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Abstract. We prove a stability result for a large class of unilateral minimality properties
which arise naturally in the theory of crack propagation proposed by Francfort and
Marigo in [22]. Then we give an application to the quasistatic evolution of cracks in
composite materials.

The main tool in the analysis is a Γ-convergence result for energies of the type

En(u, K) :=

Z
Ω\K

fn(x,∇u(x)) dx +

Z
S(u)\Kn

gn(x, ν) dHN−1(x),

where S(u) is the jump set of u and (Kn)n∈N is a sequence of rectifiable sets with
HN−1(Kn) ≤ M . We prove that no interaction occur in the Γ-limit process between the
bulk and the surface part of the energy, and relying on this result, we introduce a new
notion of convergence for (N − 1)-rectifiable sets called σ-convergence, which is useful
in the study of the stability of unilateral minimality properties.
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Introduction

In this paper we deal with the problem of stability of unilateral minimality properties with
varying volume and surface energies, and we give an application to the study of crack propagation
in composite materials.

Let K be a (N −1)-dimensional set contained in Ω ⊆ RN , and let u be a possibly vector valued
function on Ω whose discontinuities are contained in K and which is sufficiently regular outside
K. We say that the pair (u,K) is a unilateral minimizer with respect to the energy densities f
and g if

(0.1)
∫

Ω\K
f(x,∇u(x)) dx+

∫
K

g(x, ν) dHN−1(x) ≤
∫

Ω\H
f(x,∇v(x)) dx+

∫
H

g(x, ν) dHN−1(x),

for every (N − 1)-dimensional set H containing K, and for every function v whose discontinuities
are contained in H and which is sufficiently regular outside H. Here ν stands for the normal vector
to K and H at the point x, while HN−1 stands for the (N − 1)-dimensional Hausdorff measure.
(u,K) is said to be unilateral minimizer because it is a minimum only among pairs (v,H) with H
larger than K.

The unilateral minimality property (0.1) is a key point in the theory of quasistatic crack evolu-
tion in elastic bodies proposed by Francfort and Marigo in [22], which is inspired by the classical
Griffith’s criterion of crack propagation. In the framework of [22], Ω represents an hyperelastic
body in the reference configuration, u is its deformation, and K represents a crack inside Ω across
which the deformation u may jump. The total energy of the configuration (u,K) is given by

(0.2) E(u,K) :=
∫

Ω\K
f(x,∇u(x)) dx+

∫
K

g(x, ν) dHN−1(x).

The first term is referred to as the bulk energy of the body, while the second term is referred
to as the surface energy of the crack. The presence of x in f and g takes into account possible
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inhomogeneities, while the presence of the normal ν in g takes into account a possible anisotropy
of the body.

Following [22], if Ω is subject to a time dependent loading process, a quasistatic crack evolution
can be described by a pair (u(t),K(t)) where the crack K(t) grows in time, (u(t),K(t)) satisfies the
unilateral minimality property (0.1) at each time t, and the total energy (0.2) evolves in relation
with the power of external loads in such a way that no dissipation occurs.

The unilateral minimality property (0.1) can be interpreted as a static equilibrium property
along the irreversible process of crack growth. In fact an immediate consequence of (0.1) is that
u(t) is the elastic deformation in Ω \K(t) associated to the external load. As for the crack K(t),
(0.1) states a minimality condition only among enlarged cracks (unilateral minimality), taking
thus into account the irreversibility of the process. Together with non dissipation, and under some
regularity assumptions on the cracks, the unilateral minimality property implies that the Griffith’s
criterion is satisfied along the evolution (see [19]).

In [22] Francfort and Marigo suggest that the quasistatic evolution (u(t),K(t)) during the
loading process can be obtained as a limit of a discretized in time evolution (un(t),Kn(t)) which
by construction satisfies at each time the unilateral minimality property (0.1). We are thus led to
a problem of stability for unilateral minimizers, i.e., if the minimality property (0.1) is conserved
in the passage from (un(t),Kn(t)) to (u(t),K(t)).

The first mathematical result of stability for unilateral minimality properties has been obtained
by Dal Maso and Toader [19] in a two dimensional setting under a topological restriction on the
admissible cracks. They consider compact cracks with a bound on the number of their connected
components, and converging with respect to the Hausdorff metric. An extension of this result
to unilateral minimality properties involving the symmetrized gradient of planar elasticity is due
to Chambolle [16], while an extension to higher order minimality properties in connection to
quasistatic crack growth in a plate has been proved by Acanfora and Ponsiglione in [1].

A second result of stability for unilateral minimality properties has been obtained by Francfort
and Larsen in [21], where they give an existence result for quasistatic crack evolutions in the
context of SBV functions. In the framework of generalized antiplanar shear (i.e., Ω ⊆ RN , N ≥ 2),
the authors consider cracks K which are rectifiable sets in Ω, and associated displacements u in
SBV (Ω) with jump set S(u) contained in K. A key point for their result is the stability for
unilateral minimizers of the form (un, S(un)) with bulk energy given by f(x, ξ) = |ξ|2 and surface
energy given by g(x, ν) ≡ 1. More precisely, writing the unilateral minimality property in the
equivalent form

∫
Ω

|∇un|2 dx ≤
∫

Ω

|∇v|2 dx+HN−1(S(v) \ S(un)) for all v ∈ SBV (Ω)

(which corresponds to (0.1) with H = S(un)∪S(v)), they prove that if un ⇀ u weakly in SBV (Ω)
(see Section 1 for a definition), then u satisfies the same minimality property. The main tool for
proving this stability result is a geometrical construction which they called Transfer of Jump Sets
[21, Theorem 2.1].

The case in which S(un) is replaced by a rectifiable set Kn has been treated by Dal Maso,
Francfort and Toader in [18], where they consider also a Carathéodory bulk energy f(x, ξ) quasi-
convex and with p growth estimates in ξ, and a Borel surface energy g(x, ν) bounded and bounded
away from zero. They employ a variational notion of convergence for rectifiable sets which they
called σp-convergence to recover a crack K in the limit (see Section 5), and they prove a Transfer
of Jump Sets theorem for (Kn)n∈N satisfying HN−1(Kn) ≤ C [18, Theorem 5.1] in order to prove
that minimality is preserved.

In this paper we provide a different approach to the problem of stability of unilateral minimality
properties based on Γ-convergence which permits also to treat the case of varying bulk and surface
energy densities fn and gn. We restrict our analysis to the scalar case. Our approach is based on
the observation that the problem has a variational character. In fact, considering for a while the
case of fixed energy densities f and g with f convex in ξ, we have that if (un,Kn) is a unilateral
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minimizer for the energy (0.2), then un is a minimum for the functional

En(v) :=
∫

Ω

f(x,∇v) dx+
∫
S(v)\Kn

g(x, ν) dHN−1(x).

Then the problem of stability of unilateral minimizers can be treated in the framework of Γ-
convergence which ensures the convergence of minimizers. In Section 4, using an abstract repre-
sentation result by Bouchitté, Fonseca, Leoni and Mascarenhas [10], we prove that the Γ-limit (up
to a subsequence) of the functional En can be represented as

E(v) :=
∫

Ω

f(x,∇v) dx+
∫
S(v)

g−(x, ν) dHN−1(x),

where g− is a suitable function defined on Ω×SN−1 determined only by g and (Kn)n∈N, and such
that g− ≤ g. If we assume that un ⇀ u weakly in SBV (Ω), then by Γ-convergence we get that u
is a minimizer for E . Suppose now that K is a rectifiable set in Ω such that S(u) ⊆ K and

(0.3) g−(x, νK(x)) = 0 for HN−1-a.e. x ∈ K.

Then we have immediately that the pair (u,K) is a unilateral minimizer for f and g because for
all pairs (v,H) with S(v) ⊆ H and K ⊆ H we have

(0.4)
∫

Ω

f(x,∇u(x)) dx = E(u) ≤ E(v) =
∫

Ω

f(x,∇v(x)) dx+
∫
S(v)

g−(x, ν) dHN−1

=
∫

Ω

f(x,∇v(x)) dx+
∫
S(v)\K

g−(x, ν) ≤
∫

Ω

f(x,∇v(x)) dx+
∫
H\K

g(x, ν).

The rectifiable set K satisfying (0.3) is constructed in Section 5, where we define a new variational
notion of convergence for rectifiable sets which we call σ-convergence, and which departs from the
notion of σp-convergence given in [18]. The σ-limit K of a sequence of rectifiable sets (Kn)n∈N is
constructed looking for the Γ-limit H− in the strong topology of L1(Ω) of the functionals

H−
n (u) :=

{
HN−1 (S(u) \Kn) u ∈ P (Ω),
+∞ otherwise,

where P (Ω) is the space of piecewise constant function in Ω (see (1.1)). Roughly, the σ-limit
K is the maximal rectifiable set on which the density h− representing H− vanishes. By the
growth estimate on g it turns out that K is also the maximal rectifiable set on which the density
g− vanishes, so that K is the natural limit candidate for Kn in order to preserve the unilateral
minimality property. The definition of σ-convergence involves only the surface energies H−

n , and
as a consequence it does not depend on the exponent p and it is stable with respect to infinitesimal
perturbations in length (see Remark 5.2). Moreover it turns out that the σ-limit K contains the
σp-limit points of (Kn)n∈N, so that our Γ-convergence approach improves also the minimality
property given by the previous approaches.

Our method naturally extends to the case of varying bulk and surface energy densities fn and
gn, and this is indeed the main motivation for which we developed our Γ-convergence approach.
The key point to recover the effective energy densities f and g for the minimality property in the
limit and to repeat the chain of inequalities (0.4) is a Γ-convergence result for functionals of the
form

(0.5)
∫

Ω

fn(x,∇un(x)) dx+
∫
S(un)\Kn

gn(x, ν) dHN−1(x),

where (Kn)n∈N is a sequence of rectifiable sets such that HN−1(Kn) ≤ C. In Section 4, we prove
that the Γ-limit has the form

(0.6)
∫

Ω

f(x,∇u(x)) dx+
∫
S(u)

g−(x, ν) dHN−1(x),

where f is determined only by (fn)n∈N, and g− is determined only by (gn)n∈N and (Kn)n∈N,
that is no interaction occurs between the bulk and the surface part of the functionals in the Γ-
convergence process. A result of this type has been proved in the case of periodic homogenization
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(in the vectorial case, and with dependence on the trace of u in the surface part of the energy, but
without removing Kn from S(un)) by Braides, Defranceschi and Vitali [12].

In order to prove the integral representation (0.6), we use the result of Bouchitté, Fonseca, Leoni
and Mascarenhas [10] to represent the Γ-limit of (0.5) in an integral form through a volume energy
density f∞ and a surface energy density g∞ (see (4.1)). Then employing a blow-up analysis we
prove that f∞ is the density of the Γ-limit of the functionals (0.5) restricted to Sobolev functions,
while g∞ is the density of the Γ-limit of the functionals (0.5) restricted to characteristic functions of
sets with finite perimeter. This characterization immediately implies the non-interaction between
bulk and surface energies. In the blow-up analysis we need to replace SBV -functions with van-
ishing jump set with Sobolev functions (Step 2 in the proof of Theorem 4.1), and SBV -functions
with vanishing gradient with characteristic functions of sets with finite perimeter (Step 4 in the
proof of Theorem 4.1). The first operation is done using suitable variants of Lusin Approxima-
tion Theorem for SBV -function [7, Theorem 5.36] which can be found, e.g., in [25]. The second
one requires a careful use of Coarea formula for BV functions and of Fubini’s Theorem. Coarea
formula has been largely employed in the proof of lower semicontinuity results for functionals on
SBV since the pioneering paper by Ambrosio [3] (in connection with the notion of BV -ellipticity
for surface energy densities). Our use of Fubini’s Theorem (we need it to achieve precise boundary
conditions) is inspired by the proof of the Transfer of Jump Sets Theorem [21, Theorem 2.3] by
Francfort and Larsen.

We notice that an approach to stability in the line of Dal Maso, Francfort and Toader in the
case of varying energies needs a Transfer of Jump Sets for fn, gn and f, g, which seems difficult to
be derived without any Γ-convergence argument. Our approach also provides this result (Theorem
6.4).

