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Abstract

In this paper we study a class of non linear diffusion equations in a Hilbert space X,

∂tµt −∇ · (∇(L ◦ ρt)γ) = 0 in X × (0,+∞),

with respect to a log-concave reference probability measure γ. We obtain existence, unique-
ness and stability properties, in the framework of gradient flows in spaces of probability
measures.

1 Introduction

In the last few years, starting from the seminal papers [O1, JKO], many studies have been de-
voted to the description of classical and non-classical PDE’s as evolution problems of gradient
flow type in the space of probability measures, endowed with the quadratic optimal transporta-
tion distance W2. Here we just mention [A, CG1, CG2, O2, O3, O4] and we refer to the
monographs [AGS, VI] for a detailed (but already not completely up to date) description of
the literature. It turns out that this interpretation as a gradient flow, when associated to a
convex structure, is extremely useful to derive existence, stability results and trends to equilib-
rium. A systematic theory of these evolution problems, which covers also infinite-dimensional
state spaces, has been developed in [AGS]. In [ASZ], building upon many results in [AGS], the
authors obtained general existence and stability results for infinite-dimensional Fokker-Planck
equations in Hilbert spaces associated to log-concave probability measures γ; the idea is to view
the PDE as the gradient flow of the relative entropy functional

ργ 7→
∫

X
ρ ln ρ dγ

with respect to W2, and log-concavity of γ is (see [AGS]) precisely the property needed for
convexity. More recently this results have been extended to the Ornstein-Uhlenbeck operator in
Wiener spaces (see [FSS, MA]).
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In this paper we investigate more in detail the nonlinear counterpart of these results, corre-
sponding to general energies

µ = ργ 7→ F (µ) :=
∫

X
F (ρ) dγ, ργ ∈ P2(X) (1.1)

(set equal to +∞ if µ is not absolutely continuous with respect to γ). Here we shall denote by
P(X) (resp. P2(X)) the space of probability measures (resp. probability measures with finite
quadratic moment) on the separable Hilbert space X. In particular we obtain well-posedness
and regularizing properties for nonlinear evolution equations of the form





∂tµt −∇ · (∇(L ◦ ρt)γ) = 0 in X × (0, +∞),
lim
t↓0

µt = µ̄,
(1.2)

where ρt represents the density of µt with respect to γ and L = LF : R → R is the Legendre
transform of F (so that the linear Fokker-Planck equation of [ASZ] corresponds to F (z) = z ln z).
The reader may consult [DaP, DaPZ] for a systematic study of evolution PDE’s in infinite
dimensions and the monograph [VA] for the finite-dimensional theory of porous media equations.

It should be emphasized that, as soon as a convex structure is identified, the results in [AGS]
provide existence and uniqueness of the gradient flow, and several equivalent formulations of the
evolution problem; but, the interpretation of this evolution in conventional PDE terms might
not be immediate; in the case of Fokker-Planck equations, the connection with the point of view
of Dirichlet forms and of Markov processes is completely analyzed in [ASZ], and tools from the
theory of optimal transportation are used to show closability of the Dirichlet form

∫ ‖∇u‖2 dγ.
In the nonlinear context provided by (1.1), our goal is relate the evolution semigroup in

P2(X) to the classical viewpoint based on Sobolev spaces and integration by parts. To this
aim, we assume that an orthonormal basis (that we shall denote by ej) of X exists, such that
∂ejγ ¿ γ for all j ≥ 1; notice that this assumption is consistent with the model case of Gaussian
measures γ. Notice however that it is not needed for the existence of the evolution semigroup
in P2(X). On the other hand, in order to have a convex structure we need some structural
assumptions on F which cover all nonlinearities F (z) = zm, m > 1 (see Assumption 4.1) and
the log-concavity of γ. This last hypothesis covers all measures γ of the form e−V γG with γG

Gaussian and V convex and lower semicontinuous, but we don’t need any absolute continuity
assumption w.r.t. a Gaussian.

One of the possible equivalent descriptions of the gradient flow in P2(X) takes the form of
a continuity equation (in the weak sense of duality with cylindrical functions)

d

dt
µt +∇ · (vtµt) = 0 (1.3)

coupled with a constitutive equation relating vt ∈ L2(µt;X) to µt, namely −vt = ∂0F (µt).
In this context, ∂0F (ργ) is the element with minimal L2(X, ργ;X) norm of ∂F (ργ) and the
subdifferential relation ξ ∈ ∂F (ργ) reads

F (σ) ≥ F (ργ) +
∫

X
〈ξ(x), t(x)− x〉 ρ(x) dγ(x) ∀σ ∈ P2(X).
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Here we are denoting by t the optimal transport map between ργ and σ, and it turns out that the
absolute continuity of all measures ∂ejγ suffices to show in Theorem 3.2 (following with minor
variants [AGS, 6.2.10]) existence and uniqueness of optimal transport maps. In comparison with
[AGS] our analysis is simplified by the choice of the quadratic exponent and by the existence of
optimal maps, so that Kantorovich plans do not play an explicit role.

So, most of this paper will be devoted to the identification of ∂0F (ργ) and, in comparison to
the linear Gaussian case considered in [AGS, 10.4.8], new difficulties are due to the nonlinearity
and to the generality of γ. If ρ ∈ L∞(X, γ), we shall prove that ∂F (ργ) is not empty if and
only if LF ◦ ρ ∈ W 1,1(X, γ) and ∇(LF ◦ ρ)/ρ ∈ L2(X, ργ; X); if this is the case, then

∇(LF ◦ ρ)
ρ

= ∂0F (ργ). (1.4)

In the case of unbounded densities ρ, membership to the Sobolev space can not be defined
because we assume only ∂ejγ ¿ γ (the assumption |∂ejγ| ≤ Cγ would be incompatible even
with the Gaussian case) and the integration by parts formula does not make sense. To overcome
this difficulty, we define (in the same spirit as [BBGG, DMOP]) generalized Sobolev spaces
GW 1,1(X, γ) in the “entropy” sense, by requiring that the truncated functions Tα(ρ) = −α∨ρ∧α
belong to W 1,1(X, γ) for all α ≥ 0 (see also [C] for a definition of entropy solutions to some
degenerate evolution equations). In this class a gradient can still be defined and (1.4) remains
true. Replacing (1.4) into (1.3) leads to the following result:

Theorem 1.1 Assume that L = LF , with F satisfying Assumption 4.1, and that γ satisfies
Assumption 2.5. Then, for all µ̄ ∈ P2(X) there exists a distributional solution µt = ρtγ to
(1.2), satisfying LF ◦ ρt ∈ GW 1,1(X, γ) for a.e. t > 0 and:

∥∥∥∥
∇(LF ◦ ρt)

ρt

∥∥∥∥
L2(X,µt;X)

∈ L2
loc(0,+∞). (1.5)

In the class of solutions µt satisfying (1.5) this solution is unique. Furthermore, if µ̄ ≤ Cγ, then
ρt ≤ C γ-a.e. for all t > 0 and therefore LF ◦ ρt ∈ W 1,1(X, γ) for a.e. t > 0.

The solution inherits from the gradient flow representation also additional properties, listed
in Theorem 3.8 and Remark 3.9: here we just mention that it is described by a contraction
semigroup on P2(X). We conclude noticing that our strategy (based on the perturbation
argument, as in [AGS, Remark 10.4.7]) identifies only the element with minimal norm and not
the whole ∂F (ργ), in contrast with the known finite-dimensional result, recalled in Theorem 4.6.
Since the differential inclusion vt ∈ −∂F (µt) is equivalent to the equation vt = −∂0F (µt), our
result is sufficient to identify the PDE (1.2). A direct analysis of the subdifferential relation
seems to require change of variables formulas relative to γ, a problem still open under our weak
assumptions on γ.

1.1 Plan of the paper

In Section 2 we will introduce the notation and the main technical tools used in the paper.
In Section 3 we will recall, mostly from [AGS], the abstract theory of gradient flows, with
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particular attention to the case of geodesically convex functionals on (P2(X),W2). In Section
4 we will introduce all the hypotheses and properties enjoyed by the internal energy functional
F , quoting in particular the known results in the finite dimensional case. Moreover, we will
introduce some useful Γ-convergence approximation techniques. Finally in Section 5 we will
characterize equation (1.2) as the Wasserstein gradient flow of F and prove the main result.

2 Notation and tools

2.1 Probability spaces

Let X be a separable Hilbert space with norm ‖ · ‖. The set of probability measures P(X) will
be endowed with the usual weak topology, induced by the duality with continuous and bounded
functions on X. If (µn) weakly converges to µ, we will write µn ⇀ µ. The set of probability
measures on X with finite quadratic moment will be denoted with P2(X), that is

P2(X) :=
{

µ ∈ P(X) s.t.

∫

X
‖x‖2dµ(x) < +∞

}
. (2.1)

We will say that µn converge to µ in P2(X) if µn ⇀ µ and

lim
n→∞

∫

X
‖x‖2dµn =

∫

X
‖x‖2dµ. (2.2)

In this case we will write µn → µ; this convergence is equivalent to the one induced by the
distance W2 defined in (3.1) below, see for instance [AGS, Proposition 7.1.5].

