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SMOOTH GEOMETRIC EVOLUTIONS OF HYPERSURFACES

CARLO MANTEGAZZA

ABSTRACT. We consider the gradient flow associated to the following functionalsFm(') = ZM 1 + jrm�j2 d� :
The functionals are defined on hypersurfaces immersed in Rn+1 via a map ' : M ! Rn+1 , whereM is a smooth closed and connected n–dimensional manifold without boundary.
Here � and r are respectively the canonical measure and the Levi–Civita connection on the Rie-
mannian manifold (M; g), where the metric g is obtained by pulling back onM the usual metric ofRn+1 with the map '. The symbol rm denotes the m–th iterated covariant derivative and � is a
unit normal local vector field to the hypersurface.

Our main result is that if the order of derivationm 2 N is strictly larger than the integer part ofn=2 then singularities in finite time cannot occur during the evolution.
These geometric functionals are related to similar ones proposed by Ennio De Giorgi, who conjec-

tured for them an analogous regularity result. In the final section we discuss the original conjecture
of De Giorgi and some related problems.

1. INTRODUCTION

In one of his last papers [16] (see [17] for an English translation) Ennio De Giorgi conjectured
that any compact n–dimensional hypersurface in Rn+1 , evolving by the gradient flow of certain
functionals depending on sufficiently high derivatives of the curvature does not develop singu-
larities during the flow.
This result is central in his program to approximate singular geometric flows with sequences of
smooth ones.

Representing hypersurfaces in Rn+1 as immersions ' : M ! Rn+1 , we consider the gradient
flow associated to the following functionalsFm(') = ZM 1 + jrm�j2 d�
where � and r are respectively the canonical measure and the Levi–Civita connection on the
Riemannian manifold (M; g), where the metric g is obtained by pulling back on M the usual
metric of Rn+1 via '. We denote with rm the m–th iterated covariant derivative and with � a
unit normal local vector field to the hypersurface. Finally, A and H are respectively the second
fundamental form and the mean curvature of the hypersurface.
These functionals are strictly related to the ones proposed by De Giorgi since, roughly speaking,
the derivative of the normal is the curvature of M . Though not exactly the same, they can play
the same role in the approximation process he suggested. In the end of the paper we discuss
some other possible functionals and, in particular, the original De Giorgi conjecture.

Our main result is that if the order of derivation m 2 N is strictly larger than
�n2 � (where

�n2 �
denotes the integer part of n=2), then singularities cannot occur.

The simplest case n = 1 and m = 1 is concerned with curves in the plane evolving by the
gradient flow of F0(
) = ZS1 1 + k2 ds(1.1)
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since the curvature k of a curve 
 : S1! R2 satisfies k2 = jr�j2. This case was studied by Polden
in the papers [49, 50] which have been a starting point for our work.

The very first step in attacking our problem is an analysis of the first variation of the function-
als Fm, which gives rise to a quasilinear system of partial differential equations on the manifoldM .
The small time existence and uniqueness of a smooth flow is a particular case of a very general
result of Polden proven in [50, 39]. Then the long time existence is guaranteed as soon we have a
priori estimates on the flow.

The mean curvature flow of a hypersurface ' :M � [0; T )! Rn+1 ,�'�t = �H� = �t' ;
which is a second order PDE, can be studied with nonparametric techniques, as varifolds, level
sets, viscosity solutions (see [4, 8, 12, 24, 25, 26, 27, 43, 44]), where the maximum principle is the
key tool to get comparison results and estimates on solutions. In our case, even if m = 1, the
first variation and hence the corresponding parabolic problem turns out to be of order higher
than two, precisely of order 2m + 2, so we have to deal with equations of fourth order at least.
This fact has the relevant consequence that we cannot employ the maximum principle to get
pointwise estimates and to compare two solutions, thus losing awhole bunch of geometric results
holding for the mean curvature flow. In particular, we cannot expect that an initially embedded
hypersurface remains embedded during the flow, since self–intersections can appear in finite
time (an example is given by Giga and Ito in [31]). By these reasons, techniques based on the
description of the hypersurfaces as level sets of functions seems of difficult application in this case
and therefore we adopt a parametric approach as in the works of Ecker and Huisken [21, 22, 36].

Despite the large literature on the mean curvature flow, fourth or even higher order flows
appeared only recently, we quote the work of Escher, Mayer and Simonett [23] on the surface
diffusion flow (see also the references therein)�'�t = (�tH)�
and of Simonett [54] on the gradient flow of theWillmore functional (see [45, 53, 56])W(') = ZM jAj2 d�
defined on surfaces immersed in R3 . In these papers the goal is to show, via semigroups and cen-
ter manifold techniques, long term existence and convergence of the flow for initial data which
are C2;�–close to a sphere.
In the article of Chruściel [15], the global existence of a fourth order flow of metrics on a two–
dimensional Riemannianmanifold is applied to construct solutions of Einstein vacuum equations
representing an isolated gravitational system, called Robinson–Trautman metrics.
Another problem considered by Polden in [50, 51] is the conformal evolution of a metric g on a
two–dimensional manifoldM by the gradient flow of the functionalR(g) = ZM F (R) d�
where R is the scalar curvature of (M; g) and F is an even, smooth and strictly convex function.
Finally, in a very recent paper [45] Kuwert and Schätzle study the global existence and regularity
of the gradient flow of the Willmore functional for general initial data.
Our work borrows from [15, 49, 50, 51] the basic idea of using interpolation inequalities as a tool
to get a priori estimates.

We want to remark here that a strong motivation for the study of these flows is the fact that,
in general, regularity is not shared by second order flows, with the notable exceptions of the
evolution by mean curvature of embedded curves in the plane (see [28, 29, 32, 34, 38]) and of
convex hypersurfaces (see [36]). So our result opens the possibility to approximate canonically
singular flows with smooth ones by singular perturbation arguments (see [16, 17]).
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In order to show regularity, a good substitute of the pointwise estimates coming from the max-
imum principle, are suitable estimates on the second fundamental form in Sobolev spaces, using
Gagliardo–Nirenberg interpolation type inequalities for tensors. Since the constants involved
in these inequalities depends on the Sobolev constants and these latter on the geometry of the
hypersurface where the tensors are defined, before doing estimates we absolutely need some
uniform control independent of time on these constants. In [49] these controls are obvious as the
one–dimensional Riemannian geometry is trivial, on the contrary, much more work is needed
in [15, 45, 51], because of the richer geometry of surfaces.

In our case, we will see that if m is large enough, the functional Fm, which decreases during
the flow, controls the Lp norm of the second fundamental form for some exponent p larger than
the dimension. This fact, combined with a universal Sobolev type inequality due to Michael and
Simon [47], where the dependence of the constants on the curvature is made explicit, allows us to
get an uniform bound on the Sobolev constants of the evolving hypersurfaces and then to obtain
time–independent estimates on curvature and all its derivatives in L2. These bounds imply in
turn the desired pointwise estimates and the long time existence and regularity of the flow.

In the last section we will discuss some possible extensions of our results, some open problems
and the related conjectures of De Giorgi.

Acknowledgement. We are grateful to Gerhard Huisken for many discussions about geometric
flows during his visit at the Scuola Normale Superiore of Pisa. Moreover, we wish to thank Luigi
Ambrosio for his constant encouragement and invaluable help in several occasions.

Our work would have been impossible without the enlightening mathematical insight of En-
nio De Giorgi. This paper is dedicated to his memory.

2. NOTATION AND PRELIMINARIES

We devote this section to introduce the basic notations and facts about differentiable and Rie-
mannian manifolds we need in the paper, a good reference for this introduction is [30] or the first
part of [48].

The main objects of the paper are n–dimensional closed hypersurfaces immersed in Rn+1 , that
is, pairs (M;') whereM is an n–dimensional smooth manifold, compact, connected with empty
boundary, and a smooth map ' :M ! Rn+1 such that the rank of d' is everywhere equal to n.

The manifold M gets in a natural way a metric tensor g turning it in a Riemannian manifold(M; g), by pulling back the standard scalar product of Rn+1 with the immersion map '.
Taking local coordinates around p 2 M given by a chart F : Rn � U ! M , we identify the

map ' with its expression in coordinates ' Æ F : Rn � U ! Rn+1 , then we have local basis ofTpM and T �pM , respectively given by vectors
n ��xio and covectors fdxjg.

We will denote vectors onM by X = X i, which means X = X i ��xi , covectors by Y = Yj , that
is, Y = Yjdxj and a general mixed tensor with T = T i1:::ikj1:::jl , where the indices refer to the local
basis.

Sometimes we will need also to consider tensors alongM , viewing it as a submanifold of Rn+1
via the map', in that case wewill use the Greek indices to denote the components of such tensors
in the canonical basis fe�g of Rn+1 , for instance, given a vector field X alongM , not necessarily
tangent, we will haveX = X�e�.

In all the paper the convention to sum over repeated indices will be adopted.
The inner product onM , extended to tensors, is given byg(T; S) = gi1s1 : : : gikskgj1z1 : : : gjlzlT i1:::ikj1:::jl Ss1:::skz1:::zl

where gij is the matrix of the coefficients of the metric tensor in the local coordinates and gij is its
inverse. Clearly, the norm of a tensor is jT j =pg(T; T ) :
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The scalar product in Rn+1 will be denoted with h� j �i. As the metric g is obtained pulling it
back with ', we have gij(x) = ��'(x)�xi ���� �'(x)�xj � :

The canonical measure induced by the metric g is given by � = pGLn where G = det(gij)
and Ln is the standard Lebesgue measure on Rn .

The second fundamental form A = hij ofM is the 2–tensor defined as follows:hij(x) = ���(x) ���� �2'(x)�xi�xj� ;
the mean curvature H is the trace of A, H(x) = gij(x)hij(x) :(2.1)

The induced covariant derivative on (M; g) of a vector field X is given byrjX i = ��xjX i + �ijkXk
where the Christoffel symbols � = �ijk are expressed by the following formula,�ijk = 12gil � ��xj gkl + ��xk gjl � ��xl gjk� :
In all the paper the covariant derivativerT of a tensor T = T i1:::ikj1:::jl will be denoted byrsT i1:::ikj1:::jl =(rT )i1:::iksj1:::jl .

