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Abstract

For the complex parabolic Ginzburg-Landau equation, we prove that, asymp-
totically, vorticity evolves according to motion by mean curvature in Brakke’s
weak formulation. The only assumption is a natural energy bound on the initial

data. In some cases, we also prove convergence to enhanced motion in the sense
of Ilmanen.

Introduction

In this paper we study the asymptotic analysis, as the parameter € goes to zero, of the
complex-valued parabolic Ginzburg-Landau equation for functions u, : RY x Rt — C
in space dimension N > 3,

ou,
(PGL), ot

1
— Au, = 8—2%(1 —|u.*) on RN x (0, +00),
u(2,0) = ul(x) forz € RV .

It corresponds to the heat-flow for the Ginzburg-Landau energy

[Vul? N
Es(u):/ es(u):/ VUE L vw)  foru:RY -G,
RN RNV 2
where V. denotes the non-convex potential

(1= uPy

Ve(w) = 42

This energy plays an important role in physics, and has been studied extensively from
the mathematical point of view in the last decades. It is well known that (PGL), is well-
posed for initial datas in H_ with finite Ginzburg-Landau energy &.(u?). Moreover,
we have the energy identity

ou,

2
5| (@tdedt =& (u(,T)) VOST<T. ()

E.(u.(-, Ty)) + T? L




We assume that the initial condition u? verifies the bound, natural in this context,
(Ho) £.(u?) < Molloge],
where M is a fixed positive constant. Therefore, in view of (I) we have

E(us(-,T)) < E(u?) < Mylloge] for all T > 0. (IT)

The main emphasis of this paper is placed on the asymptotic limits of the Radon
measures . defined on RY X [0, +00) by

e (ue(z,1))

dx dt,
|loge|

pe (T, 1) =

and of their time slices u! defined on RY x {t} by

ee(us(z,1))

t
- d
pe () Toge| 0%

so that p. = pldt. In view of assumption (Hp) and (II), we may assume, up to a
subsequence &, — 0, that there exists a Radon measure p, defined on RN x [0, +00)
such that

Me — s as Imeasures.

Actually, passing possibly to a further subsequence, we may also assume (see Lemma
1) that
ph — ut as measures on RY x {t}, for all £ > 0.

Our main results describe the properties of the measures pt. We first have :

Theorem A. There ezist a subset ¥, in RY x (0,+00), and a smooth real-valued
function @, defined on RY x (0,+o00) such that the following properties hold.

i) ¥, is closed in RN x (0, 40oc) and for any compact subset K C RY x (0, +00)\ X,
lue(z,t)| — 1 uniformly on K as e — 0.
it) For anyt >0, X!, =X, NRY x {t} verifies
HY () < K M.
i4i) The function @, verifies the heat equation on RN x (0, +00).
iv) For each t > 0, the measure ul can be ezactly decomposed as
py = VO PHY + O, (z, tyHN LY, (I11)

where O,(+,t) is a bounded function.



v) There exists a positive function n defined on R} such that, for almost everyt > 0,
the set X!, is (N-2)-rectifiable and

O.(2.1) = On_s(yit, z) = lim = BE:7)

>
fim =2 = (),

Jor HN "% ae. z € X!

Remark 1. Theorem A remains valid also for N = 2. In that case EZ is therefore a
finite set.

t
*

In view of the decomposition (III), u! can be split into two parts. A diffuse part

|V®,|?, and a concentrated part
vl =0, (z, )V P,

By iii), the diffuse part is governed by the heat equation. Our next theorem focuses
on the evolution of the concentrated part v! as time varies.

Theorem B. The family (v!),., is a mean curvature flow in the sense of Brakke [13].

Comment. We recall that there exists a classical notion of mean curvature flow for
smooth compact embedded manifolds. In this case, the motion corresponds basically
to the gradient flow for the area functional. It is well known that such a flow exists for
small times (and is unique), but develops singularities in finite time. Asymptotic be-
havior (for convex bodies) and formation of singularities have been extensively studied
in particular by Huisken (see [27, 28] and the references therein). Brakke [13] intro-
duced a weak formulation which allows to encompass singularities and makes sense
for (rectifiable) measures. Whereas it allows to handle a large class of objects, an
important and essential flaw of Brakke’s formulation is that there is never uniqueness.
Even though non uniqueness is presumably an intrinsic property of mean curvature
flow when singularities appear, a major part of non uniqueness in Brakke’s formulation
is non intrinsic, and therefore allows for weird solutions. A stronger notion of solution
will be discussed in Theorem D.

More precise definitions of the above concepts will be provided in the introduction
of Part II.

The proof of Theorem B relies both on the measure theoretic analysis of Ambrosio
and Soner [4], and on the analysis of the structure of u,, in particular the statements
in Theorem A. In [4], Ambrosio and Soner proved the result in Theorem B under the
additional assumption

‘(B
(AS) lim sup Mx]’\’? >, for pl-a.e x,
r—0 WN-—2T

for some constant n > 0. In view of the decomposition (III), assumption (AS) holds
if and only if |V, |? vanishes, i.e. there is no diffuse energy. If |V®,|? vanishes, it



follows therefore that Theorem B can be directly deduced from [4] Theorem 5.1 and
statements iv) and v) in Theorem A.

In the general case where |V®,|? does not vanish, their argument has to be adapted,
however without major changes. Indeed, one of the important consequences of our
analysis is that the concentrated and diffuse energies do not interfere.

In view of the previous discussion, one may wonder if some conditions on the initial
data will guarantee that there is no diffuse part. In this direction, we introduce the
conditions

(Hy) w!=1 inRY\ B(R)

for some R; > 0, and

(Hs) Ju?

€

ey = M2
Theorem C. Assume that u verifies (Hy), (H1) and (Hs). Then |V®,|> =0, and the
family (pt),sq is a mean curvature flow in the sense of Brakke.

In stating conditions (H;) and (H,) we have not tried to be exhaustive, and there
are many ways to generalize them.

We now come back to the already mentioned difficulty related to Brakke’s weak
formulation, namely the strong non-uniqueness. To overcome this difficulty, Ilmanen
[31] introduced the stronger notion of enhanced motion, which applies to a slightly
smaller class of objects, but has much better uniqueness properties (see [31]). In this
direction we prove the following.

Theorem D. Let Mg be any given integer multiplicity (N-2)-current without boundary,
with bounded support and finite mass. There erists a sequence (ul).~o and an integer
multiplicity (N-1)-current M in RY x [0, +00) such that

i) OM = M, i) gy = 7| Mol,
and such that the pair (M, %,ui) is an enhanced motion in the sense of llmanen [31].

Remark 2. Our result is actually a little stronger than the statement of Theorem D.
Indeed, we will show that any sequence u? satisfying Ju? — 7 M, and p° = 7| M|
gives rise to an Ilmanen motion. [Ju? denotes the Jacobian of u? (see the introduction
of Part IT).]

The equation (PGL). has already been considered in recent years. In particular,
the dynamics of vortices has been described in the two dimensional case (see [32, 36]).
Concerning higher dimensions N > 3, under the assumption that the initial measure is
concentrated on a smooth manifold, a conclusion similar to ours has been obtained first
on a formal level by Pismen and Rubinstein [44], and then rigorously by Jerrard and



Soner [33] and Lin [37], in the time interval where the classical solution exists, that is
only before the appearance of singularities. As already mentioned, a first convergence
result past the singularities has been obtained by Ambrosio and Soner [4], under the
crucial density assumption (AS) for the measures p! discussed above. Some important
asymptotic properties for solutions of (PGL), were also considered in [40, 53, 9].

Beside these works, we had at least two important sources of inspiration in our
study. The first one was the corresponding theory for the elliptic case, developed in
the last decade, in particular in [7, 51, 11, 46, 38, 39, 8, 34, 12, 10]. The second one was
the corresponding theory for the scalar case (i.e. the Allen-Cahn equation) developed
in particular in [17, 21, 18, 22, 30, 49]. The outline of our paper bears some voluntary
resemblance with the work of Ilmanen [30] (and Brakke [13]) : to stress this analogy,
we will try to adopt their terminology as far as this is possible. In particular, the
Clearing-Out Lemma is a step-stone in the proofs of Theorems A to D.

We divide the paper into two distinct parts. The first and longest one deals with
the analysis of the functions u., for fixed . This part involves mainly PDE techniques.
The second part is devoted to the analysis of the limiting measures, and borrows some
arguments of Geometric Measure Theory. The last step of the argument there will be
taken directly from Ambrosio and Soner’s work [4]. The transition between the two
parts is realized through delicate pointwise energy bounds which allow to translate a
clearing-out lemma for functions into one for measures.
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Glass. Warm thanks to them. This work was also partially supported by European
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Part 1
PDE Analysis of (PGL)e.



Introduction

In this part, we derive a number of properties of solutions u,. of (PGL),, which enter
directly in the proof of the Clearing-Out Lemma (the proof of which will be completed
at the beginning of Part II). We believe however that the techniques and results in
this part have also an independent interest. Throughout this part, we will assume that
0 < e < 1. Unless explicitly stated, all the results here also hold in the two dimensional
case N = 2. In our analysis, the sets

v, = {(x,t) € RY x (0, +00), |u.(z, )| < %}

as well as their time slices V! = V. N (RY x {t}) will play a central role. We will loosely
refer to V. as the vorticity set. [In the scalar case, such a set is often referred to as
the “interfaces” or “jump set”].

The two main ingredients in the proof of the Clearing-Out are a clearing-out theo-
rem for vorticity, as well as some precise pointwise (renormalized) energy bounds.

1 Clearing-out and annihilation for vorticity

The main result here is the following.

Theorem 1. Let 0 < & < 1, u. be a solution of (PGL). with &.(u?) < +o00, and o > 0
be given. There exists m; = m (o) > 0 depending only on the dimension N and on o

such that if
jz?

T
| e(ud) exp(—0) < mifloge] (1)

then
lus(0,1)] >1—0. (2)

Note that here we do not need assumption (Hy). This kind of result was obtained
for N = 3 in [40], and for N = 4 in [53]. The corresponding result for the stationary
case was established in [11, 51, 46, 38, 39, 8]. The restrictions on the dimension in
40, 53] seem essentially due to the fact that the term %% in (PGL), is treated there as
a perturbation of the elliptic equation. Instead, our approach will be more parabolic
in nature. Finally, let us mention that a result similar to Theorem 1 also holds in the
scalar case, and enters in Ilmanen’s framework (see [30] page 436) : the proof there is
fairly direct and elementary.

Our (rather lengthy) proof of Theorem 1 involves a number of tools, some of which
were already used in a similar context. In particular :

e A monotonicity formula which in our case was derived first by Struwe ([51], see also
[19]), in its study of the heat-flow for harmonic maps. Similar monotonicity formulas
were derived by Huisken [28] for the mean curvature flow, and Ilmanen [30] for the
Allen-Cahn equation.



e A localization property for the energy (see Proposition 2.4) following a result of Lin
and Riviere [40] (see also [37]).

e Refined Jacobian estimates due to Jerrard and Soner [34],

and many of the techniques and ideas that were introduced for the stationary equation.
Equation (PGL). has standard scaling properties. If u. is a solution to (PGL),,
then for R > 0 the function
v. (2,t) = u,(Rz, R*t)

is a solution to (PGL)g-1.,. We may then apply Theorem 1 to v.. For this purpose,
define, for z, = (z,,t.) € RY x (0,+00) the scaled weighted energy, taken at time
t=t,,

~ ~ 1 T — 3,
Euetey 20, B) = Euclan B) = 5 [ es(ug(x,t*))exp(—%)dm.

We have the following

Proposition 1. Let T > 0, 7 € RY, and set zr = (xvp,T). Assume u. is a solution
to (PGL). on RN x [0,T) and let R > \/2¢. Assume moreover

Ew,e(2r, R) < m(o)[logel, (3)

then
|u5(3:T,T+R2)| >1—-o0. (4)

The condition in (3) involves an integral on the whole of RY. In some situations, it
will be convenient to integrate on finite domains. From this point of view, assuming
(Hp) we have the following (in the spirit of Brakke’s original Clearing-Out [13], Lemma
6.3, but for vorticity here, not yet for the energy!).

Proposition 2. Let u. be a solution of (PGL). verifying assumption (Hy) and o > 0 be
given. Let xp € RN, T > 0 and R > \/2¢. There exists a positive continuous function
A defined on R such that, if

y 1 m(o)
T'R)= ———— c(u(+,T)) <
(vr, T, R) RV 2[loge| JB@r R ec(u: (-, 1)) 9

then

R
lue(z,t)| >1—0  forte|T+Ty, T+Ti andzx € B(xr, 5)

Here Ty and Ty are defined by

TO = max(?s, ( 277 ) . R2), Tl = RQ.
m(o)

10



Remark 3. It follows from the proof that A(7) diverge as T — 0. More precisely,

N -2
2

XNT) ~ llogT| asT — 0,

if N > 3. A slightly improved version will be proved and used in Section 4.1.

Theorem 1 and Propositions 1 and 2 have many consequences. Some are of indepen-
dent interest. For instance, the simplest one is the complete annihilation of vorticity
for N > 3.

Proposition 3. Assume that N > 3. Let u. be a solution of (PGL). verifying assump-
tion (Hy). Then

M N-2
for anyt > Ty = (—O> and for all x € RV, (5)

m

jue(z, )| =

N | —

where n; = 771(%).
In particular, there exists a function ¢ defined on RY x [T}, +0c) such that
u. = pexp(ip), p = |uel.

The equation for the phase ¢ is then the linear parabolic equation

0 .
p28—f — div(p’Vp) = 0. (6)

From this equation (and the equation for p) one may prove that, for fixed ¢,
E(ue(-,1t)) =0 as t — 400, (7)

and moreover,
Ue(+,t) = C as t — +00. (8)

Remark 4. The result of Proposition 3 does not hold in dimension 2. This fact
is related to the so-called “slow motion of vortices” as established in [36]: vortices
essentially move with a speed of order |loge|™'. Therefore, a time of order |loge| is
necessary to annihilate vorticity (compared with the time 7" = O(1) in Proposition 3).
On the other hand, long-time estimates, similar to (7) and (8) have been established,
for N =2, in [5].

11



2 Improved pointwise energy bounds

Assume for a moment that |u.| = 1 on RY x [0, +00) [and in particular V. = ()]. Then,
we may write u. = exp(ip.) and ¢, is determined, up to an integer multiple of 27, by
the linear parabolic problem

%‘f —Ap=0 on RY x (0,+0c0) )
o(z,0) = p.(z,0) on RY x {0}.

By standard regularization properties of the heat equation, we deduce that for any
compact K C RN x (0, 00),

2 [Ve|?
Vedl i) < OK) [ 5

so that

1 V.|
im—/ Ve < MyC(t), VxR, Vt>0.
r=0 N JBr)x{t} |loge]

In particular, going back to the discussion of the main introduction of this paper, it
means that the measures ! are absolutely continuous with respect to the Lebesgue
measure LN (RY), i.e. ul = g(z,t)HY for some diffuse density g. Since (9) is linear,
one cannot expect that g vanishes without additional assumptions, for instance com-
pactness assumptions on the initial data u2 (see [15] for related remarks in the elliptic
case).

In the general situation, it is of course impossible to impose |u.| = 1. However, on
the complement of V., |u.| > % and the situation is quite similar. More precisely, we
have

Theorem 2. Let B(xg, R) be a ball in RY and T > 0, AT > 0 be given. Consider the
cylinder
A = B(wo, R) x [T, T + AT].

There exists a constant 0 < o < %, and B > 0 depending only on N, such that if

luel >1—0 on A, (10)
then
. (u2) (1) < C(A) [ [ et + Moe?) (11)
for any (z,t) € Ay = B(zo, &) x [T + &L, T + AT). Moreover,
e-(u:) = VO, > + k. in Ay, (12)
where the functions @, and k. are defined on A% and verify
0P, .
5% Ad,. =0 in Ax, (13)
el zoeay) < (e, ”VQSEH%M(A%) < C(A)Myloge]. (14)

12



Remark 5. Since |u.| > 1 on A, we may write u. = p, exp(i¢.) where p, = |u.| and
where ¢, is a smooth real-valued function. The proof of Theorem 2 shows actually
that

I96. = V.lliein,y) < CA)E" (15)

The result of Theorem 2 is reminiscent of a result by Chen and Struwe [19] (see also
[561],[33]) developed in the context of the heat flow for harmonic maps. This technique
is based on an earlier idea of Schoen [47] developed in the elliptic case. Note however
that a smallness assumption on the energy is needed there. This is not the case for
Theorem 2, where even a divergence of the energy (as |loge|) is allowed. We would like
also to emphasize that the proofs of Theorem 1 and 2 are completely disconnected.

Combining Theorem 1 and Theorem 2, we obtain the following immediate conse-
quence.

Proposition 4. There exist an absolute constant ny > 0 and a positive function A
defined on R such that if, for x € RY, t > 0 and r > \/2¢, we have

e.(u:) < nor¥ 2|logel,
Lo ) < mor™?lhoge]|

then
ec(uc) = [VO.[* + k.

in Ay (z,t,r) = B(z,§) x [t + 272 t + 1], where ®, and k. are as in Theorem 2. In

particular,

_ec(ue)

~ loge]

. < C(t,r) on A%(ac, t,r).
[The constant 7, is actually defined as 7o = 1;(0), where o is the constant in
Theorem 2 and 7, is the function defined in Proposition 2]

3 Identifying sources of non compactness

In the previous discussion, we already identified one possible source of non compact-
ness, namely oscillations in the phase. However, the analysis was carried out on the
complement of V,, i.e. away from vorticity. On the vorticity set on the other hand, u,
may vanish, and this introduces some new contribution to the energy. Nevertheless,
we will show that this new contribution is not a source of non compactness (at least
for some weaker norm). More precisely,

Theorem 3. Let K C RY x (0,+00) be any compact set. There exist a real-valued
function ¢, and a complex-valued function w,, both defined on a neighborhood of K,
such that

1. u. = w. exp(iod:) on K,

2. ¢. verifies the heat equation on IC,

13



3. Vo (x,t)| < C(K)\/Mqlloge| for all (z,t) € K,

4. |IVwe||zrcy < C(p, K), forany 1 <p< N+1

Here, C(K) and C(p,K) are constants depending only on K, and IC, p (and M) re-
spectively.

The proof extends an argument of [9] (see also [6] for the elliptic case), and relies
once more on the refined Jacobian estimates of [34].

We would like to emphasize once more that Theorem 3 provides an exact splitting
of the energy in two different modes

- The topological mode, i.e. the energy related to w,

- The linear mode, i.e. the energy of ¢..

More precisely, it follows easily from Theorem 3 that for any set X' CC K, we have

/K, e<(ue) = /’C e<(w) +/ch IV6.|” + O(y/|loge)).

We would also like to stress also that a new and important feature of Theorem 3 is
that ¢. is defined and smooth even across the singular set, and verifies globally (on
K) the heat flow. Going back to Theorem A, this fact will be determinant to define
the function @, globally. For Theorem B, it will allow us to prove that the linear mode
does not perturb the topological mode, which undergoes its own (Brakke) motion.

One possible way to remove the linear mode is to impose additional compactness on
the initial data. We will not try to find the most general assumptions in that direction,
but instead give simple conditions which keep however the essential features of the
problem. Assume next that u? verifies the additional conditions

(Hy) wW=1 inRY\ B(R))
for some R; > 0, and

(Hs) Jul

£

1 < M
H2(B(R1)) —

Then a stronger conclusion holds.

Theorem 4. Assume that ul verifies (Ho), (H1) and (H,). Then for any 1 < p < 3L
and any compact set K C RY x (0,+00), we have

||vu€||Lp(lC) < C(pa IC)?

where C(p, K) is a constant depending only on p, K, My and M.

14



Theorem 4 is of course of particular interest if one is interested in the asymptotic
behavior of the function u, itself. We will not carry out this analysis here (see [9] for
a related discussion for boundary value problems on compact domains).

Combining Theorem 1, Theorem 2 and Theorem 4 we finally derive the following,
in the same spirit as Proposition 4.

Proposition 5. Assume that (Hy),(H1) and (Hs) hold. There exist an absolute con-
stant n; > 0 and a positive function \ defined on R} such that if, forz € RY | ¢ > 0
and r > +/2¢e, we have

[ ) < mr™~2llogel, (16)
B(z,\(t)r)

then
ee(ue) < C(My, My)r™2

in Ay(z,t,7) = B(z, §) x [t + 88,2 ¢+ r?.

Here n, = m1(0) is the same constant as in Proposition 4|.
Ne ="

1 Pointwise estimates

In this section we recall (standard) pointwise parabolic estimates. Although these
estimates are presumably well known to the experts, we are not aware of precise state-
ments in the (Ginzburg-Landau) literature. For the reader’s convenience, we therefore
provide complete proofs.

Proposition 1.1. Let u. be a solution of (PGL). with E.(u®) < +o00. Then there exists
a constant K > 0 depending only on N such that, for t > &? and x € RY, we have

K O, K
€ 7t §3: € 7t S_a “a; 7t S_
(2, 1) Vo) <5 1 Ge )] <

[Note in particular that K is independent of the initial data/.

Proof. 1t is convenient to make the following change of variable, setting
U(z,t) = u.(ex, ),

so that the function U verifies
oU

o AU =U(1-UP) on RY x [0, +00) . (1.1)

It is therefore sufficient to prove that for t > 1 and x € RY,

U <K VU@ <K (D@ <K

15



We begin with the L> estimate for U. Set
o(z,t) == |U(x,t)[* — 1.
Multiplying equation (1.1) by U we are led to the equation for o,

0
a—j—Aa+2|VU|2+2(o+1)a:O. (1.2)
Consider next the ODE

y' () +2(y(t) + Dy(t) = 0, (1.3)

and notice that (1.3) possesses an explicit solution y, which blows-up as ¢ tends to
zero, namely

exp(—t/2)
t) = fort > 0.
bo(t) 1 —exp(—t/2) o
We claim that
o(t,z) < yolt), for all ¢+ > 0 and z € RY, (1.4)

so that, in particular,
1
Uz, t)? =o(x,t) +1<9 forallt> 1 and v € RY.

Indeed, set 6(z,t) = yo(t). Then,

ko)
99 _AG+2(6+1)5 =
T d+206+1)6 =0,

and therefore by (1.2),

0

a(&—a)—A(5—0)+2(5—0)(1+5+0) > 0.

Note that 1 + ¢ + & = |U|?> + & > 0. The maximum principle implies that
o(x,t) —o(xz,t) >0 for all ¢ > 0 and z € R,

which proves the claim (1.4).
We next turn to the space and time derivatives. Since |U(z,t)| < 3 for ¢ > 1/4, we
have

1
Ua-|up) <24 fort> it

Let p > N + 1 be fixed. It follows from the standard regularity theory for the linear
heat equation (see e.g. [35]) that for each compact set F C RY x [1/4,+00) we have

||atU||Lp(}') S K(f) and ||D2U||Lp(}') S K(f)
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In particular, by the Sobolev embedding and the L bound for U we obtain
U |co.e ey x[1/2,400)) < K, (1.5)
where o = (1 — N/p)/2. It follows from (1.5) that moreover
U1 = |[UP)|coa®y xpio,00)) < K.
Invoking the C%* regularity theory (see e.g. [24]), we obtain
[Ulle1.er2@n <1400y < K,
and the proof is complete. O

Remark 1.1. It follows from the proof of Proposition 1.1 that the bound

t
|u5(:1ﬁ,t)|2 <1+ Cexp(—2—€2)

holds for ¢ > 2.
We have the following variant of Proposition 1.1.

Proposition 1.2. Assume u. is a solution of (PGL). such that E.(u®) < +oo. and
that for some constants Cy > 1, C7 > 0 and Cy > 0,

C C
@< Co, Vi@ <=, PP@)| <22 VaeRY.
Then, for any x € RY and any t > 0,
K ou, K
< (3 7t S S “a; at S "9
w@ )| <Co,  [Vulz ol <=, SE@ < 5

where K depends only on Cy, Cy and Cs.

Proof. As in the proof of Proposition 1.1, we work with the rescaled function U. It
follows from (1.2) and the maximum principle that

|U(z,t)| < sup [U(0,z)| < Co.

TeRN

It remains to prove the bounds on the space and time derivatives. Since these estimates
are already known for ¢ > 1 by Proposition 1.1, we only need to consider the case
t € (0, 1]. For the space derivative, we use the following Bochner type inequality

0
E(IVUIQ) - A(lVUP?) < K|VUP, (1.6)
so that

%(exp(Kt)|VU|2) — Alexp(Kt)|VU?) < 0.

17



The conclusion then follows from the maximum principle.
For the time derivative, one argues similarly, using the inequality

o, oU oU \
S5 - A1) < K19

and the fact that, for ¢ = 0, we have by assumption

oU |?

S| =[av+ua- up)| <kK.

O

Proposition 1.1 above provides an upper bound for |u.|. Our next lemma provides
a local lower bound on |u.|, when we know it is away from zero on some region.

Since we have to deal with parabolic problems, it is natural to consider parabolic
cylinders of the type

Ao(w0, T, R, AT) = B(z0,aR) x [T + (1 — &®)AT, T + AT).

Sometimes, it will be convenient to choose AT = R and write A, (zo, T, R). Finally if
this is not misleading we will simply write A,, and A if o = 1.

Lemma 1.1. Let u. be a solution of (PGL). verifying €-(u?) < +o0. Let zo € RV, R >
0, T >0 and AT > 0 be given. Assume that

lue| > on A(zo, T, R, AT),

then
= [ue] < Cloy N (I VulBmgyy + logel)  on Aa,
where . is defined on A, up to a multiple of 2m, by u. = |u.| exp(ipe).

Proof. We may always assume that T > ¢, otherwise we consider a smaller cylinder.
Set p = |u.| and # = 1 — p. The function 6 verifies the equation

00 0 1
=A== (1 29— 1)
o~ M+ 5 = (-0 Vel — 5006 -1)

On the other hand, by Proposition 1.1, we already know that 6 > — exp(—1), so that

00 6 1
g — A6 + — < 2|V |? +Ce exp(—g). (1.7)

We next construct an upper solution for (1.7). Let x be a smooth cut-off function
defined on R such that 0 < ¥ < 1 and

1+«

X =1 on B(zg, aR), x =0 on R \ B(x, R).

18



Consider the function 7 defined on [T, T + AT] by

2 2 (1= a?)AT

and set
oo(z,t) = 5 — 7(t)x(x)
We have oy > 0 and
|0r00| = |7 () x (=) < mllogél, [Ado| < 7(8)[Ax(z)] < C(A),
so that 9o, o,
5 " Aoy + — > —C(A)loge|

Finally, set
0 =09+ 26 ([[VgelFoeay + C(A)loge] )

By construction,

0o o 9 00 6

On the other hand,

1
o> 3 >0  on B(zy,R) x {T}U0B(zy,R) x [T, T + AT],

so that by the maximum principle # < o on A. Since x = 1 on B(zp,aR), we have on
Aq

1 t—T 9 9 9
O'(Z',t) = 5 exp (m IOgS ) + 2¢ (”VQDE”LOO(A) + C(A)|10g8|)
1
< 5¢° (1Y el ey + C(A)lloge] )
and the proof is complete. O
2 Toolbox

The purpose of this section is to present a number of tools, which will enter directly in
the proof of Theorem 1. As mentioned earlier, some of them are already available in
the literature. We will adapt their statements to our needs. Note that all the results in
this section remain valid for vector-valued maps u, : RV x Rt — R*, for every k > 1,
ue solution to (PGL)..
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2.1 Evolution of localized energies

Identity (I) of the introduction states a global decrease in time of the energy. In this
section, we recall some classical results, describing the behavior of localized integrals
of energy.