We now introduce the push forward notation: given a Borel map t : X → Y and µ ∈ P(X),
t#µ ∈ P(Y ) is defined by (t#µ)(A) = µ(t−1(A)), for any Borel set A ⊂ X.

Next, given an orthonormal basis (ei) of X (a specific choice of (ei), induced by γ, will be
specified later on), we consider the canonical projection maps πd(x) : X → Rd, of the form

πd(x) = (〈x, e1〉, . . . , 〈x, ed〉).

Definition 2.1 (Smooth cylindrical functions) We say that ϕ : X → R is a smooth cylin-
drical function if ϕ = ψ ◦πd, where πd is a projection map and ψ ∈ C∞

c (Rd). The set of smooth
cylindrical functions on X will be denoted by Cyl(X).

Definition 2.2 (Cylindrical projections) If ν = uγ ¿ γ and γd := πd
#γ, then πd

#ν ¿ γd

and its density ud is explicitly given by

ud(x) =
∫

X
u(y) dγx(y), (2.3)

where γx is the family of measures, concentrated on (πd)−1(x), which disintegrate γ with respect
to γd. We shall call ud cylindrical projections of u.
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In addition, using for instance (2.3), one can prove that if u ∈ Lp(X, γ), p ∈ [1, +∞), then
ud ∈ Lp(X, γd) and

ud ◦ πd → u in Lp(X, γ) as d →∞. (2.4)

Notice that (2.3) makes sense (componentwise) also for maps u taking values in X, and if
u ∈ Lp(X, γ; X), then ud ◦ πd → u in Lp(X, γ; X).

In order to deal with sequences of pairs (ρn, µn), where ρn ∈ Lp(X,µn; X) and µn are
measures on X, we will need the following notion of convergence.

Definition 2.3 Let (µn) ∈ P(X) be weakly convergent to µ. Let ρn ∈ L1(X, µn;X) and
ρ ∈ L1(X, µ; X). We say that ρn weakly converge to ρ if

lim
n→∞

∫

X
ζ(x)ρj

ndµn(x) =
∫

X
ζ(x)ρjdµ(x) (2.5)

for any ζ ∈ Cyl(X) and j ∈ N, where ρj
n and ρj are respectively the components of ρ and ρn

along the basis (ej).
We say that ρn strongly converge to ρ in Lp, p > 1, if in addition it holds

lim
n→∞ ‖ρn‖Lp(X,µn;X) = ‖ρ‖Lp(X,µ;X). (2.6)

Analogously, in the scalar case we say that ρn ∈ L1(X,µn) weakly converge to ρ ∈ L1(X,µ)
if

lim
n→∞

∫

X
ζ(x)ρndµn(x) =

∫

X
ζ(x)ρdµ(x) ∀ζ ∈ Cyl(X) (2.7)

and strong Lp convergence requires ‖ρn‖Lp(X,µn) → ‖ρ‖Lp(X,µ) as n →∞.
Moreover, in the sequel we will take advantage of the following result (see [AGS, Theorem

5.4.4]).

Lemma 2.4 Let µn → µ in P2(X). If ρn strongly converge to ρ in L2(X,µ) then

lim
n→∞

∫

X
f(x, ρn(x))dµn(x) =

∫

X
f(x, ρ(x))dµ (2.8)

for every continuous function f with at most 2-growth, that is

|f(x, y)| ≤ A + B(‖x‖2 + ‖y‖2) ∀(x, y) ∈ X ×X (2.9)

for some A, B ∈ R. More generally, (2.8) holds also if strong L2 convergence is replaced by

lim
n→∞

∫

X
g(ρn(x))dµn =

∫

X
g(ρ(x))dµ

for some strictly convex function g : X → R with at least 2-growth at infinity.
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2.2 Partial derivatives and gradient in Hilbert spaces

Let γ be a probability measure on X and v ∈ X, v 6= 0. The Fomin distributional derivative
(see for instance [B]) ∂vγ is defined by the canonical duality

〈∂vγ, ϕ〉 = −
∫

X
∂vϕdγ, ϕ ∈ Cyl(X)

where ∂vϕ is the partial derivative of ϕ in the direction v. We say that ∂vγ is an absolutely
continuous measure with respect to γ if there exists g ∈ L1(X, γ) such that

∫

X
∂vϕdγ = −

∫

X
gϕdγ, ∀ϕ ∈ Cyl(X). (2.10)

Throughout this paper we shall make the following assumption:

Assumption 2.5 ∂ejγ ¿ γ for all j ≥ 1. The corresponding Radon-Nikodym derivatives will
be denoted by gj.

Now we can define the distributional partial derivative of a bounded function (see for instance
[B]).

Definition 2.6 (Partial derivative, gradient, Sobolev spaces) Under Assumption 2.5, a
function u ∈ L∞(X, γ) has partial derivative ηj ∈ L1(X, γ) if
∫

X
∂ejζ(x)u(x) dγ(x) = −

∫

X
ηj(x)ζ(x) dγ(x) +

∫

X
u(x)ζ(x)gj(x) dγ(x) ∀ζ ∈ Cyl(X). (2.11)

In this case, we write ηj := ∂γ
eju, and simply ∂eju when no ambiguity arises. In addition, if this

happens for all j ≥ 1 and
√∑

j(∂eju)2 ∈ Lp(X, γ), we write u ∈ W 1,p(X, γ) and set

∇u :=
∞∑

j=1

(∂eju)ej ∈ Lp(X, γ; X).

We shall also use the fact that
∂ejud = (∂eju)d (2.12)

whenever ∂eju exists and d ≥ j.
We shall also need a chain rule formula and an existence result γ-a.e. of directional derivatives

of Lipschitz functions; we recall briefly their proofs, that can be achieved by standard arguments.

Theorem 2.7 (Chain rule) Let u ∈ L∞(X, γ) with ∂eju ∈ L1(X, γ), and let f ∈ Lip(R).
Then ∂ej (f ◦ u) ∈ L1(X, γ) and

∂ej (f ◦ u) = f ′(u)∂eju γ-a.e. in X. (2.13)

More precisely, denoting by Σ the set where f is not differentiable, both ∂eju = 0 and ∂ej (f ◦u) =
0 γ-a.e. on u−1(Σ), where (2.13) does not make sense.
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Proof. We denote by Y the orthogonal subspace to ej , by π : X → Y the orthogonal projection
and for y ∈ Y we denote by γy ∈ P(R) the conditional probability measures, namely

γ(B) =
∫

Y
γy

({t : y + tej ∈ B}) dπ#γ

for all Borel sets B ⊂ X. We claim that γy ¿ L1 for π#γ-a.e. y. To prove this, we shall prove
that γy has derivative equal to fyγy, where fy(t) = βj(y + tej), and use the well known fact that
this property, on the real line, implies absolute continuity.

To prove the claim, fix ζ ∈ Cyl(Y ) and ψ ∈ C1
c (R) and notice that

∫

Y
ζ(y)

∫

R
ψ′(t) dγy(t) dπ#γ(y) =

∫

X
ζ(π(x))ψ′(xj) dγ(x)

= −
∫

X
ζ(π(x))ψ(xj)gj(x) dγ(x)

= −
∫

Y
ζ(y)

∫

R
ψ(t)fy(t) dγy(t) dπ#γ(y).

Since ζ is arbitrary,
∫
R ψ′(t) dγy(t) = − ∫

R ψ(t)fy(t) dγy(t) for π#γ-a.e. y. We can find a π#γ-
negligible set Y ′ ⊂ Y such that the equality holds for all y ∈ Y \ Y ′ and all ψ in a countable
dense set in C1

c (R). By density, the claimed property holds for all y ∈ Y \ Y ′.
With a very similar argument one can prove a second claim, that uy(t) := u(y + tv) is

differentiable according to (2.11) with X = R, γ = γy, for π#γ-a.e. y, with ∂γyuy(t) = ∂γ
eju(y +

tej). Having proved the claims, the conclusion of the proof is standard: first the statement is
proved for uy, γy, and then, using the conditional probability representation of γ, it is extended
to u, γ.

