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Abstract

We describe the behaviour of minimum problems involving non-convex surface integrals in 2D singu-

larly perturbed by a curvature term. We show that their limit is described by functionals which take

into account energies concentrated on vertices of polygons. Non-locality and non-compactness e�ects

are highlighted.

Key Words: surface energies, curvature functionals, phase transitions, �-convergence, non convex

problems

1 Introduction

The starting point of the analysis in this work is the study of minimum problems related to the equilibrium

of elastic crystals (see e.g. [16], [15] for the variational formulation, [8] [9] for a derivation of the model

from statistical considerations, [3] for its links with Ising systems and [20] [25] for a analogous derivation

as a singular perturbation of the Allen Cahn model). The model problem we have in mind is that of

�nding sets minimizing a (possibly highly anisotropic) perimeter functional, of the form

min
nZ

@E

 (�E)dH1 : E0 � E
o
;(1)

where the minimum is computed among all sets E � R
2 with boundary of class C1 and containing a

�xed open set E0. Here,  is a Borel function, �E denotes the (appropriately-oriented) tangent to E and

H1 is the 1-dimensional (Hausdor�) surface measure. Another model problem is that of local minimizers

of the perimeter, related to

min
nZ

@E

 (�E)dH1 : jE0�Ej � �
o
;(2)

where � > 0 is a �xed constant.

Problems the type above, or some of their perturbations for which the solution is not as much at hand,

can be attacked following the so-called direct methods of the calculus of variations. First, problems (1)
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and (2) can be `relaxed' by admitting as competing sets all sets with �nite perimeter (see [18], [5]).

Then, if  is larger than a �xed constant and if its homogeneous positive extension of degree one is a

convex function, classical results imply that the surface integral in (1) and (2) is lower semicontinuous

and coercive in the appropriate topology of the L1-convergence of characteristic functions of sets. The

application of the direct methods of the calculus of variations thus yields existence of minimizing sets of

�nite perimeter, and, if  2 is smooth and strictly convex, regularity results for minimal surfaces assure

that such minimizers are regular. On the other hand if  2 is non convex then the minimum problems (1)

or (2) may not possess solutions. It can be seen (see e.g. [21]) that the application of the direct method

of the calculus of variations gives minimizing sequences with increasingly wiggly boundaries (even though

with equi-bounded total surface). Their limits can be described (see [4]) as minimizers of a `relaxed'

problem of the same type: in the case of (1) for example,

min
nZ

@E

 (�E)dH1 : E0 � E
o
;(3)

where the new length energy density  is simply the convex envelope of the one-homogeneous extension of

 to Rn . This process may lead to non-strictly convex integrands, which in turn may yield non-uniqueness

and non-regularity of solutions. In this case it may be necessary to consider higher-order terms in the

surface energy to explain solutions with sharp corners and facets (see also [30]; a similar phenomenon

is studied in [19]). Note that so far the problem can be framed in an n-dimensional framework, upon

replacing curves by hypersurfaces.

In this paper we study, in a two-dimensional setting, the case when we add a singular perturbation

by a curvature term in (1) (or, analogously, in (2)), obtaining a minimum problem of the form

min
nZ

@E

�
 (�E) + "2�2

�
dH1 : E0 � E

o
;(4)

where now the minimum is taken among sets with C2 boundary and �(x) denotes the curvature of @E

at x. In this way, oscillating boundaries are penalized when introducing large curvatures.

In a way similar to [25], [24], [22], in order to understand the behaviour of minimizers for (4) we may

study the (equivalent) scaled minimum problems

min
nZ

@E

� (�E)�  (�E)

"
+ "�2

�
dH1 : E0 � E

o
:(5)

We assume for simplicity that  (�E) =  (�E) precisely on a �nite number of directions �1 : : : ; �N . One

can easily check that under this assumption  must satisfy

 (�) >
sin(�i+1 � �)

sin(�i+1 � �i)
 (�i) +

sin(� � �i)

sin(�i+1 � �i)
 (�i+1); 8 � 2 (�i; �i+1);8 i = 1; : : : ; N:

Note that this condition rules out a smooth behaviour near �1; : : : ; �N as in the energies considered in

[19]. The problem can be then rewritten as

min
nZ

@E

�'(�E)
"

+ "�2
�
dH1 : E0 � E

o
;(6)

where ' : S1 ! [0;+1) vanishes precisely on those preferred directions.

Our main result is to describe the asymptotic behaviour as " ! 0 of the problems in (6), showing

that minimizers E", up to translations, tend to sets E which in turn minimize a limit energy. This limit

energy can be computed by using the techniques of �-convergence (see [13], [11], [10]). We de�ne the
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functionals F" on sets of �nite perimeter as

F"(E) =

8>><
>>:

Z
@E

�'(�E)
"

+ "�2
�
dH1 if E is of class C2

+1 otherwise;

(7)

and we compute their �-limit G with respect to the L1 and L1
loc-convergence of characteristic functions of

sets. As an example, in the simplest case when ' is symmetric and the preferred directions coincide with

the coordinate directions, the domain of the limit G is simply the set of the coordinate polyrectangles

and G(E) = c#(V (E)), where V (E) is the set of vertices of the polyrectangle E. The constant c can be

computed as

c = 2

Z
S

p
'(s)dH1(s);(8)

where S is the minimal arc in S1 connecting (1; 0) and (0; 1). Hence, the limit problem is trivially

min
n
c#(V (E)) : E coordinate polyrectangle; E0 � E

o
(9)

and the minimizers E of the limit problem are simply all coordinate rectangles containing E0. Note that

the limits E of minimizers E" of (4) minimize both (3) and (9), so that they are coordinate rectangles

containing E0 of minimal perimeter.

In the general case, we show that the domain of the limit energy consists of those polyhedra whose

tangents point in the preferred directions �1; : : : ; �N , and that the limit energy is much more complex.

If E contains only simple vertices (or, equivalently, if @E is locally Lipschitz) we de�ne

F (E) =
Xn

g(��(v); �+(v)) : v 2 V (E)
o
;(10)

where g is given by

g(�1; �2) = 2

Z
A(�1;�2)

p
'(s)dH1(s)(11)

(A(�1; �2) is the minimal arc connecting �1 and �2 in S
1) and ��(v) are the two tangents at v. If, loosely

speaking, E is such that approximating sequences E" may be chosen `close' to E then we prove that

G(E) = F (E). In the general case, the value G(E) is obtained as

G(E) = inf
n
lim inf

j
F (Ej) : Ej ! E; Ej with simple vertices

o
:(12)

This formula hides two types of degenerate behaviours. First of all, we have to take into account that

when two or more vertices meet at a point the set E may be approximated in many di�erent ways and

the approximation of minimal energy must be chosen. In addition, the energy G may be non-local: in a

sense, a polyhedron may be completed by adding segments pointing in some of the preferred directions,

which must be considered as degenerate parts of E; the energy G(E) takes into account the `minimal'

of such completions. This e�ect is analogous to that highlighted in [6] for functionals depending on the

square of the curvature. As a consequence of formula (12) we get that the study of minimizers of problems

involving G corresponds to the analysis of minimizing sequences of corresponding problems involving F .