In Section 8 we deal with the study of quasistatic crack evolution in composite materials. More
precisely we study the asymptotic behavior of a quasistatic evolution t → (un(t),Kn(t)) relative
to the bulk energy density fn and the surface energy density gn. Using our stability result we
prove (Theorem 8.1) that t→ (un(t),Kn(t)) converges to a quasistatic evolution t→ (u(t),K(t))
relative to the effective bulk and surface energy densities f and g. Moreover convergence for bulk
and surface energies at every time holds. This analysis applies to the case of composite materials,
i.e., materials obtained through a fine mixture of different phases. The model case is that of
periodic homogenization, i.e., materials with total energy given by

Eε(u,K) :=
∫

Ω

f
(x
ε
,∇u(x)

)
dx+

∫
K

g
(x
ε
, ν
)
dHN−1(x),

where ε is a small parameter giving the size of the mixture, and f , g are periodic in x. Our
result implies that a quasisistatic crack evolution t → (uε(t),Kε(t)) for ε small is very near to a
quasistatic evolution for the homogeneous material having bulk and surface energy densities fhom

and ghom, which are obtained from f and g through periodic homogenization formulas available
in the literature (see for example [12]).

The paper is organized as follows. In Section 1 we make precise the functional setting of the
problem. In Section 2 we prove a blow up result for Γ-limits which will be employed in the
proof of the main results. In Section 3 we prove some representation results which we use in
Section 4 where we deal with the Γ-convergence of free discontinuity functionals (0.5). The notion
of σ-convergence for rectifiable sets is contained in Section 5, while the main result on stability
for unilateral minimizers is contained in Section 6. In Section 7 we prove a stability result for
unilateral minimality properties with boundary conditions which will be employed in Section 8 for
the study of quasistatic crack evolution in composite materials.

1. The functional setting of the problem

In this section we introduce the precise functional setting for the study of the unilateral mini-
mality property (0.1). Throughout the paper we suppose that Ω is a bounded open subset of RN
with Lipschitz boundary, and we denote by A(Ω) the family of its open subsets.
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In the unilateral minimality property (0.1), we consider (N − 1)-dimensional sets which are
rectifiable, i.e., contained up to a set of HN−1-measure zero in the union of a sequence of C1-
hypersurfaces of RN . We will use the following notation: given K1,K2 rectifiable sets in RN , we
say that K1 ⊆̃K2 if K1 ⊆ K2 up to a set of HN−1-measure zero; similarly we say that K1=̃K2 if
K1 = K2 up to a set of HN−1-measure zero.

Given 1 < p < +∞, the functions in (0.1) belong to the space SBV p(Ω) defined as

SBV p(Ω) := {u ∈ SBV (Ω) : ∇u ∈ Lp(A,RN ),HN−1(S(u)) < +∞}.

For the notations and the general theory concerning the function space SBV (Ω) (special functions
of bounded variation), we refer the reader to [7]. We will consider weak convergence in SBV p(Ω)
defined in the following way: un ⇀ u weakly in SBV p(Ω) if

un → u strongly in L1(Ω),

∇un ⇀ ∇u weakly in Lp(Ω; RN ),

HN−1(S(un)) ≤ C.

We indicate by P (Ω) the family of sets with finite perimeter in Ω, that is the class of sets E ⊆ Ω
such that 1E ∈ SBV (Ω). In view of the applications of Sections 3, 4 and 5, it will be useful to
look at P (Ω) in term of functions, that is to use the following equivalent description:

(1.1) P (Ω) = {u ∈ SBV (Ω) : u(x) ∈ {0, 1} for a.e. x ∈ Ω}.

2. Blow-up for Γ-limits

In this section we state some blow-up results for Γ-convergent sequences of integral functionals
Fn(u) defined in (2.2) which will be used in Section 4. Moreover under additional hypothesis on
Fn, we obtain a regularity result for the density of the Γ-limit F which will be employed in Section
8. For the definition and the basic properties of Γ-convergence, we refer the reader to [17].

Let 1 < p < +∞ and let f : Ω× RN → [0,+∞[ be a Carathéodory function such that

(2.1) a1(x) + α|ξ|p ≤ f(x, ξ) ≤ a2(x) + β|ξ|p,

where a1, a2 ∈ L1(Ω) and α, β > 0. Let us assume that

ξ → f(x, ξ) is convex for a.e. x ∈ Ω.

Let B1 be the unit ball in RN with center 0 and radius 1. The following blow up result in the
sense of Γ-convergence is a direct consequence of the Scorza-Dragoni theorem for Carathéodory
functions and of [17, Theorem 5.14].

Lemma 2.1. There exists N ⊆ Ω with |N | = 0 such that for every x ∈ Ω \ N and for every
sequence (ρk)k∈N converging to zero, the functionals

Fk(u) :=

{∫
B1
f(x+ ρky,∇u(y)) dy u ∈W 1,p(B1),

+∞ otherwise in L1(B1)

Γ-converge in the strong topology of L1(B1) to the functional

F (u) :=

{∫
B1
f(x,∇u(y)) dy u ∈W 1,p(B1),

+∞ otherwise in L1(B1).

Let us consider now fn : Ω × RN → [0,+∞[ Carathéodory functions satisfying the growth
estimate (2.1) uniformly in n, and let Fn : L1(Ω)×A(Ω) → [0,+∞] be defined as

(2.2) Fn(u,A) :=

{∫
A
fn(x,∇u(x)) dx u ∈W 1,p(A),

+∞ otherwise.
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Let us assume (and this is always true up to a subsequence, see Proposition 3.1) that for all
A ∈ A(Ω) Fn(·, A) Γ-converge with respect to the strong topology of L1(Ω) to a functional F(·, A)
such that for all u ∈W 1,p(Ω)

(2.3) F(u,A) :=
∫
A

f(x,∇u(x)) dx

for some Carathéodory function f (independent of u and A) which satisfies estimate (2.1). Using
Lemma 2.1 and a diagonal argument we conclude that the following proposition holds.

Proposition 2.2. There exists N ⊆ Ω with |N | = 0 such that for every x ∈ Ω \N and for every
sequence (ρk)k∈N, there exists (nk)k∈N (possibly depending on x) such that the functionals

Fk(u) :=

{∫
B1
fnk

(x+ ρky,∇u(y)) dy u ∈W 1,p(B1),
+∞ otherwise in L1(B1)

Γ-converge in the strong topology of L1(B1) to the functional

F (u) :=

{∫
B1
f(x,∇u(y)) dy u ∈W 1,p(B1),

+∞ otherwise in L1(B1).

Remark 2.3. In the case of periodic homogenization, i.e., in the case in which fn(x, ξ) := f(nx, ξ)
with f periodic in x, it is sufficient to choose nk in such a way that nkρk → +∞. In fact for x = 0
we have

Fk(u) :=

{∫
B1
f((nkρk)y,∇u(y)) dy u ∈W 1,p(B1),

+∞ otherwise in L1(B1)

which still Γ-converges to (see for instance [17])

F (u) :=

{∫
B1
fhom(∇u(y)) dy u ∈W 1,p(B1),

+∞ otherwise in L1(B1).

In the rest of the section we prove a regularity result for the density f defined in (2.3) under
additional hypothesis on fn which will be employed in Section 8. Let us assume that for a.e. x ∈ Ω

(a) fn(x, ·) is convex;

(b) fn(x, ·) is of class C1;

(c) for all M ≥ 0 and for all ξ1n, ξ
2
n such that |ξ1n| ≤M , |ξ2n| ≤M , |ξ1n − ξ2n| → 0 we have

(2.4) |∇ξfn(x, ξ1n)−∇ξfn(x, ξ2n)| → 0.

Notice that for instance fn(x, ξ) := an(x)|ξ|p with α ≤ an(x) ≤ β satisfies the assumptions above.
Notice moreover that by lower semicontinuity of Γ-limits ξ → f(x, ξ) is convex for a.e. x ∈ Ω.

We need the following lemma which is a straightforward variant of [18, Lemma 4.9].

Lemma 2.4. Let (X,A, µ) be a finite measure space, p > 1, N ≥ 1, and let Hn : X ×RN → R be
a sequence of Carathéodory functions which satisfy the following properties: there exist a positive
constant a ≥ 0 and a nonnegative function b ∈ Lp′(X), with p′ := p/(p− 1) such that

(1) |Hn(x, ξ)| ≤ a|ξ|p−1 + b(x) for every x ∈ X, ξ ∈ RN ;

(2) for all M ≥ 0 and for a.e. x ∈ Ω, for all ξ1n, ξ
2
n such that |ξ1n| ≤M , |ξ2n| ≤M , |ξ1n−ξ2n| → 0

we have
|Hn(x, ξ1n)−Hn(x, ξ2n)| → 0.

Assume that (Φn)n∈N is bounded in Lp(X,RN ) and that (Ψn)n∈N converges to 0 strongly in
Lp(X,RN ). Then ∫

X

[Hn(x,Φn(x) + Ψn(x))−Hn(x,Φn(x))]Φ(x) dµ(x) → 0,

for every Φ ∈ Lp(X,RN ).
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The following regularity result on f holds.

Proposition 2.5. For a.e. x ∈ Ω the function ξ → f(x, ξ) is of class C1.

Proof. According to Proposition 2.2, let x ∈ Ω, ρk → 0 and (nk)k∈N be such that (Fk)k∈N Γ-
converges with respect to the strong topology of L1(B1) to F .

Let (φk)k∈N be a recovering sequence for the affine function y → ξ · y with ξ ∈ RN . Up to a
further subsequence, we can always assume that there exists ψ ∈ RN such that

(2.5)
1
|B1|

∫
B1

∇ξfnk
(x+ ρky,∇φk(y)) dy → ψ.

Let tj ↘ 0 and let η ∈ RN . By the convexity of fnk
in the second variable, we have∫

B1

fnk
(x+ ρky,∇φk(y) + tjη)− fnk

(x+ ρky,∇φk(y)) dy

≤ tj

∫
B1

∇ξfnk
(x+ ρky,∇φk(y) + tjη)η dy.

By Γ-convergence we can find kj such that

f(x, ξ + tjη)− f(x, ξ)
tj

− 1
j
≤ 1
|B1|

∫
B1

∇ξfnkj
(x+ ρkjy,∇φkj (y) + tjη)η dy,

so that we have

(2.6) lim sup
j→+∞

f(x, ξ + tjη)− f(x, ξ)
tj

≤ 1
|B1|

lim sup
j→+∞

∫
B1

∇ξfnkj
(x+ ρkjy,∇φkj (y) + tjη)η dy.

Notice that by Lemma 2.4 and by (2.5) we have that

lim
j→+∞

∫
B1

∇ξfnkj
(x+ ρkj

y,∇φkj
(y) + tjη)η dy

= lim
j→+∞

∫
B1

∇ξfnkj
(x+ ρkj

y,∇φkj
(y))η dy = |B1|ψη,

and so for every subgradient ζ of f(x, ·) at ξ by (2.6) we have

ζη ≤ lim sup
j→+∞

f(x, ξ + tjη)− f(x, ξ)
tj

≤ ψη.

We deduce that ζ = ψ, so that f(x, ·) is Gateaux differentiable at ξ with ∇ξf(x, ξ) = ψ: since
f(x, ·) is convex, we get that f(x, ·) is of class C1. �

Remark 2.6. An hypothesis of equiuniform continuity for (∇ξfn(x, ξ))n∈N like (2.4) is needed
in order to preserve C1-regularity in the passage from fn to f . Otherwise it is easy to provide
a counterexample considering ξ → fn(ξ) smooth convex functions uniformly converging to a non
differentiable convex function ξ → f(ξ), and noting that the associated functionals Γ-converge.

3. Some integral representation lemmas

Let a1, a2 ∈ L1(Ω), 1 < p < +∞, and let α, β > 0. For all n ∈ N let fn : Ω×RN → [0,+∞[ be
a Carathéodory function such that for a.e. x ∈ Ω and for all ξ ∈ RN

(3.1) a1(x) + α|ξ|p ≤ fn(x, ξ) ≤ a2(x) + β|ξ|p,
and let gn : Ω × SN−1 → [0,+∞[ be a Borel function such that for HN−1-a.e. x ∈ Ω and for all
ν ∈ SN−1 := {η ∈ RN : |η| = 1}
(3.2) α ≤ gn(x, ν) ≤ β.

In Section 4 we will be interested in the functionals on L1(Ω)×A(Ω)

(3.3) En(u,A) :=

{∫
A
fn(x,∇u(x)) dx+

∫
A∩(S(u)\Kn)

gn(x, ν) dHN−1(x) u ∈ SBV p(A),

+∞ otherwise,
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where A(Ω) denotes the family of open subsets of Ω, and (Kn)n∈N is a sequence of rectifiable sets
in Ω such that

HN−1(Kn) ≤ C.