So, it remains to prove the chain rule formula in the case when X = R, γ = hL1, with
h′ = hg ∈ L1(R). In this case we shall use the fact that this property holds for the classical
distributional derivative (see for instance [EG, Chapter 4]), or [AFP, Theorem 3.99] for a more
general result); we can read the integration by parts formula

∫

R
uhζ ′ dt =

∫

R
ughζ dt−

∫

R
∂γuhζ dt (2.14)

by saying that v := uh ∈ W 1,1(R) and h∂γu = v′ − uh′. Since h is continuous it follows that
u = v/h ∈ W 1,1

loc ({h > 0}) and the classical product rule in Sobolev spaces gives ∂γu = u′

in {h > 0}. Conversely, if a bounded function w belongs to W 1,1
loc ({h > 0}) and w′ ∈ L1(γ),

then w ∈ W 1,1(R, γ) and ∂γw = w′: indeed, under these assumptions (2.14) with u = w holds
when ζ has support contained in {h > 0}, and by approximation it holds for all ζ of the form
ζ̃h/

√
h2 + ε2 with ζ̃ ∈ C1

c (R). Letting ε → 0 easily gives
∫

R
whζ̃ ′ dt =

∫

R
wghζ̃ dt−

∫

R
∂γwhζ̃ dt

because the extra term ∫

R
whζ

(
h√

h2 + ε2

)′
dt
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coming from the differentiation of h/
√

h2 + ε2 can be estimated, up to the multiplicative constant
sup |wζ|, by

ε2h|h′|√
h2 + ε2

3 ≤
ε2|h′|

h2 + ε2
≤ |h′|

and tends to 0 pointwise.
Obviously w = f(u) is locally Sobolev on {h > 0} and w′ = f ′(u)u′ on {h > 0} \ u−1(Σ),

and equal to 0 on u−1(Σ). See Proposition 3.92 and Theorem 3.99 in [AFP]. ¤

Theorem 2.8 (Partial derivatives) Let f : X → R be Lipschitz and assume that ∂vγ ¿ γ.
Then

∃ lim
t↓0

f(x + tv)− f(x)
t

for γ-a.e. x. (2.15)

Proof. As in the proof of Theorem 2.7, one can prove that the conditional measures γy induced
by the map x 7→ x − 〈x, v〉v, indexed by y ∈ v⊥, are absolutely continuous with respect to L1

for π#γ-a.e. y ∈ v⊥, where π is the orthogonal projection on v⊥. Then, the existence L1-a.e. of
the derivative of t 7→ f(y + tv) yields existence of the derivative γy-a.e. in X. We conclude that
the limit (2.15) exists γ-a.e. in X. ¤

Definition 2.6 makes sense for L∞(X, γ) functions. In order to treat the unbounded case, we
will need a generalized definition of Sobolev spaces, based on truncation. For u : X → R and
α ≥ 0, define the α-truncate of u by

Tα(u) := −α ∨ u ∧ α. (2.16)

Suppose that Tn(u) ∈ W 1,1(X, γ) for every integer n. Thanks to Theorem 2.7, there holds
∇Tnu = 0 γ-a.e. on {|u| > n}. Moreover,

∇Tnu = ∇Tmu γ-a.e. on {|u| < n} (2.17)

for n < m, since the two functions are equal on {|u| < n}. Hence we can define

∂γ
ej

u := ∂γ
ej

Tn(u) γ-a.e. on {|u| < n}, (2.18)

∇u := ∇Tn(u) γ-a.e. on {|u| < n} (2.19)

and this is a good definition, up to γ-negligible sets, because of (2.17) (and because we used
only a countable set of truncation levels).

Definition 2.9 (Generalized Sobolev spaces) We say that a Borel map u : X → R belongs
to GW 1,p(X, γ) if Tα(u) ∈ W 1,p(X, γ) for all α ≥ 0. The partial derivatives and the gradient of
u are defined as in (2.18) and (2.19).

Notice that we might equivalently require only Tn(u) ∈ W 1,p(X, γ) for all integers n: this
follows by applying the chain rule with f = Tα to the identity Tα = Tα ◦Tn, for n > α. Similarly
one can prove that any unbounded sequence of truncation levels would provide an equivalent
definition.
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3 Wasserstein structure and gradient flows in probability spaces

In P2(X) we introduce the following distance

W 2
2 (µ, ν) = inf

{∫

X×X
‖y − x‖2dβ(x, y) s.t. β ∈ Γ(µ, ν)

}
(3.1)

where Γ(µ, ν) denote the subset of P(X × X) of measures with first marginal µ and second
marginal ν. It is well known that the infimum is achieved, and we shall denote by Γ0(µ, ν) the
set of optimal transport plans, corresponding to solutions of the Kantorovich optimal transport
problem. A transport plan can be seen as a multivalued generalization of a transport map, that
is, a Borel map t : X → X such that t#µ = ν.

Let us consider a functional φ : P2(X) → (−∞,+∞], and define its effective domain as

D(φ) = {µ ∈ P2(X) : φ(µ) < +∞}.

We say that the functional is proper if D(φ) 6= ∅.
If µ ∈ D(φ), the metric slope of φ at µ is defined by

|∂φ|(µ) = lim sup
ν→µ

(φ(µ)− φ(ν))+

W2(µ, ν)
.

From now on, the following hypotheses on the functional will be assumed:

Assumption 3.1 φ : P2(X) → (−∞, +∞] is a proper lower semicontinuous functional, it is
bounded from below and such that for all µ ∈ D(φ), ν ∈ P2(X) there exists an optimal transport
map t from µ to ν.

As a matter of fact, existence of optimal maps simplifies considerably some proofs and
constructions, although almost all arguments can be reproduced working with transport plans.
The assumption will be satisfied if φ(µ) finite implies µ ¿ γ and Assumption 2.5 holds:

Theorem 3.2 (Existence of optimal maps) Assume that ∂ejγ ¿ γ for all j ≥ 1, µ, ν ∈
P2(X) and µ ¿ γ. Then there exists a unique optimal transport plan from µ to ν, and this
plan is induced by a map.

Proof. The proof follows the traditional routine (see for instance [AGS, 6.2.10] for closely
related results, involving measures µ vanishing on Gauss null sets): one reduces to the case
when ν has a bounded support and finds an optimal plan β and a maximizing pair (ϕ,ψ) of
Kantorovich potentials, so that ϕ(x) + ψ(y) ≤ |x− y|2 and equality holds on suppβ; since

ϕ(x) = inf
y∈supp ν

|x− y|2 − ψ(y)

we have that ϕ is Lipschitz on bounded sets. Then, by applying a local version of Theorem 2.8,
we find a γ-negligible set N ⊂ X such that ∂ejϕ exists at all points of X \N for all j ≥ 1. Since
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|x′ − y|2 − ϕ(x′) attains its minimum at x′ = x (equal to −ψ(y)) for points (x, y) ∈ suppβ, if
x /∈ N partial differentiation gives

2〈x− y, ej〉 = ∂ejϕ(x), ∀j ≥ 1.

Since β(N × X) = µ(N) = 0, this proves that y is uniquely determined by x β-a.e., hence β
is concentrated on a graph. This provides the optimal transport map. Since any optimal plan
β is concentrated on the graph of a map, the optimal map is unique (otherwise a combination
of two optimal maps would produce an optimal plan not concentrated on a graph) and, as a
consequence, β is unique as well. ¤

Remark 3.3 (Stability of optimal maps) Let µ ∈ P2(X) with µ ¿ γ. Arguing as in [AGS,
Lemma 8.5.3], uniqueness at the level of transport plans provides a strong continuity property
of optimal transport maps, namely νn → ν in P2(X) implies convergence in L2(µ; X) of the
optimal transport maps tn from µ to νn to the optimal transport map t from µ to ν.

The next definition corresponds to the standard Fréchet subdifferential in Hilbert spaces.

Definition 3.4 (Wasserstein subdifferential) Let µ ∈ D(φ). The Wasserstein subdifferen-
tial ∂φ(µ) of φ at µ is the set of vectors ξ ∈ L2(X, µ; X) such that

φ(ν)− φ(µ) ≥
∫

X
〈ξ, t(x)− x〉 dµ(x) + o(W2(µ, ν)),

where t is the optimal transport map between µ and ν.

Definition 3.5 (Convexity along geodesics) We say that φ is convex along geodesics if, for
all µ, ν ∈ D(φ), we have

φ(µt) ≤ (1− t)φ(µ) + tφ(ν) ∀t ∈ [0, 1], (3.2)

where µt = ((1− t)Id + tt)#µ is the constant speed Wasserstein geodesic connecting µ to ν.

We point out that for convex functionals along geodesics the subdifferential relation can be
equivalently written as

φ(ν)− φ(µ) ≥
∫

X
〈ξ(x), t(x)− x〉 dµ(x). (3.3)

See Section 10.1.1 in [AGS].
The next proposition shows the connection between Wasserstein subdifferential and metric

slope (and it is analogous to the case of Fréchet subdifferential in Hilbert spaces). See for
example [AGS, Lemma 10.1.5].

Proposition 3.6 (Slope and minimal selection in ∂φ) Let φ be a convex functional along
geodesics, and let µ ∈ D(φ). Then

|∂φ|(µ) = min
{‖ξ‖L2(X,µ:X) : ξ ∈ ∂φ(µ)

}

with the convention min ∅ = +∞. If |∂φ|(µ) is finite, the minimum point is unique and we
denote it with ∂0φ(µ).
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If φ is convex along geodesics, the application µ 7→ |∂φ|(µ) is also lower semicontinuous in
(P2(X),W2), as this fact holds true in general metric spaces (see [AGS, Corollary 2.4.10]).

We will also need the following stronger notion of convexity:

Definition 3.7 We say that φ : P2(X) → [0, +∞] is strongly convex if it is convex along
geodesics and for any µ, ν, σ ∈ D(φ) there exists a continuous curve µt : [0, 1] → P2(X), with
µ0 = µ and µ1 = ν, such that

{
W 2

2 (µt, σ) ≤ (1− t)W 2
2 (µ, σ) + tW 2

2 (ν, σ)− t(1− t)W 2
2 (µ, ν)

φ(µt) ≤ (1− t)φ(µ) + tφ(ν)
∀t ∈ [0, 1]. (3.4)

3.1 The gradient flow equation

We say that a curve µt : (0, +∞) → P2(X) is absolutely continuous, and we write µt ∈
ACloc((0, +∞),P2(X)), if for some m ∈ L1

loc((0,+∞)) there holds

W2(µs, µt) ≤
∫ t

s
m(y) dy, ∀s ≤ t.