WithrmT we will mean the k–th iterated covariant derivative of a tensor T .
We recall that the gradient rf of a function and the divergence divX of a vector field at a

point p 2 (M; g) are defined respectively byg(rf(p); v) = dfp(v) 8v 2 TpM
and divX = TracerX = riX i = ��xiX i + �iikXk :
Notice that if feig is an orthonormal basis of TpM we can express the divergence of X asdivX = g(ei;reiX) :
Using this formula we can define the divergence of a general, not necessarily tangent, vector fieldX alongM viewing it as a Riemannian submanifold of Rn+1 : we take the covariant derivatives
along directions in Rn+1 which are an orthonormal basis of the tangent space.
Such definition is useful in view of the following tangential divergence formula (see [52], Chap. 2,
Sec. 7), ZM divX d� = ZM h� jXiH d�(2.2)

holding for every vector field X alongM .
Notice that the right term is well defined since, by definition (2.1), H � is independent by the
choice of the local unit normal �. Moreover, if X is a tangent vector field we recover the usual
divergence theorem ZM divX d� = 0 :

The Laplacian�T of a tensor T is �T = gijrirjT ;
in particular for a function f we have�f = divrf , hence0 = ZM div(hrf) d� = ZM g(rh;rf) d�+ ZM h�f d�
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thus ZM h�f d� = � ZM g(rh;rf) d� = ZM f�h d�
for every pair of smooth functions f and h.

The Riemann tensor, the Ricci tensor and the scalar curvature are expressible via the second
fundamental form as follows, Rijkl =hikhjl � hilhjk ;Ri
ij =Hhij � hilglkhkj ;R =H2 � jAj2 :
Hence, the formulas for the interchange of covariant derivatives, which involve the Riemann
tensor, becomerirjXs �rjriXs = RijklgksX l = RsijlX l = (hikhjl � hilhjk) gksX l ;rirjYk �rjriYk = RijklglsYs = RsijkYs = (hikhjl � hilhjk) glsYs :(2.3)

The Codazzi equations rihjk = rjhik = rkhij
imply the following identity which will be crucial in the sequel,�hij = rirjH+Hhilglshsj � jAj2hij :(2.4)

Also fundamental will be the Gauss–Weingarten relations�2'�xi�xj = �kij �'�xk � hij� ; ��xj � = hjlgls �'�xs ;(2.5)

which easily imply jr�j = jAj.
Now we introduce some non standard notation which will be useful for the computations of

the following sections.
In all the paper we will write T � S, following Hamilton [33], to denote a tensor formed by

contraction on some indices of the tensors T and S using the coefficients gij .
Abusing a little the notation, if T1; : : : ; Tl is a finite family of tensors (here l is not an index of the
tensor T ), with the symbol l~i=1Ti
we will mean T1 � T2 � � � � � Tl .

We will use the symbol ps(T1; : : : ; Tl) for a polynomial in the tensors T1; : : : ; Tl and their iter-
ated covariant derivatives with the � product likeps(T1; : : : ; Tl) = Xi1+���+il=s 
i1:::il ri1T1 � � � � � rilTl ;
where the 
i1:::il are some real constants.
Notice that every tensor Ti must be present in every additive term of ps(T1; : : : ; Tl) and there are
not repetitions.
We will use instead the symbol qs when the tensors involved are all A or r�, repetitions are
allowed and in every additive term of there must be present every argument of qs, for instance,qs(r�;A) =X� N~k=1rik (r�) M~l=1rjlA� with N ,M � 1.
The order s denotes the sum s = NXk=1(ik + 1) + MXl=1(jl + 1) :
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Remark 2.1. Supposing that qs is completely contracted, that is, there are no free indices and we
get a function, then the order s has the following strong geometric meaning: if we consider the
family of homothetic immersions �' : M ! Rn+1 for � > 0, they have associated normal ��,
metric g�, connection r� and second form A� satisfying the following rescaling equations,(r�)i�� = ri� (r�)jA� = �rjA ;(g�)ij = �2gij (g�)ij = ��2gij :
Then every completely contracted polynomial qs in r� and A will have the formX(ri1r�) : : : (rikr�) : : : (riNr�)rj1A : : :rjlA : : :rjMA gw1z1 : : : gwtzt
with s = NXk=1(ik + 1) + MXl=1(jl + 1)
and since the contraction is total it must bet = 12  NXk=1(ik + 1) + MXl=1(jl + 2)!
as the sum between the large brackets give the number of covariant indices in the product above.
By this argument and the rescaling equations above, we see that qs rescales asqs(r���; : : : ;A�) =�M�2tqs(r�; : : : ;A)=��(PNk=1(ik+1)+PMl=1(jl+1) )qs(r�; : : : ;A)=��s :
By this reason, with a little misuse of language, also when qs is not completely contracted, we
will say that s is the rescaling order of qs.

In most of the following computations only the rescaling order and the arguments of the poly-
nomials involved will be important, so we will avoid to make explicit their inner structure.
An example in this spirit, are the following substitutions that we will often applyrps(T1; : : : ; Tl) = ps+1(T1; : : : ; Tl) and rqz(r�; : : : ;A) = qz+1(r�; : : : ;A) :

We advise the reader that p and q could vary from a line to another in a computation by
addition of analogous terms, the only thing that has to be kept under control is the fact that
all the manipulations involving them are algebraic, that is, their coefficients do not depend on
the particular Riemannian manifold where the tensor are defined. This is crucial in view of the
geometry–independent estimates we want to obtain.
Finally, also the constants could vary between different formulas and from a line to another.

3. FIRST VARIATION

Given an immersion ' :M ! Rn+1 of a smooth closed hypersurface in Rn+1 , we consider the
following functionals form � 1, Fm(') = ZM 1 + jrm�j2 d�
where � is a local unit normal vector field toM and jrm�j2 means

Pn+1�=1 jrm��j2. The norm j � j,
the connection r and the measure � are all relative to the Riemannian metric g which is induced
onM by Rn+1 via the immersion '. Notice that these functionals are well defined also without a
global unit normal vector field, i. e.,M is not orientable, because of the modulus.

In this sectionwe are going to analyze the first variation of these functionals. Actually, comput-
ing the exact form can be quite long but for our purposes we need only to study some properties
of its structure.
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Suppose that we have a one parameter family I of immersions 't : M ! Rn+1 , with '0 = ',
we compute ÆFm(')(I) = ddtFm('t) ����t=0 = ddt ZM 1 + jrm�j2 d�t ����t=0(3.1)

where clearly the metric g, the covariant derivativer and the normal � depend on t.
Setting X(p) = ��t't(p) ��t=0 we obtain a vector field alongM as a submanifold of Rn+1 via '. It
is well known that ��t�t ����t=0 = Hh� jXi�
so it follows, ddtFm('t) ����t=0 = ZM jrm�j2 d� ��t�t ����t=0�+ ZM ��t jrm�j2 ����t=0 d�= ZM jrm�j2 Hh� jXi d�+ ZM ��t �gi1j1 : : : gimjmri1:::im�rj1 :::jm�� ����t=0 d� :
Then, we need to compute the derivatives in the last term.
For the metric tensor gij we have��tgij = ��t � �'�xi ���� �'�xj �= ��X�xi ���� �'�xj�+� �X�xj ���� �'�xi�= ��xi �X ���� �'�xj� + ��xj �X ���� �'�xi� � 2�X ���� �2'�xi�xj�=aij(X) :

Differentiating the formula gisgsj = Æji we get��tgij = �gis ��tgslglj = �gisasl(X)glj :
The derivative of the normal � is given by��t� = ����t ���� �'�xi� �'�xj gij = ��� ���� �2'�t�xi� �'�xj gij= ��� ���� �X�xi� �'�xj gij = �rh� jXi + � ���xi ���� X� �'�xj gij= �rh� jXi +r��X� = b(X) :
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Finally the derivative of the Christoffel symbols is��t�ijk = 12gil� ��xj � ��tgkl�+ ��xk � ��tgjl�� ��xl � ��tgjk��+ 12 ��tgil� ��xj gkl + ��xk gjl � ��xl gjk�= 12gil�rj � ��tgkl�+rk � ��tgjl��rl� ��tgjk��+ 12gil � ��tgkz�zjl + ��tglz�zjk + ��tgjz�zkl + ��tglz�zjk � ��tgjz�zkl � ��tgkz�zjl�� 12gis ��tgszgzl� ��xj gkl + ��xk gjl � ��xl gjk�= 12gil�rj � ��tgkl�+rk � ��tgjl��rl� ��tgjk��+ gil ��tglz�zjk � gis ��tgsz�zjk= 12gil�rj � ��tgkl�+rk � ��tgjl��rl� ��tgjk��= 12gil frjakl(X) +rkajl(X)�rlajk(X)g :
Notice that all these derivatives are linear in the fieldX , since the aij(X) and b(X) are such.
Lemma 3.1. If a(X) = ��tg is the tensor defined before, for every covariant tensor T = Ti1:::il we have��trsT = rs �T�t + ps�1(T;ra(X))
where the constants in the polynomials ps�1(T;ra(X)) are universal.
Moreover, if the tensor T is a function f :M ! Rk the last term ps�1(f;ra(X)) can be substituted with
another polynomial eps�2(rf;ra(X)).
Proof. We prove the lemma by induction on s � 1.
If s = 1 then ��trjTi1:::il = ��t � ��xj Ti1:::il � �rjizTi1:::iz�1riz+1:::il�= ��xj ��tTi1:::il � �rjiz ��tTi1:::iz�1riz+1:::il� ��t�rjizTi1:::iz�1riz+1:::il=r�T�t + T � ra(X)
by the previous computation, hence��trT = r�T�t + p0(T;ra(X))
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and the initial case is proved.
Supposing the lemma holds for s� 1, we have��trsT = ��tr(rs�1T )=r� ��trs�1T�+ p0(rs�1T;ra(X))=r�rs�1 �T�t + ps�2(T;ra(X))�+ p0(rs�1T;ra(X))=rs �T�t +rps�2(T;ra(X))+ p0(rs�1T;ra(X))=rs �T�t + ps�1(T;ra(X))
where we set ps�1(T;ra(X)) = rps�2(T;ra(X)) + p0(rs�1T;ra(X)) :
By this last formula, it is clear that the constants involved are universal. Moreover, if T is a
function f :M ! Rk then p0(f;ra(X)) = 0 and the same formula says that ps�1(f;ra(X)) does
not contain f without being differentiated.

Remark 3.2. In the following we will omit to underline that the coefficients of the polynomialsps and qs which will appear are algebraic, that is, they are the result of formal manipulations.
In particular, such coefficients are independent by the manifold (M; g) where the tensors are
defined.