In particular we will be interested in the Γ-limit in the strong topology of L1(Ω) of (En(·, A))n∈N
for every A ∈ A(Ω). To this extend we consider the functionals Fn : L1(Ω)×A(Ω) → [0,+∞]

(3.4) Fn(u,A) :=

{∫
A
fn(x,∇u(x)) dx u ∈W 1,p(A),

+∞ otherwise,

and the functionals G−n : P (Ω)×A(Ω) → [0,+∞[

(3.5) G−n (u,A) :=
∫
A∩(S(u)\Kn)

gn(x, ν) dHN−1(x)

defined respectively on Sobolev and piecewise constant functions with values in {0, 1} (see (1.1))
respectively. We will reconstruct the Γ-limit of (En(·, A))n∈N through the Γ-limits of (Fn(·, A))n∈N
and (G−n (·, A))n∈N.

For the results of Section 6, we will need also the functionals Gn : P (Ω)×A(Ω) → [0,+∞[

(3.6) Gn(u,A) :=
∫
A∩S(u)

gn(x, ν) dHN−1(x).

In the following, given H defined on X × A(Ω) with values in [0,+∞], where X = L1(Ω) or
X = P (Ω), following [10] we set for every ψ ∈ L1(A) and A ∈ A(Ω)

(3.7) mH(ψ,A) = inf
u∈X

{H(u,A) : u = ψ in a neighborhood of ∂A}.

Moreover for all x ∈ RN , a, b ∈ R and ν ∈ SN−1 let ux,a,b,ν : B1(x) → R be defined by

(3.8) ux,a,b,ν(y) :=

{
b if (y − x)ν ≥ 0,
a if (y − x)ν < 0,

where B1(x) is the ball of center x and radius 1.
The following Γ-convergence and representation result for the functionals Fn holds (see Buttazzo

and Dal Maso [15], Bouchitté, Fonseca, Leoni and Mascarenhas [10, Theorem 2]).

Proposition 3.1. There exists F : L1(Ω) × A(Ω) → [0,+∞] such that up to a subsequence the
functionals Fn(·, A) Γ-converge in the strong topology of L1(Ω) to F(·, A) for every A ∈ A(Ω).
Moreover for all u ∈W 1,p(Ω) we have that

(3.9) F(u,A) =
∫
A

f(x,∇u(x)) dx,

where

(3.10) f(x, ξ) := lim sup
ρ→0+

mF (ξ(z − x), Bρ(x))
ωNρN

,

mF is defined in (3.7), and ωN is the volume of the unit ball in RN . Finally f is a Carathéodory
function satisfying the growth conditions (3.1).

Let us come to the functionals Gn defined in (3.6). The following proposition holds (see Am-
brosio and Braides [5, Theorem 3.2], Bouchitté, Fonseca, Leoni and Mascarenhas [10, Theorem
3]).

Proposition 3.2. There exists G : P (Ω)×A(Ω) → [0,+∞[ such that up to a subsequence Gn(·, A)
Γ-converges with respect to the strong topology of L1(Ω) to G(·, A) for all A ∈ A(Ω). Moreover for
all u ∈ P (Ω) and A ∈ A(Ω) we have that

(3.11) G(u,A) =
∫
A∩S(u)

g(x, ν) dx,
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with

(3.12) g(x, ν) := lim sup
ρ→0+

mG(ux,0,1,ν , Bρ(x))
ωN−1ρN−1

,

where mG is defined in (3.7) and ux,0,1,ν is as in (3.8).

Let us come to the functionals G−n defined in (3.5). The following proposition holds.

Proposition 3.3. There exists G− : P (Ω) × A(Ω) → [0,+∞[ such that up to a subsequence
G−n (·, A) Γ-converges with respect to the strong topology of L1(Ω) to G−(·, A) for all A ∈ A(Ω).
Moreover for all u ∈ P (Ω) and A ∈ A(Ω) we have that

(3.13) G−(u,A) =
∫
A∩S(u)

g−(x, ν) dHN−1(x),

with

(3.14) g−(x, ν) := lim sup
ρ→0+

mG−(ux,0,1,ν , Bρ(x))
ωN−1ρN−1

,

where mG− is defined in (3.7) and ux,0,1,ν is as in (3.8).

Proof. The Γ-convergence result for G−n (·, A) is given by the result of Ambrosio and Braides [5,
Theorem 3.2]. For the sequel we need also the explicit formula (3.14) for the density g− which is
not given directly by the results of [5] and [10] because of a lack of coercivity from below (we are
removing Kn from S(u)). So in what follows we modify the concrete approximation G−n (·, A) for
G−(·, A) in order to get the coerciveness we need, and to obtain in the end formula (3.14).

Let us consider the functionals

(3.15) Gεn(u,A) :=

{∫
A∩S(u)

gεn(x, ν) dHN−1(x) u ∈ PC(Ω),

+∞ otherwise

where

(3.16) gεn(x, ν) :=

{
ε if x ∈ Kn, ν = νKn

(x),
gn(x, ν) otherwise.

Let us denote by Gε(·, A) the Γ-limit (up to a subsequence) of Gεn(·, A) for all A ∈ A(Ω). Since Gε
is such that for ε small

εHN−1(S(u) ∩A) ≤ Gε(u,A) ≤ βHN−1(S(u) ∩A),

by Proposition 3.2 we have that

Gε(u,A) =
∫
S(u)∩A

gε(x, ν) dHN−1(x),

where gε : Ω× SN−1 → [0,+∞] is given by

(3.17) gε(x, ν) := lim sup
ρ→0+

mGε(Bρ(x), ux,0,1,ν)
ωN−1ρN−1

.

Let µn := HN−1 Kn. Since HN−1(Kn) ≤ C, up to a subsequence we have

(3.18) µn
∗
⇀ µ weakly∗ in the sense of measures

for some finite Radon measure µ. Notice that for all u ∈ PC(Ω) and A ∈ A(Ω) we have

Gεn(u,A) ≤ G−n (u,A) + εµn(A),

so that by Γ-convergence and by (3.18) we get for n→ +∞
(3.19) Gε(u,A) ≤ G−(u,A) + εµ(Ā).

Up to a set of HN−1-measure zero we have

(3.20) H(x) := lim sup
ρ→0+

µ(B̄ρ(x))
ωN−1ρN−1

< +∞.
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In fact if by contradiction H(x) = +∞ on a Borel set B with HN−1(B) > 0, then by [7, Theorem
2.56] we deduce that µ(B) = ∞. But this is against µ(Ω) < +∞.

Let us prove that for HN−1-a.e. x ∈ Ω we have

(3.21) g−(x, ν) = lim
ε→0

gε(x, ν),

where g−(x, ν) is defined in (3.14). In fact, notice that {gε}ε is monotone decreasing in ε and that
g− ≤ gε for all ε > 0, so that for all x and ν

g−(x, ν) ≤ lim
ε→0

gε(x, ν).

On the other hand, by (3.19) we have that

mGε(Bρ(x), ux,0,1,ν)
ωN−1ρN−1

≤ mG−(Bρ(x), ux,0,1,ν)
ωN−1ρN−1

+ ε
µ(B̄ρ(x))
ωN−1ρN−1

.

Taking the lim sup for ρ→ 0+ we have

gε(x, ν) ≤ g−(x, ν) + εH(x),

and so letting ε→ 0 we obtain for HN−1-a.e. x ∈ Ω

lim
ε→0

gε(x, ν) ≤ g−(x, ν)

which gives (3.21). Since for all u ∈ PC(Ω) and A ∈ A(Ω) we have Gε(u,A) → G−(u,A) as ε→ 0,
we conclude that

(3.22) G−(u,A) = lim
ε→0

Gε(u,A) = lim
ε→0

∫
S(u)∩A

gε(x, ν) dHN−1(x) =
∫
S(u)∩A

g−(x, ν) dHN−1(x),

so that the representation formulas (3.13) and (3.14) hold. �

Remark 3.4. It is immediate to check that if we replace P (Ω) in Proposition 3.3 by the space
Pa,b(Ω) := {u ∈ SBV (Ω) : u(x) ∈ {a, b} for a.e. x ∈ Ω}, with a, b ∈ R, then the Γ-limit in the
strong topology of L1(Ω) of G−n (·, A) can still be represented by the density g− defined in (3.14).

Let us finally come to the functionals En defined in (3.3). Using the growth estimates (3.1)
and (3.2) on fn and gn (see [12]), there exists E : L1(Ω) × A(Ω) → [0,+∞[ such that up to a
subsequence En(·, A) Γ-converge in the strong topology of L1(Ω) to E(·, A) for all A ∈ A(Ω). For
every ε > 0 let us set

(3.23) Eε(u,A) := E(u,A) + ε

∫
S(u)∩A

1 + |[u]| dHN−1,

where [u](x) denotes the jump of u at x, i.e., [u](x) := u+(x)−u−(x). By the representation result
of Bouchitté, Fonseca, Leoni and Mascarenhas [10, Theorem 1] we get that for all u ∈ SBV p(Ω)
and A ∈ A(Ω)

(3.24) Eε(u,A) =
∫
A

fε∞(x,∇u(x)) dx+
∫
A∩S(u)

gε∞(x, u−(x), u+(x), ν) dHN−1(x)

with fε∞ and gε∞ satisfying the following formulas

(3.25) fε∞(x, ξ) := lim sup
ρ→0+

mEε
(ξ(z − x), Bρ(x))

ωNρN
,

(3.26) gε∞(x, a, b, ν) := lim sup
ρ→0+

mEε(ux,a,b,ν , Bρ(x))
ωN−1ρN−1

,

where mEε is defined in (3.7) and ux,a,b,ν is as in (3.8).
Notice that fε∞ and gε∞ are monotone decreasing in ε, and that Eε(·, A) converges pointwise to

E(·, A) as ε→ 0 for every A ∈ A(Ω). We conclude that the representation result for Eε implies a
representation result for the functional E .

Summarizing we have that the following proposition holds.
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Proposition 3.5. There exists E : L1(Ω)×A(Ω) → [0,+∞] such that up to a subsequence En(·, A)
Γ-converges in the strong topology of L1(Ω) to E(·, A) for every A ∈ A(Ω). Moreover, for every
u ∈ SBV p(Ω) and A ∈ A(Ω) we have that

E(u,A) =
∫
A

f∞(x,∇u(x)) dx+
∫
A∩S(u)

g∞(x, u−(x), u+(x), ν) dHN−1(x)

with

(3.27) f∞(x, ξ) := lim
ε→0

fε∞(x, ξ) and g∞(x, a, b, ν) := lim
ε→0

gε∞(x, a, b, ν),

where fε∞ and gε∞ are defined in (3.25) and (3.26) respectively.

Remark 3.6. In the rest of the paper we will often make use the following property which is
implied by the fact that E(u, ·) is a Radon measure for every u ∈ SBV p(Ω). If (un)n∈N is a
recovering sequence for u with respect to En(·,Ω), then (un)n∈N is optimal for u with respect to
En(·, A) for every A ∈ A(Ω) such that the measure E(u, ·) vanishes on ∂A.

4. A Γ-convergence result for free discontinuity problems

The main result of this section is the following Γ-convergence theorem concerning the functionals
En defined in (3.3).

Theorem 4.1. Let (Kn)n∈N be a sequence of rectifiable sets in Ω such that HN−1(Kn) ≤ C for
all n ∈ N. Let us assume that for all A ∈ A(Ω) the functionals Fn(·, A) and G−n (·, A) defined in
(3.4) and (3.5) Γ-converge in the strong topology of L1(Ω) to F(·, A) and G−(·, A) respectively.
Then for all A ∈ A(Ω) the functionals En(·, A) defined in (3.3) Γ-converge in the strong topology
of L1(Ω) to E(·, A) such that for all u ∈ SBV p(Ω) and A ∈ A(Ω)

E(u,A) =
∫
A

f(x,∇u(x)) dx+
∫
A∩S(u)

g−(x, ν) dHN−1(x),

where f and g− are the densities of F and G− according to Propositions 3.1 and 3.3.

