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PREFACE

The object of �-convergence is the description of the asymptotic behaviour of

families of minimum problems, usually depending on some parameters whose

nature may be geometric or constitutive, deriving from a discretization argument,

an approximation procedure, etc. Since its introduction by De Giorgi in the

early 1970s �-convergence has gained an undiscussed role as the most 
exible

and natural notion of convergence for variational problems, and is now been

widely used also outside the �eld of the Calculus of Variations and of Partial

Di�erential Equations. Its 
exibility is due to its being linked to no a priori

ansatz on the form of minimizers, which is in a sense automatically described by a

process of optimization. In this way �-convergence is not bound to any prescribed

setting, and it can be applied to the study of problems with discontinuities

in Computer Vision as well as to the description of the overall properties of

nonlinear composites, to the formalization of the passage from discrete systems

to continuum theories, to the modelling of thin �lms or plates, etc., and may

be potentially of help in a great variety of situations where a variational limit

intervenes or an approximation process is needed.

This books stems from the lecture notes of a course I gave at the SISSA in

Trieste in Spring 1999 aimed at all PhD students in Applied Functional Analysis.

The idea of the course was to describe all the main features of �-convergence to

an audience interested in applications but not necessarily wishing to work in that

�eld of the Calculus of Variations, and at the same time to give a simpli�ed intro-

duction to some topics of active research. After a brief presentation of the main

abstract properties of �-convergence, the lectures were organized as a series of

examples in a one-dimensional setting. This choice was aimed at separating those

arguments proper of the variational convergence from the technicalities of higher

dimensions that render the results at times much more interesting but often are

not directly related to the general issues of the convergence process. This struc-

ture (with some changes in the order of the chapters) is kept also in the present

book, with the addition of some �nal chapters, which are thought as an introduc-

tion to a selected choice of higher-dimensional problems. The scope of this �nal

part of the book is showing how, contrary to what happens for di�erential equa-

tions where passing from Ordinary Di�erential Equations to Partial Di�erential

Equations and then to systems involves a substation change of viewpoint, the

main arguments of �-convergence essentially remain unchanged when passing

from one-dimensional problems to higher-dimensional ones and from scalar to

vector-valued functions. Apart from these chapters `for the advanced beginner'

(which require some notions on Sobolev spaces and whose title is marked by an

asterisk) the rest of the book is reasonably self contained, requiring standard

notions of Measure Theory and basic Functional Analysis.
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I have tried to describe the principles of variational convergence rather than

include the sharpest results. Hence, I have frequently chosen proofs that are not

the most eÆcient for the speci�c result but illustrate most clearly the arguments

that can be repeated elsewhere or the technical points that can be generalized

to more complex situations. Conversely, I have frequently left minor details as

an exercise. All chapters have a �nal section of comments where some more re-

�ned issues are addressed, an outline of the higher-dimensional problems is often

sketched, and some bibliographical indication is given. Since this is not thought

as a research book on each single subject treated (homogenization, phase transi-

tions, free-discontinuity problems, etc.) I refer to other monographs for complete

references on established results. On the contrary, I have chosen to include ref-

erences to the most recent advances in some problems that may interest the

research-oriented reader.

As an advice for the user, it must be mentioned that it is not by chance that

no dynamical problem is treated: �-convergence is a purely-variational tech-

nique aimed at treating minimum problems, and, even though it may give some

precious hints in particular situations, in general it is not designed to treat

time-dependent cases. Furthermore, also in the `static case' the generality of

�-convergence does not allow to obtain the more accurate results of matched

asymptotics techniques whenever a very accurate ansatz for optimal sequences

is available (for example in linear homogenization).

Finally, I wish to thank the many friends that have fruitfully interacted with

me during and after the course at SISSA and another course given at the Uni-

versity of Rome `La Sapienza' in 2001, where part of the material was again

presented. I am indebted to Roberto Alicandro, Nadia Ansini, Marco Cicalese,

Lorenzo D'Ambrosio, Francesco Del Fra, Gianpietro Del Piero, Maria Stella Gelli

and Chiara Leone for accurately reading parts of the manuscript of the book, and

to Lev Truskinovsky for his enthusiastic support. The �nal form of the material

much owes to the precious advices and critical comments of Giovanni Alberti,

whom I regard as the invisible second author of the book. Thanks to Adriana

Garroni for help in the �gures and for being there.

Rome Andrea Braides

February 2002
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INTRODUCTION

Dear Sir or Madam will you read my book?

It took me years to write, will you take a look?

(Lennon and McCartney, Paperback Writer)

Cosa ne pu�o importare alla casalinga di Treviso,

al bracciante lucano, al pastore abruzzese?

(Nanni Moretti, Sogni d'oro)

Why a variational convergence?

In many mathematical problems, may they come from the world of Physics,

industrial applications or abstract mathematical questions, some parameter ap-

pears (small or large, of geometric or constitutive origin, coming from an ap-

proximation process or a discretization argument, at times more than a single

parameter) which makes those problems increasingly complex or more and more

degenerate. Nevertheless, as this parameter varies, it is often possible to foresee

some `limit' behaviour, and `guess' that we may substitute the complex, de-

generate problems we started with, with a new one, simpler and with a more

understandable behaviour, possibly of a completely di�erent type, where the

parameters have disappeared, or appear in a more handy way.

Sometimes this type of questions may be studied in a variational framework.

In this case, it can be rephrased as the study of the asymptotic behaviour of a

family of minimum problems depending on a parameter; in an abstract notation,

minfF"(u) : u 2 X"g: (0.1)

The next section provides a number of examples in which F" range from singular-

ly-perturbed non-convex problems to highly-oscillating integrals, from discrete

energies de�ned on varying lattices to functionals approximating combined bulk

and interfacial energies. The form and the dependence on " of the solutions in

those examples as well as the way they convergence may be very di�erent from

case to case.

A way to describe the behaviour of the solutions of (0.1) is provided by

substituting such a family by an `e�ective problem' (not depending on ")

minfF (u) : u 2 Xg; (0.2)

which captures the relevant behaviour of minimizers and for which a solution

can be more easily obtained. �-convergence is a convergence on functionals which
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loosely speaking amounts to requiring the convergence of minimizers and of min-

imum values of problems (0.1) and of their continuous perturbations to those of

(0.2) with the same perturbations. In this way the relevant properties of the

actual solutions of (0.1) can be approximately described by those of the solution

of (0.2). Note that the function space X and the form of the energy F may be

very di�erent from those at level ", so that the way this convergence is de�ned

must be quite 
exible.

A fundamental remark is that the e�ectiveness of �-convergence is linked to

the possibility of obtaining converging sequences (or subsequences) from mini-

mizers (or almost-minimizers) of (0.1). A preliminary fundamental question is

then compactness: the notion of convergence of functions u" must be given so

that the existence of a limit of minimizers of (0.1) | assuming that they exist |

is ensured beforehand. A too strong notion of convergence of functions will result

in a useless de�nition of convergence of energies, simply because minimizers will

not converge. The candidate space X for the limit problem is the space where

this compactness argument leads.

Once a notion of convergence u" ! u is agreed upon, the way the functional

F in the limit problem (0.2) is obtained can be heuristically explained as an

optimization between lower and upper bounds. A lower bound for F is an energy

G such that

G(u) � F"(u") + o(1) (0.3)

(or in other terms G(u) � lim inf"!0+ F"(u")) whenever u" ! u. The require-

ment that this hold for all u and u" (and not only for u" = u or for minimizers)

is a characteristic of �-convergence that makes it `stable under perturbations'

and at the same time suggests some structure properties on the candidate G

(i.e. lower semicontinuity). Condition (0.3) above implies that

inffG(u) : u 2 Xg � lim
"!0+

minfF"(u) : u 2 X"g

(given the limit exists). The sharpest lower bound is then obtained by optimizing

the role ofG. The way this is obtained in practice di�ers greatly from case to case,

but always involves some minimization argument: in the case of homogenization

the minimization is done in classes of periodic functions, for phase transitions it

consists in an optimal pro�le issue, in the study of non-convex discrete systems

it amounts to optimize a `separation of scales' argument, etc. (see the examples

below). A crucial point at this stage is the study of (necessary) conditions for

lower semicontinuity, that allows to restrict the class of competing G.