Proposition 3.3. The derivative��t �gi1j1 : : : gimjmri1:::im�rj1:::jm�� ����t=0
depends only on the vector field X = ��t't ��t=0 which is the infinitesimal generator of the family of
immersions I and such dependence is linear.
The first variation of Fm, ÆFm(')(I) = ddtFm('t) ����t=0
is a linear function of the fieldX .

Proof. Distributing the derivative in t on the terms of the product, we have seen that the deriva-
tives of the metric coefficients depends linearly onX , it lasts to check the derivative of ri1:::im�.
By the last assertion of Lemma 3.1, we have��trm� = rm ���t + pm�2(r�;ra(X))
and since ���t = b(X)we get ��trm� = rmb(X) + pm�2(r�;ra(X))
which proves the first part of the lemma as a(X) and b(X) are linear inX .
The second statement clearly follows by the previous computations and the first part of the
lemma.
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By this result, we can write ÆFm(')(I) = ÆFm(')(X). Nowwe want to prove that actually the
first variation depends only on the normal component of the fieldX , that is, h� jXi, by linearity, it
is clearly sufficient to show that ÆFm(')(X) = 0 for every tangent vector fieldX . By the previous
proposition, in order to compute the derivative (3.1) we can choose any family I of immersions
whose infinitesimal generator is X .

Given a vector field X along M as a submanifold of Rn+1 which is tangent, there exists a
tangent vector field Y onM such that d'p(Y (p)) = X(p) for every p 2M .
Thenwe consider the smooth flow L(p; t) :M�(�"; ")!M generated by Y onM as the solution
of the ODE’s system ( ��tL(p; t) = Y (L(p; t)) ;L(p; 0) = p
for every p 2M and t 2 (�"; "), and we define 't(p) = '(L(p; t)).
Clearly '0 = ' and��t't(p)����t=0 = d'L(p;t)� ��tL(p; t)�����t=0 = d'p(Y (p)) = X(p) ;
hence, using the family I = f'tgwe haveÆFm(')(X) = ddtFm('t) ����t=0 :
If gt is the metric tensor onM induced by Rn+1 via the immersion 't, then the Riemannian man-
ifolds (M; gt) and (M; g) are isometric for every t 2 (�"; "), being I(� ; t) = '�1 Æ 't : (M; gt) !(M; g) an isometry between them. Since the functional Fm is invariant by isometry, Fm('t) does
not depend on t and its derivative is zero.
By the previous discussion we have the following proposition.

Proposition 3.4. The first variation ÆFm(')(X) depends only on h� jXi.
This means that we can suppose that X is a normal field in studying ÆFm(')(X), hence we

can strengthen the previous computations as follows,��tgij =aij(X) = �2�X ���� �2'�xi�xj� = 2 h� jXihij��tgij = � gis ��tgslglj = �2 h� jXihij��t� = �rh� jXi��t�ijk = gil frj(h� jXihkl) +rk(h� jXihjl)�rl(h� jXihjk)g=rA � h� jXi+A � rh� jXi :
Supposing X normal, we have immediately the following modification of Lemma 3.1 substi-

tuting the tensor aij(X) with 2 h� jXihij .
Lemma 3.5. For every covariant tensor T = Ti1:::il , we have��trsT = rs �T�t + ps(T;A; h� jXi)
where in ps(T;A; h� jXi) the derivativersT does not appear. If T is a function f :M ! Rk��trsf = rs �f�t + ps�1(rf;A; h� jXi)
and ps�1(rf;A; h� jXi) does not containsrsf .

This lemma and the fact that ���t = �rh� jXi lead to the following proposition.
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Proposition 3.6. Letting fe�g the canonical basis of Rn+1 and setting � = ��e� 2 Rn+1 , we have��tri1:::im�� = �ri1:::imr�h� jXi+ pm�1(r�;A; h� jXi)
where we denoted with r�h� jXi the � component of the gradient rh� jXi in the canonical basis ofRn+1 . Moreover, the derivativerm� is not present in pm�1(r�;A; h� jXi).

We are finally ready to computeddt ZM 1 + jrm�j2 d�t����t=0 = ZM �1 + jrm�j2�Hh� jXi d�+ ZM gi1j1 : : : ��tgikjk : : : gimjmri1 :::im�rj1 :::jm� d�� 2 ZM gi1j1 : : : gimjm ri1:::imr�h� jXirj1:::jm�� d�+ 2 ZM rm� � pm�1(r�;A; h� jXi) d�= ZM �1 + jrm�j2�Hh� jXi d�+ 2m ZM rm� � rm� �Ah� jXi d�� 2 ZM gi1j1 : : : gimjm ri1:::imr�h� jXirj1:::jm�� d�+ ZM pm�1(rm�;r�;A; h� jXi) d� :
Now, in order to “carry away” derivatives from h� jXi in the last integral, we integrate by parts
with the divergence theorem, “moving” all the derivatives on the other terms of the products.
Hence, we can rewrite it as ZM p2m�2(r�;r�;A)h� jXi d� ;
which is equal to ZM q2m+1(r�;A)h� jXi d�
with the conventions of Section 2.
Since also the second integral has this form, collecting them together, we obtainddt ZM 1 + jrm�j2 d�t����t=0 = ZM Hh� jXi d�+ ZM q2m+1(r�;A)h� jXi d�� 2 ZM gi1j1 : : : gimjm ri1:::imr�h� jXirj1:::jm�� d� :
Finally, we deal with this last term. First, by the divergence theorem it can be transformed in�2(�1)m ZM r�h� jXirjm:::j1rj1:::jm�� d� ;
second, using the tangential divergence formula (2.2), it is equal to2(�1)m ZM h� jXir�rjm:::j1rj1:::jm�� d�+ ZM q2m+1(r�;A)h� jXi d� ;
where the extra term q2m+1(r�;A)h� jXi, which has a differentiation order lower than the first
term, comes from the product with the mean curvature in the tangential divergence formula.
Notice now that the permutation of derivatives introduces additional lower order terms of the
form ZM q2m+1(r�;A)h� jXi d�
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by formulas (2.3), hence we get2(�1)m ZM h� jXirj1rj1 : : :rjmrjmr��� d�+ ZM q2m+1(r�;A)h� jXi d�
that is, 2(�1)m ZM h� jXi m timesz }| {�� : : :�r��� d�+ ZM q2m+1(r�;A)h� jXi d� :
By Gauss–Weingarten relations (2.5), we haver��� = �'��xi gijhjlgls �'��xs = gijhjlglsgsi = gijhji = H ;
so we conclude ÆFm(')(X) = ZM Hh� jXi d�+ ZM q2m+1(r�;A)h� jXi d�+ 2(�1)m ZM m timesz }| {�� : : :�Hh� jXi d�= ZM q1(A)h� jXi d�+ ZM q2m+1(r�;A)h� jXi d�+ 2(�1)m ZM m timesz }| {�� : : :�Hh� jXi d� :

By the previous discussion this formula holds in general for every vector fieldX alongM . We
summarize all these facts in the following theorem.

Theorem 3.7. For anym � 1 the first variation of the functional Fm is given byÆFm(')(X) = ZM Em(')h� jXi d�
where the function Em(') has the formEm(') = 2(�1)m m timesz }| {�� : : :�H+ q2m+1(r�;A) + q1(A) :

4. GRADIENT FLOW AND SMALL TIME EXISTENCE

Suppose that '0 : M ! Rn+1 is smooth immersion of an n–dimensional hypersurface M
which is compact, connected and has empty boundary.

We look for a smooth function ' :M � [0; T ) such that

1. the map 't = '(�; t) :M ! Rn+1 is an immersion;
2. the following partial differential equation is satisfied�'�t (p; t) = �Em('t)(p)�(p; t) :

If we have a solution, then we say that the hypersurfacesMt = (M; gt), where gt is the induced
metric onM , evolve by the gradient flow of the functional Fm.

The small time existence of such flow is a slight modification of the following result of Polden
(see [50], Thm. 2.5.2, Sec. 2 or [39]).

Theorem 4.1. For any smooth hypersurface immersion '0 : M ! N , with N a smooth (n + 1)–
dimensional Riemannian manifold, there exists a unique solution to the flow problem�'�t = �(�1)s+1 s timesz }| {�� : : :�H+�('; �;A;rA; : : : ;r2s�1A)��
defined on some interval 0 � t < T and taking '0 as its initial value.
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We refer to [50, 39] for the proof of this theorem.
A careful look at Polden’s proof reveals that the theorem can be improved to allow the function� to depend also on the metric g and the covariant derivatives of the normal �, which is exactly
what we need.

Hence, we obtain the existence of solutions of the problem�'�t = �(�1)m+1 m timesz }| {�� : : :� H +�('; g;A; �;rA;r�; : : : ;r2m�1A;r2m�)��
which includes our case up to a constant multiplying the leading term. Since such a constant can
be eliminated by a time–only rescaling and since a smooth evolution of an immersed compact
manifold clearly remains an immersion at least for some positive time, we have a small time
existence and uniqueness result for the gradient flow of Fm with every initial hypersurface.

5. A PRIORI ESTIMATES

To prove long time existence we need a priori estimates on the second fundamental form and
its derivatives which are obtained via Sobolev and Gagliardo–Nirenberg interpolation inequali-
ties for functions defined onMt.
Since the hypersurfaces are moving, also the constants appearing in such inequalities change
during the flow, hence, before proceeding with the estimates, we need some uniform control on
them.

In this section we see that if the integer m larger than
�n2 � then we have a uniform control,

independent by time, on the Ln+1 norm of the second fundamental form. This fact will allow us
to show in the next section that also the above constants are uniformly bounded during the flow.
In the last part of the section, using an inequality of Simon, we prove also an a priori lower bound
on the volume of the evolving hypersurfaces.

We remark that this is a crucial point where the the hypothesism > �n2 � is necessary.
By the very definition of the flow, the value of the functional Fm decreases in time, sinceddtFm('t) = � ZM [Em('t)℄2 d�t � 0 ;

hence, as long as the flow remains smooth, we have the uniform estimateZM 1 + jrmAj2 d�t = Fm('t) � Fm('0)(5.1)

for every t � 0.
Now we want to prove that if m > �n2 �, this estimate implies that the Ln+1(�t) norms of the

second fundamental form A ofMt are uniformly bounded independently by time.
Our starting point is the following universal interpolation type inequalities for tensors.

