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Abstract.

In this work we discuss, from a variational viewpoint, the equilibrium problem for a finite num-
ber of Volterra dislocations in a plane domain. For a given set of singularities at fixed locations,
we characterize elastic equilibrium as the limit of the minimizers of a family of energy functionals,
obtained by a finite-core regularization of the elastic-energy functional. We give a sharp asymptotic
estimate of the minimum energy as the core radius tends to zero, which allows to eliminate this inter-
nal length scale from the problem. The energy content of a set of dislocations is fully characterized
by the regular part of the asymptotic expansion, the so-called renormalized energy, which contains
all information regarding self- and mutual interactions between the defects. Thus our result may be
considered as the analogue for dislocations of the classical result of Bethuel, Brezis and Hélein for
Ginzburg-Landau vortices. We view the renormalized energy as the basic tool for the study of the
discrete-to-continuum limit in plasticity of crystals, i.e., the passage from models of isolated defects
to theories of continuous distributions of dislocations. The renormalized energy is a function of the
defect positions only: we prove that its derivative with respect to the position of a given dislocation
is the resultant of the Eshelby stress on that dislocation, which can be identified in turn with the
classical Peach-Köhler force.
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1. Introduction. Dislocations are common defects in crystals, and influence
their behavior in multiple ways: for instance, isolated dislocations generate concen-
trations of stress which affect the chemical and electronic properties of solids, while
the collective motion of large sets of dislocations represents the basic mechanism for
plastic slip in ductile solids (cf., e.g., [3], [17] and [25]).

Hence, it is of considerable interest to study the behavior both of isolated and
large sets of dislocations.

However, the study of isolated dislocations and of large clusters of defects re-
quire widely different approaches. Problems involving isolated defects involve scales
which are typically of the order of the interatomic distances in the crystal, while the
characteristic scales involved in the collective behavior of large clusters of dislocations,
typically in plasticity, are much larger. A typical example is self-organization of stored
dislocations in cell patterns [27]: the characteristic distance between the cell walls is
macroscopic, many orders of magnitude larger than the interatomic distances.

Such problems are better studied in terms of dislocation densities, rather than of
isolated dislocations, and require the introduction, in the expression for the macro-
scopic energy of the solid, of terms which depend on the gradients of the (plastic)
strain ([1], [16], [20], [21], [22]). These terms are necessarily phenomenological - for
instance, energies are assumed to be quadratic in the plastic strain gradients, but
such simple choices often lead to unphysical behavior, as shown in [8] for interfacial
dislocations in epitaxial films.
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At a still larger scale lives classical plasticity: plastic strain gradients are ignored,
no internal length scale is introduced, and dislocations are only implicitly taken into
account. Classical models cannot describe the self-organization of defects in regular
patterns.

Hence, a major open problem in the theory of defects in solids is to correlate the
microscopic (isolated defects) and the macroscopic (gradient theories) approaches.
Specifically, it would be useful to develop a theoretical framework which allows to
characterize the constitutive relations of the continuum models, using the information
gained by ”ab initio” models of finite sets of dislocations.

The goal of this paper may be viewed as the first stage of this project: we give a
variational formulation of the equilibrium problem for a finite number of dislocations
in a plane domain, and characterize the energy content of a body with isolated defects
in terms of a regular function of the defect configuration, the so-called renormalized
energy.

Precisely, consider a finite number of dislocations in an elastic solid: since the
stress field induced by a dislocation is short ranged, it is reasonable to work in the
approximation of linear elasticity, which may be assumed to be valid sufficiently far
from the defect (this topic has been studied extensively in the literature, and explicit
solutions are known in special cases ([30], [25], [31])). We restrict attention to plane
isotropic elasticity1. Let Ω be a regular domain in R2: in linear elasticity, a displace-
ment of Ω is a regular vector field u on Ω, with gradient ∇u = H. The equilibrium
equations have the form Div C[E(u)] = 0, with C a linear operator from R2×2 into
itself, and E(u) = 1

2 (∇u + (∇u)>) the infinitesimal strain tensor.
In this framework, Volterra dislocations may be viewed as singularities of the

field H. Precisely, fix a finite set of points {x1, . . . , xN} in Ω, and a set of vectors
{b1, . . . , bN}, with bi ∈ R2: we say that a tensor field H on Ω \ {x1, . . . , xN} cor-
responds to a system of dislocations located at {x1, . . . , xN} with Burgers vectors
{b1, . . . , bN}, if2

{
CurlH =

∑N
i=1 bi δxi

DivC[E(H)] = 0
in Ω (1.1)

in the sense of distributions, where E(H) = 1
2 (H + H>) is the strain associated to

H.
Solutions of (1.1) are not unique even modulo an infinitesimal rigid motion and,

moreover, no variational principle may be associated to (1.1), since the elastic energy
of a system of Volterra dislocations is not finite.

Hence, it is necessary to regularize the theory by removing a core Bε(xi) of
radius ε around each dislocation; letting Ωε = Ω \ (∪N

i=1Bε(xi)), we solve the family
of minimization problems

min
H∈H(b1,...,bN ;Ωε)

∫

Ωε

W (E(H))) da, (1.2)

1Point defects in plane elasticity may be effectively used to model straight edge dislocations
orthogonal to the plane of strain.

2The Curl of a two dimensional tensor field H is the vector field whose cartesian components
are (Curl H)i = (∂1Hi2 − ∂2Hi1).
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where W (E) = 1
2E · C[E] is the elastic energy density,

H(b1, . . . , bN ; Ωε) =

{
H ∈ H(Curl 0; Ωε) :

∫

∂Bε(xi)

Ht ds = bi, i = 1, . . . , N

}
,

and t is the unit tangent vector3 to ∂Bε(xi).
Our first result show that the solutions Hε of (1.2) converge strongly in L2

loc(Ω \
∪N

i=1{xi};R2×2), as ε → 0, to a solution H0 of (1.1). This solution is unique modulo
a rigid motion. More precisely, we show that

Hε → H0 =
N∑

i=1

Ki +∇u0, (1.3)

where Ki are distributional solutions of (cf. Proposition 3.1)
{

Curl H = bi δxi

DivC[E(H)] = 0
in R2,

and u0 ∈ H1(Ω;R2) is a regular displacement field which is a minimizer of the func-
tional

I0(u) :=
∫

Ω

W (E(u)) da +
N∑

i=1

∫

∂Ω

u · C[E(Ki)]n ds, (1.4)

on H1(Ω;R2).
The field H0 is independent of the internal length scale ε, but its energy is not

finite: we obtain a sharp asymptotic estimate as ε → 0 for the minimum energy in
(1.2), of the form

∫

Ωε

W (E(Hε))) da =
N∑

i=1

µ(λ + µ)
4π(λ + 2µ)

|bi|2 ln
1
ε
+F (x1, . . . , xN )+O(ε)+Const., (1.5)

where λ, µ are the Lamé moduli, and

F (x1, . . . , xN ) = Fself(x1, . . . , xN ) + Fint(x1, . . . , xN ) + Felastic(x1, . . . , xN ), (1.6)

is the renormalized energy, with




Fself(x1, . . . , xN ) =
N∑

i=1

∫

Ω\BR(xi)

W (E(Ki)) da +
N∑

i=1

µ(λ + µ)
4π(λ + 2µ)

|bi|2 ln R,

Fint(x1, . . . , xN ) =
N−1∑

i=1

N∑

j=i+1

∫

Ω

C[E(Ki)] ·E(Kj) da,

Felastic(x1, . . . , xN ) =
∫

Ω

W (E(u0)) da +
N∑

i=1

∫

∂Ω

u0 · C[E(Ki)]n ds,

(1.7)

3We choose t = n⊥ to be a counterclockwise π/2-rotation of the outward unit normal n to
∂Bε(xi).
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and

0 < R <
1
4

min{|x− y| : x 6= y, (x, y) ∈ S × (S ∪ ∂Ω)},

where S = {x1, . . . , xN}. It can be shown that Fself is independent of R.
It is important to remark that while for special domains the asymptotic formula

∫

Ωε

W (E(Hε))) da ∼
N∑

i=1

µ(λ + µ)
4π(λ + 2µ)

|bi|2 ln
1
ε

(1.8)

is classical (see e.g. [25, 31]) and can be obtained by solving explicitly the Euler
equation (1.1) (see [30]), for general domains there are various formal arguments in
support of (1.8) but we are not aware of any rigourous derivation prior to ours.