In particular, we deduce that the limit problem of (6) admits as solutions all the convex polyhedra with

tangents in the preferred directions.
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Once the form of the �-limit is computed, we may apply our results also to other problems for which

the solution is less immediate, such as

min
nZ

@E

�'(�E)
"

+ "�2
�
dHn�1 : jE0�Ej � �

o
;(13)

or

min
nZ

@E

�'(�E)
"

+ "�2
�
dHn�1 + jE0�Ej

o
;(14)

where E0 is some �xed set. The latter problem is also of interest in some models in Image Processing

where energies depending on curvatures and on (the number of) vertices are considered (see [27], [23],

[12]). Note that the solution to problem (14) may not be given by a set where G(E) = F (E) (see the

example in Section 6.2).

Finally, we note that, since the solutions of the limit problem are polyhedra with �xed orientations, it

is very tempting to link this approximation result to the theory of crystalline growth as recently developed

(see [28], [29], [17], [7]), where non-striclty convex  are considered.

The paper is organized as follows. Section 2 contains the statement of the main results in terms of

�-convergence and the necessary notation. In Sections 3 and 4 we prove the lower and upper bounds for

the limit energy. In Section 5 some cases are dealt with when the limit energy can be proven to be local;

i.e., it can be written as a sum of energies concentrated on vertices. Finally, in Section 6 we consider the

pathological case when we do not have a boundedness condition on the perimeters, giving a qualitative

description of the shape of sequences with equi-bounded energy and an example when �-limits computed

in the L1 and L1
loc topology di�er.
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2 Main results

2.1 Statement of the main results

For every E � R
2 of class C2 and every " > 0, we de�ne the energy

F"(E) =

Z
@E

�
1

"
'(�) + "k2

�
dH1(15)

where � = �(x) is the tangent direction to @E in x, de�ned in such a way that (�2;��1) coincides with
the outer unit normal to @E in x. With H1 we denote the 1-dimensional Hausdor� measure, which will

coincide with the line measure throughout the paper. The quantity � = �(x) denotes the curvature of @E

in x, and ' : S1 ! [0;+1) (we identify S1 with R mod 2�) is a continuous function with the following

property

9 �1; : : : �N 2 S1; �1 < �2 � � � < �N < �N+1 = �1 + 2� such that '(�) = 0 = f�1; : : : �Ng:

We will always assume that

j�i � �i+1j < �; i = 1; : : : ; N:
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We will identify sets E with their characteristic function �E , and then, with a slight abuse of notation

the functional given by formula (15) will be identi�ed with the functional F" : L
1(R2 ) ! [0;+1] given

by

F"(u) =

8<
:
Z
@E

�
1

"
'(�) + "�2

�
dH1 if u = �E and E is of class C2

+1 otherwise:

(16)

With an additional slight abuse of notation, we say that a sequence of sets (En)n � R
2 converges to

E � R
2 in L1(R2 ) if �En

! �E in L1(R2 ).

For �1; �2 2 S1; �1 6= �2+�, let A(�1;�2) denote the shorter of the two arcs in S
1 connecting �1 and �2.

We assume that A(�1;�2) is oriented in the direction going from �1 to �2. We de�ne g : S1�S1 ! [0;+1)

in the following way

g(�1; �2) =

8<
:
2

Z
A(�1;�2)

p
'(�)dH1(�) if �i 2 f�1; : : : �Ng i = 1; 2

+1 otherwise:

(17)

Note that W (�2; �1) =W (�1; �2).

An admissible polyhedron is a set P � R
2 whose boundary is a polygonal composed of segments whose

directions lie in the set f�1; : : : �Ng. We set

P = fP : P is an admissible polyhedrong :

We also de�ne the class

R =
�
P 2 P : @P is piecewise C1

	
;

and we call regular admissible polyhedra the elements of R. The di�erence between an admissible and a

regular admissible polyhedron is that each vertex of a polyhedron of the second type is the endpoint of

precisely two sides.

Given a polyhedron P in R2 , we de�ne the set V (P ) � R
2 of the vertices of P to be

V (P ) = fx 2 @P : @P is not C1 at xg:

We de�ne also the functional FR : P ! R in the following way

FR(E) =

8><
>:

X
v2V (E)

W (��(v); �+(v)); if E 2 R;

+1; if E 62 R:

Here, ��(v); �+(v) denote the directions of the two sides intersecting in v 2 V (E). This functional will

be identi�ed with a functional FR : L1(R2 )! [0;+1] in the same spirit of (16).

We also set

G = sc� (FR) ;

where sc� denotes the sequential lower semi-continuous envelope, understood in the sense of the L1-

topology with uniform bounds on the perimeters, namely

sc� (FR) (E) = inf

�
lim inf

n
FR(En) : En ! E in L1(R2 ); sup

n
H1(@En) < +1

�
:
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Remark 2.1 It is easy to check that G is �nite only on (characteristic functions of) admissible polyhedra.

Moreover, given an admissible polyhedron P , there always exists a sequence (Pn)n of regular polyhedra

which converge to P in L1(R2 ), and for which supnH1(@Pn) < +1 and supn FR(Pn) < +1. In fact, it

is su�cient to take

Pn =

�
x 2 P : dist(x; P ) � 1

n

�
:(18)

We remark that in general the sequence given by formula (18) does not recover the in�mum in the

de�nition of G(E).

Remark 2.2 Given an admissible polyhedron P , there always exists a sequence (Pn)n of regular poly-

hedra which converge to P in L1(R2 ), and for which G(P ) = FR(Pn) for su�ciently large n. In fact,

whenever the quantities FR(Pn) remain bounded, they have range in a �nite set of numbers, and the

in�mum is always attained.

Our main result is the following �-convergence theorem (for a general introduction to the subject we

refer to [13], [11]).

Theorem 2.1 For " > 0, let F" : L
1(R2 )! [0;+1] be the functional given by formula (16). Then there

holds

�- lim
"!0

F" = G(19)

with respect to the convergence in L1(R2 ) with uniform bounds of the lengths of the perimeters. More

precisely, by (19) we mean:

(i) (closure) if sup"H1(E") < +1, sup" F"(E") < +1 and E" ! u in L1(R2 ) then there exists P 2 P
such that u = P;
(ii) (�-liminf inequality) for all P 2 P and for all E" ! P in L1(R2 ) with sup"H1(E") < +1, we have

G(P ) � lim inf" F"(E");

(iii) (�-limsup inequality) for all P 2 P there exists E" ! P in L1(R2 ) with sup"H1(E") < +1 such

that G(P ) = lim" F"(E").

Remark 2.3 (Convergence of minimum problems) From Theorem 2.1 we obtain the convergence

of the minimum values of problems (13) and (14) to the minimum values

min
n
G(P ) : P 2 P ; jE0�P j � �

o
= inf

n X
v2V (P )

g(��(v); �+(v)) : P 2 R; jE0�P j � �
o
;

and

min
n
G(P ) + jE0�P j : P 2 P

o
= inf

n X
v2V (P )

g(��(v); �+(v)) + jE0�P j : P 2 R
o
;

respectively, provided that we may �nd a sequence of minimizers with equibounded perimeter. This prop-

erty is a well-known result of �-convergence, once we notice that the equi-boundedness of the perimeters

ensures compactness of the minimizing sequence (upon, possibly, a translation), and that the constraints

or the additional terms are `compatible' with �-convergence. To check this for problem (13), it is su�cient

to notice that a slight modi�cation of the argument in the proof of Theorem 2.1(iii) allows to obtain that

we may suppose jE0�Ej � �, while it is clear that the addition of the perturbation in (14) is compatible

since it is continuous with respect to the L1-convergence.