Once it is computed, the optimal G in this procedure suggests an ansatz for

the form of the minimizing sequences: in the case of homogenization it suggests

that minimizers oscillate close to their limit following an energetically-optimal

locally-periodic pattern, for phase transitions that sharp phases are approxi-

mated by smoothened functions with an optimal pro�le, in the study of non-

convex discrete systems that minimizers are obtained by an optimal two-scale
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discretization, etc. Using this ansatz for each u 2 X (and not only for minimiz-

ers) we may construct a particular u" ! u and de�ne H(u) = lim"!0+ F"(u").

This H is an upper bound for the limit energy, and for such H we have

lim
"!0+

minfF"(u) : u 2 X"g � inffH(u) : u 2 Xg;

that is, to an ansatz on approximating sequences there corresponds an estimate

`from above' for the limit of the minimum problems.

The �-convergence of F" is precisely the requirement that these two bounds

coincide, and hence it implies the convergence of (0.1) to (0.2). Having taken

care of de�ning the upper and lower bound energies for all functions and not

only for minimizers �-convergence enjoys important properties, such as:

| �-convergence itself implies the convergence of minimum problems (that

for the sake of simplicity was assumed true in the argument above) and the

convergence of (sub)sequences of (almost-)minimizers to minimizers of the �-

limit,

| it is stable under continuous perturbations. This means that our analysis

is still valid if we add to all problems any �xed continuous term. In this sense

the �-limit F provides a `limit theory' which describes all relevant features of F"
and not only those related to a speci�c minimum problem,

| the �-limit F is a lower semicontinuous functional. This is a very useful

structure property that usually implies existence of minimizers and helps in

giving a better description of F through representation results.

Comparing this notion with others used for asymptotic expansion we note

that the main issue here is the computation of the lower bound, which uniquely

involves minimization and `optimization' procedures and is totally ansatz-free.

To this lower bound there corresponds an upper bound where the ansatz on

minimizers is automatically driven by the lower bound itself. As a result �-

convergence does not require the computation of minimizers of (0.1) | that

indeed may or may not exist | nor the solution of the associated Euler{Lagrange

equations, and it is not linked to any structure of X" and X .

It must be mentioned that, given the generality of applications of �-con-

vergence, whenever a good ansatz for minimizers is reached, additional ad hoc

techniques should be also used to give a more complete characterization of the

convergence of minimum problems. This is the case, for example, of periodic

(linear) homogenization where asymptotic expansion in locally-periodic functions

provide a more complete description of the behaviour of minimizers, and �ner

issues can be fruitfully addressed by di�erent methods. The same example of

homogenization shows that we must be very careful when we start from an

ansatz that looks completely natural but is not justi�ed by a convergence result:

in the vector-valued non-linear case minimizers are in general (locally) almost

periodic (i.e. oscillations at all scales must be taken into account). This behaviour

is natural from the viewpoint of �-convergence but it is easily missed if we start

from the wrong assumptions on the (local) periodicity of minimizing sequences.
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In the rest of this chapter we provide a series of examples, which serve also

as an introduction to the core of the book, and a �nal section in which we

introduce the de�nition of �-convergence as a `natural' extension of the so-called

direct methods of the Calculus of Variations.

Parade of examples

In this section we include a number of examples, in which we show how a notion

of variational convergence must be sensible, as it must include cases where the

limit problem is set on a spaceX completely di�erent from all X", and even when

X is the same it may be very di�erent from pointwise convergence. Furthermore,

by describing the approximate forms of minimizers in these examples, which will

be obtained as a �nal result in the �-convergence process and exhibit a variety

of structures, we want to highlight how the convergence must not rely on any

a priori ansatz on the asymptotic form of minimizers, and it should in a sense

itself suggest the precise meaning of this asymptotic question, as this could not

be supplied by problems (0.1). These examples will be dealt with in detail in the

next chapters.

Example 0.1 (gradient theory of phase transitions). The simplest exam-

ple that shows a dramatic change of type in the passage to the limit, is perhaps

that of the gradient theory of phase transitions for a homogeneous isothermal


uid contained in a bounded region 
. If we denote the concentration of the


uid with a function u : 
 ! [0; 1], then the equilibrium con�gurations are de-

scribed as minimizing a suitable energy depending on u under a mass constraint:

min
n
E(u) : u : 
! [0; 1];

Z



u dx = C
o
; (0.4)

where the energy is of the form

E(u) =

Z



W (u) dx: (0.5)

The energy density W : (0;+1)! R is a non-convex function given by the Van

der Waals Cahn Hilliard theory, whose graph is of the form as in Fig. 0.1.

W

Fig. 0.1. The van der Waals energy density
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In order to make problem (0.4) clearer and understand the properties of

minimizers, we may add an aÆne change of variable to W ; that is, consider

W (u)+ c1u+ c2 in place of W . Note that this change in the energy density does

not a�ect the minimum problem (0.4) since it amounts to add the �xed quantityZ



(c1u+ c2) dx = c1C + c2j
j

to E(u). At this point, we may choose c1 and c2 so that the new energy density,

which we still denote byW , is non-negative and has precisely two zeros at points

� and �, as in Fig. 0.2.

It is clear now that, if this is allowed by the mass constraint, minimizers of

(0.4) will be simply given by (all!) functions u which take only the values � and

� and still satisfy the constraint
R


u dx = C. For such a function the two regions

fu = �g and fu = �g are called the two phases of the 
uid and form a partition of


. Note that minimizing problem (0.4) does not provide any information about

the interface between the two phases, which may be irregular or even dense in


. This is not what is observed in those equilibrium phenomena: among these

minimizers some special con�guration are preferred, instead, and precisely those

with minimal interface between the phases. This minimal-interface criterion is

interpreted as a consequence of higher-order terms: in order to prevent the ap-

pearance of irregular interfaces, we add a term containing the derivative of u

as a singular perturbation, which may be interpreted as giving a (small) surface

tension between the phases. The new problem, in which we see the appearance

of a small positive parameter ", takes the form

min
nZ




(W (u) + "2jDuj2) dx :
Z



u dx = C
o

(0.6)

(the power "2 comes from dimensional considerations), where now some more

regularity on u is required. The solutions to this problem indeed have the form

Fig. 0.2. The energy density after the aÆne translation
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u"(x) � u(x) + u1

�dist (x; S)
"

�
;

where u : 
! f�; �g is a phase-transition function with minimal interface S in


, and u1 : R! R is a function with limit 0 at in�nity, which gives the optimal

pro�le between the phases at " > 0. Fig. 0.3 picture a minimizer u" corresponding

to a minimal u with a minimal (linear) interface between the phases.

This is a natural ansatz and is proved rigorously by a �-convergence argu-

ments. We can picture this behaviour in the one-dimensional case, where, then, u

is simply a function with a single discontinuity point. In Fig. 0.4 are represented

functions u" for various values of ".

The behaviour of u" cannot be read out directly by examining small-energy

functions for problem (0.6), but may be more easily deduced if that problem is

rewritten as

min
nZ




�W (u)

"
+ "jDuj2

�
dx :

Z



u dx = C
o
: (0.7)

In this way it may be seen that the contributions of the two terms in the integral

have the same order as " tends to 0 for minimizing sequences; the qualitative

u=

u=

Fig. 0.3. Approximate phase transition with a minimal interface

Fig. 0.4. Behaviour of approximate phase transitions
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e�ect of the �rst term is that u tends to get closer to � or �, while the e�ect of

the second term is to penalize unnecessary interfaces. It can (and it will) be seen

that problem (0.7) is well approximated as " gets small by a minimal interface

problem:

min
n
Per(fu = �g;
) : u : 
! f�; �g;

Z



u dx = C
o
; (0.8)

where Per(A;
) denotes the (suitably de�ned) perimeter of A in 
. In this case

we have a complete change of type in the problems: in particular, while problem

(0.7) involves only (suÆciently) smooth functions, its limit counterpart (0.8) gets

into play only discontinuous functions. The treatment by �-convergence of this

example will be done in Chapters 6 and 14.