Proposition 5.1. Suppose that (M; g) is a smooth and compact n–dimensional Riemannian manifold
without boundary and � the measure associated to g.
Then for every covariant tensor T and exponents q 2 [1;+1) and r 2 [1;+1℄, we havekrjTkLp(�) � CkrsTk jsLq(�)kTk s�jsLr(�) 8j 2 [0; s℄ ;(5.2)

with 1p = jsq + s� jsr ;
where the constant C depends only on n, s, j, p, q, r and not on the metric or the geometry ofM .

The proof of the case r = +1 can be found in [33], Sec. 12, along the same lines also the caser < +1 follows (see also [10], Chap. 3, Sec. 7.6).
Suppose thatM is orientable and that g is the metric induced by the immersion ' :M ! Rn+1 ,

let � be a global unit normal vector field onM .



14 CARLO MANTEGAZZA

If in (5.2) we consider T = �, s = m, j = 1, q = 2 and r = +1, then we have jT j = 1 and p = 2m,
hence kr�kL2m(�) � Ckrm�k 1mL2(�) ;
for a constant C = C(n;m).
Since by (2.5) jr�j = jAj, we concludeZM jAj2m d� � C ZM jrm�j2 d� � CFm(') :
IfM is not orientable, then there exists a two–fold Riemannian covering fM ofM , with a locally

isometric projection map � : fM ! M which is orientable and immersed in Rn+1 via the map' Æ �. Repeating the previous argument for fM we getZfM jAj2m de� � C ZfM jrm�j2 de� :
Since � is a local isometry and noticing that the global unit normal field on fM gives locally a unit
normal field onM , all the quantities which appear inside the integrals above do not change pass-

ing from fM toM , only when we integrate we need to take into account the two–fold structure of
the covering. This means that for every smooth function u :M ! R we haveZfM u Æ � de� = 2 ZM u d� :
Hence, we deduce 2 ZM jAj2m d� � 2C ZM jrm�j2 d� � 2CFm(')
which clearly gives the same estimate as in the orientable case.

As 2m > 2 �n2 � � n+ 1, we haveZM jAjn+1 d� � �ZM jAj2m d��n+12m (VolM) 2m�n�12m � CFm(')(5.3)

with a constant C = C(n;m).
Finally we show that also the volume ofM is well controlled by the value of Fm(') under the

hypothesism > �n2 �.
The bound from above is obvious, the bound from below in dimension n > 1 can be obtained via
the following universal Sobolev inequality due to Michael and Simon (see [47, 52] and also [2, 11,
35] for related results).

Proposition 5.2. Let ' : M ! Rn+1 be an immersion of an n–dimensional, compact hypersurface
without boundary. On M we consider the Riemannian metric induced by Rn+1 and the corresponding
measure �.
Then, there exists a constant C = C(n; p) depending only on the dimension n and the exponent p such
that, for every smooth function u :M ! R�ZM jujp� d��1=p� � C(n; p)�ZM jrujp d�+ ZM jHujp d��1=p ;(5.4)

where p 2 [1; n), n > 1 and p� = npn�p .
Considering the function u : M ! R constantly equal to 1 in the inequality for p = 1, and

taking in account (5.3), we get(VolM)n�1n �C ZM jHj d��CkAkLn+1(�) (VolM) nn+1�CFm(') 1n+1 (VolM) nn+1 :
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Dividing both members by (VolM)n�1n , as nn+1 > n�1n we conclude1 � CFm(') 1n+1 (VolM) 1n(n+1)
that is, CFm(')n � VolM � Fm(')
for a constant C = C(n;m).
Remark 5.3. With the same argument, it follows that also kAkLn+1(�) can be controlled above and
below with Fm(') and that the functional Fm is uniformly bounded from below by a constant
greater than zero.

In the special case n = 1, we recall that for every closed curve 
 : S1 ! R2 in the plane the
integral of the modulus of its curvature is at least 2�, then2� � ZS1 jAj ds � �ZS1 jAj2 ds�1=2pLength 
 � CpFm(
)pLength 
 :
Hence, CFm(
) � Length 
 � Fm(
)
with C = C(m).

Putting together all these inequalities and the uniform estimate (5.1) we obtain the following
result.

Proposition 5.4. As long as the flow by the gradient of Fm of a hypersurface in Rn+1 exists, we have the
estimates kAkLn+1(�t) � C1 < +10 < C2 � VolMt � C3 < +1
where the three constants C1, C2 and C3 are independent by time.
They depend only on n,m and the value of Fm for the initial hypersurface.

6. INTERPOLATION INEQUALITIES FOR TENSORS

As we said, we show now that the uniform bound on the Ln+1 norm of the second fundamen-
tal form implies that the constants involved in some Sobolev and Gagliardo–Nirenberg interpo-
lation type inequalities are also equibounded.

Recalling inequality (5.4), we havekukLp�(�) � C(n; p) �krukLp(�) + kHukLp(�)�(6.1)

for every u 2 C1(M), where p� = npn�p and p 2 [1; n).
Proposition 6.1. If the manifold (M; g) satisfies VolM+kHkLn+Æ(�) � B for some Æ > 0 then for everyp 2 [1; n), kukLp�(�) � C �krukLp(�) + kukLp(�)� 8u 2 C1(M) ;
where the constant C depends only on n, p, Æ and B.

Proof. Applying Hölder inequality to the last term of inequality (6.1), we getkukLp�(�) � C(n; p)krukLp(�) + C(n; p; Æ; B)kukLep(�)
where ep is given by ep = p(n+ Æ)n+ Æ � p = p� n(n+ Æ)n(n+ Æ) + p�Æ ;
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then p < ep < p�.
Hence, we can interpolate kukLep(�) between a small fraction of kukLp�(�) and a possibly large

multiple of kukLp(�),kukLp�(�) � C(n; p)krukLp(�) + C(n; p; Æ; B) �"kukLp�(�) + C("; p)kukLp(�)� :
Choosing " > 0 such that "C(n; p; Æ; B) � 1=2 and collecting terms we obtainkukLp�(�) � C(n; p; Æ; B) �krukLp(�) + kukLp(�)� :

When p > n we prove the following L1 result (see also [45], Thm. 5.6).

Proposition 6.2. If the manifold (M; g) satisfies VolM+kHkLn+Æ(�) � B for some Æ > 0 then for everyp > n, we have maxM juj � C �krukLp(�) + kukLp(�)� 8u 2 C1(M) ;
where the constant C depends only on n, p, Æ and B.

Proof. Suppose first that M is embedded and n + Æ � p > n, clearly kHkLp(�) is bounded by a
value depending on the constant B.
We consider M as a subset of Rn+1 via the embedding ' and � as a measure on Rn+1 which is
supported onM . Then the following result holds ([52], Thm. 17.7): let B�(x) be the ball of radius� centered at x in Rn+1 , for every 0 < � < � < +1we have��(B�(x))�n �1=p � ��(B�(x))�n �1=p + C(n; p; Æ; B)��1�n=p � �1�n=p� :
Hence, ��(B�(x))�n �1=p � C1�n=p + C2�1�n=p ;
and choosing � = 1, for every 0 < � < 1 we get the inequality�(B�(x)) � C(n; p; Æ; B)�n :
Then we need the following formula which is proved in [52], Sec. 18, as a consequence of the
tangential divergence formula (2.2).
For every 0 < � < � < +1we haveRB�(x) u d��n � RB�(x) u d��n + Z �� ��n�1 ZB� (x) r(jruj+ juHj) d�(y) d�
where r = jx� yj and u is any smooth non negative function.

Noticing that r � � and using Hölder inequality we estimateRB�(x) u d��n � RB�(x) u d��n +�ZM jrujp + juHjp d��1=p Z �� ��n�(B� (x))1�1=p d�� ZB1(x) u d�+ C �krukLp(�) + kuHkLp(�)� Z 1� ��n�n�n=p d�
where in the last passage we set � = 1 used the previous estimate on �(B� (x)). The function��n=p is integrable since p > n and we getRB�(x) u d��n � ZB1(x) u d�+ C �krukLp(�) + kuHkLp(�)� 1� �1�n=p1� n=p ;
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now sending � to zero, on the left side we obtain the value of u(x) times !n which is the volume
of the unit ball of Rn , hence!nu(x) � ZB1(x) u d�+ C �krukLp(�) + kuHkLp(�)��C(n; p; Æ; B) �kukL1(�) + krukLp(�) + kuHkLp(�)� :
For a general uwe apply this inequality to the function u2, thusu2(x) � C  ZM juj2 d�+�ZM jurujp d��1=p +�ZM ju2Hjp d��1=p!� CmaxM juj ZM juj d�+�ZM jrujp d��1=p +�ZM juHjp d��1=p! :
Since x 2 Rn+1 was arbitrary we conclude thatmaxM juj � C(n; p; Æ; B) �kukL1(�) + krukLp(�) + kuHkLp(�)� :
for a constant C depending on n; p, Æ and B.
IfM is only immersed, we consider the embeddings ofM in Rn+1 �Rk given by the map '�" :M ! Rn+1 � Rk , where  : M ! Rk is an embedding of M in some Euclidean space. Then,
repeating the previous argument (it is possible since the starting inequalities from [52] hold for
embeddings in any Rl ) we will get the same conclusion with a constant C". Finally, asC" depends
only on VolM and H, and all the geometric quantities converge uniformly when " goes to zero,
we conclude that the inequality holds also in the immersed case.

Now, given any p > n, we choose ep = 12 minfn+p; 2n+Æg, then clearly n < ep < minfp; n+Æ=2g.
By the inequality above we havemaxM juj � C(n; ep; Æ; B) �kukL1(�) + krukLep(�) + kuHkLep(�)� ;
then using Hölder inequality and an interpolation argument as in the proof of Proposition 6.1 we
get maxM juj � C(n; ep; Æ; B) �kukL1(�) + krukLep(�) + kukLp(�)� :
Applying again Hölder inequality, as ep < p, we conclude thatmaxM juj � C(n; ep; Æ; B) �krukLp(�) + kukLp(�)� ;
which gives the thesis since ep depends only on n, p and Æ.

We now extend these propositions to tensors (see [10], Prop. 2.11 and also [13, 14]). SincejT j is not necessarily smooth we apply the previous inequalities first to the smooth functionspjT j2 + "2, converging to jT jwhen "! 0. As���rpjT j2 + "2 ��� = ����� hrT; T ipjT j2 + "2 ����� � jT jpjT j2 + "2 jrT j � jrT j
we get then easily the following result.

Proposition 6.3. If the manifold (M; g) satisfies VolM+kHkLn+Æ(�) � B for some Æ > 0 then for every
covariant tensor T = Ti1:::il we have,kTkLp�(�) � C �krTkLp(�) + kTkLp(�)� if 1 � p < n,(6.2) maxM jT j � C �krTkLp(�) + kTkLp(�)� if p > n,(6.3)

where the constants depend only on n, l, p, Æ and B.

