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Abstract

This paper deals with the homogenization of a sequence of non-linear conductivity
energies in a bounded open set Ω of Rd, for d ≥ 3. The energy density is of the same order
as aε(x

ε ) |Du(x)|p, where ε→ 0, aε is periodic, u is vector-valued function in W 1,p(Ω; Rm)
and p > 1. The conductivity aε is equal to 1 in the “hard” phases composed by N ≥ 2 two
by two disjoint-closure periodic sets while aε tends uniformly to 0 in the “soft” phases
composed by periodic thin layers which separate the hard phases. We prove that the
limit energy, according to Γ-convergence, is a multi-phase functional equal to the sum
of the homogenized energies (of order 1) induced by the hard phases plus an interaction
energy (of order 0) due to the soft phases. The number of limit phases is less than or
equal to N and is obtained by evaluating the Γ-limit of the rescaled energy of density
ε−p aε(y) |Dv(y)|p in the torus. Therefore, the homogenization result is achieved by a
double Γ-convergence procedure since the cell problem depends on ε.

1 Introduction

This work is a contribution to the study of the homogenization of non-linear and non-
uniformly coercive problems with complicated underlying microstructure. Problems of
this type have been widely studied, particularly in the linear case, in connection with
double-porosity models, where regions of low conductivity are surrounded by higher-
conductivity sets. One of the first mathematical studies of the double-porosity model
is due to Arbogast, Douglas and Hornung [1], subsequently revisited by Allaire [3] and
extended in various ways in the linear case [5], [23], and in the non-linear case [22], [8].

If the higher-conductivity set has more than one connected component, the general
form of the limit effective energy involves a multi-phase description. The mathematical
approach of the double-porosity model thus belongs to the class of homogenization prob-
lems leading to homogenized vector models induced by low-conducting regions. One of
the precursors of this kind of homogenization problem has been Khruslov [19], [17], [20],
whose works have also been extended in different ways [11], [25], [12], [13], [4] and [14].

The usual setting for such problems is a fixed periodic microstructure, scaled by a
small parameter ε, in which the coefficients of the energy are scaled differently with
respect to ε in the high and low-conducting components (“hard” and “soft” phases). The
effect of the low-conducting region is the appearance of an interaction energy between
the hard phases, that are in this way coupled. This general feature can also be traced in
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other types of problems where the regions of higher conductivity have a more complex
structure (see [19]).

In most of the previous works the number of interacting components is fixed by the
geometry of the microstructure, and corresponds to the number of connected periodic hard
phases. We address the problem of a more general setting, where also the micro-geometry
is ε-dependent. In this case the number n of limit phases is itself the main unknown of
the problem, and must be deduced from the asymptotic behaviour both of the geometry
of the low-conducting phase and of the degenerating coefficients. In the linear setting, the
determination of n can be addressed via a spectral analysis [14], that unfortunately is not
easily reproducible in a non-linear framework.

Let us now state the problem. In a bounded open set of Rd, for d ≥ 3, we consider a
sequence of energies of type

Fε(u) :=
∫

Ω
fε

(x
ε
,Du

)
dx, for u ∈W 1,p(Ω; Rm).

The density energy fε(y, λ) is periodic in the variable y, is of the same order of the function
aε(y) |λ|p, where aε may be assumed to take the value 1 on N two by two disjoint periodic
open connected sets Eε

i , for i = 1 . . . N . The coefficient aε takes values converging to 0
with ε on the complement of these sets. Contrary to the double-porosity model, this
complement set has measure converging to 0.

Under some geometrical assumptions on the sets Eε
i (and among them several weighted

Poincaré-Wirtinger inequalities play an important role) we prove that the limit energy, in
the sense of Γ-convergence, is a multi-phase energy of the form

F(u1, . . . , uN ) =
N∑

i=1

∫
Ω
fhom

i (Dui) dx+
∫

Ω
Φ(u1, . . . , uN ) dx, for ui ∈W 1,p(Ω; Rm).

The function fhom
i is obtained by the usual homogenization process on the set Ei defined

as the limit of Eε
i (see [7], [10]). In the present Γ-convergence process the convergence of

the sequence uε −→ (u1, . . . , uN ) may be understood as

lim
ε→0

N∑
i=1

∫
Ω∩Eε

i

|uε − ui|p dx = 0.

The interaction energy density Φ is defined through a Γ-limit procedure since the cell
problem also depends on ε contrary to the analog double-porosity model dealt with in [8].
The computation of Φ is linked to the domain of the muti-phase limit energy F, that
in general is not equal to the whole (W 1,p(Ω; Rm))N as in [8]. Indeed, we show that
the domain of the functional F is characterized by an equivalence relation R on the set
{1, . . . , N} and the constraint that ui = uj if iR j. In this way we define the number n
of effective phases as the number of equivalence classes modulo R, so that, with an abuse
of notation, the effective energy can be rewritten as F(u1, . . . , un). More precisely, the
following ε-rescaled energy defined, for any ξ = (ξ1, . . . , ξN ) ∈ Rm×N , by

Φ#
ε (ξ) := inf

{
F#

ε (v) : v ∈W 1,p
# (Y ; Rm) and v = ξi in Eε

i

}
,

where F#
ε (v) :=

1
εp

∫
Y
aε |Dv|p dy,

Γ-converges (up to a subsequence) in Rm×N to some functional Φ# : Rm×N −→ [0,+∞].
Then, the integer n is defined by

n =
1
m

dim D where D :=
{
ξ ∈ Rm×N : Φ#(ξ) < +∞

}
,
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and the energy density Φ is obtained by a double limit on the vector space D (see Propo-
sition 2.5 and formula (2.24)).

In conclusion, the present work can be regarded both as an extension of the linear
framework [17], [14] to a non-linear one, and as an extension of the recent variational
approach [8] to a more intricate geometry (due to the thin layers), characterized by a
double Γ-limit procedure.

The paper is organized as follows. In the first section we define precisely the geometry
of the problem and we state the main results. The second section is devoted to the
proof of the auxiliary results, and the third one to the proof of the Γ-convergence of the
sequence Fε.

2 Statement of the results

Notation

• · denotes the scalar product and |·| the associated norm in any space RM , forM ∈ N∗

(N∗ denotes the set of strictly positive integers) ;

• 1E denotes the characteristic function of the set E; if E is Lebesgue measurable then

|E| is its Lebesgue measure and −
∫

E
u =

1
|E|

∫
E
u dx denotes the average of u on E;

• d is an integer ≥ 3 and m an integer ≥ 1;

• an open subset of Rd is said to be regular if its boundary is Lipschitz; Ω denotes a
bounded and regular open subset of Rd;

• Y := (−1
2 ,

1
2)d is the unit cube in Rd;

• p > 1 and p′ :=
p

p− 1
;

• W 1,p
# (Y ; Rm) denotes the space of the Y -periodic vector-valued (in Rm) functions

which belong to the Sobolev space W 1,p(ω; Rm) for any bounded open set ω of Rd;

• for u ∈W 1,p(Ω; Rm), Du denotes the Jacobian matrix in Rm×d defined by

Du :=
[
∂ui

∂xj

]
1≤i≤m

1≤j≤d

.

2.1 Geometry of the problem

We consider N ≥ 2 and E1, . . . , EN , connected and regular open subsets of Rd, d ≥ 3,
which are Y -periodic; i.e., Ei + κ = Ei for any κ ∈ Zd, and satisfy

i 6= j =⇒ Ei ∩ Ej = Ø and
N⋃

i=1

Ei = Rd. (2.1)

For each ε > 0 and i ∈ {1, . . . , N}, let Eε
i ⊂ Ei be a Y -periodic connected and regular

open set, such that

j 6= i =⇒ Eε
i ∩ Eε

j = Ø and lim
ε→0

|Y ∩ (Ei \ Eε
i )| = 0. (2.2)

In particular, this assumption is satisfied if

0 < ε < ε′ =⇒ Eε′
i ⊂ Eε

i and
⋃
ε>0

Eε
i = Ei, (2.3)
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By (2.2), Eε
1, . . . , E

ε
N are two by two disjoint sets separated by the periodic open set

ωε := Rd \
N⋃

i=1

Eε
i such that lim

ε→0
|Y ∩ ωε| = 0, (2.4)

which is composed of thin layers.

We consider a nonnegative Borel function fε : Rd ×Rm×d −→ R+ depending on ε > 0
and which satisfies the following properties:

(i) fε(·, λ) is Y -periodic for any λ ∈ Rm×d;

(ii) fε(y, ·) is p-homogeneous for a.e. y ∈ Rd;

(iii) for a.e. y ∈ Rd \ ωε, fε(y, ·) = f(y, ·) where the function f : Rd × Rm×d −→ R+

satisfies with the constants c0, c1 > 0 the p-growth condition

a.e. y ∈ Rd, ∀λ ∈ Rm×d, c0 |λ|p ≤ f(y, λ) ≤ c1 |λ|p; (2.5)

(iv) there exists a Y -periodic positive function aε : Rd −→ R such that

aε := 1 a.e. in Rd \ ωε, ess-inf
ωε

aε > 0 and αε := ess-sup
ωε

aε −→
ε→0

0, (2.6)

there exist a constant b > 1 such that fε satisfies the p-growth condition

a.e. y ∈ Rd, ∀λ ∈ Rm×d, aε(y) |λ|p ≤ fε(y, λ) ≤ b aε(y) |λ|p, (2.7)

and a constant c > 0 such that fε satisfies the local Lipschitz condition

a.e. y ∈ ωε, ∀λ, µ ∈ Rm×d,

|fε(y, λ)− fε(y, µ)| ≤ c aε(y)
(
|λ|p−1 + |µ|p−1

)
|λ− µ|.