Proof. By Proposition 3.5 we know that up to a subsequence the functionals En(·, A) Γ-converge in
the strong topology of L1(Ω) to a functional E(·, A) for every A ∈ A(Ω), which for all u ∈ SBV p(Ω)
and for all A ∈ A(Ω) can be represented as

(4.1) E(u,A) =
∫
A

f∞(x,∇u) dx+
∫
S(u)∩A

g∞(x, u−(x), u+(x), ν) dHN−1(x),

where f∞ and g∞ satisfy formula (3.27). The theorem will be proved if we show that for all
u ∈ SBV p(Ω) we have

f∞(x,∇u(x)) = f(x,∇u(x)) for a.e. x ∈ Ω,

and
g∞(x, u−(x), u+(x), νS(u)(x)) = g−(x, νS(u)(x)) for HN−1-a.e. x ∈ S(u),

where νS(u)(x) is the normal to S(u) at x.
We will use the following relations between the functionals E , F and G− which follow immedi-

ately by Γ-convergence. If u ∈W 1,p(A), then

(4.2) E(u,A) ≤ F(u,A),

while if u ∈ P (A) we have

(4.3) E(u,A) ≤
∫
A

a2 dx+ G−(u,A),

where a2 appears in the growth estimate (3.1) for fn.
The proof will be divided into four steps.

Step 1: f∞(x,∇u(x)) ≤ f(x,∇u(x)) for a.e. x ∈ Ω.
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This inequality can be derived using the explicit formulas for f∞ and f . Let x ∈ Ω, ξ ∈ RN ,
and let us fix ε > 0. For every ρ > 0 let uε,ρ ∈ W 1,p(Bρ(x)) be such that uε,ρ(z) = ξ(z − x) in a
neighborhood of ∂Bρ(x) and

(4.4) F(uε,ρ, Bρ(x)) ≤ mF (ξ(z − x), Bρ(x)) + εωNρ
N ,

where mF is defined in (3.7). Since uε,ρ ∈W 1,p(Bρ(x)) by (4.2) we have

E(uε,ρ, Bρ(x)) ≤ F(uε,ρ, Bρ(x))

so that by definition of Eε (see (3.23)) we have

Eε(uε,ρ, Bρ(x)) ≤ F(uε,ρ, Bρ(x)).

In view of the explicit formulas (3.25) and (3.10) for fε∞ and f , and taking into account (4.4), we
get

fε∞(x, ξ) = lim sup
ρ→0+

mEε
(ξ(z − x), Bρ(x))

ωNρN
≤ lim sup

ρ→0+

Eε(uε,ρ, Bρ(x))
ωNρN

≤ lim sup
ρ→0+

F(uε,ρ, Bρ(x))
ωNρN

≤ lim sup
ρ→0+

mF (ξ(z − x), Bρ(x))
ωNρN

+ ε = f(x, ξ) + ε.

Letting ε→ 0, by (3.27) we obtain that f∞(x, ξ) ≤ f(x, ξ), so that the step is concluded.

Step 2: f∞(x,∇u(x)) ≥ f(x,∇u(x)) for a.e. x ∈ Ω.
In view of the representation (4.1) for E , and since E(u,Ω) < +∞, by Radon-Nikodým Theorem

we get that for a.e. x ∈ Ω

(4.5) f∞(x,∇u(x)) = lim
ρ→0+

E(u,Bρ(x))
ωNρN

< +∞.

Let (un)n∈N be a recovering sequence for E(u,Ω): by the growth estimate (3.2) on gn, and since
HN−1(Kn) ≤ C, we have that HN−1(S(un)) is bounded so that, up to a subsequence,

(4.6) µn := HN−1 S(un)
∗
⇀ µ weakly∗ in the sense of measures

for some finite positive Radon measure µ. Notice that for a.e. x ∈ Ω we have

(4.7) H(x) := lim sup
ρ→0+

µ(B̄ρ(x))
ρN−1

= 0.

In fact, if by contradiction there exists a Borel set B with positive Lebesgue measure and t > 0
such that

H(x) ≥ t for every x ∈ B,
then (see for instance [7, Theorem 2.56]) we deduce that

µ B ≥ tHN−1 B,

so that µ(B) = ∞. But this is against the fact that µ is finite.
Since the main inequality of the step should hold a.e. in Ω, we can assume that u is approx-

imatively differentiable at x, x 6∈ N with N defined in the blow-up result for Γ-limit given by
Proposition 2.2, and that (4.5) and (4.7) hold.

Let us choose ρi ↘ 0 in such a way that E(u, ∂Bρi
(x)) = 0: notice that this is possible since

E(u, ·) is a Radon measure and so the family of radii ρ such that E(u, ∂Bρ(x)) > 0 is at most
countable.

In view of Remark 3.6, for every i there exists ni such that for n ≥ ni

(4.8)
E(u,Bρi(x))

ωNρNi
≥ En(un, Bρi(x))

ωNρNi
− 1
i

≥

∫
Bρi

(x)
fn(x,∇un(x)) dx

ωNρNi
− 1
i

=
1
ωN

∫
B1

fn(x+ ρiy,∇vin(y)) dy −
1
i
,
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where

vin(y) :=
un(x+ ρiy)− u(x)

ρi
.

We can choose (ni)i∈N is such a way that

(4.9) vini
→ ∇u(x) · y strongly in L1(B1) for i→ +∞,

and

(4.10) lim
i→+∞

HN−1(S(vini
)) = 0.

In fact we have

vin(y) →
u(x+ ρiy)− u(x)

ρi
strongly in L1(B1) as n→ +∞

and since u is approximately differentiable at x

u(x+ ρiy)− u(x)
ρi

→ ∇u(x) · y strongly in L1(B1) as i→ +∞.

Moreover by (4.6) we have

HN−1(S(vin)) =
HN−1(S(un) ∩Bρi(x))

ρN−1
i

≤ µn(B̄ρi(x))
ρN−1
i

,

so that we get

lim sup
n→+∞

HN−1(S(vin)) ≤
µ(B̄ρi

(x))
ρN−1
i

→ 0 as i→ +∞.

As a consequence, by a diagonal argument we can achieve (4.9) and (4.10).
By (4.8) and (4.5) we finally deduce

(4.11) f∞(x,∇u(x)) = lim
i→+∞

E(u,Bρi
(x))

ωNρNi
≥ lim inf

i→+∞

1
ωN

∫
B1

fni
(x+ ρiy,∇vini

(y)) dy.

Using a truncation argument we can assume that (vini
)i∈N is uniformly bounded in L∞(B1), so

that in view of the growth estimate on fn, by (4.11) and (4.10) we get

‖∇vini
‖p
Lp(B1,RN )

≤ C and
∫
S(vi

ni
)

|[vini
]| dHN−1 → 0.

By [25, Lemma 2.1] we get that there exists wi ∈ W 1,p(B1) such that wi → ∇u(x) · y strongly in
L1(B1) as i→ +∞ and such that

lim inf
i→+∞

∫
B1

fni(x+ ρiy,∇vini
(y)) dy = lim inf

i→+∞

∫
B1

fni(x+ ρiy,∇wi(y)) dy.

If ni is chosen such that the blow-up for Γ-limits given by Proposition 2.2 holds, we get that

lim inf
i→+∞

∫
B1

fni
(x+ ρiy,∇wi(y)) dy ≥ ωNf(x,∇u(x)),

so that in view of (4.11) we obtain

f∞(x,∇u(x)) ≥ f(x,∇u(x)).

Step 3: g∞(x,u−(x),u+(x), νS(u)(x)) ≤ g−(x, νS(u)(x)) for HN−1-a.e. x ∈ S(u).
Since HN−1(Kn) ≤ C, up to a subsequence we have that

(4.12) µn := HN−1 Kn
∗
⇀ µ weakly∗ in the sense of measures

for some finite positive Radon measure µ. We have that for HN−1-a.e. x ∈ Ω

(4.13) H(x) := lim sup
ρ→0+

µ(B̄ρ(x))
ωN−1ρN−1

< +∞.
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In fact if by contradiction H(x) = +∞ on a Borel set B with HN−1(B) > 0, then we deduce that
µ(B) = ∞ (see for instance [7, Theorem 2.56]). But this is against µ(Ω) < +∞.

We claim that for all v ∈ P (Ω) and A ∈ A(Ω) such that Ā ⊆ Ω

(4.14) αHN−1(S(v) ∩A) ≤ G−(v,A) + αµ(Ā),

where α is the positive constant appearing in the growth estimate (3.2) for gn. In fact, considering
the functional G−n defined in (3.5), and taking into account the growth estimate on gn we have
that for all n ∈ N

αHN−1 ((S(v) \Kn) ∩A) ≤ G−n (v,A)
so that we deduce

αHN−1 (S(v) ∩A) ≤ G−n (v,A) + αµn(A).
Passing to the Γ-limit for n → +∞, and using the weak∗ convergence of µn to µ, we obtain that
(4.14) holds.

Since the main inequality of the step should hold for HN−1-a.e. x ∈ S(u), we can choose
x ∈ S(u) in such a way that u has an approximate jump at x, (4.13) holds and such that

(4.15) lim sup
ρ→0+

∫
Bρ(x)

a2 dx

ρN−1
= 0,

where a2 appears in the growth estimate (3.1) for fn. Let us indicate u−(x), u+(x) and νS(u)(x)
simply by u−, u+ and ν. Let us moreover set [u] := u+ − u−.

Following Remark 3.4, let us consider the functionals G−n defined in (3.5) acting on the space
Pu−,u+(Ω) := {u ∈ SBV (Ω) : u(y) ∈ {u−, u+} for a.e. y ∈ Ω}.

Let us fix ε > 0. For every ρ > 0, let uε,ρ ∈ Pu−,u+(Bρ(x)) be such that uε,ρ = ux,u−,u+,ν in a
neighborhood of ∂Bρ(x) and

(4.16) G−(uε,ρ, Bρ(x)) ≤ mG−(ux,u−,u+,ν , Bρ(x)) + εωN−1ρ
N−1,

where mG− is defined in (3.7), and ux,a,b,ν is defined in (3.8). Since uε,ρ ∈ Pu−,u+(Bρ(x)), we
have that

Eε(uε,ρ, Bρ(x)) = E(uε,ρ, Bρ(x)) + ε(1 + |[u]|)HN−1(S(uε,ρ) ∩Bρ(x)),
and by (4.3)

E(uε,ρ, Bρ(x)) ≤
∫
Bρ(x)

a2 dx+ G−(uε,ρ, Bρ(x)).

By (4.14) and (4.16) we deduce

Eε(uε,ρ, Bρ(x)) = E(uε,ρ, Bρ(x)) + ε(1 + |[u]|)HN−1(S(uε,ρ) ∩Bρ(x))

≤
∫
Bρ(x)

a2 dx+ G−(uε,ρ, Bρ(x)) + ε(1 + |[u]|)HN−1(S(uε,ρ) ∩Bρ(x))

≤
∫
Bρ(x)

a2 dx+ G−(uε,ρ, Bρ(x)) +
ε

α
(1 + |[u]|)

(
G−(uε,ρ, Bρ(x)) + αµ(B̄ρ(x))

)
=
∫
Bρ(x)

a2 dx+
(
1 +

ε

α
(1 + |[u]|)

)
G−(uε,ρ, Bρ(x)) + ε(1 + |[u]|)µ(B̄ρ(x))

≤
∫
Bρ(x)

a2 dx+
(
1 +

ε

α
(1 + |[u]|)

) (
mG−(ux,u−,u+,ν , Bρ(x)) + εωN−1ρ

N−1
)

+ ε(1 + |[u]|)µ(B̄ρ(x))

Dividing by ωN−1ρ
N−1, in view of the explicit formulas (3.26) and (3.14) for gε∞ and g−, and

taking into account (4.15) and (4.13) we deduce

gε∞(x, u−, u+, ν) = lim sup
ρ→0+

mEε
(ux,u−,u+,ν , Bρ(x))
ωN−1ρN−1

≤ lim sup
ρ→0+

Eε(uε,ρ, Bρ(x))
ωN−1ρN−1

≤
(
1 +

ε

α
(1 + |[u]|)

)
(g−(x, ν) + ε) + ε(1 + |[u]|)H(x).
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Letting ε→ 0, by (3.27) we obtain g∞(x, u−, u+, ν) ≤ g−(x, ν), so that the step is concluded.

Step 4: g∞(x,u−(x),u+(x), νS(u)(x)) ≥ g−(x, νS(u)(x)) for HN−1-a.e. x ∈ S(u).
The proof of this step requires a careful use of Coarea formula for BV functions and of Fubini’s

Theorem in order to modify an SBV function with small gradient into a piecewise constant
function. As mentioned in the Introduction, the construction follows some steps in the proof the
Transfer of Jump Sets Theorem [21, Theorem 2.3] by Francfort and Larsen.

In view of the representation (4.1) for E , and since E(u,Ω) < +∞, by Radon-Nikodým Theorem
we have that for HN−1-a.e. x ∈ S(u)

(4.17) g∞(x, u−(x), u+(x), νS(u)(x)) = lim
ρ→0+

E(u,Bρ(x))
ωN−1ρN−1

< +∞.