We define the Sobolev norm of a tensor T on (M; g) askTkW s;q(�) = sXi=0 kriTkLq(�) :
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Corollary 6.4. In the same hypothesis on (M; g) we havekrjTkLp(�) � CkTkW s;q(�) with
1p = 1q � s� jn > 0 ;(6.4) maxM jrjT j � CkTkW s;q(�) when
1q � s� jn < 0 :(6.5)

The constants depend only on n, l, s, j, p, q, Æ and B.

Proof. By inequality (6.2) applied to the tensor rjT we getkrjTkLp(�) � C �krj+1TkLp1(�) + krjTkLp1(�)�� C �krj+2TkLp2(�) + 2 krj+1TkLp2(�) + krjTkLp2(�)�� : : :� C �krsTkLps�j (�) + � � �+ krjTkLps�j (�)�� CkTkW s;ps�j (�) :
Since the pi are related by 1pi = 1pi+1 � 1n ;p0 = p and ps�j = q, we have 1p = 1ps�j � s� jn = 1q � s� jn ;
and the first part of the corollary is proved.
The second part follows analogously using also inequality (6.3).

Now we put together this result and the universal inequalitieskrjTkLp(�) � C kTk jsW s;q(�)kTk s�jsLr(�) ;(6.6)

which are obviously implied by Proposition 5.1, to get the following interpolation type inequali-
ties.

Proposition 6.5. In the same hypothesis on (M; g) as before, there exist a constant C depending only onn, l, s, j, p, q, r, Æ and B, such that for every covariant tensor T = Ti1:::il , the following inequality holdkrjTkLp(�) � C kTkaW s;q(�)kTk1�aLr(�) ;(6.7)

for all j 2 [0; s℄, p; q; r 2 [1;+1) and a 2 [j=s; 1℄ with the compatibility condition1p = jn + a�1q � sn�+ 1� ar :
If such condition gives a negative value for p, the inequality holds for every p 2 [1;+1) on the left side.

Proof. The cases a = j=s and a = 1 are inequalities (6.6) and (6.4), respectively, the intermediate
cases, when j=s < a < 1, are obtained immediately by the log–convexity of k � kLp(�) in 1=p,
which is a linear function of a, and the fact that the right side is exponential in a.
If p is negative then 1q � sn < 0 and1q � s� jn � jn + a�1q � sn�+ 1� ar ;
hence, the L1 estimate of inequality (6.5) together with (6.6) gives the inequality for every p 2[1;+1).
Remark 6.6. By simplicity, we avoided to discuss in all the section the critical cases of the inequal-
ities, for instance p = n in Proposition 6.3. Actually, for our purposes, we just need to say that in
a critical case we can allow any value of p 2 [1;+1) in the left side of inequalities like (6.7). This
can be seen easily, by considering a suitable inequality with a lower integrability exponent on the
right side and then applying Hölder inequality.
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Putting together the estimates of this section with Proposition 5.4 we obtain the following
result.

Proposition 6.7. As long as the flow by the gradient of Fm of a hypersurface in Rn+1 exists, for every
smooth covariant tensor T = Ti1:::il we have the inequalitieskrjTkLp(�) � C kTkaW s;q(�)kTk1�aLr(�) ;(6.8)

for all j 2 [0; s℄, p; q; r 2 [1;+1) and a 2 [j=s; 1℄ with the compatibility condition1p = jn + a�1q � sn�+ 1� ar :
If such condition gives a negative value for p, the inequality holds for every p 2 [1;+1) on the left side.
The constant C depends only onm, n, l, s, j, p, q, r and the value of Fm for the initial hypersurface.

7. LONG TIME EXISTENCE OF THE FLOW

Suppose that at a certain time T > 0 the evolving hypersurface develops a singularity, then
considering the family fMtgt2[0;T ), we are going to use the time–independent inequalities (6.8)

to show that we have uniform estimatesmaxMt jrkAj � Ck < +1 8t 2 [0; T )
for all k 2 N. We will see that such estimates are in contradiction with the development of a
singularity at time t = T , hence the flow must be smooth for every positive time.
To this aim we are going to study the evolution of the following integrals,ZM jrkAj2 d�t :
Remark 7.1. As in the previous sections, we will omit to say in the computations that all the
polynomials ps and qs which will appear are independent by the manifold (M; g) where the
tensors are defined.

First we derive the evolution equations for g, �, �ijk and A. Essentially repeating the compu-
tations of Section 3, we get ��tgij = � 2Emhij��tgij =2Emhij��t� = rEm��t�ijk =rEm �A+ Em � rA :
Lemma 7.2. The second fundamental form ofMt satisfies the evolution equation��thij = 2(�1)m m+ 1 timesz }| {� Æ : : : Æ�hij + q2m+3(A;A) + q2m+3(r�;A) + q3(A) :
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Proof. Keeping in mind the Gauss–Weingarten relations (2.5) and the equations above, we com-
pute ��thij = � ��t �� ���� �2'�xi�xj �= �� ���� �2(Em�)�xi�xj ���rEm ���� �2'�xi�xj �= �2Em�xi�xj +Em�� ���� ��xi �hjlgls �'�xs���� �Em�xl � �'�xs gls ���� �kij �'�xk � hij��= �2Em�xi�xj � �kij �Em�xk +Emhjlgls�� �����zis �'�xz � his��=rirjEm � Emhisgslhlj :
Expanding Em we continue,��thij =rirj�2(�1)m m timesz }| {�� : : :�H+ q2m+1(r�;A) + q1(A)�� �2(�1)m m timesz }| {�� : : :�H+ q2m+1(r�;A) + q1(A)�hisgslhlj=2(�1)mrirj m timesz }| {�� : : :�H+ q2m+3(r�;A) + q3(A) :
Interchanging repeatedly derivatives in the first term we introduce some extra terms of the formq2m+3(A;A) and we get��thij = 2(�1)m m timesz }| {�� : : :�rirjH+ q2m+3(A;A) + q2m+3(r�;A) + q3(A) ;
then using equation (2.4) we conclude��thij =2(�1)m m timesz }| {�� : : :�(�hij �Hhilglshsj � jAj2hij)+ q2m+3(A;A) + q2m+3(r�;A) + q3(A)=2(�1)m m+ 1 timesz }| {�� : : :�hij + q2m+3(A;A) + q2m+3(r�;A) + q3(A) :

Now we deal with the covariant derivatives of A.
Lemma 7.3. We have��trkhij =2(�1)mm+ 1 timesz }| {�� : : :�rkhij+ qk+2m+3(A;A) + qk+2m+3(r�;A) + qk+3(A) :
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Proof. With a reasoning analogous to the one of Lemma 3.5 applied to the tensor A and by the
previous lemma, we have��trkhij =rk ��thij + pk(A;A;Em)=rk ��thij + qk+2m+3(A;A) + qk+2m+3(r�;A) + qk+3(A;A)=2(�1)mrkm+ 1 timesz }| {�� : : :�hij+ rkq2m+3(A;A) +rkq2m+3(r�;A) + rkq3(A)+ qk+2m+3(A;A) + qk+2m+3(r�;A) + qk+3(A;A)=2(�1)mrkm+ 1 timesz }| {�� : : :�hij+ qk+2m+3(A;A) + qk+2m+3(r�;A) + qk+3(A) :
Interchanging the operatorrk with the Laplacians in the first term and including the extra terms
in qk+2m+3(A;A), we obtain��trkhij =2(�1)mm+ 1 timesz }| {�� : : :�rkhij+ qk+2m+3(A;A) + qk+2m+3(r�;A) + qk+3(A) :
Proposition 7.4. The following formula holds,��t ZM jrkAj2 d�t = � 4 ZM jrk+m+1Aj2 d�t+ ZM q2(k+m+2)(A;A;A) + q2(k+m+2)(r�;A;A) d�t+ ZM q2(k+2)(A;A) d�t :
Proof. By the previous results we have��t jrkAj2 =2gi1j1 : : : gikjkgisgjz ��tri1:::ikhijrj1:::jkhsz+ gi1j1 : : : ��tgiljl : : : gikjkgisgjzri1:::ikhijrj1:::jkhsz=4(�1)mgi1j1 : : : gikjkgisgjzm+ 1 timesz }| {�� : : :�ri1:::ikhijrj1:::jkhsz+ �qk+2m+3(A;A) + qk+2m+3(r�;A) + qk+3(A)� � rkA+ 2Emgi1j1 : : : hiljl : : : gikjkgisgjzri1:::ikhijrj1:::jkhsz=4(�1)mgi1j1 : : : gikjkgisgjzm+ 1 timesz }| {�� : : :�ri1:::ikhijrj1:::jkhsz+ q2(k+m+2)(A;A;A) + q2(k+m+2)(r�;A;A) + q2(k+2)(A;A)=4(�1)mgisgjzrik+1rik+1 : : :rik+m+1rik+m+1ri1 :::ikhijri1:::ikhsz+ q2(k+m+2)(A;A;A) + q2(k+m+2)(r�;A;A) + q2(k+2)(A;A) :
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Interchanging the covariant derivatives in the first term we introduce some extra terms of the

form q2(k+m+2)(A;A;A), hence we get��t ZM jrkAj2 d�t =4(�1)m ZM gisgjzrik+1 : : :rik+m+1rik+m+1 : : :rik+1ri1:::ikhijri1:::ikhsz d�t+ ZM q2(k+m+2)(A;A;A) + q2(k+m+2)(r�;A;A) + q2(k+2)(A;A) d�t+ ZM q2(k+2)(A;A) d�t ;
where the last integral comes from the time derivative of �t.
Then, carrying the m+ 1 derivativesrik+1 : : :rik+m+1 on ri1:::ikhsz by means of the divergence
theorem, we finally obtain the claimed result,= � 4 ZM gisgjzrik+m+1 : : :rik+1ri1:::ikhijrik+m+1 : : :rik+1ri1:::ikhsz d�t+ ZM q2(k+m+2)(A;A;A) + q2(k+m+2)(r�;A;A) + q2(k+2)(A;A) d�t= � 4 ZM jrk+m+1Aj2 d�t+ ZM q2(k+m+2)(A;A;A) + q2(k+m+2)(r�;A;A) + q2(k+2)(A;A) d�t :
The leading coefficient became�4 since we multiplied 4(�1)m for (�1)m+1 while doing them+1
integrations by parts.