(2.8)

In terms of conduction the space is shared in N ≥ 2 two by two disjoint-closure regions
Eε

1, . . . , E
ε
N of conductivity given by the function f , and these regions are separated by

the thin-layers region ωε of low conductivity given by the function aε.

Example 2.1 In R3 we consider the case of the N = 3 Y -periodic sets Eε
1, E

ε
2, E

ε
3 defined

by the following intersections with Y (see Figure 1):

Eε
1 ∩ Y :=

3⋃
k=1

{
y ∈ Y : max

j 6=k
|yj | < R1 − rε

1

}
Eε

2 ∩ Y :=

[
3⋃

k=1

{
y ∈ Y : max

j 6=k
|yj | < R2 − rε

2

}]
∩

[
3⋂

k=1

{
y ∈ Y : max

j 6=k
|yj | > R1

}]

Eε
3 ∩ Y :=

3⋂
k=1

{
y ∈ Y : max

j 6=k
|yj | > R2

}
,

(2.9)
where 0 < R1 < R2 <

1
2 , rε

1, r
ε
2 > 0 and rε

1, r
ε
2 → 0. The sets Eε

1, E
ε
2 are separated by the

set ωε
1 and Eε

2, E
ε
3 by the set ωε

2, where
ωε

1 ∩ Y :=

[
3⋃

k=1

{
y ∈ Y : max

j 6=k
|yj | < R1

}]
\ Eε

1

ωε
2 ∩ Y :=

[
3⋂

k=1

{
y ∈ Y : max

j 6=k
|yj | > R2 − rε

2

}]
\ Eε

3.

(2.10)
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Note that in this case the thin layer region satisfies ωε = ωε
1 ∪ ωε

2.

Eε
1

Eε
3

Eε
2

ωε
1

ωε
2

R2

R1
r ε

1

r ε
2

Figure 1 : three connected regions separated by two thin layers

Let αε
1, α

ε
2 be two positive sequences which converge to 0. We consider the function fε

defined by fε(y, λ) := aε(y) |λ|p where{
aε(y) := 1 if y ∈ Eε

1 ∪ Eε
2 ∪ Eε

3

aε(y) := αε
i if y ∈ ωε

1 ∪ ωε
2.

(2.11)

2.2 Position of the problem

We are interested in the asymptotic behaviour as ε → 0 of the sequence of functionals
Fε : Lp(Ω; Rm) −→ [0,+∞] defined by

Fε(u) :=


∫

Ω
fε

(x
ε
,Du

)
dx if u ∈W 1,p(Ω; Rm)

+∞ otherwise,
(2.12)

where the energy density is defined in Section 2.1. As in [8] we expect the limit energy to
be a multi-phases system composed by the sum of:

– the homogenized energies due to the strongly connected components Eε
1, . . . , E

ε
N (2.2),

– the interaction energy induced by the thin low-conducting layers ωε (2.4).
Let us make this statement precise. Under suitable assumptions (given in the next Sec-
tion 2.4) we will prove that the limit energy reads as

F(u1, . . . , uN ) =
N∑

i=1

∫
Ω
fhom

i (Dui) dx+
∫

Ω
Φ(u1, . . . , uN ) dx, for ui ∈W 1,p(Ω; Rm).

(2.13)
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Each vector-valued function ui, i = 1 . . . N , is defined by the Lp
loc(Ω; Rm) strong limit

in the component εEε
i of a sequence uε such that Fε(uε) is bounded. So we are led to

define the following sequential topology τ : for any sequence uε in Lp(Ω; Rm) and for any
(u1, . . . , uN ) in Lp(Ω; Rm)N ,

uε
τ−→ (u1, . . . , uN ) if

N∑
i=1

∫
Ω∩εEε

i

|uε − ui|p dx −→
ε→0

0. (2.14)

The choice of this convergence is a consequence of the strong connectedness of the com-
ponents Eε

i (see Proposition 2.6 below). The convergence of the energy Fε then has to
be understood in the sense of the Γ-convergence for the topology τ . Let us recall the
definition of Γ-convergence (see [6, 16]):

Definition 2.2 Let Fεbe a sequence of functionals defined on a vector space H and
let F be a functional defined on a vector space K. Let τ be a topology defined by the
convergence of sequences of H to vectors of K. The sequence Fε is said to Γ-converge for
the topology τ if for any u ∈ K,

(i) (Γ-liminf inequality) for any sequence uε in H,

uε
τ−→ u =⇒ lim inf

ε→0
Fε(uε) ≥ F(u),

(ii) (Γ-limsup inequality) there exists a sequence uε in H such that

uε
τ−→ u and lim sup

ε→0
Fε(uε) ≤ F(u).

Such a sequence uε is called a recovery sequence.

Here one has H := Lp(Ω; Rm), K := Lp(Ω; Rm)N and τ is the topology defined by (2.14).

Contrary to [8], the dimension of the vector-valued system (2.13) is not necessarily
equal to the prescribed number N of hard components since there is a reduction of the
system similar to that obtained in [14] in a linear framework. Indeed, the physical char-
acteristics (geometrical parameters and conductivity values) of the low-conducting layers
may connect some of the strongly connected components between them. This is the case
for example if the layers are thin enough or conducting enough. From a mathematical
point of view this reduction is expressed as a restriction of the domain of the limit func-
tional. So, if the domain of the functional Fε (2.12) is equal to W 1,p(Ω; Rm), the domain
of F (2.13) is a subset of W 1,p(Ω; Rm)N in general. More precisely, the domain of F is
associated to a subspace D of Rm×N in such a way that

F(u) < +∞ if and only if u ∈W 1,p(Ω; Rm)N and u ∈ D a.e. in Ω. (2.15)

2.3 Determination of the limit energy

First of all we have to determine the subspace D which arises in the domain (2.15) of the
limit energy. To this end let us consider the functional Φ#

ε : Rm×N −→ R+ defined by
the minimization problem

Φ#
ε (ξ) := inf

{
F#

ε (v) : v ∈W 1,p
# (Y ; Rm) and v = ξi in Eε

i

}
,

where F#
ε (v) :=

1
εp

∫
Y
aε |Dv|p dy,

(2.16)

for ξ = (ξ1, . . . , ξN ) ∈ Rm×N (ξ can be considered as a (m×N) matrix with its columns
ξ1, . . . , ξN in Rm), where the function aε is defined by (2.6). Since Rm×N is separable,
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there exists a subsequence, still denoted by ε, such that Φ#
ε Γ-converges in Rm×N to a

functional Φ# : Rm×N −→ [0,+∞] (see e.g. [6] Proposition 1.42 or [16] Theorem 8.5):

Φ#
ε

Γ−→ Φ# in Rm×N . (2.17)

The subspace D of Rm×N is defined by

D :=
{
ξ ∈ Rm×N : Φ#(ξ) < +∞

}
. (2.18)

Note that the inequality

∀ v, w ∈W 1,p
# (Y ; Rm),

∫
Y
aε |Dv +Dw|p dy ≤ 2p−1

(∫
Y
aε |Dv|p dy +

∫
Y
aε |Dw|p dy

)
,

implies that
∀ ξ, η ∈ Rm×N , Φ#

ε (ξ + η) ≤ 2p−1
(
Φ#

ε (ξ) + Φ#
ε (η)

)
, (2.19)

which combined with the definition of the Γ-convergence of Φ#
ε (ξ), shows that D is a

vector subspace of Rm×N . In fact, the set D has a very particular form:

Proposition 2.3 There exist n ∈ {1, . . . , n} and a partition (Îk)1≤k≤n of the set {1, . . . , N}
such that

D =
{
ξ = (ξ1, . . . , ξN ) ∈ Rm×N : ∀ k = 1 . . . n, ∀ i, j ∈ Îk, ξi = ξj

}
. (2.20)

Remark 2.4 In the scalar casem = 1, the setD defined by (2.20) thus induces a partition
of the N components Eε

1, . . . E
ε
N into n ≤ N groups. In some sense the components of a

same group Îk are glued and their union
⋃

i∈Îk
Eε

i may be considered as a weakly connected
domain. A similar behaviour was first shown in [14] thanks to a different approach based
on a spectral analysis in the linear case.

In the sequel we will be led to use minimization functionals with non-periodic test func-
tions. For each K ∈ N∗, let us consider the functional ΦK

ε : Rm×N −→ R+ defined
by

ΦK
ε (ξ) := inf

{
1

εpKd

∫
KY

fε(y,Dv) dy : v ∈W 1,p(KY ; Rm), v = ξi in KY ∩ Eε
i

}
.

(2.21)
Note that there exists a constant c > 0 (independent of K) such that ΦK

ε ≤ cΦ#
ε thanks to

estimate (2.7) and to the fact that any function inW 1,p
# (Y ; Rm) belongs to W 1,p(KY ; Rm).

We then have the following result:

Proposition 2.5 The functionals Φ#
ε and ΦK

ε satisfy the following properties:

(i) For any ξ ∈ D, the sequence Φ#
ε (ξ) is bounded and more generally

∀ ξ ∈ Rm×N , Φ#(ξ) = lim
ε→0

Φ#
ε (ξ), (2.22)

where Φ# is defined by (2.17).

