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Abstract. We study the asymptotic behaviour for a perturbed variational prob-
lem for the Cahn-Hilliard theory of phase transitions in a fluid, with spatial in-
homogeneities in the internal free energy term. The standard minimal interface
criterion will be recovered even in the case in which the inhomogeneity vanishes
or becomes infinite.
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1. Introduction

This paper deals with the Γ-convergence of the functional

(1.1) Fε(u) = Fε(u,Ω) :=

∫
Ω

[
εp−1A1−p(x)|Du|p +

1

ε
A(x)W (u)

]
dx,

where W is a “double-well” potential, p ∈ (1,∞) and ε > 0 is a small parameter.

Differently from the previous literature, we consider here the case in which the spatial

inhomogeneity A : Ω→ [0,∞] does not need to be either bounded or bounded away from

zero.
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In spite of this severe degeneracy or singularity, we will be able to recover the standard Γ-

limit properties of the functional, in relation with minimal area interfaces.

As well-known, the functional in (1.1) is related to the Cahn-Hilliard theory of phase

transitions in fluids (see, e.g., [23, 15]). When p = 2 and A ≡ 1, the Γ-convergence

of Fε is a classical topic that goes back to De Giorgi and Franzoni in [10], and which was

completely settled by Modica and Mortola in [18].

After that, many important extensions and generalisations have been considered in the

literature: see, in particular, [6] which considered the case p 6= 2 in (1.1) and also [21] for

very general results.

Recently, some attention has been devoted to the case in which A in (1.1) may become

arbitrarily close to zero or infinity. In particular, in [14] the case in which A behaves like

a power of the distance from the boundary was considered (such case is very important

in applications, since it is related to fractional operators and to nonlocal and boundary

effects, see [3, 4]).

Here, we will deal with even more general types of degeneracies and singularities of A:

namely, in our hypotheses, A may even take value zero or infinity and it does not need

to be bounded or bounded from zero away from the boundary. The physical motivation

for the model in (1.1) may be thought as follows: the phase segregation between the two

pure phases −1 and +1 is driven by a double-well potential W which is influenced by

the inhomogeneity of the medium (this might be caused, for instance, by some impurities

of the material). The kinetic term driven by the gradient may be seen as a penalization

which makes the problem consistent.

Now, we fix notation, as well as briefly recalling some definitions related to Sobolev

spaces and functions with bounded variation. Then we analyse the asymptotic behaviour

of the functional Fε defined in (1.1), stating the corresponding Γ-convergence result.

1.1. Notation. In this work, Ω will be a bounded open set of RN . We denote by ∂Ω the

boundary of Ω relative to the ambient space; for simplicity, ∂Ω is assumed to be smooth.

We suppose that W is a non-negative, Lipschitz continuous function on R with at least

linear growth at infinity, vanishing only at {−1, 1}, convex near ±1 and such that

(1.2) W (r) ≤ C(1− |r|)p
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for r close to ±1, for a suitable constant C > 0.

A typical example to keep in mind is the case W (r) = (1− r2)p.

For every u ∈ L1
loc(Ω), we denote by Du the derivative of u in the sense of distributions.

We suppose that A1−p, A ∈ L1(Ω) and we consider the space

(1.3) DA = DA(Ω) :=
{
u ∈ L1

loc(Ω) with A1−p|Du|p ∈ L1(Ω)
}
.

As usual, BV (Ω) denotes the space of all u ∈ L1(Ω) with bounded variation; i.e., such

that Du is a bounded Borel measure on Ω.

We denote by Su the jump set of u; i.e., the complement of the set of Lebesgue points

of u. For details and results about the theory of Sobolev spaces and BV functions, we

refer to [1], [11] and [7].

We suppose that there exists a bounded open set Ω? ⊆ Ω, with smooth boundary, such
that:

∀γ > 0, there exists a finite number of balls {Bi}1≤i≤M(γ)

of radius ri(γ) ∈ (0, 1) such that∑
1≤i≤M(γ)

ri(γ)N−1 ≤ γ

(1.4)

and A is C1 and positive in Ω? \
⋃

1≤i≤M(γ)

Bi.

Moreover, we assume that either Ω? = Ω or that

N = 3, A(x) coincides with
(
dist(x, ∂Ω)

)a
in Ω \ Ω?

and one of the following two conditions is met:

either p = 2 and a ∈ (−1, 0),

or p ∈ (2, 3) and a = (p− 2)/(p− 1).(1.5)

Simple examples of functions A satisfying (1.4) and (1.5) are suitable powers of the distance

from ∂Ω, and functions that go to zero or infinity at a finite number of points. These

two type of weights are quite important for applications, since they are related to phase

transitions driven by fractional power of the Laplacian (see [9, 25, 8, 14, 22]), to weights

of Muckenhoupt type (see [19]), to trace spaces (see [20, 16]) and to quasiconformal maps

(see [12]).
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Condition (1.5) is taken in order to use, near ∂Ω, the results of [14, 22]. In particular,

the dimensional condition N = 3 is needed for a slicing argument in [4] which is also used

in [14, 22], and the condition p ∈ [2, 3) is needed for having a trace of the a-power of

the distance function along ∂Ω, see [20]. Of course, it would be interesting to extend the

results of this paper by relaxing such conditions.

We also note that assumption (1.4) includes all functions A with a countable set of

singular or degenerate points {xk}k∈N with finitely many cluster points.

Indeed, let {yi}1≤i≤J ⊂ Ω be the cluster points of the sequence {xk}k∈N.

Fix γ > 0. For every 1 ≤ i ≤ J , we take the ball Bi of radius
( γ

2J

) 1
N−1 centered in yi:

Bi := B(yi,
( γ

2J

) 1
N−1

).

