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1. Introduction

Deblurring and denoising of images are fundamental problems in image processing and
gave rise in the past few years to a vast variety of techniques and methods touching different
fields of mathematics. Among them, variational methods based on the minimization of some
energy functional have been successfully employed to treat a fairly general class of image
restoration problems. Typically, such functionals present a fidelity term, which penalizes
the distance between the reconstructed image u and the noisy image g with respect to a
suitable metric, and a regularizing term, which makes high frequency noise energetically
unfavorable.

When the fidelity term is given by the squared L2 distance multiplied by a parameter
λ > 0 and the regularizing term is represented by the total variation, we are led to the
following minimization problem

min
{
|Du|(Ω) + λ

∫
Ω

|u− g|2 dx : u ∈ BV (Ω)
}
, (1.1)
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which was proposed by Rudin, Osher, and Fatemi in [11]. Here Ω is an open bounded domain
in one or two dimensions, BV (Ω) denotes the space of functions of bounded variations in
Ω, and |Du|(Ω) stands for the total variation of u in Ω. The main feature of the total
variation-based image restoration is perhaps represented by the tendency to yield (almost)
piecewise-constant solutions or, in other words, “blocky” images. Typically one observes
that ramps (i.e., affine regions) in the original image give rise to staircase-like structures in
the reconstructed image, a phenomenon which is often referred to as the staircase effect.
This means that the original edges are well preserved by this method, but also that many
artificial discontinuities can be generated by the presence of noise, while the finer details of
the objects contained in the image may not be properly recovered.

Several variants of (1.1) have been subsequently proposed in order to fix these drawbacks.
In this paper we follow the approach of Chan, Marquina, and Mulet [4]: Since the total
variation does not distinguish between jumps and smooth transitions their idea is to consider
an additional penalization of the discontinuities by taking second derivatives into account.
More precisely, they propose a regularizing term of the form∫

Ω

|∇u| dx+
∫

Ω

ψ(|∇u|)h(∆u) dx , (1.2)

where ψ is a function that must satisfy suitable conditions at infinity in order to allow
jumps.

In this paper we consider the following 1-D version of (1.2):

Fp(u) :=
∫ b

a

|u′| dx+
∫ b

a

ψ(|u′|)|u′′|p dx , (1.3)

where a < b are real numbers and p ∈ [1,+∞). Our main analytical objective is twofold:

(i) to set up a proper functional framework where the minimization problem corre-
sponding to

Fp(u) + λ

∫
Ω

|u− g|2 dx

is well posed;
(ii) to give an analytical proof of the fact the higher order regularizing term eliminates

the staircase effect.

We point out here that we carry out the first part of this program by using the theory of
relaxation (see [5] for a general introduction): We regard Fp as defined for all functions
in the Sobolev space W 2,p(]a, b[) , we extend it to L1(]a, b[) by setting Fp(u) := +∞ if
u ∈ L1(]a, b[) \ W 2,p(]a, b[) , and then we identify its lower semicontinuous envelope with
respect to the strong L1 convergence. The extension of our results to higher dimensions
will be the subject of a subsequent paper.

For completeness we conclude by mentioning that other approaches have been considered
to avoid staircasing: The works by Geman and Reynolds [7] and Chambolle and Lions [3]
contain a different use of higher order derivatives as regularizing terms; in [2], Blomgren,
Chan, and Mulet propose a BV -H1 interpolation approach, while Kindermann, Osher,
and Jones avoid in [9] the use of second derivatives by considering a sort of nonlocal total
variation.

The plan of the paper is the following: In Section 2 we consider the case p = 1; i.e.,
we identify the relaxation F1 of F1 , while in Section 3 we deal with the case p > 1.
The analysis turns out to be considerably more delicate in the former case. Moreover, the
domains of the relaxed functionals are quite peculiar (see Definitions 2.1 and 3.1) and display
properties which are qualitatively different in the two cases. In particular, it turns out that
piecewise constant functions corresponding to images with genuine edges are approximable
by sequences with bounded energy only for p = 1. Finally, in Section 4 we investigate
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the staircase effect. After exhibiting an analytical example of staircasing for the Rudin-
Osher-Fatemi model (Theorem 4.3), we prove that the new model does indeed prevent the
occurrence of this phenomenon. More precisely, we show that whenever the datum g is
of the form g = g1 + h , with g1 a regular image and h a highly oscillating noise, the
reconstructed image is regular as well (Theorems 4.5 and 4.8).

2. The case p = 1

We start by studying the compactness properties and the relaxation of (1.3) in the case
p = 1. Throughout this section ψ : R → ]0,+∞[ will be a bounded Borel function such that

M :=
∫ +∞

−∞
ψ(t) dt < +∞ (2.1)

and
inf
t∈K

ψ(t) > 0 for every compact set K ⊂ R . (2.2)

Let Ψ1 : R → [0,M ] be the increasing function defined by

Ψ1(t) :=
∫ t

−∞
ψ(s) ds

and let Ψ−1
1 : [0,M ] → R be its inverse function.

Given a bounded open interval ]a, b[ in R , we consider the functional F1 : L1(]a, b[) →
[0,+∞] defined by

F1(u) :=


∫ b

a

|u′| dx+
∫ b

a

ψ(u′)|u′′| dx if u ∈W 2,1(]a, b[) ,

+∞ otherwise.
(2.3)

The first step in the study of (2.3) will consist in identifying the subspace of L1 functions
which can be approximated by energy bounded sequences. In order to do so we need to
introduce some notation and recall some basic facts about BV functions of one variable.
This will be the content of the next subsection.

2.1. BV functions of one variable. We recall that a function u ∈ L1(]a, b[) belongs to
BV (]a, b[) if and only if

sup
{∫ b

a

uϕ′ dx : ϕ ∈ C1
c (]a, b[) , |ϕ| ≤ 1

}
< +∞ . (2.4)

Note that this implies that the distributional derivative u′ of u is a bounded Radon measure
in ]a, b[ . We will often consider the Lebesgue decomposition

u′ = (u′)aL1 + (u′)s

where (u′)a is the density of the absolutely continuous part of u′ with respect to the
Lebesgue measure L1 on ]a, b[ , while (u′)s is its singular part. We will denote the total
variation measure of u′ by |u′| . In particular, |u′|(]a, b[) equals the value of the supremum
in (2.4). For every function u ∈ BV (]a, b[) the following left and right approximate limits

u−(y) := lim
ε→0+

1
ε

∫ y

y−ε
u(x) dx , u+(y) := lim

ε→0+

1
ε

∫ y+ε

y

u(x) dx

are well defined at every point y ∈ ]a, b[ . In fact, u−(y) is well defined also at y = b while
u+(y) exists also at y = a . The functions u− and u+ coincide L1 -a.e. with u and are left
and right continuous, respectively. Moreover, it turns out that the set Su := {y ∈ ]a, b[ :
u−(y) 6= u+(y)} is at most countable. The set Su is often referred to as the set of essential
discontinuities or jump points of u .
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It is well known that, in turn, the singular part (u′)s splits into the sum of an atomic
measure concentrated on Su and a singular diffuse measure (u′)c , called the Cantor part of
u′ :

(u′)s = [u]H0 Su + (u′)c ,
where we set [u] := u+ − u− and H0 stands for the counting measure. Finally, we recall
that every u ∈ BV (]a, b[) is differentiable at L1 -a.e. y in ]a, b[ with derivative given by
(u′)a(y). In this case we will often write, with a slight abuse of notation, u′(y) instead of
(u′)a(y).

We say that a sequence {uk} of functions in BV (]a, b[) weakly star converges in BV (]a, b[)
to a function u ∈ BV (]a, b[) if un → u in L1(]a, b[) and u′k ⇀ u′ weakly∗ in Mb(]a, b[) ,
where Mb(]a, b[) is the space of bounded Radon measures.

We will also need sometimes the notion of total variation for a function defined every-
where. We recall that u : ]a, b[ → R has bounded pointwise total variation over the interval
]c, d[ ⊂ ]a, b[ if

Var (u; ]c, d[) := sup
k∑
i=1

|u(yi)− u(yi−1)| < +∞ ,

where the supremum is taken over all finite families y0, y1, . . . , yk such that c < y0 < y1 <
· · · < yk < d , k ∈ N . It is easy to see that if u has bounded pointwise total variation
in ]a, b[ , then it admits left and right limits at every point, it belongs to BV (]a, b[) , and
|u′|(]c, d[) ≤ Var (u; ]c, d[) for every interval ]c, d[ ⊂ ]a, b[ . Conversely, if u ∈ BV (]a, b[) , the
precise representatives u− and u+ have bounded pointwise total variation and satisfy

|u′|(]c, d[) = Var (u−; ]c, d[) = Var (u+; ]c, d[)

for every interval ]c, d[ ⊂ ]a, b[ .
Finally, we recall the Helly theorem: For every bounded sequence of functions uk : ]a, b[ →

R such that supk Var (uk; ]a, b[) < +∞ , there exist u , with pointwise total variation in ]a, b[ ,
and a subsequence (not relabeled) such that uk → u pointwise.

We refer to [12] and [8] for an exhaustive exposition of the properties of BV functions of
one variable.

2.2. Compactness. To define the subspace of L1 functions that can be approximated by
energy bounded sequences, for every function u ∈ BV (]a, b[) we consider the sets

Z+[(u′)a] :=
{
x ∈ ]a, b[ : lim

ε→0+

1
2ε

∫ x+ε

x−ε
(u′)a dx = +∞

}
, (2.5)

Z−[(u′)a] :=
{
x ∈ ]a, b[ : lim

ε→0+

1
2ε

∫ x+ε

x−ε
(u′)a dx = −∞

}
. (2.6)

It is also convenient to define

Z[(u′)a] := Z+[(u′)a] ∪ Z−[(u′)a] .

Definition 2.1. Let X1
ψ(]a, b[) be the set of all functions u ∈ BV (]a, b[) such that v :=

Ψ1◦(u′)a belongs to BV (]a, b[) and the positive part ((u′)c)+ and the negative part ((u′)c)−

of the measure (u′)c are concentrated on Z+[(u′)a] and Z−[(u′)a] , respectively.

Remark 2.2. Note that if u ∈ X1
ψ(]a, b[) then the limits

(u′)a−(y) := lim
ε→0+

1
ε

∫ y

y−ε
(u′)a dx , (u′)a+(y) := lim

ε→0+

1
ε

∫ y+ε

y

(u′)a dx (2.7)

exist in R for every y . More precisely, (u′)a− exists also at y = b while (u′)a+ is well
defined also at y = a . Indeed, since v = Ψ1 ◦ (u′)a is a BV function, it admits a precise
representative ṽ such that the right and left limits exist at every point, and the same
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property holds for Ψ−1
1 (ṽ). As Ψ−1

1 (ṽ) = (u′)a L1 -a.e. in ]a, b[ , the limits considered in
(2.7) are everywhere well-defined. Moreover the set S(u′)a := Sv is at most countable and

(u′)a− = (u′)a+ on ]a, b[ \ S(u′)a . (2.8)

We also remark that (u′)a− and (u′)a+ are left and right continuous, which, in turn, implies
that the functions defined by

(u′)a∨(x):=max
{
(u′)a+(x), (u′)a−(x)

}
, (u′)a∧(x):=min

{
(u′)a+(x), (u′)a−(x)

}
if x ∈ ]a, b[,

(u′)a∨(a) = (u′)a∧(a) := (u′)a+(a) , and (u′)a∨(b) = (u′)a∧(b) := (u′)a−(b)

are upper and lower semicontinuous in [a, b] , respectively. By (2.8) we have

Z+[(u′)a] \ S(u′)a = {x ∈ ]a, b[ : (u′)a∧(x) = +∞} \ S(u′)a ,

Z−[(u′)a] \ S(u′)a = {x ∈ ]a, b[ : (u′)a∨(x) = −∞} \ S(u′)a .

Therefore ((u′)c)+ is concentrated on the set {x ∈ ]a, b[ : (u′)a∧(x) = +∞} and ((u′)c)− is
concentrated on the set {x ∈ ]a, b[ : (u′)a∨(x) = −∞} .

Before we proceed we show that the space X1
ψ(]a, b[) contains functions with nontrivial

Cantor part when ψ satisfies suitable decay estimates at infinity.

Proposition 2.3. Assume that ψ : R → ]0,+∞[ is a bounded Borel function satisfying
(2.1) , (2.2) , and

ψ(t) ≤ c

tα
(2.9)

for all t ≥ 1 and for some c > 0 , α > 1 . Then there exists u ∈ X1
ψ(]a, b[) with (u′)c 6= 0 .

Proof. For simplicity we take ]a, b[ = ]0, 1[.
Step 1: We start by recalling the definition of the generalized Cantor set Dδ , where

δ ∈ ]0, 1
2 [(see for instance [6, Chapter 1, Section 2.4]). The construction is entirely similar

to the one of the (ternary) Cantor set with the only difference that the middle intervals
removed at each step have length 1 − 2δ times the length of the intervals remaining from
the previous step. To be more precise, remove from [0, 1] the interval I11 := (δ, 1− δ). At
the second step remove from each of the remaining closed intervals [0, δ] and [1− δ, 1] the
middle intervals, denoted by I12 and I22 , of length δ (1− 2δ). Continuing in this fashion at
each step n we remove 2n−1 middle intervals I1n , . . . , I2n−1n, each of length δn−1 (1− 2δ).
The generalized Cantor set Dδ is defined as

Dδ := [0, 1] \
∞⋃
n=1

2n−1⋃
k=1

Ikn .