(ii) There exists a constant c > 0 such that for any ε > 0 and any K ∈ N∗,

∀ ξ, η ∈ D,
{ ∣∣ΦK

ε (ξ)
∣∣ ≤ c |ξ|p∣∣ΦK

ε (ξ)− ΦK
ε (η)

∣∣ ≤ c
(
|ξ|p−1 + |η|p−1

)
|ξ − η|. (2.23)
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(iii) There exists a subsequence of ε, still denoted by ε, such that for any K ∈ N∗, ΦK
ε

Γ-converges in Rm×N and pointwise converges in D to ΦK
0 : Rm×N −→ [0,+∞]

which satisfies estimates (2.23).

(iv) The sequence ΦK
0 converges in D as K → +∞ to a functional Φ∞

0 which also
satisfies (2.23).

In virtue of Proposition 2.5 the energy density of the zero-order part in the limit func-
tional (2.13) is well-defined by

Φ(ξ) :=

 lim
K→+∞

lim
ε→0

ΦK
ε if ξ ∈ D

+∞ elsewhere.
(2.24)

It remains to define the “bulk” parts fhom
i of the limit functional (2.13) To this end we

use the following result which needs extra assumptions on the components Eε
1, . . . , E

ε
N :

Proposition 2.6 Let Eε, for ε > 0, and E be Y -periodic connected and regular open
subsets of Rd such that

∀ ε > 0, Eε ⊂ E and lim
ε→0

|Y ∩ (E \ Eε)| = 0. (2.25)

Assume that there exist two constants k0, k1 > 0 such that for any ε > 0, there exists a
linear extension operator Pε from W 1,p(Ω∩εEε; Rm) into W 1,p

loc (Ω; Rm) satisfying, for any
u ∈W 1,p(Ω ∩ εEε; Rm),

Pεu = u a.e. in Ω ∩ εEε∫
Ω(εk0)

|Pεu|p dx ≤ k1

∫
Ω∩εEε

|u|p dx∫
Ω(εk1)

|D(Pεu)|p dx ≤ k1

∫
Ω∩εEε

|Du|p dx

(2.26)

where Ω(r) := {x ∈ Ω : dist (x, ∂Ω) > r} for r > 0.

Let g : Rd×Rm×d −→ R+ be a nonnegative Borel function, Y -periodic in the first variable
and satisfying a p-growth condition of type (2.5). Let Gε : Lp(Ω; Rm) −→ [0,+∞] be the
functional defined by

Gε(v) :=


∫

Ω∩ εEε

g
(x
ε
,Dv

)
dx if v ∈W 1,p(Ω; Rm)

+∞ elsewhere.
(2.27)

Then, Gε Γ-converges for the Lp(Ω; Rm)-strong convergence to the functional G defined by

G(v) :=


∫

Ω
ghom(Dv) dx if v ∈W 1,p(Ω; Rm)

+∞ elsewhere,
(2.28)

where the energy density ghom is defined, for λ ∈ Rm×d, by

ghom(λ) := lim
K→+∞

inf
{

1
Kd

∫
KY ∩E

g(y, λ+Dv) dy : v ∈W 1,p
0 (KY ; Rm)

}
, (2.29)

where E is the limit of Eε according to (2.25).

Remark 2.7 For a fixed ε > 0 the existence of a bounded extension operator satisfy-
ing (2.26) is a result of [2]. Here we need the assumption that Pε is uniformly bounded
with respect to ε.
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2.4 Statement of the result

In the classical framework, namely without zero-order interaction between the different
conducting phases, it is known (see e.g. [24], [21] and [18]) that thin lowly conducting layers
may modify the homogenized conductivity in certain regimes. In the present context we
want to avoid such a phenomenon, which would modify the bulk part of the limit energy,
since we focus on the zero-order interaction term. Therefore, we have to assume that
each conducting component Eε

i is the only contribution to the bulk part fhom
i in the limit

energy (2.13) by excluding any effect of the low-conducting region. This can be done by
introducing cut-off functions which separate the different components Eε

1, . . . , E
ε
N . We ask

to these cut-off functions to satisfy several properties in terms of Poincaré-type inequalities
which may be regarded as geometrical assumptions on the thin layers:

Assume that there exist Y -periodic functions ϕε
1,. . . ,ϕ

ε
N in W 1,∞

# (Y ) such that for any
i ∈ {1, . . . , N}, {

ϕε
i = 1 in Eε

i

ϕε
i = 0 in Eε

j for j 6= i,
(2.30)

and the following limit holds

lim
ε→0

∫
Y
aε |∇ϕε

i |p dy = 0. (2.31)

Assume that for any i ∈ {1, . . . , N} and anyK ∈ N∗, there exists a positive sequence Ci,K(ε)
such that the following Poincaré-Wirtinger inequality holds in the cube KY

∀ v ∈W 1,p(KY ; Rm),
∫

KY
aε |∇ϕε

i |
p

∣∣∣∣∣ v −−
∫

KY ∩Eε
i

v

∣∣∣∣∣
p

dy ≤ Ci,K(ε)
∫

KY
|Dv|p dy,

with lim
ε→0

Ci,K(ε) = 0,

(2.32)
and there exists a positive constant C > 0 such that the following Poincaré-Wirtinger
inequality holds for periodic functions in Y

∀ v ∈W 1,p
# (Y ; Rm),

∫
Y
aε |∇ϕε

i |
p
∣∣∣ v −−∫

Y ∩Eε
i

v
∣∣∣pdy ≤ C

∫
Y
aε |Dv|p dy, (2.33)

Also assume that there exists a constant C > 0 such that the following Poincaré inequality
holds in the cube Y

∀ v ∈W 1,p(Y ; Rm), v = 0 on
N⋃

j=1

∂Eε
j ,

∫
Y
aε |v|p dy ≤ C

∫
Y
aε |Dv|p dy. (2.34)

Now, we may state the main result of the paper:

Theorem 2.8 Assume that the function Φ be defined by (2.24) (this is not restrictive upon
extracting a subsequence of ε), assume that the sets Eε

1, . . . , E
ε
N satisfy the geometrical

constraints of Section 2.1 and the uniform extension property (2.26). Assume the existence
of N cut-off functions ϕε

1,. . . ,ϕ
ε
N satisfying conditions (2.30)–(2.34). Also, assume that

the energy densities fε satisfy the conditions of Section 2.1.
Then, the energy

Fε(u) :=
∫

Ω
fε

(x
ε
,Du

)
dx, for u ∈W 1,p(Ω; Rm),

9



Γ-converges for the topology τ (2.14) to the limit energy

F(u1, . . . , uN ) =
N∑

i=1

∫
Ω
fhom

i (Dui) dx+
∫

Ω
Φ(u1, . . . , uN ) dx, for ui ∈W 1,p(Ω; Rm),

where the homogenized densities fhom
i are defined by (2.29) with E := Ei (2.1) and the

interaction density Φ is defined by (2.24).
Moreover, the domain of the functional F is characterized by

(u1, . . . , uN ) ∈W 1,p(Ω; Rm)N and (u1, . . . , uN ) ∈ D a.e. in Ω,

where the set D is defined by (2.18).

Note that the form of function Φ may depend on the subsequence of ε we choose,
being very sensitive to the geometry of the sets ωε, while the energy densities fhom

i are
independent of the subsequence.

Going back to Example 2.1 the following result allows us to illustrate Theorem 2.8:

Proposition 2.9 Example 2.1 satisfies all the assumptions of Theorem 2.8 provided that

lim
ε→0

αε
i

(rε
i )

p−1 = 0 for i = 1, 2. (2.35)

Then, the domain (2.15) of the limit energy (2.13) is characterized (up to subsequences)
by 

D = R3 if lim
ε→0

αε
i

εp (rε
i )

p−1 < +∞ for i = 1, 2

D = {ξ ∈ R3 : ξ1 = ξ2} if lim
ε→0

αε
i

εp (rε
i )

p−1 = +∞ only for i = 1

D = {ξ ∈ R3 : ξ2 = ξ3} if lim
ε→0

αε
i

εp (rε
i )

p−1 = +∞ only for i = 2

D = {ξ ∈ R3 : ξ1 = ξ2 = ξ3} if lim
ε→0

αε
i

εp (rε
i )

p−1 = +∞ for i = 1, 2.

(2.36)

3 Proof of the auxiliary results

3.1 Proof of Proposition 2.3

Let us start by giving a few properties of the set D defined by (2.18):

(i) Let ξ = (ξ1, . . . , ξN ) ∈ D. For any h ∈ {1, . . . ,m}, the vector ξh = (ξh
1 , . . . , ξ

h
N )

of Rm×N defined by ξh
jh := ξjh and ξh

ji := 0 if i 6= h, belongs to D.

Indeed, if vε is a recovery sequence inW 1,p
# (Y ; Rm) such that Φ#

ε (vε) → Φ#(ξ) then the

sequence wε, defined by wε
h := vε

h and wε
i := 0 if i 6= h, clearly satisfies F#

ε (wε) ≤ F#
ε (vε)

(see (2.16)), whence by the Γ-liminf inequality we obtain Φ#(ξh) ≤ Φ#(ξ) < +∞.

(ii) For any (m ×m) matrix of permutation P , for any ξ = (ξ1, . . . , ξN ) ∈ D, the vector
ξ = (Pξ1, . . . , P ξN ) belongs to D.