Lemma 2.1. Let x be a bounded lipschitz function on RY. Then, for any T > 0 we
have

d

- - _ 2 _ -
dt Jav iy ee(u:)x () dz /RNX{T} |Orue|“x () dz /RNX{T} Ou:Vue - Vxdz. (2.1)

In particular, for any 0 < T < Ty we have

/RNX{TZ} ec(ue)x(x) dz —/ e (u)x(z) dz =

RN X{Tl}

- / Ouc|*x (%) do dt — / OwueVu, - Vxdx dt. (2.2)
RN X[Tl ,Tz] RN X[Tl ,Tz]

Proof. We have

d [.|Vu.|?
i Q% + Ve(ugﬂx) = Vit V(Oue) x + Vi (e) Do .

Integrating by parts on RY x {T'} we thus have

d

d _ e
Gt Joe oy e @ dr == [ (B V] (0e) Bvex(a)

- Oyu.Vu, - Vydz

RN x{T}
and the conclusion follows since u, verifies (PGL).. O
As a straightforward consequence we obtain the following semi-decreasing property.

Corollary 2.1. Let x be as above, then

d

2 2 0
dt Juwyzy 01X (@) d2 < 2[[VX[3e Ec(c)-

£

2.2 The monotonicity formula

Let u = u. be a solution to (PGL), verifying (H;). For simplicity, we will drop the
subscripts € when this is not misleading. For (z,,t.) € RY x R we set

Ze = (Ty, ty) .
For 0 < R < +/t, we define the weighted energy
Ey(26, R) = By (u; 2, R) = E o (u, 74, t. — R*, R) (2.3)
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that is,
E,(z, R) ——/ (u(z,t, — R*)) ex (—7| 35
Zs A e (u(x,t, exp i

and the corresponding scaled energy

Ydx , (2.4)

1 1
= v Bl B) = vy [ ealu(e 1o~ B)) expl-

|z — . [?

4R?

We emphasize the fact that the above integral is computed at the time t = ¢, — R?,
and not at time ¢t = t,, as it is the case for &, i.e. a shift in time 6t = —R? has been
introduced. Note also that in (2.4) and (2.5) the weight becomes small outside the ball
B(z., R). Moreover, the following inequality holds

1, ~ 1
exp()Bulzns B) 2 =55 [, gy (01 = ) (2.6)

E,(2., R) )dz . (2.5)

The right-hand side of (2.6) arises naturally in the stationary equation, where its
monotonicity properties (with respect to the radius R) play an important role. In
our parabolic setting, we recall once more that the time ¢t at which E, and E,, are
computed is related to R by

t=t,— R%.

This is consistent with the usual parabolic scaling (for A > 0)

T — Az
t — A\,

which leaves the linear heat equation invariant.

In this context, the following monotonicity formula for E,, was derived first by
Struwe [50] for the heat-flow of harmonic maps (see also [19, 28]). In a different context
Giga and Kohn [26] used related ideas.

Proposition 2.1. We have

dE 1 1 o — .2
; (2 - —[(z — z.) - Vu — 2r*9,u)” exp(———
1 |z — |2
2Ve ————)d
+ rPN-1 /RNx{t*—rZ} (u) exp( 172 )dx .
1
:2_7' /RNX{t*TQ}[(:E B x*) Vut Q(t B t’")atu]QC:(a7 = T, t— t*)dx

—}-r/ 2V (u(z,t))G(x — x4, t — ty)dx,
[ 2V )G )
where G(z,t) denotes, up to a multiplicative factor 7—N/2, the heat kernel

G(z,t) = ltN%exp(—%) fort>0
(z,t)= 0 fort<0.
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In particular, 3
dFE,
TR

i.e. Ey(2,, R) is a non-decreasing function of R.

z,R) >0, (2.8)

Proof. Set Ey(R) = Ey(2, R). Due to translation invariance, it is sufficient to consider
the case z, = (z4,t,) = (0,0), so that u is defined on RY x [—t,,+00). In order to
keep the integration domain fixed with respect to R, we consider the following change
of variables, for z = (z,y) € RN x [—t,, +00):

z = (z,t) = (Ry, R*7) = ®p(y,7) = ®r(7). (2.9)

Set ugr(z') = uo @r(2") = u(z), i.e. ugr(y,7) = u(Ry, R*’t) = u(x,t), so that in
particular

Vur(?) = RVug(z), 3;TR( ) = RQ?;:( ), Aup(?) = R*Au(z).  (2.10)
It follows that 5 e
u
a—TR — Aup = up(l - lug|?) = —R*V!(ug) . (2.11)
Moreover,
d , d 9 ou
dRuR( Z') = dRu(Ry,R 7) =y - Vu(z) + 2Rt 8t( z). (2.12)
From (2.12) and (2.10) we deduce the formula
du n _ ou Our s
RdR( 2=z Vu()+2tat()—y Vug(z )+27'a7_( Z'). (2.13)

The scaled energy E,(R) (defined by formula (2.5)) can be then expressed as follows

N N L | e = I3

Taking into account (2.9), (2.11) and (2.13), we compute

dE“’ dug 9 5 dug ly[2
Srwl V(R B Py,
iR | /szx{_l} qu Viog r)+r Vi(w) - o+ rVe(u )] exp(—-)dy
[ et L vu ) - Iy
= Jrvuion ( Au, + 5 Vu, + 1V (uy)) iR | + 2rV,( )] exp( . )dy
[ ou, . 1 2
- (y -V, — Y(=(y - Vu, — )) + 2rVo(u,) eXp(—M)dy
e 2 or r T 4 (2.15)
E ou y? -
- -2 2 _9
RN x{-1} | ( -V 37-) + 2rVe(ur ) | exp( 1 )dy
(@~ Vo~ 222052 1 20| = exp(— 2t
RN x{-r2} ot 2
ou
- m[ T - VQH_%E) +27°V5(u)] G(z,t)dx .
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The last formula in the above computation gives precisely (2.7) in the particular case
ze = (24, ) = (0,0). O
2.3 Space-time estimates and auxiliary functions

Let u = u, be a solution to (PGL), verifying & (u?) < +o0.

Lemma 2.2. For any z, = (7., t) € RY x R, the following equality holds, for

/ (Ve(w) + E(u, 2.)) G(& — @, t — t,)dadt
RN x[0,t:]

2.16)
1 z -l = (
= t*¥ /RNX{O} 65(’11/(-, 0)) exp(—T*)dm = Ew(Z*, R*) ,
where we have set
1
E(u, z)(z,t) = [(x — z.) - Vu + 2(t — t.)0u]’. (2.17)

At —t,|

Proof. Integrating equality (2.7) from zero to R, we obtain

~ ~ Ry
Bz, R — Bu(z,0) = [ 2rdr / Ve(u(z, )G(& — 2t — t,)dz
0 RN x{t«—712}
. ; (2.18)
+ / 27“d7“/ —[(x — x,) - Vu — 2r?0,u]’*G(z — x4, t — t,)dx .
0 RN x {t,—r2} 472

Expressing the integral on the right-hand side of (2.18) in the variable ¢t = ¢, — 72 (so
that dt = —2rdr) yields

~ ~ 0
E(ze, R.) — Fu(2,0) = —/ dt Vi(u(z, )Gz — .t — t.)dz
ty RN x{t} (2 19)

0 1
_ dt/ _ — Ty) - _22 2 - *,t—t*d .
/t* RN x{t} 4\7t—t*|[(3E z.) - Vu — 2r°0u]°G(zr — = )da

Finally, since v is smooth on RN x (0, +o00) and with finite energy on each time slice,
we obtain

Ey(z.,0)=0,
so that the proof is complete. O

The following elementary lemma will be useful for further purposes.

Lemma 2.3. Let 0 < t, <T, and z, = (Z., t.). We have

By (2 VL) < (tz)ﬂ exp (%) &y (0,00, VT), Vor €RYV. (2.20)
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Proof. By definition of E,,, we have

- 1 |z — z./?
By Vi) = g [ ee(u(e, 0)) exp(— 10 )da
o (2.21)
(&) T [, ectute, 0 exp(- 2= “10) 0 a)da
= —_— _— X S
t,) TN Jpn VISP ’
where the function @ is defined on RY as
]2 2
Q(z) = exp ('x 4;T| _le 4:*' ) VzeRY. (2.22)

Clearly @ is positive and bounded on RY . Its maximum is achieved at a point 2, € RV

such that
(xo —2r) (30 — )

T ot
so that ( ) ( )
T — T To— T
Ty — Ty = ﬁt* y To — T = ﬁT (223)
Inserting (2.23) in (2.22), we are led to
sp Q) = Qan) = exp(22 1L (220
u z) = Q(z0) = exp(—7——) - :
zERII)V 0 P 4(T — t*)
Hence, combining (2.24) with (2.21) we obtain
~ T N/2 |.’L‘* — $T|2 |$ - $T|2
Ew *9 * S T YN / € ’ - T ’ 2.2
EVi) < (7)) eCigys) [, eoule,0) exp(~ 7 D)dr, - (225)
and (2.20) follows. O

Next, let T > 0 be given and let f € L®(RY x [0,7]) be such that
1f(2)] < Vi(|lu(2)]), for any z = (z,t) € RN x [0,7]. (2.26)
We consider the solution w of the heat equation with source term f, i.e. w solves

{3—“’—Aw: f on RN x [0, T],

w(z,0)= 0 for z € RV . (2.27)

The following L>™-estimate, which already played a key role in the elliptic setting (see
[8]), will enter similarly in the proof of Theorem 1.

Lemma 2.4. For any z, = (z.,t.) € RY x [0,T], we have

w(z)] < T N2E, (20, V1) . (2.28)
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Proof. The function w is given explicitly by Duhamel’s formula
w(z.) = 7T_N/2/ flz,)G(z — z,,t — t,.)dzdt,
RN x [0, 4]
so that, by (2.26),

w(z,)| < 72 / V(u(z, )Gz — 2., t — t,)dzdt,

RN x[0,t.]
and the conclusion follows from (2.16). O
Combining Lemma 2.3 and Lemma 2.4 we obtain
Proposition 2.2. Let T > 0, z € RY. For any z = (z,t) € RN x[0,T)], the following

estimate holds

lw(z)| < (%) ; exp (%) Ewe((zr,0),VT), Var € RY. (2.29)

2.4 Bounds for the scaled weighted energy gw,g

Our next lemma provides an upper bound for &, (2, R) in terms of &, .((zr,0), vT)
provided z < T and R is sufficiently small. More precisely, we have

Lemma 2.5. Let T > 0, and z = (z,t) € RN x [0,T). We have the inequality

)% exp (M) Ewe(wr,0), VT), (2.30)

3 <
buel2 B) < ( T—t- R

t+ R?

for any xr € RN, and for 0 < R < /T —t.

Proof. In view of the monotonicity formula (2.8), we have the inequality
Ewe(2,R) = Ey((z,t + R?),R) < E,((x,t + R?),Vt + R?). (2.31)

By Lemma 2.3 applied to z, = (z,t + R?), we obtain

et + V) < (10) oo (720 oo 00,

Tt R?)
(2.32)

for any zr € RY. Combining (2.32) with (2.31) the conclusion follows. O

t+ R?

Comment. Note that (2.30) holds in particular for small R. It can therefore be
understood as a regularizing property of (PGL).. Indeed, starting with an arbitrary
initial condition, the gradient of the solution at time ¢ remains bounded in the Morrey
space £L2V~? (so that the solution itself remains bounded in BMO, locally).
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2.5 Localizing the energy

In some of the proofs of the main results, it will be convenient to work on bounded
domains for fixed time slices (in particular in view of the elliptic estimates needed
there). On the other hand, the definition of gw,g and E,, involves integration on the
whole space (even though the weight has an extremely fast decay at infinity). In order
to overcome this difficulty, we will make use of two kinds of localization methods. The
first one is a fairly elementary consequence of the monotonicity formula and can be
stated as follows.

Proposition 2.3. Let T > 0, o € RY and R > /2¢. Assume u, is a solution to
(PGL). verifying (Ho). Then the following inequality holds, for any X > 0,

/ e-(u;) e ar? dx</ e (u)—i—(ﬂ)N_QM ex (—)\—2)|lo gl
RN x{T} T IBarar)x{Ty T + 2R? 0 XL o8 el

Proof. Tt suffices obviously to prove that

2 < | ——— —_—
e-(us)e” mr dx < ( 75 =)™ " My exp( g

First, we write exp(—%ﬁ) = [exp(—%ﬁ)ﬁ so that on RY \ B(z7, AR) we have

_|a:7:cT|2

loge]. 2.33
/{|m—zT|Z)\R}><{T} )[logel.  (2.33)

/\2

2
r—2
M) < exp(—g)exp(—

4R?

|z — zr|?

). (2.34)

exp(—

On the other hand, applying the monotonicity formula at the point (z7,T + 2R?), we
obtain

P Wy SRt
—_— Ec\Ug) € 8R > e\Ue
(V2R)N=2 Jr¥ x{1} (VT + 2R?)N-2 Jrv x{0}
1
< ( '7T+2R2)N*2M0|10g6|'
(2.35)
Combining (2.33),(2.34) and (2.35) the conclusion follows. O

The idea of the second localization method originated in [40] and is based on a
Pohozaev type inequality.

Proposition 2.4. Let 0 < t < T. The following inequality holds, for any xr € RV,

|z — 27|

/ e u)‘x_xTFe ( ‘x_xTP)da: e (u) exp( ) dx
€ 7 o &KX YN =~ 5 £ X -
wvqy o am — ) TPV ) 2 Jrvxi PUar

|z — zp|?

# [ 0+ 35 en(- 2D o (230
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As a consequence,

|z — 27| |z — 27|
€ - d </ € B d
/]RNx{t} ec(u) exp ( A(T —t) = B(ar,rr)x{t} ee(u) exp A(T —t) v

+ 2 [Ve(u) + 3E(u, 2r)] e @ = ar) dx
- € Z\u, X i —— s
N Jrv gy TSP Ty — 1)

where rp = 2,/N(T — t).

Note that the radius r of the ball B(x7,r7) where the first integral of the r.h.s. of
(2.37) is computed is proportional to /7" — t, which is the width of the parabolic cone
with vertex zr = (a7, T).

The proof of Proposition 2.4 relies on the following inequality.

(2.37)

Lemma 2.6. Let 0 <T) <To, <T, x7 € RN, 21 = (7, T). We have

|z — z7|? |z — z7|?
Awmﬁﬁwﬁg>@em o7 —y) ) “lt
< (T —T)N2Ey (o0, /T = Ty) — (T = To)"?Ey (20, /T — T) (238)

! 2 |z — |
+/]RN><[T1,T2}2(T—t) (@ = 2r) - Vu = 2(T = 1)8;u] exp( AT —1) dzdt .

|z — xT\Q)
AT — 1)
and integrate on RV x [T},T5]. One obtains, after integration by parts in the space
variable,

Proof. The idea is to multiply (PGL). by the multiplier 2(T" — ¢)0,u exp(—

_ 2 27 — @/?
/Tl /RN 10l exp(— ))d v dt
|z — z|?
/ t)Au dyu exp(— AT —1) ) dx dt

_/Tl /RN —t— - (u)] exp(— 7|4(TT ‘))d dt

=-/. RNVU (( );jhw—( )@u ﬂ?>emx—%%{§%quﬁ (2.39)

_/T1 _/]RN Ve (u)] exp(— %)dmdt
-/ /RN )2 [Vl + 2V, ()] expl— 22
* T /]RN((x_xT VU)g—?e p(— %)dmdt.
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Integration by parts in the time variable now yields

_ 2 |wr — 2
/T1 /RN t)|0yu|” exp(— AT ))da:dt

/RN |VU|2+2V( )] eXP(—%)dxdt

R (R P

" /wam}(T -h) UW +2V2 (u)] exr)(‘%) da

- - 2 _lor—af®
g @ T [l 2:00] el 525

15 ou |~TT_-'L"2
+ " /RN((:r—xT Vu)— exp(— W70

(2.40)

dz dt.
ot )dz

Adding the integral

/ / — z7) - Vaul? exp(—M) dx dt
RN 2 AT —t)
to equation (2.40) we finally obtain

2 — x|?

/ /IRN 2T —27) - Vu—2(T — t)d,u’ eXP(_‘l(Ti)

/IRN ( — |)> ['VU|2+2V( )} eXP(—%)daEdt

) dz dt

= +/RN><{T1}(T - 1) [|Vu‘2 + 2Vg(u)] exp(—%) dx (2.41)

- - > _lor—af
RNX{TQ}(T 1) [|VU\ + 2Vg(u)] exp( AT = TQ)) dx

x—xT -Vu lzr — x|
o

— t [(-T — .TT) . VU,] eXp(—m) dz dt.

We bound the last term in (2.41), using the inequality ab < % + b2, with the choice

- (x —z7) - Vu exp(— |z — x|2)
2(T — t) 8(T —t)
and
b [(z — x7) - Vu — 2(T — t)0;ul exp(— |z — :c|2)’
2T — t) 8(T - 1)
and the desired conclusion follows. O
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Proof of Proposition 2.4. Let 0 <t < T be given and fixed and apply Lemma 2.6
with 77 = t, T, = t + At, for At > 0. We divide by At and let At tend to zero in
(2.38). This yields

lz — x7|? |z — z7|?
() ST (-2 T g
/wa{t}e W=y P g =y =

1 lz — z7|? (2.42)
< - . — 2(T — t)0yu? ——0)d
< fovgy 37—y = #1) V= 2T = 9’ exp(= ) d
+ (T —1),
where we have set B
6(s) = V12, (o1, V). (2.43)
Since
N (T—-t)"= d
(T —t) = (T - t)"5°F, T+ —Y ' F (JT—1i
G 1) = ST )T Buer VT + T L p, (T,
we obtain, using the monotonicity formula in Proposition 2.1 and (2.42),
|z — 27| |z — z7|? N |z — xp|?
c(U) 7 ——)dzx < — . ——)d
/Rfvx{t}e 3T =) "PE T =) TS G fawgy W PG gy

|z — z7|?

+/RN><{t} (Vi (u) + 32 (u, 27)] eXP(—m)dm, (2.44)

which proves (2.36). For (2.37), consider the region

|x—xT\2<N}.

A= RY s.t. —
{:L'E s.t 8T —1) = 2

We deduce from (2.44) that

/ e (U)L_xﬂ? ex (—L_xTP) x N e (u) ex (—L_QUT|2
ey A =) TP ) Y S 2 agy S P

|z — xp|?
+/(RN\A)X{t} Ty Ty

|z — xp|?

# o Wi+ 350 e exp(- 7T o, (2.)

so that

N |z — 2|2 N |z — 2|2
e ST Y de < o . ) d
/(RN\A)x{t} 9 ° (1) exp( A(T —t) )dz < 2 Jax{y ec(u) exp( A(T —t) ) dz

|z — zp|?

+ fon gy Vo0 + 3200, 2] exp(— 5 da, (240
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and finally

|z — xp|? |z — x7|?
. = Ty < 2/ c ———)d
/RNx{t} e (u) exp( AT —t) Jdv < Ax{t} e (u) exp( A(T —t) )z
2 V() + 32, 22)] exp(= 250 i (2.47)
N Jevxg - © T P 4T —1) . .
This completes the proof. O

2.6 Choice of an appropriate scaling

Let zr = (zr,T) as above, and set
E’w,s(R) = Ew,s(ZTa R) = E’w,s(us; 2T R) )

and accordingly

E’w,s(R) = Ew,s(ZTa R) = E’w,s(us; 2T, R) .
Let 0 < § < 1/16 be fixed. We have

Proposition 2.5. There exists a constant €1 > 0 depending only on T and §, such
that, for € < &1, there exists Ry > 0, with Ry € (¢'/2,\/T) such that

. . E T
0< Eypo(R1) — Eu.(5Ry) < 4]log 5|M : (2.48)
’ ’ loge|
and therefore
T-8"R} |z — 27| E, E(\/T)
g =(u, i < 4llog§| ==V ) (9.4
/T_R% [ V) + E(u,21)) exp( e dedt < allogd ZHE L (249)

Proof. Set R = /T, and for n € N* R, = 6" R. Let ko be the largest integer such that
Skt R > £1/2.

We have

(loge)/2 — log R
ko = ’
log ¢

where, for a € R, [a] denotes the largest integer less or equal to o, so that, if e < R*§~8
then kg verifies

loge|
ko —2< ) 2.50
0 ~ |log/| (2:50)
On the other hand, we have the equality
~ ~ kO ~ . ~ .
Ey(0R) — E,(0"R) =" (Ew(9'R) - E4(¥'R)),
j=2
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and all the terms of the sum of the right hand side of the equality are non negative.
Therefore, there exists k1 € {2, ..., ko} such that

w(R)
ko — 2

R

Ey(R)
loge|’

Ey (8" 'R) - E, (0" R) < < 4llog 4|

where we have used (2.50) for the last inequality. We therefore set Ry = 0¥ 1R,
Inequality (2.49) is a direct consequence of the monotonicity formula. O

Blowing-up. In view of Proposition 2.5 we perform the following change of variables

~ r — T ~ t—T
z 7 2 +
so that (zr,T) becomes in new variables (0,1), and (z7, T — R?) becomes (0,0). Set
€ = i
=&

and define the map v, : RY x (0, +o00) — C by
ve(Z, 1) = u.(z, 1),

so that v, verifies the equation

0v, 1

i Av, = 6—2v€(1 —[ve®)  onRY x (0,+00), (2.51)
i.e. v, is a solution to (PGL),. Note that
% <e<el? (2.52)

therefore € — 0 as ¢ — 0, |loge| > |loge|/2 and the asymptotic analysis for (PGL), is
also valid for (PGL).. In the sequel we skip the tildes on the new variables for simplicity.

Lemma 2.7. We have,

K K
vel@)| <3, [Vvele) < —,  [Ove(2)| < (2.53)
for any (z,t) € RY x (0,+00). Moreover,
Ew,e(vea (0, ]-)a 1) = Ew,s(usa T, Rl)a (254)
- - Ews ’ T
Bu(0,1),1) = Buc((0,1),5) < logs) Z2eCr VD), (255)
’ ’ lloge|
and
E’w E(ZT7 \/T)
Ve(ve) + 2(Ve, (0,1)] G(x,t — 1) dx dt < 4|log 6| ———F. 2.56
Lo Vo) 2000, 0, 1)] Gt = 1) e e < afoga] =570 (250
Proof. This is a direct consequence of the scaling invariance of each term. O
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3 Proof of Theorem 1

3.1 Change of scale and improved energy decay
Let u. be a solution of (PGL). as in Theorem 1, i.e. satisfying the bounds
E.(u?) < Mylloge| (3.1)

|, e(ud) exp(=laf?/4) < nlloge|. (3.2)

Let 0 <6 < % be fixed, but to be determined later at the very end of the proof. Let
also T =1, and zr = (0, 1). Recall that in section 2.6 we have constructed a rescaled
map v, defined by

€
Ve(z,t) = u.(Riz, RI(t — 1)+ 1), e= 7o € <e<ell?
1
for some appropriate choice of R;. In particular, the function v, is a solution of (PGL).
and it follows from the monotonicity formula that

Eye(Ve, (0,1),1) = Eue(ue, (0,1),1) = illog e] < nlloge| < 2n[loge], (3-3)

where we have set

ﬁ( 6) _ w,e(ve)

lloge|
In view of Lemma 2.7, we have the estimates
vl <3  onRY x [0, 4+00), (3.4)
K K
Vv < —, |0 < = on RY x [0, +00), (3.5)
€ €
Ey(ve,(0,1),1) — By c(ve, (0,1),6) < 4|log i < 8[log |, (3.6)
1 Edk

————— exp(— < 4llog 6|n < 8|1 ,
/RNx[o,lazJ Vv T (= g =) de dt < 4llog dfn < 8llogdln. - (3.7)

= jzf?
E(ve, (0,1 —
/]RNX[O,I—62] (ve (0, 1)) (1 —t)N/2 exp( 41 —t)

Note that v.(0,1) = u.(0, 1). Thus, in order to prove Theorem 1 it suffices to establish
that v, verifies

) dx dt < 4[log |7 < 8[logd|n. (3.8)

[ve(0,1)| >1—o0. (3.9)

Throughout this section, we will work with v, instead of u.. The main advantage to
do so is that we have the additional estimates (3.4,3.6,3.7,3.8) which provide uniform
bounds which are independent of €. In the definition of EN’w,e, Ew,e, and the various
quantities involved in the proof, we will thus skip the reference to v, or even e if this
is not misleading.

The main ingredient in the proof of (3.9), i.e. Theorem 1, is the following J-energy
decay estimate.
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L
16°

1

Proposition 3.1. There exists constants 0 < 0y < 0<e <3, andn >0 such

that for 0 < n < ny the following inequality holds

Eue(ve, (0,1),80) < 5 Eye(ve, (0,1),1) + R(n), (3.10)

N =

where R(n) tends to zero as n — 0.

We postpone the proof of Proposition 3.1 and show first how it implies Theorem 1.

3.2 Proposition 3.1 implies Theorem 1

Assume 0 < 7 < 9 and set A(0) = /5%, where o is the constant appearing in the

statement of Theorem 1, whereas K is the constant appearing in (3.5). Set r. =
min(1, A(0)e) and T, = max(0,1 — A\?(0)€e?) = 1 — r2. We claim that
1

€_N B(e)

(1= [ve(@, Te)[*)* < Ru(m), (3.11)

where Ri(n) — 0 as n — 0.
Proof of the claim. Combining (3.6) and (3.10) we are led to

Ey.(ve,(0,1),1) < 8|logd|n + 2R(n). (3.12)

Assume first that A(o)e < 1, so that T, = 1—\?(0)e®. We deduce from the monotonicity
formula that B -
Eye(ve,(0,1),M0)e) < Eye(ve,(0,1),1) (3.13)

so that, combining (3.12) and (3.13) we obtain

Eye(ve,(0,1), Mo)e) < 8llogd|n+ 2R(n).
If A(o)e > 1, then 7. = 1, T, = 0 so that

Eue(ve, (0,1),7c) < mfloge| < nllog ()]
In both cases the claim (3.11) follows from the inequality

1

€_N B(e)

(1 - |V6($,T€)|2)2 S f]\gag /B(E) (1 - ‘Ve(ﬂf,Te)‘ ) eXp(_ﬁ)d.’L‘

62
< C(0)Ey(ve, (0,1),7), (3.14)
valid for some constant C'(o) depending only on ¢ and N.