Now we analyze the termsZM q2(k+m+2)(A;A;A) d�t and

ZM q2(k+m+2)(r�;A;A) d�t :
If one of the two polynomials contains a derivative riA or ri(r�) of order i > k + m + 1,
then all the other derivatives must be of order lower than k +m, since the rescaling order of the
polynomials is 2(k+m+2) and the fact that there are at least three factors in every additive term.
In this case, using repeatedly the divergence theorem as before, to lower such highest derivative,
we get the integral of a new polynomial which does not contain derivatives of order higher thank + m + 1. Moreover, if there is a derivative of order k + m + 1 then the order of all the other
derivatives in q2(k+m+2) must be lower or equal than k +m, by the same argument.
With the same reasoning, the term ZM q2(k+2)(A;A) d�t ;
can be transformed it in a term without derivatives of order higher or equal than k +m+ 1.

Hence, we can suppose that the last three terms in��t ZM jrkAj2 d�t = � 4 ZM jrk+m+1Aj2 d�t+ ZM q2(k+m+2)(A;A;A) + q2(k+m+2)(r�;A;A) d�t+ ZM q2(k+2)(A;A) d�t(7.1)

do not contain derivatives of A or of r� of order higher than k + m + 1; possibly, only one
derivative of order k +m+ 1 can appear.
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Lemma 7.5. The following inequality holdsjrs�j � jrs�1Aj+ jqs(A)j ;
where qs(A) does not contain derivatives of A of order higher than s� 2.
Proof. By equations (2.5) it follows thatr� = A � r', hencers� = rs�1A � r'+ Xi+j=s�2riA � rjr2'
and since r2ij' = �hij�, we getrs� =rs�1A � r'+ Xi+j=s�2riA � rj(A�)=rs�1A � r'+ Xi+j+k=s�2riA � rjA � rk� :
Then, by an induction argument we can expressrs� asrs� = rs�1A � r'+ qs(A)
where qs(A) does not contain derivatives of order higher than s� 2.
Taking the norm of both sides we getjrs�j � jrs�1A � r'j+ jqs(A)j
and we conclude the proof computingjrs�1A � r'j = ����ri1:::is�1hilglk �'�xk ����= �ri1:::is�1hilglk �'�xk gi1j1 : : : gis�1js�1gijrj1:::js�1hjwgwz �'�xz�1=2= �ri1:::is�1hilglkgkzgwzgi1j1 : : : gis�1js�1gijrj1:::js�1hjw�1=2= �ri1:::is�1hilglwgi1j1 : : : gis�1js�1gijrj1:::js�1hjw�1=2= jrs�1Aj :

Taking the absolute values inside the integrals and using this lemma to substitute every deriv-
ative of � in (7.1), we obtain��t ZM jrkAj2 d�t � �4 ZM jrk+m+1Aj2 d�t + ZM jq2(k+m+2)(A)j + jq2(k+2)(A)j d�t
where, as before, the two polynomials do not contain derivatives of A of order higher than k +m + 1; possibly, only one derivative of order k +m + 1 can appear in every multiplicative term

of q2(k+m+2)(A).
Before going on, we remark that the � product of tensors satisfies the followingmetric property,jT � Sj � jT j � jSj :(7.2)



24 CARLO MANTEGAZZA

This can be easily seen choosing an orthonormal basis at a point of M , in such coordinates we
have jT � Sj2 = X

free
indices

� X
contracted
indices

Ti1:::ikSj1:::jl�2� X
free

indices

� X
contracted
indices

T 2i1:::ik�� X
contracted
indices

S2j1:::jl���X
free

indices

X
contracted
indices

T 2i1:::ik��X
free

indices

X
contracted
indices

S2j1:::jl�= jT j2 � jSj2 :
Now by definition we have q2(k+m+2)(A) =Xj Nj~l=1r
jlA

with NjXl=1(
jl + 1) = 2(k +m+ 2)
for every j, hence jq2(k+m+2)(A)j �Xj NjYl=1 jr
jlAj
by (7.2). Setting Qj = NjYl=1 jr
jlAj
we clearly obtain ZM jq2(k+m+2)(A)j d�t �Xj ZM Qj d�t :
If Qj contains a derivative of A of order k +m + 1, we have seen that all the others have order
lower or equal than k +m, then collecting derivatives of the same order, Qj can be estimated as
follows Qj � jrk+m+1Aj � k+mYi=0 jriAj�ji
for some �ji satisfying the rescaling condition(k +m+ 2) + k+mXi=0 (i+ 1)�ji = 2(k +m+ 2) :
Hence, using Young inequality, for every "j > 0we haveZM Qj d�t � "j ZM jrk+m+1Aj2 d�t + 14"j ZM k+mYi=0 jriAj2�ji d�t= "j ZM jrk+m+1Aj2 d�t + ZM jq2(k+m+2)(A)j d�t ;
where we put in evidence the fact that the last term satisfies again the rescaling condition and no
more contains the derivativerk+m+1A.
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Collecting all together such “bad” terms, and choosing suitable "j > 0 such that their total sum
is less than one, we obtain��t ZM jrkAj2 d�t � �3 ZM jrk+m+1Aj2 d�t + ZM jq2(k+m+2)(A)j+ ZM jq2(k+2)(A)j d�t
where now in the last two terms all the derivatives of A have order lower than k+m+1. We are
then ready to estimate them via interpolation inequalities.

As before, jq2(k+m+2)(A)j �Xj Qj
and after collecting derivatives of the same order in Qj ,Qj = k+mYi=0 jriAj�ji with

k+mXi+1 �ji(i+ 1) = 2(k +m+ 2) :
Then, ZM Qj d�t = ZM k+mYi=0 jriAj�ji d�t� k+mYi=0 �ZM jriAj�ji
i d�t� 1
i= k+mYi=0 kriAk�ijL�ji
i (�t)
where the 
i are arbitrary positive values such that

P 1=
i = 1.
We apply interpolation inequalities: if in (6.7) we take q = 2, r = n + 1, s = k +m + 1, j = i

and T = A we get kriAkLpi(�t) � CkAkaW 2;k+m+1(�t)kAk1�aLn+1(�t)
with a = 1pi � in � 1n+112 � k+m+1n � 1n+1 2 � ik +m+ 1 ; 1�(7.3)

and pi > 1.
Now, since the volumes ofMt and kAkLn+1(�t) are uniformly bounded in time, also kAkL2(�t) is
uniformly bounded and using the universal inequalities (6.6) with p = q = r = 2 we havekAkW 2;k+m+1(�t) � k+m+1Xs=0 Ckrk+m+1Ak sk+m+1L2(�t)� k+m+1Xs=0 krk+m+1AkL2(�t) + C�Bkrk+m+1AkL2(�t) + C ;
where we applied Young inequality.
Hence, we conclude that we have constants B, C independent by t such thatkriAkLpi(�t) � �Bkrk+m+1AkL2(�t) + C�a(7.4)

for a as in (7.3) and pi > 1.
Choosing 
i = 0 if �ji = 0 and 
i = 2(k+m+2)�ji(i+1) otherwise, we have clearlyk+mXi=0 1
i = k+mXi=0 �ji(i+ 1)2(k +m+ 2) = 1
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by the rescaling condition on the �ji.
We claim that for every i 2 f0; : : : ; k +mg, the product pi = �ji
i satisfies the condition (7.3).

By definition, pi = 2(k+m+2)i+1 , hence we must check that the following inequality holdsik +m+ 1 � i+12(k+m+2) � in � 1n+112 � k+m+1n � 1n+1 � 1
for every i 2 f0; : : : ; k +mg. Since every term is an affine function of i, the claim follows if we
show that the inequality holds for i = 0 and i = k +m+ 1.
If i = 0we have to prove that 0 � 12(k+m+2) � 1n+112 � k+m+1n � 1n+1 � 1 ;
that is, since the denominator of the fraction is negative (as 2m � n+ 1),12 � k +m+ 1n � 1n+ 1 � 12(k +m+ 2) � 1n+ 1 � 0 :
The right inequality is clearly true, again since 2m � n+ 1, the left one becomesk +m+ 12(k +m+ 2) = 12 � 12(k +m+ 2) � k +m+ 1n
which is true as 2(k +m+ 2) � n.
When i = k +m+ 1 the fraction is equal to 1, hence the inequality obviously holds.

Then, the exponents pi = �ji
i are allowed in inequality (7.4) and we getkriAkL�ji
i (�t) � �Bkrk+m+1AkL2(�t) + C�aji
where aji is the relative value we obtain from (7.3).

Hence, ZM Qj d�t � k+mYi=0 kriAk�ijL�ji
i (�t)� k+mYi=0 �Bkrk+m+1AkL2(�t) + C�aji�ji� �Bkrk+m+1AkL2(�t) + C�Pk+mi=0 aji�ji
where the constants B and C are independent by t andaji = 1�ji
i � in � 1n+112 � k+m+1n � 1n+1 :
Multiplying this relation by �ji and summing on i from 0 to k +m we getk+mXi=0 �jiaji = k+mXi=0 1
i � i�jin � �jin+112 � k+m+1n � 1n+1= 1�Pk+mi=0 � i�jin + �jin+1�12 � k+m+1n � 1n+1= 1�Pk+mi=0 �ji(i+1)n �Pk+mi=0 �ji � 1n+1 � 1n�12 � k+m+1n � 1n+1
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recalling that
Pk+mi=0 �ji(i+ 1) = 2(k +m+ 2) we continue,= 1� 2k+m+2n +Pk+mi=0 �jin(n+1)12 � k+m+1n � 1n+1= 1� 2k+m+1n � 2n +Pk+mi=0 �jin(n+1)12 � k+m+1n � 1n+1 :

Now, the denominator is negative and clearlyk+mXi=0 �ji � k+mXi=0 �ji(i+ 1)k +m+ 1 = 2k +m+ 2k +m+ 1 ;
so we obtain k+mXi=0 �jiaji � 1� 2k+m+1n � 2n + 2k+m+2k+m+1 1n(n+1)12 � k+m+1n � 1n+1= 1� 2k+m+1n � 2n + 2n(n+1) + 2k+m+1 1n(n+1)12 � k+m+1n � 1n+1= 1� 2k+m+1n � 2n+1 + 2k+m+1 1n(n+1)12 � k+m+1n � 1n+1=2� 2k+m+1 1n(n+1)k+m+1n + 1n+1 � 12=2� 4(k +m+ 1)[2(k +m+ 1)(n+ 1)� n(n� 1)℄ < 2 :

Hence, we finally get ZM Qj d�t � �B ZM jrk+m+1Aj2 d�t + C�1�Æ
for a positive Æ and using again Young inequality, we haveZM Qj d�t � "j ZM jrk+m+1Aj2 d�t + C
for arbitrarily small "j . Repeating this argument for all the Qj and choosing suitable "j whose
sum is less than one, we conclude thatddt ZM jrkAj2 �t � �2 ZM jrk+m+1Aj2 �t + C + ZM jq2(k+2)(A)j d�t
with a constant C independent by time.