This is due to the fact that F#
ε (v) only depends on the norm |Dv| and hence the set D

is invariant by permutation of the m coordinates.
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(iii) Let D1 ⊂ RN be the projection of D on the first coordinate. Then, there exist
n ∈ {1, . . . , N} and a partition (Îk)1≤k≤n of {1, . . . , N} such that D1 = Span (eÎ1 , . . . , eÎn),
where

eIj :=
{

1 if j ∈ I
0 if j /∈ I for I ⊂ {1, . . . , N}. (3.1)

Indeed, for any function T : R −→ R and any vector λ = (λ1, . . . , λN ) in RM , set
T (λ) := (T (λ1), . . . , T (λM )). If T is Lipschitz then we have F#

ε (T (v)) ≤ ‖T ′‖p
∞ F#

ε (v) for
any function v ∈W 1,p

# (Y ; Rm), whence

∀ ξ ∈ D, Φ#
ε (T (ξ)) ≤ ‖T ′‖p

∞ Φ#
ε (ξ).

Therefore, the Γ-liminf inequality implies that T (D) ⊂ D and hence T (D1) ⊂ D1. Now,
by using the fact that (1, . . . , 1) ∈ D1, property (iii) is a straightforward consequence of
the following result:

Lemma 3.1 Let Λ be a subspace of RM , M ≥ 1, such that (1, . . . , 1) ∈ Λ and for any
Lipschitz function T : R −→ R, T (Λ) ⊂ Λ. Then, there exists a partition (Ik)1≤k≤n of the
set {1, . . . , n}, where n := dim Λ, such that Λ = Span

(
eI1 , . . . , eIn

)
.

Let us conclude the proof of Proposition 2.3. Set

D̃ :=
{
ξ = (ξ1, . . . , ξN ) ∈ Rm×N : ∀ k = 1 . . . n, ∀ i, j ∈ Îk, ξi = ξj

}
.

Let i, j ∈ Îk, ξ ∈ D and h ∈ {1, . . . ,m}. By (i) and (ii) (ξ1h, . . . , ξNh) ∈ D1, whence
by (iii) ξih = ξjh and thus ξi = ξj . Therefore, ξ ∈ D̃ and D ⊂ D̃. Inversely, let ξ ∈ D̃.
For any h ∈ {1, . . . ,m}, (ξ1h, . . . , ξNh) ∈ D1, whence by (i) and (ii) ξh ∈ D̃. Therefore
ξ = ξ1 + · · ·+ ξm ∈ D and D̃ ⊂ D. We thus have the equality D̃ = D, which establishes
Proposition 2.3.

Proof of Lemma 3.1. By definition (3.1), e{1,...,M} = (1, . . . , 1) ∈ Λ. Let (I1, . . . , Iq) be
thus a maximal partition of the set {1, . . . ,M} such that the q vectors eI1 , . . . , eIq belong
to Λ. We have q ≤ n := dim Λ since eI1 , . . . , eIq are clearly independent.

Assume by contradiction that q < n. Then, there exists λ ∈ Λ \ Span (eI1 , . . . , eIq).
Up to reorder and change of sign we can assume that there exists i1 ∈ I1 such that
λi1 := maxi∈I1 λi > mini∈I1 λi and λi1 ≥ 0. Let c be a positive constant large enough
such that the vector µ := λ− c

∑
i≥2 e

Ii satisfies µi < 0 for any i /∈ I1.
Let us consider a Lipschitz function T : R −→ R such that T (λi1) = 1 and T (µi) = 0

for any µi < λi1 , and let us define the set I := {i ∈ I1 : µi = λi1} 6= I1. Then, since for
any k > 1 and i ∈ Ik, µi < 0 ≤ λi1 , and for any i ∈ I1\I, µi < λi1 , we have T (µ) = eI ∈ Λ.
Therefore, eI , eI1\I = eI1 − eI , . . . , eIq are (q + 1) independent vectors in Λ, which yields
the contradiction. So q = n and (eI1 , . . . , eIn) is a basis of Λ, which proves Lemma 3.1.

3.2 Proof of Proposition 2.5

(i) If ξ /∈ D by the Γ-liminf inequality lim
ε→0

Φ#
ε (ξ) = +∞ = Φ#(ξ).

Now, let ξ ∈ D. With fixed δ > 0 small enough (δ < 1
2 min

{
|ξij − ξi′j′ | : ξij 6= ξi′j′

}
),

let T δ
ξ : R −→ R be a Lipschitz function such that

T δ
ξ (t) := ξij if |t− ξij | < δ and ‖(T δ

ξ )′‖∞ ≤ 1 + o(1) as δ → 0.

Let ξε → ξ be a recovery sequence such that lim
ε→0

Φ#
ε (ξε) = Φ#(ξ). Let us define T δ

ξ (u) :=

(T δ
ξ (u1), . . . , T δ

ξ (um)) for u = (u1, . . . , um). Note that for ε small enough, if u is an

11



admissible test function in W 1,p
# (Y ; Rm) for Φ#

ε (ξε) then T δ
ξ (u) is an admissible one for

Φ#
ε (ξ). Therefore, we obtain

Φ#
ε (ξ) ≤ ‖(T δ

ξ )′‖p
∞ Φ#

ε (ξε) ≤ (1 + o(1))Φ#
ε (ξε).

By letting ε→ 0 and by the arbitrariness of δ we then get lim sup
ε→0

Φ#
ε (ξ) ≤ Φ#(ξ). On the

other hand, the Γ-liminf inequality yields Φ#(ξ) ≤ lim sup
ε→0

Φ#
ε (ξ), and we may conclude.

(ii) Let K be a positive integer. Let ξ, η ∈ Rm×N , ξ = (ξ1, . . . , ξN ), η = (η1, . . . , ηN ) with
ξi, ηi ∈ Rm. For fixed δ > 0, let vε, wε ∈ W 1,p(KY ) be such that vε = ξi, wε = ηi in Eε

i

and

ΦK
ε (ξ) ≥ 1

Kdεp

∫
KY

fε(y,Dvε) dy −
δ

2
, ΦK

ε (η) ≥ 1
Kdεp

∫
KY

fε(y,Dwε) dy −
δ

2
.

By using the inequality (a+ b)p ≤ 2p−1(ap + bp) for any a, b ∈ R+, we have

fε(y,Dvε +Dwε) ≤ cp (fε(y,Dvε) + fε(y,Dwε)) ,

and integrating by parts the previous inequality over KY yields with δ → 0

ΦK
ε (ξ + η) ≤ cp

(
ΦK

ε (ξ) + ΦK
ε (η)

)
. (3.2)

Moreover, since fε(y, ·) is p-homogeneous so is ΦK
ε . Let (ξ1, . . . , ξM ) be a basis of D

(M = mn) and let ξ :=
∑M

k=1 αk ξ
k. By the additivity property (3.2), the p-homogeneity

and the boundedness of Φ#
ε on D obtained in (i), we have

ΦK
ε (ξ) ≤ cp

M∑
k=1

|αk|p ΦK
ε (ξk) ≤ cp

M∑
k=1

|αk|p Φ#
ε (ξk) ≤ c |ξ|p.

Let us prove the Lipschitz condition of (2.23). Let ξ :=
∑M

k=1 αk ξ
k and η :=

∑M
k=1 βk ξ

k

be two vectors of D. Let v̂k
ε , for k = 1 . . .M , be a sequence in W 1,p

# (Y ; Rm) such that

v̂k
ε = ξk

i in Eε
i and the energy F#

ε (v̂k
ε ) (see (2.16)) is bounded. For a given δ > 0,

let vε ∈W 1,p(KY ; Rm) be such that

vε = ξi in Eε
i and

1
Kdεp

∫
KY

fε(y,Dvε) dy ≤ ΦK
ε (ξ) + δ.

Set wε := vε +
∑M

k=1(βk − αk) v̂k
ε . It is clear that wε = ηi in Eε

i and by (3.2)

1
Kdεp

∫
KY

fε(y,Dwε) dy ≤ c
(
ΦK

ε (ξ) + δ + |ξ − η|p
)
.

Using the properties (2.7) and (2.8) of the function fε, the Hölder inequality and the
previous estimate yields

ΦK
ε (η)− ΦK

ε (ξ)≤ 1
Kdεp

∫
KY

(fε(y,Dwε)− fε(y,Dvε)) dy + δ

≤
( 1
Kdεp

∫
KY

aε (|Dwε|p + |Dvε|p) dy
) 1

p′
( 1
Kdεp

∫
KY

aε |Dwε −Dvε|p dy
) 1

p + δ

≤ c
(
ΦK

ε (ξ) + δ + |ξ − η|p
) 1

p′ |ξ − η|+ δ

≤ c
(
|ξ|p−1 + |η|p−1 + δ

1
p′
)
|ξ − η|+ δ,
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whence by letting δ → 0 we obtain the desired estimate.

(iii) Since Rm×N is separable, there exists a subsequence of ΦK
ε (not relabelled) which Γ-

converges to some functional ΦK
0 in Rm×N (see e.g. [6] Proposition 1.42, [16] Theorem 8.5)

for any positive integer K, by using a diagonal extraction. On the other hand, the local
Lipschitz condition of (2.23) implies that the sequence ΦK

ε is equi-continuous on D with
respect to ε. Therefore, the Γ-convergence in D and the pointwise convergence in D of ΦK

ε

are equivalent (see e.g. [16] Proposition 5.9). So ΦK
ε pointwise converges to ΦK

0 in D. It is
clear that ΦK

0 satisfies the same estimates (2.23) as ΦK
ε . Moreover, by [8] Proposition 4.1

we have

∀K < K ′ ∈ N∗,

(
K

K ′

)d [ K ′

K + 1

]d

ΦK
ε ≤ ΦK′

ε , (3.3)

where [·] denotes the integer part. Then, passing to the limit ε → 0 in (3.3) yields the
same inequality for the pointwise limit ΦK

0 in D. Again by using [8] Proposition 4.1 we
obtain that ΦK

0 converges in D as K → +∞. This concludes the proof of Proposition 2.5.