Remark 2.4 The results of Theorem 2.1 remain valid if F" has the form

F"(E) =

Z
@E

�
1

"
'(�) + "�2

�
dH1 + cH1(@E)(20)
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with c > 0; i.e., if we add a term proportional to the length of @E. In this case, we similarly modify

FR(E) by setting

FR(E) =
X

v2V (E)

g(��(v); �+(v)) + cH1(@E)

on R. Note that in this case the equi-boundedness condition on the perimeters is redundant.

For the case when we drop the equi-boundedness condition on the perimeters and we consider the

L1
loc convergence we refer to Section 6.

We conclude this section by deducing a convergence result for the minimum problems in (1) as an

example of application of Theorem 2.1.

Corollary 2.1 Let  and  be as in the Introduction. Let E0 be a bounded connected open set and let

E" be minimizers for the problems

m" = min
nZ

@E

�
 (�E) + "2�2

�
dH1 : E0 � E

o
:

Then, upon translations and passage to a subsequence, E" converge to a polyhedron P which minimizes

both

m = min
nZ

@E

 (�E)dH1 : E0 � E
o

(21)

and

m(1) = min
n X
v2V (E)

g(��(v); �+(v)) : E0 � E;E 2 R
o
:(22)

Proof. We just sketch the proof, including details only for the passages involving �-convergence.

By a relaxation argument (see [4]) and the density of sets with regular boundary we may suppose

that E" converges to a minimizer E of (21), which is connected since E0 is. On the other hand, E" is

also a minimizer of

m(1)
" = min

nZ
@E

� (�E)
"

+ "�2
�
dH1 � m

"
: E0 � E

o
:

De�ne ' =  �  . By using Lemma 3.1 and the construction of Section 4, one can check that

m �
Z
@E"

 (�E"
)dH1 � m+ o(");

and that E" is an o(1)-minimizer of

~m(1)
" = min

nZ
@E

� (�E)�  (�E)

"
+ "�2

�
dH1 : E0 � E

o

= min
nZ

@E

�'(�E)
"

+ "�2
�
dH1 : E0 � E

o
:

We may apply Theorem 2.1 and Remark 2.4 as the perimeters of E" are equibounded since  � c. We

then obtain that E is a (convex) polyhedron which minimizes (21) and also (22).
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2.2 Notation

We introduce some preliminary notation and de�nitions.

Given a polyhedron P in R2 , we de�ne a side of P to be the closure of a component of @P n V (P );
we also de�ne

s(P ) = inffjsj : s is a side of Pg:
If 
i : [ai; bi]! R

2 i = 1; 2 are two curves with 
1(b1) = 
2(a2), we de�ne 

1�
2 : [a1; a2+b2�b1]!

R
2 as


1 � 
2(t) =
(

1(t) t 2 [a1; b1]


2(t� b1 + a1) t 2 [b1; b1 + b2 � a2]:

Similarly, we de�ne inductively


1 � � � � � 
k = �
1 � � � � � 
k�1
� � 
k:

Given a curve c : [a; b] ! R
2 , we denote by im(c) its image, and if c is of class C2, and t 2 [a; b] is such

that c0(t) 6= 0, we de�ne �(c(t)) to be the curvature of c at c(t).

Given two sequences (An)n; (Bn)n of subsets of R2 such that An \Bn = ; 8n 2 N, and given � 2 S1,

we say that (Bn)n falls into line with respect to (An)n in the direction � if for every � > 0 it is���� x� y

jx� yj � �

���� < �; 8x 2 An;8 y 2 Bn; for n su�ciently large:

We say that a family of curves 
n : (an; bn)! R
2 falls into line in the direction � if for every � > 0 and

for every sequence of pairs (xn; yn), xn; yn 2 im(
n), with jxn�ynj > �, and such that 
�1
n (xn) > 
�1

n (yn),

the sequence (xn)n falls into line with respect to (yn)n in the direction �.

Given a piecewise C1 curve 
 : S1 ! R
2 , and given a point x which does not belong to im(
), we

de�ne ind(x; 
) to be the winding number of 
 around x, namely (in complex notation)

ind(
; x) =
1

2�i

Z
S1

_
(t)


(t)� x
dt:

Finally, we say that two segments [x1; x2]; [y1; y2] � R
2 do not intersect transversally if the condition

below holds true

[x1; x2] \ [y1; y2] \ fx1 [ x2 [ y1 [ y2g = ;:(NT )

Given �1; �2 2 S1, the sum �1 + �2 will denote, unless it is explicitly remarked, the sum as elements of

the group S1 endowed with its natural structure.

3 The �-lim inf inequality

This section is devoted to the proof of the �- lim inf inequality in Theorem 2.1.

We consider sequences (En) � R
2 ; "n ! 0+ for which

(H1) �En
! u in L1(L1

loc)(R
2 );

(H2) supnH1(@En) < +1;

(H3) supn F"n(En) < +1.
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Our �rst aim is to prove that the sequence (En)n converges in L1(R2 ) to some admissible polyhedron

P . In fact we have the following result.

Proposition 3.1 Let "n ! 0 and let (En)n satisfy hypotheses (H1), (H2) and (H3). Then there exists

an admissible polyhedron P 2 P such that u = �P , and for which there holds

G(u) � lim inf
n

F"n(En):(23)

Before proving Proposition 3.1 we introduce some preliminary result.

Lemma 3.1 Let a; b; � 2 R, a < b, � > 0, and let �i 2 '�1(0). Then for every curve � : [a; b]! A(�i;�i+1)

of class C1 with

�(a) = �i + �; �(b) = �i+1 � �;

we have Z b

a

�
1

"
'(�(t)) + " k _�(t)k2

�
dt � g(�i; �i+1) + o�(1);(24)

where o�(1)! 0 as � ! 0.

Proof. This is a simple consequence of the Young inequality, in fact we obtainZ b

a

�
1

"
'(�(t)) + " k _�(t)k2

�
dt � 2

Z b

a

p
'(�(t)) j _�(t)j dt

� 2

Z �i+1��

�i+�

p
'(�(t)) dt � 2

Z �i+1

�i

p
'(�(t)) dt+ o�(1);

which is the desired inequality.

