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Abstract. The asymptotic behaviour of the equilibrium configurations of a
thin elastic plate is studied, as the thickness h of the plate goes to zero. More

precisely, it is shown that critical points of the nonlinear elastic functional Eh,

whose energies (per unit thickness) are bounded by Ch4, converge to critical
points of the Γ-limit of h−4Eh. This is proved under the physical assumption

that the energy density W (F ) blows up as det F → 0.

1. Introduction

A thin plate is a three-dimensional body, occupying in a reference configuration a
region of the form Ωh := S×(−h2 ,

h
2 ), where the mid-surface S is a bounded domain

of R2 and the small parameter h > 0 measures the thickness of the plate.
The elastic behaviour of such bodies is classically described by means of two-

dimensional models, which are easier to handle both from an analytical and a
computational viewpoint than their three-dimensional counterparts. There exists
a large variety of such theories in the literature (see [9, 18] for a survey). However,
as their derivation is usually based on a priori assumptions on the form of relevant
deformations, their rigorous range of validity is typically not clear. A fundamen-
tal question in elasticity is thus to justify rigorously lower dimensional models in
relation to the three-dimensional theory.

Recently, a novel variational approach through Γ-convergence has led to the
rigorous derivation of a hierarchy of limiting theories. Among other features, it
ensures the convergence of three-dimensional minimizers to minimizers of suitable
lower dimensional limit energies.

In this paper we discuss the convergence of (possibly non-minimizing) stationary
points of the three-dimensional elastic energy, assuming physical growth conditions
for the energy density. Previous convergence results for critical points have been
obtained under unphysical assumptions on the energy density which are incom-
patible with the requirements of non-interpenetration of matter and preservation
of orientation (see [24, 25, 26]). The validity of similar convergence results under
physical growth conditions was an open question, raised in [26]. In the present
contribution we prove it by combining Γ-convergence methods with an alternative
first-order necessary condition for minimality introduced in [4].
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We first review the main results of the variational approach. Given a thin plate
Ωh, the starting point of the variational analysis is the three-dimensional nonlinear
elastic energy (scaled by unit thickness) Eh(w,Ωh) associated to a deformation w
of the plate. The limiting behaviour of Eh, as the thickness of the plate tends to
zero, can be described by the Γ-limit Iβ of the functionals

h−βEh(·,Ωh),

as h → 0, for a given scaling β ≥ 0. As mentioned above, this implies, roughly
speaking, convergence of minimizers wh of Eh(·,Ωh) (subject to applied forces or
boundary conditions) to minimizers of the two-dimensional energy Iβ , provided
Eh(wh,Ωh) ≤ Chβ . For the definition and main properties of Γ-convergence we
refer to the monographs [7, 13].

In this setting Γ-convergence was first proved by Le Dret and Raoult in [16] for
the scaling β = 0, under additional growth conditions from above on the energy
density. This led to a rigorous justification of the nonlinear membrane theory. This
work was then extended to energy densities satisfying weaker growth conditions
in [5]. In the seminal papers [14, 15] Friesecke, James, and Müller established
Γ-convergence for all β ≥ 2. The scaling β = 2 corresponds in the limit to the
Kirchhoff plate theory, while β = 4 to the von Kármán plate theory. For β > 4 the
usual linear theory is derived, while the intermediate scalings 2 < β < 4 relate to a
linear theory with constraints. The case of 0 < β < 5/3 was recently solved by Conti
and Maggi [12]. The regime 5/3 ≤ β < 2 remains open and is conjectured to be
relevant for crumpling of elastic sheets. Analogous results have been proved for thin
rods in [1, 21, 22]. Other related results concern derivation of limiting theories for
incompressible plates [10, 11, 29], heterogeneous films [27], and multiphase materials
[6, 8, 23, 28].

The intent of this paper is to investigate the convergence of stationary points
of the three-dimensional nonlinear elastic energy (subject to applied forces and
boundary conditions) to stationary points of the Γ-limit functional. The first result
concerning convergence of equilibria for thin bodies has been shown in [24], in the
case of a thin strip and for the scaling β = 2. Using the same technique, this
work has been extended in [25] to the case of a thin rod in the regime β = 2,
and then in [26] to a thin plate in the von Kármán regime β = 4 (see also [17]
for an extension to thin shells). A crucial assumption in all these papers is that
the elastic energy density W is differentiable everywhere and that its derivative
satisfies a linear growth condition. This assumption is unsatisfactory from both a
physical and a mathematical point of view. Indeed, the bound on DW prevents the
blow-up of W (F ) as the determinant of the deformation gradient F tends to zero
(corresponding to total compression), which is a natural assumption in elasticity.
Moreover, it implies, together with the other assumptions on W , that W (F ) must
be essentially of the form dist2(F, SO(3)). We point out that, instead, the results
in [14, 15], as well as the ones in [21, 22], do not require any bound from above
on W . On the other hand, without assuming a linear growth condition on DW , it
is not even clear to which extent minimizers satisfy the Euler-Lagrange equations
in the usual form (see (2.10) below).
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A growth condition on W , which is compatible with the blow-up condition as
detF → 0 is: ∣∣DW (F )FT

∣∣ ≤ k(W (F ) + 1) (1.1)
for every F with detF > 0. In [3, 4] Ball has shown that, under assumption (1.1),
it is possible to derive an alternative first-order necessary condition for minimizers
(Theorem 2.1). We underline that, when minimizers are invertible, this condi-
tion is equivalent to the Eulerian (spatial) formulation of the classical equilibrium
equations of elasticity (see Remark 2.2).

In this paper we focus on the scalings β ≥ 4 and we consider an elastic energy
density W satisfying the physical growth condition (1.1). We call a deformation a
stationary point of the three-dimensional energy if it satisfies the first-order nec-
essary condition introduced by Ball in [3, 4] (Definition 2.3). In Theorem 3.1 we
prove that any sequence of stationary points wh of the three-dimensional energy,
satisfying Eh(wh,Ωh) ≤ Chβ , β ≥ 4, converges to a stationary point of the cor-
responding limiting functional (i.e., to a solution of the classical Euler-Lagrange
equations of the von Kármán functional if β = 4, and of the functional of linear
plate theory if β > 4). This is the first result of convergence of equilibria for thin
plates compatible with the physical requirement that W (F )→ +∞ as detF → 0.