Thus, for every ball Bi there are infinitely many natural number k such that xk ∈ Bi. The

remaining singular or degenerate points are in finite number, so we can suppose

{xk}k∈N ∩

Ω \
⋃

1≤i≤J
Bi

 = {xi}1≤i≤L.

Now, for any 1 ≤ i ≤ L, we take

Bi+J := B(xi,
( γ

2L

) 1
N−1

).

Clearly, the finite covering set of balls {Bi}1≤i≤J+L is such that∑
1≤i≤J+L

rN−1
i =

γ

2
+
γ

2
= γ

and then condition (1.4) is satisfied.

1.2. The Γ-convergence theorem. For every ε > 0 we consider the functional Fε de-

fined in (1.1) acting on DA (recall (1.3)).

We analyse the asymptotic behaviour of the functional Fε in terms of Γ-convergence.

Let (uε) be an equi-bounded sequence for Fε; i.e., there exists a constant C such that

F (uε) ≤ C. We observe that the “boundedness” of the term
1

ε

∫
Ω
A(x)W (uε)dx forces uε

to take values close to −1 and 1, while the term εp−1

∫
Ω
A1−p(x)|Duε|pdx penalises the

oscillations of uε.

Then, we expect that the sequence (uε) converges (in L1(Ω), up to subsequences) to

a function u, belonging to BV (Ω) which takes only the values −1 and 1. Moreover, one



PHASE TRANSITIONS WITH SPATIAL INHOMOGENEITY 5

expects that each uε has a transition from the value −1 to the value 1 in a thin layer close

to the surface Su, which separates the phases {u = −1} and {u = 1}.

We will prove that the asymptotic behaviour of the functional Fε is described by the

following functional F

(1.6) F (u) = σpHN−1(Su), ∀u ∈ BV (Ω; {−1, 1}),

where cp and σp are the positive constants defined by

(1.7) cp :=
p

(p− 1)
p−1
p

and σp := cp|W(1)−W(−1)|,

W being an antiderivative of W
p−1
p , that is

(1.8) W ′ = W
p−1
p .

The main convergence result is precisely stated in the following theorem.

Theorem 1.1. Assume p > 1. Let Fε : DA → R and F : BV (Ω; {−1, 1})→ R be defined

by (1.1) and (1.6).

Then

(i) [Compactness] If (uε) ⊂ DA is a sequence such that Fε(uε) is uniformly bounded,

then (uε) is pre-compact in L1(Ω) and every cluster point belongs to BV (Ω; {−1, 1}).
(ii) [Lower bound inequality] For every u ∈ BV (Ω; {−1, 1}) and every sequence

(uε) ⊂ DA such that uε → u in L1(Ω),

lim inf
ε→0

Fε(uε) ≥ F (u).

(iii) [Upper bound inequality] For every u ∈ BV (Ω; {−1, 1}) there exists a sequence

(uε) ⊂ DA such that uε → u in L1(Ω) and

lim sup
ε→0

Fε(uε) ≤ F (u).

We can easily rewrite this theorem in terms of Γ-convergence. To this aim, we extend

each Fε to ∞ on L1
loc(Ω) \ DA and, from Theorem 1.1, we deduce the following remark.

Remark 1.2. Fε Γ-converges in L1(Ω) to F̃ , given by

F̃ (u) :=

{
F (u) if u ∈ BV (Ω; {−1, 1}),
∞ elsewhere in L1(Ω).
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2. Proof of the Γ-convergence result

Whereas the compactness and the lower bound inequality will follow exactly like in the

case A ≡ 1, the proof of the upper bound inequality requires several technical modifications

due to the presence of the spatial inhomogeneity, and it is complicated by the possible

singularity or degeneracy of A.

2.1. Compactness and lower bound inequality. The key point of the proof of the

compactness and the lower bound result relies on the following Young’s inequality. For

every X,Y ≥ 0

(2.1)
Xp

p
+
Y q

q
≥ XY,

(
q :

1

p
+

1

q
= 1
)
.

For every u ∈ DA, for almost every x ∈ Ω, we define

X =
(
pεp−1A1−p(x)|Du|p

) 1
p

and

Y =
(q
ε
A(x)W (u)

) 1
q
.

As a consequence of the previous choice of X and Y in (2.1), it follows that

Fε(u) ≥ cp

∫
Ω
W (u)

p−1
p |Du|dx

(2.2)

= cp

∫
Ω
|D(W(u))|dx,

where cp and W are the ones defined in (1.7) and (1.8).

By (2.2), we can obtain the compactness result Theorem 1.1-(i) and the lower bound

inequality Theorem 1.1-(ii), using standard arguments (see [17, Proposition 1 and 2] and

also [2, Theorem 1] or [5, Theorem 3.10] for a very well written survey).

2.2. An auxiliary measure theoretic observation. Now, we show that we can include

all the bad points of A into a nice set, by paying a small price in HN−1. This will be

useful in the forthcoming argument on page 9.
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Lemma 2.1. Let (1.4) and (1.5) hold. Let U be an open subset of Ω with smooth boundary,

with U ⊂ Ω. Then, for any γ > 0 there exists an open set Uγ ⊃ U with smooth boundary,

such that

(2.3) |Uγ \ U | ≤ γ,

(2.4) A is C1 and positive in Ω \ Uγ

and

(2.5) HN−1(∂Uγ) ≤ HN−1(∂U) + γ.

Proof. We can consider γ smaller than the distance from ∂U and ∂Ω, and a set of small

balls {Bi}1≤i≤M :=M(γ), of radius ri := ri(γ), which includes the bad points of A.

We set

Eγ :=
⋃

1≤i≤M
Bi

and so we have

(2.6) A is C1 and positive in Ω? \ Eγ .