Arguing as in the proof of Lemma II1.2 in [8], we are led to

1

1 2\2 e
1—1v(0,T)| <C (e_N /B(e)(l — |ve(z, Te) %) ) < CRy(n)~+. (3.15)

33



On the other hand, by (3.5),

ve(0,Te) = ve(0,1)] < (3.16)

Combining (3.15) and (3.16), we obtain
1= [v0,1)]| < 5 + CRi ()75

so that the conclusion follows if 7y is chosen sufficiently small, since R;(n) — 0 as
n— 0.

3.3 Paving the way to Proposition 3.1

As in [8], let us first consider the ideal situation where
lve| =1 on RN x [0,1].

Then, we may write v. = exp(i¢) where the phase ¢ : RV x [0,1] — R is uniquely
defined, up to a constant multiple of 27. The equation for the phase ¢ is then the linear
heat equation

%—f—Agsz on RY x (0,1).

Notice that in that situation, Vv, = |V¢| so that e.(ve) = |[Vp|?/2 and |0;ve| = |0rp)-
Moreover, |Vl|? verifies the equation

0| Vyl|?
ot

— A([Ve?) = —2|Vp|* <0

so that for any 0 < § < 1, and any z, € RY,

2\(2 1 |z — 2.
- < — . .
‘vw(x*’ 1 6 )‘ — /]RN 7TN/2(1 _ 52)N/2€€(V€({L',0)) eXp( 4(1 _ 52)) dz (3 17)

For 4 € RN and o > 0, consider the Gaussian N(u,0?) = W exp(—%). We
deduce form (3.17) that

1 2y(2 |z ?
VG o V001 =0 exp(~ o) do.
< N(0,6%) (2, )N(z,1 — 6%)(z,)ec(ve(w, 0)) dr,dz
RN xRN (3.18)

<[, (N(0,6%) # N(0,1 = %)) (2)ec(ve(x, 0)) dz

= N(0,1)ec(ve(z,0)) dz,

RN
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i.e.
By (ve, (0,1),8) < 82Ey (ve, (0,1),1)

so that (3.10) is verified for 6 < /1/2.
In the general case v, may vanish, so that it is not possible to find a phase ¢ which
is globally defined. However, if locally we may write v. = pexp(ip), then

Ve X Vve = p°Vo

so that when p is close to 1, v. X Vv, represents essentially the gradient of the phase.
The quantity v, X Vv, is always globally defined, in contrast with the phase. The
following decomposition formula is then the starting point of the analysis of |Vv,|?

AV PV = 4|ve X VV? + [V V| = 4]ve X Vv > + 4p*|Vp[?, (3.19)

where p = |v,| is the modulus.

In order to establish (3.10), it suffices to prove a similar inequality when &y is
replaced by some § € [0y, 2d9] That is, we will show that there exist § € [dy, 2dy] such
that

B, (0,1),6) < 1 Bue(ve (0,1),1) + R (). (320)

We will determine § using averaging arguments, for quantities which will be integrated
on constant time slices [and bounded thanks to (3.6,3.7,3.8)]. For that purpose, we
introduce first some notation. Set, for ¢ € [0, 1],

1 Edk
u—nM&Aw”ﬂKWJWM_q1—Q

A(t) = ) dz,

1 _ [z/”
BO) = T fov, gy =% (0D () exp(= ) do

By (3.7) and (3.8) we have therefore

1—-62
/ A(t) dt < 4[log &o|n (3.21)
0

and
1-42
/ B(t) dt < 4|log do|n- (3.22)
0

We first observe that the left hand side of (3.20), i.e. E, (v, (0,1),0), involves
an integral on the whole RY. However, for “many” choices of §, we may localize this
integral.
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3.4 Localizing the energy on appropriate time slices
Consider the set ©; defined by

32|log o,
0, = {t €1—462,1— 6] st. A{t)+B(t) < w} . (3.23)
0
Lemma 3.1. We have
3
meas (©1) > 4 meas ([1 —465,1 — (53]) .
Proof. The proof is an easy consequence of (3.21) and (3.22). O
Lemma 3.2. The following inequality holds for any t € © :
~ 1
Buelve, (0,1),6) < 555 [ (v) + K [log .
O < 5 [ v + Klogdln
where § = /1 —t.
Proof. The proof is an immediate consequence of Proposition 2.4 and the definition of
0. O
3.5 Improved energy decay estimate for the modulus
Set o, = 1 — |v¢|?. Recall that v, verifies the equation
2
0o — Ao = 2|Vv,|* — —06(1 o¢) on RY x (0,400). (3.24)

Let & € [do, 200] be given. Our first aim is to bound [y 1),y IVOe|?, where t =1 — 6.

Lemma 3.3. The following inequality holds

2\ 1/2
e2< 5 V; € _ﬁ
/B(l)x{t} Voo < C(b) </RN><{t} (ve) exp( 4(52)
1/2
: 24|~ - Vv.— 0, L=l / 3.25
[ (75 I Vve—awvPesp(— ) ) (329)

where C(8y) = K&, exp(3z)-

Proof. Let r1 € [1,2], multiplying (3.24) by o. and integrating by parts on B(r;) we
obtain

/ (Vv |* = 2/ \Vv|*o. — / 010¢ - O
B(r1) B(r1) B(r1)

2
- 8'r e " Ue — _/ 1-— € 3.26
/BB(rl O 0™ (n) oc(l =0 (3:26)

< 2/ |Vv6|2+/ 10,0, - 0€\+/ LEs
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Here we have used for the last inequality the fact that (1—o,)o? > 0. In order to bound
the last term of the r.h.s. of the previous inequality, we choose r; € [1,2] so that

L L

X
Vv |2 exp(= 2L </ Vv |?
/BB(rl)x{t}| vel” exp( 452) - ]RNX{t}| vel” exp(= 462)

|z|” |z|?
e\Ve oo S V
/BB(n)x{t}V(V ) exp( 4(52) /RNx{t} (ve) exp(= 462)

For this choice of r1, we have therefore

1— |ve|?
/ |0yoc 0] < Ke / V| - | ——|
OB(r1)x{t} OB(r1)x{t} €
jz?

1 1/2 " 1/2
< K / € 2 / e\Ve T T o0
eeXp(é ) ( 8B(r1)x{t} [Vvel“exp(= 462)> ( 8B(r1)x{t} Ve(ve) exp( 442 )>

() 22
< — - - .
_Keexp%g)(/wﬂ Vvl expl 452)) (/R gy Vel xpl 452))

and

(3.27)

Finally, we estimate the remaining two terms on the r.h.s of (3.26). First, we have by
(3.5)

/ Vvo. < K Vvl -
B(r1)x{t} B(r1)x{t}

! 2 () 27\
<K — (Ve .
< eXp<53>(/RNX{t}|Vve| exp(~ 452)> (/RNX“}V@)@XM 452>>

Similarly,

1— |v|?

|
(3.28)

- |Ve|2
/ B0 -0 < Ke/ By | L2V
B(r1)x{t} B(r1)x{t} €

LR

. , 22 \1/2 22 1/2
<K ) / 8 € — o / ‘/6 € T o
< geew() ([ lowPen-i0) ([ Vet 1)

< Keexp(ap) ([ Vvl exp(— ) " [ (v
xXp( (ve) exp(———= AL
= feexp 02 B(ry)x{t} P52 B(r)x{t} 202

|— Vve — O |2)exp(—w) 1/2.
202 ° ‘ 462

(3.29)

Combining (3.27), (3.28) and (3.29) we derive the conclusion. O

The previous lemma allows us to estimate the contribution of the modulus to the
energy on appropriate time slices. More precisely,
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Proposition 3.2. For any t € ©1 we have

[ b N < 6 ) [ 2 B (v (0.1, 1) + 1)
B(l)x{t}2 € 462 > C1l00) |17 w,e\ Ve ) ) )

where C1(6y) = K&~ exp(%)|10g(50|
Proof. By (3.25), we have
/ s 2|V\v€\ 2 < OBV A2 [N DB (v, (0,1),8) + 8N 2/2B (1) "]
< C0)" AW (B2 (ve, (0,1),1) + B()']

and we have made use of the monotonicity formula for the last inequality.
For t € ©1, A(t)+ B(t) < 32|logég|dy>n, so that

oyt S IV P? < K O3 logdoln”? (BY2(ve, (0,1),1) + 077
< K C(00)6) *log o] [n/*(Eue(ve, (0,1),1) + 1)] .

Finally, we have for the potential and for ¢ € O,
1

— 1 1
1-— 622<5N VA(t <K5N2] S
4e? /B(l)x{t}( vel)" < eXp((Sg) *) [log 0|eXp(50)
and the conclusion follows. 0

3.6 Hodge - de Rham decomposition of v, X dv.

In view of (3.19) and the previous subsection, it remains to provide an improved decay
estimate for |v. x dv |?. For that purpose, we will introduce as for the elliptic case an
appropriate Hodge - de Rham decomposition of v, xdv.. We would like to emphasize the
fact that the estimates obtained so far work equally well if we consider instead vector-
valued maps u, : RY x Rt — RF, k£ > 1. The techniques of the present subsection
however heavily rely on the fact that £ = 2, i.e. u. is complex-valued.

Let x € C°(R") be such that 0 < x <1, x =1 on B(2) and x = 0 on RY \ B(4).
We assume moreover that ||Vx||e < 1. Consider for ¢ > 0 the two-form ; defined on
RN x {t} by

Yy = -Gy *d(vex dv)x  onRY x {t} (3.30)

where Gy denotes the Green’s function of the Laplace operator in dimension N,

_ 1
Gr(z) = — |‘;|ij12 for N>2 and  Ga(e) = 5 logal.

Note in particular that

—Atpy =d(ve xdve)x  onRY x {t} (3.31)
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and that, for N > 3,
[y (x) = 0 as |z| = +oc.

Since —A = dd* + d*d and since x =1 on B(2) it follows that
d(ve X dve — d*y) = d*dyy = on B(2) x {t}. (3.32)
We observe that
A(dyy) =0 on B(2) x {t}. (3.33)
Indeed, we have
A(dwt) = d(AQﬁt) =d (d(V6 X dVE)) =0.
It follows that the two-form (; = d*dt/; is closed, since

d¢; = d(d*duy) = dd* (di,) = —A(duy) — d*d(dipy) = —A(de,) = 0. (3.34)
By Poincaré Lemma, there exists therefore a 1-form &; defined on B(3/2) x {t} such
that
d*&, =0 on B(3/2) x {t}, '
and

&l 2 B3/2)x(81) < KN Gell22(B(7/4)x {23 - (3.36)
[Note that such a form & is not uniquely defined|
Going back to (3.32), we may write

d(ve xdve —d*Py — &) =0  on B(3/2) x {t}.

Invoking once more the Poincaré Lemma, we deduce that there exists some function
¢ uniquely determined on B(3/2) x {t} (up to an additive constant) such that

Ve X dve = dpy +d" Yy + & on B(3/2) x {t}. (3.37)

This is precisely the Hodge - de Rham decomposition of v, x dv, which best fits our
needs. We are going to estimate the L? norm of each of the three terms on the r.h.s.
of (3.37) successively. As we will see, the most delicate estimate is for ;. Although it
will enter in the final estimates for & and ¢, we will treat these last two terms first.

3.7 Estimate for &
Since dy; is harmonic on B(2) by (3.32), we have for any £ € N,

ldillerBsr2yx ) < Killdellresexi) < Kell Vbl 2 seyx1)- (3.38)
On the other hand, since (; = d*dy, it follows that

[1Celler (Br/ayxqey) < KellVibilln2seyx )
and going back to (3.36) we obtain the estimate :

Lemma 3.4. We have,

&l 22 (B3 /2y (11) < K|Vl L2(B2)x 1)) -
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3.8 Estimate for ¢y

The first step is to derive an elliptic equation for ¢;. This equation involves a linear
elliptic operator (with a first order term) which appears naturally in the context of
parabolic equations (see [26]). In a second step we provide some simple linear estimates
for this operator. We finally use them to complete the estimates for ;.

The equation for ;. Taking the external product of (PGL). for v, with v, we
obtain
Ve X Opve + d* (ve X dve) =0 on RY x (0, +o0). (3.39)

[Note that if v = pexp(i¢) then (3.39) is equivalent to (6)] The term d*(v, X dv,)
can be computed using the Hodge - de Rham decomposition (3.37). We have, since
d'& =0,

d*(ve x dve) = =Apy  on B(3/2) x {t}.

On the other hand, we may write

Ve X OpVe = —V, X (— Vv, — Btve> + . (Ve X Vve)

202 202

and

X
2—52 . (V6 X VVG) =

Going back to (3.39) we thus obtain

252 (V% + d"y + &).

X X
—AQOt + 2—52 . VQOt = V¢ X (2—52 . VV€ — 8tve)

— (" + &) - on B(3/2) x {t}.

(3.40)
252

In view of (3.40), we are led to consider the linear elliptic operator

Linear estimates for Ls. Let » > 0 and consider functions v and f on B(r) such
that
Lsv=f on B(r). (3.41)

The next lemma corresponds to the of Pohozaev’s identity for the operator Ls.

Lemma 3.5. Let v and f satisfy (3.41), then the following equality holds

N-2 P o af o
fo |52 = i weken- )| + [ o voren(-ln)
o

2 |z 2
2/ |Vl exp(— 452) / |0,v|” exp(— 452) (3.42)
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Proof. We multiply Av by z - Vv exp(—%@) and integrate by parts on B(r). This
yields,

LN

B(T)Av ;x :0;v) exp(— 452)
_ |z f?
——/ Vo - V( Zx ;0;v) exp(— 452 +/ - Vo( Zx ;0;v) exp(— 4(52)
L
+ o szav exp(— 452)

|z|” i
_—/ Zav szav exp(— 452)+/JB()25 - Vu( szav exp(— 452)

|

+/(93T szav exp(— 4(52)

A
|\2

:Z:Z
——/ Z|8 v|” exp(— / Z Z20;(|0jv]*) exp(— )
2 |2 2f? (3.43)
+/7‘)W Vo( Zxav exp(— 452)-1-/83() szau exp(— 152 =)
= [ E ol e(-5)+ | 5 Yoo )
1% 452" " Jpy &2 452
_ 2 axp( 2 k2 B0) exp(— 12
L B ol exp(~ 0 + [ o2 V0w (= )
_ AP i) exp( 2L
/aB(T); |0jv]* exp( 452) +/63( &m(Zxﬁzv) exp( 452)
_ N-2 |z o o jz[?
_/B(r)( 5 452)\VU| exp(— 4(52 +/ )252 - Vou( Zmzav exp(— 452)
’ 2 2
-3 |VU|26Xp( ‘45|2) +7‘/ 10,v|? exp(— |45|2)
The conclusion then follows from (3.41). O

Corollary 3.1. We have, if v and [ satisfy (3.41), the inequality

— <
/BB(r)|VTU| xp(=y52) < 5 B(r |W| exp(= 452 f & 452)
ElR

2
+/ |0,v|” exp(— 452) (3.44)
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Proof. 1t suffices to note that

[ a-Vorexn(-I) L 2 @ 2 exp(~ 2L
B(r) 462 462 462

1 2 2
[ |z

/ |z|?|Vv|? exp(— |2 ‘2) ’ f2exp(——|x|2) ’ —/ |Vl exp(——=)
462 B(r) 46?2 462 462
|

SQ/ J* exp(~ 452)

since 4% < 1. d

IN

Next, we consider the boundary value problem

Lsv=f on B(r)
{ 3—‘; =g ondB(r). (3.45)

Lemma 3.6. There exists some constants C(8,1) depending only and continuously on
d and r, such that if v, f, g verify (3.45) then

jz”

2\ 1/2
/B Vo2 exp(— 452)<C(6’T)[B(r f? exp(— 452 (/ f? exp(— 45|2)>

) a2 \ "2 E
.</83(r)g exp(= 452)>

x
Kr [  grexp(— ), (346
KT exp(— ), (3.46)
where K depends only possibly on N but not on § or r.

Proof. Note that (3.46) involves only the gradient of v, whereas if v is a solution to
(3.45) so is v + ¢ for every ¢ € R. Therefore we may assume that

=0. 3.47
~/6B(1') v ( )

It is convenient to use the divergence form of the equation, namely

L LN

_ x
—div (exp(—@)VU> = exp(—w)f. (3.48)
We multiply (3.48) by v and integrate by parts on B(r) to obtain
FE

x
4(52 / fvexp(— 4(52) /B( )arv-vexp(—4—52)

- oo J2l2) oo o J2l2 )"
<\ L, oot (L, e (3.49)

) |$|2 1/2 ) T 1/2
*(/93(,«)9 eXp(_4—52)> (/aBm” e"p(—r(sﬂ) -

/ |Vo|? exp(—
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In view of (3.47), we have by the Poincaré-Wirtinger inequality

2
/aB(r) Vi< NT— 1 JoB(r) [Vrol® (3:50)
By (3.44) we thus have
2 jz[? 2 2 |z|”
/BB(r) v exp(—w) = T/B(r) Vol exp(= 462 1 / e 452)
g exp(—@). (3.51)
N — 1 JaB(r) 462

On the other hand, standard elliptic estimates yield

o ol o
[, o) < o6 [/B Peo-ihy e [ e W)] (3.52)

where the constant C(6,r) may depend (strongly) on § and r. Going back to (3.49) we
bound the second term on the r.h.s. by

/ 2 ( ‘.’13|2) V2 / 2 ( ‘x‘Q) 1/2< T/ 2 ( |33 )
(S — - € —
BB(r)g P 52 BB(T)U AT 52 -2 BB(r)g TP 52

1 2 ElR
* 2r /83(r)v exp( 4(52)
2
< 2 | / 2 / 2 x|
—T/e)B(r)g XP(—g55) T3 [y, VO P 452 e 452)

The first term on the r.h.s. of (3.49) is estimated as follows

| )

(/ 2 exp(— |2)> 2 (/B(T)vzexp(—f—(p)>l/2<c5r V 2 exp(— 452)

Hf, Po( P, el

and the conclusion follows. O
We are now in position to complete the estimates for ;.
Estimates for ¢;. Recall that for every 0 < r < 3/2, ¢ verifies the equation

{ Lopr=f on B(r) x {t}
9 — g on dB(r) x {t}

where f and ¢ are defined by

f=v.x (— Vv, — Btve) (d*v + &) - on B(3/2) x {t}  (3.53)

242 2(52
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and

g =7, X % —(d"Y+ &)y on dB(r) x {t}. (3.54)

In view of Lemma 3.6 we choose r € [1,3/2] such that

2 |z|* |2 2
] Vve 3.55
/(')B(r)x{t} Vvl exp(- 452 - B(3/2)\B(1))x{t} [Vve (3:55)

2 ‘ |2 / 2
\Y 3.56
/i)B(r)x{t}| Vul"exp(= 4(52 - B(3/2)\B(1 {t}‘ Yl ( )

\I2

2 2 3.57
/BB(r)x{t} & exp(- 4(52 - & ( )

B(3/2)\B(1))x{t}

so that

2 |x|2 / 2 2 2 Xz
—— )< K Vv, \Y ——). (3.58
/aB(r)g exp( 462) - (B(3/2)\B(1))x{t} (‘ Vel [Vaul” 418 )eXp( 462) (3.58)

Our main estimate for ¢, is the following proposition.
Proposition 3.3. We have

Soeo( T < kv i
<
L, [Vl exp(—55) < K" By (v, (0.2).5)

+C(0) [R(t) + R(t) Eu(ve, (0,1),0)2] , (3.59)

where C(8y) is a constant depending only on &y, and R(t) is defined as

Rt)= [ [E(ve 0,1) + Vi(v) + (V] + &) 1n/2 | exp(— ) da.
RN x{t}

Proof. We apply Lemma 3.6 to ¢;. Clearly, in view of the definition (3.53) of f,
|2
/ f*exp(— 52) C(6) R(t). (3.60)
On the other hand, by (3.58),
/ g° exp(— |2 |2) < K/ |VV€\2exp(—ﬁ) + K R(t). (3.61)
B(r) 4627 — (B(3/2)\B(1))x{t} 442
The important observation is that
/ Vv, exp(—L) < ag? [ v, expl(— )
(B(3/2)\B(1))x{t} 467~ (BG/2\B)x{t} 46° 462
< 2N6"Ey (ve, (0,1),68) + 3R(t),

where we have used (2.44) for the last inequality. The conclusion then follows from
Lemma 3.6. O
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The following is a direct consequence of Proposition 3.3 and the definition of ©;.

Corollary 3.2. Fort € ©1, we have

D=

IVl < K By (v (0.1).1) + C(0) |1+ n} Blelve, (0,1).1) + Ra(t)]

/B(Qx/m

where

Ra(t) = C@) | [, (VP + 16+ ([, 196+ 6) Bty 0.2).1).

(3/2)
and C(6y) = K exp(—3z).

3.9 Splitting

We turn next to the estimate for ;. As already announced, this is the key part, and
our main contribution in the proof of Theorem 1.

Recall that 1; verifies the equation
—AYy =2d(ve x dv)x  on RN x {t}, (3.62)

where t = 1 — §%, § € [dg,20] is fixed but to be determined later, and the cut-off
function y depends only on z, verifies 0 < x <1, x =1 on B(2), x =0 on RY \ B(4),
and |Vx| < 1.

First, as in [8], we define a reprojection of v, in the following way. Let 7 be the
rel-valued function defined on RY x (0, +o00) by

7(x,1) = p(|ve(z, 1)])
where p(-) is a function : [0, 3] — [3,2] verifying the properties
p(s)=1 if;<s
p(s)=1 if0<s<g (3.63)
Ip'(s)| <4 for all s.
By construction, 7 verifies the inequality

=7 (@) < K 1= |ve(x)?]. (3.64)

Set v, = Tv,, so that

DN [ = [ =

Ve=ve if|ve| <
Vel =1 if |ve| >

The main motivation for the previous construction is the following observation.
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Lemma 3.7. We have
d(\N/'6 X d(’e)(ﬂﬂ) =2 2(81\76 X Bj\h) dil?z N d.’l?j. (365)
1<j
In particular,

d(Ve x dve)(x) =0 if |ve(z)| > (3.66)

| —

and therefore

(L= [vel*)?

d(Fe x dvo)| < K5

=KV/(ve) onRY x(0,+00). (3.67)

Proof. The identity (3.65) follows easily from the definition of d and the identity d* = 0.
For (3.66), we notice that if [ve(z)| > 3 then |[v.(z)| = 1 so that §;V. and 9;v. are
collinear on the set

1
0= {x eRY s.t. [v(z) > 5}.
Finally (3.67) follows from (3.66) and the bound (3.5). O

We decompose 9, as

Yy =1+ Yoy on RV x {t}

where
V1= =Gy *d(Ve x d¥)x on RN x {t}
Yo, = =Gy xd((1 — 7%)ve x dve)y on RN x {t}

so that

{ =AYy = d(Ve x d¥e) x on RY x {t} (3.68)

—Atpyy =d((1 — 7*)ve x dve) x on RY x {¢}.

In view of its definition, 15, is an error term arising from the projection v, of v.. This
term can be handled easily as we see next.

3.10 L? estimate for Vg,
The following inequality holds for ;.

Lemma 3.8. We have

\V
/R i [V

where C(0y) = K exp(4/62) and K is a constant depending only on N.

2
2 o _ |z|
<OG) [, Vv exp(—ggs

) dz. (3.69)
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Proof. We multiply the second equation of (3.68) by 15, and integrate by parts on RY.
This yields

\Y
/RNX{t}| Yoz

+ Vx| [12,.])

</]RN x{t} W“

P [ =T vexdvd (Vi
RN x{t}

A\
/N
S

=
X
ol
)
=~
—
<
N
N~
(NI
1
S
%\
2
X
ol
)
<
<=
u[\)
S
S~
+ ™
S
%\
2
X
o)
<
=
2
N~
2|~

<K Ve 6 2 V 9 2
- (/3(4)x{t} (V )> </1RN><{t}| %’t)

where we have used (3.5), (3.64) and the Sobolev inequality. It follows that

4 |z[?
Vi, 2 < K —/ Vo(ve) exp(—2y g
S [Vl < Kexp() [ Velvo) expl— ) da
and the proof is complete. O

We next turn to the estimate for v, ;. We will first present a simple proof in dimen-
sion two, and then give the proof for N > 3. Although this proof might be adapted for
the case N = 2, we believe that the simple arguments in case N = 2 will shed some
insight for the general case.

3.11 L? estimate for V1, when N = 2

The following estimate holds.
Lemma 3.9. For every t € [1 — 462,1 — 62] we have

Lo Vi
B(2)x{t}

Proof. In view of Lemma 3.7 we have

Ayl o <K/ V.(v.
| At || ey < %) (Ve)

|

2
P o) | [, Vs ew(= ) di] ogel

and by standard elliptic estimates
sy Sy [ Vil
Y1 ellwresay) < Kp . (ve)
for any 1 < p < 2. On the other hand, we have

A(1ax) = (Arg)x + 2V, VX + 11 Ax

so that

A 12y < K Ve(ve). 3.70
| A1) 1 @2y < - (ve) (3.70)

To complete the proof, we present an unpublished argument of a preliminary version
of [8], which relies on the following inequality, due to [14] (see also [16] and [54]).
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Lemma 3.10. We have, for any u € H*(R?),

]l oo oy < K llull ey [ 1+ log? (1 + [[ull o)) -
We apply Lemma 3.10 to v ;X. Since

K
1AWl < 5

by (3.5), we deduce that
|91, r2rey <

Dl =

and therefore 1
H1(R?) |10g 6|5. (371)

11,6l oo m2y < K|[th1,4]

On the other hand, form standard elliptic estimates and using (3.71) we obtain

11X ey < KNA@L00 @) (1910 Lo @)
< K[A@ ) 2@y [0, x] o ey log €] 2. (3.72)

The conclusion then follows from (3.70). O

Remark 3.1. i) The main point here is the L™ estimate for ¢, ;. The only property
of the equation which is used is the pointwise L> bound on Vv, in (3.5). A similar
type of L™ estimate is also used in an essential way for the elliptic case in [8]. The
proof there uses, besides (3.5), the monotonicity formula.

ii) Recall that H*(R?) — L (R?) for s > 1. This is however not true for s = 1,
which is therefore critical for the previous embedding. Lemma 3.10 can thus be inter-
preted as an interpolation inequality in the critical dimension. There are generalizations
of Lemma 3.10 for higher dimension (see [14, 16, 54]), nevertheless they involve critical
Sobolev spaces for the corresponding dimension, which require more regularity than
H'.

iii) The proof of Lemma 3.10 can be obtained in the Fourier variable by a decom-
position in high and low frequencies. This idea will be used also in our estimate of
11, in the next section, however we have to use additional ingredients related to the
nonlinear parabolic nature of (PGL)..

3.12 L? estimate for 1);; when N > 3

The analog of Lemma 3.9 in higher dimension is the following.