Example 0.2 (homogenization of variational problems). Another class

of problems, which can be (partly) set in this framework are some types of

homogenization problems. `Homogenization' is a general term which underlines

the asymptotic description of problems with increasingly oscillating solutions.

In its simplest form it regards the description of static phenomena involving

the study of minimum points of some energy functional whose energy density

is periodic on a very small scale (see Fig. 0.5). The simplest case is related to

the stationary heat equation in a (locally isotropic) composite medium of Rn

of thermal conductivity a(x=") occupying a region 
. The function a is periodic

(say, of period one) in each coordinate direction, so that the integrand above is

periodic of period ". To �x ideas we may assume that a takes only two values

(say, � and �). In this case the medium we have in mind is a composite of two

materials whose `microscopic pattern' is described by the function a. If f is a

source term and we impose a boundary condition (for simplicity homogeneous)

the temperature u" will satisfy8><>:�
nX

i;j=1

@

@xi

�
a
�x
"

� @u
@xj

�
= f in 


u = 0 on @
,

Fig. 0.5. A `composite medium' and its microscopic pattern
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or, equivalently, can be characterized as the minimizer of

min
n
E"(u)� 2

Z



fu dx : u = 0 on @

o
; (0.9)

where

E"(u) =

Z



a
�x
"

�
jDuj2 dx: (0.10)

If the dimensions of the set 
 are very large with respect to " we may expect

that the overall `macroscopic' behaviour of the medium described above is `very

similar' to a (now, possibly anisotropic) homogeneous material. Indeed the so-

lutions u" of (0.9) `oscillate' close to the solution of a limit problem as we let "

tend to 0; that is, they have the form, at least locally in 
, (see Figure 0.6)

u"(x) � u(x) + "u1

�
x;
x

"

�
: (0.11)

The function u is the solution of a problem of the type

min
nZ




X
i;j
qij

@u

@xi

@u

@xj
dx� 2

Z



fu dx : u = 0 on @

o
: (0.12)

The constant `homogenized' coeÆcients qij do not depend on f and 
, and can

be computed directly from a through some auxiliary minimum problems on sets

of periodic functions. It is instructive to look at the one-dimensional case, where


 � R; in this case the pointwise limit of the functionals E" exists and is given

simply by

E(u) = a

Z



ju0j2 dt; (0.13)

where the coeÆcient a is the mean value of a, a =
R 1
0
a(s) ds, but the coeÆcientba (= q11 in this simple case) appearing in (0.12) is given by the harmonic mean

of a: ba = �Z 1

0

1

a(s)
ds
��1

: (0.14)

u

Fig. 0.6. Oscillating solutions and their limit
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This observation shows an interesting non-trivial e�ect of the oscillations in the

minimizing sequences, that interact with those of a(x="). By optimizing this

interaction we obtain the value of ba. Some issues of this type of homogenization
will be addressed in Chapters 3 and 12.

Another `homogenization' problem intervenes as a question concerning the

convergence of distances. A Riemannian distance is characterized (in local coor-

dinates) by minimum problems of the form

min
nZ 1

0

X
i;j
aij(u)u

0
i
u0
j
dx : u(0) = u0; u(1) = u1

o
; (0.15)

where u : [0; 1]! Rn vary among all (regular) curves joining u0 and u1. In some

problems (e.g. when dealing with families of viscosity solutions) it is necessary

to characterize the limit of oscillating Riemannian metrics of the form

min
nZ 1

0

X
i;j
aij

�u
"

�
u0
i
u0
j
dx : u(0) = u0; u(1) = u1

o
: (0.16)

In this case we may still characterize the limit of these problems, but it can

be seen that it is not related to a Riemannian metric anymore; that is, such

problems behave as "! 0 as

min
nZ 1

0

 (u0) dx : u(0) = u0; u(1) = u1

o
; (0.17)

but in general  is not a quadratic form. To understand this behaviour it is

instructive to consider the case when n = 2 and aij(u) = a(u)Æij (Æij denotes

Kronecker's delta), and a models a `chessboard structure' with two values �, �

with
p
2� < �. With this condition, it is `not convenient' for the competing

curves u in (0.16) to cross the � region, and with this constraint in mind it is

easy to �nd the exact form of  and to check that it is not a quadratic form (see

Chapter 3). The solutions to (0.16) are pictured in Fig. 0.7.

u0

u1

Fig. 0.7. Curves of minimal distance on the `chessboard' are not line segments



10 Introduction

The choice of the scaling (i.e. the dependence on ") is not always as obvious

as above. Another `classical' example of problems in a periodic setting is that of

Dirichlet problems in perforated domains. In this case the problem we encounter

is of the form

min
nZ


"

jDuj2 dx� 2

Z

"

fu dx : u = 0 on @
"

o
; (0.18)

where 
" is a `perforation' of a �xed bounded open set 
 � Rn. The simplest

case is when 
" is obtained by removing from 
 a periodic array of closed balls

of equal radius Æ = Æ(") with centres placed on a regular lattice of spacing ";

that is, of the form


" = 
 n
[
i2Zn

B("i; Æ(")) (0.19)

(see Fig. 0.8). In terms of the corresponding stationary heat equation, the condi-

tion u = 0 can be interpreted as the presence of evenly distributed small particles

at a �xed temperature (it is suggestive to think of ice mixed with water) in the

interior of 
.

The behaviour as " gets smaller is trivial when n = 1 (the solutions simply

tend to 0 since they are equi-continuous and vanish on a set which tends to be

dense), but gives rise to an interesting phenomenon when n � 2 and Æ = Æ(")

is appropriately chosen. Let n � 3 for the sake of simplicity; in this case the

interesting case is when

Æ(") � "n=(n�2); (0.20)

all other cases giving trivial results: either the e�ect of the perforation is neg-

ligible, and the boundary condition in the interior of 
 disappears, or it is too

strong, and it forces the solutions to tend to zero. The case (0.20) is the in-

termediate situation where the e�ect of the perforation is of the same order as

that of the Dirichlet energy and it penalizes the distance of the solution from 0

in a very precise manner. The overall e�ect as " tends to 0 is that u" `behave

approximately' as the solution u of the problem

Fig. 0.8. A `perforated' domain
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min
nZ




(jDuj2 + Cjuj2) dx� 2

Z



fu dx : u 2 H1
0 (
)

o
; (0.21)

meaning that (at least in the interior of 
)

u"(x) � u(x)
�
1�

X
i

u1

� x� "i

"n=n�2

��
; (0.22)

where u1 is a `capacitary potential' decreasing to 0 at in�nity and with u1 = 1

on the unit ball, and the constant C is computed explicitly and does not depend

on f . Figure 0.9 pictures the behaviour of the solutions on a one-dimensional

section passing through the perforation.

Note that even though we remain in the same functional space the form of

the limit energy is di�erent from the approximating ones and it has an additional

`strange term coming from nowhere' (as baptized by Cioranescu and Murat). An

explanation in terms of �-convergence is given in Chapter 13.

Example 0.3 (dimension reduction). Other problems where a small param-

eter " appears are asymptotic theories of elastic plates, shells, �lms and rods.

Fig. 0.9. Behaviour of oscillating solutions (`cross section')

Ω�

�

�

Fig. 0.10. A `thin' domain
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In this case the goal is a rigorous derivation of a lower (one- or two-)dimension-

al theory (for elastic plates, shells, etc.) from the corresponding three-dimensional

one. The starting point (e.g. for thin �lms) is then to consider energies of the

form

E"(u) =

Z

"

f(Du) dy; (0.23)

where u : 
 ! R3 and the domain, in the simplest case of 
at �lms, is of the

form


" = f(y0; y3) : y0 2 !; 0 < y3 < "g (0.24)

and ! is a �xed bounded open subset of R2 (see Figure 0.10). The simplest type

of problems related to such energies are of the form

minfE"(u) : u = � on (@!)� (0; ")g; (0.25)

where � = �(y0) and the boundary conditions are given only on the `vertical'

boundary. After scaling (dividing by ") the energy E" and the change of variables

x0 = y0, "x3 = y3, we have the equivalent energies

F"(u) =

Z
!�(0;1)

f
�
D1u;D2u;

1

"
D3u

�
dy: (0.26)

We now have a family of scaled energies, which are de�ned on a common space

of functions, but which tend to degenerate with respect to the derivative in the

third direction as " tends to 0. Problems (0.25) can be rewritten as

minfF"(u) : u = � on (@!)� (0; 1)g: (0.27)

If u" are solutions to such problems, in view of (0.26), one expects that D3u"
tend to 0 and hence the limit actually to be independent of the third variable.