Let U be an open subset of Ω with smooth boundary. We define Uγ,0 := U and,

recursively, for any i = 1, . . . ,M , we let Uγ,i to be an open subset of Ω with smooth

boundary which contains Uγ,i−1 ∪Bi and such that

(2.7)
∣∣Uγ,i \ (Uγ,i−1 ∪Bi)

∣∣ ≤ γ

M

and

(2.8) HN−1(∂Uγ,i) ≤ HN−1
(
∂(Uγ,i−1 ∪Bi)

)
+

γ

M
.

Let Uγ := Uγ,M . Then

Uγ ⊇
⋃

1≤i≤M
Bi = Eγ ,

hence Ω \ Uγ ⊆ Ω \ Eγ and so (2.4) is a consequence of (2.6).

Furthermore, since

∂(Uγ,i−1 ∪Bi) ⊆ (∂Uγ,i−1) ∪ (∂Bi),

we deduce from (2.8) that

HN−1(∂Uγ,i) ≤ HN−1(∂Uγ,i−1) +HN−1(∂Bi) +
γ

M

≤ HN−1(∂Uγ,i−1) + cNr
N−1
i +

γ

M
,
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for a suitable cN > 0. By iterating this formula and recalling (1.4), we obtain

HN−1(∂Uγ) = HN−1(∂Uγ,M )

≤ HN−1(∂Uγ,0) +
M∑
i=1

(
cNr

N−1
i +

γ

M

)
≤ HN−1(∂Uγ) + c̃Nγ,

for a suitable c̃N > 0, that is (2.5), up to renaming γ.

Now we observe that

|Uγ,i \ Uγ,i−1| ≤ |Bi|+
γ

M

due to (2.7), and therefore

|Uγ \ U | ≤
M∑
i=1

|Uγ,i \ Uγ,i−1| ≤ γ + C
M∑
i=1

rNi

≤ γ + C
M∑
i=1

rN−1
i ≤ (C + 1)γ,

for a suitable C > 0. This proves (2.3), up to renaming γ again. �

2.3. Upper bound inequality. The main contribution in the proof of the upper bound

inequality is essentially contained in forthcoming Proposition 2.2, in which we will be able

to construct a recovery sequence for the Γ-limsup of the functional Fε(·,K), for any open

set K strictly contained in Ω. Then, we need to extend that construction to the whole

domain Ω, via a modification to allow the inhomogeneity function A to be singular or

degenerate also on the boundary; this last part will exploit condition (1.5), the results

of [14, 22] and a fine interpolation technique of [24].

Proposition 2.2. Let K be an open bounded subset of Ω such that K ⊂ Ω. Set

Fε(u,K) :=

∫
K

[
εp−1A1−p(x)|Du|p +

1

ε
A(x)W (u)

]
dx.

Then

∀u ∈ BV (K; {−1,+1}) there exists a sequence (wε) ⊂ DA(K) such that

wε → u in L1(K)(2.9)
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and

(2.10) lim sup
ε→0

Fε(wε,K) ≤ σpHN−1(Su ∩K).

Proof. Consider a function u ∈ BV (K; {−1,+1}). We want to construct a sequence of

functions wε that converges to u in L1(K).

Our construction will modify the target function u only in a small neighbourhood of

Su.

We will play with several positive parameters, namely ε (which is the one of Proposi-

tion 2.2), n, δ and γ. We will take limits in these parameters, in the following order:

(2.11)

 first, ε→ 0;
then, n→∞;

finally, δ, γ → 0 (the order of this last limit will be of no importance).

First, we observe that the singular set Su can be approximated by a sequence Sun of

smooth surfaces of dimension N − 1, so that

HN−1(Sun)→ HN−1(Su), as n→∞.

This is a well-known approximation result for finite perimeter sets; see [13, Theorem 1.24].

Figure 1. An approximating (N − 1)-dimensional smooth surfaces Sun.

Second, we should take care of possible intersections of Sun with the set of points in Ω in

which the inhomogeneity A degenerates to zero or to infinity. Thanks to the assumptions
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on A, we can turn around the balls {Bi} losing little volume and boundary measure (recall

Lemma 2.1), spreading out Sun into a new smooth surface, that we denote again1 by Sun;

see Fig. 1, with the properties that

(2.12) A is C1 and positive in the vicinity of Sun

and, for every positive γ,

(2.13) lim
n→∞

|Sun \ Su|+ |Su \ Sun| ≤ γ

and

lim
n→∞

HN−1(Sun ∩K) ≤ HN−1(Su ∩K) + γ, as n→∞.(2.14)

We remark that this further approximation step is crucial in our construction, since, in

what follows, we will compare the values of A near Sun with the ones on Sun: the above

approximation allows us to say that these two values are close to each other, in view

of (2.12).

Also, we observe that Sun may be seen as the boundary of a set, say Un, satisfying

(2.15) lim
n→∞

∣∣Un \ {u = 1}
∣∣+
∣∣{u = 1} \ Un

∣∣ ≤ γ,
thanks to (2.13).

Now, we provide a new set of coordinates (dn(x), η) in small strips Skn around Sun,

such that η parameterises Sun and dn(x) ∈ R is the signed distance to Sun, defined in the

forthcoming formula (2.16).

More precisely, for kn > 0, we define

Skn := {x ∈ K : dist(x, Sun) ≤ kn},

where

dist(x, Sun) := inf
y∈Sun

|x− y|.

We also set

(2.16) dn(x) :=

{
dist(x, Sun) if x ∈ Un,
−dist(x, Sun) otherwise.

Then, since Sun is smooth, if kn > 0 is sufficiently small, for any x ∈ S3kn there exists a

unique η ∈ Sun for which dist(x, Sun) = |x − η| : we will write η := πn(x). So, if kn > 0

1We stress that this new Sun does depend on γ. According to (2.14), γ is taken here to be a fixed
parameter. At the end of the proof, we will let n → ∞, for a fixed γ > 0: recall (2.11). This is why
forgetting the dependence on γ in the notation is not too dangerous.
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is sufficiently small, the map sending x to the couple given by such η = πn(x) ∈ Sun

and t := dn(x) is a diffeomorphism2 on S3kn .