Proposition 3.4. There ezists a subset Oy C [1 — 42,1 — 63] such that

meas (©y) > Zmeas ([1 — 465, 1 — 53]) (3.73)
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and for each t € O,

Lo V00 < C0)eb Buelve, (0,1),1)
RN x {t}

+ C(do) /RNX{t}VE(Vﬁ) exp(—%) dx (Ew,e(ve, (0,1),1) + 1) , (3.74)

where C(dy) = Kexp(%z) and K is a constant depending only on N.
0

Comment. In contrast with Lemma 3.9, we are only able to establish inequality
(3.74) for appropriate time slices.

The proof of Proposition 3.4 is rather involved. We divide it therefore in several steps.
Step 1 : Splitting ;.

In view of the proof for the elliptic case in [8], as well as in view of Lemma 3.9, it
is tempting to believe that a similar L*° bound for 9, can be derived for N > 3.
Nevertheless, this may not be true (see however [53] for N = 4). To overcome this
difficulty, we perform a splitting of ¢, ; in high and low frequencies,

Y1 = wi,t + 47, on RY x {t}, (3.75)

We will derive an L> estimate for the low frequency part 9f ; and a smallness property
for the (weaker) L? norm of wit. For the sake of simplicity, we write v; instead of
1, and similarly ¢ and 9%, whenever this does not lead to a confusion. The high
frequencies are essentially contained in v¢, whereas ¢ stands for the low frequency
range. Since

Y =Gy * d(Ve X dve) X5

we define the splitting (3.75)introducing an appropriate splitting of the kernel Gy.
More precisely, we write

Gy =G4 + G4 = m(|z|) Gy + (1 — m(|z|)) Gn

where m is some non negative function with compact support which we will define

now. Choose « € (3, 2) and consider the non negative function [ defined on R* by
(0 if s < e
((eim)fv—1 — )2Vt - 1) if €@ < 5 < 2€°
I(s)=¢ 1 if 2¢* < s < 16
(2V-1 - (%)N—l)(zN—1 —1)7! if16 < s < 32
[ 0 if s > 32.

We set
m(s) = 1—1(s) if0<s<16
- 0 if s > 16.
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In particular, m is lipschitz with compact support, and

m(s) =1 for s € (0, €*)
m(s) =0 for s € (2%, +00)
Im/(s)| < Ke™@.

Finally, we define

Y =G+ d(Ve x dve) x on RN x {t},
and

Y =G4 * d(Ve x dve) X on RY x {t}.

The following properties of the kernel G% will be useful. The proofs are elementary
and left to the reader.

Lemma 3.11. We have .
IVGy o mvy < Ke®,

and .
AG Y | mryy < K,

where M denotes the set of finite Radon measures on RN and K is a constant depending
only on N. 0

We first begin with the L* estimate for 1.

Step 2 : L* estimate for 7.
First, notice that G4 (z) = Gn(x) for |x| > 2¢*. In particular, since x has compact
support in B(4), it follows that

v§ = Gy d(Fe x di)x  on (RY\ B(4+2¢%)) x {t}. (3.76)

Therefore, 1¢ is harmonic on (RN \ B(5)) (provided ¢ is sufficiently small). Hence, by
the maximum principle,

195l oo @y iy < NT M| Lo (B5)x 123 - (3.77)

On the other hand, on the larger ball B(12), one has by the definition of m, and in
view of the support of y,

¥ =1(|z)) Gy * d(Ve x dve) x on B(12) x {t}. (3.78)

Recall also that supp(l) C B(32) so that [(|z|)Gn * d(V. X d¥,) x has compact support
in B(36). Combining (3.77) and (3.78), we obtain

191l oo @ sy < (2D Gw * d(Te X dVe) Xl poo v g1y - (3.79)

In order to estimate the r.h.s. of (3.79), we invoke the following lemma, which motivated
the precise definition of [. A similar construction was already used in our previous work
on the NLS equation [10].
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Lemma 3.12. Let f € LY(RY). The following equality holds for any y € RV .

(el)Gn = ) ) = [ 7

/ f@)h(la — yl,r) da] dr
B(y,2r)><{t}

[ iz —ylr)de| . (3.80

-2 y,w)x{t} o

where the lipschitz cut-off function h is defined on RT x RT by

(Nl)(N2).{ 1 ifo<s<r

h(s,7) = wn_1 N1 2’";3 if r < s <2r,

0 if s > 2r.

Proof. We start with the r.h.s. of the equality. Integrating by parts in the variable r,
we obtain

O L h dz|d
Lo ), )X“}ftﬂ (lo = yl,r)da]dr

525 Ly FO = vhr)

16 p2-N oh

= —(|lz — dz|dr. (3.81
=5 Loy @y =l r)dalar. (380

16

ea

Here, we have used the fact that h(2r,r) = 0 for each r > 0. Notice that

oh N—-1)(N—-2)|z—y
E(W—Q‘,T)ZWNI( 2]2](—1 )| 2 |

for x € B(y,2r)\ B(y,r)
r

and is equal to zero elsewhere. The last term in (3.81) can thus be rewritten as

/16 T_NwN,lL__l / f(z)|x —y| dz] dr, (3.82)
e 2N=1 J(B(y,2r)\B(y,r))x {1}
and therefore also as
N—1 6 _ ror B
WN-1 SN /Ea T /T S[/BB(y,s)X{t} f(z)dz|dsdr = I(y). (3.83)

Using Fubini’s theorem, we obtain
T 32 max(s,16) N drd 3.84
- f(z)dz r rds. i
) = T oN—1 2N 1 / /63(31, )x{t} ] /min(s/Z,ea) ( )

Note that by construction, [ verifies

N —1 /max(s,lﬁ)

N r~Ndr = 1(s)s' V.

min(s/2,e*)
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Therefore, since supp(l) C [¢%, 32] we can rewrite

I(y) = / N wy-18° N /a Bl f(x)dz]l(s) ds

o3

WN-1
— N |y — d
RN x{t} ‘y _ $|N_2 (‘y ,’L'Df(.’lf) xz,

and the proof is complete. O

In view of the previous lemma, we have, for any y € RY,

()G d(5e % 450 3) () = [ 2 30(0) dr+ 55 [ele) — Tes )

where we set

1
Te(y) = N2

/ d(F. x dv)h(|z — y|,7) x(z) dz.
B(y,2r)x{t}

In particular, for any y € RY
- - 16 dr 2
(U(2)Gx (T x dv) )W) < K sup | [ 74 =
refe,16] « T N -2
<K sup |7,() [loge| +1].

refe®,16]

(3.85)

In view of (3.65) and the monotonicity formula, one may derive the bound

|72 ()| < KEu(0,(0,1),1).

This bound however is far from being satisfactory for our purposes. To proceed further,
we argue as in [10], and use a refined estimate due to Jerrard and Soner [34] which
relies on the special structure of the Jacobian

1
Jie = 5d(Fe x de).

More precisely, we have

Lemma 3.13 (Jerrard & Soner). Let w € HL (RY), ¢ € CH(RY, A’RY) and set
K = supp(p). Then there exist some constants K > 0 and 0 < 8 < 1 depending only
on N such that

ﬂ 1
[0 < ool [ eduw) + Kelgllns 1+ [ eclw))1+1K7). (56

With the help of the previous lemma and of the analysis in Section 2.4, we obtain
the following.
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Lemma 3.14. Let 8 > 0 given in Lemma 3.13. We have, for any y € B(36),

342 Ewe Ve, O:]- 71 8
sup |J-(y)| < Kexp(—-) ( d (|loée| ), 1) +e4> )

2
r€[e*,16] 50

Proof. Define the rescaled functions v, ,, and x,, by

ve,y,r(x) = \76(7“:6 —+ y) and Xy,r = X(?".’L’ + y)

Define also €, = £, and notice that for r € [e%, 16] we have

1
lloge,| > (1 —a)lloge| > Z\loge|. (3.87)
By scaling and the definition of h, we obtain
1
(y) = d(Ve X dvo)h(|lx — y|, d
Tr0) = 153 [y e % 9R( = 3], 7) x(a)

- 2 ~€ r h 71 r dx. .
B(2)x{t} TVeyr(@) (2, 1) Xy () . (3.88)

Note that since x has compact support and r < 16,

12 A(., 1)Xy,r(‘)||c0,1(3(2)) <K

where the constant K depends only on N. We apply Jerrard-Soner estimate (3.86) to
W = Vey,r and ¢ = 2h(-,1)xy,. In view of (3.87), this yields

<K Js@)x 1) €er (Vegr) Les
log €, |

<K fB(2)><{t} eer(Ve,y,r)+6ﬂ/4 '
[loge|

2JVeyr(x) R(2,1) Xyr(2) dz
Lo, 2 Fer () i 1) X 2) -

On the one hand, for ¢* < r < g

= 9
1

/B(z)x{t} e (Vewr) = 52 /B(y,Zr)x{t} e(¥)
1 |z —y|?
< KT‘N_2 /RNx{t} ec(ve) exp(— yP ) dz

1

= Kg’w,é(vev (y: 1- 52)7T) S Kexp(12

)Eue(ve, (0,1),1), (3.90)

where we have used Lemma 2.5 for the last inequality.
On the other hand, for %2 <r <16,

X 1 X
/B<z)x{t} e (Veur) = (5 /B<y,2r>x{t} (%)
(Jy] +32)*, 1 N |z |?
< Kesp( o) iy [y edi (=) da
342
< K exp() B (v, (0,1), 1), (3.91)
0
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where we have used the monotonicity formula for the last inequality. The conclusion
then follows from (3.88), (3.89), (3.90) and (3.91). O

We are now in position to derive our L* estimate for 1.

Lemma 3.15. There exists a constant K depending only on N such that
195 e gy < C00) (Bue(ves (0,1),1) +1)) (3.92)
where C(dg) = Kexp(%).
Proof. Recall that by (3.79) we have
1911l Lo gayy < NU(Z)Gw * d(Fe X dVe) X[ oo @ w1y -
Since supp(!) C B(32) and supp(x) C B(4), we also have
(l(lz)Gy *d(Fe x d¥) x)(y) =0 for y € R \ B(36).

Therefore we only need to consider the case y € B(36), and the conclusion follows
using (3.85) and Lemma 3.14. O

We next turn to the estimates for the high frequency part of 1;, namely .

Step 3 : L? estimate for y?.
Since ¢! = G° *d(v, X dv.)x and since ||[VGi |1 < Ke*, a few computations yield
the following lemma.

Lemma 3.16. There exists a constant K depending only on N such that
12 < C(60) € By (v, (0,1), 1 3.93
Lo 1A < OO0 Buelvi (0,1),1), (3.93)

where C(dg) = Kexp(%).
Proof. We have

. WN— ~ ~
vl = mllal) v + d(Fe x dvo) x

WN-1
|z|N-2

WN—1
2| N2

=m(|z|) *x d(Ve X dVe x) — m(|z]) % (Ve X dV, - dx)

WN— . . WN— ~ ~
= d(m(|z) |$|fiv_g) % (Fe X diex) — m(\x|>|x|f+_; x (Ve X d¥e - dy). (3.94)

Note that by Lemma 3.11,

< Ke*, (3.95)
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and that

< Ké*® < Ke®. (3.96)

WN -1
Hm(\xb
LI(RN)

|.T|N_2

From (3.94) we thus infer that

1
. 2 2 ~ 1
% a = |2 Ty« 3
[ gy < ( Lo |V ) < K exp(5)e Bu(ve, (0,1),6)7 (397)
and the conclusion follows using the monotonicity formula. O
Step 4 : Introducing an auxiliary parabolic problem.
Recall that
—Atp; = d(¥e x d¥)x  on RY x {t}. (3.98)

In view of the result of Section 2.3, it is tempting to compare 1); with the solution 7}
of the parabolic problem

ot — At =d(ve x dv) x  on RY x [0, 4+00) (3.99)
Pi(,0) =0 on RN x {0}. '
In view of Lemma 3.7, we have
. (1= |vel?)? N
|d(Ve X d¥) x| < K—————x on R" x [0, c0), (3.100)

4¢€?

where the constant K depends only on N, and the results of Section 2.3 apply directly
to ¥j. This yields

Lemma 3.17. We have, for any § € [1 — 46%,1 — §?],

|

¥i(,1- 0| < C(80) Bu (v, (0,1), 1), (3.101)

Loo(RN) —

and i
/ VY[ < C(60) Bupe(ver (0, 1), 1), (3.102)
RN x[0,1—62]

where C(0y) = K exp(4/62) and the constant K depends only on N.
Proof. For (3.101), consider the function f defined by

flot) = 4= 'Vif’t” @) onRY x[0,00)

and let w be the solution of

o —Aw= f on RY x [0, 00),
w(z,0)= 0 for x € RV .
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It follows from the maximum principle and (3.100) that
|YF(z,1—0%)| < Kw(z,1-46%) VazeR. (3.103)
We deduce from Proposition 2.2 with 7’ =1 and zr = (0,1) that

N/2 |$|2 E
1 — 52) eXp(4—52) w,e(vea (Oa 1)5 ]-)

On the other hand, since x is supported in B(4), we deduce from Duhamel’s represen-
tation formula for w that

w(w,1—52)§K(

sup w(z,1—6%) = sup w(zr,1—6%),

z€RN z€B(4)
and therefore
sup w(z,1—4%) < Kexp(i) Ey(ve, (0,1),1).
zERN 5(% 7
The estimate (3.101) then follows from (3.103).

We next turn to (3.102). Multiplying (3.99) by ¢7 and integrating by parts we
obtain
1

5 x[1—62]
Therefore,

Vi< [ Ge x di| (Vx| [05] + x|V
Jovionsp VTS [ oy 7 0 (90 ]+ X195

2 2 = d(¥,. x dv, 5. 3.104
U oo VU = fon oy (A0 X 70000 (3:104)

2 3 1
< Kep(s) | [ V) Buelve (0,1),1)F (3105
ko) ([0 ] wn) v 01 (310)

< 1 Vit + Kexp( ) (v, (0,1),1).

2 JRNx[0,1-62] 5
Here, we have used the Sobolev inequality and the monotonicity of E’w,e(ve, (0,1),-).
Estimate (3.102) follows and the proof is complete. O

Comment : Estimate (3.102) seems a little disappointing, since it does not offer any
improvement for the energy (in the spirit of Proposition 3.4). However, a little more
computations show, using (3.101), that

jzf?

L / p Vil < C(é) (/R i / VT (= 4(1‘”_t))dx) (Bue(ve, (0,1), 1)+ 1).

Notice that this inequality involves only integration on RY x [1 — 462, 1 — 67] whereas
(3.102) involves integration on R x [0,1 — 63]. We will not make use of the previous
bound.

Step 5 : L? estimate for 0:v] on appropriate time slices.
In order to compare 17 with 11, it seems natural to try to derive some bound on the
time derivative 0;7. In this direction, we have the following estimate.
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Lemma 3.18. We have,
/ D12 < C00)e™ Buelver (0,1), 1), (3.106)
RN x[0,1—62]

where C(8y) = K&y exp(3%) and K is a constant depending only on N.
0

A straightforward corollary is the following.

Corollary 3.3. There ezists a set Oy C [1 — 465,1 — 63] such that
meas (Oq) > Zmeas ([1 — 465, 1 — 53]) (3.107)
and for each t € O,

Lo 1001 < C60)e ™ Buelver 0,1),1), (3.108)
RN x{t}

where C(8y) = K&;° exp(3z) and K is a constant depending only on N.
0

Comment. At first sight, this estimate seems rather poor, since the r.h.s. diverges

as |logele !, whereas for v, we already know that

o < (Vo). 3.109
/]RNx[O,l—dg] | v | - RNX{O}e (V ) ( )

If one assumes (H;) then the r.h.s. of the previous inequality behaves as |loge|. How-
ever, estimate (3.109) is deeply related to the fact that (PGL), is the heat flow for the
Ginzburg-Landau energy. Linear estimates based on the pointwise bound |Vv,| < Ke !
would lead only to estimates of order e 2. In this respect, (3.108) presents a substantial
improvement which is again related to the divergence structure of the term d(v, x dv,).
This improvement will be crucial for estimate (3.134).

In order to prove Lemma 3.18, we begin with the following estimate for the time
derivative 0,v..

Lemma 3.19. We have
2
Byv.|? exp(— LA dt < K6-2E, (v.,(0,1),1). 3.110
Jovonsy P exp(= g ) dwdt < K6 B lves 0,1)1). (3110

Proof. By definition of =, we have
|z

x
Opve|® exp(— dz dt
/]RNx[o,l—&g] Grvel”exp( 4(1 - t)) v

< e G

~ RN k0,162 1 — 1

|

4(1—1)

|

41— ¢)

|VV€|2> exp(— ) d dt.

The conclusion follows, using (2.36), (3.7), (3.8) and the monotonicity formula. O
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Proof of Lemma 3.18. We multiply the equation for ], namely
Oy — A = d(Ve x dv) x  on RY x [0,00), (3.111)

by 0;4} and integrate by parts on R x [0,1 — §2]. We obtain

1 1-6% d
2 el *Qd dt d ~€ d"e O
/]RNx[O,l 2] 01 ]” < 5 dt(/]RN Vi |” dx)dt + RNX[0,176§]< (Ve X d¥.)x, Oyb?)
1 ) i )
_ —— * d . d . ’a ¥\
2 JRN x{1-483} Vil +/JRN><[0,1_53]< (Ve X d¥e)x, O7)

(3.112)

Since the first term in the r.h.s. of (3.112) is non positive, we only need to concentrate
on the term

Ve X dVe) X, O7).
/RNX[OJ_&%]u(v X d¥.)x, 0)7)

The main idea is to exchange space and time derivatives of v, and v, and for that
purpose we proceed by two successive integrations by parts. Set U = RY x [0,1 — &3].
We first have

/u (d(Fe x d¥)x, 0a7) = 3 / (7 X 05%) — 0;(¥c x 0,7)) X0,

1<j

- Z/ _Ve X a i Ve (815( zwl ’L])X + alxatwl zg) + V€ X 8V€ (875( ]wl z]) X+ ajxatwl zy)

1<J

- Z/ Oh(Fe X 05%) X Otbt5; — Ou(Fe X O%) X Ot

1<g

+ Z/ Ve X 0; Ve) iX atwl ,iJ (Ve X 0; Ve) X 37:% 7

1<J

-y /R - (Fe X 0j%0) Bith i X — (Ve X O57) Oty x- (3.113)

1<j

[Here, we write ¢f = 32,; ¥1,; dz; A dx;] Notice that
| 0 (e x 05 iy x
== /u (Ve X 04¥e) Oty 5 X + /u (Ve X Os¥c) 091 ;5 05X (3.114)
= /uai (Ve X OVe) 059145 x + /u (Ve X O¥V) (ajwiij Oix — Oihy 5 an) :
Combining (3.113) and (3.114) we obtain, after some easy algebra,

/u<d(v€ x d7)x, Oty = Ty + Ty + Ty + T, (3.115)
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where

T = Z/ 8tv€ X ajvf) ”ﬁl i X + (a Ve X 8tv€) ]wl i X

1<J

TZ Z/ Ve X 8tve) 91/11” iX (VE X 8tv€) Zd]l )4 JX’

1<]
T3 Z/ Ve X a Ve) atwl 47 zX + (V6 X avf) atwl K7l ]Xa
1<]

and

Z/R N {182} (Ve X 0;Ve) 0ithy 15 X — (Ve X Oi¥c) 0591 55 X

1<J
We first estimate 77. By (3.5) we obtain,

T, s%( / |<9t\76|2x2>% (f |vw1‘|2)%. (3.116)

It follows from (3.110) and the definition of v, that

- |z|? _ 4 ~
/u|3tve|2><2 < K exp( _3 / |0yve|? exp(— 1 _t)) < K6026Xp(5_g)Ew,e(Vea (0,1),1),
(3.117)
and from (3.102) that
4 -~
Vii? < K —)Ey(ve, (0,1),1). 3.118
Jovon gy V4P < K exp() Bl (0,1),1) (3.118)

Combining (3.116), (3.117) and (3.118), the estimate for 77 can be completed as

4
T, < K&yt exp(

52) IE’w,f(Vea (0’ 1): 1) (3119)

We turn next to 75, which is estimated exactly as T} except that we don’t need to
invoke estimate (3.5). This yields

T, <K (/u‘at{’emv)dz)z (/ ‘V1/J>1k|2>2

4 (3.120)
< K(S()_lexp(éQ) «(ve, (0,1),1).
For T3 we obtain, using the monotonicity formula,
3 3
<k ([ 1vepvxe) / |at¢f|2)
u (3.121)

4
< K exp() Bu(ve, (0, 1), / 05 .
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[Notice that the factor 1/2 in front of the last term on the r.h.s. of (3.121) will allow
us to absorb it in the Lh.s. of (3.112)]. Finally, for 7, we obtain, using once more the
monotonicity formula,

1 1
nosk ([, V) ([ V)
RN x{1-62} RN x{1-d3} (3.122)

4. - 1
< Kexp(ﬁ)Ew,e(ve, (Oa 1)5 1) + |V¢T|2
0

4 RN x{1-42}
[Here again, the presence of the factor 1/4 in front of the last term in (3.122), will
allow us to absorb it in the Lh.s. of (3.112)].

Combining (3.112) and (3.115) with the estimates (3.119), (3.120), (3.121) and
(3.122), we finally obtain

4 ~
o> < Ko;! —)e ' Epe(ve, (0,1),1 3.123
Jov oy 031" < Ky exp(z)e B, (0,1, 1), (3.123)
and the proof is completed.

Step 6 : Proof of Proposition 3.4 completed. Let us recall the estimates that we
have obtained so far for 1; = ! + ¢ and 7.
For t € ©y (O3 given by Lemma 3.3), we have

[[95]] poo ey xgay) < C'(00) (Ew,e(vca (0,1),1) + 1) , (3.124)
[ P < Cl0)™ Buelve, (0,1), 1), (3.125)
RN x {t}
197 (5 )] ooy < C(60) Bue(ve, (0,1),1), (3.126)
Lo 10057 < Co)e Buelves (0,1), 1), (3.127)
RN x{t}
and
~ ~ (1 - |Ve|2)2 N
|d(Ve X d¥,) x| < K———————x on R™ x [0, 00), (3.128)

4e?

where C(6p) < K exp(%z) and K is a constant depending only on N. We also recall
0

that 1; and 97 verify the equations

—Atpy =d(¥. x d¥.)x  on RY x {t}, (3.129)
ot — At =d(¥. x d¥)x  on RN x[0,00). (3.130)
‘2

In order to complete the estimate for |V |, we write

(Vi[> = Vg - V§§ + Vg - Vi
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and integrate each of the terms of the r.h.s separately. Multiplying (3.129) by ¢ we
obtain :

2
T
<o) [, Vi en(-2;

(Bueve, (0,1),1)+ 1) . (3.131)

) dz

[ L
RN x {t}

where we have used the L™ estimate (3.124) and the L' estimate (3.128). Similarly,
multiplying (3.129) by ¢ we are led to

<K

. (3.132)

/ Vi - Vi
RN x {t}

[ (dEex dv) x,vd)
R¥ x {t}

We bound the r.h.s. of (3.132) using the equation for ;. We obtain, multiplying
(3.130) by ¢! and integrating by parts on RV x {t}, the equality

/szx{t}w(vf X d7) X, ¥i) = /RNX o 0w+ Lo vl (3.133)

RN x {t}

For the first term of (3.133) we invoke Lemma 3.18 (i.e. estimate (3.127)) and Lemma
3.16 (i.e. estimate (3.125)). By the Cauchy-Schwarz inequality, we therefore obtain

3=

< C(éo)ea_%Ew,e(vea (Oa 1)’ 1) < 0(50)6 E’w,e(vea (Oa 1)’ 1) (3134)

[T

Finally, we turn to the last term in (3.133), that is
V*-V":—/ At - 3.135
Jog V8 V== [ A (3.135)

Notice that . .
—AY] = AGY * d(Ve X d¥,) .

By standard estimates for convolutions we have

HAGév * d(Ve x dVe) x LURN x{t}) < HAG?V M(RN) 1d(¥e x d¥e) X”LI(RNX{t})
2
< 1) / e\ Ve _ﬂ d ’
<C) [, Vi) en(-5) ds

where we have used Lemma 3.11 and (3.129). Going back to (3.135) we obtain, by
(3.126),

LR

)dz By (ve, (0,1),1).  (3.136)

Lo Vi vy

N ox{t}

<C() [, Vlve)exp(~

RN x {t} 442

61



Combining (3.132), (3.133), (3.134) and (3.136) we obtain

< C(60)€8 By e(ve, (0,1),1)

L Vi VU E,
RN x {t}
B
— E, (v, (0,1),1). 1
/X{} (ve) exp(—55) do Bue(ve, (0,1), 1), (3.137)

Finally, adding (3.131) to (3.137) we obtain the estimate for Vi,

/ ‘V%V S 0(50)6%Ew,6(vea (07 1)7 ]-)
RN x {t}

+O0) [ Vv exp(—iz5) do (Buelve (0,1, 1)+ 1),

which ends the proof. O

3.13 Proof of Proposition 3.1 completed

Recall that
Ve X dve = dpy + dipr g + dipoy + &4 on B(1) x {t},

and that by (3.19),
AV P IVVe® = d|ve X Vve|* + [V[ve?| = 4]ve x Vv |* + 4p°|Vp|?,

where p = |v,| denotes the modulus. Using the fact that

41 - )| [V P < K

1 — |ve|?

we therefore obtain, using the Hodge - de Rham decomposition (3.37),

ec(ve) < K[|Vl + [Vp? + [Vepro* + [ Viboul® + &7 + Ve(ve)|  on B(1) x {t}.

(3.138)
On the other hand, we have by Lemma 3.2, for ¢t € O,
~ 1
Ey(ve,(0,1),8) < / (ve) + Klog 8|1, 3.139
e 000 < g [ edv) + Kllogdln, (3.139)

where § = /1 —t € [dg, 20p].
We emphasize the fact that at this stage d; has not been determined yet. In
order to use (3.138), we first impose the condition

4V Nby < 1, (3.140)
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so that, if (3.140) is verified, we have, for ¢ € Oy,

<K/ 2 1 |Vpl?
(2vN8) {t}| o|* + | Vpl

+ & + Ve(ve).

(3.141)
For each of the terms on the r.h.s. of (3.141), we may safely replace the small ball
B(2v/N§) by the larger ball B(1), except for the term involving ¢, for which it is
crucial to integrate on a ball of radius of order § (see Corollary 3.2).
Notice that ©; N Oy # (. Indeed

/(QWJ)X{t} eelve)

meas(©; N Oy) > ;53,

by Lemma 3.1 and Corollary 3.3. Therefore, combining the estimates in Proposition 3.2,
Lemma 3.4, Corollary 3.2, Lemma 3.8 and Proposition 3.4, we obtain, for ¢t € ©; N O,,

Loy €e(¥e) < K+ Co0)nt) Bue(ve, (0,1),1) + Coopnt.
Hence,
1
oN-2 /B(QWJ)x{t}
where C'(d) depends only on dy and K depends only on N.
We fix &y such that (3.140) holds and such that

ec(ve) < K(62 4+ C(60)17) Ewe(ve, (0,1),1) + C(8)n?,  (3.142)

1
Ko < T

From now on, 4y is completely determined. So is C(dp) in (3.142). Therefore, choosing
7o such that

1 1
C(do)ng < 1
we have for 0 < 5 < 19, combining (3.142) with (3.139),

Bue(ver (0,1),8) < 2 Eye(ver (0,1),1) + R(1),

\]

where .