More importantly, the introduction of the renormalized energy in this context
appears to be new, and thus our result may be considered as the analogue for dis-
locations of the classical result of Bethuel, Brezis and Hélein (see Chapter 2 in [5],
see also [4] ) for Ginzburg-Landau vortices. We refer to the monograph [5] for more
details about the Ginzburg-Landau functional (see also [2, 6, 24] and the references
contained therein for more recent results).

Note that the renormalized energy is independent of the core radius, and is a
function of the defect position which fully characterizes the energy content of a dis-
located body. Hence, it provides a basis for the study of the behavior of finite sets of
dislocations.

As an example application of these ideas, we prove that the interaction energy
Fint in (1.7)2 diverges logarithmically with the relative distance between the defects:

Fint(x1, . . . , xN ) =
N−1∑

i=1

N∑

j=i+1

µ(λ + µ)
π(λ + 2µ)

bi · bj ln
1

|xi − xj | + O(1),

as |xi − xj | → 0.
When more than one dislocation is present, or an external stress is applied to

the dislocated body, defects interact between themselves and with the applied field,
by means of the so-called Peach-Köhler force [32]. Since the renormalized energy
contains all the information about defect interactions, a natural question is whether it
is somehow related to the Peach-Köhler force on dislocations. Indeed, the asymptotic
analysis of a regularized Ginzburg-Landau equation, intended to model disclinations
in liquid crystals, shows that on a long time scale defects move according to a simple
evolution equation, which has the form velocity = force on the defect ([23], [29], [28]),
where the force on the defect is defined as the derivative of the renormalized energy
with respect to the defect position.

In this line of thought, we prove the fundamental relation

∇xk
F = −

∫

∂BR(xk)

{
W (E(H0))1−H>

0 C[E(H0)]
}

n ds (1.9)

for R < mini
1
2d(xi, ∂Ω), where the integrand C = W (E(H0))1 −H>

0 C[E(H0)] is
called the Eshelby stress. This object, also known as configurational stress, is usually
introduced in continuum mechanics in conjunction with an additional balance law,
the configurational balance, when defective structures such as interfaces, cracks or
inclusions, are present [20]. The configurational balance governs the evolution of the
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defect, and the resultant of the Eshelby stress in (1.9) may be identified with the
force acting on a defect. In the theory of elastic dislocations, the force on a defect
is defined by means of the so-called Peach-Köhler force, and indeed it can be shown
that the resultant of the configurational stress coincides with the Peach-Köhler force
on a dislocation [7].

Hence, (1.9) shows that the derivative of the renormalized energy coincides with
the force on a dislocation.

The idea that the force on a defect is the derivative of the minimum energy with
respect to changes of the defect position is the basis of Eshelby’s treatment of defects
([13], [14], [12]). However, when dislocations are present the energy is not finite,
so that Eshelby’s approach fails without modifications: our result may be viewed as
the generalization of Eshelby’s notion of force on a defect, when bad singularities are
associated to the defect itself.

2. The variational problem. Let Ω ⊂ R2 be a simply connected bounded open
domain with smooth boundary ∂Ω, with outward unit normal n. In the absence of
defect, we denote by u : Ω → R2 the displacement field, with displacement gradient
∇u and strain tensor E(u) = 1

2

(∇u + (∇u)>
)
. We write

T = C[E]

for the (symmetric) Cauchy stress, with C : Sym → Sym the elasticity tensor, a
symmetric4 linear map on the space Sym of symmetric 2 × 2 tensors. For isotropic
materials, the stress has the form

C[E] = λ(trE)1 + 2µE, (2.1)

with λ, µ the Lamé moduli. The associated energy functional is

J(u) =
∫

Ω

W (E(u)) da (2.2)

which is defined on H1(Ω;R2). Here W (E) = 1
2E ·C[E] is the strain energy density,

and we assume that the elasticity tensor C is positive definite.5 In plane elasticity
and for isotropic materials this is equivalent to requiring

µ > 0 and λ + µ > 0. (2.3)

In this paper we shall only deal with isotropic materials.
When defects such as dislocations are present, the displacement field is not single-

valued, and the equilibrium problem must be formulated in terms of a 2 × 2 tensor
field H, defined away from the defects, and such that CurlH = 0. The field H plays
the role of displacement gradient but is not necessarily the gradient of a displacement
field globally defined on Ω: we will continue to use the denomination strain tensor
associated to H for the symmetric part of H, writing

E(H) =
1
2

(
H + H>

)
. (2.4)

4I.e., E · C[F ] = F · C[E] for any E, F ∈ Sym, where · is the inner product of 2× 2 tensors.
5Which implies that there exist constants c1, c2 > 0 such that c1|E|2 ≤ W (E) ≤ c2|E|2 for any

E ∈ Sym.
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More precisely, we are interested in situations in which the field H has a finite number
of singularities in Ω: to this purpose, let {xi}i=1,...,N be a finite sequence of points in
Ω, and for ε > 0 let

Ωε = Ω \
(

N⋃

i=1

Bε(xi)

)
,

and consider the space

H(Curl; Ωε) :=
{
H ∈ L2(Ωε;R2×2) : Curl H ∈ L2(Ωε;R2×2)

}
. (2.5)

Following [11] we set

H(Curl 0; Ωε) := {H ∈ H(Curl; Ωε) : Curl H = 0} .

We say that H ∈ H(Curl 0; Ωε) corresponds to a system of dislocations located at xi,
with Burgers vectors bi and cores Bε(xi) , if

∫

∂Bε(xi)

Ht ds = bi, i = 1, . . . , N, (2.6)

with t the unit tangent to ∂Bε(xi), obtained by rotating counterclockwise by π/2
the outward unit normal n to ∂Bε(xi). Here we have used the fact that for each
i = 1, . . . , N the trace map

H 7→ Ht

defined on C∞(Ωε;R2×2) extends by continuity to a continuous linear mapping, still
denoted Ht, from H(Curl; Ωε) to H− 1

2 (∂Bε(xi);R2) , (see e.g. Thm. 2 page 204 in
[11]). With an abuse of notation for every ϕ ∈ H

1
2 (∂Bε(xi)) we continue to denote by∫

∂Bε(xi)
ϕ Ht ds the value of the linear mapping Ht applied to ϕ. We shall denote by

H(b1, . . . , bN ; Ωε) the closed subspace of H(Curl 0; Ωε) of tensor fields corresponding
to systems of dislocations with Burgers vectors bi, i.e.,

H(b1, . . . , bN ; Ωε) :=

{
H ∈ H(Curl 0; Ωε) :

∫

∂Bε(xi)

Ht ds = bi, i = 1, . . . , N

}
.

(2.7)
The strain energy functional is defined as in the absence of defects (cf. (2.2)),

Jε(H) =
∫

Ωε

W (E(H)) da, (2.8)

and the associated minimization problem is
(MH,ε): Minimize the strain energy functional over all systems of disloca-
tions located at given points (x1, . . . , xN ), and with given Burgers vectors
(b1, . . . , bN ), i.e., find the solutions of

min
H∈H(b1,...,bN ;Ωε)

Jε(H). (2.9)

Proposition 2.1. Assume that the elasticity tensor C satisfies condition (2.3).
Then

Hε ∈ H(b1, . . . , bN ; Ωε)
6



is a minimizer of (2.9) if and only if Hε is a weak solution of the Neumann boundary
problem

{
DivC[E(Hε)] = 0, in Ωε,
C[E(Hε)]n = 0, on ∂Ωε = ∂Ω ∪ (∪N

i=1∂Bε(xi)
)
.

(2.10)

Moreover Hε is unique modulo an infinitesimal rigid-body motion.
Proof. Since Jε is quadratic it follows from standard arguments in the Calculus

of Variations that Hε is a minimizer if and only if satisfies the weak Euler equation
∫

Ωε

C[Hε] ·E(w) da = 0, for all w ∈ H1(Ωε;R2). (2.11)

Indeed, note that, for every H, H̃ ∈ H(b1, . . . , bN ; Ωε), there exists w ∈ H1(Ωε;R2)
such that H̃ = H +∇w: moreover, for t a real parameter,

Jε(H + t∇w)− Jε(H) = t

∫

Ωε

C[H] ·E(w) da + t2Jε(∇w),

and this proves the assertion.
To prove uniqueness let Hε and H ′

ε be two solutions of (2.11), then H ′
ε =

Hε +W , with W a constant skew-symmetric tensor: indeed, since Hε and H ′
ε both

belong to H(b1, . . . , bN ; Ωε), then H ′
ε = Hε +∇u for some u ∈ H1(Ωε;R2), which

satisfies the equation
∫

Ωε

C[E(u)] ·E(w) da = 0, for all w ∈ H1(Ωε;R2);

choosing w = u and using the strong ellipticity of C, this implies that E(u) = 0,
and, in turn, that u(x) = a + Wx, with a and W a constant vector and a constant
skew-symmetric tensor respectively, which proves the assertion.