The set Dδ is closed (since its complement is given by a family of open intervals) and

L1 (Dδ) = 1−
∞∑
n=1

2n−1∑
k=1

L1 (Ikn) = 1−
∞∑
n=1

2n−1∑
k=1

δn−1 (1− 2δ) = 1− (1− 2δ)
∞∑
n=1

(2δ)n−1 = 0 .

Next we recall the definition of the corresponding Cantor function fδ . Set

gn :=
1

(2δ)n
(
1−

n∑
j=1

2j−1∑
k=1

χIkj

)
,

and define fn(x) :=
∫ x
0
gn(t) dt . It can be shown that {fn} converges uniformly to a

continuous nondecreasing function fδ such that fδ(0) = 0, fδ(1) = 1, and f ′δ = (f ′δ)
c is

supported on Dδ .
Step 2: We claim that it is enough to find a constant δ ∈ ]0, 1

2 [ for which it is possible
to construct a continuous integrable function wδ : ]0, 1[ → [0,+∞] such that Ψ1 ◦ wδ ∈
BV (]0, 1[) and wδ(x) = +∞ if and only if x ∈ Dδ . Indeed, setting uδ(x) :=

∫ x
0
wδ(t) dt +
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fδ(x), we have that uδ ∈ BV (]0, 1[), uδ is continuous, (u′δ)
a = wδ so that Z+[(u′δ)

a] =
Z[(u′δ)

a] = Dδ and Ψ1 ◦ (u′δ)
a ∈ BV (]0, 1[). Moreover, (u′δ)

c = (f ′δ)
c is supported on

Dδ = Z+[(u′δ)
a] . Hence uδ belongs to X1

ψ(]a, b[) .
Step 3: It remains to construct wδ for a suitable δ ∈ ]0, 1

2 [ . Consider a convex function
φ : ]0, 1[ → [0,+∞) such that

lim
x→0+

φ(x) = lim
x→1−

φ(x) = +∞, φ( 1
2 ) = 0 , (2.10)

and ∫ 1

0

φ(x) dx = 1 . (2.11)

Choose s > 0 so large that

α >
s+ 1
s

. (2.12)

For x ∈ Ikn (see Step 1) define

φkn(x) := 2sn + φ
(

x−akn

δn−1(1−2δ) + 1
2

)
, (2.13)

where akn is the mid point of the interval Ikn . Finally set

wδ :=
∞∑
n=1

2n−1∑
k=1

φknχIkn
+ IDδ

,

where IDδ
is the indicator function of the set Dδ , that is,

IDδ
(x) :=

{
+∞ if x ∈ Dδ ,
0 otherwise.

Using the fact that ∫
Ikn

φkn dx = (2sn + 1) δn−1 (1− 2δ) ,

which follows from (2.11) and a change of variables, we have∫ 1

0

wδ dx =
∞∑
n=1

2n−1∑
k=1

(2sn + 1) δn−1 (1− 2δ) <∞

for δ < 1
2s+1 . To estimate the total variation of v := Ψ1 ◦wδ we consider the approximating

sequence

vm(x) :=
{

Ψ1 ◦ φkn(x) if x ∈ Ikn, 1 ≤ k ≤ 2n−1, 1 ≤ n ≤ m,
M otherwise.

By (2.9), (2.10), (2.13), and the convexity of φ it can be seen that

Var (vm; Ikn) = 2(M −Ψ1(2sn)) = 2
∫ +∞

2sn

ψ(t) dt ≤ 2c
α− 1

1
2sn(α−1)

.

It follows that

Var (vm; ]0, 1[) ≤ 2c
α− 1

m∑
n=1

2n−1∑
k=1

1
2sn(α−1)

≤ 2c
α− 1

∞∑
n=1

1
2sn(α−1)−n+1

.

The last series is finite thanks to (2.12). Therefore the vm ’s have equibounded total varia-
tions and, since vm → v in L1(]0, 1[), we conclude that v ∈ BV (]0, 1[). �

Energy bounded sequences are compact in X1
ψ(]a, b[) , as made precise by the following

theorem.
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Theorem 2.4. Let {uk} be a sequence of functions bounded in L1(]a, b[) such that

C := sup
k
F1(uk) < +∞ . (2.14)

Then there exist a subsequence (not relabeled) {uk} and a function u ∈ X1
ψ(]a, b[) such that

uk ⇀ u weakly∗ in BV (]a, b[) , (2.15)

Ψ1 ◦ u′k ⇀ Ψ1 ◦ (u′)a weakly∗ in BV (]a, b[) , (2.16)

u′k → (u′)a pointwise L1-a.e. in ]a, b[ . (2.17)

Proof. By (2.3) and (2.14) we have that each uk belongs to W 2,1(]a, b[) and

C1 := sup
k

∫ b

a

[ |uk|+ |u′k|+ ψ(u′k)|u′′k | ] dx < +∞ . (2.18)

Let us define
vk := Ψ1 ◦ u′k . (2.19)

As Ψ1 is Lipschitz in R , the functions vk belong to W 1,1(]a, b[) and

v′k = ψ(u′k)u
′′
k L1-a.e. on ]a, b[ . (2.20)

It follows from (2.1) and (2.14) that∫ b

a

[ |vk|+ |v′k| ] dx ≤M(b− a) + C . (2.21)

By (2.18) and (2.21) and the Helly theorem, passing to a subsequence if necessary, we may
assume that

uk ⇀ u weakly∗ in BV (]a, b[)
and

vk (x) → v (x) for all x ∈ ]a, b[ (2.22)
for some u ∈ BV (]a, b[) and v : ]a, b[ → [0,M ] with pointwise bounded variation. Note that
(2.22) determines the values of v at every x ∈ ]a, b[ .

Since Ψ−1
1 is continuous, we obtain

u′k → w := Ψ−1
1 (v) pointwise in ]a, b[ . (2.23)

Moreover w has left and right limits in R at each point x ∈ ]a, b[ , denoted by w−(x) and
w+(x) respectively, and

w(x) = w−(x) = w+(x) except for a countable set of points x . (2.24)

We now split the remaining part of the proof into two steps.
Step 1: We prove that

w = (u′)a L1-a.e. in ]a, b[ . (2.25)
If not, we have L1({w 6= (u′)a}) > 0. By (2.2) the function Ψ−1

1 is locally Lipschitz and so
w = Ψ−1

1 (v) is finite L1 -a.e. since v ∈ L1(]a, b[) . Hence there exists t0 > 0 such that

L1({w 6= (u′)a} ∩ {|w| < t0}) > 0

and, in particular, we may find an infinite number of disjoint open intervals I such that

L1({w 6= (u′)a} ∩ {|w| < t0} ∩ I) > 0 . (2.26)

By a change of variables we obtain∫
I

ψ(u′k)|u′′k | dx ≥
∫ Mk

mk

ψ(t) dt , (2.27)

where
mk := inf

I
u′k and Mk := sup

I
u′k .
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We claim that at least one of the two sequences {mk} and {Mk} is divergent. Indeed, if
not, a subsequence of {u′k} would be bounded in L∞(I). This implies that u′ ∈ L∞(I)
and that u′k ⇀ u′ weakly∗ in L∞(I). As u′k → w pointwise L1 -a.e. in I , we deduce that
u′ = w L1 -a.e. in I , which contradicts (2.26). Hence the claim holds. If

lim
k→∞

Mk = +∞ , (2.28)

then by (2.23) and (2.26)
lim sup
k→∞

mk < t0 . (2.29)

From (2.27), (2.29), and (2.28) we obtain

lim inf
k→∞

∫
I

ψ(u′k)|u′′k | dx ≥
∫ +∞

t0

ψ(t) dt > 0 .

Analogously, if limk mk = −∞ then

lim inf
k→∞

∫
I

ψ(u′k)|u′′k | dx ≥
∫ −t0

−∞
ψ(t) dt > 0 .

In any case we can choose an arbitrarily large number m of disjoint intervals I satisfying
(2.26). Adding the contributions of each interval we obtain

lim inf
k→∞

∫ b

a

ψ(u′k)|u′′k | dx ≥ mmin
{∫ +∞

t0

ψ(t) dx,
∫ −t0

−∞
ψ(t) dt

}
,

which contradicts (2.18) for m large enough. This concludes the proof of (2.25) .
Step 2: To prove that u ∈ X1

ψ(]a, b[) it remains to show that the positive part ((u′)c)+

and the negative part ((u′)c)− of the measure (u′)c are concentrated on Z+[(u′)a] and
Z−[(u′)a] respectively, that is

((u′)c)± (]a, b[ \ Z±[(u′)a]) = 0 . (2.30)

To this purpose we introduce the sets

E+[u′] :=
{
x ∈ ]a, b[ : lim

ε→0+

(u′)+ (]x− ε, x+ ε[)
2ε

= +∞
}
, (2.31)

E−[u′] :=
{
x ∈ ]a, b[ : lim

ε→0+

(u′)− (]x− ε, x+ ε[)
2ε

= +∞
}
, (2.32)

E[u′] :=
{
x ∈ ]a, b[ : lim

ε→0+

|u′|(]x− ε, x+ ε[)
2ε

= +∞
}
.

Since ((u′)s)+ = ((u′)+)s is concentrated on E+[u′] and ((u′)s)− = ((u′)−)s is concentrated
on E−[u′] (see, e.g., [1, Theorem 2.22]), to prove (2.30) it is enough to show that

E+[u′] \ Z+[(u′)a] and E−[u′] \ Z−[(u′)a] are at most countable. (2.33)

We only show that E+[u′] \Z+[(u′)a] is at most countable, since the other property can be
proved in a similar way. Assume by contradiction that E+[u′] \ Z+[(u′)a] is not countable.
Since by (2.5) and (2.25)

Z+[(u′)a] ⊂ {x ∈ ]a, b[ : max{w−(x), w+(x)} = +∞} ,
by (2.24) there exists t0 > 0 such that

(E+[u′] \ Z+[(u′)a]) ∩ {w < t0} is uncountable.

Fix t1 > t0 and let x1, . . . , xm be m distinct points in (E+[u′] \Z+[(u′)a])∩ {w < t0} . By
(2.31) there exists ε > 0 such that the intervals Ij := ]xj − ε, xj + ε[ are pairwise disjoint
and

(u′)+ (]xj − ε, xj + ε[)
2ε

> t1 for i = 1, . . . ,m . (2.34)
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By a change of variables we obtain∫
Ij

ψ(u′k)|u′′k | dx ≥
∫ Mkj

mkj

ψ(t) dt , (2.35)

where
mkj := inf

Ij

u′k and Mkj := sup
Ij

u′k .

By (2.23) and the fact that w (xj) < t0 we deduce that

lim sup
k→∞

mkj < t0 (2.36)

for j = 1, . . . ,m . On the other hand, (2.15) and (2.34) yield

lim inf
k→∞

1
2ε

∫ xj+ε

xj−ε
(u′k)

+ dx ≥ (u′)+ (]xj − ε, xj + ε[)
2ε

> t1

(this can be seen as a particular case of the Reshetnyak lower semicontinuity theorem, with
f = (·)+ ). This implies that lim infk→∞ Mkj > t1 for j = 1, . . . ,m . Hence, also by (2.35)
and (2.36), we obtain

lim inf
k→∞

m∑
j=1

∫
Ij

ψ(u′k)|u′′k | dx ≥
m∑
j=1

lim inf
k→∞

∫
Ij

ψ(u′k)|u′′k | dx ≥ m

∫ t1

t0

ψ(t) dt ,

which contradicts (2.18) for m large enough. This shows (2.33) and concludes the proof of
the theorem. �

2.3. Relaxation. The following theorem, which is the main result of the section, is de-
voted to the characterization of the relaxation of F1 with respect to strong convergence in
L1(]a, b[) .

Theorem 2.5. Let F1 : L1(]a, b[) → [0,+∞] be defined by:

F1 (u) := inf
{

lim inf
k→∞

F1 (uk) : uk → u in L1(]a, b[)
}

for every u ∈ L1(]a, b[) . Then

F1(u) =

|u
′|(]a, b[) + |v′|(]a, b[ \ Su) +

∑
x∈Su

Φ(νu, (u′)a−, (u
′)a+) if u ∈ X1

ψ(]a, b[) ,

+∞ otherwise,
(2.37)

where v := Ψ1 ◦ (u′)a , νu := sign(u+ − u−) , and

Φ(1, t1, t2) :=
∫ +∞

t1

ψ(t) dt+
∫ +∞

t2

ψ(t) dt ,

Φ(−1, t1, t2) :=
∫ t1

−∞
ψ(t) dt+

∫ t2

−∞
ψ(t) dt .

(2.38)

Remark 2.6. For every x ∈ Su we have

Φ(νu(x), (u′)a−(x), (u′)a+(x)) = |v′|({x}) + Φ̂(νu(x), (u′)a−(x), (u′)a+(x)) ,

where

Φ̂(1, t1, t2) :=
∫ +∞

max{t1,t2}
ψ(t) dt and Φ̂(−1, t1, t2) :=

∫ min{t1,t2}

−∞
ψ(t) dt .