A first key ingredient in the proof of our main result is the quantitative rigidity
estimate proved by Friesecke, James, and Müller in [14, Theorem 3.1]. It is first
used to deduce compactness of sequences of stationary points from the bound on
the elastic energy, and then to define suitable strain-like and stress-like variables
Gh and Eh (see (4.9) and (4.13)). In order to derive the limiting Euler-Lagrange
equations, some compactness properties for the sequence (Eh) are needed. A new
difficulty with respect to the previous works [24, 26] is that the L2-bound on the
strains Gh (which is a direct consequence of the rigidity estimate) does not imply
an analogous bound on the stresses Eh anymore. Indeed, in our setting the stresses
Eh turn out to be naturally defined as

Eh =
1
h2
DW (Id + h2Gh)(Id + h2Gh)T (1.2)

(Eh can be interpreted as a sort of Cauchy stress tensor, read in the undeformed
configuration, see also Remark 2.2). Hence, using the growth condition (1.1) and
the bound on the elastic energy we can only deduce weak compactness of Eh in L1

and this convergence is not enough to pass to the limit in the three-dimensional
Euler-Lagrange equations (see Steps 2 – 3 of the proof and the discussion therein).

This difficulty is overcome by identifying a sequence of measurable sets Bh, which
converge in measure to the whole set Ω := S×(− 1

2 ,
1
2 ) and satisfy the following

properties. On Bh the remainder in the first order Taylor expansion of DW around
the identity is uniformly controlled with respect to h, so that one can deduce an L2

bound for Eh from (1.2) and from the L2 bound on Gh. On the complement of Bh
one can use the growth condition (1.1) to show that the contribution of Eh on this
set is negligible at the limit in the L1 norm. This mixed type of convergence of the
stresses is then shown to be sufficient to pass to the limit in the three-dimensional
Euler-Lagrange equations.

Another crucial difference with respect to [24, 26] is that the admissible test
functions in the weak formulation of Ball’s stationarity condition must be uniformly
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bounded. This requires to introduce an ad hoc truncation argument, which is
completely new (see Step 6 of the proof).

This paper gives a positive answer to a question raised in [26], where the authors
suggest to investigate whether the analysis developed in [24, 26] can be extended to
the case of energy densities W satisfying physical growth conditions. They actually
propose to look at an alternative stationarity condition from the one we consider,
also introduced by Ball in [4], which involves the so-called energy-momentum tensor
and which is valid if W satisfies an analogous (but stronger) growth condition to
(1.1). However, as explained in Remark 2.4, this second stationarity condition
does not provide precise information about the boundary behaviour of the limiting
quantities and, therefore, is not suitable for the purpose of our analysis.

Convergence results for thin plates in the Kirchhoff regime β = 2 and in the in-
termediate scalings 2 < β < 4 are still open, even under the simplifying assumption
of linear growth of DW . The additional difficulties in the analysis of these regimes
are due to the weaker compactness properties arising from the rigidity theorem
and to the presence, in the limiting model, of a nonlinear or geometrically linear
isometry constraint.

The plan of the paper is the following. In Section 2 we describe the setting of
the problem and we discuss the first order necessary condition by Ball. Section 3
contains the statement of the main result, which is proved in Section 4.

2. Setting of the problem

We consider a thin plate, whose reference configuration is given by the set Ωh =
S×(−h2 ,

h
2 ), where S ⊂ R2 is a bounded domain with Lipschitz boundary and h > 0.

Deformations of the plate are described by maps w : Ωh → R3, which are assumed
to belong to the space H1(Ωh; R3). Moreover, we require the deformations w to
satisfy the boundary condition

w(z) = z for every z ∈ Γ×(−h2 ,
h
2 ), (2.1)

where Γ is a (non-empty) relatively open subset of ∂S.
To any deformation w ∈ H1(Ωh; R3) we associate the total energy (per unit

thickness) defined as

Fh(w) =
1
h

ˆ
Ωh

W (∇w) dz − 1
h

ˆ
Ωh

fh ·w dz, (2.2)

where fh ∈ L2(Ωh; R3) is the density of a body force applied to Ωh.
On the stored-energy density W : M3×3 → [0,+∞] we require the following

asssumptions:

W is of class C1 on M3×3
+ ; (2.3)

W (F ) = +∞ if detF ≤ 0, W (F )→ +∞ as detF → 0+; (2.4)

W (RF ) = W (F ) for every R ∈ SO(3), F ∈M3×3 (frame indifference). (2.5)

Here M3×3
+ denotes the set of matrices F ∈ M3×3 with detF > 0, while SO(3)

denotes the set of proper rotations {R ∈M3×3 : RTR = Id, detR = 1}. Condition
(2.4) is related to the physical requirements of non-interpenetration of matter and
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preservation of orientation. It ensures local invertibility of C1 deformations with
finite energy.

We also require W to have a single well at SO(3), namely

W = 0 on SO(3); (2.6)

W (F ) ≥ Cdist2(F, SO(3)); (2.7)

W is of class C2 in a δ-neighbourhood of SO(3). (2.8)

Finally, we assume the following growth condition:∣∣DW (F )FT
∣∣ ≤ k(W (F ) + 1) for every F ∈M3×3

+ . (2.9)

This is a mild growth condition on W , introduced by Ball in [3, 4], which is com-
patible with the physical requirement (2.4), but is nevertheless sufficient to derive
a first-order condition for minimizers of Fh. In fact, by performing external varia-
tions w+ εφ of a minimizer w, one is formally led to the Euler-Lagrange equations
in the usual formˆ

Ωh

DW (∇w) · ∇φdz =
ˆ

Ωh

fh ·φdz ∀φ smooth with φ|Γ×(−h
2 ,

h
2 ) = 0. (2.10)

To justify rigorously this derivation, one has to require that either DW is Lipschitz
continuous or the minimizer w belongs to W 1,∞ and satisfies a stronger orientation
preserving condition, namely det∇w ≥ c > 0 a.e. in Ωh. However, none of these
assumptions is satisfactory: the Lipschitz continuity of DW is incompatible with
(2.4), while there may exist minimizers that do not belong to W 1,∞ or do not satisfy
the stronger orientation preserving condition (see the discussion in [4, Section 2.4]).
In other words, it is not possible in general to guarantee the integrability of the
term DW (∇w) and thus, to give a rigorous meaning to equation (2.10).

If instead condition (2.9) is assumed, then it is possible to derive an alternative
equilibrium equation for minimizers. More precisely, by considering variations of
the form w + ε φ ◦w one can deduce the following condition.