Remark 2.2. Uniqueness of the solution of (2.9) is guaranteed for instance by
assuming that the total infinitesimal rotation of the body vanishes, i.e.,

∫

Ωε

(Hε −H>
ε ) da = 0. (2.12)

3. Existence for a single dislocation in a ball. In this section we consider
the special case where

Ω = BR(x0)

and we have a single dislocation located at x0 and with Burger vector b. We are
interested in the asymptotic behavior as ε → 0+ and R → ∞ of the solutions of the
minimization problem

min
H∈H(b;BR(x0)\Bε(x0))

∫

BR(x0)\Bε(x0)

W (E(H))) da. (3.1)

Proposition 3.1. Assume that the elasticity tensor C satisfies condition (2.3)
and let Kb,ε,R be the unique solution of (3.1) such that

∫

BR(x0)\Bε(x0)

(Kb,ε,R −K>
b,ε,R) da = 0. (3.2)
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Then {Kb,ε,R} converges uniformly on compact subsets of R2 \ {x0} as ε → 0 and
R →∞ to the function 6

Kb(x; x0) :=
1

2π|x− x0|2 b⊗ (x− x0)⊥ +∇v(x− x0), (3.3)

with

v(x) = − µ log |x|
2π(λ + 2µ)

b⊥ − λ + µ

4π(λ + 2µ)|x|2
{
(b · x⊥)x + (b · x)x⊥

}
, (3.4)

which is a solution in the distributional sense of the system
{

CurlH = b δx0

DivC[E(H)] = 0
in R2.

Proof. By Proposition 2.1 and Remark 2.2 the functions Kb,ε,R are given by the
solutions of (2.9) in BR(x0) \Bε(x0) satisfying (3.2). In the isotropic case, these are
explicitly known [30]:

Kb,ε,R(x; x0) = Kb(x; x0) +∇wb,ε,R(x− x0), (3.5)

where

wb,ε,R(x) =
(λ + µ) |x|2

2π(λ + 2µ)(ε2 + R2)

{
−b⊥ − λ + 3µ

2(λ + µ)|x|2
(
(b · x⊥)x + (b · x)x⊥

)}

+
(λ + µ) ε2R2

2π(λ + 2µ)(ε2 + R2)|x|4
{
(b · x⊥)x + (b · x)x⊥

}
.

A straightforward calculation shows that Kb,ε,R satisfies the constraint (3.2) and the
Euler equations (2.10). Uniform convergence to Kb is immediate.

It is easy to see that 1
2π|x−x0|2 b⊗ (x− x0)⊥ satisfies

CurlH = b δx0 , (3.6)

in the sense of distributions, and it is clear that all other solutions have the form
1

2π|x−x0|2 b ⊗ (x − x0)⊥ + ∇v, v a vector field in W 1,1
loc (R2;R2). A straightforward

calculation shows that choosing v as in (3.4) we obtain that Kb also satisfies

DivC[E(H)] = 0, (3.7)

and the proof is complete.
Remark 3.2.
(i) The field Kb may be regarded as the deformation induced by a dislocation

with Burgers vector b in the whole plane. By introducing polar coordinates
(%, ϑ) centered at x0, with associated basis (e%,eϑ), we may write

Kb =
1

2π%
b⊗ eϑ +∇vb, (3.8)

6Given a vector v, we denote by v⊥ the vector perpendicular to v obtained by rotating v
counterclockwise by π/2.
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with

vb = − µ log %

2π(λ + 2µ)
b⊥ − λ + µ

4π(λ + 2µ)
{(b · eϑ)e% + (b · e%)eϑ} . (3.9)

The complete expression for Kb in polar coordinates is the following

Kb =
1

2π%(λ + 2µ)
[µ(b · eϑ)e% ⊗ e% + (2λ + 3µ)(b · e%)e% ⊗ eϑ

−µ(b · e%)eϑ ⊗ e% + µ(b · eϑ)eϑ ⊗ eϑ] ,

and the corresponding stress tensor is

T b =
µ(λ + µ)

π%(λ + 2µ)
{(b · eϑ)e% ⊗ e%

+ (b · e%)(e% ⊗ eϑ + eϑ ⊗ e%) + (b · eϑ)eϑ ⊗ eϑ} .

Note that Kb is homogeneous of degree −1 in % so that we may write

Kb(%, ϑ;x0) =
1
%

Lb(ϑ), (3.10)

where Lb is independent of % and x0.
(ii) In what follows we shall use extensively the family of tensor fields

Kb,ε(x; x0) := Kb(x;x0) +∇wb,ε(x− x0), (3.11)

with

wb,ε(x) = lim
R→∞

wb,ε,R(x) =
(λ + µ) ε2

2π(λ + 2µ)|x|4
{
(b · x⊥)x + (b · x)x⊥

}
.

(3.12)
which have the property that Div C[E(Kb,ε)] = 0 on R2 \ Bε(x0), and
C[E(Kb,ε)]n = 0 on ∂Bε(x0). Notice also that wb,ε → 0 uniformly on
compacta in R2 \ {x0}.

4. Existence for systems of dislocations in a bounded domain. In this
section we study the asymptotic behavior as ε → 0+ of the solutions of the minimiza-
tion problem

min
H∈H(b1,...,bN ;Ωε)

∫

Ωε

W (E(H))) da,

where, we recall,

H(b1, . . . , bN ; Ωε) =

{
H ∈ H(Curl 0; Ωε) :

∫

∂Bε(xi)

Ht ds = bi, i = 1, . . . , N

}
,

and where x1, . . . , xN and b1, . . . , bN are given sets of points in Ω and of Burgers
vectors, respectively. The main result of this section is the following

Theorem 4.1. Assume that the elasticity tensor C satisfies condition (2.3).
Then the minimization problem

min
H∈H(b1,...,bN ;Ωε)

∫

Ωε

W (E(H))) da, (4.1)
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admits a unique solution, modulo an infinitesimal rigid-body motion, Hε which con-
verges as ε → 0, strongly in L2

loc(Ω \ ∪N
i=1{xi};R2×2), to a solution, in the distribu-

tional sense, of the system
{

CurlH =
∑N

i=1 bi δxi

DivC[E(H)] = 0
in Ω. (4.2)

The proof of the previous theorem is divided in several lemmas. We begin by
recalling that any tensor field H ∈ H(b1, . . . , bN ; Ωε) can be written as the sum of a
given tensor field in H(b1, . . . , bN ; Ωε) and the gradient of a vector field. In particular,
we may choose

H =
N∑

i=1

Ki,ε +∇u, (4.3)

with u ∈ H1(Ωε;R2) and (cf. (3.5))

Ki,ε(x) := Kbi,ε(x;xi). (4.4)

Notice that Ki,ε satisfies the Euler equations (2.10) on R2 \Bε(xi), i.e.,
{

Div C[E(Ki,ε)] = 0 in R2 \Bε(xi),
C[E(Ki,ε)]n = 0 on ∂Bε(xi),

Also,
∫

∂Bε(xi)
Ki,εt ds = bi.