Indeed we have that

u"(x) � u(x0) + "x3b(x
0); (0.28)

where u minimizes a two-dimensional problem

min
nZ

!

~f(D1u;D2u) dx
0 : u = � on @!

o
: (0.29)

The function ~f is independent of the boundary datum � and it is obtained,

heuristically, by minimizing the contribution of the function b in (0.26). In this

case both the problems at �xed " and at the limit have the same form, but on

domains of di�erent dimension. Minimizing sequences do not necessarily develop

oscillations, but the limit lower dimensional theory may not be derived in a

trivial way from the full three-dimensional one.

An outline of the approach by �-convergence to dimension reduction is given

in Chapter 14.
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Example 0.4 (approximation of free-discontinuity problems). The ter-

minology `free-discontinuity problems' (as opposed to free-boundary problems)

denotes a class of problems in the Calculus of Variations where the unknown is a

pair (u;K) withK varying in a class of (suÆciently smooth) closed hypersurfaces

contained in a �xed open set 
 � Rn and u : 
 nK ! Rm belonging to a class

of (suÆciently smooth) functions. Such problems usually consist in minimizing

an energy with competing volume and surface energies. The main examples in

this framework are variational theories in Image Reconstructions and Fracture

Mechanics. In the �rst case n = 2;m = 1 and the so-called Mumford Shah

functional is taken into account

E(u;K) =

Z

nK

jDuj2 dx+ c1 length(K) + c2

Z

nK

ju� gj2 dx: (0.30)

Here, the function g is interpreted as the input picture taken from a camera,

u is the `restored' image, and K is the relevant contour of the objects in the

picture; c1 and c2 are contrast parameters. Note that the problem is meaningful

also adding the constraint Du = 0 outside K, in which case we have a minimal

partitioning problem. In the case of fractured hyperelastic media m = n = 3 and

the volume and surface energies taken into account are very similar (with the

area ofK in place of the length), 
 is interpreted as the reference con�guration of

an elastic body, K is the crack surface, and u represents the elastic deformation

in the unfractured part of the body.

Functionals arising in free-discontinuity problems present some drawbacks;

for example, numerical diÆculties arise in the detection of the unknown discon-

tinuity surface. To bypass these drawbacks, a considerable e�ort has been spent

to provide variational approximations, in particular of the Mumford Shah func-

tional E de�ned above, with di�erentiable energies de�ned on smooth functions.

An approximation was given by Ambrosio and Tortorelli, who followed the idea

of the gradient theory of phase transitions introducing an approximation with

an auxiliary variable v. A family of approximating functionals is the following:

G"(u; v) =

Z



v2jDuj2 dx+ 1

2

Z



�
"jDvj2 + 1

"
(1� v)2

�
dx

+c2

Z



ju� gj2 dx ; (0.31)

de�ned on regular functions u and v with 0 � v � 1. Heuristically, the new

variable v in the limit as "! 0 approaches 1� �K and introduces a penalty on

the length of K in the same way as a phase transition. Since the functionals G"
are elliptic, even though non-convex, numerical methods can be applied to them.

It is interesting to note that the functionals G" may have also an interpretation

in terms of Fracture Mechanics, as v can be thought as a pointwise damage

parameter.

Free-discontinuity problems and their approximations are dealt with in Chap-

ters 7 and 8.
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Example 0.5 (continuous limits of di�erence schemes). Another interest-

ing problem is that of the description of variational limits of discrete problems

(for the sake of brevity in a one-dimensional setting). Given n 2 N and points

xn
i
= i�n (�n = L=n is the lattice spacing, which plays the role of the small

parameter ") we consider energies of the general form

En(fuig) =
nX
j=1

n�jX
i=0

�n 
j

n

�ui+j � ui

j�n

�
:

If we picture the set fxn
i
g as the reference con�guration of an array of material

points interacting through some forces, and ui represents the displacement of the

i-th point, then  j
n
can be thought as the energy density of the interaction of

points with distance j�n (j lattice spacings) in the reference lattice. Note that

the only assumption we make is that  jn depends on fuig through the di�erences
ui+j�ui, but we �nd it more convenient to highlight its dependence on `discrete

di�erence quotients'. For a quite general class of energies it is possible to describe

the behaviour of solutions of problems of the form

min
n
En(fuig)�

nX
i=0

�nuifi : u0 = U0; un = UL

o
(and similar), and to show that these problems have a limit continuous coun-

terpart. Their solutions then can be though of (non-trivial) discretizations of

the corresponding solution on the continuum. Here ffig represent the external

forces and U0; UL are the boundary conditions at the endpoints of the interval

(0; L). More general statement and di�erent problems can also be treated. Un-

der some growth conditions, minimizers of the problem above are `very close' to

minimizers of a classical problem of the Calculus of Variations

min
nZ L

0

�
 (u0)� fu

�
dt : u(0) = U0; u(L) = UL

o
:

The energy densities  can be explicitly identi�ed by a series of operations on

the functions  j
n
. The case when only nearest-neighbour interactions are taken

into account,

En(fuig) =
n�1X
i=0

�n n

�ui+1 � ui

�n

�
;

is particularly simple. In this case, the limit energy density is given by the limit of

the convex envelopes of the functions  n(z), which exists up to subsequences. The

description of the limit energy gets much more complex when not only nearest-

neighbour interactions come into play and involves arguments of homogenization

type which highlight that the overall behaviour of a system of interacting points

will behave as clusters of large arrays of neighbouring points interacting through

their `extremities' (see Chapters 4 and 11).
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A maieutic approach to �-convergence. Direct methods

The scope of this section is to show that we may `naturally' derive the de�nition

of �-convergence for functionals from the requirements that

| it implies the convergence of minimizers and minimum values (under suit-

able assumptions),

| it is stable under continuous perturbations, and

| it is given in local terms (i.e. we can also speak of convergence `at one

point').

The starting point will be the examination of the so-called direct methods of

the Calculus of Variations. For the sake of simplicity, from here onwards all our

problems will be set on metric spaces, so that the topology is described by just

using sequences. The idea is very simple: in order to prove the existence of a

minimizer of a problem of the form

minfF (u) : u 2 Xg; (0.32)

we examine the behaviour of a minimizing sequence; that is, a sequence (uj) such

that

limjF (uj) = inffF (u) : u 2 Xg; (0.33)

which clearly always exists. Such a sequence, in general might lead nowhere. The

�rst thing to check is then that we may �nd a converging minimizing sequence.

This property may be at times checked by hand, but it is often more convenient

to check that an arbitrary minimizing sequence lies in a compact subset K of X

(i.e. since X is metric, that for any sequence (uj) in K we can extract a subse-

quence (ujk ) converging to some u 2 K). This property is clearly stronger than

requiring that there exists one converging minimizing sequence, but its veri�ca-

tion often may rely on a number of characterizations of compact sets in di�erent

spaces. In its turn this compactness requirement can be directly made on the

functional F by asking that it be coercive; that is, that for all t its sub-level sets

fF < tg = fu 2 X : F (u) < tg are pre-compact (this means that for �xed t

there exists a compact set Kt containing fF < tg, or, equivalently, in terms of

sequences, that for all sequences (uj) with supj F (uj) < +1 there exists a con-

verging subsequence). Again, this is an even stronger requirement, but it may be

derived directly from the form of the functional F and not from special proper-

ties of minimizing sequences. Once some compactness properties of a minimizing

sequence are established, we may extract a (minimizing) subsequence, that we

still denote by (uj), converging to some u.