In particular, for every Borel set B ⊂ ]a, b[

|v′|(B \ Su) +
∑

x∈Su∩B
Φ(νu, (u′)a−, (u

′)a+) = |v′|(B) +
∑

x∈Su∩B
Φ̂(νu, (u′)a−, (u

′)a+) ≥ |v′|(B) .
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Proof of Theorem 2.5. Let G be the functional defined by the right hand side of (2.37). We
prove that for every uk → u in L1(]a, b[) we have

G(u) ≤ lim inf
k→∞

F1(uk) . (2.39)

It is enough to consider sequences {uk} for which the liminf is a limit and has a finite
value and uk → u pointwise L1 -a.e. in ]a, b[ . Then uk belongs to W 2,1(]a, b[) and (2.14) is
satisfied. This implies that

|u′|(]a, b[) ≤ lim inf
k→∞

∫ b

a

|u′k| dx . (2.40)

Moreover, it follows from Theorem 2.4 that u ∈ X1
ψ(]a, b[) and that, up to a subsequence,

{u′k} converges to (u′)a pointwise L1 -a.e. in ]a, b[ .
Let F be a finite subset of Su . We want to prove that

|v′|(]a, b[ \ F ) +
∑
x∈F

Φ(νu, (u′)a−, (u
′)a+) ≤ lim inf

k→∞

∫ b

a

ψ(u′k)|u′′k | dx . (2.41)

We write F as {x1, . . . , xm} , with a < x1 < · · · < xm < b . For every ε > 0 there exists
δ = δ(ε) ∈ ]0, ε[ such that a < x1 − δ < x1 + δ < x2 − δ < x2 + δ < · · · < xm−1 − δ <
xm−1 + δ < xm − δ < xm + δ < b and

|u(xj − δ)− u−(xj)| < ε , |u(xj + δ)− u+(xj)| < ε , (2.42)

|(u′)a(xj − δ)− (u′)a−(xj)| < ε , |(u′)a(xj + δ)− (u′)a+(xj)| < ε , (2.43)

uk(xj − δ) → u(xj − δ) , uk(xj + δ) → u(xj + δ) as k →∞ , (2.44)

u′k(xj − δ) → (u′)a(xj − δ) , u′k(xj + δ) → (u′)a(xj + δ) as k →∞ , (2.45)

|(u′)a(xj − δ)|+ |(u′)a(xj + δ)|+ ε <
|[u](xj)| − 4ε

2δ
,

for j = 1, . . . ,m .
Since vk → v pointwise L1 -a.e. in ]a, b[ and v′k = ψ(u′k)u

′′
k L1 -a.e. in ]a, b[ , we obtain

|v′|(]xj + δ, xj+1 − δ[) ≤ lim inf
k→∞

∫ xj+1−δ

xj+δ

ψ(u′k)|u′′k | dx

for j = 1, . . . ,m− 1. A similar result holds for the intervals ]a, x1 − δ[ and ]xm + δ, b[ . Let
Fδ be the union of the intervals [xj − δ, xj + δ] for j = 1, . . . ,m . Summing with respect to
j , and adding the contributions of the intervals ]a, x1 − δ[ and ]xm + δ, b[ , we obtain

|v′|(]a, b[ \ Fδ) ≤ lim inf
k→∞

∫
]a,b[\Fδ

ψ(u′k)|u′′k | dx . (2.46)

We consider now the interval Iδj := [xj − δ, xj + δ] , assuming that [u](xj) = u+(xj) −
u−(xj) > 0. By the mean value theorem there exists yδkj ∈ ]xj − δ, xj + δ[ such that

u′k(y
δ
kj) =

uk(xj + δ)− uk(xj − δ)
2δ

≥ [u](xj)− 4ε
2δ

, (2.47)

where the last inequality follows from (2.42) and (2.44) for k sufficiently large. By a change
of variables we obtain ∫ [u](xj)−4ε

2δ

u′k(xj−δ)
ψ(t) dt ≤

∫ yδ
kj

xj−δ
ψ(u′k)|u′′k | dx ,

∫ [u](xj)−4ε

2δ

u′k(xj+δ)

ψ(t) dt ≤
∫ xj+δ

yδ
kj

ψ(u′k)|u′′k | dx .
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Adding these inequalities and taking the limit as k →∞ we obtain, thanks to (2.45) ,∫ [u](xj)−4ε

2δ

(u′)a(xj−δ)
ψ(t) dt+

∫ [u](xj)−4ε

2δ

(u′)a(xj+δ)

ψ(t) dt ≤ lim inf
k→∞

∫ xj−δ

xj−δ
ψ(u′k)|u′′k | dx . (2.48)

Similarly, if [u](xj) < 0, then we have∫ (u′)a(xj−δ)

[u](xj)+4ε

2δ

ψ(t) dt+
∫ (u′)a(xj+δ)

[u](xj)+4ε

2δ

ψ(t) dt ≤ lim inf
k→∞

∫ xj−δ

xj−δ
ψ(u′k)|u′′k | dx . (2.49)

From (2.46), (2.48), and (2.49) we deduce that

|v′|(]a, b[ \ Fδ) +
∑

[u](xj)>0

(∫ [u](xj)−4ε

2δ

(u′)a(xj−δ)
ψ(t) dt+

∫ [u](xj)−4ε

2δ

(u′)a(xj+δ)

ψ(t) dt
)

+
∑

[u](xj)<0

(∫ (u′)a(xj−δ)

[u](xj)+4ε

2δ

ψ(t) dt+
∫ (u′)a(xj+δ)

[u](xj)+4ε

2δ

ψ(t) dt
)

≤ lim inf
k→∞

∫ b

a

ψ(u′k)|u′′k | dx .

Taking the limit as ε→ 0 (which implies δ(ε) → 0) we obtain (2.41) thanks to (2.43) .
Since Su is at most countable, (2.39) can be obtained from (2.41) by taking the supremum

over all finite sets F contained in Su .
Conversely, let u ∈ X1

ψ(]a, b[) . We claim that there exists a sequence {uk} in W 2,1 (]a, b[)
such that uk → u in L1 (]a, b[) and

G (u) ≥ lim sup
k→∞

F1 (uk) . (2.50)

It is clearly enough to consider the case G (u) < +∞ .
We divide the proof into three steps.

Step 1: We prove (2.50) under the additional assumptions that (u′)a is bounded and that
Su = {x1, . . . , xm} , with x1 < . . . < xm . Note that in this case Z[(u′)a] = Ø, hence
(u′)c = 0.

Construct a sequence {vk} in W 1,1 (]a, b[) such that vk → v = Ψ1 ◦ (u′)a pointwise
L1 -a.e. in ]a, b[ , Ψ1

(
−
∥∥(u′)a∥∥∞) ≤ vk ≤ Ψ1

(∥∥(u′)a∥∥∞) , and∫ b

a

|v′k (x)| dx→ |v′| (]a, b[) .

Setting wk := Ψ−1
1 (vk), we have wk ∈W 1,1(]a, b[) thanks to (2.2),

wk → (u′)a pointwise L1-a.e. in ]a, b[ , (2.51)

and ‖wk‖∞ ≤
∥∥(u′)a∥∥∞ . Find δk → 0+ such that

wk (xj − δk) → (u′)a− (xj) , wk (xj + δk) → (u′)a+ (xj) for j = 1, . . . ,m , (2.52)

and ∫ xj−δk

xj−1+δk

|v′k| dx→ |v′|(]xj−1, xj [) for j = 2, . . . ,m,∫ x1−δk

a

|v′k| dx→ |v′|(]a, x1[) ,
∫ b

xm+δk

|v′k| dx→ |v′|(]xm + δk, b[) .
(2.53)

By (2.51) and by the dominated convergence theorem we have

u+(xj−1) +
∫ xj−δk

xj−1+δk

wk(s) ds −→ u+(xj−1) +
∫ xj

xj−1

(u′)a ds = u−(xj) (2.54)

for j = 2, . . . ,m , with the obvious changes for j = 1 and j = m+ 1.
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To deal with the jump point xj , assume first that

u+ (xj)− u− (xj) > 0 . (2.55)

In this case we need to construct functions fkj ∈ C2([xj − δk, xj + δk]) that satisfy the
following properties: there exist ykj ∈ ]xj − δk, xj + δk[ such that

fkj (xj − δk) = u+ (xj−1) +
∫ xj−δk

xj−1+δk

wk (s) ds, fkj (xj + δk) = u+ (xj) , (2.56)

f ′kj (xj − δk) = wk (xj − δk) , f ′kj (xj + δk) = wk (xj + δk) , (2.57)

f ′′kj(x) > 0 for x ∈ ]xj − δk, ykj [ , f ′′kj(x) < 0 for x ∈ ]ykj , xj + δk[ , (2.58)

|fkj (xj − δk)− min
[xj−δk,ykj ]

fkj | ≤ 1
k , |fkj (xj + δk)− max

[ykj ,xj+δk]
fkj | ≤ 1

k , (2.59)

where we replace xj−1 and xj−1 − δk by a in the case j = 1.
We now discuss briefly the existence of such functions. We observe that the latter condi-

tions in equations (2.56)–(2.58) imply that the graph of fkj in the interval [ykj , xj + δk[ lies
below the straight line passing through the point (xj + δk, u+(xj)) with slope wk(xj + δk),
i.e.,

fkj(x) ≤ u+(xj) + wk(xj + δk)(x− xj − δk)

for x ∈ [ykj , xj + δk[ . It is then easy to see that the inequality

u+ (xj)− 2wk (xj + δk) δk − u+ (xj−1)−
∫ xj−δk

xj−1+δk

wk (s) ds > 0 , (2.60)

allows to fulfill also the former conditions in equations (2.56)–(2.58), as well as (2.59). By
(2.52), (2.54), and (2.55), inequality (2.60) is satisfied when δk is small enough.

If the left-hand side of (2.55) is negative then we choose fkj so that (2.56) and (2.57)
hold, and there exists ykj ∈ ]xj − δk, xj + δk[ such that

f ′′kj(x) < 0 for x ∈ ]xj − δk, ykj [ , f ′′kj(x) > 0 for x ∈ ]ykj , xj + δk[ ,

|fkj (xj − δk)− max
[xj−δk,xj+δk]

fkj | ≤ 1
k , |fkj (xj + δk)− min

[xj−δk,xj+δk]
fkj | ≤ 1

k .

In the same way the construction is possible if δk is small enough.
We are now ready to define the approximating sequence

uk (x) :=


u+ (a) +

∫ x
a
wk (s) ds if a ≤ x < x1 − δk ,

fkj (x) if xj − δk ≤ x < xj + δk, j = 1, . . . ,m ,
u+ (xj−1) +

∫ x
xj−1+δk

wk (s) ds if xj−1 + δk ≤ x < xj − δk, j = 2, . . . ,m ,

u+ (xm) +
∫ x
xm+δk

wk (s) ds if xm + δk ≤ x < b .

Let us define x0 := a and xm+1 := b . Since wk → (u′)a in L1 (]a, b[) , we have

uk (x) → u+ (xj−1) +
∫ x

xj−1

(u′)a (s) ds = u (x)

for every x ∈ ]xj−1, xj [ and j = 1, . . . ,m+ 1 and, in turn, uk → u in L1 (]a, b[) . As∫ xj−δk

xj−1+δk

|u′k| dx+
∫ xj−δk

xj−1+δk

ψ (u′k) |u′′k | dx =
∫ xj−δk

xj−1+δk

|wk| dx+
∫ xj−δk

xj−1+δk

ψ (wk) |w′k| dx

≤
∫ xj

xj−1

|wk| dx+
∫ xj−δk

xj−1+δk

|v′k| dx ,
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by (2.53) and the fact that wk → (u′)a in L1 (]a, b[) we have

lim sup
k→∞

(∫ xj−δk

xj−1+δk

|u′k| dx+
∫ xj−δk

xj−1+δk

ψ (u′k) |u′′k | dx
)

≤
∫ xj

xj−1

∣∣(u′)a∣∣ dx+ |v′| (]xj−1, xj [) .
(2.61)

Similarly,

lim sup
k→∞

(∫ x1−δk

a

|u′k| dx+
∫ x1−δk

a

ψ (u′k) |u′′k | dx
)
≤
∫ x1

a

∣∣(u′)a∣∣ dx+ |v′| (]a, x1[) , (2.62)

lim sup
k→∞

(∫ b

xm+δk

|u′k| dx+
∫ b

xm+δk

ψ (u′k) |u′′k | dx
)
≤
∫ b

xm

∣∣(u′)a∣∣ dx+ |v′| (]xm, b[) . (2.63)

Assume that [u] (xj) = u+ (xj) − u− (xj) > 0. Then (2.55) holds for k sufficiently large.
By (2.57), (2.58), (2.59), and a change of variables we obtain∫ xj+δk

xj−δk

|u′k| dx+
∫ xj+δk

xj−δk

ψ (u′k) |u′′k | dx =
∫ xj+δk

xj−δk

|f ′kj | dx+
∫ xj+δk

xj−δk

ψ
(
f ′kj
) ∣∣f ′′kj∣∣ dx

≤ fkj (xj + δk)− fkj (xj − δk) +
∫ f ′kj(ykj)

wk(xj−δk)

ψ (t) dt+
∫ f ′kj(ykj)

wk(xj+δk)

ψ (t) dt+
2
k
. (2.64)

By (2.58) we have

f ′kj (ykj) = max
[xj−δk,xj+δk]

f ′kj ≥
1

2δk
[fkj (xj + δk)− fkj (xj − δk)] . (2.65)

By (2.56) and the fact that wk → (u′)a in L1 (]a, b[) we obtain

fkj (xj + δk)− fkj (xj − δk) → u+ (xj)−
(
u+ (xj−1) +

∫ xj

xj−1

(u′)a ds
)

= [u] (xj) .

In turn, using (2.65), we get that f ′kj (ykj) →∞ . Thus, letting k →∞ in (2.64) and using
(2.52), we infer

lim sup
k→∞

(∫ xj+δk

xj−δk

|u′k| dx+
∫ xj+δk

xj−δk

ψ (u′k) |u′′k | dx
)

(2.66)

≤ [u] (xj) +
∫ +∞

(u′)a
−(xj)

ψ (t) dt+
∫ +∞

(u′)a
+(xj)

ψ (t) dt .