Inserting (4.3) into the energy functional (2.8) and applying the divergence the-
orem we obtain

Jε(H) =
N∑

i=1

Jε(Ki,ε) +
N−1∑

i=1

N∑

j=i+1

∫

Ωε

C[E(Ki,ε)] ·Kj,ε da + Iε(u), (4.5)

with

Iε(u) :=
∫

Ωε

W (E(u)) da +
N∑

i=1

∫

∂Ω

u · T i,εn ds−
N∑

i=1

∑

j 6=i

∫

∂Bε(xi)

u · T j,εn ds, (4.6)

and where T i,ε := C[E(Ki,ε)].
Hence, granted the decomposition (4.5), for ε fixed, the minimization problem

(4.1) is equivalent to the problem
(Mu,ε): Minimize the functional Iε over all displacement fields u ∈ H1(Ωε;R2),
i.e., find the solutions of

min
u∈H1(Ωε;R2)

Iε(u). (4.7)

In view of (4.3), (4.5), and the invariance of the functional Jε with respect to
infinitesimal rigid-body motions, it is clear that to minimize the functional Iε over
all displacement fields u ∈ H1(Ωε;R2) is equivalent to minimize Iε over all u ∈
H1(Ωε;R2) such that

∫

B

u da = 0,

∫

Ωε

(∇u− (∇u)>) da = 0, (4.8)

10



for a fixed ball B ⊂ Ωε. Conditions (4.8) guarantee the coerciveness of the functional
Iε and in turn the existence of minimizers. Indeed we have the following lemma:

Lemma 4.2. Assume that the elasticity tensor C satisfies condition (2.3). Then
there exists two positive constants c1 and c2 independent of ε such that

Iε(u) ≥ c1‖u‖2H1(Ωε;R2) − c2‖u‖H1(Ωε;R2), (4.9)

for every uε ∈ H1(Ωε;R2) satisfying the constraint (4.8). Moreover for every ε the
minimization problem

min
u∈H1(Ωε;R2)

Iε(u)

admits a unique solution uε ∈ H1(Ωε;R2) satisfying (4.8) and such that

‖uε‖H1(Ωε;R2) ≤ M, (4.10)

for some positive constant M independent of ε.
Proof. By the positive definiteness of the elasticity tensor C, for u ∈ H1(Ωε;R2),

Iε(u) ≥ K0

∫

Ωε

|E(u)|2 da−
N∑

i=1

sup
∂Ω

|T i,ε|
∫

∂Ω

|u| ds (4.11)

−
N∑

i=1

∑

j 6=i

sup
∂Bε(xi)

|T j,ε|
∫

∂Bε(xi)

|u| ds. (4.12)

By Korn’s inequality (see Proposition 6.8) there exists a constant c3, independent of
ε, such that

∫

Ωε

|E(uε)|2 da ≥ c3‖uε‖2H1(Ωε;R2). (4.13)

Now, by Proposition 6.9
∫

∂Ω

|uε| ds ≤ c4‖uε‖H1(Ωε;R2), and
∫

∂Bε(xi)

|uε| ds ≤ c4‖uε‖H1(Ωε;R2), (4.14)

with c4 independent of ε. Moreover,

sup
∂Bε(xi)

|T j,ε| ≤ c5, j 6= i, (4.15)

with c5 independent of ε.
Combining (4.12), (4.13), (4.14) and (4.15) yields (4.9). In turn, since the func-

tional Iε is convex and Iε(0) = 0 the remaining of the proof follows immediately.

We now study the asymptotic behavior of the minimizers uε.
Lemma 4.3. Assume that the elasticity tensor C satisfies condition (2.3). Let

uε ∈ H1(Ωε;R2) be the unique solution of

min
u∈H1(Ωε;R2)

Iε(u)

11



satisfying (4.8). Then as ε → 0 the sequence {uε} converges strongly in H1
loc(Ω \

∪N
i=1{xi};R2) to a solution u0 of the minimization problem

min
u∈H1(Ω;R2)

I0(u). (4.16)

Here

I0(u) :=
∫

Ω

W (E(u)) da +
N∑

i=1

∫

∂Ω

u · T in ds, (4.17)

where T i := C[E(Ki)] and

Ki(x) := Kbi
(x; xi) (4.18)

is the fundamental solution defined in (3.3). Moreover,

Iε(uε) → I0(u0). (4.19)

Proof. By Proposition 6.10, we can extend uε to Ω in such a way that

‖uε‖H1(Ω;R2) ≤ cM,

where M is the constant given by (4.10). Hence there exists a subsequence of {uε}
not relabelled, such that

uε ⇀ u0 in H1(Ω;R2),

for some u0 ∈ H1(Ω;R2). By Hölder’s inequality,
∣∣∣∣∣
∫

∂Bε(xi)

uε · T j,εn ds

∣∣∣∣∣

2

≤
∫

∂Bε(xi)

|uε|2ds

∫

∂Bε(xi)

|T j,ε|2ds ≤ εc sup
Bε(xi)

|T j,ε|2M2,

(4.20)
which vanishes as ε → 0, and where we have used Proposition 6.9, (4.10) and the fact
that T j,ε → T j uniformly on Bε(xi). K is a positive real constant. Hence

lim
ε→0

∫

∂Bε(xi)

uε · T j,εn ds = 0. (4.21)

Fix now ε0 > 0. For ε < ε0, by (4.6),

Iε(uε) ≥
∫

Ωε0

W (E(uε)) da +
N∑

i=1

∫

∂Ω

uε · T i,εn ds−
N∑

i=1

∑

j 6=i

∫

∂Bε(xi)

uε · T j,εn ds.

Letting ε → 0+, by standard lower semicontinuity results and (4.21), we obtain that

lim inf
ε→0+

Iε(uε) ≥
∫

Ωε0

W (E(u0)) da +
N∑

i=1

∫

∂Ω

u0 · T in ds.

Letting ε0 → 0+ we get

lim inf
ε→0+

Iε(uε) ≥ I0(u0).

12



On the other hand, since

Iε(uε) ≤ Iε(u0),

we also have that

lim sup
ε→0+

Iε(uε) ≤ I0(u0).

Hence

lim
ε→0+

Iε(uε) = I0(u0). (4.22)

To prove strong convergence, notice that (4.19) implies that

lim
ε→0+

∫

Ωε

W (E(uε)) da =
∫

Ω

W (E(u0)) da,

from which we conclude that, as in Evans [15],

lim
ε→0+

∫

Ωε

|E(uε)−E(u)|2 da = 0,

and strong convergence of uε in H1
loc(Ω;R2) follows from Korn’s inequality.

Now we claim that u0 minimizes I0. Indeed for any u ∈ H1(Ω;R2) we have that

Iε(u) ≥ Iε(uε),

so that letting ε → 0+ and using (4.19),

I0(u) ≥ I0(u0).

Next we claim that u0 satisfies
∫

B

u0da = 0,

∫

Ω

(∇u0 − (∇u0)>) da = 0, (4.23)

The first constraint follows immediately from (4.8), since {uε} converges strongly in
H1

loc(Ω \ ∪N
i=1{xi};R2) to u0. To prove the second constraint, let Sε := 1

2 (∇uε −
(∇uε)>) and S0 = 1

2 (∇u0 − (∇u0)>), and notice that Sε → S0 strongly in L2
loc(Ω \

∪N
i=1{xi};R2×2). Now, denote by S̃ε the extension of Sε to zero on Ω. Then,

since ‖∇uε‖L2(Ωε;R2×2) is bounded independently of ε, it follows that the sequence
‖S̃ε‖L2(Ω;R2×2) is bounded, so that S̃ε ⇀ S̃0 in L2(Ω;R2×2) for some S̃0 ∈ L2(Ω;R2×2).
Hence, also S̃ε ⇀ S̃0 weakly in L2

loc(Ω \ {x0};R2×2), and S̃0 = S0. By weak conver-
gence,

0 =
∫

Ωε

Sεda =
∫

Ω

S̃εda →
∫

Ω

S0da,

and the claim follows. Since the minimization problem

min
u∈H1(Ω;R2)

I0(u),

13



admits a unique solution modulo an infinitesimal rigid-body displacement, we con-
clude that all sequences uε converge strongly to u0.

We are now ready to conclude the proof of Theorem 4.1.
Proof. [Proof of Theorem 4.1] Let uε ∈ H1(Ωε;R2) be the unique solution of

min
u∈H1(Ωε;R2)

Iε(u)

satisfying (4.8). It suffices to define

Hε :=
N∑

i=1

Ki,ε +∇uε.

Since, by Proposition 3.1, Ki,ε → Ki uniformly on compact subsets of R2 \ {xi} the
proof is concluded.

5. The renormalized energy. In this section we prove a sharp estimate for
the minimum energy

min
H∈H(b1,...,bN ;Ωε)

∫

Ωε

W (E(H))) da,

as the core radius ε → 0, and compute the renormalized energy which, being a
function of the defect position only, allows to study the equilibrium configurations of
the defects and the force acting on them.