At this stage, the point u is a candidate to be a minimizer of F ; we have to

prove that indeed

F (u) = inffF (u) : u 2 Xg: (0.34)

One inequality is trivial, since u can be used as a test function in (0.34) to

obtain an upper inequality: inffF (u) : u 2 Xg � F (u).
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To obtain a lower inequality we have to link the value at u to those computed

at uj , to obtain the right inequality

F (u) � limjF (uj) = inffF (u) : u 2 Xg: (0.35)

Since we do not want to rely on special properties of u or of the approximating

sequence (uj), but instead we would like to isolate properties of the functional

F , we require that for all u 2 X and for all sequences (uj) tending to u we have

the inequality

F (u) � lim infjF (uj): (0.36)

This property is called the lower semicontinuity of F . It is much stronger than

requiring (0.35), but it may be interpreted as a structure condition on F and

often derived from general considerations.

At this point we have not only proven that F admits a minimum, but we

have also found a minimizer u by following a minimizing sequence. We may

condensate the reasoning above in the following formula

coerciveness + lower semicontinuity ) existence of minimizers; (0.37)

which summarizes the direct methods of the Calculus of Variations. It is worth

noticing that the coerciveness of F is easier to verify if we have many converging

sequences, while the lower semicontinuity of F is more easily satis�ed if we

have few converging sequences. These two opposite requirements will result in a

balanced choice of the metric on X , which is in general not given a priori, but

in a sense forms a part of the problem.

We now turn our attention to the problem of describing the behaviour of a

family of minimum problems depending on a parameter. In order to simplify the

notation we deal with the case of a sequence of problems

inffFj(u) : u 2 Xjg (0.38)

depending on a discrete parameter j 2 N; the case of a family depending on a

continuous parameter " introduces only a little extra complexity in the notation.

As j increases we would like these problems to be approximated by a `limit

theory' described by a problem of the form

minfF (u) : u 2 Xg: (0.39)

In order to make this notion of `convergence' precise we try to follow closely the

direct approach outlined above. In this case we start by examining a minimizing

sequence for the family Fj ; that is, a sequence (uj) such that

limj

�
Fj(uj)� inffFj(u) : u 2 Xjg

�
= 0; (0.40)

and try to follow this sequence.
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In many problems the space Xj indeed varies with j, so that now we have to

face a preliminary problem of de�ning the convergence of a sequence of functions

which belong to di�erent spaces. This is usually done by choosingX large enough

so that it contains the domain of the candidate limit and all Xj . We can always

consider all functionals Fj as de�ned on this space X by identifying them with

the functionals eFj(u) = �Fj(u) if u 2 Xj

+1 if u 2 X nXj .
(0.41)

This type of identi�cation is customary in dealing with minimum problems and

is very useful to include constraints directly in the functional. We may therefore

suppose that all Xj = X . If one is not used to dealing with functionals which

take the value +1, one may regard this as a technical tool; if the limit functional

is not �nite on the whole X it will always be possible to restrict it to its domain

domF = fu 2 X : F (u) < +1g.
As in the case of a minimizing sequence for a single problem, it is necessary

to �nd a converging minimizing (sub)sequence. In general it will be possible to

�nd a minimizing sequence lying in a compact set of X as before, or prove that

the functionals themselves satisfy an equi-coerciveness property: for all t there

exists a compact Kt such that for all j we have fFj < tg � Kt.

If a compactness property as above is satis�ed, then we may suppose that

the whole sequence (uj) converges to some u (this is a technical point that will

be made clear in the next section). The function u is a good candidate as a

minimizer.

First, we want to obtain an upper bound for the limit behaviour of the se-

quence of minima, of the form

lim supj inffFj(u) : u 2 Xg � inffF (u) : u 2 Xg � F (u): (0.42)

The second inequality is trivially true; the �rst inequality means that for all

u 2 X we have

lim supj inffFj(v) : v 2 Xg � F (u): (0.43)

This is a requirement of global type; we can `localize' it in the neighbourhood of

the point u by requiring a stronger condition: that for all Æ > 0 we have

lim supj inffFj(v) : d(u; v) < Æg � F (u): (0.44)

By the arbitrariness of Æ we can rephrase this condition as a condition on se-

quences converging to u as:

(limsup inequality) for all u 2 X there exists a sequence (uj) converging to u

such that

lim supjFj(uj) � F (u): (0.45)

This condition can be considered as a local version of (0.42); it clearly implies

all conditions above and (0.42) in particular.
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Next, we want to obtain a lower bound for the limit behaviour of the sequence

of minima of the form

F (u) � lim infjFj(uj): (0.46)

As we do not want to rely on particular properties of minimizers we regard u as

an arbitrary point in X and (uj) as any converging sequence; hence, condition

(0.46) can be deduced from the more general requirement:

(liminf inequality) for all u 2 X and for all sequences (uj) converging to u

we have

F (u) � lim infjFj(uj): (0.47)

This condition is the analog of the lower semicontinuity hypothesis in the case

of a single functional.

From the considerations above, if we can �nd a functional F such that the

liminf and limsup inequalities are satis�ed and if we have a converging sequence

of minimizers, from (0.46) and (0.42) we deduce the chain of inequalities

lim sup
j
inffFj(u) : u 2 Xg � inffF (u) : u 2 Xg

� F (u) � lim infjFj(uj)

= lim infj inffFj(u) : u 2 Xg: (0.48)

As the last term is clearly not greater than the �rst, all inequalities are indeed

equalities; that is, we deduce that

(i) (existence) the limit problem minfF (u) : u 2 Xg admits a solution,
(ii) (convergence of minimum values) the sequence of in�ma inffFj(u) : u 2

Xg converges to this minimum value,

(iii) (convergence of minimizers) up to subsequences, the minimizing sequence

for (Fj) converges to a minimizer of F on X .

Therefore, if we de�ne the �-convergence of (Fj) to F as the requirement that

the limsup and the liminf inequalities above both hold, then we may summarize

the considerations above in the formula

equi-coerciveness + �-convergence ) convergence of minimum problems:

(0.49)

As in the case of the application of the direct methods, a crucial role will be

played by the type of metric we choose on X . In this case, again, it will be a

matter of balance between the convenience of a stronger notion of convergence,

that will make the liminf inequality easier to verify, and a weaker one, which

would be more convenient both to satisfy an equi-coerciveness condition and to

�nd sequences satisfying the limsup inequality.



REFERENCES

Acerbi, E. and Buttazzo, G. (1983) On the limits of periodic Riemannian metrics.
J. Anal. Math. 43, 183{201.

Acerbi, E., Buttazzo, G. and Percivale, D. (1991) A variational de�nition for the
strain energy of an elastic string. J. Elasticity 25, 137{148.

Acerbi, E. and Fusco, N. (1984) Semicontinuity problems in the calculus of vari-
ations. Arch. Ration. Mech. Anal. 86, 125{145.

Adams, R.A. (1975) Sobolev Spaces. Academic Press, New York.

Alberti, G. (2001) A variational convergence result for Ginzburg-Landau func-
tionals in any dimension. Boll. Un. Mat. Ital. (8) 4, 289{310.

Alberti, G. and Bellettini, G. (1998) A non-local anisotropic model for phase
transitions: asymptotic behaviour of rescaled energies. Eur. J. Appl. Math. 9,
261{284.

Alberti, G., Bellettini, G., Cassandro, M. and Presutti, E. (1996) Surface tension
in Ising systems with Kac potentials. J. Stat. Phys. 82, 743{796.

Alberti, G., Bouchitt�e, G. and Seppecher, P. (1998) Phase transitions with the
line-tension e�ect. Arch Ration. Mech. Anal. 144, 1{46.

Alberti, G. and M�uller, S. (2001) A new approach to variational problems with
multiple scales. Comm. Pure Appl. Math. 54, 761{825.

Alicandro, R., Braides, A. and Gelli, M.S. (1998) Free-discontinuity problems
generated by singular perturbation. Proc. R. Soc. Edinburgh A 128, 1115{1129.

Alicandro, R., Focardi, M. and Gelli, M.S. (2000) Finite-di�erence approximation
of energies in fracture mechanics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29,
671{709.