R(n) = C(do)n? + K|log do|n.
This finishes the proof of Proposition 3.1, and hence the proof of Theorem 1 is com-
pleted. O

4 Consequences of Theorem 1

In this section, we prove some consequences of Theorem 1 which were announced in
the introduction. Proposition 1 is immediate and we leave the proof to the reader.
We present the proofs of Proposition 2 and 3, and we add another consequence, which
allows to localize vorticity under some additional compactness properties of the initial
data u?.
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4.1 Proof of Proposition 2
Let zo be any given point in B(zr, ). We claim that we can find 0 < A(T') such that

Euel(wo,T),r) <mllogel,  forevery Ty <r<\/Ti=R,  (41)

provided 7 < & [recall that A enters in the definition of 7).
Proof of the claim. We invoke Proposition 2.3. Let A > 0 and /1, < r < 11 = R,
we have

~ 1

V2 \?

g’ws ’T bl < / £ £ T N_2M e l . 42
) (($0 ) T) - pN-2 B(zo,)\r)x{T}e (u )+(m) OeXp( ] )| Og‘€| ( )
First we choose A\g(T") such that
2 N2 )\2 ™
2y < 4.
(2)% Myesp(- ) < (4.9
Set
AT) = max(2,2X1(7)).
Since zo belongs to B(zr, %) and 7 < R, it follows that
B(.’E(), Ao(T)T) C B(.’L'T, )\(T)R)
Therefore,
1 Ry 1 /
< (—
rN-2 /B(aco,)\o(T)'r)x{T} ee(ue) < (r) RN=2 JB(ar N(T)R))x{T} ee(te)
Rin s, AN
=(— 1 < (—= 1 i
()" "nlloge| < (\/To) M|loge

Choosing T of the form Ty = K772 R2, we obtain

1

N—2
J(u) <K 7 [logel. 4.4
rN—2 /B(wg,)\g(T)r)x{T} ee(ue) < log| (44)

It suffices then to fix the constant K as

TN\ N=2
K=(—
(3)%

?

so that combining (4.2),(4.3) and (4.4) we obtain (4.1) and the claim is proved. The
conclusion then follows from Proposition 1. O

In the next section, we will make use of the following easy variant of Proposition 2.
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Proposition 4.1. Let u. be a solution of (PGL). verifying assumption (H,). Let
zp €RN, T >0 and R > \/2¢. There exists a positive continuous function \ defined
on (RF)? such that, if

iar, T, R) = e(ue(,T)) <

RN- 2|loge\/ B(zr,\(T,R)R) e
then

Ly

1
|ue(z, t)| > 5 forte [T+ Ty, T+T| andzx € B(xr, 5

The function A(T, R) verifies

A(T,R)N\/N_

and in particular \(T, R) R remains bounded as R — 0, for any T.

2log(T + B?)|,  for (T, R) — (0,0),

4.2 Proof of Proposition 3

We have, for any zo € RY and t > T7,

ly — x|
At

_ 1

Euelw0,0), VD) —55 [ exud) exp(—L ) dy
\/‘I_fN 2

< —xy—Mylloge| < Tj = M0|10g8|

< m|logel,

in view of the definition of T;. The conclusion follows from Proposition 1. O

4.3 Localizing vorticity

In this section, we assume that u? is localized in some large ball B(R;). More precisely,
we will assume that there exists R; > 0 such that

(Hy) wW=1 onRY\B(R).

In particular, there is no vorticity outside B(R;) at time zero. In this situation, we
will show that V. N {t > 2¢} remains confined in a bounded region of RY x (0, +00).
In view of Proposition 3, we already know that

M,

V. CRY x[0,T)],  where T; = (—2)¥=

m
We thus need to prove that, under assumption (H;), horizontal spreading is excluded.
More precisely, we have
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Proposition 4.2. Assume ul verifies (Hy) and (H;). Then there exists R > 0 depend-
ing on My and Ry, but not on €, such that

1 _
lue(z, t)| > 3 for all z € RY \ B(R) and t > 2¢. (4.5)
Proof. In view of Proposition 3, (4.5) is already established for 7" > T;. We therefore
assume t < T}. Set
7= max_\0,R)R,
0<R<A\ /Ty

where ) is the function defined in Proposition 4.1. Note that 7 is finite in view of the
last remark in Proposition 4.1. Let zo € RY \ B(R, + 7), and v2e < R < /T}. We

have 1
1 0,R) < ————— (ud) = 0,
77(370’ ’ ) = RN,QHOgE‘ B(ao.r) € (ue)

where we have used (H;p). Applying Proposition 4.1 for T = 0, x7 = 7o and R we
obtain the desired conclusion setting R = Ry + 7. O
5 Improved pointwise bounds and compactness

The aim of this section is to provide proofs to Theorems 2, 3 and 4.

5.1 Proof of Theorem 2

Since by assumption (10), |u.| > 1 —0¢ > 1 on A, there is some real-value function ¢,
defined on A such that

Ue = Pe eXp(iQOE) in A, (51)
where p, = |u.|. Changing u, possibly by a constant phase, we may impose the addi-
tional condition .

— = 0. 5.2
NING (5:2)

We split as previously the estimates for the phase ¢, and for the modulus p., and we
begin with the phase. Inserting (5.1) into (PGL). we are led to the parabolic equation
2 0¢: . .

Pegy div(p:Vep.) =0  in A. (5.3)
In contrast with the equation for the modulus, (5.3) has the advantage that the explicit
dependence on ¢ has been removed. We will handle (5.3) as a linear equation for the
function ., p. being considered as a coefficient. In the sequel, we write ¢ = . and
p = p. when this is not misleading. In order to work on a finite domain, we consider
the truncated function ¢ defined on RY x [T, T + AT] by

@(.’L‘, t) = (‘0(.@, t) X(.’L‘),
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where x is a smooth cut-off function such that
4 N 5
X =1on B(SR) and y=0onR \B(ER)

The function ¢ then verifies the equation

oy
,028—;0 —div(pV@) = div(p’eVx) + p°Vx -V  in A, (5.4)

Moreover, by construction
. 4
supp(¢) € B(zR) x [T, T + AT},

and in particular ¢ = 0 on the vertical part of the boundary of A. By a mean value
argument, we may choose some ¢, € [T + T + 2] such that

4
e\ Ue <—/ e\ Ue
/B(R)x{to}e(u)_AT Ae(u)

and we set

3

AT
Ao = B(R) x [to, T+ AT) > Ay = B(;R) x [T + ——,T + AT].

3
4

Since by assumption p is close to 1, it is natural to treat the Lh.s. of (5.4) as a
perturbation of a heat operator, and to rewrite (5.4) as follows

0@ 0p :
a_f — Ag = div((p* = 1)VP) + (1 — pQ)a—f +div(p*eVx) + p*Vx -V  in A.

We introduce the function g defined on Ay as the solution of

B0 — Apy = div(p*eVx) + p*Vx - Vg in Ay,
wol(z, ) = @(x,to) on B(R) x {to}, (5.5)
wolz,t) = 0 V& € OB(R), Yt > t,.

In particular, since x = 1 on B(£R), we have

0 4
We set o1 = @ — (g, i.e.
© = o+ p1.

We will show that ¢ is essentially a perturbation term.
At this stage, we divide the estimates into several steps. We start with linear
estimates for (.
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Step 1 : Estimates for . We claim that

19 0ll 222 a0y < C18) | [ ()] (1)
and
”V(;DO”L‘X’(A%) < Co(A) [/A ec(ue)| (5.8)
where 2% = ]\2,—17\’2 is the Sobolev exponent in dimension N, and, for 1 < p, ¢ < +o0,
T+AT ¢
LPLi(Ag) = {f measurable on Ag s.t. / [/ [fl7] < +oo}
to B(R)
[We recall the obvious identity LPLP(Ag) = LP(Ay)].
Proof. We write @o = ) + ¢g, where ¢ is defined by
%3 — A =0 in A,
©3(z,t0) = @(z,ty) on B(R) x {to},
©3(z,t) = 0 Vz € dB(R), Vt > to.
By standard estimates for the heat equation, we have
IV?@0llz2(a0) < CVEIlL2(mryxtr0y < C(A)[lee(ue)llzrn),
and therefore by Sobolev embedding
IV@ollore (ag) < C(A)llex(ue) o) (5.9)

We turn next to @j. Let 7 be the linear mapping which, to any function f defined on
Ay, associates the unique solution v = 7 f of the problem

%—Av = f in A,
v =0 on B(R) x {to},
v =0 Vz € 0B(R), Vt > 1.

It is well known that the operators f — V(T f), f — 2(Tf) and g — V(T (divg))
are linear continuous on LPLI(Ay) (see e.g. [35]). With these notations, we may write

0o =Tf+ T(divg)

where
f=pVx-Vo, g=poVx.

We have the easy estimate

1fllz2a0) < CMIVellL2(a0) < C(A)lec(ue)lra),
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and in view of (5.2) and Sobolev embedding,

1912222 (a0) < CllellLerer (ao) < CMIVllL2L2(a0) < C(A)[lec (ue) |1 a)

Therefore, by the linear theory for 7 mentioned above,

||V€0(1)||L2L2*(A0) < ”V(Tf)”L2L2*(A0) + V(T (div 9))|| 22 (Ao)

< c<A> 10V + DT fllzrzao) + V(T (@AY ) 1122 (a0)) 5.0
C(A) [||f||L2L2(A0) + ||g||L2L2*(A0)] .
C(A)llec(ue)llzr(a)
)

Combining (5.9) and (5.10) we obtain (5.7). Finally, (5.8) follows from (5.6), (5.7) and
standard estimates for the homogeneous heat equation. O

Step 2 : The equation for ¢;. The function ¢, verifies the evolution problem

%= Aoy = div((PP = 1)VE) + (1 - p?) 5 in A
o1(z,t0) = 0 on B(R) x {to}, (5.11)
p1(z,t) =0 Vz € OB(R), Vt > t,.

It is convenient to rewrite equation (5.11) as

OO Ay = (2 = 1)Vp) + o+ div (50, (5.12)
where we have set
fo=(1- )g—f and  go = (p* — 1)Vy.
We have, for any 1 < p < 2,
1 foll72rn(ag) < C(A)Moe®"|loge]. (5.13)

Indeed, for any ¢ € [ty,T + AT]

4 2—p

a@ 2 2 2
P _ 1 — 2P| 2P < / 2 / 1 — p?) >
/B(R)x{t} fol /B(R)x{t}‘ a |6t| - ( B(R)x{t}' ‘ ) ( B(R)x{t}( )
<o ([ 015 |2) -9(Myllogel)F
B(R)x{t}

Hence,

/tfm(/( ety 0 |”) < <>[ = |] HD) (Mg loge)

< C(M)er? *“(Mouogenﬁ,
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and (5.13) follows. Similarly using (5.7), we obtain, for any 2 < ¢ < 2*, the estimate

for go
1900172 20(a0) < C(A)Moe® ~?loge]. (5.14)

We now estimate ¢; from (5.12) through a fixed point argument.

Step 3 : The fixed point argument. Equation (5.12) may be rewritten as
1= T(div((p* = )Vr)) + T (fo + div go),

which is of the form
(Id — A)py = b
where A is the linear operator v — T (div((p? — 1)Vv)) and b = T (fo + div go). To go

further we need to specify the function space on which we consider this operator. Set
I =[ty, T+ AT]. Fix p and ¢ such that they verify the conditions

._ Np

and 2<qg<2*

[Although the choice of possible p and ¢ verifying the previous conditions shrinks as N
increases, it never becomes void!]. Consider the Banach space

X, ={v e W(I,W Y (B(R))) N L*(I, W*1(B(R))) s.t. v(0) = 0}.

It follows from the linear theory for 7 mentioned earlier that A : X, — X, is linear
continuous and that

IAllzcx,) < C(@IT = pllzeag)-
In particular, we may fix ¢ > 0 such that

1
C@II1 = plleag) < Clg)o < 3"

With this choice of o, we deduce that I — A is invertible on X, and
lerllx, < Clibllx,- (5.15)
Finally, by (5.13), (5.14) and Sobolev embedding we obtain

1bllx, < T follx, + 1T (div go)||x,
S IVT follezre= + 10T follzew-1a + |90l £2L
< C(A) [||(V2 +Id)T follzzre + 10T foll 120 + ||90||L2Lq]
< CA) [[lfollzre + 1190l 2214]
< C(A)(F + 7)Mo + 1)|loge].

For the third inequality, we have used the fact that L? — W19 (recall our choice
g = p*). This, in turn, is a consequence of the Sobolev embedding Wbt s [P which
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follows from the identity (¢')* = ((p*)")* = p/, where stars and primes refer to Holder
and Sobolev conjugates in dimension N.
The following estimate for ¢ then follows from (5.15)

2— 2% —
IVorll2raag) < C’(A)(an +€Tq)(M0 + 1)[loge]. (5.16)

We now combine the estimates for ¢y and ;.

Step 4 : Improved integrability of V. Combining (5.7) and (5.16) we obtain
||V¢”L2L4(A0) S C(A)(MO -+ 1)‘10g€| (517)

Comment. Since ¢ > 2, the previous estimate presents a substantial improvement
over the corresponding inequality with ¢ replaced by 2, which follows directly from
(Hp). This improvement is crucial in order to prove the smallness of both the modulus
and potential terms in the energy, which we derive now.

Step 5 : Estimates for the modulus and potential terms.
The function p satisfies the equation

9 _

(1-¢%)
ot '

c2

Ap+p|Vyl* = p (5.18)

Since x = 1 on B(3R), we have ¢ = @ on B(:R). Let £ be a non-negative cut-off

function such that £ = 1 on B(3R) and & = 0 outside B(:R). Multiplying (5.18) by
(1 — p?)€ and integrating by parts we obtain

1 — )’ 0
/AO 2p|Vp|2§+/AO p(Eizp) =/ L - e
+ [ Vo vea =)+ [ ot - p)Vele

Hence, since p > £ on A we obtain

[ 1902 5 ey < e ([ 1908) ([ vitwn)

T+AT
+ K ( / |V¢\Q)
to B(3R)x{t}

so that using (5.17) we finally infer that

I

To summarize, we have proved at this stage that

D=

q—2

1- )% gt
</B(§R)x{t}( 7) )

Q[N

Viue|[” + Vo (u)] < C(A) (Mo + 1) (190 + ¢)[loge 2. (5.19)
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ec(us) < [Vipo|? +7e, (5.20)
for some r, > 0 which verifies
/ r. < C(A)Moe®, (5.21)
A
for some small o > 0 depending only on N. Therefore, we set

@5 = ¥o-

Step 6 : Proof of the L bound (11) for the energy.

This step relies on a result by Chen and Struwe [19] (see also [51] and [47]), which
provides an L* bound for the Ginzburg Landau energy on a cylinder, provided the L'
norm of the energy on a larger cylinder is small. More precisely we have

Proposition 5.1. (see [19]) Let 0 < € < 1 and let v, be a solution of (PGL). on the
cylinder A}, = B(R) x [0, R?] for some R > 0. Then there ezists a constant ~y > 0,
depending only on N such that if R > /€ and

1
ﬁ/AR ee(ve) S Yo (522)
then .
ed(v)(w,t) < K /A e(wo) (5.23)

for any (x,t) € B(%) X [%R, R].

In our situation, (5.22) is not met, in general, for the function u, itself. However,
we will use Proposition 5.2 for a suitably scaled version of u,, for which (5.22) applies.
Let /e < rg < 3R, to be determined later, set € = = and let (z9,%9) € As be fixed.

Consider the map v, defined on A? = B(1) x [0, 1] by

— t—t 2
vz, ) = u, (x m {E=t) ”0)
TO TO
so that

ue(Zo, o) = ve(0,1).

By scaling, we have

/AO ec(ve) = iN e (ue) (5.24)

7'0 ATO (.’Eo ,to)

where we set A, (%o, to) = B(zg,70) X [to — r3,1]. Note in particular, since ry < %R,
that
Aro(.’l?(),to) C A%,
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and we may apply the decomposition (5.20) to assert that

/ ee(u) < meas(A,,(zo,t0)) - [|[VP. |30 +/ re
ATO(IO,tO) A%
< wnCo(A)rd ™ ?lec(ue) || p1(ay + C(A) Moe®.

Hence, going back to (5.24)

/A ec(v) < wyCalA)rdles(ue)llzscay + C(A) Morg Ve, (5.25)

1

Therefore, we choose

ro = inf {%R, (QWNCQ(A)”eE(us)”LI(A))_%} .

Yo

Note in particular that ;" diverges at most as \loge|%. Hence, for ¢ sufficiently small,

cmmﬁmﬂﬁg%i

On the other hand, by construction,

WNC2(A)T§||66(UE)”L1(A) < 9

Applying Proposition 5.2 to v, together with R = 1, we therefore deduce

ree. (us) (2o, to) = €.(v:)(0,1) < K /A Ced(ve)
< KwyCo(A)rgllec (ue)[lL(ay + C(A) Morg Ve,

which leads to
e-(u)(x0, t0) < C(A) /A ec(uz) + C(A) Mpe?,

for some constant 0 < 8 < «. This proves (11), for every (zo,to) € As.

The remainder of the proof is devoted to the L*> estimates for k.. We start with
the modulus and potential terms.

Step 7 : Improved estimates for Vp and V.(u.). Set # = 1 — p. Applying
Lemma 1.1 to the cylinder A%, we obtain

01 < O (IV¢lioqn,y + logel) < C(A)Rloge] — om Ay, (5:26)

5
8

where we invoke (11) for the last inequality. Going back to (5.18) and using once more
(11), we infer that
|0,0 — AB| < C(A)|loge| onAs. (5.27)
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Since (5.27) is an L* bound, we deduce by standard linear theory that, for every
l1<q¢g <4ocand 1< gy < +00,

10llwrar 1,0y < C(A)logel,  [|0]| Lar (1 w202 (1)) < C(A)loge],

where I = [T+ AT, T+ AT] and B = B(xo, 3 R). By interpolation (see e.g. [42, 35]),
we obtain

||0||W%,l11 (I,W%’qz (B)) S C(A)|10g8|

Choosing ¢; and g, sufficiently large (in particular ¢; > 3, go > 3N), we obtain that
for every 0 < v < 1,

HGHCO’%(I,W(B)) < C(v,A)|logel.

On the other hand, from (5.26) we have
||0||Loo(],Loo(B)) S C(A)€2|log€\,
and therefore by interpolation again

1011004 1 18y < C(A)E° (5.28)

for some (small) o > 0. In particular, we have

Volieiny) = [VBlzein,) < C(A)e" (5.29)

N

Finally, in view of (5.26) once more, we obtain

2
Ve(ue) < KS— < C(A)e?|logel? on A1
so that
Vol + Ve(ue) < C(A)e*  on Ay (5.30)

Step 8 : Improved L estimates for V;. Going back to (5.12), we estimate
again fo and go, but now with the help of the improved estimates for p. First, for go,
we have by (5.28)

||90||Co,%(I,C1,B(B)) < C(A)e“|loge|.

For fy, first notice that since we work on Ay, ¢ = @ and therefore fo = (1 = p?)0sp.
From the equation for ¢,

0y )
2 2 _
P 5 div(p*Vy) =0,

and from the a-Holder regularity bound for p, we infer a-Holder regularity bounds for
Oyp, of the order [loge|. Since on the other hand (5.28) holds, we deduce that

folleow(ay) < C(A)e* [logel”
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Going back to (5.12) and invoking Schauder theory, we obtain
”VQDIHCO’O‘(A%) < C(A)EP, (5.31)

for some 8 > 0.
Step 9 : Estimate (14) completed. We write on As

ee(ue) = |Vue > + Ve(u.)
= [Vpl> + p*|Vo|” + Vi(uc)
= Vo’ + (0" = D)|Vp|* + [V |* + 2VD, - Vo, + [V [* + Vi (ue)
= |VP,|? + k.,

and the conclusion follows directly from our previous estimates. The proof of Theorem
2 is thus completed. 0

In order to prove Theorem 3, we turn next to a new Hodge - de Rham decomposition
which is specially tailored for situations where wild oscillations in the phase are present.
This decomposition will later help us proving that the linear and topological modes do
not interact.

5.2 Hodge - de Rham decomposition without compactness

Let k € N, k > 3, and consider a smooth bounded domain €2 in R¥, such that m; (9Q) =
0. [since k£ > 3, this is the case for instance if 2 is topologically a ball]. Let ¢ and §*
denote respectively the exterior differentiation operator for differential forms on R¥,
and its formal adjoint [since in the sequel we will take £ = N + 1, we do not use the
notations d and d*, which we restrict to RY for the ease of reading]. Let v, be a smooth
complex-valued function defined on 2. We assume that, for some constant M, > 0, v,
verifies the bounds

/ e:(v:) < Ms|logel, (5.32)
Q
/ e (ve) < Myllogel, (5.33)
0
and
v.| < 3. (5.34)

Then we have

Proposition 5.2. Assume that v. verifies (5.32),(5.33), (5.34). Then there ezists a
smooth function ®@, a smooth 1-form (, and a smooth 2-form VU defined on €2, such that

v, X 0v, = 0P + 0*U + (, 0¥ =0 in Q, U+ =0 on 09, (5.35)

and
VP L20) + VY L2(q) < C(22)Ma[logel. (5.36)
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Moreover, for any 1 < p < %= we have

k
k—1

(5.37)

1
1] o) < Clp, ) Mae?,

where C(p, <) is a constant depending only on p and SQ.

Comment. The terms ¥ and ¢ in the decomposition (5.35) are bounded in suitable
norms. Notice however that it is not possible to find a uniform bound on @ in any
reasonable norm. In vague terms, one might say that the possible lack of compactness
of v, x dv, has been completely “locked” into &.

Proof. We split the proof into two steps. In the first step, we take care of the boundary
Y = 09 (which is by assumption a smooth (k-1)-dimensional manifold), and of the
Hodge - de Rham decomposition of the restriction (v. x dve)T to X. Then, we “gauge
away” the possible lack of compactness.

Step 1 : HdR decomposition on . Since by assumption ¥ is simply connected,
we may write

(Ve X 0v.)T = v, X dsv, = ds®” + d5¥”  on ¥, with ds¥” =0 on %, (5.38)

where dys; denotes the exterior derivative for forms on ¥, and d5, its formal adjoint.
Moreover, by orthogonality, we have

V@2l + IV EZ 7z < KMollogel. (5.39)
On the other hand, we claim that for 1 < p < %,
[V2UZ || < C(p, Q) M,. (5.40)
Indeed, applying dyx, to (5.38) we obtain
—AsUY = ds (v, x dsv.) = 25, on X. (5.41)
By the Jerrard-Soner estimate [34], we know that, for any 0 < a < 1,

1
lloge| Jaa

| Jzve||icoep < Clex, 2) e:(v:) < C(a, Q) Ms. (5.42)

By the Sobolev embedding, if ¢ > k — 1 we have W4(X) — C%*(Z) fora = 1 — &1

q Y
so that by duality [C%*(2)]* — [W"4(Z)]* = W1#(X) where | + . = 1. By elliptic
regularity theory, we therefore deduce from (5.41) and (5.42) that, for 1 < p < £,

||‘y§||wl,p S C(p, Q)”JEUE”W—I,p S C(p, Q)||JEU5||[CO,Q(E)]* S C(p, Q)MQ (543)
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We consider next the harmonic extension @2 of &> to , i.e.

AP =0 inQ,
PV =@> onX.

In view of (5.39), we have

VP72 < K Malogel. (5.44)
Step 2 : “Gauge transformation” of wv.. On () we consider the map w, defined
by
w, = v, exp(—i®?) in Q.
Notice that |w.| = |v;|. Moreover, a simple computation shows that
w, X 6w, = v, X 00, — |v.|?0®° = v, x Sv, — 6D + (1 — |v.|*)dP?. (5.45)

Since by assumption (5.34) |v.| < 3, we have
|Vw,| < |Vo,| + 3|V (5.46)

and hence
IVwel[Z2iq) + €211 = |we[*)? |72y < K Ms[logel. (5.47)

By Holder inequality, we have for 1 < p < 2,
1= [0e[?)6820 ) < K Moe? Plloge] (5.45)

and similarly
11 = [ve*)d=®@Z 1Tp sy < K Mpe®Pllogel. (5.49)

Next, we apply the Hodge - de Rham decomposition to w, X dw, on {2 so that

ov, =0 in Q,

we X dw, = 6PL + 6*P,  in Q,
B =0, (V) =0 on T

By orthogonality, we have
VDL 20y < K Malloge|. (5.50)

Arguing as above, we are led to the elliptic problem

AV, =w, =2Jw, in €
(Te)T =0 on ¥, (5.51)
("0 = Ae = (we X dw.)T = dEPZ + (1 — |v:|?)ds®Z  on X.

In view of (5.43) and (5.49) we have, for any 1 < p < %5,

[Ac || Loy < C(p, Q) Mo,
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On the other hand, by (5.33) we may invoke Proposition II.1 case ii) in [9] to conclude
that for any 0 < a < 1,
l|lwelleoe @y < Cle, ) M.

[The previous inequality does not follow immediately from Jerrard-Soner’s work [34]
since w, does not have compact support in €.]

In order to conclude, we first invoke the following linear estimate [for a proof see
e.g. [8] and the references therein].

Lemma 5.1. Let 1 < p < 400 and%%—%:l. Letl e N1 <[ < k. Let ¥ and w be
I-forms on Q and A be an (I-1)-form on ¥ = 0. Assume that

AV =w in 2
\IJT = 0, (6*\I/)T =A on X.

There exists some constant C(p, <), depending only on p and §2 such that
\Il 1,p < C ,Q |: 1,9 * + A 1-1 .
1wy < C0, Q) |[lolipra@ye + 1Al -y,
Proof of Proposition 5.2 completed. For any 1 < p < ﬁ and %—!— % =1 we
have,
.

Arguing as for (5.43), we obtain

<N Acllmay = 1 Acllos) < C(p, Q) M.

T3]

l|lwellwre@ys < C(p, Q) ||welljcoay < Cla, Q) M.

Therefore, we deduce from Lemma 5.1 that

[¥ellwrr < Clp, 2) Ma. (5.52)
Set
V=0, &=+  and  ((Jv.|* —1)5°.
Then,
Ve X 0V, = W, X Sw, + |v[*6@° = B! + 5*W, + 62 — (1 — |v.|?)5D°
=6+ 5§V + (,
and the conclusion follows from (5.44),(5.48),(5.50) and (5.52). O

5.3 Evolution of the phase

Let u. be a solution of (PGL), verifying (Hp). Let K be any compact subset of RY x
(0, +00). We first choose a parabolic cylinder A which contains K

K CA=Bx(T),Ty) CRY x (0,+00).
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Here B is some open ball in RY and 0 < Ty < T;. Next, let 2 be a smooth bounded
domain with simply connected boundary, such that

KcACQCRY x (0,+00).