Theorem 2.1 ([4, Theorem 2.4]). Assume that W satisfies (2.3), (2.4), and (2.9).
Let U ⊂ R3 be a bounded domain with a Lipschitz boundary ∂U = ∂U1 ∪ ∂U2 ∪
N , where ∂U1, ∂U2 are disjoint relatively open subsets of ∂U and N has zero
two-dimensional measure. Let w̄ ∈ H1/2(∂U ; R3) and f ∈ L2(U ; R3). Let w ∈
H1(U ; R3) be a local minimizer of the functional

F(w) :=
ˆ
U

W (∇w) dz −
ˆ
U

f ·w dz

subject to the boundary condition w = w̄ on ∂U1, that is, there exists ε > 0 such
that F(w) ≤ F(v) for every v ∈ H1(U ; R3) satisfying ‖v−w‖H1 ≤ ε and v = w̄ on
∂U1. Then ˆ

U

DW (∇w)(∇w)T :∇φ(w) dz =
ˆ
U

f ·φ(w) dz (2.11)

for all φ ∈ C1
b (R3; R3) such that φ ◦ w = 0 on ∂U1 in the sense of trace.

In the theorem above and in what follows, given a subset U of Rn we denote
by Ckb (U) the space of functions of class Ck that are bounded in U , with bounded
derivatives up to the k-th order. We also stress that in (2.11) the term ∇φ(w)
denotes the gradient of φ computed at the point w(z).
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Remark 2.2. Under the assumptions of Theorem 2.1, if in addition w is a smooth
homeomorphism of U onto U ′ := w(U), then equation (2.11) reduces by means of
a change of variables toˆ

w(U)

T (w−1(x)) :∇φ(x) dx =
ˆ
w(U)

f̃(w−1(x)) ·φ(x) dx

for all φ ∈ C1(R3; R3) such that φ|w(∂U1) = 0. In the formula above T is the Cauchy
stress tensor:

T (z) = (det∇w(z))−1DW (∇w(z))(∇w(z))T , z ∈ U

and f̃ = (det∇w)−1f (see [4, Theorem 2.6]). In other words, Theorem 2.1 asserts
that the equilibrium equations are satisfied in the deformed configuration.

In our setting it is natural to assume (2.11) as definition of stationary points
of Fh. Our aim is to analyse their limit behaviour, as the thickness h goes to 0.
To do so, it is convenient to perform a change of variables and to reduce to a
fixed domain independent of h. Thus, we consider the scaling (z′, z3) = (x′, hx3),
∇h =

(
∇′, 1

h∂3

)
, y(x) = w(z), and gh(x) = fh(z), and we introduce the functional

J h(y) = Fh(w) =
ˆ

Ω

W (∇hy) dx−
ˆ

Ω

gh · y dx, (2.12)

where Ω = S×(− 1
2 ,

1
2 ) and the scaled deformation y ∈ H1(Ω; R3) satisfies the

boundary condition

y(x) = (x′, hx3) for every x = (x′, x3) ∈ Γ×(− 1
2 ,

1
2 ). (2.13)

According to Theorem 2.1, we give the following definition.

Definition 2.3. We say that a deformation y ∈ H1(Ω; R3) is a stationary point of
J h, subject to clamped boundary conditions on Γ×(− 1

2 ,
1
2 ), if y(x) = (x′, hx3) for

every x ∈ Γ×(− 1
2 ,

1
2 ) and the following equation is satisfied:ˆ

Ω

DW (∇hy)(∇hy)T :∇φ(y) dx =
ˆ

Ω

gh ·φ(y) dx

for all φ ∈ C1
b (R3; R3) satisfying φ(x′, hx3) = 0 for every x ∈ Γ×(− 1

2 ,
1
2 ).

Remark 2.4. In [4] Ball has shown that, if W satisfies the growth condition∣∣FTDW (F )
∣∣ ≤ k(W (F ) + 1) for every F ∈M3×3

+

(which implies, but is not equivalent to (2.9), see [4, Proposition 2.3]), then local
minimizers of F satisfy the equationˆ

U

(
W (∇w) Id− (∇w)TDW (∇w)

)
:∇φdz =

ˆ
U

(∇w)Tf ·φdz

for all φ ∈ C1
0 (U ; R3). This equation is obtained by performing internal variations of

the form w◦ψε, with ψ−1
ε (x) = x+εφ(x), and can be viewed as a multi-dimensional

version of the classical Du Bois-Raymond equation of the one-dimensional calculus
of variations. To the purpose of our analysis the use of this equilibrium equation in
place of (2.11) seems to be less convenient. Indeed, the requirement of zero bound-
ary values for the test functions suggests that the equation does not provide precise
information about the boundary behaviour of the limiting quantities. Moreover, it
imposes a severe restriction on the choice of admissible test functions.
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Remark 2.5. If W satisfies (2.9), then W has polynomial growth, that is, there
exists s > 0 such that

W (F ) ≤ C(|F |s + |F−1|s) for all F ∈M3×3
+

(see [4, Proposition 2.7]). In particular, examples of functions satisfying (2.3)–(2.9)
are:

W (F ) = |(FTF )1/2 − Id|2 + | log detF |p for F ∈M3×3
+ ,

or
W (F ) = |(FTF )1/2 − Id|2 +

∣∣∣ 1
detF

− 1
∣∣∣p for F ∈M3×3

+ ,

where p > 1 and W is intended to be +∞ if detF ≤ 0.

3. Statement of the main result

In this paper we focus on the asymptotic study of stationary points yh of J h
(according to Definition 2.3) with elastic energy (per unit thickness) of order hβ

with β ≥ 4, that is, ˆ
Ω

W (∇hyh) dx ≤ Chβ , β ≥ 4. (3.1)

For simplicity we assume that the body forces gh are independent of the variable
x3 and normal to the mid-surface of the plate; more precisely, we assume gh(x) =
h(β+2)/2g(x′)e3, where g ∈ L2(S) is given. The scaling h(β+2)/2 of the normal force
ensures consistency with the elastic energy scaling (3.1).

In [15] Friesecke, James, and Müller have identified the limit of the functionals
h−βJ h, in the sense of Γ-convergence, under the assumptions (2.5)–(2.8). For β = 4
the Γ-limit JvK can be expressed in terms of the averaged in-plane and out-of-plane
displacements u and v (see (3.13)) and is given by

JvK(u, v) = IvK(u, v)−
ˆ
S

gv dx′, (3.2)

where, for u ∈ H1(S; R2) and v ∈ H2(S), the von Kármán functional IvK is defined
as

IvK(u, v) =
1
2

ˆ
S

Q2

(
sym∇′u+

1
2
∇′v⊗∇′v

)
dx′ +

1
24

ˆ
S

Q2((∇′)2v) dx′. (3.3)

The limit densityQ2 is a quadratic form that can be computed through the following
minimization procedure. Given the quadratic form of linearized elasticity Q3(F ) =
D2W (Id)F :F on M3×3, we define the quadratic form Q2 on M2×2 as

Q2(G) = L2G :G := min
F ′′=G

Q3(F ), (3.4)

where F ′′ denotes the 2×2 submatrix given by F ′′ij = Fij , 1 ≤ i, j ≤ 2.
For β > 4 the Γ-limit Jlin depends only on the averaged out-of-plane displace-

ment v and is given by

Jlin(v) = Ilin(v)−
ˆ
S

gv dx′, (3.5)

where Ilin is the functional of linear plate theory, defined as

Ilin(v) =
1
24

ˆ
S

Q2((∇′)2v) dx′. (3.6)

for every v ∈ H2(S).
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The Γ-convergence result guarantees, in particular, that given a minimizing se-
quence yh satisfying

lim sup
h→0

1
hβ
(
J h(yh)− inf J h

)
= 0,

the averaged in-plane and out-of-plane displacements associated with yh converge
to a minimizer (u, v) of JvK if β = 4. If β > 4, they converge to a pair of the form
(0, v), where v is a minimizer of Jlin.