Allaire, G. (1992) Homogenization and two-scale convergence. SIAM J. Math.
Anal. 23, 1482{1518.

Amar, M. and Braides, A. (1995) A characterization of variational convergence
for segmentation problems, Discr. Cont. Dynam. Syst. 1, 347{369.

Amar, M. and Braides, A. (1998) �-convergence of non-convex functionals de-
�ned on measures. Nonlinear Anal. TMA 34, 953{978.

Ambrosio, L. and Braides, A. (1990) Functionals de�ned on partitions of sets of
�nite perimeter, I and II. J. Math. Pures Appl. 69, 285{305 and 307{333.

Ambrosio, L., Coscia, A. and Dal Maso, G. (1997) Fine properties of functions
with bounded deformation. Arch. Ration. Mech. Anal. 133, 201{238.

Ambrosio, L., De Lellis, C. and Mantegazza, C. (1999) Line energies for gradient
vector �elds in the plane. Calc. Var. Part. Di�. Eq. 9, 327{255.

Ambrosio, L., Fusco, N. and Pallara, D. (2000) Functions of Bounded Variation
and Free Discontinuity Problems. Oxford University Press, Oxford.

Ambrosio, L. and Tortorelli, V.M. (1990) Approximation of functionals depend-
ing on jumps by elliptic functionals via �-convergence, Comm. Pure Appl. Math.



210 References

43, 999-1036.

Ansini, N. and Braides, A. (2002) Asymptotic analysis of periodically-perforated
nonlinear media. J. Math. Pures Appl., to appear.

Ansini, N., Braides, A. and Chiad�o Piat, V. (2002) Gradient theory of phase
transitions in inhomogeneous media. Proc. R. Soc. Edinburgh A, to appear.

Anzellotti, G. and Baldo, S. (1993) Asymptotic development by �-convergence.
Appl. Math. Optim. 27, 105{123.

Anzellotti, G., Baldo, S. and Percivale, D. (1994) Dimensional reduction in varia-
tional problems, asymptotic developments in �-convergence, and thin structures
in elasticity. Asymptotic Anal. 9, 61{100.

Anzellotti, G., Baldo, S. and Visintin, A. (1991) Asymptotic behaviour of the
Landau-Lifschitz model of ferromagnetism. Appl. Math. Optim. 23, 171{192.

Attouch, H. (1984) Variational Convergence for Functions and Operators. Pit-
man, Boston.

Aviles, P. and Giga, Y. (1999) On lower semicontinuity of a defect energy ob-
tained by a singular limit of the Ginzburg-Landau type energy for gradient �elds.
Proc. R. Soc. Edinburgh A 129, 1{17.

Baldo, S. (1990) Minimal interface criterion for phase transitions in mixtures of
Cahn-Hilliard 
uids. Ann. Inst. H. Poincar�e Anal. Non Lin�eaire 7, 67{90.

Ball, J.M. (1977) Convexity conditions and existence theorems in nonlinear elas-
ticity. Arch. Ration. Mech. Anal. 63, 337{403.

Barenblatt, G.I. (1962) The mathematical theory of equilibrium cracks in brittle
fracture. Adv. Appl. Mech. 7, 55{129.

Barron, E.N. (1999) Viscosity solutions and analysis in L1. In Nonlinear Anal-
ysis, Di�erential Equations and Control (eds. Clarke and Stern). Kluwer, Dor-
drecht.

Bellettini, G., Dal Maso, G. and Paolini, M. (1993) Semicontinuity and relaxation
properties of a curvature depending functional in 2D. Ann. Scuola Norm. Sup.
Pisa Cl. Sci. 20, 247{299.

Bensoussan, A., Lions, J.L. and Papanicolaou, G. (1978) Asymptotic Analysis of
Periodic Structures. North-Holland, Amsterdam.

Bethuel, F., Brezis, H. and H�elein, F. (1994) Ginzburg-Landau Vortices. Birk-
h�auser Boston.

Bhattacharya, K. and Braides, A. (2002) Thin �lms with many small cracks.
Proc. R. Soc. London, to appear.

Blanc, X. , Le Bris, C. and Lions, P.L. (2001) From molecular models to contin-
uum models. C.R. Acad. Sci., Paris, Ser. I 332, 949{956.

Blake, A. and Zisserman, A. (1987) Visual Reconstruction. MIT Press, Cam-
bridge.

Bodineau, T., Io�e, D. and Velenik, Y. (2000) Rigorous probabilistic analysis of
equilibrium crystal shapes. J. Math. Phys. 41, 1033{1098.

Bouchitt�e, G. and Buttazzo, G. (1992) Integral representation of nonconvex func-
tionals de�ned on measures. Ann. Inst. H. Poincar�e Anal. Non Lin�eaire 9, 101{
117.



References 211

Bouchitt�e, G. and Buttazzo, G. (1993) Relaxation for a class of nonconvex func-
tionals de�ned on measures. Ann. Inst. H. Poincar�e Anal. Non Lin�eaire 10,
345{361.

Bouchitt�e, G., Dubs, C. and Seppecher, P. (2000) Regular approximation of free-
discontinuity problems. Math. Models Meth. Appl. Sci. 10, 1073{1097.

Bouchitt�e, G., Fonseca, I., Leoni, G. andMascarenhas, L. (2001) A global method
for relaxation in W 1;p and in SBV p. Preprint CNA, Carnegie-Mellon Univ.,
Pittsburgh.

Bourdin, B. and Chambolle, A. (2000) Implementation of an adaptive �nite-
element approximation of the Mumford-Shah functional. Numer. Math. 85, 609{
646.

Braides, A. (1985) Homogenization of some almost periodic functional. Rend.
Accad. Naz. Sci. XL 103, 313{322.

Braides, A. (1994) Loss of polyconvexity by homogenization.Arch. Ration. Mech.
Anal. 127, 183{190.

Braides, A. (1998) Approximation of Free-Discontinuity Problems, Lecture Notes
in Mathematics 1694, Springer Verlag, Berlin.

Braides, A. (2000) Non-local variational limits of discrete systems Commun.
Contemp. Math. 2, 285{297.

Braides, A., Buttazzo, G. and Fragal�a, I. (2002a) Riemannian approximation of
Finsler metrics. Asymptotic Anal., to appear.

Braides, A. and Chiad�o Piat, V. (1996) Integral representation results for func-
tionals de�ned on SBV (
;Rm), J. Math. Pures Appl. 75, 595{626.

Braides A. and Dal Maso, G. (1997) Nonlocal approximation of the Mumford-
Shah functional, Calc. Var. Part. Di�. Eq. 5, 293{322.

Braides, A., Dal Maso, G. and Garroni, A. (1999) Variational formulation of soft-
ening phenomena in fracture mechanics: the one-dimensional case, Arch. Ration.
Mech. Anal. 146, 23{58.

Braides, A. and Defranceschi, A. (1998) Homogenization of Multiple Integrals.
Oxford University Press, Oxford.

Braides, A., Defranceschi, A. and Vitali, E. (1996) Homogenization of free dis-
continuity problems. Arch. Ration. Mech. Anal. 135, 297{356.

Braides, A., Fonseca, I. and Francfort, G.A. (2000) 3D{2D asymptotic analysis
for inhomogeneous thin �lms. Indiana Univ. Math. J. 49, 1367{1404

Braides, A. and Gelli, M.S. (2002) Continuum limits of discrete systems without
convexity hypotheses. Math. Mech. Solids, 6, to appear.

Braides, A., Gelli, M.S. and Sigalotti, M. (2002b) The passage from non-convex
discrete systems to variational problems in Sobolev spaces: the one-dimensional
case. Proc. Steklov Inst. 236, 395{414.

Braides, A. and Malchiodi A. (2002) Curvature theory of boundary phases: the
two-dimensional case. To appear.

Burago, D. (1992) Periodic metrics. Representation theory and dynamical sys-
tems. Adv. Sov. Math. 9, 205{210.



212 References

Buttazzo, G. (1989) Semicontinuity, Relaxation and Integral Representation in
the Calculus of Variations. Pitman, London.