3.3 Proof of Proposition 2.6

Since Lp(Ω; Rm) is separable, we can assume that the functional Gε defined by (2.27)
Γ-converges to some functional G0 for the strong topology of Lp(Ω; Rm). The inclusion
Eε ⊂ E of (2.25) clearly implies that G0 ≤ G defined by (2.28). Note that G is the Γ-limit
of the functional GE

ε defined by (2.27) with the fixed periodic set E, according to [10] (see
also [9] Chapter 20).

Let us prove the inverse inequality G ≤ G0. Let v ∈ Lp(Ω; Rm) and let vε ∈ Lp(Ω; Rm)
be a recovering sequence which strongly converges to v and such that Gε(vε) → G0(v).
If G0(v) = +∞ then G(v) ≤ G0(v). Now, assume that G0(v) < +∞. Then, Gε(vε) is
bounded, whence by the p-growth condition on g combined with the uniform extension
property (2.26) we deduce that Pεvε is bounded inW 1,p

loc (Ω; Rm) and Pεvε weakly converges
to v in W 1,p

loc (Ω; Rm) (up to a subsequence).
Let ω be an open subset of Rd such that ω b Ω. We have

lim inf
ε→0

∫
Ω∩εEε

g
(x
ε
,Dvε

)
dx ≥ lim inf

ε→0

∫
ω∩εEε

g
(x
ε
,D(Pεvε)

)
dx. (3.4)

By a result due to Fonseca et al. [15] there exists a bounded subsequence (not relabelled)
wε in W 1,p(ω; Rm) such that

| {wε 6= Pεvε} ∪ {Dwε 6= D(Pεvε)} | −→
ε→0

0 and |Dwε|p equi-integrable.

Using the p-growth of g yields∫
ω∩εEε

g
(x
ε
,D(Pεvε)

)
dx ≥

∫
ω∩εEε∩{Dwε=D(Pεvε)}

g
(x
ε
,Dwε

)
dx

≥
∫

ω∩εEε

g
(x
ε
,Dwε

)
dx− c

∫
ω∩εEε∩{Dwε 6=D(Pεvε)}

|Dwε|p dx,

whence by (3.4) and the equi-integrability of |Dwε|p

lim inf
ε→0

∫
ω∩εEε

g
(x
ε
,Dvε

)
dx ≥ lim inf

ε→0

∫
ω∩εEε

g
(x
ε
,Dwε

)
dx. (3.5)

Moreover, we have∫
ω∩εEε

g
(x
ε
,Dwε

)
dx =

∫
ω∩εE

g
(x
ε
,Dwε

)
dx−

∫
ω∩ε(E\Eε)

g
(x
ε
,Dwε

)
dx, (3.6)

13



in which the last term tends to 0 again by the equi-integrability of |Dwε|p combined
with (2.25). Then (3.5) combined with (3.6) and the Γ-liminf inequality satisfied by GE

ε

imply that

lim inf
ε→0

∫
ω∩εEε

g
(x
ε
,Dvε

)
dx ≥ lim inf

ε→0

∫
ω∩εE

g
(x
ε
,Dwε

)
dx ≥

∫
ω
ghom(Dv) dx.

Therefore, we obtain

G0(v) = lim
ε→0

Gε(vε) ≥ lim inf
ε→0

∫
ω∩εEε

g
(x
ε
,Dvε

)
dx ≥

∫
ω
ghom(Dv) dx,

whence G0(v) ≥ G(v) by the arbitrariness of ω. The proof is thus established.

4 Proof of Theorem 2.8

The proof of Theorem 2.8 is divided in three sections. In the first section we determine
the domain of the Γ-limit of the energy Fε defined by (2.12). The second section is
devoted to the Γ-liminf inequality, and the third one to the Γ-limsup inequality according
to Definition 2.2.

4.1 Determination of the domain of the limit energy

We proceed in two steps. In the first step we prove an inequality which is an auxiliary result
for the second step. In the second step we prove that any multi-phase limit (u1, . . . , uN ),
according to the topology (2.14), of a sequence uε with bounded energy, Fε(uε) ≤ c,
belongs to W 1,p(Ω; Rm)N and a.e. to the set D defined by (2.20).

First step : A preliminary inequality.
Let k ∈ {1, . . . , n}, let i, j ∈ Îk where the set Îk is defined in Proposition 2.3 and denote
Y ε

h := Eε
h∩Y for h = 1 . . . N . Let us prove that the optimal constant C(ε) of the inequality

∀ v ∈W 1,p
# (Y ; Rm),

∣∣∣∣∣−
∫

Y ε
i

v −−
∫

Y ε
j

v

∣∣∣∣∣ ≤ C(ε)
(

1
εp

∫
Y
aε |Dv|p dy +

∫
Y
|v|p dy

) 1
p

,

satisfies lim
ε→0

C(ε) = 0,
(4.1)

To this end, let us consider a function vε in W 1,p
# (Y ; Rm) such that

G#
ε (vε) :=

1
εp

∫
Y
aε |Dvε|p dy +

∫
Y
|vε|p dy = 1 and C(ε) =

∣∣∣∣∣−
∫

Y ε
i

vε −−
∫

Y ε
j

vε

∣∣∣∣∣ . (4.2)

Since vε is bounded in Lp(Y ; Rm), we have (up to a subsequence)

ξε
h := −

∫
Y ε

h

vε −→
ε→0

ξh for h = 1 . . . N.

Let us consider the function

ṽε := vε −
N∑

h=1

ϕε
h

(
vε −−

∫
Y ε

h

vε

)
,

where ϕε
k are the cut-off functions defined by (2.30). The energy estimate (4.2) satisfied

by the sequence vε combined with the Poincaré-Wirtinger inequality (2.33) implies that

F#
ε (ṽε) =

1
εp

∫
Y
aε |Dṽε|p dy ≤

c

εp

∫
Y
aε |Dvε|p dy ≤ cG#

ε (vε) ≤ c.
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Moreover, we have ṽε = ξε
h in Eε

h for h = 1 . . . N . Then ṽε is a suitable test function for
the minimization problem (2.16), and the Γ-liminf inequality of (2.17) yields

Φ#(ξ1, . . . , ξN ) ≤ lim inf
ε→0

Φ#
ε (ξε

1, . . . , ξ
ε
N ) ≤ lim inf

ε→0
F#

ε (ṽε) ≤ c,

whence by definitions (2.18) and (2.20) (ξ1, . . . , ξN ) ∈ D, and in particular ξi = ξj .
Therefore, by (4.2) C(ε) → 0.

Second step : Property of the multi-phase limit of a sequence with bounded energy.
Let uε be a sequence in W 1,p(Ω; Rm) with bounded energy, i.e., Fε(uε) ≤ c, which con-
verges to a multi-phase function (u1, . . . , uN ) ∈ (Lp(Ω; Rm))N for the topology (2.14).
Thanks to the uniform extension property (2.26) satisfied by each component Eε

i for
i = 1 . . . N , the sequence uε in Ω ∩ εEε

i can be extended to a bounded sequence in
W 1,p

loc (Ω; Rm) which weakly converges (up to a subsequence) to ui in W 1,p
loc (Ω; Rm). The

function ui actually belongs to W 1,p(Ω; Rm). Indeed, using the semi-lower continuity of
the L2-norm of the gradient and the second inequality of (2.26) yields for any open set
ω b Ω, ∫

ω
|∇ui|2 dx ≤ lim inf

ε→0

∫
ω
|∇Pε(uε|Ω∩εEε

i
)|2 dx

≤ k1 lim inf
ε→0

∫
Ω∩εEε

i

|∇uε|2 dx ≤ k1 lim inf
ε→0

Fε(uε) ≤ k1c,

where the constant k1c is independent of the open set ω.
It remains to prove that (u1, . . . , uN ) also belongs a.e. to the set D defined by (2.20).
To this end, let us consider, for fixed k ∈ {1, . . . , n}, i, j ∈ Îk and h ∈ {1, . . . ,m}, the
solution wε in W 1,p

# (Y ; Rm) of the problem

∀v ∈W 1,p
# (Y ; Rm),

1
εp

∫
Y
aε|Dwε|p−2Dwε : Dv dy +

∫
Y
|wε|p−2wε · v dy

= −
∫

Y ε
i

vh dy −−
∫

Y ε
j

vh dy,
(4.3)

or equivalently, in the whole space Rd,

− 1
εp

Div
(
aε|Dwε|p−2Dwε

)
+ |wε|p−2wε =

1Eε
i

|Y ε
i |
eh −

1Eε
j

|Y ε
j |
eh in D′(Rd), (4.4)

where DivW denotes the Rm-distribution obtained by taking the divergence of the lines
of the Rm×d-valued function W , and (e1, . . . , em) the canonical basis of Rm. Putting the
function wε as test function in (4.3) and using inequality (4.1) yield

1
εp

∫
Y
aε|Dwε|p dy +

∫
Y
|wε|p dy ≤ cC(ε)p′ −→

ε→0
0. (4.5)

On the other hand, for a given ϕ ∈ C∞
c (Ω), putting the function ϕuε as test function in

the ε-rescaled equation (4.4), and using successively the Hölder inequality, estimates (4.5)
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and (2.7), yield∣∣∣∣∣ 1
|Y ε

i |

∫
Ω∩εEε

i

(ϕuε)h dx−
1
|Y ε

j |

∫
Ω∩εEε

j

(ϕuε)h dx

∣∣∣∣∣
=
∣∣∣∣ 1
εp−1

∫
Ω

(
aε |Dwε|p−2Dwε

) (x
ε

)
: D(ϕuε) dx+

∫
Ω

(
|wε|p−2wε

) (x
ε

)
· (ϕuε) dx

∣∣∣∣
≤ c

εp−1

(∫
Y
aε |Dwε|p dy

) 1
p′
(∫

Ω
aε

(x
ε

)
|D(ϕuε)|p dx

) 1
p

+c
(∫

Y
|wε|p dy

) 1
p′
(∫

Ω
|ϕuε|p dx

) 1
p

≤ cC(ε)
(∫

Ω
fε

(x
ε
,D(ϕuε)

)
dx

) 1
p

+ cC(ε)
(∫

Ω
|ϕuε|p dx

) 1
p

which implies the estimate∣∣∣∣∣ 1
|Y ε

i |

∫
Ω∩εEε

i

(ϕuε)h dx−
1
|Y ε

j |

∫
Ω∩εEε

j

(ϕuε)h dx

∣∣∣∣∣
≤ cC(ε)

(
(Fε(ϕuε))

1
p + ‖ϕuε‖L∞(Ω)

)
.