To set the stage for our result on the convergence of equilibria, we derive the
Euler-Lagrange equations for a minimizer (u, v) of JvK. First of all, from the
clamped boundary conditions (2.13) it follows that the limiting displacement (u, v)
satisfies

u(x′) = 0 and v(x′) = 0, ∇′v(x′) = 0 for every x′ ∈ Γ. (3.7)

By performing the variations of JvK in u and v, respectively, we deduce the following
Euler-Lagrange equations in weak form:ˆ

S

(
L2

(
sym∇′u+

1
2
∇′v ⊗∇′v

)
: (∇′v ⊗∇′ϕ)

+
1
12
L2((∇′)2v) : (∇′)2ϕ− gϕ

)
dx′ = 0

(3.8)

for every ϕ ∈ H2(S) with ϕ|Γ = 0, ∇′ϕ|Γ = 0, andˆ
S

L2

(
sym∇′u+

1
2
∇′v ⊗∇′v

)
:∇′ψ dx′ = 0 (3.9)

for every ψ ∈ H1(S; R2) with ψ|Γ = 0.
In the case of the linear functional Jlin the limit displacement v satisfies the

boundary conditions

v(x′) = 0, ∇′v(x′) = 0 for every x′ ∈ Γ (3.10)

and the Euler-Lagrange equations are given byˆ
S

( 1
12
L2((∇′)2v) : (∇′)2ϕ− gϕ

)
dx′ = 0 (3.11)

for every ϕ ∈ H2(S) with ϕ|Γ = 0, ∇′ϕ|Γ = 0,
From now on we will adopt the notation y = (y′, y3).

The main result of the paper is the following.

Theorem 3.1. Assume that the energy density W satisfies (2.3)– (2.9). Let β ≥ 4.
Let (yh) be a sequence of stationary points of J h according to Definition 2.3, with
gh(x) = h(β+2)/2g(x′)e3. Assume further thatˆ

Ω

W (∇hyh) dx ≤ Chβ . (3.12)

Set

uh(x′) :=
1

hβ/2

ˆ 1
2

− 1
2

(
(yh)′(x′, x3)− x′

)
dx3,

vh(x′) :=
1

h(β−2)/2

ˆ 1
2

− 1
2

yh3 (x′, x3) dx3

(3.13)
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for every x′ ∈ S. Then the following assertions hold.

(i) (von Kármán regime) Assume β = 4. Then, there exist u ∈ H1(S; R2) and
v ∈ H2(S) such that, up to subsequences,

uh ⇀ u weakly in H1(S; R2) (3.14)

and
vh → v strongly in H1(S), (3.15)

as h→ 0, and the limit displacement (u, v) solves (3.8)– (3.9), and satisfies
the boundary conditions (3.7).

(ii) (linear regime) Assume β > 4. Then, (3.14) and (3.15) hold with u = 0, and
the limit displacement v solves (3.11) and satisfies the boundary conditions
(3.10).

Remark 3.2. If yh is a sequence of minimizers of J h with gh(x) = h(β+2)/2g(x′)e3,
then condition (3.12) is automatically satisfied. This can be proved by means of
a Poincaré-like inequality related to the rigidity theorem by Friesecke, James, and
Müller (see the proof of [15, Theorem 2, part iii]).

Remark 3.3. In [19] Mielke used a centre manifold approach to compare solutions
in a thin strip to a one-dimensional problem. This method works already for finite
h, but it requires that the nonlinear strain (∇hy)T∇hy is close to the identity in
L∞. Applied forces g are also difficult to include. We also mention a more recent
result by Monneau [20], based on a careful use of the implicit function theorem.
Given a sufficiently smooth and small solution of the von Kármán equations, he
proves the existence of a nearby solution of the three-dimensional problem.

Remark 3.4. In Theorem 3.1 we assume that a sequence of stationary points (yh)
exists. Under additional assumptions on W (such as, e.g., polyconvexity, see [2])
one can prove existence of minimizers of J h and, therefore, of stationary points. For
general W , proving the existence of stationary points (according to Definition 2.3
or to the classical formulation (2.10)) is a difficult issue in elasticity. We refer to
[4, Section 2.7] for a discussion of results in this direction.

4. Proof of Theorem 3.1

This section is devoted to the proof of the main result of the paper. As mentioned
in the introduction, our result substantially improves the previous result obtained
in [26].

For the reader’s convenience, we intentionally use the same structure of the proof
as used in [26] (and before in [24, 25]). Nevertheless, major differences arise in the
proof of every step (except for Steps 1, 2, and 7, where we explicitly refer to previous
works). These differences are due to the different notion of Euler-Lagrange equation
and to the corresponding different definition of stress.

Proof of Theorem 3.1. Let β ≥ 4. For notational convenience we set

α := (β + 2)/2,

so that α ≥ 3. Let (yh) be a sequence of stationary points of J h, i.e., suppose thatˆ
Ω

DW (∇hyh)(∇hyh)T :∇φ(yh) dx =
ˆ

Ω

hαge3 ·φ(yh) dx (4.1)
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for all φ ∈ C1
b (R3; R3) satisfying φ(x′, hx3) = 0 for every x ∈ Γ×(− 1

2 ,
1
2 ). Further-

more, assume that condition (3.12) is fulfilled.

Step 1. Compactness of the displacements. The energy bound (3.12) and the
coercivity condition (2.7) imply thatˆ

Ω

dist2(∇hyh, SO(3)) dx ≤ Ch2α−2.

Owing to the rigidity estimate [14, Theorem 3.1], this bound guarantees the ex-
istence of a sequence of smooth rotations Rh, whose L2 distance from ∇hyh is of
order hα−1. A careful analysis of the increment of Rh in neighbouring squares of
side h shows that the gradient of Rh is well controlled in terms of h. From this it fol-
lows that ∇hyh must converge to a constant rotation (namely, the identity, because
of the boundary condition) and that the in-plane and out-of-plane displacements
satisfy the compactness properties (3.14) and (3.15), respectively.