Notice that such diffeomorphism x 7→ (t, η) = (dn(x), πn(x)) depends on n – as well as

on the γ > 0 fixed at the beginning, recall (2.11) and the footnote on page 10 – but it is

independent of ε.

In particular,

(2.17)
1

c(n, γ)
dt dη ≤ dx ≤ c(n, γ) dt dη

for a suitable c(n, γ) ≥ 1.

With a slight abuse of notation, we will write Skn in the system of coordinates given

by (t, η) as

(2.18) Skn = {x ∈ K : x = (t, η), η ∈ Sun, t = dn(x) : |t| ≤ kn} .

Analogously, a function g = g(x) will be often written as g(t, η) with the obvious meaning

that the above diffeomorphism is omitted and intending that t = dn(x) and η = πn(x).

The idea of the subsequent proof is that we need to capture all the energy of the

transition in the recovery sequence: to do this job, we will build a modified version of the

optimal profile modelled for the case A ≡ 1.

For this, we take the real function θ ∈W 1,1
loc (R) satisfying the following ODE:

(2.19)



θ′ =
1

(p− 1)
1
p

W
1
p (θ) a.e.

θ(0) = 0,

lim
t→±∞

θ(t) = ±1,

We notice that θ may be explicitly constructed as follows: for any |τ | < 1, let

Ψ(τ) :=

∫ τ

0

(p− 1)
1
p

W
1
p (r)

dr.

Then, Ψ′ > 0 and so Ψ is invertible. Also, Ψ(±1) = ±∞, due to (1.2). Taking θ(t) :=

Ψ−1(t), we have that (2.19) is satisfied.

2The choice of having a diffeomorphism on S3kn and not only on Skn is due to the fact that we will like
to interpolate a phase transition outside Skn in the forthcoming formula (2.31). Of course, with no loss of
generality, we may and do suppose that kn is so small that A is C1 and positive in S3kn : recall (2.12).



12 G. PALATUCCI AND E. VALDINOCI

In order to take into account of the inhomogeneity A, for every fixed η we define the

following function

(2.20) ϕη(t) = ϕ(t, η) := θ
(
A(0, η)t

)
, ∀t ∈ R.

We note that (0, η) is a point of Sun and A is finite and positive on Sun, due to (2.12),

therefore the definition in (2.20) is well-posed.

Moreover,

(2.21) lim
t→±∞

ϕη(t) = ±1

and

ϕ′η(t) :=
∂

∂t
ϕη(t) =

1

(p− 1)
1
p

W
1
p (ϕη(t))A(0, η).

As a consequence,

A1−p(0, η)
(
ϕ′η(t)

)p
+A(0, η)W (ϕη(t)) =

(
1

(p− 1)
+ 1

)
A(0, η)W (ϕη(t))

=

(
p

p− 1

)
(p− 1)

1
pW

p−1
p (ϕη(t))ϕ

′
η(t)

= cpW
p−1
p (ϕη(t))ϕ

′
η(t).(2.22)

In particular, recalling (2.12), we set

Ξn := cp sup
η∈Sun

Ap−1(0, η).

Note that Ξn is finite, since the weight A is finite and positive close to the surfaces Sun

and it may not degenerate nor become singular when approaching the boundary of K,

that is far from ∂Ω.

From (2.22), we obtain that

1

Ξn

(
ϕ′η(t)

)p ≤ c−1
p A1−p(0, η)

(
ϕ′η(t)

)p
≤ W

p−1
p (ϕη(t))ϕ

′
η(t).(2.23)
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We deduce from (1.8) and (2.23) that, for every fixed η ∈ Sun,

1

Ξn

∫ +∞

−∞
|ϕ′η(t)|p dt ≤

∫ +∞

−∞
W

p−1
p
(
ϕη(t)

)
ϕ′η(t) dt

=

∫ +∞

−∞

d

dt
W
(
ϕη(t)

)
dt

= W(1)−W(−1) <∞(2.24)

and so

(2.25) lim
r→∞

∫ 2r

r
|ϕ′η(t)|p dt = 0.

Now, for every ε > 0, we define

(2.26) vε(x) := ϕπn(x)

(
dn(x)

ε

)
= ϕ

(
dn(x)

ε
, πn(x)

)
, ∀x ∈ S2kn .

Now, we observe that for every δ ∈ (0, 1) there exists c(δ) > 0 such that, for every X,

Y ≥ 0,

(2.27) (X + Y )p ≤ (1 + δ)Xp + c(δ)Y p,

Indeed, we can suppose that (1 + δ)1/p < 2 and Y 6= 0, and, for any t ∈ (0, 1], we let

gδ(t) :=
(1 + t)p − 1− δ

tp
.

Then gδ ∈ C([(1 + δ)1/p − 1, 1]) and gδ(t) < 0 if t ∈ (0, (1 + δ)1/p − 1). So, we can define

c(δ) := 2p + max
(0,1]

gδ.

With this, we have that, if X ≤ Y

(X + Y )p ≤ (2Y )p ≤ (1 + δ)Xp + 2pY p ≤ (1 + δ)Xp + c(δ)Y p.

On the other hand, if X > Y , we set t := Y/X ∈ (0, 1]. We have

(X + Y )p = Xp(1 + t)p = Xp
(

(1 + δ) + tpgδ(t)
)

≤ Xp
(

(1 + δ) + tpc(δ)
)

= (1 + δ)Xp + c(δ)Y p.

In any case, (2.27) is proved.