Let Ω a bounded domain with the cone property as before, let S = {x1, . . . , xN}
be a system of dislocations in Ω, and let

R̄ :=
1
4

min{|x− y| : x 6= y, (x,y) ∈ S × (S ∪ ∂Ω)}. (5.1)

The main result of this section is the following
Theorem 5.1. Assume that the elasticity tensor C satisfies condition (2.3). Let

Hε ∈ H(b1, · · · , bN ; Ωε) be a solution of

min
H∈H(b1,...,bN ;Ωε)

∫

Ωε

W (E(H))) da,

for a system of dislocations with Burgers vectors bi. Then

∫

Ωε

W (E(Hε))) da =
N∑

i=1

µ(λ + µ)
4π(λ + 2µ)

|bi|2 ln
1
ε

+ F (x1, . . . , xN ) + c + O(ε), (5.2)

where

F (x1, . . . , xN ) = Fself(x1, . . . , xN ) + Fint(x1, . . . , xN ) + Felastic(x1, . . . , xN ), (5.3)
14



is the renormalized energy, with




Fself(x1, . . . , xN ) =
N∑

i=1

∫

Ω\BR(xi)

W (E(Ki)) da +
N∑

i=1

µ(λ + µ)
4π(λ + 2µ)

|bi|2 ln R,

Fint(x1, . . . , xN ) =
N−1∑

i=1

N∑

j=i+1

∫

Ω

C[E(Ki)] ·E(Kj) da,

Felastic(x1, . . . , xN ) =
∫

Ω

W (E(u0)) da +
N∑

i=1

∫

∂Ω

u0 · T in ds,

(5.4)
where Ki(x) := Kbi

(x; xi) is the fundamental solution defined in (3.3), the function
u0 is defined in Lemma 4.3, c is a constant independent of x1, . . . , xN and 0 < R < R̄
is arbitrary. Moreover Fself is independent of R.

Proof.
Consider the fundamental solution Ki(x) := Kbi

(x; xi) defined (3.3): by (3.10)
we may write

Ki(%i, ϑi) =
1
% i

Li(ϑi), (5.5)

where (%i, ϑi) are polar coordinates centered at xi, and Li(ϑi) is independent of %i

and is defined by (3.10), with b replaced by bi. A straightforward computation using
(3.8) and (3.9) yields

ai :=
∫ 2π

0

W (E(Li(ϑ))) dϑ =
µ(λ + µ)

4π(λ + 2µ)
|bi|2. (5.6)

By (4.5) we can write the minimum energy in the form

Jε(Hε) = Iε(uε) +
N∑

i=1

Jε(Ki,ε) +
N−1∑

i=1

N∑

j=i+1

∫

Ωε

C[E(Ki,ε)] ·Kj,ε da. (5.7)

where Iε(uε) is the functional defined by (4.6).
Notice first that the representation of the elastic contribution Felastic in (5.4)3

follows immediately from (4.19).
We now compute the self-energy contribution Fself : fix R < R̄ and write

Jε(Ki,ε) =
∫

Ωε\BR(xi)

W (E(Ki,ε)) da +
∫

Cε,R(xi)

W (E(Ki,ε)) da, (5.8)

with Cε,R(xi) = BR(xi) \Bε(xi).
Now, as ε → 0, by uniform-on-compacta convergence of Ki,ε on R2 \ {xi},

∫

Ωε\BR(xi)

W (E(Ki,ε)) da →
∫

Ω\BR(xi)

W (E(Ki)) da. (5.9)

Moreover, writing as in (3.11) Ki,ε = Ki+∇wε, with wε → 0 uniformly on compacta
in R2 \ {xi}, we have

∫

Cε,R(xi)

W (E(Ki,ε)) da =
∫

Cε,R(xi)

W (E(Ki)) da +
∫

Cε,R(xi)

C[E(Ki)] · ∇wε da
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+
∫

Cε,R(xi)

W (E(wε)) da,

and, by (5.5), the first integral on the right hand side of this identity gives
∫

Cε,R(xi)

W (E(Ki)) da = ai(lnR− ln ε), (5.10)

while the second and third integral may be written as
∫

∂BR(xi)

wε · C[E(Ki) +
1
2
E(wε)]n ds−

∫

∂Bε(xi)

wε · C[E(Ki) +
1
2
E(wε)]n ds

=
∫

∂BR(xi)

wε · C[E(Ki) +
1
2
E(wε)]n ds− 1

2

∫

∂Bε(xi)

wε · C[E(Ki)]n ds (5.11)

where we have used the fact that C[E(wε)]n = −C[E(Ki)]n on ∂Bε(xi), since
C[E(Ki,ε)]n = 0 on ∂Bε(xi). The first integral on the right hand side of the above
expression vanishes as ε → 0, while by (3.12) we may write

wε(%i, ϑi) =
ε2

%2
i

w̄(ϑi),

which, in conjunction with (5.5), shows that

−1
2

∫

∂Bε(xi)

wε · C[E(Ki)]n ds = −1
2

∫ 2π

0

w̄(ϑ) · C[E(Li(ϑ))]n dϑ = c,

with c a constant independent of (x1, . . . , xN ). To summarize, (5.11) converges, as
ε → 0, to a constant c independent of R and xi. Note that this is the constant which
appears in (5.2).

Notice that Fself is independent of R, since, for R′ < R̄, say R′ < R,
∫

Ω\BR′ (xi)

W (E(Ki)) da + ai ln R′

=
∫

Ω\BR(xi)

W (E(Ki)) da +
∫

CR′,R(xi)

W (E(Ki)) da + ai ln R′

=
∫

Ω\BR(xi)

W (E(Ki)) da + ai ln
R

R′
+ ai ln R′

=
∫

Ω\BR(xi)

W (E(Ki)) da + ai ln R.

We finally compute the contribution of the interaction term Fint to the renormal-
ized energy, and prove that

∫

Ωε

C[E(Ki,ε)] ·E(Kj,ε) da =
∫

Ω

C[E(Ki)] ·E(Kj) da + O(ε). (5.12)

To see this, let as before Ki,ε = Ki +∇wi,ε and Kj,ε = Kj +∇wj,ε (cf. (3.11)), so
that
∫

Ωε

C[E(Ki,ε)] ·E(Kj,ε) da =
∫

Ωε

C[E(Ki)] ·E(Kj) da +
∫

Ωε

C[E(Ki)] · ∇wj,ε da
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+
∫

Ωε

C[E(Kj)] · ∇wi,ε da +
∫

Ωε

C[E(wi,ε)] · ∇wj,ε da.

It can be easily proved that
∫

Ωε

C[E(Ki)] ·E(Kj) da →
∫

Ω

C[E(Ki)] ·E(Kj) da,

while, applying the divergence theorem, the last three integrals become
∫

∂Ω

(wj,ε · C[E(Ki)]n + wi,ε · C[E(Kj)]n + wj,ε · C[E(wi,ε)]n) da

−
N∑

k=1

∫

∂Bε(xk)

(wj,ε · C[E(Ki)]n + wi,ε · C[E(Kj)]n + wj,ε · C[E(wi,ε)]n) da.(5.13)

Now, recall that wi,ε → 0 uniformly on compacta in R2 \ {xi} (see Remark 3.2(ii)),
so that the integrals over ∂Ω and ∂Bε(xk), with k 6= i, j vanish in the limit as ε → 0,
and (5.13) becomes

−
∫

∂Bε(xi)

(wj,ε · C[E(Ki)]n + wi,ε · C[E(Kj)]n + wj,ε · C[E(wi,ε)]n) da

−
∫

∂Bε(xj)

(wj,ε · C[E(Ki)]n + wi,ε · C[E(Kj)]n + wj,ε · C[E(wi,ε)]n) da,(5.14)

which tends to 0 as ε → 0. Consider in fact the first term: then
∣∣∣∣∣
∫

∂Bε(xi)

wj,ε · C[E(Ki)]n da

∣∣∣∣∣ ≤ C sup
Bε(xi)

|wj,ε|
∫

∂Bε(xi)

|C[E(Ki)]n| da

≤ sup
Bε(xi)

|wj,ε|
∫

∂Bε(xi)

|Ki| da → 0,

by uniform convergence of wj,ε. Consider now the second term in (5.14): as before,
we may write

wi,ε(%i, ϑi) =
ε2

%2
i

w̄i(ϑi),

so that, since Kj is continuous at xi,
∣∣∣∣∣
∫

∂Bε(xi)

wi,ε · C[E(Kj)]n ds

∣∣∣∣∣ ≤ sup
Bε(xi)

|C[E(Kj)]|
∫

∂Bε(xi)

|w̄i| ds → 0

as ε → 0, since w̄i is bounded. The remaining terms in (5.14) can be treated analo-
gously, and this completes the proof of (5.2).