Moreover for HN−1-a.e. x ∈ S(u) we have also

(4.18) lim
ρ→0+

∫
Bρ(x)

|a1(y)| dy
ρN−1

= 0,

where a1 appears in the growth estimate (3.1) for fn.
Let (un)n∈N be a recovering sequence for E(u,Ω). By the growth estimate (3.2) on gn, and

since HN−1(Kn) ≤ C, up to a subsequence we have

µn := HN−1 S(un)
∗
⇀ µ weakly∗ in the sense of measures

for some finite positive Radon measure µ. Moreover for HN−1-a.e. x ∈ S(u) we have (see for
instance [7, Theorem 2.56])

(4.19) H(x) := lim sup
ρ→0+

µ(Bρ(x))
ρN−1

< +∞.

Since the main inequality of the step should hold for HN−1-a.e. x ∈ S(u), we can choose x ∈ S(u)
such that x is a point of approximate jump for u, and (4.17), (4.18) and (4.19) hold.

Let ρi ↘ 0 be such that E(u, ∂Bρi
(x)) = 0 and such that the representation formula (3.14) for

g− holds along ρi, i.e.,

(4.20) g−(x, ν) = lim
i→+∞

mG−(ux,0,1,νS(u)(x), Bρi(x))

ωN−1ρ
N−1
i

,

where ux,a,b,ν is defined in (3.8).
In view of Remark 3.6 for every i ∈ N there exists ni ∈ N such that for n ≥ ni we have

(4.21)
E(u,Bρi(x))
ωN−1ρ

N−1
i

≥ En(un, Bρi(x))
ωN−1ρ

N−1
i

− 1
i

≥

∫
Bρi

(x)∩[S(un)\Kn]
gn(x, ν) dHN−1(x)

ωN−1ρ
N−1
i

+

∫
Bρi

(x)
a1(y) dy

ωN−1ρ
N−1
i

− 1
i

=
1

ωN−1

∫
B1∩[S(vi

n)\Ki
n]

gn(x+ ρiy, ν) dHN−1(y) +

∫
Bρi

(x)
a1(y) dy

ωN−1ρ
N−1
i

− 1
i
,

where

vin(y) := un(x+ ρiy) and Ki
n :=

{Kn ∩Bρi
(x)} − x

ρi
.

We claim that we can find win piecewise constant in B1 such that for n→ +∞

(4.22) win → wi strongly in L1(B1),

where wi is piecewise constant and wi = u0,0,1,νS(u)(x) in a neighborhood of ∂B1, and such that
for n large

(4.23) HN−1
(
S(win) \ S(vin)

)
≤ ei,
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with ei → 0 as i→ +∞. By the growth estimate (3.2) on gn and claim (4.23), we deduce

(4.24)
∫
B1∩[S(vi

n)\Ki
n]

gn(x+ ρiy, ν) dHN−1(y) ≥
∫
B1∩[S(wi

n)\Ki
n]

gn(x+ ρiy, ν) dHN−1(y)− êi,

with êi → 0 for i→ +∞. By (4.21), in view of (4.17), (4.18) and (4.24) we have that for n large

g∞(x, u−(x), u+(x), νS(u)(x)) ≥
∫
B1∩[S(wi

n)\Ki
n]

gn(x+ ρiy, ν) dHN−1(y)− êi,

where êi → 0. Rescaling to the ball Bρi(x) we get

g∞(x, u−(x), u+(x), νS(u)(x)) ≥

∫
Bρi

(x)∩[S(zi
n)\Kn]

gn(ζ, ν) dHN−1(ζ)

ωN−1ρ
N−1
i

− êi(4.25)

=
G−n (zin, Bρi(x))
ωN−1ρ

N−1
i

− êi,

where

zin(ζ) := win

(
ζ − x

ρi

)
→ zi(ζ) := wi

(
ζ − x

ρi

)
strongly in L1(Bρi(x))

and G−n is defined in (3.5). Since G−n (·, Bρi
(x)) Γ-converges to G−(·, Bρi

(x)), using Γ-liminf in-
equality by (4.25) we have that

g∞(x, u−(x), u+(x), νS(u)(x)) ≥
G−(zi, Bρi

(x))
ωN−1ρ

N−1
i

− êi ≥
mG−(ux,0,1,νS(u)(x), Bρi

(x))

ωN−1ρ
N−1
i

− êi.

Letting i → +∞, and recalling the representation formula (4.20) for g−(x, ν), we have that the
result is proved.

In order to complete the proof of the step, we have to prove the claims (4.22) and (4.23). Since

∇vin(y) = ρi∇un(x+ ρiy),

we get by the growth estimate (3.1) on fn

(4.26)
∫
B1

|∇vin(y)|p dy = ρpi

∫
B1

|∇un(x+ ρiy)|p dy = ρpi

∫
Bρi

(x)
|∇un(z)|p dz

ρNi

≤ ρp−1
i

α

(
En(un, Bρi(x))

ρN−1
i

−

∫
Bρi

(x)
a1(y) dy

ρN−1
i

)
.

Since un is optimal for u, and using (4.17) we have that

En(un, Bρi
(x))

ρN−1
i

n→+∞−→ E(u,Bρi
(x))

ρN−1
i

i→+∞−→ ωN−1g∞(x, u−(x), u+(x), νS(u)(x)) < +∞.

In view also of (4.18), from (4.26) we conclude that we can choose ni such that for n ≥ ni∫
B1

|∇vin(y)|p dy ≤ Cρp−1
i

for some constant C ≥ 0. By Coarea formula for BV functions (see [7, Theorem 3.40]) we get∫ u+(x)

u−(x)

HN−1
(
∂∗Ein(t) \ S(vin)

)
dt ≤

∫
B1

|∇vin| dy ≤ C̃ρ
1− 1

p

i ,

for a suitable constant C̃, where

Ein(t) := {x ∈ B1 : x is a Lebesgue point for vin and vin(x) > t}
and ∂∗ denotes the reduced boundary. By the Mean Value Theorem there exists tin ∈ [u−(x), u+(x)]
such that

(4.27) HN−1
(
∂∗Ein(t

i
n) \ S(vin)

)
≤ C̃

u+(x)− u−(x)
ρ
1− 1

p

i .
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We now employ a construction similar to that employed by Francfort and Larsen in their Transfer
of Jump Sets Theorem [21, Theorem 2.3]. Since x is a jump point for u we have that for i→ +∞

(4.28) u(x+ ρiy) → u0,u−(x),u+(x),νS(u)(x) strongly in L1(B1),

where ux,a,b,ν is defined in (3.8). Since

vin(y) → u(x+ ρiy) strongly in L1(B1) for n→ +∞,

by (4.28) we have that for n large

(4.29) |B+
1 4 Ein(t

i
n)| ≤ ei,

where B+
1 := {y ∈ B1 : y · νS(u)(x) ≥ 0}, A4 B := (A \ B) ∪ (B \ A), and ei → 0 for i → +∞.

By Fubini’s Theorem and by (4.29) we have∫ √
ei

0

HN−1
(
(B+

1 \ Ein(tin)) ∩H(s)
)
ds ≤

∫ 1

0

HN−1
(
(B+

1 \ Ein(tin)) ∩H(s)
)
ds

= |B+
1 \ Ein(tin)| ≤ ei,

where H(s) := {y ∈ B1 : y · νS(u)(x) = s}. By the Mean Value Theorem we get that there exists
0 < si,+n <

√
ei such that setting Hi,+

n := H(si,+n ) we have

(4.30) HN−1
(
(B+

1 \ Ein(tin)) ∩Hi,+
n

)
≤
√
ei.

Similarly we obtain −√ei < si,−n < 0 such that setting Hi,−
n := H(si,−n ) we have

(4.31) HN−1
(
(Ein(t

i
n) \B+

1 ) ∩Hi,−
n

)
≤
√
ei.

Let us write y = (y′, yN ), where yN is the coordinate along νS(u)(x) and y′ the coordinates in the
hyperplane orthogonal to νS(u)(x). Let li be such that for every y ∈ B1

|yN | ≥ 2
√
ei =⇒ |y′| ≤ 1− li.

Clearly li ↘ 0 as i→ +∞. Let us set

Di
n := (Ein(t

i
n) ∪ {y ∈ B1 : yN ≥ si,+n }) \ {y ∈ B1 : yN ≤ si,−n }

and

win(y) :=


1 |y′| ≥ 1− li, yN ≥ 0,
0 |y′| ≥ 1− li, yN < 0,
1 |y′| ≤ 1− li, y ∈ Di

n,

0 otherwise.

Notice that wni is piecewise constant, with win = u0,0,1,νS(u)(x) in a neighborhood of ∂B1 indepen-
dent of n, and that (up to a HN−1-negligible set)

(4.32) S(win) ⊆ ∂∗Ein(t
i
n) ∪

(
(B+

1 \ Ein(tin)) ∩Hi,+
n

)
∪
(
(Ein(t

i
n) \B+

1 ) ∩Hi,−
n

)
∪ Ci ∪Ai,

where Ci is the cylinder given by

Ci := {(y′, yN ) : |y′| = 1− li, |yN | ≤ 2
√
ei},

and Ai is the annulus
Ai := {(y′, 0) : |y′| ≥ 1− li}.

Clearly HN−1(Ci) → 0 and HN−1(Ai) → 0 as i→ +∞.
By (4.27), (4.30) and (4.31), from (4.32) we get that for n large

(4.33) HN−1
(
S(win) \ S(vin)

)
≤ ẽi

where êi → 0 as i→ +∞, so that claim (4.23) is proved.
In order to prove claim (4.22), notice that

HN−1(S(vin)) =
HN−1(S(un) ∩Bρi(x))

ρN−1
i

≤ µn(B̄ρi(x))
ρN−1
i

,
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and so, since µn
∗
⇀ µ weakly∗ in the sense of measure, by assumption (4.19) we get

lim sup
n→+∞

HN−1(S(vin)) ≤
µ(B̄ρi(x))
ρN−1
i

→ H(x) < +∞ for i→ +∞.

By (4.33) we conclude that for i and n large enough

HN−1(S(win)) ≤ H(x) + 1.

By compactness for sets with finite perimeter (see for example [7, Theorem 3.39]) we get for
n→ +∞

win → wi strongly in L1(B1),
where wi ∈ P (B1). Since by construction win = u0,0,1,νS(u)(x) on a neighborhood of ∂B1 which is
independent of n, we conclude that wi = u0,0,1,νS(u)(x) in a neighborhood of ∂B1, so that claim
(4.22) is proved. �

Remark 4.2. Theorem 4.1 states that in the Γ-limit process there is no interaction between bulk
and surface energies, since they are constructed looking at Γ-convergence problems in Sobolev
space and in the space of piecewise constant functions respectively. As a consequence, considering
bulk and surface energy densities of the form c1fn and c2gn with c1, c2 > 0, we get in the limit c1f
and c2g as bulk and surface energy densities. We remark that a key assumption for non interaction
is given by equi-boundedness of HN−1(Kn): dropping this assumption, interaction can occur even
in the case of constant densities, for example f(ξ) := |ξ|p and g(x, ν) ≡ 1 (if we consider in ]0, 1[
the set Kn := { in : i = 1, . . . , n− 1}, we get as Γ-limit the zero functional).

We conclude the section establishing a lower semicontinuity result for SBV functions in the case
of varying bulk and surface energies which is a generalization of Ambrosio’s lower semicontinuity
theorems [3].

Proposition 4.3. Let (Kn)n∈N be a sequence of rectifiable sets in Ω such that HN−1(Kn) ≤ C
for all n ∈ N. Let us assume that for all A ∈ A(Ω) the functionals Fn(·, A) and G−n (·, A) defined
in (3.4) and (3.5) Γ-converge in the strong topology of L1(Ω) to F(·, A) and G−(·, A) respectively.
Let (un)n∈N be a sequence in SBV p(Ω) such that un ⇀ u weakly in SBV p(Ω).

Then for all A ∈ A(Ω) we have

(4.34)
∫
A

f(x,∇u(x)) dx ≤ lim inf
n→+∞

∫
A

fn(x,∇un(x)) dx,

and

(4.35)
∫
S(u)∩A

g−(x, ν) dHN−1 ≤ lim inf
n→+∞

∫
(S(un)\Kn)∩A

gn(x, ν) dHN−1,

where f and g− are the densities of F and G− respectively.
In particular if Kn = ∅ we have

(4.36)
∫
S(u)∩A

g(x, ν) dHN−1 ≤ lim inf
n→+∞

∫
S(un)∩A

gn(x, ν) dHN−1,

where g is the density of G defined in Proposition 3.2.