Now we consider a family of curves 
n : S1 ! R
2 of class C2 with the following properties

sup
n

Z
S1

 
1

"n
'

�
_
n

j _
nj

�
+ "n

�
d

dt

_
n

j _
nj

�2
!
dt =M < +1;(25)

sup
n

Z
S1
j _
nj dt < +1:(26)

We suppose also that the curves 
n are parametrized proportionally to their arc length, namely that

there holds

j _
n(t)j = 1

2�

Z
S1
j _
nj ds; for all t 2 S1 and for all n 2 N:

We want to describe the limit shape of the curves 
n when n! +1. In order to do this, we set for � > 0

S� = S1 n ([�1 � �; �1 + �] [ � � � [ [�N � �; �N + �]);

and

C(�) = inf
�2S�

'(�):(27)

If � : [a; b]! S� is a curve of class C1, then there holds clearlyZ b

a

�
1

"
'(�(t)) + "k _�(t)k2

�
dt � 1

"
(b� a)C(�);(28)

9



hence, using (25) and (28) with � = _
n and " = "n, we deduce

H1(ft 2 [0; Tn] : _
n(t) 2 S�g) � "n

C(�)

Z
_
n2S�

�
1

"n
'

�
_
n(t)

j _
nj

�
+ "n �

2(
n(t))

�
dt � "nM

C(�)
:

From this inequality we deduce the existence of a sequence �n ! 0 such that

L1(In)! 0 as n! +1;(29)

where we have set

In =

�
t 2 S1 :

_
n(t)

j _
n(t)j
2 S�n

�
:

Since S� is open, the components of In are at most countable: denote by Ijn = (�jn; �
j
n); j = 1; : : : ; kn,

those components of In for which _
n(a
j
n) 6= _
n(b

j
n). From assumption (H3) and from Lemma 3.1 it follows

that supn kn < +1 and so, passing to a subsequence, we can assume that kn = �k for all n. We also set

Jn = S1 n
�k[

j=1

Ijn:(30)

Lemma 3.2 Let (�hn; �
h+1
n ) be a component of Jn such that

_
n(�
h
n) = j _
nj (�i � �n); for some �i 2 f�1; : : : ; �Ng:

Then 
nj(�h
n
;�

h+1
n )

falls into line in the direction �i.

Proof. Let � > 0; and let �n; �n 2 (�hn; �
h+1
n ) be such that j
n(�n) � 
n(�n)j > �. Then, since 
n is

parametrized proportionally to the arc lenght, there holds

� < j
n(�n)� 
n(�n)j �
Z �n

�n

j _
n(t)j dt = j _
nj L1((�n; �n));(31)

so in particular we have
�

supj j _
j j
� �

j _
nj
< L1((�n; �n)) < 2�:

Hence by equation (26) the quantities L1((�n; �n)) are uniformly bounded from above and from below.

Set

�n =

Z
(�n;�n)nIn

_
n(t)dt; �n =

Z
(�n;�n)\In

_
n(t)dt:

Equations (26) and (29) imply that �n ! 0 as n! +1. We also haveZ
(�n;�n)nIn

_
n(t)dt = j _
nj L1((�n; �n) n In) �i +
Z
(�n;�n)nIn

( _
n(t)� j _
nj �i) dt;

so from (31) and the de�nition of In we deduce

�n = j _
nj L1((�n; �n)) �i + o(1):(32)

From this expression and from the fact that �n ! 0 it follows that


n(�n)� 
n(�n)

j
n(�n)� 
n(�n)j
� �i =

�n + �n

j�n + �nj
� �i =

�n

j�nj
� �i + o(1) = o(1):

This concludes the proof.

The next lemma shows that 
n, restriced to a component of Jn, converges uniformly to a segment in

direction �i parametrized by arc lenght.
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Lemma 3.3 Let (�hn; �
h+1
n ) be a component of Jn as in Lemma 3.2. Then, given any � > 0, there exists

n� 2 N such that

k
n(�n)� 
n(�n)� j _
nj (�n � �n) �ik < �; 8�n; �n 2 (�hn; �
h+1
n ); 8n � n�:(33)

Proof. It follows easily from 
n(�n) � 
n(�n) = �n + �n, equation (32), and the fact that �n ! 0 as

n! +1.

Let us now introduce some additional notation. We de�ne the class

C =

�
f
1; : : : ; 
kg j 
i : S1 ! R

2 is piecewise C1;
_
i

j _
ij 2 f�1; : : : ; �Ng a.e. in S1; i = 1; : : : ; k

�
:

Let 
 = f
1; : : : ; 
kg 2 C. Then for all i im(
i) is composed by a �nite number of segments with directions

�j1 ; : : : ; �jli . We de�ne ~F : C ! R in the following way

~F (
) =

kX
i=1

jiX
h=1

g(�jh ; �jh+1):

Proposition 3.2 Let "n and let (En)n satisfy hypotheses (H1), (H2) and (H3) above. Let 

j
n, j = 1; : : : ; l

(passing to a subsequence we can suppose that the number l is independent of n) be parametrizations of

the components of @En. Then there exist a polyhedron P 2 P such that u = �P , there exist integers h; k,

k � h � l, and there exists 
 = f
1; : : : ; 
kg 2 C with the following properties

(�1) 

j
n ! 
j, j = 1; : : : ; k, uniformly on S1, and 
jn ! xj 2 R2 , j = k + 1; : : : ; h, uniformly on S1.

(�2) the segments of im(
) do not intersect transversally;

(�3) for a.e. x 2 R
2 , it is

Pk

i=1 ind(

i; x) 2 f0; 1g, and �P (x) =

Pk

i=1 ind(

i; x);

(�4) ~F (
) � lim infn F"n(En);

Proof. Let i 2 f1; : : : ; hg, and consider the sequence of curves 
in which parametrize the i-th component

of @En. This sequence satis�es conditions (25) and (26), hence we can repeat for them the constructions

above. Let J in be the counterpart of the set Jn for the curve 
in. We can also suppose that the number

of components of J in is a constant ki independent of n. From Lemma 3.3 it follows that,

up to translation, 
in ! 
i uniformly on S1; for some curve 
i 2 C;(34)

or

up to translation, 
in ! xi uniformly on S1; for some point xi 2 R2 :(35)

Up to a permutation of the indices, there exist h; k 2 N, 0 � k � h � l such that (
1n)n; : : : ; (

k
n)n

converge uniformly in S1 to some 
1; : : : ; 
k 2 C, and that (
k+1
n )n; : : : ; (


h
n)n converge uniformly in S1

to some points xk+1; : : : ; xh 2 R
2 . De�ne 
 to be 
 = f
1; : : : ; 
kg, so that also 
 2 C. Condition (�1) is

automatically satis�ed. Condition (�2) follows easily from the fact that the sets En are of class C2.

From equations (34) and (35) we deduce

H2(B
) = 0; where B
 =
� k[
i=1

im(
i)
�
[
� h[
i=k+1

xi
�
:(36)
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By the continuity of the winding number with respect to the uniform convergence we have

lim
n

hX
i=1

ind (
in; x) =

hX
i=1

ind (
i; x); for all x 2 R
2 nB
 ;

hence, since the index is integer-valued there holds

hX
i=1

ind (
in; x) =

kX
i=1

ind (
i; x); for n large and for all x 2 R
2 nB
 :

From this we can deduce that, setting

P =
n
x 2 R2 nB
 : lim

n

hX
i=1

ind (
in; x) = 1
o
;

we have (
x 2 P ) x 2 En for n large;

x 62 P ) x 62 En for n large:

This implies that

�En
! �P as n! +1; a.e. in R2 ;

and proves condition (�3). Property (�4) follows from Lemma 3.1.

Lemma 3.4 Suppose that 
 2 C satis�es conditions (�1) and (�2) in Proposition 3.2. Then there exists

a sequence of regular polyhedra (Pn)n � R such that

�Pn ! �P in L1(R2 ); FR(Pn) � ~F (
):(37)

Proof. For the proof of this Lemma we refer to [14].

Finally, we are in position to prove Proposition 3.1.

Proof of Proposition 3.1. Let P be the polyhedron given by Proposition 3.2, and let (Pn)n � R be

the sequence of regular polyhedra given by Lemma 3.4. Then, by equation (37) and by property (�4)

there holds

FR(Pn) � ~F (
) � lim inf
n

F"n(En):

Finally, by the de�nition of G we have

G(P ) � lim inf
n

FR(Pn) � lim inf
n

F"n(En):

This concludes the proof.