Without loss of generality, we may assume that for ¢ sufficiently small
/ ec(u:) < Mslloge|, /a ec(u:) < Msllogel|, and lue| < 3,
Q 0

where My = C(K)M, and C(K) depends only on K. We apply Proposition 5.2 to u..
This yields

Ue X OUs = 0P + 6"V + (, 0¥ =01in Q, W+ = 0 on 0, (5.53)

where @, ¥ and ( verify the bounds (5.37). In view of (5.37), we have already obtained
good estimates for ¥ and (. In order to handle @, we first prove that it solves an
evolution equation.

Lemma 5.2. The function @ in (5.58) verifies the equation

%_f —AG = d* (5 + ¢~ B(5° + )dt) — P(5T+C)  in Q. (5.54)

Here, for a 1-form w on A, we denote by Py(w) its dt component.
Proof. Taking the exterior product of (PGL). with u., we are led to

% —div (ue X Vue) =0 in A. (5.55)

On the other hand, in view of the decomposition (5.53),

Ug X

{ Ue X du, = dP+ (0*V + () — P(6*¥ + ()dt,
du. 0B . (5.56)
Combining (5.55) and (5.56) leads to the conclusion. O

5.4 Proof of Theorem 3

Let u, be a solution of (PGL), verifying (Hy), and let A, K, ¥, & and ( be as in Section
5.3. Without loss of generality, we may assume that

| 19080 < C(K) My loge, (5.57)

where V., denotes the gradient with respect to both space and time coordinates.
Indeed, since by Proposition 5.2

| Ve, @20y < C(2) My|logel,
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if (5.57) were not verified for our original A, we could shrink it to a smaller cylinder,
still containing K and verifying (5.57). We decompose next the proof in two steps.

Step 1 : Defining ¢.. We set 0A = Oy U Oy, where
OO = (B X {To}) U (aB X [To,Tl]) and 01 =B x {Tl}
Let @; be the unique solution of the parabolic problem

{ B A =AU BEVHQA) - PEU iAo

d, =0 on Oy
Since by (5.37) we have
189 + € = B8 + Ot 1oy + P80 + O)llaway < Clp, K) Mo,
it follows from standard estimates for the non-homogeneous heat equation that
V1| Le(ay < C(p, K) M. (5.59)

Finally, we set
Ye = b — P

and
We = Ue exp(—ip,).

By construction, ¢, verifies the homogeneous heat equation

8o - .
{ o —Ape =0 inA, (5.60)

. =& on O.
From standard regularity theory for the heat equation, we have
IV @ellfoe iy < CUE) Vi Bll7205) < C(K) Mollogel. (5.61)

This establishes the third statement of Theorem 3. We next turn to the fourth and
last one.
Step 2 : WP estimates for w,. First notice that

|w5|2|Vw6|2 = |w5|2|V|w5||2 + |ws X sz|2a

and hence, since |w,| = |u./,

/ Ve < ) | [ e x dw+ [ 9] (5.62)
Kn{juc[>3} K K
On the other hand, since |Vuw,| < |Vu.| + 3|Ve.| < C(K)Mye™", we have

1— Ug 2\2
Lo 19w < cmes [ L2 cog e,
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By construction, we have
we X 6w, = Ue X 0uy — U265, = 6*W + 6@; + (1 — |u.|*)dp.. (5.64)
Since by the Holder and Cauchy-Schwarz inequalities
1(1 = [ue[*)gell oy < Clp, K)Il(l—IUEIQ)IIL%(K) 16¢ellz2(x) < C(p, K)e* P loge| Mo,
it follows from (5.64), (5.37) and (5.59) that
[ we x 8w < C(p, K)(My +1). (5.65)

It remains to bound the LP norm of the gradient of the modulus. For that purpose, we
use the following lemma.

Lemma 5.3. Set p = |u.|. The following bound holds, for any compact subset K C
RN x (0,4+00), and any 1 < p < 2,

[Vl 1P < C(K) (Mo + 1) logel,

where the constant C'(K) depends only on K.

Proof. The function p satisfies the equation

op° _

2
AP +2|Vu|> = 2 p2(1 — p). .
5 A F2Vel =501 - p) (5.66)

Let us introduce the set
A={(z,t) €Q, p(z,t) >1—¢"?}
and the function

5= max{p, 1 — "2},

sothat p=pon Aand 0<1—p5<¢e'/2in Q.

Next, let xx be a cut-off function in D(Q2) such that 0 < xx <1 on 2, xx =1 on
K, and |Vxg| < C(K).

Multiplying equation (5.66) by xx(p?> — 1) (which is compactly supported in Q),
and integrating over ) we obtain

} 2p(1 - p*)(1 - p°) . .
2y 2 _ 2 2 2 2
/va Vp XK+/Q = XK —/Q(l p7)| V| +/QVP Vxx(1—-p7)

op® 5
—/QE(P - 1)xk-
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It follows that on the set Ax = AN K we have

| 1vir= [ vive
Ax Ax
< 251/2/Q Vu|? + C(K) /Q IVplIL — p?| + C(K) Mo [loge|
1/2 2 2 (1- /’2)2 1
< 2 / Vu.|* + O(K)e / -z +/ P 4 O(K) Met,
Q Q o 4e?
hence, since p > 1 — £/2 on Ak, we have, for ¢ < 1/4,

2 <y 22 < O(K)M,ei. .
/AKW < /AKWm < C(K)Mye (5.67)

On the other hand, on Bx = K \ A we have [ (1 — p?)* < C(K)M,e?|loge| and
hence, since (1 — p) > /2 on By, it follows that |Bg| < C(K)Mye|loge|. Thus

p/2
/B IVpl? < ( /Q \va) B[ P2 < O(K) (Mo + 1)e 2 [loge|. (5.68)

Adding (5.67) and (5.68) we complete the estimate. O

Combining (5.62), (5.63), (5.65) and Lemma 5.3, the proof of Theorem 3 is complete.
U

5.5 Hodge - de Rham decomposition with compactness

In this section, we adapt the strategy of the proof of Section 5.2 assuming the com-
pactness assumptions (H;) and (H,). We are going to work in the domain

Q. =RY x (2¢, +00).

Notice that in contrast to the results of Section 5.2 the domain here is not compact
(but the initial data possesses compactness!). Notice also that for technical reasons
(in particular in view of Proposition 1.1 and Proposition 4.2) that we have removed
the boundary layer present in RV x [0, 2¢]. This however introduces a new difficulty,
namely we have to keep track of the compactness across this boundary layer.

As in the proof of Theorem 1, we begin with a reprojection of u.. Let p : Rt — R*
verify (3.63), let 7 = p(Ju,|) and set

so that |i.| <1 on RY x (0, +00),

I

DO |

|Te| = 1 if |u|

Y

- i 1
U, = u if ‘us‘ < Za
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and
Ji. =0o0n V., = {(z,t), |uc(z,t)] >

1
3t
In particular,

supp (Ju.) C B(Ry) x [0,T%].
We have

Proposition 5.3. Assume that u. verifies (PGL)., (Ho), (H1) and (Hz). Then there
exists a smooth function @ and a smooth 2-form ¥ defined on €2, such that

i, X 0il, = 06+ 5*0 in Q.
50 = 0 in ., (5.69)
¢=0, Ut =0 on 0Q, = RN x {2¢}.

Moreover,
Va1 @ |72 xjo:77) + 1 Vet Ol T2y o,y < C MollogelT, for allT >0, (5.70)

and for any 1 <p < % and any compact subset K C RY x (2, +00) we have

”Vz,tds“Lp(K) + ||Vw,t\1’||LP(K) S C(p, K, M()) (571)

Proof. The Hodge - de Rham decomposition of the 1-form 4. x d4. on €. leads directly
to (5.69) and (5.70). Moreover, applying the 6* operator to (5.69) on €. we are led to
the elliptic problem

{ —Ag ¥ = 2J, 41, in €2, (5.72)

‘I’T = 0, ((5*\11)1' = (1],5 X 5’1]5)1' on 895

In the sequel we write simply A instead of A, and similarly for J, when this is not

N(N+1)
2

misleading. Since U is a 2-form it has different scalar components

U= Y Udr;Adz;+ > U;dt Adz,.

1<i<j<N 1<j<N

Going back to (5.72), we see that the boundary condition on 02, decouple into Neu-
mann conditions for the functions ¥;, namely

8\1’]' . 8’&5

a.  — WY a._ 8QEa
axN Ue X 6.’1‘,‘j on

whereas for the functions ¥; ; we have homogeneous Dirichlet conditions
\IJi,j =0 on 8Q5

We divide the proof of (5.71) in several steps.
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Step 1 : LP estimate for V¥, ;. We introduce the reflection operator P., which,
to any function f defined on ., associates its reflected function P.f defined on RV x
(—00,2¢) by

P.f(z,t) = f(z,—t + 4¢) Vz e RY, t < 2.

We extend ¥, ; to R¥*! by setting
\Ilm-(x, t) = —Pg\lli,j(ﬂf, t)

so that
—AV; ;=21 Ay, — Po(21g, Nliy;)  in RVFL (5.73)

Invoking Proposition II.1, case ii) of [9], we deduce that the right-hand side of (5.73)
is bounded in [C%*(RY*1)]*, and arguing as in the proof of Proposition 5.2 we deduce
that

VWil < Clp, K, My). (5.74)

The corresponding estimate for ¥; is less direct. The compactness assumption on the
initial data will be determinant in the computation. We are going to use the following.
Step 2 : Compactness at the initial time. Let x be any function in C}(RY). We
have, for any ¢ > N,

ou’
0 £
/RN Ue X (axj) X

Proof. First notice that since u? is constant outside B(R;), we only need to consider
the case x € C!(B(2R;)). For the same reason, we also have

0 0
192013 ey < C (120 3wy + 1)

Consider the function @? defined on RY by 40 = ? if [u?] < 1, 42 = u?/|u?| otherwise.
20 s 70 _ 210 0 if [,,0 50 720 _ 1 0 0 3f |0
We have @) x du. = u. x du if |u)| < 1, and 4. x di, = o le X dug, if lu?| > 1. Next,

< C(@) Iy g, + 1+ Mocllogel] Il (5.75)

RY) CIRN)

we use the embedding Wl < 00N Hé, and the fact that Hz N L™ is an algebra.
1
Since |u2| < 1, xu? belongs to H2 N L* and therefore

tig| 4

I 1 ey < € (Il erap 111 amsyy + 182N X1t o)

< (@) (Il

@"(B(2R1))

< C@ (1 1880 3 oy ) I

-0
HUEHH%(B@RI)) + ”X”W“%’q(B@Rl)))

(B(2R1))
Hence, we obtain
-0 ~0 < 0 ~0
R g 1 WP 1 P
0 ~0
< C(g)llu. ||H2 (B(2R: ))”X” - 5q(B(2R1)) < + |l ”H2 B(2R1))>

(5.76)
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On the other hand, by construction

1— 012\2 V02
|u2xdug—ﬂ2xda2|§‘|u2|2—1‘.|du2|§\/ie(( el )" | [Vl )

4e2 2
so that
[ X x il = u x )| < Clo)Moellogel Il s g (5-7)
Combining (5.76) with (5.77) we derive the conclusion. O
Step 3 : Propagating compactness. We claim that
e, 26) = () laam) < OMg e logel?, (5.78)

and that for any y € C}(RY),

8u5 0 aug 1 1
Foa % = [0 % 20| < CateSogel (1w + supp(1).
(5.79)
Proof. Define on RY the function uf(x) = u.(z, 2¢). We have, for z € RV,
2 0 . 28 0 .
ul(@) @) < ([ SE(@s)ds)? <26 [ | (e 5) 2 ds.
o Ot o Ot
Hence, by integration,
ou
F_ 002 €2
lof —llouny < 2 [ IFSEP < 2Mocloge],
and (5.78) follows. For (5.79) we write
ouf ou? ouf 0
ul x a%;—ug X OZj = (uf —u?) x 81;? +u? x a—y(uf—ug)
For the first term on the r.h.s., we obtain by Cauchy-Schwarz inequality
ouf ouf
f _ 0 X e < ) — 0 € o0
Jonf =8 % 2 x| < luf =l N g 2 e licla=
< O|lx|l e Mog? log 2.
For the second term, we integrate by parts
0 ou?
0y 9 ¢ F_ .0 f_,0 (0 f _ 0
fuv gt =i < [ Juf =19+ [ 5t = )
< ||u£ - “2||L2(RN)||U2||L2(supp(x))”VX”L“’ (5.81)

+ ||VU2||L2(RN)||UZ — [l o) x| 2=

1 1
< OMoe2|loge| ([[xllwre= + [supp(x)|?)
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where we have used the bound
2l upon) < Ol = [ul)][ 22y + Clsupp(x) |2 < CeBe(u)® + Clsupp(x)|*.
Combining (5.80) and (5.81) we deduce (5.79). O
Combining (5.79) and (5.75) we are led to

/ " (3u5 )
Ue
RN x {2} Oz, X

and arguing as in Step 2 we conclude that

1
< C [I[812, g, + 1+ Macllogel| (Inllwros + lsupp () 1)

~ 8'&5 0n2 1
Jorpo e % G X < € [+ 1+ Moclogel] (Iolhwnce + [supp()] )
(5.82)
Step 4 : Improving (5.82). Let x be in C*(R") such that
IVl Lo ®mny + x|l 2@y < +o00.
Then we claim that
Lo X (5 x| < O I20g g, + 1+ MocHlog 2] (19l + iz
RN x{2¢} © al‘j - “UHY(RN) 0 L L
(5.83)

Proof. Let & be a smooth non negative cut-off function such that £ = 1 on B(R;) and
¢ = 0 outside B(Ry). We write x = x& + x(1 — £). By (5.82) we have

N 0t 012
Loy * () xé“ < C Iy g, + 1+ Mollogel| (19l + xllz +1)-

On the other hand, we have

M

_ 0.
/RNX{%} Ue X (amj) x(1 - 5)‘ <C [/RNX{%} ec(ue) (1 — 5)2] ]| 22 -

By Corollary 2.1 and assumption (H),

/ e(u:)(1— &) < e(ue) (1 — €)* + 4elloge| Mo || VE||7
RN x {2} x{0
< delloge| My || VE| 7,
so that the conclusion follows. O

Step 5 : LP estimate for V¥,. Let K be any compact set in RV x (2¢, +00). Then,
forany1§p<%,

IVYlzex) < Cp, K) M. (5.84)
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Proof. We argue by duality. Let % + % =1, so that in particular ¢ > N + 1, and let h

be any vector field in L(RY) with compact support in K. We introduce the solution
¢ of the dual problem

{ —A¢ =divh in RY x {2, +0c0), (5.85)

22— on RV x {2¢}

orn

(Actually, ¢ is uniquely defined up to a constant). Extending ¢ by reflection on the
whole of R i.e. setting

(=P(¢) onR" x (—o0,2e),
then ( solves the equation
—A¢ =divh +div(P.h)  on RVT.
It follows by standard elliptic estimates that
|V ¢ La@ny < CllA]| Lawny,

and
¢ €C®RY*\ (KUPK)),

where P.K obviously denotes the reflection of K. Moreover, since ( is defined up to an
additive constant, we may also assume that

|17l o

oDl < O G 3w, K UB RN

and that
|| e

dist((z, 1), K U B.K)N

We turn back to the system (5.72). Multiplying the equation of (5.72) corresponding
to ¥; by ¢ and integrating by parts on (). we obtain

V((z,1)] < C(K)

o _ oa.
/QE VI,V = /Q 2y X iy, )C + i, x e,

RN x{2¢} 0z

On the other hand, multiplying (5.70) by V¥; and integrating by parts, we obtain
similarly

/ngqxjvg:/mh-wj

Hence, combining the previous relations,

‘/ utxum ‘4—

Ot
Ue X —C(|. 5.86
/RNx{2s} te X &Ej ¢ ( )
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Arguing as in Step 1, we are led to the inequality

L 20 x ,)¢| < CMIVCILRY) < OMollh s

€

For the second term on the r.h.s. of (5.86) we invoke Step 4. This yields

_ 0.
/ Ue X 7—C
RN x{2¢} ox;

J

< C (14 My + Mo) [[[VC]lze + [I<]]z2]

< C(K) (1+ Mo + Ms)||hl| e

Going back to (5.86) we thus obtain

h- VY,

Qe

< C(K) (14 Mo+ My)||h]|Le(en),

and since h was arbitrary the conclusion follows. O

Step 6 : Estimate for V&. As in Section 5.3 we derive a parabolic equation for
the phase, using (5.55) once more. We have, recalling that 7 = p(|u.|),

Ue X OUs = T 20, X 0l = 7 26P + 7726* 0.
Hence,

U X du, = 772dP + 772 (68U — P,(6*T)dt)

Ou, 0P B .
Ue X ot :TQE—{—T 2Pt(5\p),
and (5.55) leads to
_92 8@ . -2 * -2 * —2 *
T T div(t7°V®) =d (7’ dxW¥ —PB(6 \Il)dt) — 7 P(6").
We obtain therefore
0P b
5 AP = d* (7*25 * U — Pt((S*\Il)dt) —7 2P(6"0) + (1 — 72)% +div((1 - 7*)V®).

By (3.64), [1 — 772| < C|1 — |u,|?|. Given the L? estimate for V¥ obtained in Steps 1
and 5, and arguing as in Step 1 of the proof of Theorem 3, we finally derive the bound

IV®l[o(xe) < Clp; K)

forany 1 <p< %, and the proof of Proposition 5.3 is complete. O
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5.6 Proof of Theorem 4
First notice that the same way we obtained (5.62) and (5.63) we have here

p V4 V4
[Vul <) | [t x ducf + [ V]aclP| + Clo, K) My,

By Lemma 5.3 we have
9l < C() (Mo + 1) loge].
On the other hand,
ue X ducl? = 77|, x dii[? < C(p) (VP + [VE[).

Hence, by Proposition 5.3
/ lue x du|P < C(p, K)
K

and the conclusion follows. O

5.7 Proof of Proposition 5
Since we assume (H;) and (Hj), we may apply Theorem 4 (with p = 1), so that

/A [Vue| <C, (5.87)

where A1 = Ai(z,t, 7). Since u, verifies (16), we may also apply Proposition 4 so that

1 1
2 2

e.(us) = V.2 +kK.  on Ay, (5.88)

where x,. is bounded in L* and &, verifies the heat flow on A 1. Recall that @, was
constructed in the proof of Theorem 2 and verifies (5.5). Notice that on B(r) x {to}
we may impose the additional condition

/ Ve[ < C. (5.89)
B(r)x{to}

Going back to (5.5), we verify that all the terms on the r.h.s are bounded in some
suitable norm, say L'. On the other hand, the initial value is also bounded by (5.89).
Since ¢y = @, solves the heat equation on A 1, we therefore deduce that

Vo, | < C on A1

and the conclusion follows from (5.88).
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Part 11

Analysis of the measures ui
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Introduction

As mentioned in our main Introduction, the focus of this paper is on the asymptotic
limits, as ¢ — 0, of the Radon measures p. defined on R x [0, +00) by

e (ue(,t))

dx dt,
|loge|

pe (@, t) =

where for 0 < ¢ < 1, the functions u. are solutions of (PGL). satisfying assumption
(Hp). We are specially interested in the properties of the time slices ! defined by

e (ue(z,1))

dx.
loge|

pe(x) =

In view of assumption (Hy) and inequality (II), we may assume that for a subsequence
g, — 0, there exists a Radon measure y, defined on RY x [0, 4+00) such that

e, — s as measures. (1)

Following Brakke [13]|, we may also assume weak convergence of ,uzn for all ¢ > 0, in
the sense of measures.

Lemma 1. There exist a subsequence of €, (still denoted ¢,,) such that
uzn — ot forallt >0,
where pt is a finite Radon measure on RY for all t > 0. Moreover, u, = ut dt.

The proof in [31] carries over word for word. We fix such a sequence ¢,, and we
will therefore write ¢ instead of ¢, in the sequel, when this is not misleading. We also
identify in some places the measure u! with a measure on RY x {t}, and we will even
sometimes identify RY and RY x {t}.

Some properties of the functions u. can be translated directly in the language of
the measure p,. Firstly, an easy consequence of the monotonicity formula (for w.) is,

Lemma 2. For each t >0 and z € RY, the function €,((z,t),-) defined on R} by

1 T—yl’ , e
P €l ).1) = g [ e autr )

is non-decreasing for 0 < r < /1.

Secondly, important consequences of the analysis developed in Part I are given by
the following.
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Theorem 5. i) There exist an absolute constant no > 0, and a positive continuous
function X defined on RY such that if, for v € RN, ¢t > 0 and r > 0 we have

pa(B(@, A(t)r)) < mer™ 2, (2)

then for every s € [t + %7‘2,15 + 72], ut is absolutely continuous with respect to the
Lebesgue measure on the ball B(x, ir). More precisely,

1
p = |Ve,|* dr on B(z, ZR)’

where @, satisfies the heat equation in Ay = B(xg, 17) X [t + 1o7%,t +17).
ii) If u. verifies the conditions (Hy) and (Hy) in addition to (2), then for every
s € [t+ 1or t+ 17,
1
put =0 on B(z, ZR)
Remark 1. Note that the constant 7, and the function A are the same as in Proposition

4 of Part 1. Notice also that p, = |V®,|?dzdt on A1, and that |V®,|? is a smooth
function.

We briefly sketch the proof of Theorem 5, which is a rather direct consequence of
Theorems 1, 2 and 4 of Part I. We begin with case 7). If (2) is verified, then for e = ¢,
small enough

/ ee(ue) < mer™ ?|loge|,
B(z,A(t)r)
so that we may invoke Proposition 4. This yields

es(us) = |V¢6|2 + Ke in A%,

where @, verifies the heat equation in A 8 and

Vo> <C(M)floge|, [ <C(A)e”  in Ay
Extracting possibly a further subsequence we may assume that
@
= P, uniformly on As .
lloge| e

Since @, verifies the heat equation, it follows that for every k£ € N

b
= &, inCF(A1),
loge| !
and &, verifies the heat equation on A 1. On the other hand,
ke =0 uniformly on Ai’
so that
ee(tc) — |V, |? uniformly on As .
floge| f

For case ii), we argue similarly, invoking Proposition 5.
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1 Densities and concentration set

In order to analyse geometric properties of the measures p, and p!, an important
concept is that of densities. For a given Radon measure v on RY, we have the classical
definition.

Definition 1. For m € N, the m-dimensional lower density of v at the point x is
defined by

O m (v, ) = lim infM

r—0 mem ’

where w,, denotes the volume of the unit ball B™. Similarly, the m-dimensional upper
density OF (v, x) is given by

v(B(z,r
©;,(v,z) = limsup M
r—0 W™
When both quantities coincide, v admits a m-dimensional density O, (v, x) at the point
x, defined as the common value.

Since the energy measure is expected to concentrate on (N-2)-dimensional objects,
our main efforts will be devoted to the study of the density ©, y_o(ul,-). Invoking the
monotonicity formula once more, we have

Lemma 3. For all z € RN and for all t > 0,
O n—a(pl,w) < O (it 2) < KMot™® < +00.

The previous provides an upper-bound. For regularity properties (of the concentra-
tion set) it is well known that lower bounds play a key role. However, there are some
conceptual difficulties to attack ©, x 2(ul,-) directly (since the equation depends on
time). Instead, we will first work on the space-time measure p,, and recall the notion
of parabolic density, which is natural in view of Lemma 2.

Definition 2. Let v be a Radon measure on RY x [0, +00) such that v = vtdt. For
t > 0 and m € N, the parabolic m-dimensional lower density of v at the point (x,t) is
defined by

—_ 2 5
@im(y, (x,t)) = lim lnfi /N exp(_u) At (y)

r—=0 rm Jr 4r2
The parabolic upper density and parabolic density are defined accordingly, and denoted
respectively by ©5* and ©F .

Remark 2. Notice that ©F is not the classical density, in the spirit of Definition 1,
. . 1
for the parabolic metric defined by dp((z,t), (2',t')) = max(|z — 2’|, |t — t|2).
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It clearly follows from monotonicity that the limit in Definition 2 is decreasing, so
that ©F_,(u*, (z,t)) exists everywhere in R¥ x (0, +0c). Another consequence, which
we will prove later (see Section 6.2) is that

ON_o(1, (2,)) > KO, n—2 (s, 2) (3)
for some explicit constant K. Motivated by this inequality, we set
Sy ={(z,1) € RY x (0,400) st. OF _,(ps, (z,1)) > 0},

and for ¢t > 0,
2 =%,0 (RY x {t}).

An obvious consequence of (3) is that

Oun—2(pl,z) =0  on RV \ X! (4)

2 First properties of 3,

As in Brakke’s and Ilmanen’s works ([13, 30]) the main tool in the study of geometric
properties of 3, is the following.

Theorem 6 (Clearing-Out). There ezist a positive continuous function ng defined
on RY, such that for any (z,t) € RN x (0,+00) and any 0 < 1 < /1, if

_ 1 “T _ y|2 t—r? 2
€u((2,1),7) = 7 o exp(—— o) du" (y) < mslt —77)

then
($ ’ t) ¢ EN'
Theorem 6 is a consequence of Theorem 5. An immediate corollary is

Corollary 1. For any (z,t) € ¥, we have

O —ahs; (2, 1)) > ms(t).

At this stage, we are in position to derive the following, without invoking any further
property of the equation (PGL)..

Proposition 6. 1) The set X, is closed in RN x (0, +00).

ii) For anyt >0,
HN () < KM, < +00.

ii) For any t > 0, the measure i’ can be decomposed as
i = oo, yHY + 0, (x MY LT,

where g is some smooth function defined on RY x (0,+0c) \ £, and O, verifies
the bound ©,(z,t) < KMyt™=" .
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Comment. a) The function O, in decomposition ii7) is the Radon-Nikodym deriva-
tive of pf L X! with respect to H" % at this stage we may just assert that it lies
between the lower and upper densities.

b) Concerning g, it can be locally defined as |V®,|? for some smooth @, verifying
the heat equation. The function @, however is not yet globally defined.

3 Regularity of X},

As already mentioned, lower bounds for O, x_, will play an important role for regularity
issues : however, up to now we have only lower bounds for ©% , (see Corollary 1).
The next result provides the reverse inequality to (3).

Proposition 7. For almost every t > 0, the following inequality holds

e*:N*Q(/Li:m) > K0£72(ru’*a (xat)) (5)
for HN=2 almost every v € RV .
Combining Corollary 1 and Proposition 7 we are led to

Corollary 2. For almost every t > 0,
O, n_o(pl, z) > Kns(t), Jor HN?—ae z € ¥, (6)

At this point, combining Theorem 5 with Corollary 2 and Ambrosio-Soner’s work
[4], the proof of Theorem C is complete. Indeed, since V@, = 0, there is no
diffuse part and (AS) holds.