(4.6)

First case : If uε is uniformly bounded in Ω, the energy Fε(ϕuε) is bounded, whence the
right-hand side of (4.6) tend to 0. By passing to the limit in (4.6) we thus obtain

∀ϕ ∈ C∞
c (Ω),

∫
Ω
ϕ(ui − uj)h dx = 0,

which implies ui = uj a.e. in Ω for any i, j ∈ Îk. Therefore, (u1, . . . , uN ) ∈ D a.e. in Ω
by the definition (2.20) of D.
Second case : Let TK , K ∈ N∗, be the function defined by TK(t) := min (K,max(−K, t)),
t ∈ R. The sequence TK(uε) is bounded by K and has a bounded energy since the
condition (2.7) satisfied by fε combined with the 1-Lipschitz property of TK implies that
Fε(TK(uε)) ≤ cFε(uε). By the Lipschitz property of TK the sequence TK(uε) τ -converges
to the multi-phase function (TK(u1), . . . , TK(uN )). Then, by the first case we obtain
(TK(u1), . . . , TK(uN )) ∈ D a.e. in Ω. Since TK(ui) strongly converges to ui in Lp(Ω; Rm)
and hence a.e. in Ω (up to a subsequence), passing to the limit K → +∞ finally yields
(u1, . . . , uN ) ∈ D a.e. in Ω.

4.2 Proof of the lower-bound inequality

The proof follows closely that in [8] Section 5, to which we refer for the details that remain
unchanged.

Let uε be a sequence converging to u = (u1, . . . , uN ) such that supε Fε(uε) < +∞.
Note that by the previous section we have u(x) ∈ D for a.e. x ∈ Ω. By Proposition 2.6
we have

lim inf
ε→0

Fε(uε) ≥
N∑

i=1

lim inf
ε→0

∫
Ω∩εEε

i

fε

(x
ε
,Duε

)
dx+ lim inf

ε→0

∫
Ω∩ωε

f
(x
ε
,Duε

)
dx

≥
N∑

i=1

lim inf
ε→0

∫
Ω
fhom

i (Dui) dx+ lim inf
ε→0

∫
Ω∩εωε

f
(x
ε
,Duε

)
dx.

It then remains to prove that

lim inf
ε→0

∫
Ω∩εωε

f
(x
ε
,Duε

)
dx ≥

∫
Ω

Φ(u1, . . . , uN ) dx . (4.7)
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With fixed K ∈ N∗ for all j ∈ Zd such that

Qj
K := Kj +KY ⊂ 1

ε
Ω, (4.8)

we define

uj
i,ε := −

∫
ε(Qj

K∩Eε
i )
uε dx, wj

i,ε(x) = uε(x)− uj
i,ε for x ∈ ε(Qj

K ∩ Eε
i ), (4.9)

and, with a slight abuse of notation, again by wj
i,ε the extension of the latter function

given by (2.26). Upon replacing Qj
K by Kj + (K − k0)Y , we may then assume that∫

εQj
K

|wj
i,ε|

p dx ≤ cK

∫
ε(Qj

K∩Eε
i )
|uε − uj

i,ε|
p dx (4.10)∫

εQj
K

|Dwj
i,ε|

p dx ≤ cK

∫
ε(Qj

K∩Eε
i )
|Duε|p dx, (4.11)

and hence, after applying the Poincaré-Wirtinger inequality on ε(Qj
K ∩ Eε

i ), that∫
εQj

K

|wj
i,ε|

p dx ≤ εpcK

∫
ε(Qj

K∩Eε
i )
|Duε|p dx, (4.12)

for some constant cK depending on K only.
Define now the functions

wj
ε(x) =

N∑
i=1

ϕε
i

(x
ε

)
wj

i,ε(x),

where ϕε
i are as in (2.30)–(2.34). Note that, by (4.12)∫

εQj
K

|wj
ε|p dx ≤ εpcK

N∑
i=1

∫
ε(Qj

K∩Eε
i )
|Duε|p dx. (4.13)

Let IK
ε be the set of all j such that (4.8) holds. We have by (2.8), Hölder’s inequality,

(2.7), and (2.32)∣∣∣∣∣∑
j∈IK

ε

∫
ε(Qj

K∩ωε)

(
fε

(x
ε
,Duε −Dwj

ε

)
− fε

(x
ε
,Duε

))
dx

∣∣∣∣∣
≤ c

(∑
j∈IK

ε

∫
ε(Qj

K∩ωε)
aε

(x
ε

)
(|Duε|p + |Dwj

ε|p) dx

)1/p′(∑
j∈IK

ε

∫
ε(Qj

K∩ωε)
aε

(x
ε

)
|Dwj

ε|p dx

)1/p

≤ c

(∑
j∈IK

ε

N∑
i=1

∫
ε(Qj

K∩ωε)

( 1
εp
aε

(x
ε

)∣∣∣Dϕε
i

(x
ε

)
wj

i,ε(x)
∣∣∣p + aε

(x
ε

)
|Dwj

i,ε(x)|
p
)
dx

)1/p

≤ c

(∑
j∈IK

ε

N∑
i=1

(
Ci,K(ε)

∫
εQj

K

|Dwj
i,ε|

p dx+ αε

∫
εQj

K

|Dwj
i,ε|

p dx

))1/p

.

By the limit conditions in (2.32) and (2.6) we then obtain

lim
ε→0

∑
j∈IK

ε

∫
ε(Qj

K∩ωε)

(
fε

(x
ε
,Duε −Dwj

ε

)
− fε

(x
ε
,Duε

))
dx = 0,
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that yields

lim inf
ε→0

∫
Ω∩εωε

fε

(x
ε
,Duε

)
dx ≥ lim inf

ε→0

∑
j∈IK

ε

∫
ε(Qj

K∩ωε)
fε

(x
ε
,Duε −Dwj

ε

)
dx.

On the other hand, the functions wj
ε are constructed in such a way that uε − wj

ε is an
admissible test function for ΦK

ε (ξ) in (2.21) with ξi = uj
i,ε, so that we get

lim inf
ε→0

∫
Ω∩εωε

fε

(x
ε
,Duε

)
dx ≥ lim inf

ε→0

∑
j∈IK

ε

εpKpΦK
ε (uj

1,ε, . . . , u
j
1,ε). (4.14)

Upon defining uε by setting (uε)i =
∑
j∈IK

ε

1
εQj

K
uj

i,ε, we can rewrite

∑
j∈IK

ε

εpKpΦK
ε (uj

1,ε, . . . , u
j
1,ε) =

∫
Ω

ΦK
ε (uε) dx.

Since uε strongly converges to u in Lp
loc(Ω; Rm) and, upon extracting a subsequence, a.e.

in Ω, by Fatou’s lemma and Proposition 2.5 (iii) we have

lim inf
ε→0

∫
Ω∩εωε

fε

(x
ε
,Duε

)
dx ≥ lim inf

ε→0

∫
Ω

ΦK
ε (uε) dx

≥
∫

Ω
lim inf

ε→0
ΦK

ε (uε) dx ≥
∫

Ω
ΦK

0 (u) dx.

It suffices eventually to apply Proposition 2.5 (iv) to obtain (4.7) and conclude the proof.

4.3 Proof of the upper-bound inequality

We now have to construct a recovery sequence for each function u = (u1, . . . , uN ) such
that F(u) < +∞; i.e., for all functions u ∈ (W 1,p(Ω; Rm))N such that u(x) ∈ D a.e. By a
density argument it suffices to deal with piecewise-affine u. We will only give a proof for
u linear, since the extension to u piecewise affine follows standard arguments, as in [8].

Let u(x) := (λ1x, . . . , λNx), with λi ∈ Rm×d. Note that the constraint u(x) ∈ D a.e.
implies that λi = λj if the two indices belong to the same element of the partition defined
in Proposition 2.3.