Similarly, if [u] (xj) = u+ (xj)− u− (xj) < 0, we find

lim sup
k→∞

(∫ xj+δk

xj−δk

|u′k| dx+
∫ xj+δk

xj−δk

ψ (u′k) |u′′k | dx
)

(2.67)

≤ |[u] (xj)|+
∫ (u′)a

−
(xj)

−∞
ψ (t) dt+

∫ (u′)a

+
(xj)

−∞
ψ (t) dt .

Summing over j in (2.61), (2.66), (2.67) and combining with (2.62), (2.63), inequality (2.50)
follows.
Step 2: Assume only that u ∈ X1

ψ(]a, b[) and that Su is finite. We claim that there exists
a sequence {uk} such that uk → u in L1 (]a, b[) , each uk satisfies the hypotheses of Step
1, and

G (u) ≥ lim sup
k→∞

G (uk) . (2.68)
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Note that if (2.68) holds then, by applying Step 1 to each uk we may find a sequence
ukm ∈W 2,1 (]a, b[) converging to uk in L1 (]a, b[) and satisfying

G (uk) ≥ lim sup
m→∞

F1 (ukm) .

By (2.68) we then have
G (u) ≥ lim sup

k→∞
lim sup
m→∞

F1 (ukm)

and a standard diagonalization argument now yields the existence of a sequence mk → ∞
such that ukmk

→ u in L1 (]a, b[) and

G (u) ≥ lim sup
k→∞

F1 (ukmk
) .

In the construction of the sequence satisfying (2.68) we need to consider the precise rep-
resentatives (u′)a∨ and (u′)a∧ defined in Remark 2.2. We recall that (u′)a∨ is upper semicon-
tinuous while (u′)a∧ is lower semicontinuous, and so for each k ∈ N we may decompose the
open sets {(u′)a∧ > k} and {(u′)a∨ < −k} into the union of two finite sequences of pairwise
disjoint open sets U+

kj and U−kj , that is,⋃
j

U+
kj = {(u′)a∧ > k} ,

⋃
j

U−kj = {(u′)a∨ < −k} ,

such that

diam (U+
kj) ≤ L

1({(u′)a∧ > k}) , diam (U−kj) ≤ L
1({(u′)a∨ < −k}) for every j . (2.69)

Note that, setting v∨ := Ψ1 ◦ (u′)a∨ and v∧ := Ψ1 ◦ (u′)a∧ , we have

|v′|(]c, d[) = Var (v∨; ]c, d[) = Var (v∧; ]c, d[) (2.70)

for every interval ]c, d[ ⊂ ]a, b[ .
For every set U±kj we fix a nonnegative function g±kj ∈ C1

c (U
±
kj) such that∫

U±kj

g±kj (x) dx = ((u′)c)± (U±kj) , (2.71)

and (g±kj)
′ has only one zero in the interior of the support of g±kj . Then we define

g+
k :=

∑
j
g+
kj , g−k :=

∑
j
g−kj , gk := g+

k − g−k , wk := T k−k ◦ (u′)a + gk , (2.72)

where for any pair of constants h < k the truncation function T kh is defined by

T kh (t) :=


h for t ≤ h ,

t for h ≤ t ≤ k ,

k for t ≥ k .

We claim that
wk L1 ⇀ (u′)a L1 + (u′)c weakly∗ in Mb (]a, b[) . (2.73)

Define
Ak :=

{
(u′)a∧ > k

}
∪
{
(u′)a∨ < −k

}
.

Since by the Chebychev inequality

kL1(Ak) → 0 , (2.74)

it suffices to show that(∑
j

g±kj
)
L1 ⇀

(
(u′)c

)± weakly∗ in Mb (]a, b[) . (2.75)

Let ϕ ∈ C0 (]a, b[) and ε > 0. By uniform continuity there exists δ = δ (ε) > 0 such that
|ϕ (x)− ϕ (y)| ≤ ε for all x , y ∈ ]a, b[ with |x− y| ≤ δ . In view of (2.69) and (2.74), for all
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k sufficiently large and for all j we have that diam (U±kj) ≤ δ . Let us fix y±kj ∈ U
±
kj . Then,

by (2.71),∣∣∣ ∫
U±kj

ϕ (x) g±kj (x) dx−
∫
U±kj

ϕ (x) d
(
(u′)c

)± (x)
∣∣∣

=
∣∣∣ ∫
U±kj

[
ϕ (x)− ϕ(y±kj)

]
g±kj (x) dx−

∫
U±kj

[
ϕ (x)− ϕ(y±kj)

]
d
(
(u′)c

)± (x)
∣∣∣

≤ ε
(∫

U±kj

g±kj (x) dx+
(
(u′)c

)± (U±kj)
)
≤ 2ε

(
(u′)c

)± (U±kj) .

Summing over j and using the fact that the measures
(∑

j g
+
kj

)
L1 and

(
(u′)c

)+ are con-

centrated on
{
(u′)a∧ > k

}
, while the measures

(∑
j g

−
kj

)
L1 and

(
(u′)c

)− are concentrated
on
{
(u′)a∨ < −k

}
(see Remark 2.2), we obtain (2.75).

Moreover, we claim that

lim
k→∞

∫ b

a

|wk| dx =
∫ b

a

| (u′)a | dx+ | (u′)c | (]a, b[) . (2.76)

Indeed, using (2.71), (2.72), and Remark 2.2, we deduce that∫ b

a

|wk| dx ≤
∫
{|(u′)a|≤k}

∣∣(u′)a∣∣ dx+ kL1(Ak) +
∑
j

∫
U+

kj

g+
kj dx+

∑
j

∫
U−kj

g−kj dx

≤
∫ b

a

| (u′)a | dx+ kL1(Ak) +
∑
j

(
(u′)c

)+ (U+
kj) +

∑
j

(
(u′)c

)− (U−kj)

≤
∫ b

a

| (u′)a | dx+ kL1(Ak) + | (u′)c | (]a, b[) ,

and the limit superior inequality follows from (2.74). The limit inferior inequality follows
from (2.73) and the lower semicontinuity of the total variation.

Set

uk (x) := u+ (a) +
∫ x

a

wk (s) ds+
∑

xj<x, xj∈Su

[u] (xj) (2.77)

and vk := Ψ1 ◦ (u′k)
a = Ψ1 ◦ wk .

We claim that uk → u in L1 (]a, b[) . For x ∈ ]a, b[ by (2.73) and (2.76) it follows that∫ x

a

wk dy →
∫ x

a

(u′)a dy + (u′)c (]a, x[) ,

and so uk converges to u pointwise L1 -a.e. and, in turn, in L1 (]a, b[) .
Next we show that

lim sup
k→∞

G (uk) ≤ G (u) . (2.78)

From (2.76) we get
|u′k| (]a, b[) → |u′| (]a, b[) . (2.79)

Moreover, as vk = T
Ψ1(k)
Ψ1(−k)◦v L

1 -a.e. in the open set Vk := ]a, b[\supp gk , we have |v′k| ≤ |v′|
as measures in Vk . In particular, this yields |v′k| (]a, b[ \ (Ak ∪ Su)) ≤ |v′| (]a, b[ \ (Ak ∪ Su))
and hence

|v′k| (]a, b[ \ (Ak ∪ Su)) ≤ |v′| (]a, b[ \ (A∞ ∪ Su)) , (2.80)

where
A∞ :=

⋂
k

Ak =
{
(u′)a∧ = +∞

}
∪
{
(u′)a∨ = −∞

}
.
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Using the properties of g+
kj we have

|v′k|(
{
(u′)a∧ > k

}
\ Su) =

∑
j

∫
U+

kj

ψ(k + g+
kj)|(g

+
kj)

′| dx

= 2
∑
j

∫ k+sup g+kj

k

ψ(t) dt ≤ 2H0({j : ((u′)c)+(U+
kj) > 0})

∫ ∞

k

ψ (t) dt . (2.81)

We claim that

2H0({j : ((u′)c)+(U+
kj) > 0})

∫ ∞

k

ψ (t) dt

≤ |v′|
({

(u′)a∧ > k
}
\ Su

)
+ 4

∫ ∞

k

ψ (t) dt .

Indeed, if
(
(u′)c

)+ (U+
kj) > 0, then there exists a connected component I+

kj = ]akj , bkj [ of

U+
kj \ Su such that

(
(u′)c

)+ (I+
kj) > 0. Assume that I+

kj ⊂⊂ ]a, b[ . Then by Remark 2.2 we
may find ckj ∈ I+

kj such that (u′)a∧ (ckj) = +∞ , while (u′)a∧ (akj), (u′)a∧ (bkj) ≤ k . Hence
by (2.70)

|v′|(U+
kj \ Su) ≥ |v

′|(I+
kj) ≥ 2

∫ ∞

k

ψ (t) dt .

Summing over all such intervals and adding the possible contribution of the intervals I+
kj

with at least one endpoint in {a, b} we obtain the claim. In turn, by (2.81) we have

|v′k|
({

(u′)a∧ > k
}
\ Su

)
≤ |v′|

({
(u′)a∧ > k

}
\ Su

)
+ 4

∫ ∞

k

ψ (t) dt .

A similar estimate holds for the set
{
(u′)a∨ < −k

}
\ Su thus yielding

lim sup
k→∞

|v′k| (Ak \ Su) ≤ |v′| (A∞ \ Su) . (2.82)

Combining (2.80) with (2.82) we obtain

lim sup
k→∞

|v′k| (]a, b[ \ Su) ≤ |v′| (]a, b[ \ Su) .

Next we show that

lim
k→∞

∑
x∈Suk

Φ
(
νuk

, (u′k)
a
− , (u

′
k)
a
+

)
=
∑
x∈Su

Φ
(
νu, (u′)

a
− , (u

′)a+
)
. (2.83)

Note that Suk
= Su and νuk

(x) = νu (x) for all k by (2.77). Moreover, for every x ∈ Su
if (u′)a+ (x) ∈ R then

∣∣(u′)a+ (y)
∣∣ ≤ k0 for all y in a right neighborhood of x and for some

integer k0 . Thus, by (2.72) and (2.77) we have that (u′k)
a(y) = (u′)a (y) for k ≥ k0 and for

L1 -a.e. y in the same right neighborhood. In turn, by (2.7) we infer (u′k)
a
+ (x) = (u′)a+ (x)

for all k ≥ k0 . If (u′)a+ (x) = ∞ , then for all k we have (u′)a+ > k in a right neighborhood of
x by right continuity (see Remark 2.2). By construction this implies that (u′k)

a = wk ≥ k
L1 -a.e. in the same right neighborhood. Thus, (u′k)

a
+ (x) ≥ k → (u′)a+ (x). Similarly

(u′k)
a
− (x) → (u′)a− (x) , so that

Φ
(
νuk

(x) , (u′k)
a
− (x) , (u′k)

a
+ (x)

)
→ Φ

(
νu (x) , (u′)a− (x) , (u′)a+ (x)

)
.

Hence (2.83) follows. This, together with (2.79) and (2.82), yields (2.78).
Step 3: Let now u be an arbitrary function in X1

ψ(]a, b[) such that G (u) < +∞ . As in
the previous step it suffices to construct uk ∈ X1

ψ(]a, b[) satisfying the hypotheses of Step
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2, converging to u in L1 (]a, b[) and such that (2.78) holds. Write Su = {xj} and for each
k define Sku := {xj : j ≤ k} and

uk (x) = u+ (a) +
∫ x

a

(u′)a dt+ (u′)c (]a, x[) +
∑

xj<x, xj∈Sku

[u] (xj) .

It is clear that {uk} converges to u in L1 (]a, b[) and that |u′k| (]a, b[) → |u′| (]a, b[) . More-
over, |v′k| (]a, b[ \ Su) = |v′| (]a, b[ \ Su) and

lim
k→∞

∑
x∈Suk

Φ
(
νuk

, (u′k)
a
− , (u

′
k)
a
+

)
= lim
k→∞

∑
x∈Sk

u

Φ
(
νu, (u′)

a
− , (u

′)a+
)

=
∑
x∈Su

Φ
(
νu, (u′)

a
− , (u

′)a+
)
.

This concludes the proof of the theorem. �

We end the section with a compactness result for energy bounded sequences in X1
ψ(]a, b[) .

Corollary 2.7. Let {uk} be a sequence of functions in X1
ψ(]a, b[) bounded in L1(]a, b[) and

such that
C := sup

k
F1(uk) < +∞ . (2.84)

Then there exist a subsequence (not relabeled) {uk} and a function u ∈ X1
ψ(]a, b[) such that

uk ⇀ u weakly∗ in BV (]a, b[) , (2.85)

Ψ1 ◦ (u′k)
a ⇀ Ψ1 ◦ (u′)a weakly∗ in BV (]a, b[) , (2.86)

(u′k)
a → (u′)a pointwise L1-a.e. in ]a, b[ .

Proof. It is well known that convergence in measure is metrizable with the following metric

d (u1, u2) :=
∫ b

a

|u1 − u2|
1 + |u1 − u2|

dx ,

where u1 and u2 are (equivalent classes of) measurable functions.
By Theorems 2.4 and 2.5, for every k ∈ N we may find wk ∈W 2,1(]a, b[) such that∫ b

a

|uk − wk| dx ≤
1
k
, d ((u′k)

a, w′k) ≤
1
k
, (2.87)

and
F1(wk) ≤ C + 1 .