To proceed further towards the proofs of Theorem A and Theorem B, we have to deal
with the diffuse part, and different kinds of arguments could then lead to regularity for
3! . One way is to follow the arguments of [4] (as above for Theorem C), which rely on
a curvature equation for ! and Allard’s first rectifiability theorem (see [48]). Another
possible way is to prove the existence of the density On_o (H"~? almost everywhere),
and then to invoke Preiss’ regularity theorem [45]. Even though Preiss’ theorem is
notably highly involved, we choose this last alternative since it will simplify some of
the subsequent arguments. Therefore, we will prove

Proposition 8. For almost every t > 0,

0. n-2(Hy, 2) = O 51, 7) > Ks(t),

for HN=2 almost every x € EZ. Consequently, for almost every t > 0 the set EZ is
(N-2)-rectifiable.

We recall that a set ¥ C RY is said to be (N-2)-rectifiable if V2 almost all of &
can be covered by the union of countably many lipschitz images of B2,
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4 Globalizing 9,

In order to complete the proof of Theorem A there is still one point to clarify : the
function @, which appears in Theorem A is global, whereas up to now the function
@, constructed in Theorem 5 is only locally defined. Indeed, using Theorem 5 we may
define @, on every simply connected domain of Q, = R" x (0,400) \ £,. However, Q,
is not simply connected in general, and this raises a difficulty for defining &, globally.
Nevertheless its gradient V@, can be defined globally on €, (and verifies there the
heat equation). In order to overcome this problem, we will invoke Theorem 3 of Part
L

For m € N*, set K, = B(m) X [, m], so that UpnKp = RV x (0, 400). We apply
Theorem 3 to u, and K = IC,,,, so that we may write

ue = exp(ipl)w!" on K, (7)

where ¢7* solves the heat equation on K,

VO | ooy < C(m)y/ Mo|loge] (8)

N +1

and

(9)

Let m € N* be fixed for the moment. Extracting possibly a further subsequence of
(€n)nen, We may assume without loss of generality that

o
loge|

|w|| ey < C(m,p)  forany 1 <p<

—¢™  in C*(Kpm_1). (10)

Moreover, passing to the limit in the equation, we infer that ¢7* solves the heat equation
on ICp_1.

Next, let zy € €2,. Since €, is open, we may find a small cylindrical neighborhood
Ag, of g in €. There exist my € N such that for m > my, A, C K,,. For ¢ sufficiently
small, we have

1
Ul >1—0 > 5 on Ay, (11)

(where o is the constant in Theorem 2), so that

ue = pe exp(ie;) (12)

for some real-valued function . (defined up to an integer multiple of 27). In view of
(11), we may apply Theorem 2, and assert that there exists a solution @, of the heat
equation on A, such that

||V¢E — V(pEHLOO((AmO) ) < Céﬁ. (13)

1
2
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(see Remark 5 of the introduction of Part I). On the other hand, we may write for
m > my
w = p.exp (i) on Ay, (14)

where ™ isa real-valued function. Combining (12), (7) and (14) we are led to
and invoking (13), we have, for m fixed,

Vgr — Vo,
loge|

vy

+ Cef on (Ag)z.
loge|

1
2

Using (9) we obtain
L 7

\/|loge| - \/|log el

Since —2=— — V@, on (Awo)%, by (10) we deduce

[log &|

— 0 as e — 0.
)

LP((Azg)

D=

Vol' =V, on (Amo)%.
Since @, is independent of m, changing possibly ¢* by a constant we may assume
that all the ¢7* coincide on (Axo)%. By analyticity, for each n > mgy the functions
(@7 )m>n coincide on K,. Letting n go to infinity, we define their common value ¢, on
RY x (0,+00) and we set

b, = ¢,. (16)

The proof of Theorem A is now completed, combining (16), Theorem 5,
Proposition 6, Corollary 2 and Proposition 8.

5 Mean curvature flows

In this section we will provide the proof of Theorem B. Since a large part of this
analysis follows the lines of [4], we will only indicate the ingredients, the necessary
adaptations (due to the presence of the diffuse energy) and some simplifications since
rectifiability of EZ is already available. In particular, we will avoid to refer to varifolds
(or generalized varifolds) even though these important objects are hidden behind.

We first briefly recall both classical and weak notions of mean curvature flow. Then,
following [30, 4] we will underline the relationship between (PGL), and this flow, leading
to Theorem B.

5.1. The classical notion. Let ¥ be a smooth compact manifold of dimension
k,and 75 : ¥ — RY (N > k) a smooth embedding, so that X% = ~¢(X) is a smooth
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k-dimensional submanifold of RY. The mean curvature vector at the point z of X° is
the vector of the orthogonal space (7,3°)% given by

N— a N—
_HEO Z (Z T - (?;_ ) Z (divy, sov®) v, (17)
1 j a=1

a=1 J

where (71, ..., 7;) is an orthonormal moving frame on 7,3°, (¢!, ..., v *) is an orthonor-

mal moving frame on (7,3°)*, and divy,so denotes the tangential divergence at the
point z. The integral formulation of (17) is given by

/ diVTwEO)Z d%k = —/ ﬁEO . Xd%k, (18)
»0 »0

for all X € C*(RY,RY). The vectors Hyo(-) are uniquely determined by (18), and in
particular the definition in (17) does not depend on the choice of orthonormal frames.

Next, we introduce a time dependence, and consider a smooth family {7;}s; of
smooth embeddings of ¥ in RY, where I denotes some open interval containing 0. We
set ¥ = ,(X). If x is a smooth complactly supported function on R", a standard
computation shows that

% /2 X(@) A" = /E (=x(x)Hse (z) + P(Vx(x))) - Y (x) dH, (19)

where Y (z) = Ls(7: ' (2)) is the velocity vector at the point z, and P denotes the
orthogonal projection on (T,%%)*,.
The family (X');c; is moved by mean curvature in the classical sense if and only if

g'yt(m) = Hyt(y(m)), forallme X and t € I. (20)

In particular, if (X*);c; is moved by mean curvature, (19) becomes

%/Et x(z) dH* = — /E x(@) | Hs: () dH* + /E V() - Hse(x) dHF,  (21)

and actually (21) is equivalent to (20) if x is taken arbitrary. Notice that the last term
in the r.h.s of (21) corresponds to a transport term, whereas the first term represents
a shrinking of the area. Actually, if x = 1 in a neighborhood of X, then

d

Lagkyty — 7, 2 g1k
ZHHE) = — [ |Hsi (@) dH

Finally, existence of a classical solution of (20) for small times can be established (see
e.g. [52, 27]), but singularities develop in finite time.

5.2. Brakke flows. In the attempt to extend (20) or (21) to a larger class of
(less regular) objects, and in particular to extend the flow past singularities, Brakke
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[13] relaxed equality in (21), and considered instead sub-solutions, i.e. verifying the
inequality

%/zt x(z) dH* < _/zt x(z)|Hst (z) [ dH* +/zt Vx(z) - Hy: (z) dH”, (22)

for all non-negative x € C°(RY). Following Brakke [13], we are thus going to extend
(22) to less regular objects than smooth embedded manifolds. Actually, we adopt the
point of view of Ilmanen [31], which is slightly different from Brakke’s original one (the
difference being very tiny, to the authors understanding at least!).

Recall that a Radon measure v on RY is said to be k-rectifiable if there exists a
k-rectifiable set 3, and a density function © € L{ (H*L_X) such that

v=0()H LY.

Since X is rectifiable, for H*-a.e. z € X, there exist a unique tangent space T,%
belonging to the Grassmanian Gy . The distributional first variation of v is the vector-
valued distribution év defined by

sv(X) = / divpnXdv  for all X € C®(RY,RY). (23)
b

In case |[0v| is a measure absolutely continuous with respect to v, we say that v has a
first variation and we may write
ov = Hu,

where H is the Radon-Nikodym derivative of v with respect to v. In this case, formula
(23) becomes

/ divy,y Xdy = — / - Xdv. (24)
b X

Remark 3. Notice that in the smooth case, this notion coincides with the definition
(17), in view of (18). Notice also that the component of H which is orthogonal to 7,%
is independent of the density ©. However, if © is non constant, then H may have a
tangential part.

We are now in position to give the precise definition of a Brakke flow. Let (v)1>0
be a family of Radon measures on RY. For x € C2(RY ,R"), we define

_ _ vi(x) — v (x
Dyvp(x) = limsup ( i_to X,
0

If ' L_{x > 0} is a k-rectifiable measure which has a first variation verifying x|H|? €
L*(v'), then we set

BW'x) = - [ AP + [ Vx- P(H) b,

[here P denotes H*-a.e. the orthogonal projection onto the tangent space to v?].
Otherwise, we set
B(Vta X) = —00.
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Definition 3 (Brakke flow). Let ()0 be a family of Radon measures on RN . We
say that (v)i>0 is a k-dimensional Brakke flow if and only if

Dyt (x) < B(v',x), (25)

for every x € C°(RY ,RY) and for all t > 0.

5.3. Relating (PGL). to mean curvature flow. The starting point of the analysis
is the formal analogy of equality (21), namely

%/Et x(@) dHF = - /E X ()| Hyr (2) [ " + /E  Vx(2) - Hye(x) di,

with the evolution of local energies for (PGL). (see (2.1) in Part I)

d |0y |? —OuVu,
— dut = — d / \Y ——(x) dz. (26
g o X@ it = = [ @@ et [ V() = () da (20

We already know that as ¢ — 0, u. — p’. Therefore, the comparison of the two
formulas suggests, at least formally, that in the limit

Oy, |? _,
ot = ) do | (27)
and .
ol = ﬁ(x) dz — Hdut. (28)

Actually, this is a little over optimistic for two reasons. First we have to deal also with
the diffuse part of the energy (this will be handled thanks to Theorem A). Second, since
(27) involves the quadratic term |H |2, only lower semi-continuity can be expected at
first sight (this is certainly a more serious matter, and would require a much longer
discussion!).

5.4. Convergence of of. Consider the measure o, = o dt defined on RY x [0, +00).
By Cauchy-Schwarz inequality o, is uniformly bounded on RY x [0, T'] for every T > 0,
so that passing possibly to a further subsequence, we may assume that o. — o, as
measures. The Radon-Nikodym derivative of |o.| with respect to p. verifies

d|05| S\/§ |8tUE| .
e e ()

On the other hand,
|Opue|

e (ue)

|8tu6‘2

Nxo,1] |logel

|22 ®> x(0,7,dpe) < /R < KT M,

100



so that % is uniformly bounded in L?(RY x [0, 7], du.). Arguing as in [4] Remark 2.2
(see also [29]) it follows that o, is absolutly continuous with respect to .. Therefore,

we may write
Ox = blu'i dt,

where § € L2(RY x [0, T], 4! dt). In view of the decomposition in Theorem A and Part
I, we infer

Lemma 4. The measure o, decomposes as o, = otdt, where for a.e. t > 0,
ol = —0,®, - VP, dz + ..

The next step will be to identify the restriction of I; on ZZ with the mean curvature
defined by (24). [Notice that we already know by Theorem A that v} is (N-2)-rectifiable
for a.e. t > 0.]. The starting point is a classical formula involving the stress-energy
tensor. Let X € C°(RY,RY). We have, for every ¢ > 0,

]_ a 56 I3 aXZ e a gv I3
e (ue)dij — u. u. - dz = XA gy
lloge| JrRN x{t} Oz; 0z ) Ox; RN x{t} lloge| (29)
.
RN x{t}

Formula (29) is already very close to (24), in particular the right hand side. In order
to handle the diffuse energy, as well as to interpret the 1.h.s as a tangential divergence,
we need to analyse the weak limit of the stress-energy tensor

Clearly, |ol| < KNu!, and we may assume that
ol = ol = Ay,

where A is an N x N symmetric matrix. Since the symmetric matrix Vu, ® Vu, is
non-negative, we have

A< Id. (30)
On the other hand,
Tr(e:(us) Id — Vue @ Vu,) = (N — 2)e-(ue) + 2V (u.).
Therefore, since the trace is a linear operation, passing to the limit we obtain

dv,
du,’

Tr(A) = (N —2) + 2 (31)

where the (non-negative) measure V; is the limit (up to possibly a further subsequence)
of V.(u.)/|loge|.
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Going to the limit in (29), and using the decomposition in Theorem A, we obtain
for a.e. t >0,

L 0X? VP, |? 09, 09, \ 0X*
P g [ (9 ’
/RN 8.Tj Yr + ( 2 J aSEZ 8.Tj 8.Tj v
—— [ X-gat - / X V.08, dv. (32)
RN RN
On the other hand, @, verifies the heat equation

0P
* A, =0. 33
5 (33)

Multiplying (33) by X - V&, we obtain

V&, 2 08,08, 0X' .
V"o —— [ X.v9.0,0, dz. 34
/RN ( 2 % Oz; Ox; ) Ox; e RN V0D d (34)

Combining (32) and (34) we have therefore proved
Lemma 5. For a.e. t > 0, and for every X € C°(RY,RY),

AT ——dvt =— [ X-bhdv. (35)
RY Oz RN
Remark 4. The last computations are the precise mathematical expression of the fact

that the linear and the topological modes do not interact.

Recall that we already know that EZ is rectifiable for a.e. ¢ > 0. Comparing (35)
with (24) in order to identify h with the mean curvature of v, we merely have to prove
that the matrix A corresponds to the orthogonal projection P onto the tangent space
TwEZ. We follow closely the argument of [4] : however, our presentation is more direct,
since rectifiability is already established. We first have

Lemma 6. For a.e. t > 0,

A(x) l Vx() dHY 2(y)| =0 for HY *-a.e. z € T, (36)

T3,
and for all x € C°(RY,R).

Sketch of the proof. Let z € X! be such that 7,X! exists and such that z is a

Lebesgue point for ©, (with respect to H2) and for A (with respect to v!). For r > 0,

consider the vector field Xr,l(y) = x(%*)e;. Inserting X‘M into (35) and letting r — 0,

we obtain, by difference of homogeneity, that the r.h.s is neglectible with respect to

the L.h.s., and the conclusion follows. O
A straightforward consequence is
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Corollary 3. Fort and x as in Lemma 6,
AL
(T:3%) " € Ker Aa).
With a little more elementary linear algebra, we further deduce

Corollary 4. Fort and x as in Lemma 6, A = P 1is the orthogonal projection onto
the tangent space T, Y.

Proof. By (30), A < Id, and therefore all the eigenvalues Ay, ..., Ay of A are less or equal
to 1. By (31), Tr(A) > N —2, so that 3%, \; > N —2. On the other hand, by Corollary
3, A has at least two eigenvalues, say A; and Ag, equal to zero. Therefore, \; = 1 for

i =3, ..., N. In particular A is an orthogonal projection on an (N-2)-dimensional space.
Since Ker A(z) 2 (T,X!)", and since dim(7,X!) = N — 2, the conclusion follows. [

Remark 5. Corollary 3 and 4 have many important consequences.

i) Using (31), we deduce that $* = 0, i.e. there is only kinetic energy in the limit.

ii) Let (74,...,7n) be an orthonormal frame such that TwEZ is spanned by (73,...,7n).
In view of the expression of the stress-energy tensor in these coordinates, we infer that
the energy concentrates in the (71, 7,) plane (i.e. (I;X!)") and uniformly with respect

to the direction. In particular, since ¢! is colinear to Vu,, this suggests strongly that

b is perpendicular to T,%,. Such an argument is made rigorous in [4] (Proposition
6.2). This remark has presumably many other important consequences, but we will
not discuss them here.

Combining the previous arguments, we have finally proved

Proposition 9. For a.e. t > 0, v! has a first variation and

i.e. B is the mean curvature of V.

Semi-continuity of WZ- The purpose of this subsection is to show that for a.e. ¢ > 0,

. |6tu5|2 12

lim inf e | avi+ [ 0, 2 du.
= RN x{t} " |loge| — ]RNX{t}X‘b‘ vt RNx{t}X|t " de
It is tempting to write on X/

|3tugVu€|2 ,uz >

‘atus‘Q > |atusvus|2

1 -
_ H2 t.
lloge| ~ |logel|Vue? = 2 e.(ue) H [

1
2
These formal (but essentially correct) inequalities do not allow to conclude, in view of

the extra factor % Fortunately, the last inequality is far from being optimal. Indeed,
weak convergence does not imply convergence of the squared quantities!
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Remark 6. In the scalar case, i.e. for the Allen-Cahn equation, this difficulty does not
2

arises since % ~ V.(u.) there, so that |Vu.|? ~ e.(u,). The difficulty there however

was to establish the balance between the kinetic and potential terms (see [30] Section

8.1).

In order to handle the factor %, a determinant idea of [4] in this context was to recast
the problem in the framework of Young measures, which turn out to be an appropriate
concept to analyse the energies of the oscillations. In this direction, set p, = ~¥, and

[Vue|?
consider the measure (defined on RY x R?V)

~t 5 ‘atus'p5|2

" dz.
e = Opel lloge] o

Extracting possibly a further subsequence, we may assume that & dt — @, as measures.
We deduce from the analysis of Part I and Theorem A,

Lemma 7. The measure @, decomposes as w, = @' dt, and for a.e. t > 0
G =TI, (p) |0, [ do + 20,

where I1. , is a measure on R*N (with support on the unit ball) and 2., = &L,
Moreover, II% ,(R*V) = 1.

[Notice that the measure Hi,x arises from the possible oscillations of the phase &,
of u., but is not disturbing since it acts linearly].

The main ingredient that we will borrow directly from the analysis of [4] Section 6
can be formulated as the following.

Proposition 10 (Ambrosio and Soner). For a.e. t > 0, and every x € C°(RY),

W (z, >/ bl dv't.
Lo o X@ep) > [ x5 v

At this stage, we are (finally!) in position to complete the proof of Theorem B.

Proof of Theorem B. In view of Theorem 4.4 in [4], it suffices to establish the
integral version of (25). Let 0 < Ty < Tj. We integrate (26) on [Ty, 73] and let &
go to zero. Combining the results of Lemma 4, Proposition 9, Lemma 7, Remark 5,
Proposition 10 and Theorem A, we obtain

T T() 2 2
Ti(y) — v (x) + Vdi*d—/ Vo.[%d
v (X) — v () RNX{TI}><| “dzx RNX{TO}X| " dz
<_ F12 du, / VP (B) dv,
B /RNX[TO,Tl]X‘h‘ et RN x[To,Ti] X (h) v
RN X[To,Tl] RN X[Tg,Tl}
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Since @, verifies the heat equation, we have the identity

v, d —/ v, d
/RNX{TI}M o= [y o XIVO s

= ] x|0,®.|* dx dt + VxV®.0,P,.. (38)

RN X[To,Tl RN X[Tg,Tl}

Combining (37) and (38) we obtain

=,

HNEUINESY b2 dv, + [ VXP(B) dv,.
v, () — v (x) < RNX[TO,Tl]X|b| Vet fon iz VX () dv

As mentioned above, this integral formulation implies (25), under suitable assumptions
which are fullfilled here, namely rectifiability of EZ, lower bounds on the density O,

and orthogonality of the mean curvature § with (T,X0)*.
The proof of Theorem B is complete. U

6 Ilmanen enhanced motion

The notion of motion by mean curvature in the sense of Brakke has many interesting
properties, in particular the fact that the area functional decreases along the flow, as
expected from the classical motion. Unfortunately, as already mentioned in the main
introduction, this notion strongly lacks of uniqueness. Indeed, if (u')i>o is a Brakke
flow, so is also (g(¢)u');>0, where g is an arbitrary non increasing function on R*. In
particular, the trivial solution given by ° = p° and v = 0 for ¢t > 0 is not excluded a
priori. Actually, for (PGL). such a situation may occur (as in the Allen-Cahn equation),
at least in three distinct cases :

0 _—
e =

- Concentrated phase : the initial data is of the form u? = exp(i¢?,/|logel), where

|V?|? is bounded in L' and concentrates on a (N-2)-dimensional set 3.

- Low density : we present an example is dimension 3. In the plane (zy, z3), consider
a standard dipole (i.e. with “least” energy) of two vortices away from the origin and
separated by a length €7 (where 0 < n < 1 is fixed), so that the energy in the plane is
of order 7n|loge|. Rotate the dipole along the z3 axis so that e.(u?) concentrates on a
circle with a 1-density proportionnal to 7. If 7 is chosen sufficiently small, then u! =0
for t > 0 by the clearing-out lemma.

- Hidden mean curvature : consider in the (z1,z,) plane the standard circle S*.
Approximate it, weakly in the sense of measures, by a collection B; of small circles
centered on S! and of radii ~ % By Theorem D, for each 7 € N, there exist initial data
(u®") such that the limiting measures pl* evolves according to the classical motion of
the small circles, whose lifetime is of the order of :~2. By a diagonal argument, it is

therefore possible to construct a sequence 42 such that u? = S but u = 0 for ¢ > 0.

Remark 7. The two first cases are related to specific properties of (PGL)., whereas
the third is intrinsically related to motion by mean curvature.

105



The three cases have a common feature : the Jacobians of u® converge to zero as
e tends to 0, at least in the sense of distributions. We consider next the space-time
Jacobian of u,,

Jue = > (Opu. X Oz; ) dz; A dzj,
0<i<j<N

with the convention that xzy = t. In view of the space-times bounds on the Ginzburg-
Landau energy, we may invoke the work of Jerrard and Soner [34] (see also [1]), to
assert that

Ju. =~ J.  in (Co°RY xRY)),

where J, is an (N-1)-rectifiable vector-valued measure. Moreover, it is shown in [34, 1],
that %j* can be identified with an integer multiplicity (N-1)-current, whose boundary
is exactly J? (the slice at time zero), and

1
—|T <, fort>0.

Here, J! denotes the slice of the current J, on R x {¢} (which we will prove to be well
defined), and coincides with the limit in the sense of currents of the space Jacobians
Jue(+,t). The (N-1)-rectifiable set 37 supporting 7, represents the concentration set of
vorticity, and has therefore a great significance (presumably for the applications, more
than the energy). Obviously, £; C ¥,, and it is rather easy to construct examples
where they are different (think of two approaching circles with opposite orientations).
Notice also that J,, a priori, has more structure than pu,, since it has an orientation
and integer multiplicity (modulo 7).

The previous discussion naturally leads to Ilmanen’s notion of enhanced (mean
curvature) motion, which we recall now.

Let M, be an integer multiplicity (N-2)-current in RV | without boundary. We assume
for simplicity that M, is bounded and of finite mass. Let M be an integer multiplicity
(N-1)-current in RY x [0, 4+00), and {u'}i>o a familly of non-negative Radon measures
on RY.

Definition 4 (Enhanced motion). The pair {M,{p'}i>0} is called an enhanced
motion with initial condition My if and only if

i) 1’ = |My.

i6) The measure defined on RT by T(B) = |IM|(RY x B), for any Borel set B, is
absolutly continuous with respect to the Lebesque measure on RT.

i) For all t > 0,
,ut Z |Mt|7

where My denotes the slice of M at time t.
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v) {p'}>0 is a Brakke flow.

Remark 8. Notice in particular that conditions ¢) and 4ii) are closer to what one
actually would normally expect from a Cauchy problem. In Ilmanen’s terminology, M
is called the under-current, and provides, in view of iv), a lower bound, which rules
out sudden shrinking.

In [31], Ilmanen established the existence of an enhanced motion, for any initial
data as above (actually in any codimension). Theorem D provides an alternative
construction in codimension 2. The two solutions may differ, since there remains still
some possible non-uniqueness for an enhanced motion (see the discussion on “matching
motion” in [31]). Moreover, in the smooth case, there is uniqueness for an enhanced
motion (before singularities appear) and it coincides with the classical notion.

We are now in position to present the proof of Theorem D.

Proof of Theorem D. The proof essentially relies on a combination of results proven
in [1, 34].

Construction of u?. The existence of a family (u?).~( satisfying (H,) and assump-
tion ii) follows directly from [1], Theorem 1.1, ii). More precisely, the family (u?).sq
constructed there verifies

1
—Ju? — M, in [CO*(RM)]*, (39)
Vi

1 0

—p = (M| = My, (40)

and the additional compactness conditions (H;), (Hs), as well as the bound |u?| < 1.

Construction of M. We next consider the solution u, of (PGL), with initial datum
u?, verifying (39) and (40) above. In view of (H;) and (H,), we may apply Theorem
C to 4, so that u, has no diffuse part, i.e. p, = v,. In particular, by Theorem B,
{1t }1>0 is a Brakke flow, and property v) of Definition 4 is established.

In view of (I), the space-time Ginzburg-Landau energy is bounded in RN x [0, 7]
for every 17" > 0, more precisely

1
~|Vaue|* + Vi(ue) < My(T + 1)|loge|.
Lo oy 31 Vstel” + Velos) < Mo(T + 1) loge]

We deduce from [34, 1] that
Ju. = J.  in [CP*RY x RN,

where J, is a (N-1) integer multiplicity current. Notice that J, has compact support
in RY x [0, 7y + 1] (see Proposition 3 for the definition of 7}). We set

M=17..
™

107



We claim that
oM =M,, (41)
i.e., ii) is verified.
Indeed, for every test form x € C*°(RY x R") we have, by Stokes theorem,

1
13 5 = 3 5 £ 5 £ 6
/RNXR'*‘JU A X 2 JRN xR+ (U % U)/\ X

1 1
== S(ue X du. Ady) = —— % dul) Nd

2 JRN xR+ (ue x Ou X) 2 RNX{O}(uE ue) A dx (42)

1
= du® x du®) Ay = Jud A x .

2 JrYN x{0} (g ¢ du) A x RN x {0} Ue AX

In view of the compactness results in Theorem 4, and (H,), (Hs), we may pass to
the limit as ¢ — 0, so that
M(bx) = Mo(x),

which establishes the claim.
At this stage, we have shown that the pair {M, {ul}i>0} verifies 1), ii), v) of Defi-
nition 4.

Proof of iv). By definition of slicing, and arguing as in (42), we have
Mt = &1;1_136 JUE(',t) .

Therefore iv) follows from [34, 1].

Proof of iii). Let I=[a,b] be a bounded interval in R. We claim that

IMIRY x [a,b]) < C(My)[b— a|'?, (43)
which clearly implies iii). Recall that
IM|(RY x [a,b]) = sup{M(x), |x| <1, suppx C R" x [a,b]}.

In order to prove (43), we need first to go back to the level e. Let x € C®°(RYN x [a, b]),
we have

M(x) = lim [ Juc Ax.