With fixed δ > 0, for all i ∈ {1, . . . , N} we choose K ∈ N∗ and uK
i ∈ W 1,p

0 (KY ; Rm)
such that ∫

KY ∩Eε
i

fε(y,DuK
i + λi) dy ≤ Kd(f i

hom(λi) + δ), (4.15)

and for all j ∈ Zd we choose vj
ε ∈W 1,p(KY ; Rm) such that

1
εpKd

∫
KY

fε(y,Dvj
ε) dy ≤ ΦK

ε (λ1x
j
ε, . . . , λNx

j
ε) + δ, (4.16)

where
xj

ε := εKj and vj
ε := λix

j
ε on KY ∩ Eε

i . (4.17)

Moreover, we also choose v̂h
ε ∈W

1,p
# (Y ; Rm) such that v̂h

ε = λh
i on Y ∩ Eε

i and

1
εp

∫
Y
aε(y)|Dv̂h

ε |p dy ≤ Φ#
ε (λh

1 , . . . , λ
h
N ) +

δ

N
.
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The function v̂ε ∈W 1,p
# (Y ; Rm×N ) defined by v̂ε := (v̂1

ε , . . . , v̂
N
ε ) ∈ (Rm)N satisfies

1
εp

∫
Y
aε(y)|Dv̂ε|p dy ≤

N∑
h=1

Φ#
ε (λh

1 , . . . , λ
h
N ) + δ, (4.18)

v̂ε = λi in Y ∩ Eε
i .

Let ψK ∈W 1,∞
# (KY ) be such that

ψK(x) = 1 in (K − 1)Y, ψK(x) = 0 on ∂(KY ). (4.19)

If x ∈ ε(Kj +KY ), j ∈ Zd, we set

wε(x) :=
N∑

i=1

εϕε
i

(x
ε

)
uK

i

(x− xj
ε

ε

)
+ vj

ε

(x− xj
ε

ε

)
+ v̂ε

(x
ε

)
(x− xj

ε) (4.20)

and finally
uε(x) := ψK

(x
ε

)
wε(x) +

(
1− ψK

(x
ε

))
v̂ε

(x
ε

)
x (4.21)

The functions uε constructed in this way satisfy

uε(x) = v̂ε

(x
ε

)
x on ∂(xj

ε + εKY ), (4.22)

uε(x) = εuK
i

(x− xj
ε

ε

)
+ λix in (xj

ε + ε(K − 1)Y ) ∩ εEε
i (4.23)

and in particular uε uniformly converges to (λ1x, . . . , λNx).
Let Jε

K be the set of all j ∈ Zd such that

ε(Kj +KY ) ∩ Ω 6= Ø. (4.24)

By reasoning similarly as in [8] Section 6, we may then estimate

lim sup
ε→0

∫
Ω
fε

(x
ε
,Duε

)
dx

≤ lim sup
ε→0

∑
j∈Jε

K

∫
xj

ε+εKY
fε

(x
ε
,Duε

)
dx

≤ lim sup
ε→0

∑
j∈Jε

K

∫
xj

ε+ε(K−1)Y
fε

(x
ε
,Duε

)
dx+ o(1).

The o(1) remainder in this formula comes from the contribution of the term with ∇ψK .
Applying the Poincaré inequality (2.34) to the function vj

ε − v̂εx
j
ε (which are equal to 0

on ∂Eε
i ) leads to the energy of vj

ε over the set KY \ (K − 1)Y (which contains the
support of ∇ψK). Proceeding as in Proposition 4.1 of [8] one can check that this energy is
bounded by the values of the function ΦK

ε −
(

K−2
K

)d ΦK−2
ε at the points (λ1x

j
ε, . . . , λNx

j
ε).

However, thanks to the Lipschitz condition (2.23) satisfied by ΦK
ε combined with the

Ascoli theorem, the sequence ΦK
ε uniformly converges to Φ as ε → 0 and K → +∞.

Therefore, the sequence ΦK
ε −

(
K−2

K

)d ΦK−2
ε uniformly converges to 0, which implies the

desired o(1). We can then proceed in our estimate obtaining
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lim sup
ε→0

∫
Ω
fε

(x
ε
,Duε

)
dx

≤ lim sup
ε→0

∑
j∈Jε

K

∫
xj

ε+εKY
fε

(x
ε
,Dwε

)
dx+ o(1)

≤
N∑

i=1

lim sup
ε→0

∑
j∈Jε

K

∫
(xj

ε+εKY )∩εEε
i

fε

(x
ε
,DuK

i

(x− xj
ε

ε

)
+ λi

)
dx

+ lim sup
ε→0

∑
j∈Jε

K

1
εp

∫
(xj

ε+εKY )∩εωε

fε

(
x

ε
,

N∑
i=1

ε

(
∇ϕε

i

(x
ε

)
uK

i

(x− xj
ε

ε

)

+ϕε
i

(x
ε

)
DuK

i

(x− xj
ε

ε

))
+Dvj

ε

(x− xj
ε

ε

)
+Dv̂ε

(x
ε

)
(x− xj

ε) + v̂ε

(x
ε

))
dx+ o(1)

≤
N∑

i=1

lim sup
ε→0

∑
j∈Jε

K

εd
∫

KY ∩Eε
i

fε(y,DuK
i + λi) dy

+ lim sup
ε→0

∑
j∈Jε

K

εd

εp

∫
KY ∩ωε

fε(y,Dvj
ε) dx+ o(1).

The o(1) in the last line of the latter formula holds true for the following reasons.
Firstly, the energy term with uK

i in the fourth line of the formula is small by combining
the Poincaré-Wirtinger inequality (2.32), limit (2.31) and estimate (4.15), so is the term
with DuK

i thanks to the factor ε. Secondly, the term with Dv̂ε in the fifth line of the
formula is small thanks to estimate (4.18) and to |x − xj

ε| ≤ Kε. Thirdly, the last term
with v̂ε in the fifth line of the formula is controlled by considering the difference v̂ε −∑N

h=1 ϕ
ε
h and by using the Poincaré inequality (2.34), estimate (4.18) and limit (2.31).

Using (4.15) and (4.16) we then obtain

lim sup
ε→0

F(uε) ≤
N∑

i=1

lim sup
ε→0

∑
j∈Jε

K

εdKd(f i
hom(λi) + δ)

+ lim sup
ε→0

∑
j∈Jε

K

εdKd(ΦK
ε (λ1x

j
ε, . . . , λNx

j
ε) + δ) + o(1)

≤
N∑

i=1

|Ω|f i
hom(λi) + lim sup

ε→0

∫
Ω

ΦK
ε (uε) + 2δ|Ω|+ o(1),

where uε(x) = (λ1x
j
ε, . . . , λNx

j
ε) if x ∈ xj

ε + εKY . Taking into account the uniform
convergence of uε to u and that of Φε

K to Φ (which is due to the Lipschitz condition (2.23)
combined with the Ascoli theorem), and letting ε → 0 and then K → +∞, and by the
arbitrariness of δ, we eventually obtain

lim sup
ε→0

F(uε) ≤
N∑

i=1

∫
Ω
f i
hom(Dui) dx+

∫
Ω

Φ(u1, . . . , uN ) dx

as desired.

4.4 An example

This section contains the proof of Proposition 2.9, illustrating Example 2.1. The proof
is divided in three steps. In the first step we define three cut-off functions which satisfy
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conditions (2.30) and (2.31). In the second step we prove that these functions satisfy the
Poincaré type inequalities (2.32), (2.33) and (2.34). In the third step we determine the
domain D (2.20).

First step : Definition of the cut-off functions.
Let 0 < R < R′ and let ψR,R′ be the function defined on [R,R′] by

ψR,R′(r) :=
R′ − r

R′ −R
for r ∈ [R,R′].

Let k ∈ {1, 2, 3} and set r := max
j 6=k

|yj |. Let ψk,ε
1 and ψk,ε

3 be the periodic functions in

W 1,∞
# (Y ) defined on Y by

ψk,ε
1 (y) :=


0 if r > R1

1 if r < R1 − rε
1

ψR1−rε
1,R1(r) if R1 − rε

1 ≤ r ≤ R1,

ψk,ε
3 (y) :=


1 if r > R2

0 if r < R2 − rε
2

1− ψR2−rε
2,R2(r) if R2 − rε

2 ≤ r ≤ R2.

Then, we define the cut-off functions ϕε
1, ϕ

ε
2, ϕ

ε
3 by

ϕε
1 := 1− (1− ψ1,ε

1 ) (1− ψ2,ε
1 ) (1− ψ3,ε

1 )

ϕε
3 := ψ1,ε

3 ψ2,ε
3 ψ3,ε

3

ϕε
2 := (1− ϕε

1) (1− ϕε
3).

(4.25)

By taking into account the conditions αε
i (rε

i )
1−p → 0 for i = 1, 2, it is clear that ϕε

1, ϕ
ε
2, ϕ

ε
3

satisfy (2.30) and (2.31).

Second step : Proof of the Poincaré type inequalities.
The proof of the weighted Poincaré-Wirtinger inequality (2.32) is based on the following
one:

Let Qε be the thick cylinder of axis Oy3 and of (outer and inner) radii (R − rε, R)
with 0 < R < 1

2 and rε → 0, defined by

Qε := {y ∈ Y : R− rε < max (|y1|, |y2|) < R},

and let Q be the thick cylinder of axis Oy3 and of radii (R − rε, R
′) or (R + R′, R) with

0 < R′ < min
(
R, 1

2 −R
)
. Then, there exists a constant C > 0 independent of ε such that

∀ v ∈W 1,p(Y ),
∫

Qε

∣∣∣∣ v −−∫
Q
v

∣∣∣∣p dy ≤ C

(
(rε)p

∫
Qε

|∇v|p dy + rε

∫
Q
|∇v|p dy

)
. (4.26)

Let us now prove (4.26) when Q is the cylinder of radii (R+R′, R) for example. We can
assume that Q and Qε have a circular section thanks to a change of variables. Let Γ ⊂ Y
be the cylinder of height 1 and of radius R between Q and Qε, let v ∈ C1(Y ) and denote
by v|Γ the trace of v on Γ. We have the following inequality∫

Qε

∣∣∣∣ v −−∫
Q
v

∣∣∣∣p dy
≤ cp

(∫
Qε

∣∣ v − v|Γ
∣∣p dy +

∫
Qε

∣∣∣∣ v|Γ −−∫
Γ
v

∣∣∣∣p dy +
∫

Qε

∣∣∣∣−∫
Γ
v −−

∫
Q
v

∣∣∣∣p dy) . (4.27)
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By a Poincaré-Wirtinger type inequality we have∫
Qε

∣∣∣∣−∫
Γ
v −−

∫
Q
v

∣∣∣∣p dy = |Qε|
∣∣∣∣−∫

Γ
v −−

∫
Q
v

∣∣∣∣p dy ≤ c rε

∫
Q
|∇v|p dy.