By Theorem 2.4 we may find a subsequence (not relabeled) of {wk} and a function u ∈
X1
ψ(]a, b[) such that (2.15), (2.16), (2.17) hold (with wk in place of uk ). It now follows from

(2.87) that uk → u in L1(]a, b[) and (u′k)
a → (u′)a in measure and hence pointwise L1 a.e.

in ]a, b[ , up to a further subsequence. From the bound (2.84), the uniqueness of the limit,
and the invertibility of Ψ1 , we deduce (2.85) and (2.86). �

3. The case p > 1

In this section we analyze the functional (1.3) in the case p > 1.
Let us state precisely the standing assumptions. Throughout this section p denotes any

exponent in ]1,+∞[ , ψ : R → ]0,+∞[ is a bounded Borel function satisfying

M :=
∫ +∞

−∞
(ψ(t))1/p dt < +∞ (3.1)

in addition to (2.2), and Ψp : R → [0,M ] denotes the antiderivative of ψ1/p defined by
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Ψp(t) :=
∫ t

−∞
(ψ(s))1/p ds . (3.2)

The function Ψ−1
p : [0,M ] → R stands for the inverse function of Ψp .

We now consider the functional Fp : L1(]a, b[) → [0,+∞] defined by

Fp(u) :=


∫ b

a

|u′| dx+
∫ b

a

ψ(u′)|u′′|p dx if u ∈W 2,p(]a, b[) ,

+∞ otherwise.
(3.3)

It turns out that piecewise smooth functions with bounded derivative and nonempty dis-
continuity set cannot be approximated by sequences with equibounded energy. This is a
consequence of Remark 3.2(i) and Theorem 3.3 below, and to this end we introduce a suit-
able space of functions. Recall that Z±[(u′)a] are the sets defined in (2.5) and (2.6), while
(u′)s denotes the singular part of the gradient measure u′ .

Definition 3.1. Let Xp
ψ(]a, b[) be the set of all functions u ∈ BV (]a, b[) such that v :=

Ψp ◦ (u′)a belongs to W 1,p(]a, b[) and the positive part ((u′)s)+ and the negative part
((u′)s)− of the measure (u′)s are concentrated on Z+[(u′)a] and Z−[(u′)a] , respectively.

Remark 3.2. (i) It follows immediately from the definition that if u ∈ Xp
ψ(]a, b[) then

(u′)a = Ψ−1
p (v) is continuous on [a, b] with values in R . In particular, it turns out that

Z±[(u′)a] = {x ∈ ]a, b[ : (u′)a = ±∞} .

By the assumption on the support of the singular part (u′)s , we have limx→x0(u
′)a(x) = +∞

for every jump point x0 with u+(x0) − u−(x0) > 0 and limx→x0(u
′)a(x) = −∞ for every

jump point x0 with u+(x0) − u−(x0) < 0. This means that if Su is nonempty then
u cannot have bounded derivative outside the discontinuity set. In particular, piecewise
constant functions are not included in the class Xp

ψ(]a, b[) .
(ii) We observe that the function (u′)a is differentiable L1 a.e. in ]a, b[ with

v′ = ψ
1
p ((u′)a) ((u′)a)′ . (3.4)

To see this, we consider the open set

Ak := {x ∈ ]a, b[ : −k < (u′)a < k} .

Since by (2.2) the function Ψ−1
p is Lipschitz continuous in the interval [Ψp(−k),Ψp(k)]

and v ∈ W 1,p(]a, b[) , by the chain rule we have that (u′)a = Ψ−1
p ◦ v ∈ W 1,p(Ak) and, in

particular, it is differentiable L1 -a.e. in Ak and (3.4) holds. Since (u′)a is integrable we
have that

L1
(
]a, b[ \

⋃
k

Ak

)
= 0

and the conclusion follows.
(iii) It is easy to check that Xp

ψ(]a, b[) may contain discontinuous functions. An example
is given by the following construction: Let ψ : R → ]0,+∞[ be defined by

ψ(t) :=

{
1 if |t| ≤ 1 ,

1
|t|α if |t| > 1 ,

where α is any number in ]1,+∞[ , and let p ∈ ]1, α+1
2 [ . Consider now the discontinuous

functions u : ]−1, 1[ → R given by

u(x) :=

{
−|x|β if x ≤ 0 ,
1 + xβ if x > 0 ,
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with
0 < β < 1− p− 1

α− p
.

A straightforward computation shows that the function Ψp ◦ (u′)a belongs to W 1,p(]−1, 1[),
which in turn implies that u ∈ Xp

ψ(]−1, 1[).
(iv) Finally, the same construction of Proposition 2.3 shows that for every admissible ψ

satisfying (2.9) the space Xp
ψ(]a, b[) contains a function with nontrivial Cantor part, if p is

sufficiently close to 1. We omit the details of this fact which can be easily checked following
step by step the proof of Proposition 2.3.

The next theorem is the counterpart of Theorem 2.4 for the case p > 1. It establishes
that energy bounded sequences are relatively compact in Xp

ψ(]a, b[) . The proof is similar to
the one of Theorem 2.4, nevertheless since this is the main result of this section we reproduce
it in full detail for the reader’s convenience.

Theorem 3.3. Let {uk} be a sequence of functions bounded in L1(]a, b[) and such that

C := sup
k
Fp(uk) < +∞ . (3.5)

Then there exist a subsequence (not relabeled) {uk} and a function u ∈ Xp
ψ(]a, b[) such that

uk ⇀ u weakly∗ in BV (]a, b[) , (3.6)

Ψp ◦ u′k ⇀ Ψp ◦ (u′)a weakly in W 1,p(]a, b[) ,

u′k → (u′)a pointwise in ]a, b[ . (3.7)

Proof. By (3.3) and (3.5) we may assume that each uk belongs to in W 2,p(]a, b[) and that

C1 := sup
k

∫ b

a

[ |uk|+ |u′k|+ ψ(u′k)|u′′k |p ] dx < +∞ . (3.8)

Let us define
vk := Ψp ◦ u′k . (3.9)

As Ψp is Lipschitz in R , the functions vk belong to W 1,p(]a, b[) and

v′k = (ψ(u′k))
1/pu′′k L1-a.e. on ]a, b[ . (3.10)

It follows from (3.1) and (3.5) that∫ b

a

[ |vk|p + |v′k|p ] dx ≤Mp(b− a) + C1 . (3.11)

By (3.8) and (3.11), passing to a subsequence (not relabeled), we may assume that

uk ⇀ u weakly∗ in BV (]a, b[)

and
vk ⇀ v weakly in W 1,p(]a, b[) (3.12)

for some functions u ∈ BV (]a, b[) and v ∈W 1,p(]a, b[; [0,M ]) .
Since Ψ−1

p is continuous, we obtain

u′k = Ψ−1
p ◦ vk → w := Ψ−1

p ◦ v pointwise in ]a, b[ . (3.13)

Note also that w is continuous with values in R .
We now split the remaining part of the proof into two steps.
Step 1: We prove that

w = (u′)a L1-a.e. on ]a, b[ . (3.14)
If not, arguing as for (2.26), we may find t0 > 0 and an infinite number of disjoint open
intervals I such that

L1({w 6= (u′)a} ∩ {|w| < t0} ∩ I) > 0 . (3.15)
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By Hölder’s inequality and a change of variables we obtain∫
I

ψ(u′k)|u′′k |p dx ≥
1

L1(I)p−1

(∫
I

(ψ(u′k))
1/p|u′′k | dx

)p
≥ 1

(b− a)p−1

(∫ Mk

mk

(ψ(t))1/p dt
)p
,

(3.16)

where mk := infI u′k and Mk := supI u′k .
Reasoning as in the first step of the proof of Theorem 2.4, we can show that at least

one of the two sequences {mk} and {Mk} is divergent. If limk Mk = +∞ then by (3.13)
lim supk mk < t0 and, in turn, from (3.16) we obtain

lim inf
k→∞

∫
I

ψ(u′k)|u′′k |p dx ≥
1

(b− a)p−1

(∫ +∞

t0

(ψ(t))1/p dt
)p

> 0 .

Analogously, if limk mk = −∞ then

lim inf
k→∞

∫
I

ψ(u′k)|u′′k |p dx ≥
1

(b− a)p−1

(∫ t0

−∞
(ψ(t))1/p dt

)p
> 0 .

In any case for an arbitrarily large number m of disjoint intervals I satisfying (3.15) , adding
the contributions of each interval we obtain

lim inf
k→∞

∫ b

a

ψ(u′k)|u′′k |p dx ≥
m

(b− a)p−1
min

{(∫ +∞

t0

(ψ(t))1/p dt
)p
,
(∫ t0

−∞
(ψ(t))1/p dt

)p}
,

which contradicts (3.8) for m large enough. This concludes the proof of (3.14) and, in turn,
of (3.7) .
Step 2: To prove that u ∈ Xp

ψ(]a, b[) it remains to show that the positive part ((u′)s)+

and the negative part ((u′)s)− of the measure (u′)s are concentrated on Z+[(u′)a] and
Z−[(u′)a] respectively.

Arguing as in Step 2 of the proof of Theorem 2.4, one can see that it is enough to show

E+[u′] \ Z+[(u′)a] and E−[u′] \ Z−[(u′)a] are empty, (3.17)

where E+[u′] and E−[u′] are the sets introduced in (2.31) and (2.32) . We only show that
E+[u′] \ Z+[(u′)a] is empty, since the other property can be proved in the same way.

Assume by contradiction that E+[u′] \ Z+[(u′)a] contains a point x0 . Denote t0 :=
2|(w(x0)| , fix any t1 > t0 , and choose ε0 > 0 such that

1
(2ε0)p−1

(∫ t1

t0

(ψ(t))1/p dt
)p

> C , (3.18)

where C is the constant appearing in (3.5). By (2.31) there exists 0 < ε < ε0 such that

(u′)+ (]x0 − ε, x0 + ε[)
2ε

> t1 . (3.19)

Set I := ]x0 − ε, x0 + ε[ . By Hölder’s inequality and a change of variables (see (3.16)) we
obtain ∫

I

ψ(u′k)|u′′k |p dx ≥
1

(2ε0)p−1

(∫ Mk

mk

(ψ(t))1/p dt
)p
, (3.20)

where mk := infI u′k and Mk := supI u′k . By (3.13) and the fact that w(x0) < t0 , we
deduce that

lim sup
k→∞

mk < t0 . (3.21)

On the other hand, reasoning as at the end of the proof of Theorem 2.4, we deduce from
(3.6) and (3.19) that

lim inf
k→∞

1
2ε

∫ x0+ε

x0−ε
(u′k)

+ dx ≥ (u′)+ (]x0 − ε, x0 + ε[)
2ε

> t1 ,
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which implies that
lim inf
k→∞

Mk > t1 . (3.22)

From (3.18), (3.20), (3.21), and (3.22) we obtain

lim inf
k→∞

∫
I

ψ(u′k)|u′′k |p dx ≥
1

(2ε0)p−1

(∫ t1

t0

(ψ(t))1/p dt
)p

> C ,

which contradicts (3.8) . This shows (3.17) and concludes the proof of the theorem. �

We next identify the relaxation of Fp with respect to strong convergence in L1(]a, b[) .

Theorem 3.4. Let Fp : L1(]a, b[) → [0,+∞] be defined by

Fp (u) := inf
{

lim inf
k→∞

Fp (uk) : uk → u in L1(]a, b[)
}

(3.23)

for every u ∈ L1(]a, b[) . Then

Fp (u) =

|u′|(]a, b[) +
∫ b

a

|v′|p dx if u ∈ Xp
ψ(]a, b[) ,

+∞ otherwise,
(3.24)

where v := Ψp ◦ (u′)a .

Proof. We sketch the proof focusing only on the main changes with respect to the proof of
Theorem 2.5. Let Gp be the functional defined by the right hand side of (3.24).

We start by showing that
Gp(u) ≤ lim inf

k→∞
Fp(uk) . (3.25)

whenever uk → u in L1(]a, b[) . It is enough to consider sequences {uk} for which the liminf
is a limit and has a finite value. Then uk belongs to W 2,1(]a, b[) and (3.5) is satisfied.
Setting vk := Ψp ◦ u′k , by Theorem 3.3 we have vk ⇀ v weakly in W 1,p(]a, b[) . Using the
fact that |v′k|p = ψ(u′k)|u′′k |p , we deduce that∫ b

a

|v′|p dx ≤ lim inf
k→∞

∫ b

a

ψ(u′k)|u′′k |p dx . (3.26)

Inequality (3.25) follows now from (3.26) and the lower semicontinuity of the total variation.
We split the proof of the limsup inequality into several steps.

Step 1: Let u ∈ Xp
ψ(]a, b[) be such that (u′)s = 0. We claim that there exists a sequence

{uk} in W 2,p(]a, b[) such that uk → u in L1(]a, b[) and

lim sup
k→∞

Fp(uk) ≤ Gp(u) . (3.27)

Define wk := ((u′)a ∨ −k) ∧ k . Using the fact that (u′)a ∈W 1,p(A2k), where

A2k := {x ∈ ]a, b[ : −2k < (u′)a < 2k}

as observed in Remark 3.2-(ii), one sees that wk ∈W 1,p(]a, b[) . Define

uk(x) := u+(a) +
∫ x

a

wk(y) dy .

It is easy to see that uk → u in L1(]a, b[) and (3.27) holds.
Step 2: Assume that u ∈ Xp

ψ(]a, b[) , (u′)c = 0, and Su is finite. We claim that there exists
a sequence {uk} of functions in Xp

ψ(]a, b[) , with (u′k)
s = 0, such that uk → u in L1(]a, b[)

and
lim sup
k→∞

Gp(uk) ≤ Gp(u) . (3.28)
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Since the construction is local, it is enough to consider the case Su = {x0} for some x0 ∈ ]a, b[
with [u](x0) > 0. By the properties of Xp

ψ(]a, b[) we can find two sequences xk ↗ x0 and
yk ↘ x0 such that

u(xk) → u−(x0) , u(yk) → u+(x0) , and (u′)a(xk) = (u′)a(yk) → (u′)a(x0) = +∞ .