Proposition 5.2. The interaction energy Fint in (5.4)2 diverges logarithmically
with the relative distance between the defects:

Fint(x1, . . . , xN ) =
N−1∑

i=1

N∑

j=i+1

µ(λ + µ)
π(λ + 2µ)

bi · bj ln
1

|xi − xj | + O(1), (5.15)
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as |xi − xj | → 0.
Proof.
Recall that Ki ∈ L1(Ω;R2×2) for each i, and

Fint(x1, . . . , xN ) =
N−1∑

i=1

N∑

j=i+1

∫

Ω

C[E(Ki)] ·E(Kj) da,

let xi,xj ∈ Ω, and γ a line segment parallel to xj − xi connecting xj to ∂Ω (cf.
Figure 5.1), so that γ = {x ∈ Ω : x = xj + s(xj −xi)}, with s ∈ [0, s̄]. Let moreover

m =
(

xj−xi

|xj−xi|
)⊥

be the unit vector orthogonal to γ. Consider the tensor field Kj :
while Ω \ {xj} is not simply connected, Ω \ γ is, so that there exists a field wj on
Ω \ γ such that Kj = ∇wj , and

[[wj ]] = −bj ,

where [[wj ]] is the jump of wj across γ, defined by

[[wj ]](x) := lim
y→x, y·m>0

wj(y)− lim
y→x, y·m<0

wj(y)

for x ∈ γ. Applying the divergence theorem to Ω\γ, and noting that ∂(Ω\γ) = ∂Ω∪γ,
we find

∫

Ω

C[E(Ki)] ·Kj da =
∫

Ω\γ
C[E(Ki)] · ∇wj da

=
∫

∂Ω

wj · C[E(Ki)]n ds−
∫

γ

[[wj ]] · C[E(Ki)]m ds.

The first integral in the above expression remains bounded as xi − xj → 0, since
Ki(x) = Kbi(x; xi) → Kbi(x; xj) uniformly on ∂Ω as xj − xj → 0. As to the
second integral, write Ki = 1

%i
Li(ϑi), and choose s = %i − d, ϑi = ϑ̄ on γ with

d = |xj − xi|: then

−
∫

γ

[[wj ]] · C[E(Ki)]m ds =
∫ s̄

0

bj · C[E(Li(ϑ̄))]m
1

d + s
ds

= bj · C[E(Li(ϑ̄))]m
(

ln
1
d

+ ln(d + s̄)
)

,

which proves (5.15) since by a straightforward computation using (3.8) and (3.9) we
have

bj · C[E(Li(ϑ̄))]m =
µ(λ + µ)
π(λ + 2µ)

bi · bj .

6. The force on a dislocation. We prove in this section that the derivative of
the renormalized energy with respect to defect position coincides with the resultant
of the Eshelby stress

C = W (E(H))1−H>C[E(H)], (6.1)
18
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on the dislocation 7.
In order to highlight the dependence of the minimizers on the location of the

dislocations, we write

u0(x;x1, . . . , xN ),

for a minimizer of I0 relative to a system of dislocations located at (x1, . . . , xN ) in
Ω, and

H0 = H0(x;x1, . . . , xN ) :=
N∑

i=1

Kbi(x;xi) +∇u0(x;x1, . . . , xN ) (6.2)

for the corresponding solution of (4.2) as in Theorem 2.1. Let also h ∈ R2 be a fixed
vector and t ∈ I ⊂ R a real parameter.

Lemma 6.1. The field Kbi(x; xi), u0(x; x1, . . . , xN ) and H0(x; x1, . . . , xN ) are
smooth with respect to xi for i ∈ {1, . . . , N}.

In particular,

K̇i(x) :=
d

dt
Kbi(x; xi + th)

∣∣∣∣
t=0

= −∇ (Kbi(x; xi)h) = −∇ (Ki(x)h) . (6.3)

Moreover, if for a fixed k ∈ {1, . . . , N} we denote by u̇0 and Ḣ0 the smooth fields
such that

u̇0(x) :=
d

dt
u0(x; x1, . . . , xk + th, . . . , xN )

∣∣∣∣
t=0

,

Ḣ0(x) :=
d

dt
H0(x; x1, . . . , xk + th, . . . , xN )

∣∣∣∣
t=0

,

then

Ḣ0 = ∇w, with w = u̇0 −Kkh. (6.4)

7Here 1 is the identity tensor.

19



Proof. Smoothness of Ki follows upon recalling that Kbi
(x; xi) is a smooth

function of x−xi (cf. (3.3)). This implies that Kbi
(x; xi + th) = Kbi

(x− th;xi) =
Ki(x− th), so that

K̇i(x) = −∇(Ki(x))h,

where ∇(Ki)h is the tensor field defined by the identity [∇(Ki)h]z = [∇(Kiz)]h for
any constant vector z ∈ R2. Since Curl Ki = 0 in R2 \ {xi},

∇(Ki)h = ∇(Kih),

which yields (6.3)
Now, since u0 minimizes the functional I0, and satisfies the corresponding Euler

equations, it may be written in the form

u0(x; x1, . . . , xN ) =
∫

∂Ω

G(x, ξ)

(
N∑

i=1

T i(ξ; x1, . . . , xN )n(ξ)

)
daξ, (6.5)

modulo an infinitesimal rigid body motion, where G(x, ξ) is the Green’s function for
the Neumann problem in plane elasticity. Since

N∑

i=1

T i(x;x1, . . . , xN ) =
N∑

i=1

C[E(Kbi(x; xi))]

the smoothness of uo follows from the smoothness of Ki.
Finally, the smoothness of H0 follows from (6.2), and (6.4) can be directly verified.

Lemma 6.2. Let f = f(x, t), g = g(x, t), r = r(x, t), be smooth functions defined
on BR(x0 + th), ∂BR(x0 + th) and Ω \BR(x0 + th) for t ∈ I ⊂ R respectively, with
R > 0 and h a constant vector. Then

d

dt

∫

BR(x0+th)

f(x, t) da

∣∣∣∣∣
t=0

=
∫

BR(x0)

Dtf(x, 0) da

=
∫

BR(x0)

∂tf(x, 0) da +
∫

∂BR(x0)

f(x, 0) h · n ds, (6.6)

and

d

dt

∫

∂BR(x0+th)

g(x, t) ds

∣∣∣∣∣
t=0

=
∫

∂BR(x0)

Dtg(x, 0) ds. (6.7)

Moreover,

d

dt

∫

Ω\BR(x0+th)

r(x, t) da

∣∣∣∣∣
t=0

=
∫

Ω\BR(x0)

∂tr(x, 0) da−
∫

∂BR(x0)

r(x, 0)h · n ds,

(6.8)
where

Dtf = ∂tf +∇f · h. (6.9)
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Proof. The first identity follows upon applying the classical theorem of derivation
under the integral

d

dt

∫

BR(x0+th)

f(x, t) da =
d

dt

∫

BR(x0)

f(x + th, t) da

=
∫

BR(x0)

(∂tf(x + th, t) + h · ∇f(x + th, t)) da;

letting t = 0 and using the divergence theorem we obtain (6.6). Relation (6.7) follows
from a similar argument. To prove (6.8), denote by r̂(x, t) a smooth extension of
r(x, t) to Ω for all t ∈ I. Then

d

dt

∫

Ω\BR(x0+th)

r(x, t) da =
d

dt

∫

Ω

r̂(x, t) da− d

dt

∫

BR(x0+th)

r̂(x, t) da

=
∫

Ω

∂tr̂(x, t) da−
∫

BR(x0+th)

∂tr̂(x, t) da

−
∫

∂BR(x0+th)

r̂(x, t)h · n ds

=
∫

Ω\BR(x0+th)

∂tr̂(x, t) da−
∫

∂BR(x0+th)

r̂(x, t)h · n ds,

which proves the assertion.
The next theorem, one of our main results, shows that the derivative of the

renormalized energy coincides with the force on a dislocation and thus, as mentioned
in the introduction, it may be viewed as the generalization of Eshelby’s notion of force
on a defect, when bad singularities are associated to the defect itself.