4 The �-lim sup inequality

The goal of this section is to prove the �-lim sup inequality in Theorem 2.1. Starting with a regular

admissible polyhedron P , we modify it near its vertices and we obtain a sequence of sets En of class C2

which converge to P and such that F"n(En) is as small as possible. Then we treat the general case of an

admissible polyhedron by approximating it with regular polyhedra.
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Proposition 4.1 Let P 2 R be an admissible regular polyhedron. Then, given any sequence "n ! 0+,

there exists a sequence of sets (En)n of class C2 such that

�En
! �P in L1(R2 ); lim sup

n
F"n(En) � FR(P ):

Proof. Let v be a vertex of P : since P is regular, there are exactly two sides of P intersecting v.

Without loss of generality, we can suppose that the directions of these sides, which we denote by l1 and

l2, are �1 and �2 respectively. Let � :
�� 1

2
jl1j; 12 jl2j

�! R
2 be de�ned by

�(t) =

(
v � t �1; t 2 �� 1

2
l1; 0

�
;

v + t �2; t 2 �0; 1
2
l2
�
:

(38)

The curve � de�ned in this way parametrizes part of l1 for t < 0 and part of l2 for t > 0. Our aim is to

�nd a sequence of regular curves �n :
�� 1

2
jl1j; 12 jl2j

�! R
2 with the following properties:

�n ! � uniformly on

�
�1

2
jl1j; 1

2
jl2j
�
;(39)

lim
n

Z
(� 1

2
jl1j;

1
2
jl2j)

 
1

"n
'

 
_�n

j _�nj

!
+ "n �

2(�n)

!
dt = g(�1; �2):(40)

Since ' is assumed to be of class C1 in S1 n f�1; : : : ; �Ng, the following Cauchy problem8>><
>>:
y0(t) =

p
'(y(t))

 
0 �1
1 0

!
y

y(0) =
�1 + �2

2
:

(41)

admits a unique maximal solution u : (a; b) ! S1, with �1 � a < 0; 0 < b � +1. It is immediate to

check that that u is a C1 increasing function which tends to �1 (respectively, �2) as t! a (respectively,

t! b).

For every c; d 2 (a; b), with c < 0 < d (c and d will be taken su�ciently close to a and b), de�ne

e = c � (u(c) � �1) and f = d + (�2 � u(d)); note that e < c < d < f . We can �nd a nondecreasing

function � : [e; f ]! A(�1;�2) of class C
1, such that

� (e) = �1; _� (e) = 0;(42)

� (f) = �1; _� (f) = 0;(43)

8><
>:
�(t) = u(t); t 2 (c; d);

j _�(t)j < 2 ju(c)� �1j; t 2 (e; c) ;

j _�(t)j < 2 j�2 � u(d)j; t 2 (d; f) :

(44)

For " > 0, let �" denote the unique continuous extension of � to the interval
�� 1

"
1
2
jl1j; 1" 1

2
jl2j
�
for which

_�"(t) =

(
�1; t 2 �� 1

"
1
2
jl1j; e

�
;

�2; t 2 �f; 1
"

1
2
jl2j
�
:

(45)
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Finally, for "n ! 0+, de�ne �n :
�� 1

2
jl1j; 12 jl2j

�! R
2 to be

�n(t) = v +

Z t

0

�"n

�
s

"n

�
ds; t 2

�
�1

2
jl1j;

1

2
jl2j
�
:

Since �"n is an S1-valued curve of class C1, it follows that �n is of class C2 and is parametrized by arc

lenght. For t < 0 it turns out that

�n(t)� �(t) = v +

Z t

0

�"n

�
s

"n

�
ds� v � t �1

=

Z "n e

0

�"n

�
s

"n

�
ds+

Z t

"n e

�"n

�
s

"n

�
ds� t �1:

Since j�"n j = 1, and since _�"n(t) = �1 for t < e, it follows that

�n(t)� �(t)! 0; uniformly for t 2
�
�1

2
jl1j; 0

�
:

In the same way one can show that

�n(t)� �(t)! 0; uniformly for t 2
�
0;
1

2
jl1j;

�
;

so we have proved (39).

Using the de�nition of �n and the change of variable s
"n

= y, we �nd

Z 1
2
jl2j

�
1
2
jl1j

 
1

"n
'
� _�n

j _�nj
�
+ "n �

2(�n)

!
ds =

Z 1
2

1
"n
jl2j

�
1
2

1
"n
jl1j

�
1

"n
' (�"n) + "n ( _�"n)

2

�
dy;

then, taking into account equation (45), one has

Z 1
2

1
"n
jl2j

�
1
2

1
"n
jl1j

�
1

"n
' (�"n) + "n ( _�"n)

2

�
dt =

Z f

e

�
' (�"n) + ( _�"n)

2
�
dt:

Dividing the interval (e; f) into (e; c), (c; d) and (d; f), by equation (41) we get

Z f

e

�
' (�"n) + ( _�"n)

2
�
dt � jc� ej

 
sup
(e;c)

'+ sup
(e;c)

_�2"n

!

+g(�1; �2) + jf � dj
 
sup
(d;f)

'+ sup
(d;f)

_�2"n

!
:

Using the expression of e; f , and taking into account (44), we deduce

Z f

e

�
' (�"n) + ( _�"n)

2
�
dt � g(�1; �2) + ju(c)� �1j

 
sup
(e;c)

'+ 4 ju(c)� �1j2
!

+j�2 � u(d)j
 
sup
(e;c)

'+ 4 j�2 � u(d)j2
!
:

Hence, choosing c = c(n) and d = d(n) depending on n and such that

ju(c)� �1j+ j�2 � u(d)j ! 0 as n! +1;
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also (40) follows.

Now consider a component � of @P . Let v1; : : : ; vi� denote an ordering of the vertices of � along the

parametrization of �, and let �j be the curve de�ned above corresponding to the vertex vj ; j = 1; : : : ; i�.

Then we can choose as parametrization for � the piecewise-C2 curve �� given by

�� = �1 � � � � � �i� :
For j 2 f1; : : : ; i�g, let �j;n be a sequence of curves which satisfy (39) and (40) with � = �j and

��(vj); �
+(vj) instead of �1 and �2. If we consider the sequence of curves

�p;n = �1;n � � � � � �i�;n; n 2 N;

they will converge uniformly to �� on their domain (a�; b�). In general the curve ��;n is not closed, but

since �� is closed there holds

��;n(a�)� ��;n(b�)! 0; as n! +1:

Consider the curve �1;n. Since the directions of its two rectilinear parts are linearly independent, it is

su�cient to modify slightly the lenght of these parts in such a way that ��;n transforms into a closed

curve ��;n.

Repeating this procedure for all the components of @P we obtain a set En whose boundary is

parametrized by the union of the curves (��;n)�. The sequence En will satis�y the required proper-

ties in the proposition.

Remark 4.1 From the proof of Proposition 4.1 it follows that we can choose �n satisfying (40) and

�n coincides with � in a neighbourhood of

�
�1

2
jl1j; 1

2
jl2j
�
; k�n � �k1 � 2(je(n)j+ jf(n)j) "n;

(46)

where e(n) = c(n)� u(c(n)) + �1 and f(n) = d(n) + u(c(n))� �2.

As an immediate consequence of Proposition 4.1 we have the following corollary.