Consider the affine functions hk(x) := u(xk) + (u′)a(xk)(x − xk). For every k sufficiently
large there exists zk ∈ ]xk, b[ such that hk(zk) = u+(x0). Since (u′)a(xk) → +∞ and
xk → x0 , we have that zk → x0 as k →∞ . Define

uk(x) :=


u(x) if a < x ≤ xk ,

hk(x) if xk < x ≤ zk ,

u(x+ yk − zk) + u+(x0)− u(yk) if zk < x < b .

Using the fact that (u′)a(xk) = (u′)a(yk), it is easy to check that uk ∈ Xp
ψ(]a, b[) , with

(u′k)
s = 0, uk → u in L1(]a, b[) , and (3.28) holds.

Step 3: Assume that u ∈ Xp
ψ(]a, b[) and (u′)c = 0. We claim that there exists a sequence

of functions uk in Xp
ψ(]a, b[) , with (u′k)

c = 0 and Suk
finite, such that uk → u in L1(]a, b[)

and (3.28) holds.
To see this, it is enough to consider the same approximation constructed in Step 3 of the

proof of Theorem 2.5.
Step 4: Assume that u ∈ Xp

ψ(]a, b[) . We claim that there exists a sequence of functions uk
in Xp

ψ(]a, b[) , with (u′k)
c = 0, such that uk → u in L1(]a, b[) and (3.28) holds.

Since (u′)a is continuous from ]a, b[ into R and integrable (see Remark 3.2), we have that
K := {x ∈ ]a, b[ : |(u′)a| = +∞} is relatively closed in ]a, b[ with zero L1 measure. Hence,
we may find a sequence of open sets Ak ⊂ ]a, b[ such that Ak ↘ K . Let {Ikj }j be the
collection of all connected components of Ak intersecting K . Let ckj := (u′)s(Ikj ) > 0. By
the properties of Xp

ψ(]a, b[) for every j we may choose xkj ∈ Ikj ∩K such that (u′)a(xkj ) = +∞
if ckj > 0 and (u′)a(xkj ) = −∞ if ckj < 0. Define

uk(x) := u+(a) +
∫ x

a

(u′)a(y) dy +
∑

j: xk
j≤x

ckj .

Using the definition of Xp
ψ(]a, b[) one can check that∑
j

ckj δxk
j
⇀ (u′)s weakly∗ in Mb(]a, b[)

and |
∑
j c
k
j δxk

j
|(]a, b[) → |(u′)s|(]a, b[) as k → ∞ . Using this fact it is easy to see that the

sequence {uk} meets all the requirements.
By combining Steps 1-4 with a diagonal argument one can finally prove that (3.27) holds

for every u in Xp
ψ(]a, b[) . �

Corollary 3.5. Let {uk} be a sequence of functions in Xp
ψ(]a, b[) bounded in L1(]a, b[) and

such that
C := sup

k
Fp(uk) < +∞ . (3.29)

Then there exists a subsequence (not relabeled) {uk} and a function u ∈ Xp
ψ(]a, b[) such

that

uk ⇀ u weakly∗ in BV (]a, b[) , (3.30)

Ψp ◦ (u′k)
a ⇀ Ψp ◦ (u′)a weakly in W 1,p(]a, b[) , (3.31)

(u′k)
a → (u′)a pointwise in ]a, b[ . (3.32)



A HIGHER ORDER MODEL FOR IMAGE RESTORATION: THE ONE DIMENSIONAL CASE 23

Proof. With an argument entirely similar to the one used in the proof of Corollary 2.7 we
can extract a subsequence {uk} which satisfies (3.30) and (3.31). In turn (3.31) and the
continuity of Ψ−1

p in R imply (3.32). �

4. The staircase effect

The purpose of this section is to show analytically that the presence of the higher order
term in the functional F prevents the occurrence of the so-called staircase effect as opposed
to what happens in image reconstructions based on the total variation functional.

4.1. The Rudin-Osher-Fatemi model. We start by showing that staircase-like struc-
tures do appear in solutions to the Rudin-Osher-Fatemi problem; i.e., in minimizers for the
functional ROFλ,g : BV (]a, b[) → R defined by

ROFλ,g(w) := |w′|(]a, b[) + λ

∫ b

a

(w − g)2 dx ,

where λ > 0 is the fidelity parameter and g ∈ L2(]a, b[) is the given “signal” to be processed.
This fact is well known and numerically observed in many situations. We provide here a
simple analytical example. A different example can be found in [10]. It will be constructed
by means of the following proposition which deals with minimizers of ROFλ,g when g is a
monotone function.

Proposition 4.1. Let g : [a, b] → [0, 1] be a nondecreasing function such that g+(a) = 0
and g−(b) = 1 . Let g−1 denote the left-continuous generalized inverse of g , defined by

g−1(c) := inf{x ∈ [a, b] : g(x) ≥ c} (4.1)

for every c ∈ [0, 1] and assume that there exist 0 < c1 < c2 < 1 such that

2λ
∫ g−1(c1)

a

(c1 − g(x)) dx = 1 and 2λ
∫ b

g−1(c2)

(g(x)− c2) dx = 1 . (4.2)

Then the function u , defined by

u(x) :=


c1 if a ≤ x ≤ g−1(c1) ,
g(x) if g−1(c1) < x ≤ g−1(c2) ,
c2 if g−1(c2) < x ≤ b ,

is the unique minimizer of ROFλ,g in BV (]a, b[) .

Remark 4.2. Since∫ g−1(c)

a

(c− g(x)) dx =
∫ c

0

g−1(y) dy ,
∫ b

g−1(c)

(g(x)− c) dx =
∫ 1

c

g−1(y) dy

for all c ∈ [0, 1], the continuity of the integral implies that condition (4.2) is satisfied for
every λ sufficiently large.

Proof of Proposition 4.1. We split the proof into two steps.
Step 1. We assume first that u is absolutely continuous. In order to prove the minimality of
u , by density it suffices to show that ROFλ,g(u+ ϕ) ≥ ROFλ,g(u) for every ϕ ∈ C1([a, b]) ,
which, in turn, due to the convexity of ROFλ,g , is equivalent to proving that

d+

dε
ROFλ,g(u+ εϕ)

∣∣∣∣
ε=0

≥ 0 for every ϕ ∈ C1([a, b]) , (4.3)

where d+

dε denotes the right derivative. By a straightforward computation we have

d+

dε
ROFλ,g(u+ εϕ)

∣∣∣∣
ε=0

=
∫
{u′=0}

|ϕ′| dx+
∫
{u′>0}

ϕ′ dx+ 2λ
∫ b

a

(u− g)ϕdx . (4.4)
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Consider now the function θ : [a, b] → [0, 1] defined by θ(x) := 2λ
∫ x
a

(u− g) dt . Using (4.2)
and the definition of u one can check that θ(a) = θ(b) = 0, 0 ≤ θ ≤ 1, and θ ≡ 1 in
[g−1(c1), g−1(c2)] . In particular, {u′ > 0} ⊂ [g−1(c1), g−1(c2)] ⊂ {θ = 1} so that by (4.4)

d+

dε
ROFλ,g(u+ εϕ)

∣∣∣∣
ε=0

≥
∫ b

a

ϕ′θ dx+ 2λ
∫ b

a

(u− g)ϕdx = 0 ,

where the last equality is obtained by integrating by parts and by using the fact that
θ′ = 2λ(u− g) and θ(a) = θ(b) = 0. This shows (4.3) and concludes the proof of Step 1.
Step 2. In the general case, we construct a sequence {gk} ⊂ AC([g−1(c1), g−1(c2)]) of
nondecreasing functions such that gk(g−1(c1)) = c1 , gk(g−1(c2)) = c2 , and gk → g in
L2([g−1(c1), g−1(c2)]) . Let g̃k be the function that coincides with gk in [g−1(c1), g−1(c2)]
and with g elsewhere in [a, b] and, analogously, set uk to be equal to gk in [g−1(c1), g−1(c2)]
and to u elsewhere. For any v ∈ BV (]a, b[) , by applying the previous step we obtain

ROFλ,g̃k
(v) ≥ ROFλ,g̃k

(uk) = ROFλ,g(u) .

The minimality of u follows by letting k →∞ . Finally, uniqueness is a consequence of the
strict convexity of ROFλ,g . �

As a corollary of the previous result we can prove analytically the occurrence of the
staircase effect in a very simple case. Let g (x) := x , x ∈ [0, 1], be the original 1D image to
which we add the ”noise”

hn (x) :=
i

n
− x if

i− 1
n

≤ x <
i

n
, i = 1, . . . , n ,

where n ∈ N , so that the resulting degraded 1D image is given by the staircase function

gn (x) :=
i

n
if

i− 1
n

≤ x <
i

n
, i = 1, . . . , n. (4.5)

Note that, even though hn → 0 uniformly, the reconstructed image un preserves the stair-
case structure of gn . Indeed, we show that there exists a non degenerate interval I ⊂ [0, 1]
such that each un coincides with the degraded 1D image gn in I for all n ∈ N . More
precisely we have the following theorem.

Theorem 4.3 (Staircase effect). Let λ > 4 , let gn be as in (4.5) , and let un be the
unique minimizer of ROFλ,gn in BV (]0, 1[) . Then for all n sufficiently large there exist
0 < an < bn < 1 , with

an →
1√
λ
, bn → 1− 1√

λ

as n → ∞ , such that un = gn on [an, bn] and un is constant on each interval [0, an) and
(bn, 1] .

Proof. Let g−1
n denote the generalized inverse function of gn defined by (4.1) with g replaced

by gn . As both {gn} and {g−1
n } converge uniformly to g(x) = x and since λ > 4, one can

check that for n large enough there exist 0 < c
(n)
1 < c

(n)
2 < 1 satisfying

2λ
∫ g−1

n (c
(n)
1 )

0

(c(n)
1 − gn) dx = 1 and 2λ

∫ 1

g−1
n (c

(n)
2 )

(gn − c
(n)
2 ) dx = 1

with c
(n)
1 → c1 and c

(n)
2 → c2 as n→∞ , where c1 and c2 are defined by

2λ
∫ c1

0

(c1 − x) dx = 1 and 2λ
∫ 1

c2

(x− c2) dx = 1 . (4.6)
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By Proposition 4.1 the unique minimizer un of ROFλ,gn
in BV (]0, 1[) takes the form

un(x) =


c
(n)
1 if 0 ≤ x ≤ g−1

n (c(n)
1 ) ,

gn(x) if g−1
n (c(n)

1 ) < x ≤ g−1
n (c(n)

2 ) ,
c
(n)
2 if g−1

n (c(n)
2 ) < x ≤ 1 .

The conclusion follows by observing that an := g−1
n (c(n)

1 ) → c1 , bn := g−1
n (c(n)

2 ) → c2 and
that c1 = 1√

λ
and c2 = 1− 1√

λ
, thanks to (4.6) . �

4.2. Absence of the staircase effect: The case p = 1 . Next we show that the presence
of the higher order term in the functional F1 prevents the occurrence of the staircase effect.
We begin with the case p = 1. We consider the minimization problem

min
{
F1 (u) + λ

∫ b

a

(u− g)2 dx : u ∈ X1
ψ(]a, b[)

}
, (4.7)

where F1 is the relaxed functional given in (2.37). To prove the absence of the staircase
effect we need the following auxiliary result that is of independent interest.

Proposition 4.4. Assume that ψ : R → ]0,+∞[ is a bounded Borel function satisfying (2.1)
and (2.2) . Let g : [a, b] → R be Lipschitz continuous and let u ∈ X1

ψ(]a, b[) be a solution of
the minimization problem (4.7) . Then u is Lipschitz continuous and u′ ∈ BV (]a, b[) .

Proof. The plan of the proof is the following. We will show that the discontinuity set Su
is empty and that the left and right limits (u′)a− and (u′)a+ , defined in (2.7), are finite
everywhere on ]a, b] and on [a, b[ , respectively. Note that this will imply that the sets
Z±[(u′)a] (see (2.5) and (2.6)) are empty and, in turn, that u ∈W 1,1(]a, b[) by the properties
of the space X1

ψ(]a, b[) . Moreover, recalling that the functions (u′)a∨ and (u′)a∧ defined in
Remark 2.2 are upper and lower semicontinuous on [a, b] , it will also follow that both
(u′)a− and (u′)a+ are bounded, yielding the Lipschitz continuity of u . In turn, the fact that
u′ ∈ BV (]a, b[) is a consequence of the local Lipschitz continuity of Ψ−1

1 .
Step 1: We start by showing that Su is empty. We argue by contradiction, assuming
that Su contains a point x0 . Without loss of generality we may suppose that νu(x0) =
1; i.e., u+(x0) > u−(x0). We also assume that 1

2 (u+(x0) + u−(x0)) ≥ g(x0). In the
following it is convenient to think of u as coinciding everywhere with its lower semicontinuous
representative u∧ := min{u−, u+} .