Proof. By Theorem 4.1, we have that for all h, k ∈ N and for all A ∈ A(Ω) the functionals

Eh,kn (u,A) := h

∫
A

fn(x,∇u(x)) dx+ k

∫
(S(u)\Kn)∩A

gn(x, ν) dHN−1

Γ-converge in the strong topology of L1(Ω) to

Eh,k(u,A) := h

∫
A

f(x,∇u(x)) dx+ k

∫
S(u)∩A

g−(x, ν) dHN−1.

In particular by Γ-liminf inequality we have

Eh,k(u,A) ≤ lim inf
n→+∞

Eh,kn (un, A).
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By the growth estimate (3.2) on gn we get∫
A

f(x,∇u(x)) dx ≤ lim inf
n→+∞

∫
A

fn(x,∇un(x)) dx+
k

h

∫
(S(un)\Kn)∩A

gn(x, ν) dHN−1(x)

≤ lim inf
n→+∞

∫
A

fn(x,∇un(x)) dx+
k

h
C,

for some constant C independent of h and k. Since h, k are arbitrary we get that (4.34) holds.
The proof of (4.35) is analogous. �

5. A new variational convergence for rectifiable sets

In this section we use the Γ-convergence results of Sections 3 and 4 in order to introduce
a variational notion of convergence for rectifiable sets which will be employed in the study of
stability of unilateral minimality properties.

Let (Kn)n∈N be a sequence of rectifiable sets in Ω, and let us assume following Ambrosio and
Braides [5, Theorem 3.2] that the functionals H−

n : P (Ω)×A(Ω) → [0,+∞) defined by

(5.1) H−
n (u,A) := HN−1 ((S(u) \Kn) ∩A)

Γ-converge with respect to the strong topology of L1(Ω) for every A ∈ A(Ω) to a functional
H−(·, A), which by the representation result of Bouchitté, Fonseca, Leoni and Mascarenhas [10,
Theorem 3] is of the form

(5.2) H−(u,A) :=
∫
S(u)∩A

h−(x, ν) dHN−1(x)

for some function h− : Ω × SN−1 → [0,+∞). Notice that we do not use directly Proposition 3.3
(with gn ≡ 1) because we are not assuming that HN−1(Kn) ≤ C for some C > 0.

Definition 5.1 (σ-convergence of rectifiable sets). Let (Kn)n∈N be a sequence of rectifiable
sets in Ω. We say that Kn σ-converges in Ω to K if the functionals (H−

n )n∈N defined in (5.1)
Γ-converge in the strong topology of L1(Ω) to the functional H− defined in (5.2), and K is the
(unique) rectifiable set in Ω such that

(5.3) h−(x, νK(x)) = 0 for HN−1-a.e. x ∈ K,
and such that for every rectifiable set H ⊆ Ω we have

(5.4) h−(x, νH(x)) = 0 for HN−1-a.e. x ∈ H =⇒ H ⊆̃K,
where H ⊆̃K means that H ⊆ K up to a set of HN−1-measure zero.

Remark 5.2. From Definition 5.1 it comes directly that σ-convergence of rectifiable sets is stable
under infinitesimal perturbation in length. More precisely, let (Kn)n∈N be a sequence of rectifiable
sets in Ω such that Kn σ-converges in Ω to K, and let (K̃n)n∈N be a sequence of rectifiable sets in
Ω such that HN−1(K̃n 4Kn) → 0, where 4 denotes the symmetric difference of sets. Then K̃n

σ-converges in Ω to K.

Let us now come to the main properties of σ-convergence for rectifiable sets. By compactness
of Γ-convergence, we deduce the following compactness result for σ-convergence.

Proposition 5.3 (compactness). Let (Kn)n∈N be a sequence of rectifiable sets in Ω with
HN−1(Kn) ≤ C. Then there exists a subsequence (nh)h∈N and a rectifiable set K in Ω such that
Knh

σ-converges in Ω to K. Moreover

(5.5) HN−1(K) ≤ lim inf
n→+∞

HN−1(Kn).

Proof. By Proposition 3.3, up to a subsequence we have that for all A ∈ A(Ω) the functionals
H−
n (·, A) defined in (5.1) Γ-converge in the strong topology of L1(Ω) to a functional H−(·, A)

which can be represented through a density h− according to (5.2).
Let us consider the class

K := {H ⊆ Ω : H is rectifiable and h−(x, νH(x)) = 0 for HN−1-a.e. x ∈ H}.
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Notice that K contains at least the empty set. Let us prove that for all H ∈ K we have

(5.6) HN−1(H) ≤ L := lim inf
n→+∞

HN−1(Kn).

In fact let H ∈ K. Since H = ∪iHi with Hi compact and rectifiable with HN−1(Hi) < +∞, it is
not restrictive to consider HN−1(H) < +∞. Given ε > 0, by a covering argument we can find an
open set U and a piecewise constant function v ∈ P (Ω) such that

(5.7) HN−1(H \ U) < ε and HN−1 ((S(v)4H) ∩ U) < ε,

where 4 denotes the symmetric difference of sets. Since h− ≤ 1 we have

(5.8) H−(v, U) =
∫
S(v)∩U

h−(x, ν) dHN−1(x) =
∫

(S(v)\H)∩U
h−(x, ν) dHN−1(x) < ε.

Let (vn)n∈N be a recovering sequence for v with respect to H−(·, U). Then by (5.8) we have that

(5.9) lim sup
n→+∞

HN−1 ((S(vn) \Kn) ∩ U) < ε.

By Ambrosio’s Theorem, (5.7), and (5.9) we deduce that

HN−1(H) = HN−1(H ∩ U) +HN−1(H \ U) ≤ HN−1(S(v) ∩ U) + 2ε

≤ lim inf
n→+∞

HN−1(S(vn) ∩ U) + 2ε ≤ lim inf
n→+∞

HN−1(Kn) + 3ε = L+ 3ε.

Since ε is arbitrary we get that (5.6) holds.
Let us now consider

L̃ := sup{HN−1(H) : H ∈ K} < +∞,

and let (Hk)k∈N be a maximizing sequence for L̃. We set K :=
⋃∞
k=1Hk. Clearly (5.5) and (5.3)

hold. Moreover, since HN−1(K) = L̃ we have that (5.4) holds, and the proof is concluded. �

Remark 5.4. Let Ω := (−1, 1) × (−1, 1) in R2, and let (Kn)n∈N be a sequence of closed sets
with Kn → K := {(−1, 1)} × {0} in the Hausdorff metric and such that H1 Kn

∗
⇀ aH1 K

weakly∗ in the sense of measures. If a < 1 by (5.5) we deduce that Kn σ-converges in Ω to the
empty set. We stress that the condition a ≥ 1 is not enough to guarantee that K is the σ-limit of
(Kn)n∈N. In fact considering

Kn :=
n⋃

i=−n

{
i

n

}
×
[
− 1
n
,
1
n

]
we have H1 Kn

∗
⇀ 2H1 K weakly∗ in the sense of measures. However also in this case we have

that Kn σ-converges in Ω to the empty set. In fact let us consider u ∈ P (Ω) such that u = 1 in
Ω+ := (−1, 1) × (0, 1) and u = 0 in Ω− := (−1, 1) × (−1, 0), and let un be a sequence in P (Ω)
such that un → u strongly in L1(Ω) and with HN−1(S(un)) ≤ C. Let (e1, e2) be the canonical
base of R2. By Ambrosio’s theorem we get that

ν[un]H1 S(un)
∗
⇀ e2H1 S(u) weakly∗ in the sense of measures.

Considering the vector field ϕe2 with ϕ ∈ C∞c (Ω) we get∫
S(un)\Kn

ϕe2 · ν[un] dH1 =
∫
S(un)

ϕe2 · ν[un] dH1 →
∫
K

ϕdH1.

If 0 ≤ ϕ ≤ 1 we have that∫
K

ϕdH1 ≤ lim inf
n

H1(S(un) \Kn) = lim inf
n→+∞

H−
n (un)

so that we deduce lim infn→+∞H−
n (un) = 2. By Γ-liminf we conclude that H−(u) ≥ 2 that is

h−(x, e2) = 1 for H1-a.e. x ∈ K. Since the σ-limit of (Kn)n∈N can be only contained in K, we
deduce that the σ-limit is the empty set.

The following proposition shows that the σ-limit is a natural limit candidate for a sequence of
rectifiable sets in connection with unilateral minimality properties (see the Introduction).
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Proposition 5.5. Let (Kn)n∈N be a sequence of rectifiable sets in Ω with HN−1(Kn) ≤ C and Kn

σ-converging in Ω to K. Let (gn)n∈N be a sequence of Borel functions satisfying the estimates (3.2),
and let g− be the energy density of the Γ-limit in the strong topology of L1(Ω) of the functionals
(G−n )n∈N defined in (3.5). Then we have

g−(x, νK(x)) = 0 for HN−1-a.e. x ∈ K,
and for every rectifiable set H ⊆ Ω

g−(x, νH(x)) = 0 for HN−1-a.e. x ∈ H =⇒ H ⊆̃K.

Proof. Notice that in view of the growth estimate (3.2) for gn we get

(5.10) αH−(u,A) ≤ G−(u,A) ≤ βH−(u,A)

for all u ∈ P (Ω) and A ∈ A(Ω). Moreover by the assumption HN−1(Kn) ≤ C, by Proposition 3.3
we have the explicit formula (3.14) for g− and an analogous one for h− (with H− in place of G−).
From (5.10) we deduce that

αh−(x, ν) ≤ g−(x, ν) ≤ βh−(x, ν)

for all x ∈ Ω and ν ∈ SN−1. Then the thesis follows from the definition of σ-convergence. �

Remark 5.6. Notice that Proposition 5.5 holds also without requiring that HN−1(Kn) ≤ C
(which is however natural for applications to stability of unilateral minimality properties arising
in fracture mechanics, see the Introduction). In fact it is sufficient to use the inequality (5.10) and
a covering argument as in the proof of Proposition 5.3.

The following lower semicontinuity result for surface energies along sequences of rectifiable sets
converging in the sense of σ-convergence will be employed in Section 8.

Proposition 5.7 (lower semicontinuity). Let (Kn)n∈N be a sequence of rectifiable sets in Ω
such that Kn σ-converges in Ω to K. Let (gn)n∈N be a sequence of Borel functions satisfying the
estimates (3.2), and let g be the associated function according to Proposition 3.2. Then we have∫

K

g(x, ν) dHN−1(x) ≤ lim inf
n→+∞

∫
Kn

gn(x, ν) dHN−1(x).

Proof. Let H ⊆̃K with HN−1(H) < +∞. Given ε > 0, by a covering argument we can find an
open set U and a piecewise constant function v ∈ P (Ω) such that

(5.11) HN−1(H \ U) < ε and HN−1 ((S(v)4H) ∩ U) < ε,

where 4 denotes the symmetric difference of sets. If (vn)n∈N is a recovering sequence for v with
respect to H−(·, U) defined in (5.2) we have

(5.12) lim sup
n→+∞

HN−1 ((S(vn) \Kn) ∩ U) < ε.

By (5.11), (5.12), by the growth estimate on gn, and by Γ-convergence we have that∫
H

g(x, ν) dHN−1(x) =
∫
H∩U

g(x, ν) dHN−1(x) +
∫
H\U

g(x, ν) dHN−1(x)

≤
∫
S(v)∩U

g(x, ν) dHN−1(x) + 2βε ≤ lim inf
n→+∞

∫
S(vn)∩U

gn(x, ν) dHN−1(x) + 2βε

≤ lim inf
n→+∞

∫
Kn

gn(x, ν) dHN−1(x) + 3βε.

Since ε is arbitrary we deduce∫
H

g(x, ν) dHN−1(x) ≤ lim inf
n→+∞

∫
Kn

gn(x, ν) dHN−1(x),

and since H is arbitrary in K the proof is concluded. �

The following proposition is essential in the study of stability of unilateral minimality properties.
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Proposition 5.8. Let (Kn)n∈N be a sequence of rectifiable sets in Ω such that Kn σ-converges in
Ω to K. Let 1 < p < +∞, and let (un)n∈N be a sequence in SBV p(Ω) with un ⇀ u weakly in
SBV p(Ω) and HN−1(S(un) \Kn) → 0. Then S(u) ⊆̃K.