Theorem 6.3. Let H0 be defined by (6.2), and let F = F (x1, . . . , xN ) be the
renormalized energy (5.3): then

∇xk
F = −

∫

∂BR(xk)

{
W (E(H0))1−H>

0 C[E(H0)]
}

n ds (6.10)

for R < R̄, where R̄ is defined in (5.1).
Proof. The first step is to rewrite the renormalized energy as the sum of two

contributions:

F (x1, . . . , xN ) = FR(x1, . . . , xN ) + G(x1, . . . , xN ), (6.11)

where we have omitted the constant logarithmic term and

FR(x1, . . . , xN ) =
∫

ΩR

W (E(H0)) da, (6.12)

and

G(x1, . . . , xN ) =
N∑

i=1

∑

h 6=i

∫

BR(xh)

W (E(Ki)) da +
N∑

h=1

N−1∑

i=1

N∑

j=i+1

∫

BR(xh)

C[E(Ki)] ·Kj da

+
N∑

h=1

∫

BR(xh)

W (E(u0)) da +
N∑

h=1

N∑

i=1

∫

∂BR(xh)

u0 · C[E(Ki)]n da.(6.13)
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Consider now a variation of the position of the k-th dislocation of the form xk →
xk + th, with h a fixed vector. Then

d

dt
FR(x1, . . . , xk + th, . . . , xN )

∣∣∣∣
t=0

=
d

dt

∫

ΩR\(BR(x1)∪···∪BR(xk+th)∪···∪BR(xN ))

W (E(H0(x;x1, . . . , xk + th, . . . , xN ))) da

∣∣∣∣∣
t=0

and applying Lemma 6.2 we obtain
∫

ΩR

C[E(H0)] · Ḣ0 da−
∫

∂BR(xk)

W (E(H0))h · n ds.

Recalling now Lemma 6.1, writing Ḣ0 = ∇w, applying the divergence theorem and
recalling that C[E(H0)]n = 0 on ∂Ω this becomes

∫

ΩR

C[E(H0)] · ∇w da−
∫

∂BR(xk)

W (E(H0))h · n ds

= −
N∑

i=1

∫

∂BR(xi)

w · C[E(H0)]n ds−
∫

∂BR(xk)

W (E(H0))h · n ds,

which in turn equals

−
∫

∂BR(xk)

h · (W (E(H0))1−H>
0 C[E(H0)])n ds

−
∫

∂BR(xk)

(w + H0h) · C[E(H0)]n ds−
∑

i 6=k

∫

∂BR(xi)

w · C[E(H0)]n ds.

The first term is the resultant of the Eshelby stress on the k-th dislocation, while the
second and third term may be written as

−
∫

∂BR(xk)

(u̇0 + (∇u0)h +
∑

i 6=k

Kih) · C[E(H0)]n ds

−
∑

i 6=k

∫

∂BR(xi)

(u̇0 −Kkh) · C[E(H0)]n ds. (6.14)

since w = u̇0 −Kkh and

w + H0h = u̇0 −Kkh +

(∑

i

Ki +∇u0

)
h = u̇0 + (∇u0)h +

∑

i 6=k

Kih.

We now prove that (6.14) cancels with the derivative of (6.13), i.e.,

d

dt
G(x1, . . . , xk + th, . . . , xN )

∣∣∣∣
t=0

.

In fact, rewriting (6.13) as the sum of the terms

∫

BR(xk)





∑

i 6=k

W (E(Ki)) +
∑

i<j

C[E(Ki)] ·Kj + W (E(u0))



 da
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+
∫

∂BR(xk)

∑

i

(u0 · C[E(Ki)]n) ds, (6.15)

and

∑

h 6=k

∫

BR(xh)





∑

i 6=h

W (E(Ki)) +
∑

i<j

C[E(Ki)] ·Kj + W (E(u0))



 da

+
∑

h6=k

∫

∂BR(xh)

∑

i

(u0 · C[E(Ki)]n) ds, (6.16)

and computing the derivative of (6.15) with respect to t and using Lemma 6.2, we
find

∫

BR(xk)





∑

i6=k

C[E(Ki)] ·DtKi +
∑

i<j

C[E(Ki)] ·DtKj

+
∑

i<j

C[E(Kj)] ·DtKi + C[E(u0)] · ∇(Dtu0)



 da

+
∫

∂BR(xk)

{∑

i

u0 · C[E(DtKi)]n +
∑

i

Dtu0 · C[E(Ki)]n

}
ds,

where DtKj := K̇j + ∇(Kj)h and Dtu0 = u̇0 + (∇u0)h. Since DtKk = 0 and
DtKj = ∇(Kj)h = ∇(Kjh) for j 6= k (since K̇j = 0 for j 6= k), using the divergence
theorem and noting that DivC[E(DtKi)] = 0 on R2 \ {xi}, we find

∫

∂BR(xk)



Dtu0 · C[E(H0)]n +

∑

i6=k

(Kih) · C[E(u0)]n

+
∑

i 6=k

(Kih) · C[E(Ki)]n +
∑

i 6=k

∑

j 6=i

(Kih) · C[E(Kj)]n



 ds,

which becomes finally
∫

∂BR(xk)

(Dtu0 +
∑

i 6=k

Kih) · C[E(H0)]n ds. (6.17)

Consider now the derivative of (6.16) with respect to t: using Lemma 6.2, we find

∑

h 6=k

∫

BR(xh)



C[E(Kk)] · K̇k +

∑

i6=k

C[E(Ki)] · K̇k + C[E(u0)] · ∇u̇0



 da

+
∑

h6=k

∫

∂BR(xh)

{
u0 · C[E(K̇k)]n +

∑

i

u̇0 · C[E(Ki)]n

}
ds,

and using the fact that DivC[E(K̇k)] = 0 on R2 \ {xk}, and K̇k = −∇(Kkh) we
finally obtain

∑

h6=k

∫

∂BR(xh)

(u̇0 −Kkh) · C[E(H0)]n ds. (6.18)
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Relation (6.10) follows now upon noting that the sum of (6.14), (6.17) and (6.18)
vanishes.

Appendix: Poincaré and Korn inequalities for Ωε. The basic tool to study
the compactness of a sequence of minimizers of problem (2.9) is Korn’s inequality: we
prove here that, for a perforated domain such as Ωε, under mild regularity assump-
tions, Korn’s and Poincaré’s inequalities hold uniformly in ε as ε → 0. Also, we show
that the trace constant for Ωε may be chosen independent of ε.

We begin by proving that Poincaré’s inequality holds for each domain Ωε uni-
formly in ε, when Ω has the cone property.

Proposition 6.4. Let Ω be a bounded open connected domain in R2 with the
cone property: then, for any u ∈ H1(Ωε;R2),

∫

Ωε

|u− uB |2 dx ≤ c

∫

Ωε

|∇u|2 dx, (6.19)

where

uB :=
1
|B|

∫

B

u da, (6.20)

B is any fixed ball contained in Ω \ {x1, . . . , xN}, and the constant c is independent
of ε (but may depend on Ω \ {x1, . . . , xN} and B).

Proof. Fix R > 2ε so small that BR(xi) ⊂ Ω \ B for any i = 1, ..., N , BR(xi) ∩
BR(xj) = ∅ for i 6= j, and decompose Ωε as the union of the annuli Cε, R

2
(xi) =

BR
2
(xi) \ Bε(xi) and its complement Ω′, which is independent of ε. Since Ω′ is still

connected and has the cone property, by the classical Poincaré’s inequality we may
find a constant c depending on Ω′ and B such that

∫

Ω′
|u− uB |2 dx ≤ c

∫

Ω′
|∇u|2 dx. (6.21)

For each fixed i = 1, . . . , N let (%, ϑ) be polar coordinates centered at xi: for L1 a.e.
ε ≤ s ≤ % < R and θ ∈ [0, 2π] we have

u (s, ϑ) = u (%, ϑ)−
∫ %

s

∂u

∂%
(r, ϑ) dr

from which it follows, by Hölder’s inequality,

|u (s, ϑ)|2 ≤ 2 |u (%, ϑ)|2 + 2R

∫ R

s

∣∣∣∣
∂u

∂%
(r, ϑ)

∣∣∣∣
2

dr.

Integrating with respect to ϑ and multiplying by s yield
∫ 2π

0

s |u (s, ϑ)|2 dϑ ≤ 2
∫ 2π

0

% |u (%, ϑ)|2 dϑ + 2R

∫

Cε,R(xi)

|∇u|2 da, (6.22)

where we have used the fact that s ≤ %, r. By integrating first with respect to s in
[ε, R

2 ] and then to % in [R
2 , R] we obtain

∫

C
ε, R

2
(xi)

|u|2 da ≤ 2
∫

C R
2 ,R

(xi)

|u|2 da + 2R

∫

Cε,R(xi)

|∇u|2 da.
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If we now replace u with u− uB in the previous inequality we get
∫

C
ε, R

2
(xi)

|u− uB |2 da ≤ 2
∫

C R
2 ,R

(xi)

|u− uB |2 da + 2R

∫

Cε,R(xi)

|∇u|2 da,

which together with (6.21) and the fact that CR
2 ,R ⊂ Ω′ concludes the proof.