More precisely, arguing as in [15, Theorem 6 and Lemma 1], one can construct
a sequence (Rh) ⊂ C∞(S; M3×3) such that Rh(x′) ∈ SO(3) for every x′ ∈ S and

‖∇hyh −Rh‖L2 ≤ Chα−1, (4.2)

‖∇′Rh‖L2 ≤ Chα−2, (4.3)

‖Rh − Id‖L2 ≤ Chα−2. (4.4)

From (4.2) and (4.4) it follows that ∇hyh converge to Id strongly in L2(Ω; M3×3);
in particular, ∇yh → diag{1, 1, 0} strongly in L2(Ω; M3×3). Therefore, by the
boundary condition yh(x′, x3) = (x′, hx3) for every x ∈ Γ×(− 1

2 ,
1
2 ) and the Poincaré

inequality, we have that

yh → (x′, 0) strongly in H1(Ω; R3). (4.5)

By [15, Lemma 1] there exist u ∈ H1(S; R2) and v ∈ H2(S) such that (3.14) and
(3.15) hold true, up to subsequences. From the boundary condition satisfied by yh

we obtain immediately that u(x′) = 0 and v(x′) = 0 for every x′ ∈ Γ. Moreover,
by [15, Corollary 1] the first moment ξh of the in-plane displacement satisfies

ξh(x′) :=
1

hα−1

ˆ 1
2

− 1
2

x3

(
(yh)′(x′, x3)− x′

)
dx3 ⇀ − 1

12
∇′v weakly in H1(S; R2).

As ξh = 0 on Γ for every h, this implies ∇′v = 0 on Γ. Finally, [15, Lemma 1]
guarantees the following convergence properties for Rh:

Ah :=
Rh − Id
hα−2

⇀ A := −(∇′v, 0)⊗ e3 + e3 ⊗ (∇′v, 0) in H1(S; M3×3) (4.6)

and

sym
Rh − Id
h2α−4

→ A2

2
in Lq(S; M3×3), ∀q <∞. (4.7)

In particular, by the Poincaré-Wirtinger inequality and the equations (4.2) and
(4.7), we obtain∥∥yh3

h
− x3 − hα−3vh

∥∥
L2 ≤ C

∥∥∂3y
h
3

h
− 1
∥∥
L2 ≤ Chα−1. (4.8)
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Step 2. Definition of the scaled strain and stress. The bound (4.2) suggests the
following decomposition for the deformation gradients:

∇hyh = Rh(Id + hα−1Gh). (4.9)

By (4.2) the Gh : Ω → M3×3 are bounded in L2(Ω; M3×3). Thus, up to subse-
quences, Gh ⇀ G weakly in L2(Ω; M3×3) for some G ∈ L2(Ω; M3×3). By [15,
Lemma 2] the limiting strain G satisfies

G′′(x′, x3) = G0(x′)− x3(∇′)2v, (4.10)

where

symG0 = sym∇′u+
1
2
∇′v ⊗∇′v if α = 3, (4.11)

symG0 = sym∇′u if α > 3. (4.12)

We recall that G′′ denotes the 2×2 submatrix G′′ij = Gij , 1 ≤ i, j ≤ 2.
Let Eh : Ω→M3×3 be the scaled stress defined by

Eh :=
1

hα−1
DW (Id + hα−1Gh)(Id + hα−1Gh)T . (4.13)

Notice that Eh is symmetric, due to the frame indifference of W . Moreover, the
following estimate holds true:

|Eh| ≤ C
(W (Id + hα−1Gh)

hα−1
+ |Gh|

)
. (4.14)

Indeed, if hα−1|Gh| ≤ δ/2, where δ is the size of the neighbourhood in (2.8), then

DW (Id + hα−1Gh) = hα−1D2W (Fh)Gh,

for some matrix Fh ∈M3×3 with |Fh − Id| ≤ δ/2. As D2W is bounded in this set,
we deduce that

|DW (Id + hα−1Gh)| ≤ Chα−1|Gh|,
which implies

|Eh| ≤ C|Gh|+ Chα−1|Gh|2 ≤ C(1 + δ)|Gh|.
If hα−1|Gh| > δ/2, by (2.9) we have

|Eh| ≤ 1
hα−1

k
(
W (Id + hα−1Gh) + 1

)
≤ kW (Id + hα−1Gh)

hα−1
+

2k
δ
|Gh|.

We notice that we are allowed to use the bound (2.9), as W (∇hyh) is finite a.e.
in Ω by (3.12), hence det∇hyh = det(Id + hα−1Gh) > 0 a.e. in Ω. This concludes
the proof of (4.14).

Step 3. Convergenge properties of the scaled stress. By the decomposition (4.9)
and the frame indifference of W , we obtain

DW (∇hyh)(∇hyh)T = RhDW (Id + hα−1Gh)(Id + hα−1Gh)T (Rh)T

= hα−1RhEh(Rh)T .

Thus, in terms of the stresses Eh the Euler-Lagrange equations (4.1) can be writ-
ten as ˆ

Ω

RhEh(Rh)T :∇φ(yh) dx =
ˆ

Ω

hge3 ·φ(yh) dx (4.15)

for all φ ∈ C1
b (R3; R3) satisfying φ(x′, hx3) = 0 for every x ∈ Γ×(− 1

2 ,
1
2 ).
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In order to pass to the limit in (4.15) we are interested in studying the conver-
gence properties of the scaled stresses Eh.

By (4.14), (3.12) and the fact that the Gh are bounded in L2(Ω; M3×3), we
deduce that for every measurable set Λ ⊂ Ωˆ

Λ

|Eh| dx ≤ C

ˆ
Λ

W (Id + hα−1Gh)
hα−1

dx+ C

ˆ
Λ

|Gh| dx

≤ Chα−1 + C|Λ|1/2. (4.16)

This bound ensures that the scaled stresses Eh are bounded and equi-integrable in
L1(Ω; M3×3). Therefore, by the Dunford-Pettis theorem

Eh ⇀ E weakly in L1(Ω; M3×3) (4.17)

for some E ∈ L1(Ω; M3×3). In particular, since Eh is symmetric, also E is sym-
metric.

One can immediately realise that weak convergence of Eh in L1(Ω; M3×3) is not
enough to pass to the limit in (4.15). This is due to the fact that, for instance, one
cannot guarantee uniform convergence of the term ∇φ(yh) (recall that for yh we
have the convergence (4.5)). Therefore, some more refined convergence properties
for Eh are needed. In particular, in contrast with [24, 26] weak compactness of Eh

in L2(Ω; M3×3) is, in general, not satisfied. Nevertheless, it is possible to identify a
sequence of sets Bh, whose measures converge to the measure of Ω (and therefore,
on Ω \Bh the sequence Eh converges to 0 in the L1 norm by (4.16)), and such that
on Bh the sequence Eh is weakly compact in L2. Using the C1

b regularity of test
functions, we shall show that this mixed type of convergence is sufficient to derive
the limit equations.