14 G. PALATUCCI AND E. VALDINOCI

Making use of (2.27), we see that

|Dvε(x)|p =

∣∣∣∣∂ϕ∂t
(
dn(x)

ε
, πn(x)

)
D

(
dn(x)

ε

)
+
∂ϕ

∂η

(
dn(x)

ε
, πn(x)

)
D
(
πn(x)

)∣∣∣∣p

≤ (1 + δ)

(
ϕ′πn(x)

(dn(x)
ε

))p
εp

+ c(δ)R(x), ∀x ∈ S2kn ,(2.28)

where R is bounded by a quantity possibly depending on n but independent of ε, hence,

recalling (2.11),

(2.29) lim
ε→0

εp−1R(x) = 0 uniformly in S2kn , for fixed n, δ and γ.

From (2.17), (2.28) and (2.24), we also conclude that∫
S2kn
|Dvε(x)|p dx ≤

∫
S2kn

(1 + δ)

(
ϕ′πn(x)

(dn(x)
ε

))p
εp

+ c(δ)R(x) dx

≤ C?

(
1

ε

∫ 2kn

kn

∫
Sun

(
ϕ′η

( t
ε

))p
dt dη + 1

)
≤ C?

(∫ +∞

−∞

∫
Sun

(
ϕ′η(τ)

)p
dτ dη + 1

)
< +∞,(2.30)

for a suitable C? possibly depending on all the parameters ε, n, δ and γ and on the size

of K.

The function vε will be the relevant contribution for the recovery sequence. In order to

provide a recovery sequence defined on the whole of K, it has to be extended away from

S2kn : for this, we introduce the signed strips Skn± as follows

Skn+ := Skn ∩ {dn(x) > 0}

and

Skn− := Skn ∩ {dn(x) < 0}.

For every x ∈ K, the recovery sequence wε is defined by

(2.31) wε(x) :=



1 if x ∈ K \ S2kn
+ ,(

2− dn(x)
kn

)
vε(x) +

(dn(x)
kn
− 1
)

if x ∈ S2kn
+ \ Skn+ ,

vε(x) if x ∈ Skn ,(
2 + dn(x)

kn

)
vε(x) +

(dn(x)
kn

+ 1
)

if x ∈ S2kn
− \ Skn− ,

−1 if x ∈ K \ S2kn
− ,
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Figure 2. Construction of the recovery sequence.

see Fig. 2. We note that

|Dwε| ≤ 2

(
|Dvε|+ 1 +

1

kn

)
χS2kn ,

and so the sequence wε belongs to DA(K), because of (2.12) and (2.30).

We have to estimate the energy of the function wε. For this, we observe that

Fε(wε,K) = Fε(wε,Skn) + Fε(wε,K \ Skn)

= Fε(vε,Skn) + Fε(wε,K \ Skn).(2.32)

The second term in the right hand side of (2.32) is zero outside of S2kn , so we have

Fε(wε,K \ Skn) = Fε(wε,S2kn \ Skn)

= εp−1

∫
S2kn\Skn

A1−p(x)|Dwε|pdx+
1

ε

∫
S2kn\Skn

A(x)W (wε)dx

=: I1,ε + I2,ε.(2.33)
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Using the definition of wε in the strips S2kn , we see that the integral I1,ε can be estimated

as follows

I1,ε ≤ 3pεp−1

∫
S2kn± \Skn±

A1−p(x)

(∣∣∣2± dn(x)

kn

∣∣∣|Dvε|)p dx
+3pεp−1

∫
S2kn± \Skn±

A1−p(x)

(
|vε(x)± 1|

∣∣∣D(2± dn(x)

kn

)∣∣∣)p dx
≤ 4p3pεp−1

∫
S2kn\Skn

A1−p(x)|Dvε|pdx(2.34)

+

(
3p2p

kpn

∫
S2kn\Skn

A1−p(x)dx

)
εp−1,

where we also used that |Ddn| ≤ 1.

Now, using (2.17) and (2.28), and passing to the the new coordinates (t, η), with kn

small, we have

4p3pεp−1

c(n, γ)

∫
S2kn\Skn

A1−p(x)|Dvε|pdx

≤ 4p3p(1 + δ)

∫
Sun

[
εp−1

∫ 2kn

kn

A1−p(t, η)
|ϕ′η
(
t
ε

)
|p

εp
dt

]
dη(2.35)

+4p3pc(δ)

∫ 2kn

kn

∫
Sun

A1−p(t, η)
(
εp−1R(t, η)

)
dtdη.

The first term in the right hand side of the above formula can be evaluated by the

Change of variable Formula (setting τ = t/ε in the integral in square brackets) as follows

4p3p(1 + δ)

∫
Sun

[
εp−1

∫ 2kn

kn

A1−p(t, η)
|ϕ′η
(
t
ε

)
|p

εp
dt

]
dη

= 4p3p(1 + δ)

∫
Sun

[∫ 2kn
ε

kn
ε

A1−p(τε, η)|ϕ′η(τ)|pdτ

]
dη(2.36)
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Therefore, replacing (2.35) and (2.36) into (2.34), we obtain the following estimate for

the integral I1,ε. For every δ ∈ (0, 1)

1

c(n, γ)
I1,ε ≤ 4p3p(1 + δ)

(
sup
η∈Sun

A1−p(0, η)

)∫ 2kn
ε

kn
ε

∫
Sun

|ϕ′η(τ)|pdτdη

+4p3p(1 + δ)

∫ 2kn
ε

kn
ε

∫
Sun

(
A1−p(τε, η)−A1−p(0, η)

)
|ϕ′η(τ)|pdτdη

+4p3pc(δ)

∫ 2kn

kn

∫
Sun

A1−p(t, η)
(
εp−1R(t, η)

)
dtdη

+

(
3p2p

kpn

∫
S2kn\Skn

A1−p(x)dx

)
εp−1,

≤ C

(∫ 2kn
ε

kn
ε

∫
Sun

|ϕ′η(τ)|pdτdη +

∫ 2kn

kn

∫
Sun

(
εp−1R(t, η)

)
dtdη + εp−1

)
,(2.37)

where C is a constant that depends only on n and δ.