We recall the following abstract result for absolutely continuous curves in probability spaces
(see [AGS, Theorem 8.3.1]). If µt is absolutely continuous there exists a Borel vector field
vt ∈ L2(X, µt;X) with ‖vt‖L2 ∈ L1

loc(0, +∞) such that the continuity equation

∂tµt +∇ · (vtµt) = 0 (3.5)

holds in the sense of distributions (i.e. in the duality with Cyl(X)). The vector field vt is not
unique, but there exists the one of minimal L2 norm, which can be thought as the velocity vector
associated to the curve µt. In the sequel, vt will always be understood as this optimal tangent
vector.

The curve µt is then said to be the gradient flow of functional φ if

−vt ∈ ∂φ(µt), for L1-a.e. t > 0. (3.6)

If φ is convex along geodesics, recalling (3.3) the gradient flow equation can be equivalently
rewritten as

−
∫

X
〈vt(x), t(x)− x〉 dµt ≤ φ(ν)− φ(µt) for L1-a.e. t > 0, (3.7)

for all ν ∈ D(φ). We can therefore think to the gradient flow equation itself as a system
containing the subdifferential inclusion and the general continuity equation (3.5). We shall say
that a gradient flow µt starts from µ̄ if µt → µ̄ as t ↓ 0.

We also recall the following formula for the derivative of the Wasserstein distance along
absolutely continuous curves (see [AGS, Theorem 8.4.7]). If µt ∈ ACloc((0, +∞),P2(X)) and
ν ∈ P2(X) there holds

1
2

d

dt
W 2

2 (µt, ν) =
∫

X×X
〈x− y,vt(x)〉 dγt(x, y), ∀γt ∈ Γ0(µt, ν).

11



Since the left hand side in (3.7) is (in our simplified setting where optimal transport maps do
exist) the derivative of the squared Wasserstein distance, (3.7) is also equivalent to the following
inequality:

1
2

d

dt
W 2

2 (µt, ν) ≤ φ(ν)− φ(µt), for L1-a.e. t > 0, (3.8)

for all ν ∈ D(φ).
We now recall the main result about gradient flows of convex functionals along geodesics

(see [AGS, Theorem 11.2.1], also for a detailed discussion on the properties of flows).

Theorem 3.8 Let φ : P2(X) → (−∞, +∞] be a strongly convex functional. Then, for all
µ̄ ∈ D(φ), there exists a unique gradient flow µt starting from µ̄, generating a contraction
semigroup S(t) on D(φ). In addition µt satisfies (3.8), belongs to D(|∂φ|) for any t > 0 and the
map t 7→ |∂φ|(µt) is nonincreasing.

Remark 3.9 The solution provided by Theorem 3.8 satisfies the following additional properties.

i) For every t > 0 there holds

φ(µt) ≤ 1
2t

W 2
2 (µ0, ν) + φ(ν) ∀ν ∈ D(φ), (3.9)

|∂φ|2(µt) ≤ |∂φ|2(ν) +
1
t2

W 2
2 (µ0, ν) ∀ν ∈ D(|∂φ|). (3.10)

ii) The following energy identity holds:
∫ b

a

∫

X
|vt|2 dµt dt = φ(µa)− φ(µb) ∀ 0 ≤ a < b < +∞. (3.11)

iii) If µ0 is a minimum point for φ and t > 0, then

|∂φ|(µt) ≤ W2(µ̄, µ0)
t

, φ(µt)− φ(µ0) ≤ W 2
2 (µ̄, µ0)

2t

and the map t 7→ W2(µt, µ0) is nonincreasing.

3.2 The discrete scheme

The gradient flow µt of functional φ is the limit of the Euler discrete scheme: given µ̄ ∈ D(φ),
one constructs a sequence (µk

τ ) ⊂ P2(X), with µ0
τ = µ̄, whose k-th element is found minimizing

the functional
Φτ (ν, µk−1

τ ) := φ(ν) +
1
2τ

W 2
2 (ν, µk−1

τ ). (3.12)

For t > 0 and k > 0, we can define a discrete gradient flow as

µ̃τ (t) := µk
τ if t ∈ ((k − 1)τ, kτ ].

In fact, under the same assumptions as Theorem 3.8, another consequence of [AGS, Theorem
11.2.1] is the following

12



Proposition 3.10 If φ is strongly convex and µ0
τ = µ̄, we have µ̃τ (t) → µt for all t ≥ 0, where

µt is the gradient flow provided by Theorem 3.8.

Let us focus the attention on the discrete problem. We will give some more precise results.

Proposition 3.11 Let φ be a strongly convex functional, let µ ∈ D(φ) and τ > 0 . Then
Φτ (·, µ) admits a unique minimizer µτ ∈ P2(X).

Proof. Define

ψτ (µ) := inf
ν∈P2(X)

{
1
2τ

W 2
2 (µ, ν) + φ(ν)

}
. (3.13)

ψτ depends continuously on µ (with respect to the W2 convergence), as shown in [AGS, Lemma
3.1.2] in a more general framework. Suppose now that (νn) is a minimizing sequence for Φτ (·, µ).
Then, since µ ∈ D(φ), there exists a sequence (µn) ⊂ D(φ) converging to µ in P2(X) such that

lim sup
n→∞

Φτ (νn, µn) = lim sup
n→∞

Φτ (νn, µ) ≤ ψτ (µ). (3.14)

Let us now take advantage of (3.4), choosing a continuous curve µt, t ∈ [0, 1], connecting νn to
νm, with µn as a base point. We obtain

Φτ (µ1/2, µn) = φ(µ1/2) +
1
2τ

W 2
2 (µ1/2, µn)

≤ 1
2

(
φ(νn) +

1
2τ

W 2
2 (νn, µn)

)
+

1
2

(
φ(νm) +

1
2τ

W 2
2 (νm, µn)

)
− 1

8τ
W 2

2 (νn, νm).

(3.15)

Now notice that the left hand side can be bounded from below with ψτ (µn), while the first two
terms in the right hand side are asymptotically smaller than 1

2ψτ (µ), by (3.14). We conclude
that W 2

2 (νn, νm) → 0 as n, m →∞, whence νn → ν in P2(X). Then, it follows easily that ν is
a minimizer. Since the minimizing sequence was chosen arbitrarily, we also conclude that ν is
the unique minimizer. ¤

Remark 3.12 Let µτ ∈ D(φ) be a minimizer over P2(X) of Φτ (·, µ), where Φ is the functional
defined in (3.12), and assume that tτ is an optimal transport map between µτ and µ. Then (see
Lemma 10.1.2 in [AGS]) one can construct a vector ωτ ∈ ∂φ(µτ ) by

ωτ =
tτ − I

τ
. (3.16)

The following approximation result of the minimal selection in terms of vectors as in (3.16)
will be useful in the sequel.

Lemma 3.13 Let φ : P2(X) → (−∞, +∞] be a convex functional along geodesics and let
µ ∈ D(|∂φ|). If µτ is a minimizer of Φτ (·, µ) and ωτ is constructed as in (3.16), then there exist
τn → 0 such that, as n →∞, µτn → µ, φ(µτn) → φ(µ) and, more precisely,

|∂φ|2(µ) = lim
n→∞

φ(µ)− φ(µτn)
τn

= lim
n→∞ ‖ωτn‖2

L2(X, µτn; X) . (3.17)
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Moreover, ωτn ∈ L2(X, µτn ; X) converge, in the sense of Definition 2.3, to the unique vector
∂0φ(µ) with minimal norm in ∂φ(µ).

Proof. The proof follows from Lemma 10.3.10 and 10.3.11 in [AGS], simply reducing the
notation therein in terms of standard vector subdifferentials in P2(X). ¤

4 Internal energy functional

Given a Borel probability measure γ on Rd, we define the finite-dimensional internal energy
functional relative to γ as follows:

Fd(µ|γ) =





∫

Rd

F

(
dµ

dγ

)
dγ if µ ¿ γ,

+∞ otherwise .

The definition can be extended easily to the case of a Borel probability measure γ in an infinite-
dimensional Hilbert space X:

F (µ|γ) =





∫

X
F

(
dµ

dγ

)
dγ if µ ¿ γ,

+∞ otherwise .

Assumption 4.1 We consider the following assumptions on the integrand F : [0, +∞) →
(−∞, +∞]:

i) F is strictly convex;

ii) the map s 7→ esF (e−s) is convex and nonincreasing in R;

iii) F (0) = 0;

iv) F has a superlinear growth at infinity.