Let Bh := {x ∈ Ω : hα−1−γ |Gh(x)| ≤ 1}, with γ ∈ (0, α − 2), and let χh be its
characteristic function. Notice that

|Ω \Bh| ≤
ˆ

Ω\Bh

hα−1−γ |Gh| dx ≤ Chα−1−γ |Ω \Bh|1/2‖Gh‖L2 ,

hence
|Ω \Bh| ≤ Ch2(α−1−γ). (4.18)

This implies in particular that χh converges to 1 in measure and thus, χhGh con-
verges to G weakly in L2(Ω; M3×3).

From (4.16) and (4.18) it follows thatˆ
Ω\Bh

|Eh| dx ≤ Chα−1−γ , (4.19)

hence
(1− χh)Eh → 0 strongly in L1(Ω; M3×3). (4.20)

On the set Bh we have a uniform control of the term hα−1Gh, so that we can
deduce weak convergence of χhEh in L2(Ω; M3×3) from the weak convergence of
Gh simply by Taylor expansion. More precisely, let L be the linear operator defined
by L := D2W (Id). We claim that

χhE
h ⇀ LG weakly in L2(Ω; M3×3). (4.21)

We note that, as Rh converges boundedly in measure to Id, the claim implies
also that χhRhEh converges to LG weakly in L2(Ω; M3×3). This remark will be
repeatedly used in the next steps of the proof.
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By Taylor expansion we have

DW (Id + hα−1Gh) = hα−1LGh + η(hα−1Gh),

where the remainder η satisfies η(F )/|F | → 0, as |F | → 0. This identity leads to
the following decomposition of χhEh:

χhE
h = χh

1
hα−1

(
hα−1LGh + η(hα−1Gh)

)
(Id + hα−1Gh)T

= χhLGh + χhh
α−1LGh(Gh)T + χh

η(hα−1Gh)
hα−1

+ χhη(hα−1Gh)(Gh)T . (4.22)

To prove the claim (4.21) we analyse carefully each term on the right-hand side of
(4.22). The weak convergence of χhGh to G in L2(Ω; M3×3) and the linearity of L
yield

L(χhGh) ⇀ LG weakly in L2(Ω; M3×3). (4.23)

The second term in the right-hand side of (4.22) can be estimated as follows:

|χhhα−1LGh(Gh)T | ≤ χhChα−1|Gh|2 ≤ Chγ |Gh|.

Therefore, it converges to zero strongly in L2(Ω; M3×3) by the L2 bound of the Gh.
As for the third term in (4.22), we have the following bound:∣∣∣∣χh η(hα−1Gh)

hα−1

∣∣∣∣ ≤ ω(hγ) |Gh|,

where for every t > 0 we have set

ω(t) := sup
{
|η(A)|
|A|

: |A| ≤ t
}
.

Since ω(t) → 0 for t → 0+, we can conclude as before that χhη(hα−1Gh)/hα−1

converges to zero strongly in L2(Ω; M3×3). Finally, as

|χhη(hα−1Gh)(Gh)T | ≤ hα−1χhω(hγ) |Gh|2 ≤ ω(hγ)hγ |Gh|,

also this last term converges to zero strongly in L2(Ω; M3×3). Combining together
(4.23) and the previous convergence properties, we obtain the claim (4.21). Notice
that by (4.17) and (4.20) this implies E = LG ∈ L2(Ω; M3×3).

Step 4. Consequences of the Euler-Lagrange equations. We now begin to derive
some preliminary information from the Euler-Lagrange equations (4.15).

Let φ ∈ C1
b (R3; R3) be such that φ(x′, x3) = 0 for every x ∈ Γ×(− 1

2 ,
1
2 ), and let

us consider a test function of the form φh(x) := hφ(x′, x3
h ). We notice that φh is

an admissible test function, as φh ∈ C1
b (R3; R3) and φh(x′, hx3) = hφ(x′, x3) = 0

for every x ∈ Γ×(− 1
2 ,

1
2 ).

Inserting φh in (4.15) leads to

h

ˆ
Ω

2∑
i=1

RhEh(Rh)T ei · ∂iφ
(
(yh)′,

yh3
h

)
dx

+
ˆ

Ω

RhEh(Rh)T e3 · ∂3φ
(
(yh)′,

yh3
h

)
dx =

ˆ
Ω

h2ge3 ·φ
(
(yh)′,

yh3
h

)
dx.

As RhEh(Rh)T is bounded in L1(Ω; M3×3) and ∇′φ is a bounded function, the first
integral on the left-hand side converges to zero as h→ 0. Since the right-hand side
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is clearly infinitesimal, we deduce

lim
h→0

ˆ
Ω

RhEh(Rh)T e3 · ∂3φ
(
(yh)′,

yh3
h

)
dx = 0. (4.24)

On the other hand, owing to (3.15), (4.5), (4.8), and to the continuity and bound-
edness of ∂3φ, we have

∂3φ
(
(yh)′,

yh3
h

)
→ ∂3φ(x′, x3 + v(x′)) strongly in L2(Ω; R3), if α = 3, (4.25)

∂3φ
(
(yh)′,

yh3
h

)
→ ∂3φ(x′, x3) strongly in L2(Ω; R3), if α > 3, (4.26)

(the convergence is actually strong in Lp(Ω; R3) for every p < ∞). Therefore,
splitting the integral in (4.24) as

ˆ
Ω

RhEh(Rh)T e3 · ∂3φ
(
(yh)′,

yh3
h

)
dx

=
ˆ

Ω

χhR
hEh(Rh)T e3 · ∂3φ

(
(yh)′,

yh3
h

)
dx

+
ˆ

Ω

(1− χh)RhEh(Rh)T e3 · ∂3φ
(
(yh)′,

yh3
h

)
dx

and using (4.20) and (4.21), we conclude thatˆ
Ω

Ee3 · ∂3φ(x′, x3 + v(x′)) dx = 0 if α = 3, (4.27)
ˆ

Ω

Ee3 · ∂3φdx = 0 if α > 3, (4.28)

for every φ ∈ C1
b (R3; R3) such that φ(x′, x3) = 0 for every x ∈ Γ×(− 1

2 ,
1
2 ).

In the case α = 3, let wk ∈ C1
b (R2) be a sequence of functions such that the

restriction of wk to S converges to v strongly in L2(S) and wk(x′) = 0 for every
x′ ∈ Γ. Then, given any φ ∈ C1

b (R3; R3) satisfying φ = 0 on Γ×(− 1
2 ,

1
2 ) we can

choose φk(x) := φ(x′, x3 − wk(x′)) as test function in (4.27). Passing to the limit
with respect to k, we obtain that equation (4.28) holds true also for α = 3.