Proof. Let us consider K̃n := S(un) ∩Kn. By compactness, up to a further subsequence we have
that K̃n σ-converges in Ω to a rectifiable set K̃ ⊆̃K. Let h̃− be the density associated to (K̃n)n∈N
according to Definition 5.1. By lower semicontinuity given by Proposition 4.3 we have∫

S(u)

h̃−(x, ν) dHN−1(x) ≤ lim inf
n→+∞

HN−1
(
S(un) \ K̃n

)
≤ lim inf

n→+∞
HN−1 (S(un) \Kn) = 0.

We deduce that
h̃−(x, νS(u)(x)) = 0 for HN−1-a.e. x ∈ S(u),

so that by definition of σ-limit we conclude S(u) ⊆̃ K̃ ⊆̃K. �

The next corollary shows that our σ-limit of rectifiable sets always contains the σp-limit intro-
duced by Dal Maso, Francfort and Toader in [18] in order to study quasistatic crack growth in
nonlinear elasticity. We recall that Kn σ

p-converges in Ω to K if the following hold:
(1) if uh ⇀ u weakly in SBV p(Ω) with S(uh) ⊆ Knh

, then S(u) ⊆ K;

(2) K = S(u) for some u ∈ SBV p(Ω), and there exists un ⇀ u weakly in SBV p(Ω) with
S(un) ⊆ Kn.

Corollary 5.9. Let (Kn)n∈N be a sequence of rectifiable sets in Ω such that Kn σ-converges in Ω
to K. Let 1 < p < +∞, and let us assume that Kn σ

p-converges in Ω to some rectifiable set K̃.
Then K̃ ⊆̃K.

Proof. The proof readily follows from Proposition 5.8 and point (2) of the definition of σp-
convergence. �

Remark 5.10. Notice that in general we can have that the σp-limit K̃ of (Kn)n∈N is strictly
contained in K. In fact we can consider Ω := (−1, 1)× (−1, 1) in R2, and

Kn := {(−1, 1) \ Ln} × {0}
with Ln ⊆ (−1, 1) and |Ln| → 0. In this case we get K = (−1, 1) × {0}, while if Ln is chosen in
such a way that its cp-capacity is big enough (see the celebrated example of the Neumann sieve,
we refer to [26]) we get K̃ = ∅.

This example is based on the fact that the σp-limit is influenced by infinitesimal perturbations
of the Kn while the set K is not, as pointed out in Remark 5.2.

In Sections 7 and 8, we will need a definition of σ-convergence in the closed set Ω.

Definition 5.11 (σ-convergence in Ω). Let (Kn)n∈N be a sequence of rectifiable sets in Ω. We
say that Kn σ-converges in Ω to K ⊆̃Ω if Kn σ-converges in Ω′ to K for every open bounded set
Ω′ such that Ω ⊆ Ω′.

Notice that to check the σ-convergence in Ω of rectifiable sets, it is enough check σ-convergence
in Ω′ for just one Ω′ with Ω ⊆ Ω′.

6. Stability of unilateral minimality properties

In this section we apply the results of Section 4 and Section 5 to obtain the stability result of
unilateral minimality properties under Γ-convergence for bulk and surface energies.

Definition 6.1 (unilateral minimizers). Let f : Ω×RN → [0,+∞[ be a Carathéodory function
and let g : Ω × SN−1 → [0,+∞[ be a Borel function satisfying the growth estimates (3.1) and
(3.2). We say that the pair (u,K) with u ∈ SBV p(Ω) and K rectifiable set in Ω is a unilateral
minimizer with respect to f and g if S(u) ⊆̃K, and∫

Ω

f(x,∇u(x)) dx ≤
∫

Ω

f(x,∇v(x)) dx+
∫
H\K

g(x, ν),
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for all pairs (v,H) with v ∈ SBV p(Ω), and H rectifiable set in Ω such that S(v) ⊆̃H. Here ⊆̃
means ”contained up to a set of HN−1-measure zero”.

As in the previous sections, let fn : Ω × RN → [0,+∞[ be Carathéodory functions and let
gn : Ω× SN−1 → [0,+∞[ be Borel functions satisfying the growth estimates (3.1) and (3.2).

Let us assume that the functionals (Fn(·, A))n∈N and (Gn(·, A))n∈N defined in (3.4) and (3.6)
Γ-converge in the strong topology of L1(Ω) to F(·, A) and G(·, A) for every A ∈ A(Ω) respectively.
Let f be the density of F according to Proposition 3.1 and let g be the density of G according to
Proposition 3.2.

The main result of the paper is the following stability result for unilateral minimality properties
under σ-convergence of rectifiable sets (see Definition 5.1), and Γ-convergence of bulk and surface
energies.

Theorem 6.2. Let (un)n∈N be a sequence in SBV p(Ω) with un ⇀ u weakly in SBV p(Ω), and let
(Kn)n∈N be a sequence of rectifiable sets in Ω with HN−1(Kn) ≤ C and such that Kn σ-converges
in Ω to K. Let us assume that the pair (un,Kn)n∈N is a unilateral minimizer for fn and gn.

Then (u,K) is a unilateral minimizer for f and g. Moreover we have

(6.1) lim
n→+∞

∫
Ω

fn(x,∇un(x)) dx =
∫

Ω

f(x,∇u(x)) dx.

Proof. By Theorem 4.1 we have that the functionals

En(u) :=

{∫
Ω
fn(x,∇u(x)) dx+

∫
S(u)\Kn

gn(x, ν) dHN−1(x) u ∈ SBV p(Ω),

+∞ otherwise

Γ-converge with respect to the strong topology of L1(Ω) to the functional

E(u) :=

{∫
Ω
f(x,∇u(x)) dx+

∫
S(u)

g−(x, ν) dHN−1(x) u ∈ SBV p(Ω),

+∞ otherwise,

where f and g− are defined in (3.10) and (3.14) respectively, with g− ≤ g.
By Proposition 5.8 we have S(u) ⊆̃K, so that u is admissible for K, while by Proposition 5.5

we have that

(6.2) g−(x, νK(x)) = 0 for HN−1-a.e. x ∈ K.
Then the unilateral minimality of the pair (u,K) easily follows. In fact, by Γ-convergence we have
that u is a minimizer for E and En(un) → E(u). By (6.2) and since g− ≤ g, for all pairs (v,H)
with S(v) ⊆̃H we have∫

Ω

f(x,∇u(x)) dx = E(u) ≤ E(v) =
∫

Ω

f(x,∇v(x)) dx+
∫
S(v)

g−(x, ν) dHN−1

=
∫

Ω

f(x,∇v(x)) dx+
∫
S(v)\K

g−(x, ν) ≤
∫

Ω

f(x,∇v(x)) dx+
∫
H\K

g(x, ν),

so that the unilateral minimality property holds. The convergence of bulk energies (6.1) is given
by the convergence En(un) → E(u). �

Remark 6.3 (stability under σp-convergence). In the case of fixed bulk and surface energy
densities f and g, Dal Maso, Francfort and Toader [18] proved the stability of the unilateral
minimality property under σp-convergence for the rectifiable sets Kn (see Section 5 just before
Corollary 5.9 for the definition). The analogue result in the case of varying energies readily follows
by Theorem 6.2. In fact by Corollary 5.9 we have that if Kn σ

p-converges in Ω to K̃, then K̃ is
contained in the σ-limit of (Kn)n∈N. Since S(u) ⊆̃ K̃, we get that the unilateral minimality of the
pair (u, K̃) is implied by the unilateral minimality of (u,K).

As mentioned in the Introduction, a method for proving stability of unilateral minimality prop-
erties nearer to the approach of [18] would be to prove a generalization of the Transfer of Jump
Sets by Francfort and Larsen [21, Theorem 2.1] to the case of varying energies. The following
theorem based on the arguments of Section 4 provides such a generalization.
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Theorem 6.4 (Transfer of Jump Sets). Let (Kn)n∈N be a sequence of rectifiable sets in Ω with
HN−1(Kn) ≤ C and Kn σ-converging in Ω to K. For every v ∈ SBV p(Ω) there exists (vn)n∈N
sequence in SBV p(Ω) with vn ⇀ v weakly in SBV p(Ω) and such that

lim
n→+∞

∫
Ω

fn(x,∇vn(x)) dx =
∫

Ω

f(x,∇v(x)) dx

and

lim sup
n→+∞

∫
S(vn)\Kn

gn(x, ν) dHN−1(x) ≤
∫
S(v)\K

g(x, ν) dHN−1(x).

Proof. Let (vn)n∈N be a recovering sequence for v with respect to (En)n∈N defined in (3.3) which Γ-
converge to E defined in Theorem 4.1. By growth estimates on fn and gn, and since HN−1(Kn) ≤
C, we get vn ⇀ v weakly in SBV p(Ω). Taking into account the lower semicontinuity result of
Proposition 4.3, we get that

lim
n→+∞

∫
Ω

fn(x,∇vn(x)) dx =
∫

Ω

f(x,∇v(x)) dx

and

lim
n→+∞

∫
S(vn)\Kn

gn(x, ν) dHN−1 =
∫
S(v)

g−(x, ν) dHN−1 ≤
∫
S(v)\K

g(x, ν) dHN−1

because g− = 0 on K, and g− ≤ g. �

7. Stability of unilateral minimality properties with boundary conditions

In view of the application of Section 8, we need a stability result for unilateral minimality
properties with boundary conditions.

Let ∂DΩ ⊆ ∂Ω. In order to take into account a boundary datum on ∂DΩ, we will use the
following notation: if u, ψ ∈ SBV (Ω) we set

(7.1) Sψ(u) := S(u) ∪ {x ∈ ∂DΩ : u(x) 6= ψ(x)},

where the inequality on ∂DΩ is intended in the sense of traces.
In order to set the problem, let fn : Ω× RN → [0,+∞[ be a Carathéodory function satisfying

the growth estimate (3.1), and let gn : Ω × SN−1 → [0,+∞[ be a Borel function satisfying the
growth estimate (3.2). We consider unilateral minimality properties of the form

(7.2)
∫

Ω

fn(x,∇un) dx ≤
∫

Ω

fn(x,∇v) dx+
∫
H\Kn

gn(x, ν) dHN−1(x)

for every v ∈ SBV p(Ω) and for every rectifiable set H in Ω such that Sψn(v) ⊆̃H. Here (Kn)n∈N
is a sequence of rectifiable sets in Ω with HN−1(Kn) ≤ C, (un)n∈N is a sequence in SBV p(Ω) with
Sψn(un) ⊆̃Kn, ψn ∈W 1,p(Ω) with

ψn → ψ strongly in W 1,p(Ω),

and Sψn(·) is defined in (7.1).
In order to treat Sψn(·) as an internal jump and in order to recover the surface energy on ∂DΩ

for the minimality property in the limit, let us consider an open bounded set Ω′ such that Ω ⊂ Ω′

and let us consider g′n : Ω′ × SN−1 → [0,+∞[ such that

g′n(x, ν) :=

{
gn(x, ν) if x ∈ Ω,
β + 1 otherwise.

Let us consider the functionals G′n : P (Ω′)×A(Ω′) → [0,+∞] defined by

G′n(v,A) :=
∫
S(v)∩A

g′n(x, ν) dHN−1(x)
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and let G′ : P (Ω′) × A(Ω′) → [0,+∞] be their Γ-limit in the strong topology of L1(Ω′), which
according to Proposition 3.3 is of the form

(7.3) G′(v,A) :=
∫
S(v)∩A

g′(x, ν) dHN−1(x).

We clearly have g′(x, ν) = g(x, ν) for x ∈ Ω, where g is the surface energy density defined in
(3.12), while it turns out that (see Remark 7.2) the surface energy given by the restriction of g′

to ∂Ω× SN−1 is completely determined by the functions gn.
Let us set

f ′n(x, ξ) :=

{
fn(x, ξ) if x ∈ Ω,
α|ξ|p otherwise,

and let f ′ be the energy density of the Γ-limit of the functionals on W 1,p(Ω′) associated to f ′n
according to Proposition 3.1. We easily have that

f ′(x, ξ) :=

{
f(x, ξ) if x ∈ Ω,
α|ξ|p otherwise,

where f is defined in (3.10). Since Ω is Lipschitz, we can assume using an extension operator that
ψn, ψ ∈W 1,p(RN ) and that ψn → ψ strongly in W 1,p(RN ).

Before stating our stability result, we need the following Γ-convergence result, which is a version
of Theorem 4.1 that takes into account boundary data.