Buttazzo, G. and Dal Maso, G. (1978) �-limit of a sequence of non-convex and
non-equi-Lipschitz integral functionals. Ric. Mat. 27, 235{251.

Buttazzo, G., Dal Maso, G. and Mosco, U. (1987) A derivation theorem for
capacities with respect to a Radon measure. J. Funct. Anal. 71, 263{278.

Buttazzo, G. and Freddi, L. (1991) Functionals de�ned on measures and ap-
plications to non equi-uniformly elliptic problems. Ann. Mat. Pura Appl. 159,
133{149.

Buttazzo, G., Giaquinta, M. and Hildebrandt, S. (1998) One-dimensional Vari-
ational Problems. Oxford University Press, Oxford.

Carpinteri, A. (1989) Cusp catastrophe interpretation of fracture instability. J.
Mach. Phys. Solids 37, 567{582.

Chambolle, A. (1992) Un theoreme de �-convergence pour la segmentation des
signaux. C.R. Acad. Sci., Paris, Ser. I 314, 191{196.

Chambolle, A. and Dal Maso, G. (1999) Discrete approximation of the Mumford-
Shah functional in dimension two. M2AN Math. Model. Numer. Anal. 33, 651{
672.

Choksi, R. and Fonseca, I. (1997) Bulk and interfacial energy densities for struc-
tured deformations of continua. Arch. Ration. Mech. Anal. 138, 37{103.

Ciarlet, P.G. (1998) Introduction to Linear Shell Theory. North-Holland, Ams-
terdam.

Cioranescu, D. and Murat, F. (1982) Un terme etrange venu d'ailleur. Nonlinear
Partial Di�erential Equations and Their Applications. Res. Notes in Math., Vol.
60, Pitman, London, 98{138.

Congedo, G. and Tamanini, I. (1991) On the existence of solutions to a problem
in multidimensional segmentation. Ann. Inst. H. Poincar�e Anal. Non Lin�eaire
8, 175{195.

Conti, S., De Simone, A., Dolzmann, G., M�uller, S. and Otto, F.(2002) Multiscale
modeling of materials { the role of Analysis. Preprint Max-Planck Institute,
Leipzig.

Conti, S., Fonseca, I. and Leoni, G. (2001) A �-convergence result for the two-
gradient theory of phase transitions. Preprint Max-Planck Institute, Leipzig.

Cortesani, G. (1998) Sequences of non-local functionals which approximate free-
discontinuity problems. Arch. Ration. Mech. Anal. 144, 357{402.

Cortesani, G. and Toader, R. (1999) A density result in SBV with respect to
non-isotropic energies. Nonlinear Anal. 38, 585{604.

Crandall, M.G., Evans, L.C. and Gariepy, R.F. (2001) Optimal Lipschitz exten-
sions and the in�nity laplacian. Calc. Var. 13, 123{139.

Crandall, M.G., Ishii, H. and Lions, P.L. (1992) User's guide to viscosity solutions
of second order partial di�erential equations. Bull. AMS 27, 1{67.

Dacorogna, B. (1989) Direct Methods in the Calculus of Variations. Springer-
Verlag, Berlin.

Dal Maso, G. (1993) An Introduction to �-convergence. Birkh�auser, Boston.



References 213

Dal Maso, G. (1997) Asymptotic behaviour of solutions of Dirichlet problems.
Boll. Unione Mat. Ital. 11A, 253{277.

Dal Maso, G. and Mosco, U. (1987) Wiener's criterion and �-convergence. Appl.
Math. Optim. 15, 15{63.

De Giorgi, E. (1975) Sulla convergenza di alcune successioni di integrali del tipo
dell'area. Rend. Mat. 8, 277{294.

De Giorgi, E. and Franzoni, T. (1975) Su un tipo di convergenza variazionale.
Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Fis. Natur. 58, 842{850.

De Giorgi, E. and Letta, G. (1977) Une notion g�en�erale de convergence faible
pour des fonctions croissantes d'ensemble. Ann. Scuola Norm. Sup. Pisa Cl. Sci.
4, 61{99.

Dellacherie, C. and Meyer, P.-A. (1975) Probabilit�es et potentiel. Hermann, Paris.

Del Piero, G. and Owen, D.R. (1993) Structured deformations of continua. Arch.
Ration. Mech. Anal. 124, 99{155.

Del Piero, G. and Owen, D.R. (2000) Structured Deformations. Quaderni Istit.
Naz. di Alta Mat. Vol. 58, Florence.

Del Piero, G. and Truskinovsky, L. (2001) Macro- and micro-cracking in one-
dimensional elasticity Int. J. Solids Struct. 38, 1135{1148.

De Simone, A., M�uller, S., Kohn, R.V. and Otto, F. (2001) A compactness result
in the gradient theory of phase transitions. Proc. R. Soc. Edinburgh A 131, 833{
844.

E, W. (1991) A class of homogenization problems in the calculus of variations.
Commun. Pure Appl. Math. 44, 733{759.

Ekeland, I. and Temam, R. (1976) Convex Analysis and Variational Problems.
North-Holland, Amsterdam.

Evans, L.C. (1990) Weak Convergence Methods in Nonlinear PDEs. AMS, Prov-
idence.

Evans, L.C. and Gariepy, R.F. (1992) Measure Theory and Fine Properties of
Functions. CRC Press, Boca Raton.

Evans, L. C. and Gomes, D. (2001) E�ective Hamiltonians and averaging for
Hamiltonian dynamics. I. Arch. Ration. Mech. Anal. 157, 1{33.

Fonseca, I. and Francfort, G.A. (1998) 3D{2D asymptotic analysis of an optimal
design problem for thin �lms. J. Reine Angew. Math. 505, 173{202.

Fonseca, I. and Leoni, G. (2002) Modern Methods in the Calculus of Variations
with Applications to Nonlinear Continuum Physics. Springer-Verlag, Berlin (in
preparation).

Fonseca, I. and Mantegazza C. (2000) Second order singular perturbation models
for phase transitions. SIAM J. Math. Anal. 31, 1121{1143.

Friesecke, G., M�uller, S. and James, R.D.(2002) Rigorous derivation of nonlinear
plate theory and geometric rigidity. C.R. Acad. Sci Paris, Ser. I, 334, 173{178.

Friesecke, G. and Theil, F. (2002) Validity and failure of the Cauchy-Born hy-
pothesis in a 2D mass-spring lattice. J. Nonlin. Sci., to appear.

Garroni, A., Nesi, V. and Ponsiglione, M. (2001) Dielectric breakdown: optimal
bounds. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457, 2317{2335



214 References

Ghisi, M. and Gobbino, M. (2002) The monopolists's problem: existence, relax-
ation and approximation. Preprint, University of Pisa.

Gobbino, M. (1998) Finite di�erence approximation of the Mumford-Shah func-
tional, Comm. Pure Appl. Math. 51, 197{228.

Gobbino, M. and Mora. M.G. (2001) Finite-di�erence approximation of free-
discontinuity problems. Proc. R. Soc. Edinburgh A 131, 567{595.

GriÆth, A. A. (1920) The phenomenon of rupture and 
ow in solids, Phil. Trans.
R. Soc. London A 221, 163{198.

Iosifescu, O, Licht, C. and Michaille, G. (2001) Variational limit of a one-dim-
ensional discrete and statistically homogeneous system of material points. C.R.
Acad. Sci. Ser. I Math. 332, 575{580.

Lions, P.L., Papanicolaou, G. and Varadhan, S.R.S. (1987) Homogenization of
Hamilton-Jacobi equations. Unpublished note.

Le Dret, H. and Raoult, A. (1995) The nonlinear membrane model as variational
limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74, 549{578.

Marcellini, P. and Sbordone, C. (1977) Dualit�a e perturbazione di funzionali
integrali, Ric. Mat. 26, 383{421.

Marchenko, A.V. and Khruslov, E.Ya. (1974) Boundary Value Problems in Do-
mains with Fine-Granulated Boundaries (in Russian), Naukova Dumka, Kiev.

Milton, G.W. (2002) The Theory of Composites. Cambridge University Press,
Cambridge.