Find ε > 0 so small that ∑
x∈Su

x∈]x0,x0+ε[

|[u](x)| < [u](x0)
4

(4.8)

and let C > 0 satisfy

C > 2‖g′‖∞ and
1
2
(u+(x0) + u−(x0)) + Cε > u−(x0 + ε) . (4.9)

For t ∈ [0, 1] consider the affine function

ht(x) := (1−t)
2 (u+(x0) + u−(x0)) + t

(
1
4u−(x0) + 3

4u+(x0)
)

+ C(x− x0)

and note that by (4.9) there exists xt ∈]x0, x0 + ε[ such that

(xt, ht(xt)) ∈ Γu and g < ht < u in ]x0, x
t[ , (4.10)

where Γu stands for the extended graph of u defined by

Γu := {(x, t) ∈ ]a, b[×R : min{u−(x), u+(x)} ≤ t ≤ max{u−(x), u+(x)}} .
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Let ut be the function defined by

ut(x) :=

{
ht(x) if x ∈ ]x0, x

t[,
u(x) otherwise,

(4.11)

and note that

λ
(∫ b

a

|u− g|2 dx−
∫ b

a

|ut− g|2 dx
)
≥ λ

(∫ b

a

|u− g|2 dx−
∫ b

a

|u1− g|2 dx
)

=: η > 0 (4.12)

for every t ∈ [0, 1]. Now it is convenient to approximate u with functions having only
finitely many jump points. Hence the following approximation procedure is needed only
when Su is infinite. In this case write Su = {x0, x1, . . . , xj , . . . } , for each k define Sku :=
{xj : 0 ≤ j ≤ k} , and for x ∈ ]a, b[ set

uk (x) = u+ (a) +
∫ x

a

(u′)a dt+ (u′)c (]a, x[) +
∑

xj<x, xj∈Sk
u

[u] (xj) .

Note that, since uk → u in L∞(]a, b[) , for k large enough it follows from (4.9) and (4.10)
that for every t ∈ [0, 1] there exists xtk ∈ ]x0, x0 + ε[ such that

(xtk, h
t(xtk)) ∈ Γuk

and g < ht < uk in ]x0, x
t
k[ ,

where Γuk
denotes the extended graph of uk . For all such k we consider the comparison

function utk defined as in (4.11), with u and xt replaced by uk and xtk , respectively. Using
the uniform convergence of {uk} to u and (4.10), we have that xt ≤ lim infk xtk , which
yields ut ≥ lim supk utk L1 -a.e. on ]a, b[ . Moreover uk → u in F1 energy. Hence, also by
(4.12), we may find k so large that for t ∈ [0, 1]

λ
(∫ b

a

|uk−g|2 dx−
∫ b

a

|utk−g|2 dx
)
≥ λ

(∫ b

a

|uk−g|2 dx−
∫ b

a

|u1
k−g|2 dx

)
≥ η

2
, (4.13)

F1(uk) + λ

∫ b

a

|uk − g|2 dx ≤ F1(u) + λ

∫ b

a

|u− g|2 dx+
η

4
. (4.14)

Let us fix k satisfying (4.13) and (4.14). We claim that there exists t̄ ∈ [0, 1] such that
xt̄k is a continuity point for uk . Indeed, if not, then for every t ∈ [0, 1] there exists a
jump point xj , with 1 ≤ j ≤ k , such that xtk = xj and the point (xtk, h

t(xtk)) belongs
to the corresponding vertical segment of the extended graph of uk . Setting Ij := {t ∈
[0, 1] : xtk = xj} and σj := {(xj , ht(xj)) : t ∈ Ij} , it is clear that [0, 1] = ∪kj=1Ij and
H1(σj) = H1({(x0, h

t(x0)) : t ∈ Ij}). Thus,

∑
x∈Su

x∈]x0,x0+ε[

|[u](x)| ≥
k∑
j=1

H1(σj) = H1
(
{(x0, h

t(x0)) : t ∈ [0, 1]}
)

=
[u](x0)

4
,

in contradiction with (4.8).
Since from now on t̄ and k are fixed, to simplify the notation we set x̂ := xt̄k , û := ut̄k ,

ĥ := ht̄ , and v̂ := Ψ1 ◦ (û′)a . By construction (see (4.11)) we have

|û′|(]a, b[) ≤ |u′k|(]a, b[) . (4.15)

Next we claim that
(u′)a−(x̂) ≤ ĥ′(x̂) = C . (4.16)

If (u′)a−(x̂) ≤ 0 there is nothing to prove. If (u′)a−(x̂) > 0, then by left continuity
(u′)a−(y) > 0 for y sufficiently close to x̂ , which, in turn, implies (u′)c(]y, x̂[) ≥ 0 by the
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properties of X1
ψ(]a, b[) . Since Suk

is finite and x̂ is a continuity point, for y in a left
neighborhood of x̂ we can write

ĥ(x̂) = uk(x̂) = uk(y) +
∫ x̂

y

(u′)a(s) ds+ (u′)c(]y, x̂[) > ĥ(y) +
∫ x̂

y

(u′)a(s) ds ,

where we have used the fact that uk(x̂) = ĥ(x̂) and ĥ < uk in a left neighborhood of x̂ .
Claim (4.16) follows.

Now, recalling that Φ(1, t1, t2) = 2Ψ1(+∞) − Ψ1(t1) − Ψ1(t2) for every t1 , t2 ∈ R by
(2.38) and using Remark 2.6, we estimate

|v′|([x0, x̂] \ Su) +
∑

x∈Su∩[x0,x̂]

Φ(νu, (u′)a−, (u
′)a+)

≥|v′|(]x0, x̂]) + Φ(1, (u′)a−(x0), (u′)a+(x0))

≥|Ψ1((u′)a+(x0))−Ψ1((u′)a−(x̂))|+ |Ψ1((u′)a+(x̂))−Ψ1((u′)a−(x̂))|
+ Φ(1, (u′)a−(x0), (u′)a+(x0))

=|Ψ1((u′)a+(x0))−Ψ1((u′)a−(x̂))|+ |Ψ1((u′)a+(x̂))−Ψ1((u′)a−(x̂))|
+ 2Ψ1(+∞)−Ψ1((u′)a−(x0))−Ψ1((u′)a+(x0)) (4.17)

≥−Ψ1((u′)a−(x̂)) + 2Ψ1(+∞)−Ψ1((u′)a−(x0)) + |Ψ1((u′)a+(x̂))−Ψ1((u′)a−(x̂))|
=Ψ1(C)−Ψ1((u′)a−(x̂)) + 2Ψ1(+∞)−Ψ1((u′)a−(x0))−Ψ1(C)

+ |Ψ1((u′)a+(x̂))−Ψ1((u′)a−(x̂))|
≥|Ψ1(C)−Ψ1((u′)a+(x̂))|+ Φ(1, (û′)a−(x0), (û′)a+(x0))

=|v̂′|([x0, x̂] \ Sû) +
∑

x∈Sû∩[x0,x̂]

Φ(νû, (û′)a−, (û
′)a+) ,

where in the last inequality we have used (4.11) and (4.16). Collecting (4.13), (4.15), and
(4.17) we deduce that

F1(û) + λ

∫ b

a

|û− g|2 +
η

2
≤ F1(uk) + λ

∫ b

a

|uk − g|2

and, in turn, by (4.14)

F1(û) + λ

∫ b

a

|û− g|2 dx < F1(u) + λ

∫ b

a

|u− g|2 dx , (4.18)

which contradicts the minimality of u .
If 1

2 (u+(x0) + u−(x0)) < g(x0) then we proceed in a similar manner: The comparison
function û is now constructed by replacing uk with an affine function (defined as before and
with C and t properly chosen) in a left neighborhood of x0 . The argument is completely
analogous to the previous one and we omit the details.
Step 2: We finally show that (u′)a− and (u′)a+ are finite everywhere in ]a, b] and in [a, b[ ,
respectively. We give the details only for (u′)a− , since one can argue for (u′)a+ in an entirely
similar way.

Recall that by the previous step u is continuous. Once again we reason by contradiction
by assuming that there exists x̄ ∈ ]a, b] such that |(u′)a−(x̄)| = +∞ . Without loss of
generality we may suppose that (u′)a−(x̄) = +∞ . Using Remark 2.2 and the differentiability
properties of BV functions we may choose a point x1 ∈ ]a, x̄[ such that u is differentiable
at x1 and

u(x1) 6= g(x1) , u′(x1) = (u′)a−(x1) = (u′)a+(x1) , u′(x1) > 2‖g′‖∞, |v′|(]a, x1]) > 0 . (4.19)

The first condition is a consequence of the fact that g is Lipschitz and u cannot be Lipschitz
in any left neighborhood of x̄ , since |(u′)a−(x̄)| = +∞ . The last condition follows easily from
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the fact that (u′)a cannot be constant L1 -a.e. on ]a, x̄[ . Assume that u(x1) > g(x1). Then,
by (4.19) and by the previous step, we can find ε ∈ [0, 1

2 [ , with

Ψ1(u′(x1))−Ψ1((1− ε)u′(x1)) < |v′|([x1, b[) , (4.20)

such that the affine function h(x) := u(x1) + (1 − ε)u′(x1)(x − x1) satisfies one of the
following conditions: Either there exists a point x2 ∈ ]x1, b[ for u such that

h(x2) = u(x2) and g < h < u in ]x1, x2[ , (4.21)

or
g < h < u in ]x1, b[ . (4.22)

In the latter case we set x2 := b . We now consider the comparison function

û(x) :=

{
h(x) if x ∈ ]x1, x2[,
u(x) otherwise,

and we denote v̂ := Ψ1 ◦ (û′)a . We claim that (4.18) holds, contradicting the minimality
of u . By (4.21) and (4.22) in any case we have

λ

∫ b

a

|û− g|2 dx < λ

∫ b

a

|u− g|2 dx .

Moreover, if x2 < b we have by construction |û′|([x1, x2]) = u(x2) − u(x1) ≤ |u′|([x1, x2]) ,
while if x2 = b we have |û′|([x1, b[) = u−(b) − u(x1) ≤ |u′|([x1, b[) , so that in both cases
|û′|([a, b[) ≤ |u′|(]a, b[) . Hence (4.18) will follow if we show that |v̂′|([x1, x2]) ≤ |v′|([x1, x2]) ,
where [x1, x2] is replaced by [x1, b[ if x2 = b . To see this we first assume that (4.21) holds.
Arguing as for (4.16), we deduce (u′)a−(x2) ≤ h′(x2) = (1 − ε)u′(x1). Therefore by (4.19)
we have

|v′|([x1, x2]) =|v′|(]x1, x2[) + |v′|({x2})
≥Ψ1(u′(x1))−Ψ1((u′)a−(x2)) + |Ψ1((u′)a−(x2))−Ψ1((u′)a+(x2))|
=Ψ1(u′(x1))−Ψ1((1− ε)u′(x1)) + Ψ1((1− ε)u′(x1))−Ψ1((u′)a−(x2))

+ |Ψ1((u′)a−(x2))−Ψ1((u′)a+(x2))|
≥Ψ1(u′(x1))−Ψ1((1− ε)u′(x1)) + |Ψ1((1− ε)u′(x1))−Ψ1((u′)a+(x2))|
=|v̂′|([x1, x2]) .

If (4.22) holds then, by (4.20), we obtain

|v′|([x1, b[) > Ψ1(u′(x1))−Ψ1((1− ε)u′(x1)) = |v̂′|([x1, b[) .

If u(x1) < g(x1) we modify the previous argument in the following way. We now choose
ε ∈ [0, 1

2 [ satisfying (4.20) with |v′|([x1, b[) replaced by |v′|(]a, x1]) and such that the affine
function h(x) defined before satisfies one of the following conditions: Either there exists a
point x2 ∈ ]a, x1[ such that h(x2) = u(x2) and u < h < g in ]x2, x1[ , or u < h < g in
]a, x1[ . In the latter case we set x2 := a . We now consider the comparison function

û(x) :=

{
h(x) if x ∈ ]x2, x1[,
u(x) otherwise,

and we proceed exactly as before to show (4.18). �

We now turn to the main theorem of this subsection.

Theorem 4.5. Assume that ψ : R → ]0,+∞[ is a bounded Borel function satisfying (2.1)
and (2.2), let g : [a, b] → R be Lipschitz continuous, and let {hn} satisfy

hn ⇀ 0 weakly∗ in L∞ (]a, b[) . (4.23)
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Define An as the class of all solutions to (4.7) , with g replaced by gn := g + hn . Then for
n large enough every solution un ∈ An is Lipschitz continuous. Moreover,

lim sup
n→∞

sup
w∈An

‖w‖1,∞ < +∞ (4.24)

and for every sequence {un} ⊂ An there exists a subsequence (not relabeled) and a solution
u to (4.7) such that un → u in W 1,p(]a, b[) for all p ∈ [1,+∞[ .

Proof. It will be enough to prove that for any (sub)sequence {un} ⊂ An we may extract a
further subsequence (not relabeled) and find a solution u to (4.7) such that un is Lipschitz
continuous for n large enough,

lim sup
n→∞

‖un‖1,∞ < +∞ , (4.25)

and un → u in W 1,p(]a, b[) for all p ∈ [1,+∞[ . Since the sequence hn is bounded in
L∞ (]a, b[) for any w ∈ X1

ψ(]a, b[) we have

sup
n

(
F1 (un) + λ

∫ b

a

(un − gn)2 dx

)
≤ F1 (w) + λ

∫ b

a

(w − gn)2 dx ≤ C <∞ ,

for a suitable constant C > 0 independent of n . By Corollary 2.7 there exist a subsequence
not relabeled and a function u ∈ X1

ψ(]a, b[) such that

un ⇀ u weakly∗ in BV (]a, b[) , (4.26)

and
u′n → (u′)a pointwise L1-a.e. in ]a, b[ . (4.27)

Moreover, since also the functions h2
n are equibounded, upon extracting a further subse-

quence we may find f ∈ L∞(]a, b[) such that

h2
n ⇀ f weakly∗ in L∞(]a, b[) . (4.28)

It is convenient to “localize” the functional F1 : For every Borel set B ⊂ ]a, b[ and for
w ∈ X1

ψ(]a, b[) we set

F1(w;B) := |w′|(B) + |v′|(B \ Sw) +
∑

x∈Sw∩B
Φ(νw, (w′)a−, (w

′)a+) , (4.29)

where v := Ψ1 ◦ (w′)a . We divide the remaining part the proof into two steps.
Step 1: We claim that u is a solution of the minimization problem (4.7) and that for every
open interval I = ]c, d[ , with a ≤ c < d ≤ b and c , d ∈ [a, b] \ S(u′)a ,

lim
n→∞

F1 (un; I) = F1 (u; I) . (4.30)

To see this, note that for each n ∈ N

λ

∫
I

(un − gn)2 dx = λ

∫
I

(un − g)2 dx− 2λ
∫
I

(un − g)hn dx+ λ

∫
I

h2
n dx .