Condition ii) is needed for the geodesic convexity of F , and in fact it has been introduced
in [AGS] as a dimension-free extension of the one introduced by McCann (see [Mc]) for the
d-dimensional case, namely

x 7→ xdF (x−d) is convex and nonincreasing in (0, +∞). (4.1)

Indeed, it can be shown that ii) implies (4.1). It is convenient to introduce the continuous
function

LF (x) := xF ′
+(x)− F (x), (4.2)

where F ′
+ denotes the right derivative. In fact, we will write the velocity vector field of the

gradient flow of Fd and F in terms of LF , which will indeed be the same function L as equation
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(1.2). Notice also that the monotonicity condition in (ii) is equivalent to xL′F (x)− LF (x) ≥ 0,
while the convexity condition yields

esF (e−s)− F ′(e−s) + e−sF ′′(e−s) ≥ 0,

which implies convexity of F .
Let us introduce (see [AGS, Lemma 9.4.4]) the following dual representation of F :

F (µ|γ) = sup
{∫

X
g(x)dµ(x)−

∫

X
F ∗(g(x))dγ(x) : g ∈ C0

b (X)
}

, (4.3)

where F ∗ denotes the Fenchel conjugate of F . We notice that from (4.3) F is sequentially l.s.c.
with respect to the weak convergence. For µ, ν ∈ P2(X), we also introduce the notation

ΦF
τ (ν, µ) := F (ν|γ) +

1
2τ

W 2
2 (ν, µ). (4.4)

The typical example of function F one can consider is the n-th power:

F (x) =
xn

n− 1
, n > 1, (4.5)

with LF (x) = xn. Another important example is F (x) = x log x, corresponding to the rela-
tive entropy functional (see Remark 4.7 below), whose gradient flow is a linear Fokker-Planck
equation (see [JKO] and the infinite-dimensional theory in [ASZ]).

4.1 Geodesic convexity of F

In this subsection we recall some results on the convexity properties of F .

Definition 4.2 (Log-concavity) A probability measure on X is said to be log-concave if, for
any couple of open sets A, B in X, there holds

log γ((1− t)A + tB) ≥ (1− t) log γ(A) + t log γ(B). (4.6)

If X = Rd and γ is non-degenerate (i.e. it is not supported in a proper subspace of X), then
Borell proved (see also [AGS, Theorem 9.4.10]) that γ is log-concave if and only if γ = e−V Ld

for some lower semicontinuous and convex function V : Rd → (−∞, +∞] whose domain has
nonempty interior.

For the internal energy functional relative to γ, convexity along geodesics is strictly related
to the log-concavity of γ, as shown by the following result (see [AGS, Theorem 9.4.12]).

Theorem 4.3 Let F be satisfying Assumption 4.1 ii)-iii)-iv), and suppose that γ is log-concave.
Then F (·|γ) is strongly convex in P2(X).
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Remark 4.4 Let γ ∈ P(X) be log-concave, let µ ∈ P2(X) and consider the constrained
minimization problem

min
ν≤Mγ

ΦF
τ (ν, µ).

Then this problem admits a unique minimizer, as the unconstrained one. In fact, the functional

FM (µ|γ) :=





∫

X
FM

(
dµ

dγ

)
dγ if µ ¿ γ,

+∞ otherwise,
(4.7)

where

FM (z) :=

{
+∞ if z > M,

F (z) otherwise,

trivially satisfies the hypotheses of Theorem 4.3, so it is strongly convex and we can apply
Proposition 3.11 with φ = FM .

4.2 Bounded densities

The following result extends the one of [A, Section 2.1] to the infinite dimensional case, basically
with the same proof.

Lemma 4.5 Let F satisfy Assumption 4.1 and suppose that γ is log-concave. Let µ = ργ ∈
P2(X), with ρ ≤ M γ-a.e. in X. Then there exists a unique minimizer µτ of ΦF

τ (·, µ), and
µτ ≤ Mγ.

Proof. We assume without loss of generality that M is a point of differentiability for F . As a
first step, we consider the problem of minimizing ΦF

τ (·, µ) under the constraint ν ≤ M ′γ, where
M ′ ≥ M . In view of Remark 4.4, we know that in this case there exists a unique minimizer
µτ = ρτγ ≤ M ′γ.

Let β denote the optimal transport plan between µ and µτ . Suppose by contradiction that
ρτ > M on some Borel set Ω ⊂ X with γ(Ω) > 0 and let Ωc be the complement of Ω in X.

Now let βΩ = χΩc×Ωβ. It is clear that π1
#βΩ ≤ µ and π2

#βΩ ≤ µτ . Then, letting ρ̃ and ρ̃τ be
the densities with respect to γ of the first and second marginal of βΩ, we have

ρ̃ ≤ ρ and ρ̃τ ≤ ρτ . (4.8)

Moreover, the following properties are easily seen to hold γ-a.e.:

ρ̃ ≤ M, ρ̃ = 0 on Ω, ρ̃τ = 0 on Ωc. (4.9)

Let us introduce the competitor of µτ as

ρε
τγ := (ρτ + ε(ρ̃− ρ̃τ )) γ. (4.10)
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By the definition of ρ̃ and ρ̃τ it is immediate to check that
∫
X ρ̃ dγ =

∫
X ρ̃τ dγ = β(Ωc × Ω).

As a consequence ρε
τγ ∈ P2(X). Moreover, since ρτ > M γ-a.e. in Ω, making use of (4.8) and

(4.9) we obtain, for small enough ε,

ρε
τ = ρτ − ερ̃τ > 0 γ-a.e. on Ω. (4.11)

Then, denoting by F ′− and F ′
+ respectively the left and right derivative of F , thanks to the

convexity of F we have, for small enough ε,
∫

X
(F (ρε

τ )− F (ρτ )) dγ ≤
∫

Ωc

(F (ρτ + ερ̃)− F (ρτ )) dγ +
∫

Ω
(F (ρτ − ερ̃τ )− F (ρτ )) dγ

≤ ε

∫

Ωc

F ′
+(ρτ + ερ̃)ρ̃ dγ − ε

∫

Ω
F ′
−(ρτ − ερ̃τ )ρ̃τ dγ

≤ ε

∫

Ωc

F ′
+(M + ερ̃)ρ̃ dγ − ε

∫

Ω
F ′
−(M − ερ̃τ )ρ̃τ dγ

= ε

∫

X×X

[
F ′

+(M + ερ̃(x))− F ′
−(M − ερ̃τ (y))

]
dβΩ(x, y)

= ε

∫

X×X
o(1) dβΩ(x, y).

Since ρ̃ and ρ̃τ are bounded above γ-a.e. by M ′, we conclude that
∫

X
(F (ρε

τ )− F (ρτ )) dγ ≤ o(ε). (4.12)

On the other hand, let t : X ×X → X ×X be defined by t(x, y) = (x, x), and let

βε = β − εβΩ + εt#βΩ.

By the composition rule of the push forward we have π2
#t#βΩ = (π2 ◦ t)#βΩ = π1

#βΩ, so that
the second marginal of t#βΩ is equal to the first marginal of βΩ, namely ρ̃; analogously the first
marginal of t#βΩ coincides with the first marginal of βΩ. Hence it is clear that βε ∈ Γ(µ, ρε

τγ).
So we can estimate

W 2
2 (ρε

τγ, µ)−W 2
2 (ρτγ, µ) ≤

∫

X×X
|x− y|2 d(βε − β)(x, y) = −ε

∫

Ωc×Ω
|x− y|2 dβ(x, y). (4.13)

Together with (4.12), this gives

ΦF
τ (ρε

τγ, µ)− ΦF
τ (ρτγ, µ) ≤ − ε

2τ

∫

Ωc×Ω
|x− y|2 dβ(x, y) + o(ε). (4.14)

But consider that

β(Ω× Ω) ≤ β(Ω×X) =
∫

X
χΩ(x) d(π1

#β)(x) =
∫

Ω
ρ(x) dγ(x) ≤ Mγ(Ω). (4.15)
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This forces β(Ωc × Ω) to be strictly positive, otherwise

β(Ω× Ω) = β(X × Ω) = µτ (Ω) =
∫

Ω
ρτ (x) dγ(x) > Mγ(Ω)

against (4.15). Back to (4.14), if ε is chosen small enough, we contradict the minimality of
µτ = ρτγ. We have proved that ρτ ≤ M , independently of the initial choice of M ′.

Since these properties hold for all M ′ > M , it turns out that the minimizer is independent
of M ′, hence µτ is a minimizer under the constraint ν = ργ with ρ ∈ L∞(γ). Then, a simple
truncation argument provides the minimality of µτ in the unconstrained problem. ¤

4.3 The finite-dimensional case

A key ingredient of our analysis will be the finite-dimensional framework, which has been studied
in detail in [AGS, Chapter 10]. We now recall the main result therein (see [AGS, Theorem
10.4.9]).

Theorem 4.6 Let γ = e−V Ld be a non-degenerate log-concave probability measure on Rd, let
Ω be the nonempty interior of D(V ) and consider the functional Fd(·|γ) and µ = ργ ∈ D(Fd).
Then ρ ∈ D(|∂Fd|) if and only if

LF ◦ ρ ∈ W 1,1(Ω) and
∇(LF ◦ ρ)

ρ
∈ L2(Rd, µ). (4.16)

If these conditions hold, ∇(LF ◦ρ)
ρ realizes the minimal selection in |∂Fd(·|γ)| at the point µ, so

that
∇(LF ◦ ρ)

ρ
= ∂0Fd(µ|γ) and

∥∥∥∥
∇(LF ◦ ρ)

ρ

∥∥∥∥
L2(Rd,µ)

= |∂Fd(µ|γ)|. (4.17)

From this characterization of the Wasserstein subdifferential of Fd, we learn that the gradient
flow of Fd satisfies equation (1.2) in its finite dimensional version.