Using the Lebesgue Dominated Convergence Theorem, (2.12), (2.25), and (2.29), we see

that every term in the above inequality (2.37) goes to zero as ε goes to zero. Therefore,

for fixed n, δ and γ,

(2.38) lim
ε→0

I1,ε = 0.

Moreover, it is easily seen from (2.31) that −1 ≤ wε ≤ vε in S2kn
− \ Skn− and vε ≤ wε ≤ 1

in S2kn
+ \ Skn+ , and |vε| is close to 1 in S2kn \ Skn , for small ε and fixed n. Accordingly,

in view of the behaviour of W near its wells, we have that, for ε small, W (wε) ≤ W (vε)

in S2kn \ Skn , therefore

I2,ε ≤
1

ε

∫
S2kn\Skn

A(x)W (vε)dx

and, as a consequence, we obtain from (2.32) and (2.33) that

Fε(wε,K) ≤ Fε(vε,Skn) +
1

ε

∫
S2kn\Skn

A(x)W (vε)dx+ I1,ε

≤ Fε(vε,S2kn) + I1,ε.(2.39)

At this moment, the upper bound inequality will follow from a precise estimate of the

energy of vε on the strip S2kn , using the CoArea Formula.
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First of all, we need to keep safe from the degenerate points of the spatial inhomogene-

ity A. We have

Fε(vε,S2kn) =

∫
S2kn

[
εp−1A1−p(πn(x))|Dvε|p +

1

ε
A(πn(x))W (vε)

]
dx

+

∫
S2kn

[
εp−1

(
A1−p(x)−A1−p(πn(x))

)
|Dvε|p

+
1

ε
(A(x)−A(πn(x)))W (vε)

]
dx

=: J1,ε + J2,ε.(2.40)

The integral J1,ε will capture the energy of the recovery sequence, while the integral J2,ε

can be estimated thanks to the continuity of the function A on Sun. As in the previous

computations, we also use the Change of variable Formula, (2.17) and (2.28): for every

δ ∈ (0, 1), we have

1

c(n, γ)
J2,ε ≤ (1 + δ)

∫
Sun

∫ 2kn
ε

kn
ε

[ (
A1−p(τε, η)−A1−p(0, η)

)
|ϕ′η(τ)|p

+
(
A(τε, η)−A(0, η)

)
W (ϕη(τ))

]
dτdη

+c(δ)

∫ 2kn

kn

∫
Sun

(
A1−p(t, η)−A1−p(0, η)

) (
εp−1R(t, η)

)
dtdη.

Since, when ε goes to zero, (A(τε, η)−A(0, η)) goes to zero, thanks to (2.12), we deduce,

recalling (2.25) and (2.29), that

(2.41) lim
ε→0

J2,ε = 0 for fixed n, δ and γ.
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It remains to estimate the integral J1,ε. For this, we use (2.26) and, once more, (2.28):

for every δ ∈ (0, 1), we have

J1,ε =

∫
S2kn

[
εp−1A1−p(πn(x))|Dvε|p +

1

ε
A(πn(x))W (vε)

]
dx

≤
∫
S2kn

[
(1 + δ)εp−1A1−p(πn(x))

(
ϕ′πn(x)

(dn(x)
ε

))p
εp

+c(δ)A1−p(πn(x))
(
εp−1R(x)

)
+

1

ε
A(πn(x))W (vε)

]
dx

≤ (1 + δ)

∫
S2kn

1

ε

[
A1−p(πn(x))

(
ϕ′πn(x)

(dn(x)

ε

))p
+A(πn(x))W

(
ϕπn(x)

(dn(x)

ε

))]
dx

+c(δ)

∫
S2kn

A1−p(πn(x))
(
εp−1R(x)

)
dx

=: L1,ε + L2,ε.(2.42)

By (2.29), we deduce that

(2.43) lim
ε→0

L2,ε = 0 for fixed n, δ and γ.

In order to estimate L1,ε we argue as follows. We observe that if g : S2kn → [0,∞] is

any measurable function, the CoArea Formula says that

1

ε

∫
S2kn

g(x) dx =
1

ε

∫ 2kn

−2kn

(∫
{dn=r}

g(ζ) dHN−1(ζ)

)
dr

≤
∫ +∞

−∞

(∫
{dn=εs}

g(ζ) dHN−1(ζ)

)
ds.
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Hence,

L1,ε = (1 + δ)

∫
S2kn

1

ε

[
A1−p(πn(x))

(
ϕ′πn(x)

(dn(x)

ε

))p
+A(πn(x))W

(
ϕπn(x)

(dn(x)

ε

))]
dx

≤ (1 + δ)

∫ ∞
−∞

∫
{dn=εs}

[
A1−p(πn(ζ))

(
ϕ′πn(ζ)(s)

)p
+A(πn(ζ))W (ϕπn(ζ)(s))

]
dHN−1(ζ)ds.(2.44)

Thus, from (2.22) and (2.44),

L1,ε ≤ (1 + δ)

∫ ∞
−∞

∫
{dn=εs}

cpW
p−1
p

(
ϕπn(ζ)(s)

)
ϕ′πn(ζ)(s) dH

N−1(ζ) ds.

Hence, there exists Tn > 0 such that

L1,ε ≤ (1 + δ)

∫ Tn

−Tn

∫
{dn=εs}

cpW
p−1
p

(
ϕπn(ζ)(s)

)
ϕ′πn(ζ)(s) dH

N−1(ζ) ds+
1

n
.

We note that when ε goes to zero (for fixed n, δ and γ: recall (2.11)), the level set

{dn = εs} converges to Sun ∩K. Also, πn is the identity on Sun. Therefore,

lim sup
ε→0

L1,ε ≤ (1 + δ)

∫ Tn

−Tn

∫
Sun∩K

cpW
p−1
p

(
ϕζ(s)

)
ϕ′ζ(s)dHN−1(ζ) ds+

1

n

≤ (1 + δ)

∫
Sun∩K

∫ 1

−1
cpW

p−1
p (r)drdHN−1(ζ) +

1

n

= (1 + δ)σpHN−1(Sun ∩K) +
1

n
,(2.45)

where we used (2.21).