By (4.23), (4.26), and (4.28) it follows that

lim
n→∞

∫
I

(un − gn)2 dx =
∫
I

(u− g)2 dx+
∫
I

f dx . (4.31)

Recall also that by lower semicontinuity

lim inf
n→∞

F1 (un;A) ≥ F1 (u;A) , (4.32)

for every open set A ⊂ ]a, b[ .
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By the minimality of un for every w ∈ X1
ψ(]a, b[) we have

F1 (w) +λ
∫ b

a

(w − g)2 dx− 2λ
∫ b

a

(w − g)hn dx+ λ

∫ b

a

h2
n dx

= F1 (w) + λ

∫ b

a

(w − gn)2 dx ≥ F1 (un) + λ

∫ b

a

(un − gn)2 dx .

Using (4.32) (with A = ]a, b[) and once again (4.23) and (4.28), we get

F1 (w) + λ

∫ b

a

(w − g)2 dx+ λ

∫ b

a

f dx ≥ lim sup
n→∞

(
F1 (un) + λ

∫ b

a

(un − gn)2 dx
)

≥ lim inf
n→∞

(
F1 (un) + λ

∫ b

a

(un − gn)2 dx
)
≥ F1 (u) + λ

∫ b

a

(u− g)2 dx+ λ

∫ b

a

f dx .

Given the arbitrariness of w ∈ X1
ψ(]a, b[) this implies that u is a solution of the minimization

problem (4.7). Moreover, taking w = u in the previous inequalities and using (4.31) we
deduce (4.30) for I = ]a, b[ ; i.e.,

lim
n→∞

F1(un) = F1(u) . (4.33)

It remains to prove (4.30) for every open interval of the form I = ]c, d[ , with c ,d ∈
[a, b] \ S(u′)a . To this end fix one such interval and assume by contradiction that

lim sup
n→∞

F1 (un; I) > F1 (u; I) . (4.34)

As u is continuous by Proposition 4.4, our assumption on I implies that the end points c
and d do not charge F1 (u; ·), so that F1 (u; I) = F1

(
u; I ∩ ]a, b[

)
. Therefore, combining

(4.32), (4.33), and (4.34) we obtain

F1(u) = F1

(
u; I ∩ ]a, b[

)
+ F1

(
u; ]a, b[ \ I

)
= F1 (u; I) + F1

(
u; ]a, b[ \ I

)
< lim sup

n→∞
F1 (un; I) + lim inf

n→∞
F1

(
un; ]a, b[ \ I

)
≤ lim
n→∞

F1(un) = F1(u) ,

which is a contradiction. This concludes the proof of (4.30).
Step 2: We now show that un is Lipschitz continuous for n large enough and that (4.25)
holds. Note that the convergence of un to u in W 1,p(]a, b[) for all p ∈ [1,+∞[ will then
easily follow from (4.25) and (4.27). Assume by contradiction that the conclusion is false.
Then, arguing as at the beginning of the proof of Proposition 4.4, we may find a subsequence
(not relabeled) and points xn ∈ ]a, b[ such that one of the following two cases holds:

(i) xn /∈ S(u′n)a and |(u′n)a(xn)| → +∞ ;

(ii) xn ∈ Sun for every n ∈ N .
Assume that (i) holds and, without loss of generality, that (u′n)

a(xn) → +∞ . Upon ex-
tracting a further subsequence we may also assume that xn → x0 ∈ [a, b] . Recall that by
Proposition 4.4 and by the previous step the function u is Lipschitz continuous. Hence there
are two cases: Either

F1(u; {x0} ∩ ]a, b[) = 0 (4.35)

or

x0 ∈ S(u′)a , (u′)a±(x0) ∈ R , F1(u; {x0}) = |Ψ1((u′)a+(x0))−Ψ1((u′)a−(x0))| . (4.36)

Assume first that (4.35) holds. Set L := ‖u′‖∞ and fix ε so small that,

F1 (u; Iε) <
∫ +∞

L+1

ψ(t) dt ,
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where Iε := ]x0 − ε, x0 + ε[ ∩ ]a, b[ . By (4.30) we also have

F1 (un; Iε) <
∫ +∞

L+1

ψ(t) dt , (4.37)

for n large enough. On the other hand by (4.27) there exists y ∈ Iε such that (u′n)
a(y) <

L+ 1 for n large. Moreover, taking into account (i), we also have (u′n)
a(xn) > L+ 1 for n

large enough. Thus,

F1 (un; Iε) ≥ |v′n|(Iε) ≥ |Ψ1((u′n)
a(xn))−Ψ1((u′n)

a(y))| ≥ Ψ1((u′n)
a(xn))−Ψ1(L+ 1) ,

for all n sufficiently large. Passing to the limit as n→∞ we then obtain

lim inf
n→∞

F1 (un; Iε) ≥ Ψ1(+∞)−Ψ1(L+ 1) =
∫ +∞

L+1

ψ(t) dt ,

which contradicts (4.37).
In case (4.36) holds, then x0 ∈ ]a, b[ . Set

η := 2Ψ1(+∞)−Ψ1((u′)a+(x0))−Ψ1((u′)a−(x0))−|Ψ1((u′)a+(x0))−Ψ1((u′)a−(x0))| > 0 (4.38)

and choose ε such that both x0 − ε and x0 + ε belong to ]a, b[ \ S(u′)a and

F1 (u; Iε) < |Ψ1((u′)a+(x0))−Ψ1((u′)a−(x0))|+
η

3
, (4.39)

|Ψ1((u′)a±(y))−Ψ1((u′)a±(x0))| <
η

4
for y ∈ I±ε , (4.40)

where Iε := ]x0 − ε, x0 + ε[ , I+
ε := ]x0, x0 + ε[ , and I−ε := ]x0 − ε, x0[ . Note that by (4.30)

and (4.39) we have

F1 (un; Iε) < |Ψ1((u′)a+(x0))−Ψ1((u′)a−(x0))|+
η

3
(4.41)

for n large enough. Moreover, by (4.27) and (4.40) we may find y− , y+ ∈ Iε , with y− <
x0 < y+ , such that

y± /∈ S(u′n)a and |Ψ1((u′n)
a(y±))−Ψ1((u′)a±(x0))| <

η

4
(4.42)

for n large enough. As y− < xn < y+ for n sufficiently large, we have

F1 (un; Iε) ≥|v′n|(Iε) ≥ |Ψ1((u′n)
a(xn))−Ψ1((u′n)

a(y−))|
+ |Ψ1((u′n)

a(xn))−Ψ1((u′n)
a(y+))| (4.43)

≥|Ψ1((u′n)
a(xn))−Ψ1((u′)a−(x0))|+ |Ψ1((u′n)

a(xn))−Ψ1((u′)a+(x0))| −
η

2
,

where the last inequality follows from (4.42). Letting n→∞ in (4.43) and recalling (4.38)
we deduce

lim inf
n→∞

F1 (un; Iε) ≥ 2Ψ1(+∞)−Ψ1((u′)a+(x0))−Ψ1((u′)a−(x0))−
η

2
=

= |Ψ1((u′)a+(x0))−Ψ1((u′)a−(x0))|+
η

2
,

which contradicts (4.41). This concludes the proof of (4.25) if (i) holds. An entirely similar
argument can be used to treat the other case. �

4.3. Absence of the staircase effect: The case p > 1 . We now turn to the case p > 1.
We consider the minimization problem

min
{
Fp (u) + λ

∫ b

a

|u− g|2 dx : u ∈ Xp
ψ(]a, b[)

}
, (4.44)

where Fp is the relaxed functional given in (3.24). We start with two auxiliary results.
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Proposition 4.6. Let p > 1 and assume that ψ : R → ]0,+∞[ is a bounded Borel function
satisfying (2.2) and (3.1) . Let g be Lipschitz continuous and let un be a sequence in
Xp
ψ(]a, b[) such that supn Fp(un) < +∞ and un → g in L2(]a, b[) . Then g ∈ C1([a, b]) ∩

Xp
ψ(]a, b[) . Moreover, un ∈ C1([a, b]) for n large enough and un → g in C1([a, b]) .

Proof. By the assumptions and by Corollary 3.5 we deduce that g ∈ Xp
ψ(]a, b[) . The fact

that g ∈ C1([a, b]) now follows from Remark 3.2-(i). To prove the last part of the statement
we start by showing that (u′n)

a → g′ uniformly in ]a, b[ . Again by Corollary 3.5 the whole
sequence un satisfies

Ψp ◦ (u′n)
a ⇀ Ψp ◦ g′ weakly in W 1,p(]a, b[) , (4.45)

which implies, in particular, that

(Ψp ◦ (u′n)
a)([a, b]) ⊂ [Ψp(−2‖g′‖∞),Ψp(2‖g′‖∞)] for n large enough. (4.46)

Since by (2.2) Ψ−1
p is Lipschitz continuous on [Ψp(−2‖g′‖∞),Ψp(2‖g′‖∞)] , it follows from

(4.45) and (4.46) that (u′n)
a → g′ uniformly in ]a, b[ . In turn, by Definition 3.1 we have

that u′n = (u′n)
a in ]a, b[ . In particular un ∈ C1 ([a, b]) by Remark 3.2-(i) and un → g in

C1 ([a, b]) . �

Proposition 4.7. Let p and ψ be as in the previous proposition. Then for every C > 0
there exists λ = λ(C) with the following property: For all g ∈ C1 ([a, b]) ∩Xp

ψ(]a, b[) , with
‖g‖C1([a,b]) ≤ C and Fp(g) ≤ C , and for all λ ≥ λ every solution u to (4.44) belongs to
C1([a, b]) .

Proof. Assume by contradiction that for every n ∈ N there exist gn ∈ C1 ([a, b])∩Xp
ψ(]a, b[) ,

with ‖g′n‖∞ ≤ C and Fp(gn) ≤ C , and a solution un to

min
{
Fp (u) + n

∫ b

a

|u− gn|2 dx : u ∈ Xp
ψ(]a, b[)

}
which does not belong to C1([a, b]) . Owing to Proposition 4.6 we may assume, without loss
of generality, that gn → g in C1([a, b]) for a suitable function g ∈ C1([a, b]) ∩ Xp

ψ(]a, b[) .
Moreover, by minimality, we have

Fp (un) + n

∫ b

a

|un − gn|2 dx ≤ Fp(gn) ≤ C .

It follows in particular that supn Fp(un) < +∞ and un → g in L2(]a, b[) . By Proposi-
tion 4.6 we conclude that un ∈ C1([a, b]) for n large enough, which gives a contradiction. �

The next theorem shows that also in the case p > 1 the staircase effect does not occur.

Theorem 4.8. Let ψ and p be as in Proposition 4.6, let g ∈ C1 ([a, b]) ∩Xp
ψ(]a, b[) , and

let hn satisfy (4.23). For λ > 0 and n ∈ N let Aλ,n ⊂ Xp
ψ(]a, b[) be the class of the

solutions to the minimization problem (4.44) , with g replaced by gn := g + hn . Let λ be
as in Proposition 4.7, with C := max{‖g‖C1([a,b]),Fp(g)} . Then for all λ ≥ λ we have
Aλ,n ⊂ C1 ([a, b]) for n sufficiently large. Moreover,

lim
λ→∞

lim sup
n→∞

sup
u∈Aλ,n

‖u− g‖C1([a,b]) = 0 . (4.47)

Proof. We start by showing the second part of the statement. Assume by contradiction that
(4.47) does not hold. Then there exist δ > 0, a sequence of real numbers λk → +∞ and,
for every k , a sequence of integers nkj →∞ as j →∞ , such that for every k , j

‖uλk,nk
j
− g‖C1([a,b]) ≥ δ (4.48)

for a suitable function uλk,nk
j
∈ Aλk,nk

j
(with the understanding that ‖uλk,nk

j
− g‖C1([a,b]) =

+∞ if uλk,nk
j
6∈ C1([a, b])). Arguing exactly as in Step 1 of the proof of Theorem 4.5 we
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can show that for every k there exist a subsequence (still denoted by nkj ) and a solution uk
to (4.44) with λ replaced by λk , such that

uλk,nk
j
⇀ uk weakly∗ in BV (]a, b[) and Fp(uλk,nk

j
) → Fp(uk) (4.49)

as j →∞ . Moreover, since g ∈ C1 ([a, b]) ∩Xp
ψ(]a, b[) , we have by minimality that

Fp (uk) + λk

∫ b

a

|uk − g|2 dx ≤ Fp(g) , (4.50)

which shows, in particular, that uk → g in L2(]a, b[) . Combining (4.49) and (4.50), and
using a diagonal argument, we may find a subsequence nkjk such that

sup
k
Fp(uλk,nk

jk

) < +∞ and uλk,nk
jk

→ g in L2(]a, b[) .

Proposition 4.6 then implies that uλk,nk
jk

→ g in C1([a, b]) , which contradicts (4.48).
Finally, the first part of the statement follows from a similar argument by contradiction

as a consequence of Propositions 4.6 and 4.7 and of the fact that if un ∈ Aλ,n then, up to
subsequences, un converges to a solution of (4.44). �
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