Remark 4.7 In the case X = Rd, let γ = e−V Ld, where V is a convex l.s.c. potential, and
µt = utLd. As a consequence we have ρt = ute

V and (1.2) becomes

∂tut −∇ · (∇(LF ◦ ut) + ut∇V ) = 0. (4.18)

In (4.18) we recognize different PDEs. In particular, if V = 0 and LF (x) = xm, m > 1 (which
corresponds to F = (m − 1)−1xm) we obtain the porous media equations. If F (x) = x log x,
then Fd is the well known entropy functional

Hd(µ|γ) =





∫

X

(
dµ

dγ

)
log

(
dµ

dγ

)
dγ if µ ¿ γ,

+∞ otherwise .
(4.19)

In this case LF (x) = x and (4.18) becomes the linear Fokker Planck equation with potential V :

∂tut −∆ut −∇ · (ut∇V ) = 0. (4.20)

See [ASZ] for a detailed comparison between the different approaches to (4.20) in infinite di-
mensions.
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4.4 Γ-convergence results

For the characterization of the subdifferential of F , we will perform finite dimensional approx-
imations, and we need a Γ-convergence result. First of all, we introduce the following:

Definition 4.8 (Γ-convergence) We say that φn : P2(X) → [−∞,+∞] Γ(P2(X))-converge
to φ if

i) for any sequence (µn) ⊂ P2(X) weakly convergent to µ, there holds

φ(µ) ≤ lim inf
n→∞ φn(µn); (4.21)

ii) for any µ ∈ P2(X) there exists (µn) ⊂ P2(X) converging to µ in P2(X) such that

lim
n→∞φn(µn) = φ(µ). (4.22)

Γ-convergence guarantees the convergence of minimizers to minimizers, as in the next lemma.

Lemma 4.9 Let φh : P2(X) → (−∞, +∞] be geodesically convex functionals satisfying As-
sumption 3.1 and Γ(P2(X))-convergent to φ, still satisfying Assumption 3.1. Assume also that
for all M > 0 the set

∞⋃

h=1

{µ ∈ P2(X) : φh(µ) ≤ M} (4.23)

is relatively compact in the weak topology of P(X).
Then, for τ fixed, (µh

τ ) has limit points in P2(X) and ωh
τ ∈ ∂φh(µh

τ ), constructed as in Re-
mark 3.12, have strong limit points in the sense of Definition 2.3. If (hn) is any subsequence
along which we have convergence, and µτ ,ωτ are the limits, then µτ is a minimizer of Φτ (·, µ)
and ωτ belongs to ∂φ(µτ ). Moreover

φhn(µhn
τ ) → φ(µτ ).

Proof. It follows from [AGS, Lemma 10.3.17], which is stated for the general Pp(X) case.
The case p = 2 and the fact that we consider maps instead of plans leads to considerable
simplifications of that proof, see also [ASZ]. In the proof of Lemma 10.3.17 the equi-tightness
assumption (ensuring compactness of minimizing sequences) is not present, and replaced by a
stronger lower semicontinuity property than (4.21), involving duality with cylindrical functions.

¤
It is clear from Lemma 3.13 that there exist µτn , minimizers of Φτn(·, µ), such that the

respective subdifferentials converge to ∂0φ(µ). With the next result we want to show that the
approximating ωn can also be chosen to be subdifferentials of functionals φn, if φn is Γ-convergent
to φ. We include the proof, following with minor variants [AGS, Lemma 10.3.16].
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Theorem 4.10 Let φn, φ : P2(X) → (−∞, +∞] be as in Lemma 4.9. Then, for every µ ∈
D(|∂φ|) there exist a subsequence n(m), µn(m) converging to µ in P2(X) and subdifferentials
ωn(m) ∈ ∂φn(m)(µn(m)) such that

ωn(m) → ∂0φ(µ) ∈ L2(X, µ; X) strongly in L2 as in Definition 2.3 (4.24)

and
lim

m→∞φn(m)(µn(m)) = φ(µ). (4.25)

In particular, since |∂φ|(µ) is the L2(µ) norm of the minimal selection in ∂φ(µ), this means that

lim sup
m→∞

∫

X
‖ωn(m)‖2dµn(m) ≤ |∂φ|2(µ). (4.26)

Proof. We construct the approximating sequence in the following way. Let µh → µ in P2(X)
with φh(µh) → φ(µ) (such a sequence exists by Γ-convergence). Let µh

τ be a minimizer of

Φh
τ (·, µh) := φh(·) +

1
2τ

W 2
2 (·, µh).

Let moreover ωh
τ be constructed as in Remark 3.12. We will show that there is a subsequence

of the family {ωh
τ : h ∈ N, τ > 0} such that (4.24) holds. First, for fixed τ , we know from

Lemma 4.9 that there is a subsequence µhn
τ converging in P2(X) to µτ , where µτ minimizes

Φτ (·, µ). Moreover, the corresponding sequence ωhn
τ converge to ωτ ∈ ∂φ(µτ ) in the sense of

Definition 2.3. Hence, given ε > 0, for n large enough we have
∣∣∣∣
∫

X
|ωhn

τ |2 dµhn
τ −

∫

X
|ωτ |2 dµτ

∣∣∣∣ <
ε

2
. (4.27)

and (taking Lemma 4.9 into account)
∣∣∣φhn(µhn

τ )− φ(µτ )
∣∣∣ <

ε

2
. (4.28)

On the other hand, we know from Lemma 3.13 that there exists an infinitesimal sequence (τm)
such that

lim
m→∞

∣∣∣∣
∫

X
|ωτm |2 dµτm −

∫

X
|ω|2 dµ

∣∣∣∣ = 0 (4.29)

and
lim

m→∞ |φ(µτm)− φ(µ)| = 0. (4.30)

Now, with τ = τm and ε = 1/m we can suitably choose hn = hn(m) in (4.27) and (4.28) to
conclude with a diagonal argument. ¤

Now we state the particular Γ-convergence result for our functionals.
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Theorem 4.11 If γn converge weakly to γ, then F (·|γn) Γ(P2(X))-converge to F (·|γ) and
satisfy the equi-tightness condition (4.23). Moreover, if µ ∈ P2(X) and γn = πn

#γ, a sequence
satisfying condition (4.22) is πn

#µ, so that

lim
n→∞F (πn

#µ|γn) = F (µ|γ).

Proof. We first prove the equi-tightness condition (4.23). Fix ε > 0 and two constants M ′,M ′′

large enough such that M/M ′ < ε/2 and F (x) > M ′x for x > M ′′ (this is possible in view of
the superlinear growth of F at infinity). Let moreover Kε be a compact subset of X such that
γn(Kε) > 1 − ε

2M ′′ for every n (the sequence (γn) is tight, since it is weakly convergent). If
µ ∈ P2(X) satisfies F (µ|γn) ≤ M for some n, we have

µ(X \Kε) =
1

M ′

∫

X\Kε

M ′ dµ <
1

M ′

∫

(X\Kε)∩{ρ>M ′′}

F (ρ)
ρ

dµ +
∫

(X\Kε)∩{ρ≤M ′′}
M ′′ dγn

≤ M

M ′ + M ′′γn(X \Kε) < ε.

This shows that the set introduced in (4.23) is tight, hence relatively compact.
In order to prove Γ−convergence, let µn ⇀ µ. For any g ∈ C0

b (X) there holds
∫

X
g(x)dµ(x)−

∫

X
F ∗(g(x))dγ(x) = lim

n→∞

(∫

X
g(x) dµn −

∫

X
F ∗(g(x)) dγn

)
≤ lim inf

n→∞ F (µn|γn),

(4.31)
so that

sup
µ∈C0

b (X)

(∫

X
g(x)dµ(x)−

∫

X
F ∗(g(x))dγ(x)

)
≤ lim inf

n→∞ F (µn|γn).

Taking into account the duality formula (4.3), the liminf inequality i) of the definition of Γ-
convergence follows. The limsup inequality ii) and the last statement are proven exactly as in
[ASZ, Lemma 6.2]. ¤

Now consider finite dimensional approximations of the measure γ: letting γn = πn
#γ, from

Theorem 4.11 we know that F (·|γn) Γ-converge to F (·|γ). From the next result it will follow
that, if the role of Γ-converging functionals of Theorem 4.10 is played by F (·|γn) and we choose
a limit point µ ∈ L∞(X, γ), then the approximating µn can be chosen so that their densities
have uniformly bounded L∞(X, γn) norms.