In order to estimate the integral on the r.h.s, we distinguish the purely spatial com-
ponents of the Jacobian, and the space-time components. For the spatial components,
we have by Lemma 3.13 (see also [1]),

ou ou, K
i = X = < oo/ e\ UWe
/RNx[a,b](*X)] Ox;  Ox;| |log6|“X|| RNx[a,b]e (1)
+ K55||X||Cl (1 +/ es(us)) (44)
RN x[a,b]

< KMy[b— a| (|Ixllo + & (loge] + 1)|xlc1) -
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In order to handle the space-time component, we rescale the function u, with respect
to the time variable. Consider the interval I' = [a, ], where ¥’ = a + |b — a|*/?, and
the function w, defined on RY x I’, by

we(-, 8) = ue(-, (s — a)|b — a|? + a), sel,
so that 5 9
S(8) = b= a P (s — @)l — o 2 4 a)
and
ow. | du. [
/ el duds = |b—a|1/2/ “ dzdt < K|b — al**Mp|loge| .
RN x| OS RN x[a,b]

On the other hand, by the energy inequality (I),

Vw | 1/2
/RNxI’ 5 + Vo(we) < |b—al”*Mp|loge|,

so that

|V swe|? 1/2
/ Was®el | v (w,) < Kb — a2 Mploge] . (45)
RN xT’ 2

We apply the estimate of Lemma 3.13 to the function w, in RY x I'. This yields, in
view of (45),

/ (+%) Owe % O
RN I X)0j 0s 0x;

J

< KMol — a]'/*(|Ixllc + €7 (lloge| + Dlixller).  (46)

[Here we set X(-,s) = x(-, (s — a)|b — a|'/2 + a)]
Finally, we have

aus aug . _ aws awe
/RNX[a,b](*X)Oj E % 536j - /RNXI/(*X)O] 0s X 6acj . (47)

Combining (44), (46) and (47), we are led to

_@[HijﬂsKmemW%wwmmmu+dn. (48)
N x][a,

Passing to the limit in (48) as ¢ — 0, we derive (43). O

6 Properties of X,

The purpose of this Section is to provide detailed proofs of some technical statements,
concerning ¥, in the introduction to Part II. More precisely, we will prove (3), Lemma
3, Theorem 6 and Propositions 6, 7 and 8. We begin with a few elementary observations
which we will use later in the proofs.
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Lemma 6.1. Let (v,t) € X, and 0 < r < \/t. Then, we have
PN (B, At = )r)) > o,
where ny 1S the constant in Theorem 5.

Proof. Indeed, assume by contradiction that

P N Ul (Bl A= )r)) < me.
Then, by Theorem 5, for every 7 € [t — =7, ]

ul = |V, > dx on B(z, ir),

where @, is smooth. We are going to show that

sZ_N/ exp(—M)d,ut_s2 — 0, (6.1)
RN 452 *

as s — 0. Indeed, we write

2 2
s> N /B(;C’%T) exp(—%) dpt=" < 827N||V¢*||i°°(3(z,%r)) /RN exp(—%) dx
< K“V@*”%W(B(w,%r))sz — 0,
(6.2)
as s — 0. On the other hand,
2-N [z —yP| e 2-N r?
s /RN\B(z,ér) exp(—TSQ) du.™"" <s exp(—m)MO — 0, (6.3)

as € — 0. Combining (6.2) and (6.3), (6.1) follows and hence O (., (z,t)) =0, i.e.
(ﬁC, t) ¢ Eu’
a contradiction. O

Lemma 6.2. The function (z,t) — O ,(u, (x,t)) is upper semi-continuous on the
set RNV x (0, +00).

Proof. Let (z,t) € RY x (0, +00), and let (%, t,)nen be a sequence such that (z,,t,) —
(z,t). We are going to show that

lim sup O _y (tix, (¥, t)) < ON_p(pts, (,1)). (6.4)

n—-+0o
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Let 0 < 7 < %\/f be fixed for the moment. For n sufficiently large, set r, =
V2 +t, —t, so that ¢t — r* = ¢, — r2. By monotonicity we have

N

@P t 1 _|y - $n|2 d tn—12
N—2(:u’*a (‘Tn, n)) — TN_2 RN eXp( 47‘2 ) M (y)

1 ly — 2l —r2
= — d t—r .
e /R Y XP(= ) dp (y)

Letting n tends to +o00, we obtain

. 1 lz =yl e
l:lrgigop(aﬁ,Q(u*, (T, tn)) < N3 /RN exp(— 12 ) dpl" ().

Next, we let 7 — 0, and (6.4) follows. O

6.1 Proof of Lemma 3
Let z € RY and ¢t > 0. We have, for every 0 < r < ./,

¢ 2
P22 ) < exp(5)———— _ d
wy-orV2 T eXp(4)wN72TN—2 RN exp( 4r? ) dp ()
1 1 = —yl”
< — _ d 0
< exp(g) e [ o) )
1, My 2
< exp(Z)wN02t2_2N,

where we have used the monotonicity formula (Lemma 2) for the second inequality.

6.2 Proof of inequality (3)

Let (z,t) € RY x (0,+00) be given. Let 0 < r < ¢ be fixed for the moment. We write,
for every 0 < s < /1,

! ! 1 jz —y[?
TN,Q,Ui(B(x,T)) < N2 eXp(Z) /RN exp(— e )d,ui(y)
1 1 |x - y‘2 t— 2
S e — - Ty s

where we have used the monotonicity (at the point (z,t + 72)) for the last inequality.
Next, we choose s = /r. This yields

L 1 1 [z —yf? tr
Bl ) < e () [ () AT 0) (69
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In the last integral, we decompose
RY = B(z,1) U (RN \ B(z,1)).
On B(z,1), observe that

|z —y|
<K _
) — eXp( 47, )’

lz -yl

exp(—m

for some absolute constant K. On the other hand, on RY \ B(z, 1), we have

|z —yl t— 1
_ TN 4t () < exp(—————— ) M.
/RN\B(zc,l) exp( 4(r?2 4+ r)) " (y) < exp( 4(r? + r)) 0

Going back to (6.5), we are led to

1

K |z — y|2 1t 1 -
t t—r
TN—ZIU*(B(x’T)) S /RN ¢ p( 4r ) * T_N2—2 ¢ p( 4(7“2-1—7")

r2

Letting r go to zero the conclusion follows.

6.3 Proof of Theorem 6
Let (z,t) € RV x (0,+00) and 0 < 7 < v/t. We have

7"2’]\[,1115[’"2 (B(z, A\t —rHr)) < exp(#) ¢, ((z,),7). (6.6)

Consider therefore the function

n3(s) = exp(=A*(s) /4)nz,
and assume next that, for some 0 < r < 1/,

€, ((2,1),m) < my(t —1?).

Then, by (6.6),
T (B, At = 7)) <

and the conclusion follows by Lemma 6.1. O

6.4 Proof of Proposition 6

Proof of i). In view of Corollary 1, we have

S = {(2,1) € RY x (0,+00), OF 5(sus; (2,1) 2 m(1)}
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Since 73(+) is continuous, and since ©% ,(u.,-) is upper semi-continuous by Lemma
6.2, so is OF (i, ) — m3(-) on RY x (0, 400). The conclusion follows.

Proof of ii). We proceed in two steps. Firstly, we establish the estimate for t = 1
and secondly we argue by scaling.

Step 1 : The case t = 1. Let 0 < § < ;. Consider a standard (say parallepipedic)
covering of RV such that

0
RN - UjEIB(xj; 5), and B(.TZ, =

0
Q)QB(xj’i) = () for i # j.

Set
Iy ={ist. B(z;,0)N3, #0}.
For i € I, there exists some y; € ¥, N B(x;,9). Hence, by Lemma 6.1,
" (Blyi, A(1 = 6%)8)) > 16>,

and in particular

% (Bwi, (M1 = 6%) + 1)3)) > np6® . (6.7)

On the other hand, since the balls B(z;, 2) are disjoints, the balls B(z;, (A\(1—62)+1)d)
cover at most K times RY, where K is a constant depending only on N, for § < i.
Therefore,

3 P (B(wi, (A1 - 62) +1)8)) < K M. (6.8)

i€l

Combining (6.7) and (6.8) we obtain
415 < K Myo> V.

Since by definition, HY?(X}) < K lim sup,_,,(§1;)0" 2, the conclusion follows.
Step 2 : Invariance by scaling. For 5 > 0 fixed, consider the function

ve(z,t) = u: (Vo 2, tot)

— =
where € = Jis) SO that
,Ue(xa 1) = UE(\/%:Ev tO)a

2N

v, verifies (PGL),, and F(v°) = t,> E.(u?). Letting &, — 0, so does €, = £, and
o) — o

£ () = 5 o)

(with obvious notations), in particular
1
S (u) = tg %, (v),

so that Mo
HY 2 (T (u) =ty T HV(E,L(v)).

113



By Step 1 applied to v. and the corresponding measure X, (v), we obtain

2-N
HN2(8,(v) < K sup (B, (v0,)) < Kty? Mo,
neN

Therefore,
WY (S () < KMy,

and the conclusion ii) follows.

Proof of iii). By i), we know that ¥, is closed, and hence measurable. Therefore,
pho=p L (RY \ 2)) + pl LX) (6.9)

We claim that there exists a smooth function g defined on the open set RY x (0, +00)\Z,,
such that

pL®Y\ D) =g-H".
Indeed, let z € RY \ 32/,. Then by definition

ll_r)% Gu((‘x: t)’ T) = 0’

so that for some r( sufficiently small

GM((x: t)a TO) S 773(t - Tg)
Therefore, by (6.6),

i (B, A(t = rg)ro) < morg %,

and we infer from Theorem 5 that for all s € [t — 77, 1],

1
pi=g(-,s) HN on B(z, Zro),

for some smooth function ¢g. Notice that at this point, we may only locally write
g = |V®,|?, for some smooth @,. We will see later that @, is global, whereas g is
obviously already globally defined on RY X (0, +00) \ ..

Since HN7?(2!) < +o0 we have H"(X!) = 0, and hence

pL(RYA\EL) = g(-, ) HY, (6.10)

which establishes the claim.

Next, we deduce from Lemma 3 that xf L X!, is absolutely continuous with respect to
the measure H" 2, and by ii) that the measure H¥~?L_Y! is finite. We may therefore
apply the Radon-Nikodym Theorem, which yields

t t _ N-2 t
po LY, = O (z, )H LY, (6.11)
where O, is the Radon-Nikodym derivative. By Lemma 3, it verifies the bound
0,(z,t) < KMyt™= .

Combining (6.9), (6.10) and (6.11) conclusion iii) follows and the proof is complete. [
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6.5 Proof of Proposition 7

In this section, we shall use some very basic estimate for the time derivative O;u.,

namely
2

1
< M,T, for every T > 0.

lloge| JrRN x(0,1]

ou,
ot

Therefore, extracting possibly a further subsequence, we may assume that there exists
some non negative Radon measure w, defined on R x (0, +00) such that

ou,
ot

1 2

log e

— Wy as Imeasures,

so that
wo(RY x (0,7]) < M,T.

Since we already know that ¥, C RY x (0,7} + 1), where T} is the constant in Propo-
sition 3 (after which vorticity has been wiped out), we restrict our attention to this
portion of space-time. Next, we introduce some subsets of RV x (0,7 + 1), which are
concentration sets for the time derivative. Set, for [ € N, and ¢ € R+, to be fixed
later,

1
A(wy) = {(x,t) eRY x (0, Ty + 1), limsup—/ Wy > 1}.
B(z,lr)x [t—r2,1]

r—0 T

Concentration sets for bounded measures are classical in the litterature, see e.g. [54].
In a context similar to ours, they have been used in [41] in a related way. The following
shows that A;(w,) is small in some appropriate sense.

Lemma 6.3. For each |l € N,,
HL(Aj(wy)) < +o0,
where HL denotes the q-dimensional Hausdorff measure with respect to the parabolic
1
distance dp((x,t), (¢, ') = max(|x — 2’|, |t — t'|?).
Proof. Let § > 0 be given, and fixed for the moment. For (z,t) € Aj(w,), there exist
r =r(z,t) < d such that

/ wy > 1 (6.12)
B(z,lr)x[t—r2,t]

Clearly, Uiz pyea, w7 (,t,7(2,t)) covers Aj(w,), where we have set
U] (z,t,7(x,t) = B(w,Ir(z,t) x (t —r(z,t)%1).

Notice that diam(I'7) < Ir. By [23] 2.8.9, we may apply the Besicovitch covering
theorem. In particular, there exists an integer m(l/, N) depending only on N and [, and
there exists a sub-covering of the form

m(l,N)

Ay(ws) C L_Jl U T7 (), ty, 7 (25, 1) |

)
JEJ;
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where for fixed 4, the sets I'; = ' (x;, t;, (x;, t;)) are disjoints. Consequently, it follows
from (6.12) that for each i = 1,...,m(l, N),

> (@)t < Z/ wy < w, < C(My).

jEJ(S EJ& 0 Tf+1]

Therefore,
N)
Z Y diam(T;)? < m(l, N)I9C(Mp).

=1 jeJd

Note that the constant on the r.h.s is independent of . Hence, letting 6 — 0, we obtain
m(l,N)
HEL(A(w,)) <limsup | Y > diam(T;)? | < m(l, N)I’C (M),
6—0 i=1 jEJf
and the proof is complete. O

We fix g = N— % This choice has no specific geometrical meaning, but is convenient
as the following shows.

Corollary 6.1. We have,
HY " (Uen, Ar(w,)) = 0. (6.13)

Hence, for almost everyt > 0
HY 2 (Uren, Aj(wi)) =0, (6.14)
where Al(w,) = Aj(w,) NRY x {t}.
Proof. Since, by the previous lemma, Hg_%(Al (wy)) < 400, if follows that
Hp~ (Ai(ws)) = 0.

On the other hand, parabolic balls are smaller than euclidian balls of the same radius,
so that the parabolic Hausdorff measure dominates the euclidian Hausdorff measure.
It follows that

HY HUien, Ai(w)) =0,

and the proof is complete. O

Next, we introduce the set

Q= (RY x 0,7y + 1))\ U Ailw.)

neN,

Lemma 6.4. Let x € C(RY). Then, for (z,t) € Q,,

. 1 y—x " 1 Y—T, 42 _
tim (s [ D dilb) - i [ D dt () = o.
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Proof. We need to go back first to the level of the functions u.. For 0 < r < /¢, by

y_x)dac

ee(ue) (

Lemma 2.1 we have
/ ef(uf) (y_x)d.fﬁ—/
RN x{t} |loge]| r RN x{t—r2} |loge| r
Oy |? - 1 _
O (y x)dmdt—i 8tuEVu6-Vx(y x)dxdt.
T r|loge| JrRY x[t—r2,4 T

- RN x[t—r2,1] |loge]
Let [ € N, such that supp(x) C B(l). We set A = B(x,lr) x [t — r?,t], and estimate
the last term in the previous identity by the Cauchy-Schwarz inequality,
1
atug\Q / Vu|* \?
Vx| oo-
A r2|logel IVl

/8tugVug Vx —‘ (/ ||10g5|

r|loge|
We now let £ go to zero, therefore obtaining the inequality for measures

1

/RN X(g) (dps — dui‘”)(zx)‘
L L) (G L) e 635

1
PN-2
1
< v fe+ (7
Obviously, we have
1 1 1
riN=2 / wes e (rNg /Aw*> .

On the other hand, it follows from the monotonicity that
— / dp, < C()ET M.

Therefore, the right hand side of (6.15) can be bounded by
1 1
R(r) = Ot 1, Mo) e |1+ [ ],
r 2 JA

Since by assumption (z,t) € €, letting r go to zero, we obtain
. —0,
O

lim R(r) < 2C(t, 1, Mo)|[xlex lim

r—0

and the proof is complete

In Lemma 6.4, we have assumed that X has compact support. The following shows
that the result still holds for y = exp(— |$| ), which is of special interest in view of the

monotonicity!
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Corollary 6.2. We have, for (z,t) € €,

. 1 |33_y|2 t 1 |$_y|2 t—r2 _
i (v [ o= 20 ) - s [ e= D ) o
(6.16)
In particular, for (x,t) € ¥, NQ,, the following limit exists and verifies the inequality

lim L / exp(—M) dpt (y) > ns(t). (6.17)
r—0 rN=2 Jgn 4r2? e

Proof. Let ¢ be a smooth cut-off function such that 0 < ¢ < 1, ( =1 on B(1) and

¢ = 0 outside B(2). For | € N,, consider the function (; defined by ¢;(y) = ((¥), and

set

lyl?

xi(y) = eXP(—T)Q(y) for y € RY.

We apply Lemma 6.4 to x;, so that

. 1 Yy—=T, , 4 1 Y=, , 4,2 B
i (= [ a0 dtw) - = [ =D di @) =0, (619)

On the other hand, we claim that, for every s € [t — 72, ],

1 |z — y? y—=z] 2N ?
- /RN leXp(— o2 ) () duly) < Ksv= Moexp(—o). (6.19)

Indeed, notice first that

2 2

T —y y—x T -y y—x
exp(- 220 e 0 - ()
[z —yf? r

< exp(— 52 )exp(—g)-
Secondly, by the monotonicity formula
1 |z — y|? 1
— ——— ) dui(y) < ——— x5 M,,
(\/ir)N*Q /RN exp( 372 ) dpi(y) < (3—1—27’2)% 0

and the claim follows.
Note the the r.h.s. of (6.19) does not depend on r, for r < 11/¢. Combining (6.18)
and (6.17) we are led to

1 lz -yl t t—r2 2-N 12
N2 /RN exp(—T) (dul —dp.”" ) (y)| < Ktz My eXp(_g)'

lim sup
r—0

Since [ was arbitrary the conclusion follows. O
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We are now in position to present the proof of Proposition 7.
Proof of Proposition 7. For (z,t) € €, set
2

~ ) 1 lz —y
tooN _ ¢
On_a(u,,z) = 11~1H3 Nz / exp( 2 ) dp(y)-

In view of Corollary 6.2, Oy _o(ut, ) exists on €, and

O(ul, ) = OF _y(u, (z,1)). (6.20)

If (z,t) ¢ ¥, then ©F_, (1., (z,t)) = 0 so that (5) is obviously verified. Therefore, we
assume in the sequel that (z,t) € £, N €,. Arguing as for the claim in Corollary 6.2,
we obtain

1 K 1 |z — y|? 2, 2-n
—_— dut > / -~ )dut - K ——)t 2 M,.
(Ir)N—2 /B(:c,rl) B = N2 N2 RN exp( 4r? ) dp. exp( 8) 0

Hence, letting r go to zero, and by (6.20),
t K P N-—2 1%\ 2=n
O, N2y, x) > N2 On o, (z,1)) — Kl exp(—g)t 2 My . (6.21)

In order to obtain (5), we invoke the fact that on X,, ©%_, > n3(t), and therefore we
choose [ sufficiently large so that

_ 12 a-n 1 1
KN exp(— )t 7 My < 5ms(t) < 5O (e, (x,1)).

Going back to (6.21), with this choice of I, we obtain

K
(—)*;N_2(/'1/i7'7;) Z ZZN_2®§—2(/’I'*7 (’T’ t))’
and the proof is complete. O

6.6 Proof of Proposition 8

We turn finally to the proof of Proposition 8. Once more, the starting point is Corollary
6.2. Let (z,t) € Q, be given and fixed throughout. We consider the vector-space

F = {g € L*(R",R) s.t. I(g) = li_r)%lr(g) exists and is finite } :

where for r > 0, I,(9) = —w== Jg~ g(‘z;m)dui(y). Notice that I, and I are linear
forms on F. With this notation, the statement of Proposition 8 is precisely that the
caracteristic function 1y 1) of the interval [0, 1] belongs to F. In order to establish that
fact, we derive first some basic properties of F.

119



Lemma 6.5. i) For every s > 0, the function es defined on RT by es(l) = exp(—I2s)
belongs to F.
ii) Set A(s) = I(es), then we have the identity

2—N

A(s) = A(1)s =2 . (6.22)

Proof. The case s = i follows immediatly from Corollary 6.2. For the general case, we
argue by scaling. Indeed, we have for any s > 0,

I(es) = lim / exp(— 1= y‘Q) dpt (y)
=0 pN=2 Jgy 4r? *
P VLN |z —y? t
= lim(——) /;NQXP(" ) . (y)
izl |z =yl , ¢
= (45)" 7t~ [ e () duk(y)
= (45)°7 I(ea),
so that I(e) exists and I(e;) = (43)#[(%).
Statement ii) then follows from the previous relation. O

Remark 6.1. The argument above shows more generally that if g belongs to F| the
the scaled function g, defined by g5(I) = g(1/s!) belongs also to F.

Lemma 6.6. For every k € N, the function | — 12 exp(—12) belongs to F.

Proof. The case k = 0 follows from Lemma 6.5, with s = 1. We provide first a detailed
proof for the case k = 1. First note that by (6.22) A is smooth on Rf. We are going to
prove that for s > 0,

1 ) . 1 [z —y|? |z —y|?
/ _ -~ t — _ _ t
A(s) = lim —— [ ey ly) = lim ——= [ EI exp(— S s)dpt (y),
(6.23)
and in particular that the limit in the r.h.s do exists.

Let s > 0 and As € R so that s + As > 0. We have, for [ € R,
65+As(l) - es(l) = eXp(—ZQS)(l - exp(—l2As)),
and by Taylor expansion, for any k € R",

k?
1 —exp(—k) — k| < o

Hence, for any y € RY, we have (choosing k = —|$;§“2A5)

z -yl

— 2 —_ o4
As Sexp(_|$ y| S)‘x y‘ (AS)Q

2
T—y T—y
(65+As - 65)(‘ r |) + exp(—‘ ‘ 8) r2 rt

r2 r2

< C(s)exp(— [z = y|23)(A3)2.
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Integrating against the measure ! on RY, we are led to

1 €s+As — €5 |x—y| ‘x_y|2 |$_y|2 t
+ exp(— d
L (2t 4 e %

rN-2 As r2 72

rN-2 2r?

A 2
<K > / exp(—us)d,ufk < C(s) MyAs.
RN

Note that the r.h.s side does not depend on r, therefore letting As — 0 identity (6.23)
follows. Applying (6.23) with s = 1, we deduce that the function [ — [ exp(—[?)
belongs to F. A similar computation shows that

d* N G Vo A e T e =y
ﬁA(S) - 11_1)% rN—2 /]RN 2k exp(—Ts)d,u*(y), (624)
so that the function [ — [%¥ exp(—I?) belongs to F. O

Lemma 6.7. The set
W ={g€C}R") s.t. ¢(0) =0}
18 1ncluded in F.

Proof. For a function g defined on Rt, we consider its extension § to R so that g is
even. In particular, g belongs to W if and only if g belongs to C?(R).
Next, for k € N, we consider the subset Vj of L?(R) defined by

Vj, = Vect {z — 1% exp(—1?), j € {0, ..., k}}.

In view of Lemma 6.6 the restriction of elements of V; to R™ belongs to F. We are
going to show that elements of W can be suitably approximated by elements of Vj
(as k — +00), so that the conclusion will follow. For that purpose, we recall some
well-known facts concerning Hermite polynomials, and which enter directly in our
argument.

Hermite polynomials For n € N, the Hermite polynomials H,, can be expressed by

Rodrigues’ formula

d
Hp(1) = (=1)" exp(I?) = exp(=17).
The degree of H,, is exactly m, and H,, is even if m is even, odd if m is odd. Set, for

l €R,
2

wm(l) = CmHm(l) eXp(—%), where ¢, = (\/7_-‘-2mn|)—%

The function v, verify the first order differential relations

(1= S = 2+ Dtbr, (4 S = VI,
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so that for m > 0,

Vb = Ny~ 0 T, (6.25)
and for m > 0,
jl?wm + Py = 2(m + 1), (6.26)

(i.e. the 1), are eigenfunctions of the harmonic oscillator). Moreover, the family
{¥m}men is a Hilbert basis of L*(R). For f € L*(R), set ¢, (f) = (f, ¥m)r2®). If f
belongs to C*(R), then we have, by (6.26),

1 d?

SmT 1)\ dP BB (62

Cm(f) = ¢m+12¢m,f> = Wm,—

1
2(m+1) dl?

and by (6.25), for m > 1

n(D) = W, ) = (=2 1y = P s () = [Bema () (629)

Let P, be the orthogonal projection (for the L?-scalar product) onto the space W, =
vecto<j<m{¥m}- For f € C2(R), we have by the Bessel-Parseval identity and (6.27)

1

7= Puflliz = 2. SU) < sy 2 9/ ) (6.29)
1 .
< oy UM + 1P IE2]

Since, by (6.25), we have

GU=PA) = 3 NmVE X () [t - v+ 1v]

jzm+1 j>m4+1
-2y [\/jTlch(f) = iea (] 5 = Vi1 (i
We deduce similarily that _
150 = PalP)I < K 35400 < e+ 1P fN] . (6:30)
and finally combining (6.29) and (6.30;
1f = Palf)lloo < KIIF = Pulf)llm < % (171122 + 1221.22] - (6.31)

Proof of Lemma 6.7 completed. Let g € W be given, and consider the function f
defined for I € R by f(I) = g(I) exp(%), so that f € C2(R) and is even. For m € N,, set
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hm = f — Pn(f) and g, = Pm(f)e% = P.(f) exp(—%). Since f is even, P, (f) is even
also, and consequently g, is even, of the form g,,(l) = Q. (1) exp(—I?), where Q,, is an
even polynomial of degree less or equal to m. In view of Lemma 6.6, the restriction of
Jm to RT belongs to F. Since g = g,, + hme%, we may write for 0 < r < 1

I,(g9) = I;(gm) + I (hmey). (6.32)

By (6.31), we have

[l < €19

T’

where C(g) is independent of m, so that for 0 < r < 1

(6.33)

On the other hand, since g,, belongs to F, I.(gm) — I(gm), for all m € N. We claim
that the sequence {I(gm)}men converges as m — +oo. Indeed, for & > m, we have by
(6.32) and (6.33), for 0 < r < 1,

Cl9)
I -1 < =L,
‘ T(gk) r(gm)| = —
Letting r — 0, we deduce that
Cl9)
1 -1 <
1(g6) — I(gm)| < =2

so that (I(gm))men is a Cauchy sequence and hence converges to a limit L. We finally
prove that I.(9) — L as v — 0. Indeed, let § > 0 be given. In view of (6.33) we may
choose myg such that |Ir(hmoe%)| < %for0<r<1,and |I(gm) — L| < 2. Going back
to (6.32) we have therefore, for 0 < r < 1,

J
‘Ir(g) - L| < |Ir(gmo) - I(gm0)| + 5
Choosing ro > 0 such that for 0 < 7 < 7o, [L(gme) — I(gmo)| < 3, we deduce that for

0<r <,

)
‘Ir(g) - L| < 5

Since ¢ was arbitrary, it follows that I,(g) converges to L as r — 0, and hence g belongs
to F. ]

Proof of Proposition 8. In view of the above discussion, we only need to prove that
the caracteristic function 1j1) of the interval [0, 1] belongs to F. Let (g,)nenw be an
increasing sequence of functions defined on R* verifying

gn € C2(RT), 9,,(0) =0, o <1lpy, and g, > 1,
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where §,(l) = “g,(-2). Note that by Lemma 6.7, g, € F and g, € F for all n € N.

n n+1

Let
L= lim I(g,) =supl(gn)-

n—-+o0o neN

By Remark 6.1, we also have

. .y ..ontl n e _
A0 T (Gn) = Jim = =(C=7) 7 o) = L

Finally, since g, < 1,1) < n, for each 0 <7 <1 and n € N we have

Ir(gn) < I’r(l[O,l]) < Ir(gn)

(6.34)

(6.35)

(6.36)

Combining (6.34), (6.35) and (6.36) we obtain L = lim, o I,(1j,1)), and the proof is

complete.
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