We pass in polar coordinates for evaluating the two first terms of the right-hand side
of (4.27). Since v|Γ does not depend on the radial coordinate, using successively the
embedding of W 1,p(Q) into Lp(Γ) and a Poincaré-Wirtinger type inequality in Q yields∫

Qε

∣∣∣∣ v|Γ −−∫
Γ
v

∣∣∣∣p dy ≤ c rε

∫
Γ

∣∣∣∣ v|Γ −−∫
Γ
v

∣∣∣∣p dy ≤ c rε

∥∥∥∥ v −−∫
Γ
v

∥∥∥∥p

W 1,p(Q)

≤ c rε

∫
Q
|∇v|p dy.

Moreover, we have for any y ∈ Qε,

v(y)− v|Γ(y) = v(r, θ, y3)− v(R, θ, y3) =
∫ r

R

∂v

∂ρ
(r, θ, y3) dρ,

whence by using the Hölder inequality∫
Qε

∣∣ v − v|Γ
∣∣p dy ≤

∫ 1
2

− 1
2

∫ 2π

0

∫ R

R−rε

(∫ R

r
ρ
− p′

p dρ

) p
p′
(∫ R

r

∣∣∣∣∂v∂ρ(r, θ, y3)
∣∣∣∣p ρdρ) rdrdθdy3

≤ c

(∫ R

R−rε

(R− r)p−1 dr

)∫
Qε

|∇v|p dy

≤ c (rε)p

∫
Qε

|∇v|p dy.

Putting the three previous inequalities in (4.27) yields the desired inequality (4.26).
Similarly, we can prove the following Poincaré type inequality

∀ v ∈W 1,p(Y ), v = 0 on ∂Q ∩ ∂Qε,

∫
Qε

|v|p dy ≤ C (rε)p

∫
Qε

|∇v|p dy. (4.28)

Let us prove inequality (2.32) for i = 1, the cases i = 2, 3 being quite similar. Let
v ∈W 1,p(Y ). For each k ∈ {1, 2, 3}, let Qk,ε

1 and Qk,ε
ε be the thick cylinders defined by

Qk,ε
1 :=

{
y ∈ Y : max

j 6=k
|yj | ≤ R1 − rε

1

}
=
{
y ∈ Y : ψk,ε

1 (y) = 1
}

Qk,ε
ε :=

{
y ∈ Y : R1 − rε

1 < max
j 6=k

|yj | < R1

}
=
{
y ∈ Y : 0 < ψk,ε

1 (y) < 1
}
.

By using the definition (4.25) of the function ϕε
1 in terms of the functions ψk,ε

1 and the
fact that |∇ψk,ε

1 | ≤ c (rε
1)
−1, we have∫

Y
aε |∇ϕε

1|p
∣∣∣∣∣ v −−

∫
Y ∩Eε

1

v

∣∣∣∣∣
p

dy

≤ c
αε

1

(rε
1)p

3∑
k=1

(∫
Qk,ε

ε

∣∣∣∣∣ v −−
∫

Qk,ε
1

v

∣∣∣∣∣
p

dy +
∫

Qk,ε
ε

∣∣∣∣∣−
∫

Qk,ε
1

v −−
∫

Y ∩Eε
1

v

∣∣∣∣∣
p

dy

)

≤ c
αε

1

(rε
1)p

3∑
k=1

(∫
Qk,ε

ε

∣∣∣∣∣ v −−
∫

Qk,ε
1

v

∣∣∣∣∣
p

dy + rε
1

∣∣∣∣∣−
∫

Qk,ε
1

v −−
∫

Y ∩Eε
1

v

∣∣∣∣∣
p

dy

)
.

On the one hand, the Poincaré-Wirtinger inequality (4.26) implies that∫
Qk,ε

ε

∣∣∣∣∣ v −−
∫

Qk,ε
1

v

∣∣∣∣∣
p

dy ≤ c

(
(rε

1)
p

∫
Qk,ε

ε

|∇v|pdy + rε
1

∫
Qk,ε

1

|∇v|pdy

)
.
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On the other hand, a Poincaré-Wirtinger type inequality yields∣∣∣∣∣−
∫

Qk,ε
1

v −−
∫

Y ∩Eε
1

v

∣∣∣∣∣
p

≤ c

∫
Y ∩Eε

1

|∇v|p dy.

By combining the three previous estimates and by the definition (2.10) of ωε
1 we thus

obtain the inequality∫
Y
aε |∇ϕε

1|p
∣∣∣∣∣ v −−

∫
Y ∩Eε

1

v

∣∣∣∣∣
p

dy ≤ c

(
αε

1

∫
Y ∩ωε

1

|∇v|p dy +
αε

1

(rε
1)p−1

∫
Y ∩Eε

1

|∇v|p dy

)
,

which yields inequalities (2.32) and (2.33) for i = 1 since αε
1 and αε

1 (rε
1)

1−p → 0.

Similarly, we deduce from inequality (4.28) the following Poincaré type inequality

∀ v ∈W 1,p(Y ), v = 0 on Y ∩ ∂Eε
i ,

∫
Y ∩ωε

aε |v|p dy ≤ c (rε
1 + rε

2)
p

∫
Y ∩ωε

aε |∇v|p dy,

which implies (2.34).

Third step : Determination of the set D.
One the one hand, putting the test function ϕε

1λ1 + ϕε
2λ2 + ϕε

3λ3, for a fixed λ ∈ R3, in
the minimization problem (2.16) yields with the definition (4.25) of the functions ϕε

i and
the definition (2.10) of the thin layers ωε

j ,

Φ#
ε (ξ) ≤ αε

1

εp

∫
ωε

1∩Y
|∇ (ϕε

1ξ1 + (1− ϕε
1)ξ2)|

p dy +
αε

2

εp

∫
ωε

2∩Y
|∇ ((1− ϕε

3)ξ2 + ϕε
3ξ3)|

p dy

≤ c

(
αε

1

εp (rε
1)p−1

|ξ1 − ξ2|p +
αε

2

εp (rε
2)p−1

|ξ2 − ξ3|p
)

(4.29)
On the other hand, let Γ1 and Γε

1 be the cylinder of axis Oy1 defined by{
Γ1 :=

{
y ∈ Y : max (|y2|, |y3|) = R1 and R2 < y3 <

1
2

}
Γε

1 :=
{
y ∈ Y : max (|y2|, |y3|) = R1 − rε

1 and R2 < y3 <
1
2

}
.

Proceeding as in the proof of inequality (4.26) by passing into polar coordinates and using
the Hölder inequality, we obtain that there exists a positive constant C such that

∀ v ∈W 1,p(Y ),

∣∣∣∣∣−
∫

Γ1

v −−
∫

Γε
1

v

∣∣∣∣∣
p

≤ C (rε
1)

p−1

∫
ωε

1∩Y
|∇v|p dy ≤ C

(rε
1)

p−1

αε
1

∫
Y
aε |∇v|p dy.

Then, putting the minimizer vε ∈W 1,p
# (Y ) such that

Φ#
ε (ξ) =

1
εp

∫
Y
aε |∇vε|p dy with vε = ξi in Eε

i ,

in the previous inequality and noting that vε = ξ1 on Γε
1 and vε = ξ2 on Γ1, yield

Φ#
ε (ξ) ≥ C−1 αε

1

εp (rε
1)p−1

|ξ1 − ξ2|p.

Similarly, there exists a positive constant c such that

Φ#
ε (ξ) ≥ c

αε
1

εp (rε
1)p−1

|ξ2 − ξ3|p.
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The two previous estimates combined with (4.29) imply that there exist a constant c > 1
such that

c−1 Φ#
ε (ξ) ≤ αε

1

εp (rε
1)p−1

|ξ1 − ξ2|p +
αε

2

εp (rε
2)p−1

|ξ2 − ξ3|p ≤ cΦ#
ε (ξ),

which combined with the definition (2.20) of D implies (2.36).
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trices de codimension 1 : Homogénéisation et optimisation des structures”, M2AN,
24 (5) (1990), 627-650.

[19] Khruslov E.Ya., “Homogenized models of composite media”, in Composite Media
and Homogenization Theory (G. Dal Maso and G.F. Dell’Antonio eds.), Progress in
Nonlinear Differential Equations and Their Applications, Vol. 5, Birkhäuser 1991,
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optimal”, Lecture Notes in Mathematics, 323, Springer 1973.

[22] Pankratov L., Piatnitski A. “Nonlinear “double porosity” type model”, C. R.
Math. Acad. Sci. Paris, 334 (5) (2002), 435-440.

[23] Pankratov L.S., Rybalko V.A., “Asymptotic analysis of a double porosity model
with thin fissures”, Sb. Math. 194 (1) (2003), 123-150.

[24] Sanchez Palencia E., “Comportement limite d’un problème de transmission à
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