Corollary 4.1 (�-limsup inequality) Let P 2 P be an admissible polyhedron. Then, for every ("n)n
with "n ! 0+ there exists a sequence of sets En of class C2 such that

En ! P in L1(R2 ) and lim sup
n

F"n(En) � G(P ):

Proof. By Remark 2.2, there exists a sequence (Pk)k � R of regular polyhedra such that

�Pk ! �P in L1(R2 ); lim sup
k

FR(Pk) = G(P ); sup
k

H1(@Pk) < +1:

Then, by Proposition 4.1, for every k 2 N there exists a sequence (Ek
n)n of sets of class C2 such that

Ek
n ! Pk; F"n(E

k
n)! FR(Pk); as n! +1:

Hence we can choose a sequence of natural numbers n(k) with n(k2) > n(k1) if k2 > k1 such that



�Ek

n

� �Pk



L1(R2)

� 1

k
; F"n(E

k
n) � FR(Pk) +

1

k
:

So, if we choose

En = Ek
n; for n(k) � n < n(k + 1);

the sequence (En)n satis�es the desired properties.
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5 Some local cases

In this section we study some speci�c cases for which the �-limit G has a local expression, namely it is

the sum over the vertices of a quantity depending only on the single vertices.

5.1 A non-symmetric case

In this section we treat the following particular case. We assume that the function ' satis�es the following

conditions

(i) ' 2 C1(S1);

(ii) '�1(0) = f�1; : : : ; �Ng, and �i 2 '�1(0)) ��i 62 '�1(0).

Under these hypotheses we will prove that �-lim"!0 F" has a local expression. Namely, to every vertex

of an admissible polyhedron P is associated a quantity E(v), and �-lim"!0 F"(P ) is the sum of E(v)

over the vertices v of P , see Proposition 5.4. In order to state this result precisely we introduce some

additional notation.

Let P be an admissible polyhedron, and let v be a vertex of P . Let l1; : : : ; l2k be the sides of P which

intersect at v. If condition (i) above is satis�ed, then for each of these segments lj , j = 1; : : : ; 2k, is

uniquely determined a tangent direction �(lj) = �ij 2 '�1(0).

To each lj we can associate an orientation �v(lj) respect to v, namely we set(
�v(lj) = �1; if lj is oriented toward v;

�v(lj) = 1; if � lj is oriented toward v;
j = 1; : : : ; 2k:

If the segments l1; : : : ; l2k, are ordered in such a way that �i1 < �i2 < � � � < �i2k , then clearly it must be

�v(lj) � �v(lj+1) = �1; j = 1; : : : ; 2k � 1; and �v(l2k) � �v(l1) = �1:
De�nition 5.1 An admissible decomposition ! of v is a partition of l1; : : : ; l2k in pairs

�
l�i ; l

+
i

�
, i =

1; : : : ; k, such that

�v(l
�

i ) = �1; �v(l
+
i ) = 1; i = 1; : : : ; k;(AD1)

and

�(l�i ) < min
�
�(l�j ); �(l

+
j )
	
< max

�
�(l�j ); �(l

+
j )
	
< �(l+i ); i; j = 1; : : : ; k; i 6= j:(AD2)

We set also


v = f! j ! is an admissible decomposition for vg :
Remark 5.2 Every vertex v 2 V (P ) admits an admissible decomposition. In fact, if the versors

�i1 ; : : : ; �i2k , are ordered in such a way that �i1 < �i2 < � � � < �i2k , then one can take

l�i = l2i�1; l+i = l2i i = 1; : : : ; k:

To each admissible decomposition ! = f(l�i ; l+i )gi of a vertex v, we associate the energy  (!) de�ned by

 (!) =

kX
i=1

g
�
�(l�i ); �(l

+
i )
�
;(47)

and we de�ne

E(v) = min f (!) j ! 2 
vg :(48)
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Lemma 5.3 Let 
 2 C satisfy conditions (�2) and (�3) in Proposition 3.2, and let P be the polyhedron

associated to 
 from (�3). Let v 2 V (P ) and let l1; : : : ; l2k be the segments of 
 which intersect v.

Let l�1 ; : : : ; l
�

k be the segments of fl1; : : : ; l2kg which are oriented toward v, and let l+1 ; : : : ; l
+
k be the

elements of fl1; : : : ; l2kg which, following the parametrization of 
, are after l�1 ; : : : ; l
�

k respectively. Then

!
v = (l�j ; l
+
j ), j = 1; : : : ; k, is an admissible decomposition of v.

Proof. Property (AD1) is immediate to verify. Condition (AD2) is equivalent to the fact that adjacent

sides must have opposite orientations.

Proposition 5.4 Suppose ' satis�es conditions (i) and (ii) above and let P be an admissible polyhedron.

Then there holds

G(�P ) =
X

v2V (P )

E(v):(49)

Proof. Let us prove �rst the �-lim inf inequality. Let "n ! 0, let (En)n satisfy hypotheses (H1)�(H3),

and let u = �P . Let 
 2 C be given by Proposition 3.2. Then, if !
v is given by Lemma 5.3, there holds

~F (
) =
X

v2V (P )

E(!
v ):

Finally, using equation (48) and property (�4) in Proposition 3.2 we getX
v2V (P )

E(v) �
X

v2V (P )

E(!v
) =
~F (
) � lim inf

n
F"n(En):

This proves the �-lim inf inequality; let us now turn to the �-lim sup inequality.

Let v 2 V (P ) and let !v be an admissible decomposition of v which realizes the minimum energy,

namely for which

 (!v) = E(v):

The set of the admissible decompositions !v, when v varies over V (P ), determines an element 
 2 C in

the following way.

Given a side l1 of P , are uniquely determined two vertices v1 and v2 and two indices i1 and i2 for

which, if we set !1 =
�
(l+i;1; l

�

i;1)
	
i
and !2 =

�
(l+i;2; l

�

i;2)
	
i
, we have

l1 = l+i1;1 = l�i2;2:

Let l2 = l�i2;2; reasoning as above, there exist an unique vertex v3 an an unique index i3 for which, if we

set !3 =
�
(l+i;3; l

�

i;3)
	
i
, there holds

l2 = l+i2;2 = l�i3;3:

Continuing in this way, we obtain a �rst segment lj1 for which lj1 = l�i1;1. Let ci : [�i; �i] ! R
2 ,

i = 1; : : : ; j be parametrizations of the sides li, and consider the closed curve 
1 de�ned by


1 = c1 � � � � � cj :

Up to reparametrizations, we can suppose that 
1 is de�ned on S1. In the same way, we de�ne the curves


2; : : : ; 
k : S1 ! R
2 until all the remaining sides of P are considered.

Now we �x a number M > 0, a sequence of positive numbers �n converging to zero, and we consider

the set

An =
�[BM�n(v) j v 2 V (P )

	
:
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Let 
1 be the curve de�ned above, and let �1n = ft 2 S1 : 
1(t) 2 Ang. The set �1n is a �nite union of

closed intervals [�1;in ; �1;in ], i = 1; : : : ; j1, and we denote by (�1;in ; �1;in ), i = 1; : : : ; j1, the components of

S1 n �1n, where we have taken �1;in = �1;in . Setting c1;in = 
1j
[�

1;i
n ;�

1;i
n ]

, and ĉ1;in = 
1j
[�
1;i
n ;�

1;i
n ]

, it is clear that


1 = c1;1n � ĉ1;1n � c1;2n � � � � � c1;j1n � ĉ1;j1n :

Of course, we can write a similar expression for 
2; : : : ; 
k.