Corollary 4.12 For all µ with µ ≤ Mγ and |∂F (µ|γ)| finite, there exist µn with µn ≤ Mγn,
µn → µ in P2(X), F (µn|γn) → F (µ|γ). In addition, there exist ωn ∈ ∂F (·|γn)(µn) such that

ωn → ∂0F (·|γ)(µ) ∈ L2(X,µ; X) strongly in the sense of Definition 2.3. (4.32)

Proof. It suffices to revisit in this particular case the proof of Theorem 4.10: first, the measures
µn satisfy µn ≤ Mγn by Theorem 4.11; second, the minimizers of the problems

ν 7→ F (ν|γn) +
1
2τ

W 2
2 (ν, µn)

satisfy µn
τ ≤ Mγn by Lemma 4.5. ¤
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5 Wasserstein subdifferential of F

We will now characterize the subdifferential of F . In this section we make Assumption 2.5 on
γ, besides the log-concavity.

In the sequel we are using the stability of generalized Sobolev spaces under composition with
LF , namely ρ ∈ GW 1,1(X, γ) implies LF ◦ ρ ∈ GW 1,1(X, g). Indeed, since LF (z) → +∞ as
z → +∞ and LF is strictly increasing, we have

Tα(LF ◦ ρ) = LF ◦ TL−1
F (α)(ρ), (5.1)

(here Tα is the truncation operator) and since Tβ(ρ) ∈ W 1,1(X, γ) for any β > 0 we conclude
that LF ◦ ρ ∈ GW 1,1(X, γ) thanks to the chain rule.

We begin by giving the following:

Definition 5.1 (Generalized Fisher information) Let ρ ∈ L∞(X, γ) and ρ ∈ W 1,1(X, γ).
Assume that ∞∑

j=1

∫

X

∣∣∣∣
∂ej (LF ◦ ρ)

ρ

∣∣∣∣
2

dµ(x) < +∞. (5.2)

We define the generalized Fisher information functional as follows:

G (ργ|γ) :=
∥∥∥∇(LF ◦ ρ)

ρ

∥∥∥
2

L2(X,µ;X)
.

In the general case ρ ∈ L1(X, γ), ρ ∈ GW 1,1(X, γ), the generalized Fisher information is defined
by the same formula, using the fact that LF ◦ρ ∈ GW 1,1(X, γ), so its gradient is still well defined.

Lemma 5.2 (Lower semicontinuity of G ) Let (ρn) ⊂ W 1,1(X, γ), with ρn → ρ γ-a.e. and
with G (ρnγ|γ) uniformly bounded. Then ρ ∈ GW 1,1(X, γ) and

G (ργ|γ) ≤ lim inf
n→∞ G (ρnγ|γ).

Proof. We set ρn,k := Tk(ρn). By dominated convergence, it is clear that ρn,k → Tk(ρ) in
L2(X, γ) and that

LF ◦ ρn,k → LF ◦ Tk(ρ) in L2(X, γ). (5.3)

By the chain rule proven in Theorem 2.7, ∇(LF ◦ ρn,k) is equal to L′F (ρn,k)∇ρn,k, so it vanishes
where ρn > k and coincides with ∇(LF ◦ ρn) where ρn ≤ k. As a consequence, there holds

∫ ‖∇(LF ◦ ρn,k)‖2

ρn,k
dγ ≤

∫ ‖∇(LF ◦ ρn)‖2

ρn
dγ, (5.4)

where the second term is uniformly bounded by hypothesis. In particular, LF ◦ ρn,k is bounded
in W 1,2(X, γ) and therefore LF ◦ Tk(ρ) ∈ W 1,2(X, γ). Since k is arbitrary, we can use LF (k) as
truncation levels to prove that LF ◦ ρ ∈ GW 1,2(X, γ); in addition, ∇(LF ◦ ρn,k) weakly converge
in L2(X, γ; X) to ∇(LF ◦ Tk(ρ)).
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We can take advantage of Ioffe’s lower semicontinuity Theorem under strong-weak conver-
gence (see for instance [AFP, Theorem 5.8]) to obtain

∫ ‖∇(LF ◦ Tk(ρ))‖2

Tk(ρ)
dγ ≤ lim inf

n→∞

∫ ‖∇(LF ◦ ρn,k)‖2

ρn,k
dγ. (5.5)

This, in combination with (5.4), gives
∫ ‖∇(LF ◦ Tk(ρ))‖2

Tk(ρ)
dγ ≤ lim inf

n→∞

∫ ‖∇(LF ◦ ρn)‖2

ρn
dγ.

To conclude, it suffices to show that the left hand side converges to G (ργ|γ) as k →∞. To this
aim, it suffices to remind that ∇(LF ◦Tk(ρ)) vanishes where ρ > k and coincides with ∇(LF ◦ρ)
where ρ ≤ k. ¤

We are ready for the result which identifies the Wasserstein subdifferential of F .

Theorem 5.3 Let µ = ργ ∈ P2(X), and assume that F satisfies Assumption 4.1. Then the
metric slope of F (·|γ) at µ is finite if and only if

LF ◦ ρ ∈ GW 1,1(X, γ) and
‖∇(LF ◦ ρ)‖2

ρ
∈ L1(X, γ). (5.6)

Moreover, in this case

∇(LF ◦ ρ)
ρ

= ∂0F (µ|γ) and G (µ|γ) = |∂F (µ|γ)|2.

Proof. Step 1. We prove that finiteness of slope at µ = ργ implies the regularity properties
(5.6). First, assume ρ ≤ M , set φ(ν) = F (ν|γ) and φd(ν) = F (ν|γd) and recall that γd ⇀ γ.
Thanks to Theorem 4.11, φd Γ(P2(X))-converge to φ as d →∞. By Theorem 4.10 we can find
sequences

µd → µ in P2(X), φd(µd) → φ(µ)

ωd ∈ ∂φd(µd) such that ωd → ω = ∂0φ(µ) strongly in L2 as in Definition 2.3,
(5.7)

and thanks to (4.26) we have also that |∂φd|(µd) is finite and uniformly bounded in d. We can
also choose µd so that the additional property µd ≤ Mγd holds, by Corollary 4.12.

Since γd ⇀ γ and µd → µ in P2(X), we have that ρd → ρ in the sense of Definition 2.3, in
its scalar version. Together with (5.7), which guarantees convergence of the energies, this also
implies, thanks to Lemma 2.4 and the strict convexity of F , that

∫

X
ϕ(x)LF ◦ ρd(x)dγd(x) →

∫

X
ϕ(x)LF ◦ ρ(x)dγ(x) ∀ϕ ∈ L1(X, γ). (5.8)
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Indeed, (5.8) holds independently of the growth of LF for all ϕ ∈ C0
b (X), as ρ and ρd are

essentially bounded, uniformly with respect to d, and the same uniform bound allows to extend
the validity of the formula to all ϕ ∈ L1(X, γ).

The theorem holds if X is finite-dimensional, and since γd is supported in πd(X) we can use
the implication in finite dimension (Theorem 4.6) to obtain, for ζ ∈ Cyl(X), j ≤ d and d large
enough (depending on ζ only),

∫

X
∂ejζ(x)LF ◦ ρd(x) dγd(x) =−

∫

X
∂ej (LF ◦ ρd)(x)ζ(x) dγd(x)

+
∫

X
LF ◦ ρd(x)ζ(x)gj

d(x) dγd(x), (5.9)

where we used also the fact that ∂ejγ = gjγ implies ∂ejγd = gj
dγd, gj

d being the cylindrical
projection of gj (see Definition 2.2). The finite dimensional result also tells us that

ωj
d :=

∂ej (LF ◦ ρd)
ρd

∈ L2(X,µd), j = 1, . . . , d,

so we can rewrite (5.9) as
∫

X
∂ejζ(x)LF ◦ ρd(x) dγd(x) =−

∫

X
ωj

d(x)ζ(x) dµd(x) (5.10)

+
∫

X
LF ◦ ρd(x)ζ(x)gj

d(x) dγd(x).

Now we pass to the limit in (5.10) as d → ∞. The first term converges to the analogous
term involving γ and ρ by (5.8), the second one converges too, thanks to (5.7). Adding and
subtracting gj in the last term and using (5.8) with ϕ = gj we have also convergence of that
term. Hence, we find

∫

X
∂ejζ(x)LF ◦ ρ(x) dγ(x) =−

∫

X
ωj(x)ζ(x) dµ(x) (5.11)

+
∫

X
LF ◦ ρ(x)ζ(x)gj(x) dγ(x) ∀j ∈ N,

that is, ∂ej (LF ◦ ρ) = ρωj ∈ L1(X, γ). Finally, since ω ∈ L2(X,µ;X), we obtain LF ◦ ρ ∈
W 1,1(X, γ) and

ω =
∇(LF ◦ ρ)

ρ
, (5.12)

and since ω is the minimal selection we have also

G (µ|γ) = |∂F (µ|γ)|2.

We have proven the implication for the bounded case. Now we shall pass to the general
one. Let n ∈ N and consider functionals Fn(·|γ), defined in (4.7). These functionals are
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strongly convex, as noticed in Remark 4.4, and Γ(P2(X))-converge to F (·|γ) as n →∞ (indeed,
condition (4.21) is trivial, whereas (4.22) can be achieved by a truncation argument). Moreover,
since Fn ≥ F , it is easy to show tightness for the sets corresponding to the ones in (4.23).
Then, by means of Theorem 4.10 again, we find subsequences (that we don’t relabel) µn → µ in
P2(X) and ωn ∈ ∂Fn(µn|γ) such that Fn(µn|γ) → F (µ|γ) and

ωn → ω = ∂0F (µ|γ) strongly in L2 as in Definition 2.3. (5.13)

We have ρn ≤ n, since Fn(µn|γ) is finite. So, the already obtained result for the bounded
case entails LF ◦ ρn ∈ W 1,1(X, γ) and ensures that the square of the metric slope at µn is
characterized as

G (ρnγ|γ) =
∫

X

‖∇LF ◦ ρn‖2

ρn
dγ.