The last term can be treated in the same way. It can be estimated by the sum of the multiplica-
tive terms Qj and collecting derivatives of the same order as before, we haveQj � k+mYi=0 jriAj�ji with

k+mXi=0 �ji(i+ 1) = 2k + 4 :
In this case the coefficients 
i, when �ji 6= 0, are given by 
i = 2(k+2)�ji(i+1) , hencek+mXi=0 1
i = k+mXi=0 �ji(i+ 1)2(k + 2) = 1
by the rescaling condition.
With an analogous control, one can see that the conditions on the exponent pi are satisfied. It
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lasts to compute k+mXi=0 �jiaji = k+mXi=0 1
i � i�jin � �jin+112 � k+m+1n � 1n+1= 1�Pk+mi=0 � i�jin + �jin+1�12 � k+m+1n � 1n+1= 1�Pk+mi=0 �ji(i+1)n +Pk+mi=0 �jin(n+1)12 � k+m+1n � 1n+1= 1� 2k+4n +Pk+mi=0 �jin(n+1)12 � k+m+1n � 1n+1 :
As the denominator is negative andk+mXi=0 �ji � k+mXi=0 �ji(i+ 1)k +m+ 1 = 2k + 4k +m+ 1 ;
we obtain k+mXi=0 �jiaji � 1� 2k+4n +Pk+mi=0 �ji(i+1)k+m+1 1n(n+1)12 � k+m+1n � 1n+1= 1� 2k+4n + 2k+4k+m+1 1n(n+1)12 � k+m+1n � 1n+1 < 2 ;
since this last inequality is equivalent to1� 2k + 4n + 2k + 4k +m+ 1 1n(n+ 1) > 1� 2(k +m+ 1)n � 2n+ 1
and simplifying, to 2k + 4k +m+ 1 1n(n+ 1) > �2(m� 1)n � 2n+ 1
which is obviously true.

Concluding as before we finally getddt ZM jrkAj2 �t � � ZM jrk+m+1Aj2 �t + C(7.5)

for a constant C independent by time.
By (5.2) and Young inequality, we haveZM jrkAj2 �t + C � Bkrk+m+1Ak kk+m+1L2(�t) kAk m+1k+m+1L2(�t) + C� Bkrk+m+1Ak kk+m+1L2(�t) + C� 12 ZM jrk+m+1Aj2 �t + C
again with a uniform constant. Combining this inequality with (7.5), we obtainddt ZM jrkAj2 �t � � 12 ZM jrkAj2 �t + C
and a simple ODE’s argument proves that there exists constants Ck independent by time such
that ZM jrkAj2 d�t � Ck :
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To pass fromW 2;p(�t) to pointwise estimates, first we notice that being all the derivatives of A
bounded in L2(�t), by inequalities (6.2), for every p � 1 and k 2 N we have constants Ck;p such
that ZM jrkAjp d�t � Ck;p :
Then choosing a p > n, we apply inequalities (6.3) to everyrkA to conclude that for every k 2 N
we have constants Ck, independent by t, such thatmaxMt jrkAj � Ck :(7.6)

Looking back at the way we obtained them, we can see that the constants Ck depend only on
the dimension n, the differentiation order k and the initial hypersurface '0.

Following Huisken [36], Sec. 8 and Kuwert and Schätzle [45], Sec. 4, these estimates imply the
regularity of the map '(p; t).
Since rkA are uniformly bounded in time, supposing that [0; T ) is the maximal interval of exis-
tence of the flow, we havej'(p; t)� '(p; s)j � Z ts jEm('�)(p)j d� � C(t� s)
for every 0 � s � t < T , then 't uniformly converge to a continuous limit 'T as t! T .

We recall Lemma 8.2 in [36] (Lemma 14.2 in [33]).

Lemma 7.6. Let gij a time–dependent metric on a compact manifoldM for 0 � t < T � +1. Suppose
that Z T0 maxMt ���� ��tgij���� dt � C :
Then the metrics gij(t) are all equivalent, and they converge as t ! T uniformly to a positive definite
metric tensor gij(T ) which is continuous and also equivalent.

In our situation, if T < +1, the hypotheses of this lemma are clearly satisfied, hence '(�; T )
represents a hypersurface. Moreover, it also follows that there exists a positive constant C de-
pending only on n and '0 such that for every 0 � t < T we have1C � gij(t) � C :
Since ��tgij = �2Emhij
by (7.6), for every k 2 N we have 



rk ��tgij



L1(�) � Ck ;
analogously, as the time derivative of the Christoffel symbols is given by��t�ijk = rEm �A+Em � rA
it follows that 



rk ��t�ijk



L1(�) � Ck :
for every k 2 N.
With an induction argument, we can prove the following formula (where we avoid to indicate
the indices) relating the iterated covariant and coordinate derivatives of a tensor T ,rmT = �mT + mXi=1 Xj1+���+ji+k�m�1 �j1� : : : �ji��kT :(7.7)
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By this formula and induction, it follows thatk�k�ijlkL1(�) ; 



�k ��t�ijl



L1(�) � Ck ;
for every t 2 [0; T ).
Applying again formula (7.7) to T = rsA we see that�krsA�rk+sA = kXi=1 Xj1+���+ji+l�k�1 �j1� : : : �ji� �lrsA ;
and by induction and estimates (7.6) we obtaink�krsAkL1(�) � Ck;s
for every k; s 2 N.
Since we already know that j'j is bounded and j�'j = 1, by the Gauss–Weingarten relations (2.5)�2' = ��'+A� ; �� = A � �'
and the previous estimates, we can conclude thatk�k'kL1(�) � Ck
for every k 2 N and t 2 [0; T ).
The regularity of the time derivatives also follows by these estimates and the evolution equation.

Hence, the convergence 't ! 'T , when t! T , is in theC1 topology andMT is smooth. Then,
using Theorem 4.1 to restart the flow with 'T as initial hypersurface, we get a contradiction with
the fact that [0; T ) is the maximal interval of existence.

Remark 7.7. Though this argument shows that the solution is classical, we cannot conclude that
the previous estimates holds uniformly for every t 2 [0;+1)which is the case for estimates (7.6).

Theorem 7.8. If m > �n2 �, for any smooth hypersurface immersion '0 : M ! Rn+1 there exists a
unique smooth solution to the problem�'�t (p; t) = �Em('t)(p)�(p; t) ;
that is, the gradient flow associated to the functionalFm(') = ZM 1 + jrm�j2 d� ;
defined for every t 2 [0;+1) and taking '0 as its initial value.
Moreover, such solution satisfies maxMt jrkAj � Ck :
for constants Ck depending only on n, k and '0.

8. CONVERGENCE

Let us consider the function � : [0;+1)! R,�(t) = ZM [Em('t)℄2 d�t � 0 :
Clearly we have ddtFm('t) = � ZM [Em('t)℄2 d�t = ��(t) ;
and integrating both sides in t on [0;+1)we getZ +10 �(t) dt = Fm('0)�Fm('t) � Fm('0) :
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Moreover, ���� ddt�(t)���� = ZM ����2 �Em('t)�t Em('t)�H [Em('t)℄3 ���� d�t � C
by the bounds (7.6). Then the function �, being Lipschitz and integrable on [0;+1), converges
to zero at +1. This means that every C1 limit hypersurface of the flow  : M ! Rn+1 satisfiesEm( ) = 0, i. e., it is a critical point of Fm, diffeomorphic to '0.

To find limit hypersurfaces, we need the following compactness result of Langer and Della-
dio [20, 46].

Theorem 8.1. Let be given a family (M; gi) of closed, oriented, n–dimensional hypersurfaces, isometri-
cally immersed in Rn+1 via the maps 'i :M ! Rn+1 , let �i the associated measures onM and Bari the
center of gravity of 'i, that is, Bari = ZM 'i d�i :
Let h be any metric tensor onM , if for some exponent p > n and C > 0 we haveZM 1 + jAjp d�i +Bari � C < +1 ;
then there exist a subsequence of f'ig (not relabeled) and diffeomorphisms �i : M ! M such that,f'i Æ �ig converges in the H2;p weak topology of maps from (M;h) ! Rn+1 to an immersion ' : M !Rn+1 .

Translating the hypersurfaces 't : M ! R in order to have Bart = 0 2 Rn+1 , we are in
the above hypotheses. Hence, we can extract a subsequence of smooth hypersurfaces 'i = 'ti
and diffeomorphisms �i : M ! M such that, for a fixed metric h on M , the sequence f'i Æ �ig
converges in the H2;p weak topology to an immersion  :M ! Rn+1 .
With the arguments of the proof of Theorem 8.1 in [20, 46] and keeping into account that in our
case we have also the estimates (7.6), it is possible to conclude that actually the convergence is in
the C1 topology and the limit hypersurface is smooth (see also [37], Prop. 3.4).

Theorem 8.2. The family of smooth hypersurfaces '0 :M ! Rn+1 , immersed in Rn+1 , evolving by the
gradient flow for the functional Fm(') = ZM 1 + jrm�j2 d� ;
when m > �n2 �, up to reparametrizations and translations, is compact in the C1 topology of maps.
Moreover, every limit point for t ! +1 is a critical hypersurface of the functional Fm which is C1
diffeomorphic to '0.

9. REMARKS AND OPEN PROBLEMS

The heuristics behind our results comes from the regularity theory for varifolds with gener-
alized second fundamental form introduced by Hutchinson in [40, 41, 42] (see also Allard [2, 3])
which, roughly speaking, says that a control on the volume and on the Lp norm of the second
fundamental form for some exponent p > n provides a local control on the oscillation of the
tangent space of the hypersurface, precisely a C0;� Hölder estimate. This means that writing the
hypersurface locally as the graph of a height function on its tangent space, the evolving hyper-
surfaces should share the same regularity of the solution of a corresponding parabolic problem
involving the height function.
In our case, we have seen that the energy Fm of the evolving hypersurface it is a priori bounded
hence, since m > �n2 �, the control on the volume and on the Wm;2 norm of the normal vector �
gives a bound on A in Ln+1.