From (4.28) it follows that Ee3 = 0 a.e. in Ω. This property, together with the
fact that E is symmetric, entails

E =

 E11 E12 0
E12 E22 0
0 0 0

 (4.29)

for any α ≥ 3.

Step 5. Zeroth moment of the Euler-Lagrange equations. Let Ē : S → M3×3 be
the zeroth moment of the limit stress E, defined as

Ē(x′) :=
ˆ 1

2

− 1
2

E(x) dx3 (4.30)

for every x′ ∈ S. In the following we derive the equation satisfied by Ē.
We consider as test function in (4.15) a map independent of the variable x3. More

precisely, let ψ ∈ C1
b (R2; R2) be such that ψ(x′) = 0 for every x′ ∈ Γ. Choosing
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φ(x) = (ψ(x′), 0) in (4.15), we haveˆ
Ω

[RhEh(Rh)T ]′′ :∇′ψ((yh)′) dx = 0, (4.31)

where [RhEh(Rh)T ]′′ denotes the 2×2 submatrix of RhEh(Rh)T , whose entries are
given by [RhEh(Rh)T ]′′ij = RhEh(Rh)T ei · ej , 1 ≤ i, j ≤ 2.

As in the previous step, it is convenient to split the integral in (4.31) asˆ
Ω

[RhEh(Rh)T ]′′ :∇′ψ((yh)′) dx =
ˆ

Ω

χh[RhEh(Rh)T ]′′ :∇′ψ((yh)′) dx

+
ˆ

Ω

(1− χh)[RhEh(Rh)T ]′′ :∇′ψ((yh)′) dx. (4.32)

By (4.5) and the continuity and boundedness of ∇′ψ, the sequence ∇′ψ((yh)′)
converges to ∇′ψ strongly in L2(Ω; M2×2). Thus, by (4.21) we obtain

lim
h→0

ˆ
Ω

χh[RhEh(Rh)T ]′′ :∇′ψ((yh)′) dx =
ˆ

Ω

E′′ :∇′ψ dx,

while, using the boundedness of ∇′ψ and (4.20), we have that the last integral in
(4.32) converges to 0, as h→ 0. Therefore, by (4.31) we conclude thatˆ

Ω

E′′ :∇′ψ dx = 0

for every ψ ∈ C1
b (R2; R2) such that ψ|Γ = 0. In terms of the zeroth moment of the

stress defined in (4.30), the previous equation yieldsˆ
S

Ē′′ :∇′ψ dx′ = 0 (4.33)

for every ψ ∈ C1
b (R2; R2) such that ψ|Γ = 0, and by approximation for every

ψ ∈ H1(S; R2) with ψ|Γ = 0.

Step 6. First moment of the Euler-Lagrange equations. We now derive the
equation satisfied by the first moment of the stress, that is defined as

Ê(x′) :=
ˆ 1

2

− 1
2

x3E(x) dx3 (4.34)

for every x′ ∈ S.
Let ϕ ∈ C1

b (R2) be such that ϕ|Γ = 0 and let us consider φ(x) = (0, 1
hϕ(x′)) in

(4.15). Since (4.5) and the continuity and boundedness of ϕ entail

lim
h→0

ˆ
Ω

gϕ((yh)′) dx =
ˆ

Ω

gϕ dx =
ˆ
S

gϕ dx′,

we deduce that

lim
h→0

ˆ
Ω

1
h

2∑
i=1

[RhEh(Rh)T ]3i ∂iϕ((yh)′) dx =
ˆ
S

gϕ dx′ (4.35)

for every ϕ ∈ C1
b (R2) such that ϕ|Γ = 0.

We now want to identify the limit in (4.35) in terms of the first moment Ê. In
[26] this is done by first considering in the Euler-Lagrange equations a test function
of the form φ(x) = (x3η(x′), 0), and then passing to the limit with respect to h.
Using the symmetry of the stress, this leads to an identity relating the first moment
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Ê with the limit in (4.35) and, by comparison with (4.35), the limiting equation
for Ê.

In the present setting the simple choice φ(x) = (x3η(x′), 0) is not allowed, since
this test function is not bounded in R3. This issue can be solved by means of the
following careful truncation argument. We consider a truncation function θh, which
coincides with the identity in an interval (−ωh, ωh), for a suitable ωh → +∞, and
a corresponding test function φh of the form (4.40) below. The rate of convergence
of ωh has to be chosen in such a way to match two requirements. On one hand,
we need to show that the limiting contribution due to the region where θh does
not coincide with the identity is negligible. This can be done by means of the
estimate (4.16), once we prove that the measure of the set Dh where |yh3 /h| ≥ ωh
is sufficiently small. This is guaranteed if the rate of convergence of ωh is fast
enough (see proof of (4.47) below). On the other hand, because of this choice, the
L∞-norm of the test functions φh is not bounded, but blows up as ωh. Therefore,
the convergence rate of ωh has to be carefully chosen to ensure that the integral on
Ω \Bh remains irrelevant, as usual. This is possible owing to the choice of Bh and
the estimate (4.19) (see proof of (4.43) below).

To be definite, let ωh be a sequence of positive numbers such that

hωh →∞, hα−1−γωh → 0, (4.36)

where γ is the exponent introduced in the definition of Bh. This is possible since
γ < α − 2 (for instance, one can choose ωh := h−(α−γ)/2). Let θh ∈ C1

b (R) be a
truncation function satisfying

θh(t) = t for |t| ≤ ωh, (4.37)

|θh(t)| ≤ |t| for every t ∈ R, (4.38)

‖θh‖L∞ ≤ 2ωh,
∥∥∥dθh
dt

∥∥∥
L∞
≤ 2. (4.39)

Let η ∈ C1
b (R2; R2) be such that η(x′) = 0 for every x′ ∈ Γ. We define φh : R3 → R3

as

φh(x) :=
(
θh
(x3

h

)
η(x′), 0

)
. (4.40)

Owing to the assumptions on θh and η, the φh are admissible test functions in
(4.15); then inserting φh in (4.15) leads to
ˆ

Ω

θh
(yh3
h

)
[RhEh(Rh)T ]′′ :∇′η((yh)′) dx

+
ˆ

Ω

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′)
(dθh
dt

(yh3
h

))
dx = 0. (4.41)

We now compute the limit of each term in (4.41) separately, starting with the first.
We consider the usual splitting Ω = Bh ∪ (Ω \ Bh) and we carefully analyse the
contributions of the integral in the two subdomains.