We observe that the maps ci;ln , i = 1; : : : ; k, l = 1; : : : ; ji, are union of two rectilinear curves with

directions �
i;l
�

and �
i;l
+ (following the order of the parametrization), while the curves ĉi;ln are rectilinear

with direction �
i;l
+ .

We de�ne also the curves

~ci;ln (t) = ci;ln (t) + �n

�
�
i;l
�

+ �
i;l
+

�
; t 2 [�i;ln ; �

i;l
n ];

where the above sum �
i;l
�

+ �
i;l
+ is now a sum of elements in R2 . It follows from property (AD2) that the

images of the curves ~ci;ln are all disjoint when i varies from 1 to k, and l varies from 1 to ji. We have also

(~ci;ln )0(�i;ln )���(~ci;ln )0(�
i;l
n )
��� = �

i;l
+ = �

i;l+1
�

=
(~ci;l+1
n )0(�i;l+1

n )���(~ci;l+1
n )0(�

i;l+1
n )

��� ; for all i = 1; : : : ; k; l = 1; : : : ; ji:(50)

Now we choose a function � : [0; 1]! [0; 1] of class C1 and which satis�es the following properties8><
>:
� � 0 in a neighbourhood of 0;

� � 1 in a neighbourhood of 1;

�0 � 0; j�0j � 2; j�00j � 4;

(51)

and for a; b > 0, let �a;b : [0; 1]! R
2 be de�ned by

�a;b(t) =

�
a t

b �(t)

�
; t 2 [0; 1]:

Using simple computations, one can check that

j� (�a;b(t))j � 4
b

a
; for all t 2 [0; 1]:(52)

We recall � (�a;b(t)) denotes the curvature of �a;b at �a;b(t).

Fix i 2 f1; : : : ; kg, l 2 f1; : : : ; jig, and consider the points ~ci;ln (�i;ln ) and ~ci;l+1
n (�i;l+1

n ); then by equation

(50) there exist unique numbers a; b > 0, and an unique a�ne isometry T of R2 for which the curve T ��a;b
possesses the following properties (we omit the dependence of a; b; T on the indices i; l and n):(

T � �a;b(0) = ~ci;ln (�i;ln ); T � �a;b(1) = ~ci;l+1
n (�i;l+1

n );

(T � �a;b)0 (0) = �
i;l
+ ; (T � �a;b)0 (1) = �

i;l
+ :

One can easily check that

jbj � 2 �n; a � 1

2
s; for n large;

see the Notation for the de�nition of s. From these equations and from (52), it follows that���� (T � �a;b)0j(T � �a;b)0j
� �i

���� � 8
�n

s(P )
; j�(T � �a;b)j � 16

�n

s(P )
:(53)
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Denote by ~Ci;l
n the curve �a;b, where a; b are chosen as above depending on i; l; n, and consider

~
in = c1;1n � ~C1;1
n � c1;2n � � � � � c1;jin � ~C1;ji

n :

It follows from the �rst equation in (53) that ifM is su�ciently large, then the curves ~
in, i = 1; : : : ; k are

simple, mutually disjoint, and the union of their images is the boundary of a piecewise C2 set ~En � R
2 .

It is clear that ~En ! P in L1(R2 ).

Let "n ! 0: for every i 2 f1; : : : ; kg and every l 2 f1; : : : ; jig, let ai;l; bi;l, etc., be the analogous of

a; b; c; d in the proof of Proposition 4.1 when we consider vi;l, �
i;l
�

and �
i;l
+ . Since ' is assumed to be of

class C1, we can choose �n ! 0 and ei;l(n); f i;l(n) with the following properties:

(i) lim
n

�n

"n (jei;l(n)j+ jf i;l(n))j = +1 for all i 2 f1; : : : ; kg and every l 2 f1; : : : ; jig;

(ii) lim
n

1

"n
C

�
8

s
�n

�
= 0;

see (27) for the de�nition of C(�).

We have Z
[0;1]

1

"n
'
� ( ~Ci;l

n )0

j( ~Ci;l
n )0j

�
dt+ "n

Z
[0;1]

�2( ~Ci;l
n ) dt � 1

"n
C

�
8

s
�n

�
+ "n

�
16

s

�2

�2n:

From property (ii) above and from (53), it follows that

lim
n

 Z
[0;1]

1

"n
'
� ( ~Ci;l

n )0

j( ~Ci;l
n )0j

�
dt+ "n

Z
[0;1]

�2( ~Ci;l
n ) dt

!
= 0:(54)

By Remark 4.1, for every i 2 f1; : : : ; kg, every l 2 f1; : : : ; jig and every n su�ciently large it is

possible to choose a curve C
i;l

n : [�i;ln ; �
i;l
n ]! R

2 such that���Ci;l

n (t)� ci;ln (t)
��� � 2"n (jei;l(n)j+ jf i;l(n)j);(55)

C
i;l

n coincides with ci;ln in a neighbourhood of f�i;ln ; �i;ln g;(56)

Z
[�

i;l

n ;�
i;l

n ]

1

"n
'
� (C

i;l

n )0

j(Ci;l

n )0j

�
dt+

Z
[�

i;l

n ;�
i;l

n ]

"n �
2(C

i;l

n ) dt! g(�
i;l
�
; �

i;l
+ ):(57)

Let 
i be the curve de�ned by

~
in = C
i;1

n � ~Ci;1
n � Ci;2

n � � � � � Ci;ji
n � ~Ci;ji

n :

From (56) it follows that the curve ~
in , i = 1; : : : ; k, are curves of class C2, while (55) implies that they

are simple, mutually disjoint, and the union of their images is the boundary of a C2 set En � R
2 . Again,

~En ! P in L1(R2 ). Moreover from (57) one can deduce that

lim sup
n

F"n(En) �
X

v2V (P )

E(v):

This concludes the proof.
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5.2 A symmetric case

In this section we treat the case in which the admissile polyhedra are polyrectangles, and the function '

is symmetric with respect to the axes x and y. A direct proof of Theorem 5.1 is also presented in [10],

Appendix B.

Theorem 5.1 Let e1; e2 be the canonical basis of R2 , and suppose that ' satis�es the conditions

'�1(0) = f�1; : : : ; �4g; where �1 = e1; �2 = e2; �3 = �e1; �4 = �e2;(58)

and

g0 := g(�i; �i+1) is independent of i = 1; : : : ; 4:(59)

Then the admissible polyhedra are polyrectangles and for every P 2 P there holds

G(P ) = g0 � ] fvertices of Pg :

Proof. Let us prove �rst the �-lim inf inequality. We note that if P 2 R, then one has

FR(P ) = ]fvertices of Pg = ]fsides of Pg:(60)

Let E 2 P , and let Ek 2 R, Ek ! E in L1(R2 ). Then, since it must be ]fsides of Ekg � ]fsides of Eg
for k large, it follows from (60) that

FR(Ek) � ]fsides of Eg � ]fvertices of Eg; for k large:

Hence we have also

G(E) = sc�(FR)(E) � ]fvertices of Eg;
which is the �-lim inf inequality. Let us prove now the �-lim sup inequality. Given a polyrectangle E,

and given a number � > 0, consider the set E� de�ned by

E� = fx 2 E : dist(x; @E) � �g :

Then, if � is su�ciently small, E� 2 R, and ]fsides of E�g � ]fsides of Eg. This concludes the proof.