Hence, exploiting (2.14) and (2.45), sending now n to infinity (recall (2.11)), we get, for

every δ ∈ (0, 1) and for every γ > 0

(2.46) lim sup
ε→0

L1,ε ≤ (1 + δ)σp
(
HN−1(Su ∩K) + 2γ

)
.

All in all, from (2.39), (2.40), (2.42) and (2.46),
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lim sup
ε→0

Fε(wε,K) ≤ lim sup
ε→0

(
Fε(vε,S2kn) + I1,ε

)
= lim sup

ε→0
(J1,ε + J2,ε)

≤ lim sup
ε→0

(L1,ε + L2,ε)

= lim sup
ε→0

L1,ε

≤ (1 + δ)σp
(
HN−1(Su) + 2γ

)
.

By the arbitrariness of δ and γ, this concludes the proof of (2.10) (up to renaming subse-

quences). Then, the convergence in (2.9) follows from (2.15) and (2.31). �

It is worth pointing out that a recovery sequence in a given domain is also a recovering

sequence in a sub-domain:

Lemma 2.3. Let the notation of Proposition 2.2 hold and consider a sub-domain K̃ ⊂ K.

Then, wε also satisfies (2.10) with K̃ instead of K, i.e.

lim sup
ε→0

Fε(wε, K̃) ≤ σpHN−1(Su ∩ K̃).

Proof. Suppose not, then

lim sup
ε→0

Fε(wε, K̃) ≥ a+ σpHN−1(Su ∩ K̃),

for some a > 0. Then, making use of Theorem 1.1-(ii) in K \ K̃,

lim sup
ε→0

Fε(wε,K) ≥ a+ σpHN−1(Su ∩ K̃) + lim inf
ε→0

Fε(wε,K \ K̃)

≥ a+ σpHN−1(Su ∩ K̃) + σpHN−1(Su ∩ (K \ K̃))

≥ a+ σpHN−1(Su ∩K).

This is in contradiction with (2.10) and so it proves the desired result. �

Completion of the proof of Theorem 1.1-(iii). Now, we are ready to complete the proof of

the Γ-limsup inequality. For any fixed function u in BV (Ω; {−1, 1}), we want to construct

a recovery sequence uε as in Theorem 1.1-(iii). If Ω? = Ω, then one can apply directly

Proposition 2.2, taking uε := wε, so we suppose Ω? ⊂ Ω. In this case, we make use of

condition (1.5) and we obtain a recovering sequence, say µε, in Ω\Ω?, thanks to the results

of [14, 22]. We will glue wε in Ω? with µε in Ω \ Ω? by using a fine convex interpolation

argument of [24].
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In further detail, we argue like this. For any small, positive r0 and any r ∈ (r, r0), we

set

Ωr :=
{
x ∈ Ω : dist(x, ∂Ω) > r

}
.

For any ε > 0, we take the sequence wε constructed in Proposition 2.2, with K = Ωr;

i.e., wε : Ωr → R is such that

(2.47) wε converges to u in L1(Ωr)

and

(2.48) lim sup
ε→0

Fε(wε,Ωr) ≤ σpHN−1(Su ∩ Ωr).

Now, we take v to be the trace of u on ∂Ω, which is well-defined, since u belongs to

BV (Ω; {−1,+1}) (see [13, Chapter 2]); we take V equal to δW ; and we use [14, Theo-

rem 1.1] when p = 2, or [22, Theorem 2.1] when p ∈ (2, 3). In this way, we obtain a

recovering sequence

(2.49) µε that converges to u in L1(Ω \ Ω2r)

such that

(2.50) lim sup
ε→0

Fε(µε,Ω \ Ω2r) ≤ σpHN−1(Su ∩ (Ω \ Ω2r)) + κHN−2(Sv),

where (see (5.5) and the Remark after Proposition 5.5 in [14] and (2.4) in [22])

(2.51) κ ≤ C? inf

{
Hδ(w) : w ∈ L1

loc(R× (0,∞)) such that lim
x→±∞

w(x, 0) = ±1

}
,

with C? a suitable constant, the functional Hδ defined by

Hδ(w) :=

∫ ∞
0

[∫
R
y$|Dw(x, y)|p dx

]
dy + δ

∫
R
W (w(x, 0)) dx (∀δ > 0),

and the power $, depending only on p and s, given by

$ :=

{
2− p if p ∈ (2, 3),

1− 2s if p = 2 and s ∈ (1/2, 1).

We can prove that the minimum in (2.51) is achieved (see for instance [22, Proposi-

tion 4.7]). In particular, in the case δ = 1 (i.e., the double-well potential on the bound-

ary V coincides with W ), we deduce the existence of a function θ ∈ L1
loc(R × (0,∞)),

with

(2.52) lim
x→±∞

θ(x, 0) = ±1,
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such that

(2.53) H1(θ) ≤ C1,

for a suitable positive constant C1.

For any δ > 0, we take the function

wδ(x, y) := θ(δα(x, y)), ∀(x, y) ∈ R× (0,∞),

in which

α = α(p, s) :=


1

2p− 3
if p ∈ (2, 3),

1

2s
if p = 2 and s ∈ (1/2, 1).

We remark that

(2.54) α(p− 2−$) = 1− α

and

(2.55) α ∈ (0, 1).

Note that

lim
x→±∞

wδ(x, 0) = lim
x→±∞

θ(δαx, 0) = ±1,

thanks to (2.52), hence wδ is a candidate in (2.51) and then

(2.56) κ ≤ C∗Hδ(wδ).