If α = 3, we have that

lim
h→0

ˆ
Ω

χhθ
h
(yh3
h

)
[RhEh(Rh)T ]′′ :∇′η((yh)′) dx =

ˆ
S

(Ê′′ + vĒ′′) :∇′η dx′. (4.42)
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Indeed, by (4.8) and (3.15) the sequence yh3 /h converges to x3 + v a.e. in Ω and is
dominated by an L2 function. From (4.37) and (4.38) it follows that the sequence
θh(yh3 /h) converges to x3 + v a.e. in Ω and is dominated by an L2 function. Owing
to the convergence (4.5) of yh and to the continuity and boundedness of ∇′η, we
conclude that

θh
(yh3
h

)
∇′η((yh)′)→ (x3 + v)∇′η(x′) strongly in L2(Ω; R2).

Therefore, by (4.21) we deduce

lim
h→0

ˆ
Ω

χhθ
h
(yh3
h

)
[RhEh(Rh)T ]′′ g∇′η((yh)′) dx =

ˆ
Ω

(x3 + v)E′′ :∇′η(x′) dx.

Integration with respect to x3 yields (4.42).
As for the integral on Ω \Bh, by the estimate (4.39) on θh and (4.19) it can be

bounded byˆ
Ω

(1− χh)
∣∣∣θh(yh3

h

)
[RhEh(Rh)T ]′′ :∇′η((yh)′)

∣∣∣ dx
≤ 2ωh‖∇′η‖L∞

ˆ
Ω\Bh

|Eh| ≤ Chα−1−γωh; (4.43)

therefore, it is infinitesimal as h→ 0 by the second property in (4.36). We conclude
that, if α = 3,

lim
h→0

ˆ
Ω

θh
(yh3
h

)
[RhEh(Rh)T ]′′ :∇′η((yh)′) dx =

ˆ
S

(Ê′′ + vĒ′′) :∇′η dx′. (4.44)

Analogously, for α > 3, since yh3 /h converges to x3 strongly in L2(Ω), we deduce
that

lim
h→0

ˆ
Ω

θh
(yh3
h

)
[RhEh(Rh)T ]′′ :∇′η((yh)′) dx =

ˆ
S

Ê′′ :∇′η dx′. (4.45)

In order to analyse the second integral in (4.41), it is convenient to split it as
follows:ˆ

Ω

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′)
(dθh
dt

(yh3
h

))
dx

=
ˆ

Ω

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′) dx

+
ˆ

Ω

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′)
(dθh
dt

(yh3
h

)
− 1
)
dx. (4.46)

We claim that the second term on the right-hand side is infinitesimal, as h→ 0,
that is,

lim
h→0

ˆ
Ω

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′)
(dθh
dt

(yh3
h

)
− 1
)
dx = 0. (4.47)

If α = 3, combining (4.41), (4.44), and (4.46), the claim implies that

lim
h→0

ˆ
Ω

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′) dx = −
ˆ
S

(Ê′′ + vĒ′′) :∇′η dx′. (4.48)
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If α > 3, combining (4.41), (4.45), (4.46), and the claim (4.47), we obtain

lim
h→0

ˆ
Ω

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′) dx = −
ˆ
S

Ê′′ :∇′η dx′. (4.49)

It remains to prove (4.47). To this aim we introduce the set Dh := {x ∈ Ω :
|yh3 (x)|/h ≥ ωh}. Since the sequence yh3 /h is bounded in L2(Ω) by (4.8) and (3.15),
we have

|Dh| ≤ ω−1
h

ˆ
Dh

|yh3 |
h

dx ≤ c ω−1
h |Dh|1/2,

which implies
|Dh| ≤ Cω−2

h . (4.50)
Since the derivative of θh is equal to 1 on (−ωh, ωh) by (4.37), the integral in

(4.47) reduces to

ˆ
Ω

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′)
(dθh
dt

(yh3
h

)
− 1
)
dx

=
ˆ
Dh

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′)
(dθh
dt

(yh3
h

)
− 1
)
dx.

By (4.16), (4.39), and (4.50), we have∣∣∣ˆ
Dh

1
h

2∑
i=1

[RhEh(Rh)T ]i3 ηi((yh)′)
(dθh
dt

(yh3
h

)
− 1
)
dx
∣∣∣

≤ C

h

(
1 +

∥∥∥dθh
dt

∥∥∥
L∞

)
‖η‖L∞

ˆ
Dh

|Eh| dx

≤ Chα−2 +
C

h
|Dh|1/2 ≤ Chα−2 +

C

hωh
.

By (4.36) this proves the claim (4.47).

Step 7. Limit equations. Let ϕ ∈ C2
b (R2) be such that ϕ(x′) = 0, ∇′ϕ(x′) = 0

for every x′ ∈ Γ. Since RhEh(Rh)T is symmetric, due to the symmetry of Eh, we
can compare equation (4.35) with (4.48), if α = 3, or (4.49), if α > 3 (where we
specify η = ∇′ϕ). In this way we deduce that, if α = 3

−
ˆ
S

(Ê′′ + vĒ′′) : (∇′)2ϕdx′ =
ˆ
S

gϕ dx′, (4.51)

while, if α > 3,

−
ˆ
S

Ê′′ : (∇′)2ϕdx′ =
ˆ
S

gϕ dx′. (4.52)

Applying the relation (4.33) with ψ = v∇′ϕ we conclude that equation (4.51) can
be rewritten asˆ

S

Ē′′ : (∇′v⊗∇′ϕ) dx′ −
ˆ
S

Ê′′ : (∇′)2ϕdx′ =
ˆ
S

gϕ dx′, (4.53)

By approximation the equations (4.52) and (4.53) hold for every ϕ ∈ H2(S) with
ϕ|Γ = 0 and ∇′ϕ|Γ = 0.

In order to express the limiting equations (4.33), (4.53), and (4.52) in terms of
the limit displacements, an explicit characterization of Ē′′ and Ê′′ is needed. Since
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E = LG and E is of the form (4.29), we have E′′ = L2G
′′ (see [26, Proposition 3.2]).

Therefore, by (4.10) and (4.11) we obtain, for α = 3,

Ē′′ = L2

(
sym∇′u+

1
2
∇′v ⊗∇′v

)
, Ê′′ = − 1

12
L2(∇′)2v.

These identities, together with (4.33) and (4.53), provide us with the Euler-Lagrange
equations (3.8)–(3.9).

By (4.10) and (4.12) we obtain, for α > 3,

Ē′′ = L2(sym∇′u), Ê′′ = − 1
12
L2(∇′)2v.

The first identity, together with (4.33) and the boundary condition u = 0 on Γ,
implies that u = 0, while the second identity, together with (4.45), provide us with
the Euler-Lagrange equation (3.11). This concludes the proof. �
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