dy1u

ε, . . . , ε−1
j Dyj

uε,D2
xxu

ε, ε−1
1 D2

y1y1
uε, . . . ,

ε−1
j D2

yj yj
uε,

(
ε
−1/2
i ε

−1/2
k D2

yiyk
uε

)
1�i<k�j

,
(
ε
−1/2
i D2

xyi
uε

)
1�i�j

) = 0.

The assumption is that ε := (ε1, . . . , εj ) tends to 0 in the sense that ε1 → 0 and εi/εi−1 → 0
(i = 2, . . . , j ). Equation (48) is a particular case of the above equation, choosing εi = εi .
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