Actually, this is only a heuristic argument in favor of regularity, in the paper we did not adopt
this approach, we instead used a priori estimates on the curvature and its derivatives as in the
works of Hamilton [33], Ecker and Huisken [21, 22, 36] and Polden [49, 50, 51].
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9.1. Other Functionals. The analysis of the flow was based upon the following key points:� the form of the leading term of the first variation;� the a priori uniform estimates on the constants in Sobolev and interpolation inequalities;� the “rescaling” property of the functional.

Hence, the proof of regularity could be possibly extended to other functionals with similar char-
acteristics.

Moreover, considering the analogy with the Sobolev spaces on Rn , where Wm;2 embeds inC0;� if 2m > n, it would be very interesting to study the flows in the “critical” case 2m = n,
where our line of proof fails. The study of regularity, long time existence and the analysis of
singularities is, as in the mean curvature flow, an intriguing open problem.
Notice that the two special situations of curves in the plane moving by mean curvature and the
well known Willmore functional (see [45, 53, 56])W(') = ZM jAj2 d�
defined on surfaces immersed in R3 , fall exactly in this case, being jAj2 equal to jr�j2.
In the case of curves, regularity (before collapsing) can be proved only in codimension one and
for an embedded initial curve (see [1, 5, 6, 9, 28, 29, 32, 34, 38]), moreover, the proof involves not
only PDE’s theory but also topological arguments.
About theWillmore functional, at themoment nor there is a proof of regularity of the flow, neither
an example showing the development of a singularity. A first step in this direction was recently
done by Kuwert and Schätzle [45].

When 2m < nwe do not expect regularity of the flow by the gradient of Fm since, by analogy
with the previous discussion about the regularity of varifolds, the curvature term should not be
sufficient to give regularity and dumb–bell like separation phenomena should appear during the
flow of certain hypersurfaces.
Moreover, it should also be noticed that in this and in the critical case, the n–dimensional unit
sphere in Rn+1 collapses in finite time. This can be easily seen considering the ODE satisfied
by the radius r(t) during the evolution (the hypersurface remains a sphere by symmetry) and
checking that in finite time r(t) goes to zero, like in the mean curvature flow, indeed, if 2m < n
the curvature term also forces the sphere to shrink (the curvature integral is a constant for the
spheres, in the critical case 2m = n).
9.2. Other Ambient Spaces. A natural extension would be to consider an ambient spaces differ-
ent by Rn+1 , that is, a general Riemannian manifold (N; h) of dimension n + 1. Since Polden’s
Theorem 4.1 about small time existence of the flow already deals with a general target manifold,
only the a priori estimates leading to the global existence and regularity need to be be carried
out.
Similarly, we can analyze the case of codimension s greater than one, in this case a functional
which could be considered is Fm(') = ZM 1 + jrm!j2 d�
where ! = �1 ^ � � � ^ �s is a s–vector obtained by a local orthonormal basis of the normal space to
the n–dimensional immersed submanifold ' :M ! Nn+s.
In [45] Kuwert and Schätzle announce a forthcoming paper with the extension of Polden’s results
to space curves.

9.3. Smoothing Terms. From our analysis, it easily follows that for every positive constants �
and � also the gradient flow of the functionalF��m (') = ZM �+ �jrm�j2 d�
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exists and it is smooth for every positive time.
Moreover, if we consider a general positive geometric functionalG(') = ZM f('; g;A; �; : : : ;rsA;rl�) d� ;
such that f is smooth and has a polynomial growth, choosing an integer m large enough, the
gradient flow of the perturbed functionalG"m(') = G(') + "Fm(')
does not develop singularities. This is achieved choosing m so that the rescaling order of jrm�j2
is larger than the rescaling order of f('; g;A; �; : : : ;rsA;rl�), in this way the extra terms com-
ing from G are well controlled by the leading term in the first variation of "Fm.
We say that Fm is a smoothing term for G.

This was the idea behind De Giorgi’s suggestion to study the regularity of these flows. Once
you have a sufficiently general family of smoothing terms you can study what happens varying
the parameters, in particular when the constant in front of them goes to zero.
De Giorgi’s program can be stated as follows: given a geometric functional G defined on sub-
manifolds of Rn (or a more general ambient space),� find a functional F such that the perturbed functionals G" = G + "F give rise to smooth

flows;� study what happens when "! 0, in particular, the existence of a limit flow and in this case
its relation with the gradient flow of G (if it exists, smooth or singular).

The simplest example is the analysis of the convergence (in some topology) of the family of
flows of curves 
" : S1� R+ ! R2 given by the functionalsF"0 (
) = ZS1 1 + "k2 ds
when " goes to zero, and the relations of the possible limit flow with the mean curvature flow.

Our work shows that the functionals Fm satisfy the first requirement of this program for geo-
metric functionals G with polynomial growth, defined on hypersurfaces immersed in the Eu-
clidean space, provided we choose an orderm large enough (depending on G).

Clearly other choices of smoothing terms could be done, asFm;p(') = ZM 1 + jrm�jp d� whenmp > n
following the analogy with the Sobolev spaces. In this case the smoothness of the flow is an open
problem.
A particularly interesting case of these ism = 1 and p > n, that isF1;p(') = ZM 1 + jAjp d� for p > n
which would give rise to a flow of order lower than the one of Fm when n > 1.
The good property of these functionals is that, with the same arguments of Section 6, the control
on the constants in the Sobolev and interpolation inequalities is immediate. The bad point is the
possible degeneration of the leading term of the first variation, so it could be necessary to add a
term ZM jAj2 d�
to F1;p in order to get the small time existence of the flow.
In the same spirit another interesting functional isHp(') = ZM 1 + jHjp d� for p > n :
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9.4. De Giorgi’s Conjecture. Finally we introduce the original smoothing terms suggested by
De Giorgi in [16, 17]. Given a smooth embedded hypersurfaceM � Rn+1 , we can consider the
squared distance function �M (x) = [d(x;M)℄2 : Rn+1 ! R which turns out to be smooth in a
neighborhood of the hypersurfaceM . Then we define the functionAM (x) = jxj2 � �M (x)2
and its derivatives AMi1 :::im(x) = �mAM (x)�xi : : : �xm
whenever they exist, in particular for every x 2M .
The quantities AMi1:::im(x) for x 2 M are related to the second fundamental form A(x) of M and
to its derivatives up to the orderm� 3, for instancejAMijk(x)j2 = X1�i;j;k�n+1[AMijk(x)℄2 = 3jA(x)j2 :
In general there is a bijective relation between the quantities AMijk(x) and the second fundamental
form of M at x (see [7, 18, 19] for this and related facts). In the case of immersed manifold, not
necessarily embedded, the function AM (x) can be defined using the property that every immer-
sion is locally an embedding.
The relations of the distance function with the second fundamental form make it a valuable tool
in the study of the evolution by mean curvature (see [8, 55]) and more in general of geometric
functionals and flows (see for instance [7, 18, 19]).

De Giorgi suggested that the gradient flow of the functionalsDGm(') = ZM 1 + jAMi1:::im j2 d�
when m is large enough, does not become singular. In [16, 17] a precise value for the minimal
order of derivationm is not stated but, by analogy with our work we expect that m > �n2 �+ 2 is
sufficient to obtain regularity.
The first variations of these functionals has been studied by Ambrosio and the author in [7],
Sec. 5.3: the leading term of the first variation of DGm turns out to be a constant multiple of the
leading term of Em�2 (see Theorem 3.7)2m(�1)mm� 2 timesz }| {�� : : :�H ;
moreover, the functional DGm has the same rescaling properties of Fm�2.
The difficult step in repeating our proof stays in controlling a priori Sobolev and interpolation
constants, or more precisely in obtaining inequalities of kindkAMi1:::ikkLp(�) � CkAMi1:::ik+lkLq(�) ;
since the integrals are done on M but the derivatives are taken along all the directions of the
ambient space Rn+1 .
At this moment the original conjecture of De Giorgi remains open.

9.5. Asymptotic Behavior. An open problem arising from the discussion of the previous section
is the question of the uniqueness of the limit hypersurfaces.

It is also unknown to the author if actually it can happen that the hypersurface goes to the
infinity when t! +1.

To conclude, we mention the problem of classification of the limit points of these flows, or
equivalently of the critical hypersurfaces of Fm. In his work [49] Polden completely classifies the
limit curves of the flow of the functional (1.1), the analogous n–dimensional result seems to be a
much more difficult task.



SMOOTH GEOMETRIC EVOLUTIONS 35

REFERENCES

1. U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Diff. Geom. 23 (1986), no. 2,
175–196.

2. W. K. Allard, First variation of a varifold, Ann. of Math. 95 (1972), 417–491.
3. , First variation of a varifold–boundary behaviour, Ann. of Math. 101 (1975), 418–446.
4. F. J. Almgren, J. E. Taylor, and L. Wang, Curvature driven flows: a variational approach, SIAM J. Cont. Opt. 31 (1993),

387–438.
5. S. Altschuler, Singularities of the curve shrinking flow for space curves, J. Diff. Geom. 34 (1991), 491–514.
6. S. Altschuler and M. Grayson, Shortening space curves and flow through singularities, J. Diff. Geom. 35 (1992), 283–298.
7. L. Ambrosio and C. Mantegazza, Curvature and distance function from a manifold, J. Geom. Anal. 8 (1998), no. 5, 719–744.
8. L. Ambrosio and H. M. Soner, Level set approach to mean curvature flow in any codimension, J. Diff. Geom. 43 (1996),

693–737.
9. S. Angenent,On the formation of singularities in the curve shortening flow, J. Diff. Geom. 33 (1991), 601–633.
10. T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer–Verlag, 1998.
11. E. Bombieri, E. De Giorgi, andM.Miranda,Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche,

Arch. Rat. Mech. Anal. 32 (1969), 255–267, (Italian).
12. K. A. Brakke, The Motion of a Surface by its Mean Curvature, Princeton Univ. Press, Princeton, N.J., 1978.
13. M. Cantor, Sobolev inequalities for Riemannian bundles, Bull. Amer. Math. Soc. 80 (1974), 239–243.
14. , Sobolev inequalities for Riemannian bundles, Differential Geometry, Proc. Sympos. Pure Math., vol. 27, Amer.

Math. Soc., 1975, pp. 171–184.
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Univ. Tübingen, 1996, Arbeitsbereich Analysis Preprint Server – Univ. Tübingen, http://poincare.mathematik.uni-
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