Modica, L. (1987) The gradient theory of phase transitions and the minimal
interface criterion. Arch. Ration. Mech. Anal. 98, 123{142.

Modica, L. and Mortola, S. (1977) Un esempio di �-convergenza, Boll. Un. Mat.
It. B 14, 285{299.

Morel, J.M. and Solimini, S. (1995) Variational Models in Image Segmentation,
Birkh�auser, Boston.

Morgan, F. (1988) Geometric Measure Theory. Academic Press, San Diego.

Morgan, F. (1997) Lowersemicontinuity of energy clusters. Proc. R. Soc. Edin-
burgh A 127, 819{822.

Morini, M. (2001) Sequences of singularly perturbed functionals generating free-
discontinuity problems. Preprint CNA, Carnegie-Mellon University, Pittsburgh.

Morrey, C.B. (1952) Quasiconvexity and the semicontinuity of multiple integrals.
Paci�c J. Math. 2, 25{53.

Mosco, U. (1969) Convergence of convex sets and of solutions of variational
inequalities, Adv. Math. 3, 510{585.

Mosco, U. (1994) Composite media and asymptotic Dirichlet forms. J. Funct.
Anal. 123, 368{421.

M�uller, S. (1987) Homogenization of nonconvex integral functionals and cellular
elastic materials. Arch. Ration. Mech. Anal. 99, 189{212.

M�uller, S. (1999) Variational models for microstructure and phase transitions. In
Calculus of variations and geometric evolution problems (Cetraro, 1996), Lecture
Notes in Math. Vol. 1713, Springer-Verlag, Berlin, pp. 85{210,.



References 215

Mumford, D. (1993) Elastica and Computer Vision. In Algebraic Geometry and
its Applications (ed. C.L. Bajaj). Springer-Verlag, Berlin.

Mumford, D. and Shah, J. (1989) Optimal approximation by piecewise smooth
functions and associated variational problems, Comm. Pure Appl. Math. 17,
577{685.

Ortiz, M. and Gioia, G. (1994) The morphology and folding patterns of buckling-
driven thin-�lm blisters. J. Mech. Phys. Solids 42, 531{559.

Pagano, S. and Paroni, R. (2002) A simple model for phase transitions: from the
discrete to the continuum problem. Q. Appl. Math., to appear.

Perona, P. and Malik, J (1987) Scale space and edge detection using anisotropic
di�usion. Proc. IEEE Computer Soc. Workshop on Computer Vision, 16{22.

Piatnitski, A. and Remy, E. (2001) Homogenization of elliptic di�erence opera-
tors. SIAM J. Math. Anal. 33, 53{83.

Puglisi, G. and Truskinovsky, L. (2000) Mechanics of a discrete chain with bi-
stable elements. J. Mech. Phys. Solids 48, 1{27.

Ren, X. and Truskinovsky, L. (2000) Finite scale microstructures in nonlocal
elasticity. J. Elasticity 59, 319{355.

Shu, Y. C. (2000) Heterogeneous thin �lms of martensitic materials. Arch. Ra-
tion. Mech. Anal. 153, 39{90.

Solci, M. and Vitali, E. (2001) Variational models for phase separation. Preprint,
Universit�a di Pavia..

Spagnolo, S. (1968) Sulla convergenza di soluzioni di equazioni paraboliche ed
ellittiche, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22, 577{597.

Stein, E.M. (1970) Singular Integrals and Di�erentiability Properties of Func-
tions. Princeton University Press, Princeton.

Sternberg, P. (1988) The e�ect of a singular perturbation on nonconvex varia-
tional problems, Arch. Ration. Mech. Anal. 1988, 209{260.
�Sver�ak, V. (1991) Quasiconvex functions with subquadratic growth. Proc. R.
Soc. London 433, 725{733.
�Sver�ak, V. (1992) Rank-one convexity does not imply quasiconvexity. Proc. R.
Soc. Edinburgh A 120, 185{189.

Tartar, L. (1979) Compensated compactness and applications to partial di�eren-
tial equations. Nonlinear analysis and mechanics. Heriot-Watt Symposium vol.
IV. Res. Notes in Math. Vol. 39, Pitman, London, 136{211.

Tartar, L. (1990) H-measures, a new approach for studying homogenization,
oscillations and concentration e�ects in partial di�erential equations. Proc. R.
Soc. Edinburgh A 115, 193{230.

Truskinovsky, L. (1996) Fracture as a phase transition, in Contemporary re-
search in the mechanics and mathematics of materials (eds. R.C. Batra and
M.F. Beatty) CIMNE, Barcelona, 322{332.

Zhikov, V.V., Oleinik, O.A. and Kozlov, S.K. (1994) Homogenization of Di�er-
entiable Operators and Integral Functionals. Springer-Verlag, Berlin.

Ziemer, W. (1989) Weakly Di�erentiable Functions. Springer-Verlag, Berlin.



INDEX

asymptotic homogenization formula 64

Barenblatt's theory of fracture 87

Blake Zisserman model 131

BV-ellipticity 101

boundary data 56

Caccioppoli partition 100

Caccioppoli set 100

capacity 171, 179

choice criterion 30

coarea formula 202

coercive function 29

compact set 26

conjugate function 55, 203

continuous representative 199

convex envelope 47

convexity 197

damage parameter 13

De Giorgi Letta Measure Criterion 195

De Giorgi Recti�ability Theorem 195

de la Vall�ee Poussin criterion 44

development by �-convergence 37

dielectric breakdown 62

dimension reduction 11

direct method 14, 34

Dirichlet form 62

discrete scheme 13

discrete functional 77

Dugdale 100

embeddings 199

epiconvergence 39

epigraph 38

equi-integrability 62

essential boundary 201

Finsler metric 68

free-discontinuity problems 13

function

coercive 29

lower semicontinuous 21

mildly coercive 29

of bounded variation 200

upper semicontinuous 22

fundamental estimate 195

�-convergence 22

�-limit 22, 30

�-lower limit 30

�-upper limit 30

G-convergence 39

Ginzburg Landau functional 113

GriÆth's theory of fracture 87,115,120,160

gradient theory of phase transitions 4

growth condition 43, 58

growth condition of order p 55

Hamilton Jacobi equation 71

harmonic mean 8, 56

Hausdor� measure 201

homogenization 7, 63

homogenization formula 63,66,83,165

homogenization formula, asymptotic 64

impenetrability condition 116

inf-convolution 143

in�nity laplacian 62

inner-regular envelope 195

inner-regular function 195

integral functional 43

Ising systems 113

Jensen's inequality 197

jump set 114

Lax formula 72

Legendre transform 72

Lennard Jones potential 156

local functional 196

local minima 30

long-range interactions 82

lower bounds 23

lower limit 20

lower-semicontinuous envelope 32

mildly coercive function 29

minimal-interface criterion 5

minimal partitions 13

minors vector 164

monopolist's problem 39

Mosco convergence 39

multiple scales 82

Mumford{Shah functional 115, 119



218 Index

nearest-neighbour interactions 14, 79

non-central interactions 160

non-local damage 126

optimal pro�le 104

oscillating functions 41, 51

partitioning problems 101

perforated domain 10

phase transitions 102

piecewise-constant function 87

Poincar�e's inequality 200

polyconvexity 164

precompact set 26

quadratic form 38, 168

quasiconvex envelope 170

quasiconvexity 163

rank-one convex function 170

recession function 141

relaxation 32

relaxed Dirichlet problem 181

Riemannian metric 9, 68

right-hand side value 114

set of �nite perimeter 200

signal reconstruction 86

signed distance function 192

Sobolev space 198

special functions of bounded deformation

120

special functions of bounded variation 120

stability under perturbations 24

structured deformations 149

subadditive envelope 93

subadditive function 89, 92

subadditive set function 195

sublevel set 21

surface tension 5

total variation 200

upper bounds 23

upper limit 20

Urysohn property 36

variation, total 200

viscosity solution 9, 72

weak compactness 43

weak convergence in Lebesgue spaces 41

weak convergence in Sobolev spaces 50

weak derivative 114

weak lower semicontinuity 44, 52

weak membrane 131

Weierstrass' Theorem 34

Yosida transform 33