We now turn to Korn’s inequality: first of all we notice that, if Ω has the cone
property then for all ε > 0 Ωε has the cone property, the following version of this
inequality holds ( Friedrichs (1947), [26]):

Proposition 6.5. [Korn’s inequality I] Let Ω ⊂ R2 be an open bounded
connected domain with the cone property, and u ∈ H1(Ωε;R2) such that

∫

Ωε

(∇u− (∇u)>
)

da = 0; (6.23)

then there exists a constant cε such that
∫

Ωε

|∇u|2da ≤ cε

∫

Ωε

|E(u)|2da. (6.24)

We continue to denote by cε the infimum of all constants satisfying (6.24), and refer
to it as Korn’s constant for Ωε. The following result shows that cε is bounded from
above independently of ε as ε → 0.

Proposition 6.6. Let cε be Korn’s constant for Ωε as defined in (6.24): then
there exists a constant c < ∞, independent of ε (but possibly depending on Ω), such
that

cε ≤ c, (6.25)

for all ε > 0.
Proof. Consider first the case N = 1, and let x1 = 0, so that Ωε = Ω \ Bε(0).

The proof follows from two results of [10]. The first result states that the minimum
value for Korn’s constant of the annulus Cε,R(0) with internal radius ε and external
radius R (under the constraint (6.23)) is

4
[
1−

(
3R2ε2

R4 + R2ε2 + ε4

)]−1

, (6.26)

which tends to Korn’s constant for the circle c = 4 as ε → 0. The second result states
that, if Korn’s inequality (6.23)-(6.24) holds for two open bounded domains Ω1 and
Ω2 such that |Ω1 ∩ Ω2| > 0, then it also holds for Ω1 ∪ Ω2, and

c12 ≤ c1 + c2 +
min{|Ω1|, |Ω2|}
|Ω1 ∩ Ω2| (

√
c1 +

√
c2)

2
, (6.27)

with c12, c1 and c2 the Korn’s constants of Ω1 ∪ Ω2, Ω1 and Ω2 respectively.
To prove (6.25), choose R such that 2R < d(0, ∂Ω), let Ω1 = Cε,2R(0) and

Ω2 = Ωε \ Cε,R(0), and apply (6.27): since c2 is independent of ε and, by (6.26),
c1 → 4 as ε → 0, Korn’s constant cε = c12 is bounded from above, and the thesis
follows for N = 1.
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When N > 1, to obtain the thesis it is sufficient to iterate the above procedure:
define





Ω̃0 := Ω \ (∪N
i=1BR(xi)

)
...
Ω̃i := Ω̃i−1 ∪ (B2R(xi) \Bε(xi)) i = 1, . . . , N − 1,
...
Ω̃N := Ωε.

Applying (6.27) to each Ω̃i we obtain

c̃i ≤ c̃i−1 + c̃ε +
min{|Ω̃i−1|, |cε,2R(xi)|}
|Ω̃i−1 ∩ cε,2R(xi)|

(√
c̃i−1 +

√
c̃ε

)2

= c̃i−1 + c̃ε +
4R2 − ε2

3R2

(√
c̃i−1 +

√
c̃ε

)2

,

where c̃i and c̃ε are Korn’s constants for Ω̃i and Cε,2R(xi) respectively. Using the
relation (a + b)2 ≤ 2(a2 + b2), and taking ε = 0, this relation implies

c̃i ≤ 11
3

(c̃i−1 + c̃ε),

which yields in turn

c̃N ≤
(

11
3

)N

c̃0 +

(
N∑

i=1

(
11
3

)i
)

c̃ε.

Since c̃ε is given by (6.26) and is bounded from above, and c̃0 is independent of ε,
this relation shows that cε = c̃N is also bounded from above as ε → 0.

Korn’s inequality extends trivially to displacement fields u which do not satisfy
(6.23):

Corollary 6.7. [Korn’s inequality I′] Let Ω ⊂ R2 be an open bounded con-
nected domain with the cone property, and u ∈ H1(Ωε;R2): then there exists a con-
stant c, independent of ε, such that

∫

Ωε

|∇u−W |2da ≤ c

∫

Ωε

|E(u)|2da, (6.28)

where

W =
1
2

∫

Ωε

(∇u− (∇u)>) da. (6.29)

Combining (6.19), (6.24) and (6.25), we obtain finally the basic inequality
Proposition 6.8. [Korn’s inequality II] Let u ∈ H1(Ωε;R2) such that

∫

Ωε

(∇u− (∇u)>
)

da = 0; (6.30)

then there exists a constant c, independent of ε, such that
∫

Ωε

|u− uB |2da +
∫

Ωε

|∇u|2da ≤ c

∫

Ωε

|E(u)|2da, (6.31)
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where

uB :=
1
|B|

∫

B

u da, (6.32)

and B is any fixed ball contained in Ω \ {x1, . . . , xN}.
We now show that the trace constant for Ωε may be chosen to be independent of

ε.
Proposition 6.9. Let u ∈ H1(Ωε;R2): then there exists a positive constant c,

independent of ε, such that

∫

∂Ωε

|u|2ds ≤ c

(∫

Ωε

|u|2da +
∫

Ωε

|∇u|2da

)
. (6.33)

Proof. Taking s = ε in (6.22) we have

∫

∂Bε(xi)

|u|2ds ≤ 2
∫ 2π

0

% |u (%, ϑ)|2 dϑ + 2R

∫

Cε,R(xi)

|∇u|2 da,

By averaging with respect to % over [ε,R] we obtain
∫

∂Bε(xi)

|u|2ds ≤ 2
R− ε

∫

Cε,R(xi)

|u|2 da + 2R

∫

Cε,R(xi)

|∇u|2 da.

Hence, for ε sufficiently small, there exists a constant c1 such that

∫

∂Bε(xi)

|u|2ds ≤ c1

(∫

Ωε

|u|2 da +
∫

Ωε

|∇u|2 da

)
(6.34)

for each i = 1, . . . , N . Now, let c2 be the trace constant for ΩR, so that

∫

∂Ω

|u|2ds ≤ c2

(∫

ΩR

|u|2 da +
∫

ΩR

|∇u|2 da

)
≤ c2

(∫

Ωε

|u|2 da +
∫

Ωε

|∇u|2 da

)
.

(6.35)
Adding the expressions above we finally obtain the thesis.

Finally, we show that functions in H1(Ωε;R2) can be extended to Ω with extension
constant independent of ε.

Proposition 6.10. Let u ∈ H1(Ωε;R2): then u admits an extension û ∈
H1(Ω,R2) such that

‖û‖H1(Ω,R2) ≤ c‖u‖H1(Ωε;R2), (6.36)

where the constant c is independent of ε.
Proof. First notice that, using a partition of unity, we may assume that u ∈

H1(R2 \Bε(0);R2), and u = 0 outside a compact in R2. Let

û(x) =





u

(
ε2

|x|2 x

)
x ∈ Bε(0),

u(x) x ∈ R2 \Bε(0),
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so that û(x) = u(x) when |x| = ε. Then

∫

Bε(0)

|û(x)|2 da =
∫

Bε(0)

∣∣∣∣u
(

ε2

|x|2 x

)∣∣∣∣
2

da =
∫

R2\Bε(0)

ε4

|x|4 |u(x)|2 da

≤
∫

R2\Bε(0)

|u(x)|2 da,

since the modulus of the Jacobian of the transformation x → ε2x/|x|2 is |J | = ε4/|x|4,
and ε4/|x|4 ≤ 1 for |x| ≥ ε. Also, notice that

∇û(x) = ∇u

(
ε2

|x|2 x

)[
ε2

|x|2
(
1− 2

|x|2 x⊗ x

)]
,

and
∣∣∣∣1−

2
|x|2 x⊗ x

∣∣∣∣
2

= 1.

Hence,
∫

Bε(0)

|∇û(x)|2 da ≤ M

∫

Bε(0)

ε4

|x|4
∣∣∣∣∇u

(
ε2

|x|2 x

)∣∣∣∣
2

da

= M

∫

R2\Bε(0)

ε4

|x|4
|x|4
ε4

|∇u(x)|2 da

≤ M

∫

R2\Bε(0)

|∇u(x)|2 da,

with M a positive constant independent of ε. Since û = u on R2 \ Bε(0), it follows
that there exists a constant c independent of ε such that

‖û‖H1(R2,R2) ≤ c‖u‖H1(R2\Bε(0);R2),

which implies the thesis.
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