Notice that the weak convergence of ρnγ to ργ and the convergence of F (ρnγ|γ) = Fn(ρnγ|γ)
to F (ργ|γ) imply, thanks to the strict convexity of F , that ρn → ρ in γ-measure (see [VIS,
Theorem 3] or [BR]); in particular a subsequence of (ρn) converges to ρ γ-a.e. Hence, we can
apply Lemma 5.2 to that subsequence to conclude that LF ◦ ρ ∈ GW 1,1(X, γ) and that

∫

X

‖∇(LF ◦ ρ)‖2

ρ
dγ ≤ |∂F (µ|γ)|2. (5.14)

Step 2. Now we prove that Sobolev regularity of LF ◦ ρ and integrability of ‖∇(LF ◦ ρ)‖2/ρ
imply the opposite inequality in (5.14), hence finiteness of slope. First, assume that ρ is bounded
and distant from zero. Since ρ−1 is bounded we have ‖∇(LF ◦ ρ)‖ ∈ L2(X, γ) , and since LF

has a locally Lipschitz inverse by strict convexity of F , Theorem 2.7 yields ρ ∈ W 1,2(X, γ).
Let ρd be the d-dimensional cylindrical projection of ρ. By (2.12), ρd ∈ W 1,2(X, γ) and again
Theorem 2.7 gives

LF ◦ ρd ∈ W 1,2(X, γ). (5.15)

Moreover, by the chain rule (2.13) we have

∇(LF ◦ ρ) = L′F (ρ)∇ρ and ∇(LF ◦ ρd) = L′F (ρd)∇ρd, (5.16)

and these gradients are respectively 0 γ-a.e. on the set of all x such that LF is not differentiable
at ρ(x), ρd(x). Since ρd and ρ are distant from zero, by (2.4) there holds

(L′F (ρd))2‖∇ρd‖2

ρd
→ (L′F (ρ))2‖∇ρ‖2

ρ
in L1(X, γ).

In fact

‖∇ρd −∇ρ‖2 ≤ ‖(∇ρ)d −∇ρ‖2 +
∞∑

j=d+1

|∂ejρ|2

converges to 0 in L1(X, γ) (we use (2.12) and the fact that the convergence (2.4) of cylindrical
projections holds for maps with values in X).
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On the other hand, (L′F (ρd))2/ρd converge to (L′F (ρ))2/ρ in L1(X, γ) and are essentially
bounded uniformly in d. Then

lim
d→∞

∫

X

‖∇(LF ◦ ρd)‖2

ρd
dγd =

∫

X

‖∇(LF ◦ ρ)‖2

ρ
dγ. (5.17)

In view of (5.15), we can apply Theorem 4.6 and obtain the finiteness of |∂F (µd|γd)|, where
µd = ρdγd, and also |∂F (µd|γd)|2 = G (µd|γd). Now we make use of the lower semicontinuity of
the metric slope and of (5.17) to infer the finiteness of the slope:

|∂F (·|γ)|2(µ) ≤ lim inf
d→∞

|∂F (·|γd)|2(µd) ≤
∫

X

‖∇(LF ◦ ρ)‖2

ρ
dγ.

Now consider the case in which ρ is bounded but not necessarily distant from 0. Let ρn =
max{ρ, 1

n}, so that ρn is distant from zero, and µn = ρnγ.
Notice that ρn are not probability measures, but the results we apply are obviously still valid

if, instead of working in P2(X), one works in the space zP2(X) with z > 0 (this can also be
seen considering the map Fz(s) = F (zs), to come back to probability measures, as we do in
Step 3). Since LF is nondecreasing, LF ◦ ρn = max{LF ◦ ρ, LF ( 1

n)}, and by Theorem 2.7 we can
infer that LF ◦ ρn ∈ W 1,1(X, γ). The chain rule also gives

∫

X

‖∇(LF ◦ ρn)‖2

ρn
dγ ≤

∫

X

‖∇(LF ◦ ρ)‖2

ρ
dγ, (5.18)

since ρn ≥ ρ and ∇(LF ◦ ρn) = 0 γ-a.e. on {ρ < 1/n}. Since we have proven the theorem for
the case of a density distant from zero, we have by (5.18) that

|∂F (µn|γ)|2 ≤
∫

X

‖∇(LF ◦ ρ)‖2

ρ
dγ.

Using the lower semicontinuity of the slope we conclude.
Finally, in the general unbounded case, we take advantage of the just achieved characteri-

zation of the slope at Tn(ρ)γ. The slope is lower semicontinuous, and reasoning as we did to
obtain (5.4), we get

|∂F (µ|γ)|2 ≤ lim inf
n→∞ |∂F (Tn(ρ)γ|γ)|2 = lim inf

n→∞

∫

X

‖∇(LF ◦ Tn(ρ))‖2

Tn(ρ)
dγ

≤
∫

X

‖∇(LF ◦ ρ)‖2

ρ
dγ. (5.19)

Step 3. Suppose now that either the metric slope at µ is finite or that (5.6) hold. Joining
together (5.14) and (5.19) we get the desired equality |∂F (µ|γ)|2 = G (µ|γ). Then, in order
to characterize the minimal selection ∂0F (µ|γ), we have to show that ∇(LF ◦ ρ)/ρ belongs
to ∂F (µ|γ). We know from (5.12) that this is true if ρ is bounded. In the general case we
check the subdifferential relation (3.3) with φ = F and ξ = ∇(LF ◦ ρ)/ρ by approximation;
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thanks to Remark 3.3, it suffices to check the property for all ν = fγ with f bounded. Now we
approximate ρ by ρn := z−1

n (ρ ∧ n), where zn ↑ 1 is a normalizing constant, and we write the
subdifferential relation for ρn, Fn(s) = F (zns), to obtain:
∫

X
F (znf(x)) dγ(x) ≥

∫

X
F (ρ(x) ∧ n) dγ(x) +

∫

X

〈∇(LFn ◦ ρn)(x)
ρn(x)

, tn(x)− x

〉
ρn(x) dγ(x),

where tn are the optimal maps from ρnγ to ν. Since LFn(s) = LF (zns), LFn ◦ ρn = LF ◦ (ρ∧n),
and using the chain rule this immediately gives

lim
n→∞

∫

X

∥∥∥∥
∇(LFn ◦ ρn)

ρn
− ∇(LF ◦ ρ)

ρ

∥∥∥∥
2

ρn dγ = 0.

Hence, we need only to check that

lim
n→∞

∫

X

〈∇(LF ◦ ρ)(x)
ρ(x)

, tn(x)− x

〉
ρn(x) dγ(x) =

∫

X

〈∇(LF ◦ ρ)(x)
ρ(x)

, t(x)− x

〉
ρ(x) dγ(x).

By a density argument, it suffices to check that

lim
n→∞

∫

X
〈g(x), tn(x)− x〉 ρn(x) dγ(x) =

∫

X
〈g(x), t(x)− x〉ρ(x) dγ(x)

for all g ∈ Cb(X; X). Writing the integrals above in terms of optimal plans, the formula reduces
to

lim
n→∞

∫

X
〈g(x), y − x〉 dβn(x, y) =

∫

X
〈g(x), y − x〉 dβ(x, y).

The latter is a direct consequence of the tightness of (βn) (because the marginals are tight), of
the fact that any limit point is an optimal plan from ργ to γ (see for instance [AGS, Proposi-
tion 7.1.3]) and of the uniqueness of β proved in Theorem 3.2. ¤

After Theorem 5.3, we can give a straightforward proof of the main result.

Proof of Theorem 1.1 Notice that the domain D(F (·|γ)) is dense in P2(X) and, under
Assumption 4.1, F (·|γ) is strongly convex. Hence we can apply Theorem 3.8 to obtain, for any
µ̄ ∈ P2(X), existence and uniqueness of the gradient flow µt of F (·|γ) starting from µ̄. Notice
that, by the regularizing effect of the semigroup, µt ¿ γ for any t > 0 even if µ̄ does not have
a density with respect to γ. The measures µt satisfy (3.5) and (3.6), and with Theorem 5.3 we
have characterized, under Assumption 2.5, the Wasserstein subdifferential of F (·|γ) at µt = ρtγ

as ∇(LF ◦ρt)
ρt

. We deduce that µt = ρtγ is a solution to (1.2). This solution is unique and satisfies
all the additional properties of Remark 3.9.

Finally, if µ̄ ≤ Mγ, we know by Lemma 4.5 that such a bound is preserved by the discrete
minimizer of functional ΦF

τ (·, µ̄) defined in (4.4) (independently of the value of τ). Since µt, in
view of Proposition 3.10, is the limit of discrete minimizers, we conclude that ρt ≤ M γ-a.e. for
all t ≥ 0.
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