We want to estimate the energy Hδ(wδ).

First, we have

|Dwδ(x, y)|p ≤ δαp|Dθ (δα(x, y)) |p, ∀(x, y) ∈ R× (0,∞).

Then, by the Change of variable Formula, setting (x′, y′) = δα(x, y), it follows that

(2.57)

∫ ∞
0

[∫
R
y$|Dwδ(x, y)|p dx

]
dy ≤ δ1−α

∫ ∞
0

[∫
R

(y′)$|Dθ(x′, y′)|p dx′
]
dy′

due to (2.54), and

(2.58) δ

∫
R
W (wδ(x, 0)) dx = δ1−α

∫
R
W (θ(x′, 0)dx′.

Therefore, combining (2.53), (2.57) and (2.58), we get

Hδ(wδ) ≤ δ1−αH1(θ) ≤ C1δ
1−α, (∀δ > 0).
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This and (2.56) imply

(2.59) κ ≤ C̄δ1−α,

for a suitable constant C̄ > 0.

Now, for any i ∈ N, 0 ≤ i ≤ r/(4ε), we define

Λi := Ω(3/2)r+iε \ Ω(3/2)r+(i+1)ε.

We remark that

(2.60) Λi ⊆ Ωr \ Ω2r.

We observe that

+∞∑
j=0

HN−1
(
Su ∩ (Ω1/2j+1 \ Ω1/2j )

)
≤ HN−1(Su ∩ Ω) < +∞.

As a consequence, we have that

(2.61) lim
j→∞

HN−1
(
Su ∩ (Ω1/2j+1 \ Ω1/2j )

)
= 0.

We let

A?(x) := max
{(

dist(x, ∂Ω)
)a(1−p)

,
(
dist(x, ∂Ω)

)a}
.

We observe that

A?(x) ≤
(
dist(x, ∂Ω)

)a?
for a suitable a? ∈ (0, 1), due to (1.5).

Also, we set

ϑε := min
i∈N

0≤i≤r/(4ε)

(
ε
(
Fε(wε,Λi) + Fε(µε,Λi)

)
+

∫
Λi

A?(x)|wε − µε| dx
)
.

From (2.47), (2.48), (2.49) and (2.50), we may suppose that

Fε(wε,Ωr \ Ω2r) + Fε(µε,Ωr \ Ω2r) ≤ C,
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for some C independent of ε, and that, fixed any δ > 0, if ε is suitably small, possibly in

dependence of δ and r, we have that∫
Ωr\Ω2r

A?(x)|wε − µε| dx ≤ ra?
∫

Ωr\Ω2r

|wε − µε| dx

≤ ra?

[∫
Ωr\Ω2r

|wε − u| dx+

∫
Ωr\Ω2r

|u− µε| dx

]

≤ δr

16
.

Hence, by (2.60), if ε is suitably small, we have that

δr

8
≥ Cε+

δr

16

≥
∑
i∈N

0≤i≤r/(4ε)

[
ε
(
Fε(wε,Λi) + Fε(µε,Λi)

)
+

∫
Λi

A?(x)|wε − µε| dx
]

≥ rϑε
8ε

and therefore there exists an index i for which

ε
(
Fε(wε,Λi) + Fε(µε,Λi)

)
+

∫
Λi

|wε − µε| dx = ϑε ≤ δε.(2.62)

Now, we take ξ to be a cut-off function on such Λi, that is we suppose

ξ ∈ C∞0 (Ω(3/2)r+iε; [0, 1]),

with ξ(x) = 1 for any x ∈ Ω(3/2)r+(i+1)ε and we can take |∇ξ| ≤ Ĉ/ε for a suitable Ĉ > 0,

independent of ε. We define

uε := ξwε + (1− ξ)µε.

We remark that

W (uε) = W (wε + (uε − wε))

≤ W (wε) + C ′|uε − wε|

≤ W (wε) + C ′|µε − wε|,(2.63)
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for some C ′ > 0. On the other hand,

|Duε|p = |ξDwε + (1− ξ)Dµε +Dξ(wε − µε)|p

≤
(
|Dwε|+ |Dµε|+ (Ĉ/ε)|wε − µε|

)p
≤ 3p|Dwε|p + 3p|Dµε|p +

3pĈp

εp
|wε − µε|p

≤ 3p|Dwε|p + 3p|Dµε|p +
6pĈp

εp
|wε − µε|.(2.64)

Therefore, making use of (2.63) and (2.64) and then recalling (2.62),

Fε(uε,Λi) ≤ C̃

[
Fε(wε,Λi) + Fε(µε,Λi) +

1

ε

∫
Λi

A?(x)|wε − µε|p
]

≤ C̃δ,

for a suitable C̃ > 0. Consequently,

Fε(uε,Ω) = Fε(wε,Ω(3/2)r+(i+1)ε) + Fε(µε,Ω \ Ω(3/2)r+iε) + Fε(uε,Λi)

≤ Fε(wε,Ωr) + Fε(µε,Ω \ Ω2r) + C̃δ.

Therefore, recalling (2.48), (2.59), (2.50) and Lemma 2.3,

lim sup
ε→0

Fε(uε,Ω) ≤ σpHN−1
(
Su ∩ Ωr

)
+ σpHN−1

(
Su ∩ (Ω \ Ω2r)

)
+ κHN−2(Sv) + C̃δ

≤ σpHN−1(Su ∩ Ω) + σpHN−1
(
Su ∩ (Ωr \ Ω2r)

)
+ C̄δ1−α + C̃δ.

Since δ may be taken arbitrarily close to 0 and r may be taken of the form 1/2j with j

arbitrarily large, the latter estimate, (2.55) and (2.61) prove the Γ-lim sup inequality.

The fact that uε approaches u in L1(Ω) is a consequence of (2.47) and (2.49), and so

we have completed the proof of Theorem 1.1-(iii). �
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