6 Pathological cases

In this section we consider the case in which it is not required the uniform boundedness of the perimeters

in the de�nition of convergence. In this situation, it is possible to have the convergence in the L1
loc(R

2 )

sense without having convergence in L1(R2 ), so we are led to consider the quantity

G(E) = inf flim inf
n

F"n(En) : En ! E in L1
loc(R

2 )g:

We recall that, by Theorem 2.1, G(E) = inf flim infn F"n(En) : En ! E in L1(R2 ); supnH1(@En) <

+1g, so it is clearly G(E) � G(E). In Section 6.1 we describe the asymptotic shape of the subsequences

(En)n for which supn F"n(En) < +1, highlighting similarities with Section 3. However, in general

G < G, and in Section 6.2 we exhibit an example of a function ' and of a polyhedron P for which G(P )

is stricly less than G(P ).
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6.1 Asymptotic shape of minimizers

In this subsection we describe the limit shape of a sequence of sets (En)n for which just condition (H3)

holds, thus without assuming that the perimeters @En are uniformly bounded.

We suppose that @En possesses just one component; the general case requires only simple modi�ca-

tions. Let 
n be a parametrization of @En proportional to the arc lenght. First, we note that Lemmas

3.1 and 3.2 remain unchanged, so we can de�ne as in Section 3 the quantities �n ! 0, In and Jn with

jInj ! 0. In general, we will not have uniform convergence on the components of Jn as in Lemma 3.3,

but we recover it under some suitable rescaling.

Lemma 6.1 Let Jn be de�ned as in (30), and let (�hn; �
h+1
n ) be a component of Jn such that

_
n(�
h
n) = j _
nj (�i � �n) for some �i 2 f�1; : : : ; �Ng;

and such that j
n(�hn)� 
n(�
h+1
n )j ! +1 as n! +1. Let ~
n : (�hn; �

h+1
n ) be de�ned by

~
n(t) =
1

j
n(�hn)� 
n(�
h+1
n )j (
n(t)� 
n(�

h
n)):

Then we have

sup
t2(�h

n
;�

h+1
n )

j~
n(t)� �i tj ! 0; as n! +1:

Proof. We have j~
n(t)j � C on (�hn; �
h+1), and moreover

Z
(�h

n
;�

h+1
n )

1

"n
'

�
_~
n

j _~
nj

�
dt �

Z
(�h

n
;�

h+1
n )

1

"n
'

�
_
n

j _
nj

�
dt:

Hence, considering the curve ~
n, we are in the same situation of Lemma 3.3, so our statement follows.

Passing to a subsequence, we �nd an integer k, and k sequences of points (x1n)n; : : : ; (x
k
n)n such that

dist(
n(In); fx1n; : : : ; xkng)! 0; as n! +1:

In this case, the mutual distances of the points xin can go to in�nity. However it turns out that the

sequences of points fx1n; : : : ; xkng arrange in \clusters", and the limit shape of some rescaled portion of

En is still polyhedral.

In fact, let

d1n = sup fjxin � xjnj : i; j 2 f1; : : : ; kg; i 6= jg;
and consider the sequence of sets

E1
n = (d1n)

�1 (En � x1n):

Let 
1n be a parametrization of @E1
n. Then, there exists a number k1 � k and k1 sequences of points

(x1;1n )n; : : : ; (x
1;k1
n )n such that

dist(
1n(In); fx1;1n ; : : : ; x1;k1n g)! 0; as n! +1:

From Lemma 6.1, it is easy to see that the sequence E1
n converges in L

1(R2 ) to some admissible polyhedron

P 1 2 P .
If we choose a di�erent rescaling for the set En, we can obtain some \�ner" structures of these sets.

In fact, consider the set of indices fi1; : : : ; ijg � f1; : : : ; kg, for which

lim
n

(d1n)
�1 jxiln � x1nj ! 0; l = 1; : : : ; j:
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and de�ne d2n to be

d2n = supfjxiln � xihn j : l; h 2 fi1; : : : ; ijg; l 6= hg;
it is clear that (d1n)

�1d2n ! 0. Consider the sequence of sets E2
n

E2
n = (d2n)

�1 (En � x1n):

Then, using the arguments above, one can check that E2
n ! P 2 in L1

loc(R
2 ), where P 2 � R

2 is a set

which boundary is composed by segments, half-lines or lines oriented in the directions f�1; : : : ; �Ng. In
some sense P 2 could be considered as a polyhedron with some sides of in�nite lenght.

Of course, the same result is true if one considers suitable rescalings at the points xin for i 6= 1.

6.2 An example in which G 6= G

In this subsection we consider the following particular case, namely '�1(0) = f�1; : : : ; �5g with

�1 = (1; 0); �2 = (0; 1); �3 =

p
2

2
(�1; 1); �4 =

p
2

2
(�1;�1); �5 = (0;�1);(61)

and

g(�1; �2) = g(�2; �3) = g(�4; �5) = g(�1; �2) = 1; g(�5; �1) = 5:(62)

Let pi; qi 2 R
2 , i = 1; : : : ; 3, be given by

p1 = (0; 0); p2 = (1; 0); p3 = (1; 1); q1 = (2; 0); q2 = (3; 0); q3 = (2; 1);

and let P be the polyhedron de�ned as follows (see �gure (a))

P =

(
3X

i=1

ti pi j ti � 0;

3X
i=1

ti = 1

)
[
(

3X
i=1

ti qi j ti � 0;

3X
i=1

ti = 1

)
:

It is clear from (61) that P 2 P . We show that in this case G(P ) is strictly less than G(P ).

In fact, let (En)n � R be a sequence of sets of class C2 as in �gure (b). It is clear that the boundary

of En has just one component and from (62) one can check that FR(Pn) = 17 + o(1), where o(1)! 0 as

n! +1.

Now, suppose by contradiction that G(P ) = G(P ) � 17, namely that there exists (En)n � R
2 with

En ! E in L1(R2 ); sup
n
H1(@En) < +1; lim

n
F"n(En) � 17:

Passing to a subsequence, we can assume that the number of the components of @En is a �xed number k

independent of n. By Lemma 3.1, it turns out that F"n(En) � 9k + o(1), so, since we are assuming that

F"n(En) � 17 + o(1), it follows that k = 1.

Let 
n : S1 ! R
2 be a parametrization of @En proportional to the arc lenght. Then we can apply

Proposition 3.2, and we �nd a curve 
 : S1 ! R
2 , 
 2 C, for which 
n ! 
 uniformly on S1, and for

which P = fx 2 R2 : ind(
; x) = 1g.
Consider the set

A = ft 2 S1 : 1 < (
)x(t) < 2; _
(t) 2 f�3; �4gg:
Since 
 has just one component, it must be A 6= ;, and since ��3 and ��4 do not belong to '�1(0), it

should be 
(A) � @P , which is a contradiction.

Remark 6.1 It is possible to haveG(P ) < G(P ) also if we require strong L1 convergence in the de�nition

of G. In fact, if ' is of class C1, one could choose a sequence of approximating sets (En)n as in �gure

(c). Reasoning as in Section 5, one can prove that F"n(En) = 17 + o(1).
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