Lemma 7.1. Let (Kn)n∈N be a sequence of rectifiable sets in Ω such that HN−1(Kn) ≤ C. Let
us assume that the functionals

E ′n(v) :=

{∫
Ω′
f ′n(x,∇v(x)) dx+

∫
S(v)\Kn

g′n(x, ν) dHN−1(x) if v ∈ SBV p(Ω′),
+∞ otherwise

Γ-converge in the strong topology of L1(Ω′) according to Theorem 4.1 to

E ′(v) :=

{∫
Ω′
f ′(x,∇v(x)) dx+

∫
S(v)

g′ −(x, ν) dHN−1(x) if v ∈ SBV p(Ω′),
+∞ otherwise.

Then we have that the functionals

Ẽ ′n(v) :=

{
E ′n(v) if v = ψn on Ω′ \ Ω,
+∞ otherwise

Γ-converge in the strong topology of L1(Ω′) to

Ẽ ′(v) :=

{
E ′(v) if v = ψ on Ω′ \ Ω,
+∞ otherwise.

Proof. Let v ∈ SBV p(Ω′) with v = ψ on Ω′ \ Ω, and let (vn)n∈N be a recovering sequence for v
with respect to the functionals E ′n. We have that

(7.4) ∇vn → ∇ψ strongly in Lp(Ω′ \ Ω; RN ),

and

(7.5) HN−1(S(vn) ∩ (Ω′ \ Ω)) → 0.

In fact we have that for all U ∈ A(Ω′) such that U ⊆ Ω′ \ Ω and E ′(v, ∂U) = 0

(7.6) ∇vn → ∇ψ strongly in Lp(U ; RN ),

and

(7.7) HN−1(S(vn) ∩ U) → 0.

Let ε > 0 and let us consider an open set V ∈ A(Ω′) such that ∂Ω ⊆ V , E ′(v, ∂V ) = 0,

(7.8)
∫
V ∩Ω

|a1| dx < ε,

∫
V

f ′(x,∇v(x)) dx < ε, and
∫
V

f ′(x,∇ψ(x)) dx < ε,
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where a1 appears in the growth estimate (3.1) for fn. Then for n large (no interaction between
bulk and surface part occurs) we have

(7.9)
∫
V

f ′n(x,∇vn(x)) dx < ε.

Notice that∫
Ω′\Ω

|∇vn −∇ψ|p dx =
∫

Ω′\(Ω∪V )

|∇vn −∇ψ|p dx+
∫
V \Ω

|∇vn −∇ψ|p dx

≤
∫

Ω′\(Ω∪V )

|∇vn −∇ψ|p dx+
2p−1

α

∫
V

f ′n(x,∇vn(x)) + f ′(x,∇ψ(x)) dx+
2p−1

α

∫
V ∩Ω

2|a1| dx.

By (7.6) we have ∇vn → ∇ψ strongly in Lp(Ω′ \ (Ω ∪ V ); RN ). In view of (7.8) and (7.9), and
since ε is arbitrary, we get that (7.4) holds.

The idea we follow in order to prove (7.5) is the following: if (7.5) does not hold, we can modify
the sequence vn moving S(vn) inside Ω, where the surface energy is much less than in Ω′ \ Ω,
getting a sequence which is more convenient in energy. But this is against the fact that vn is a
recovering sequence. Let us come to the details. Up to a subsequence we have

µn := HN−1 (S(vn) ∩ (Ω′ \ Ω))) ∗
⇀ µ weakly∗ in Mb(Ω′).

In view of (7.7), in order to prove (7.5) it is sufficient to show that µ(∂Ω) = 0. Let us assume by
contradiction that µ(∂Ω) 6= 0: then there exists a cube Qρ of center x ∈ ∂Ω and edge 2ρ such that
E ′(v, ∂Qρ) = 0 and

(7.10) µ(Qρ) > σ > 0.

Up to a translation we may assume that x = 0, and moreover we can assume that

Ω ∩Qρ = {(x′, y) : x′ ∈ (−ρ, ρ), y ∈ (−ρ, h(x′))},

where (x′, y) is a suitable orthogonal coordinate system and h is a Lipschitz function. Let η > 0
be such that setting

Vη := {(x′, y) : x′ ∈ (−ρ, ρ), y ∈ (h(x′)− η, h(x′) + η)}

we have Vη ⊆ Qρ, and E ′(v, ∂Vη) = 0. Let us set

V −η := {(x′, y) ∈ Vη : y < h(x′)} and V +
η := {(x′, y) ∈ Vη : y > h(x′)}.

By (7.10) we have that for n large

(7.11) HN−1(S(vn) ∩ V +
η ) > σ.

Let v̂ be the function defined on Vη obtained reflecting v|V +
η

to V −η : more precisely let us set

v̂ =

{
v(x′, y) if (x′, y) ∈ V +

η ,

v(x′, 2h(x′)− y) if (x′, y) ∈ V −η .

We clearly have v ∈W 1,p(Vη). Let v̂n be obtained in the same way from (vn)|V +
η

. Let us consider

wn := vn + v̂ − v̂n.

We have wn ⇀ v weakly in SBV p(Vη) so that by lower semicontinuity given by Proposition 4.3
we get

(7.12)
∫
S(v)∩Vη

g′ −(x, ν) dHN−1(x) ≤ lim inf
n→+∞

∫
(S(wn)\Kn)∩Vη

g′n(x, ν) dHN−1(x).

On the other hand, since E ′(v, ∂Vη) = 0, we have that vn is a recovering sequence for v in Vη. In
particular we get that

(7.13)
∫
S(v)∩Vη

g′ −(x, ν) dHN−1(x) = lim
n→+∞

∫
(S(vn)\Kn)∩Vη

g′n(x, ν) dHN−1(x).
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Formulas (7.12) and (7.13) give a contradiction because for n large by (7.11) and since Kn ⊆̃Ω
and S(wn) ⊆̃Ω ∩Qρ (recall that g′n(x, ν) = β + 1 for x ∈ Ω′ \ Ω)∫

(S(vn)\Kn)∩Vη

gn(x, ν) dHN−1(x)−
∫

(S(wn)\Kn)∩Vη

gn(x, ν) dHN−1(x) > σ.

We conclude that (7.5) holds.
We are now in a position to prove the Γ-limsup inequality for Ẽ ′n and Ẽ ′ (the Γ-liminf is

immediate from the Γ-convergence of E ′n to E ′ and the fact that the constraint is closed under the
strong topology of L1(Ω)). Let ε > 0, and let U ∈ A(Ω′) be such that ∂Ω ⊆ U , E ′(v, ∂U) = 0, and

(7.14)
∫
U

f(x,∇v) dx < ε.

In view of (7.4) and (7.5) we can find ϕn ∈ SBV p(Ω′) such that ϕn = ψn − vn on Ω′ \ Ω, ϕn = 0
on Ω \ U and

ϕn → 0 strongly in L1(Ω′),

∇ϕn → 0 strongly in Lp(Ω′; RN ),

HN−1(S(ϕn)) → 0.

Let us consider
ṽn := vn + ϕn.

We have ṽn = ψn on Ω′ \ Ω. Moreover

lim sup
n→+∞

∫
S(ṽn)\Kn

g′n(x, ν) dHN−1 = lim sup
n→+∞

∫
S(vn)\Kn

g′n(x, ν) dHN−1,

and using the growth estimate on f ′n

lim sup
n→+∞

∣∣∣∣∫
Ω′
f ′n(x,∇ṽn(x)) dx−

∫
Ω′
f ′n(x,∇vn(x)) dx

∣∣∣∣
≤ lim sup

n→+∞

∫
U∩Ω

fn(x,∇ṽn(x)) + fn(x,∇vn(x)) dx

≤ lim sup
n→+∞

∫
U

a2(x) dx+
(

2p−1

α
+ 1
)∫

U

fn(x,∇vn(x)) dx

+
2p−1

α

∫
U

|a1| dx+ 2p−1

∫
U

|∇ϕn|p dx.

By (7.14) we get

lim sup
n→+∞

∫
U

fn(x,∇vn(x)) dx < ε.

Then we conclude

lim sup
n→+∞

∣∣∣∣∫
Ω′
f ′n(x,∇ṽn(x)) dx−

∫
Ω′
f ′n(x,∇vn(x)) dx

∣∣∣∣ ≤ e(ε),

with e(ε) → 0 as ε→ 0. We deduce that

lim sup
n→+∞

Ẽ ′(ṽn) ≤ Ẽ ′(v) + e(ε),

with e(ε) → 0 as ε→ 0. Since ε is arbitrary, using a diagonal argument we have that the Γ-limsup
inequality is proved. �

Remark 7.2. In view of Lemma 7.1 we can prove that the surface energy determined by the
restriction of g′ to ∂Ω is actually independent of the choice of Ω′ and of the constant value c′ of
g′n on Ω′ \ Ω provided that c′ > β. In fact g′ is the surface energy density of the Γ-limit in the
strong topology of L1(Ω′) of the functionals on SBV p(Ω′) defined as

Ê ′n(v) :=
∫

Ω′
f ′n(x,∇v(x)) dx+

∫
S(v)

g′n(x, ν) dHN−1(x).
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Following the proof of Lemma 7.1 (for the functionals E ′n with Kn = ∅), if v = ψ outside Ω, we
can find (vn)n∈N recovering sequence for v with respect to (Ê ′n,Ω′, c′) such that vn = ψn outside
Ω. Since Ê ′(v,Ω′) = limn→+∞ Ê ′n(vn,Ω′) and

lim
n→+∞

Ê ′n(vn,Ω′ \ Ω) = lim
n→+∞

∫
Ω′\Ω

α|∇ψn|p dx =
∫

Ω′\Ω
α|∇ψ|p dx = Ê ′(v,Ω′ \ Ω)

we have

(7.15) Ê ′(v,Ω) = lim
n→+∞

∫
Ω

fn(x,∇vn) dx+
∫
S(vn)

gn(x, ν) dHN−1(x).

If Ω′′ is an open set such that Ω ⊆ Ω′′, we have that (vn)|Ω′∩Ω′′ is a recovering sequence also for
(Ê ′n,Ω′′ ∩Ω′, c′′). In fact if this is not the case, we can find (ṽn)n∈N recovering sequence for v with
respect to (Ê ′n,Ω′ ∩ Ω′′, c′) with ṽn = ψn outside Ω and such that

lim inf
n→+∞

∫
Ω

fn(x,∇ṽn) dx+
∫
S(ṽn)

gn(x, ν) dHN−1(x)

< lim inf
n→+∞

∫
Ω

fn(x,∇vn) dx+
∫
S(vn)

gn(x, ν) dHN−1(x) = Ê ′(v,Ω).

But this implies that

v̂n :=

{
ṽn in Ω
ψn in Ω′ \ Ω

is such that lim infn→+∞ Ê ′n(v̂n,Ω′) < Ê ′(v,Ω′) which is absurd.
By (7.15), in view of the non interaction between bulk and surface energy, and taking into

account the lower semicontinuity result of Proposition 4.3, we deduce∫
S(v)

g′(x, ν) dHN−1 = lim
n→+∞

∫
S(vn)

gn(x, ν) dHN−1.

We conclude that the surface energy given by the restriction of g′ to Ω×SN−1 is determined only
by the gn : Ω× SN−1 → [0,+∞].

The stability result for unilateral minimality properties with boundary conditions under σ-
convergence in Ω for rectifiable sets (see Definition 5.11) and Γ-convergence of bulk and surface
energies is the following.

Theorem 7.3. Let ψn ∈ W 1,p(Ω) with ψn → ψ strongly in W 1,p(Ω). Let (un)n∈N be a sequence
in SBV p(Ω) with un ⇀ u weakly in SBV p(Ω), and let (Kn)n∈N be a sequence of rectifiable sets
in Ω with HN−1(Kn) ≤ C, such that Kn σ-converges in Ω to K, and Sψn(un) ⊆̃Kn.

Let us assume that the pair (un,Kn) satisfies the unilateral minimality property (7.2) with
respect to fn, gn and ψn. Then (u,K) satisfies the unilateral minimality property with respect to
f , g and ψ, where f is defined in (3.10) and g is the restriction of g′ defined in (7.3) to Ω×SN−1.
Moreover we have

lim
n→+∞

∫
Ω

fn(x,∇un(x)) dx =
∫

Ω

f(x,∇u(x)) dx.

Proof. Since the boundary datum ψn is imposed only on ∂DΩ, we can consider ∂NΩ := ∂Ω \ ∂DΩ
as part of the cracks, that is we can replace in the unilateral minimality properties Kn with
K ′
n := Kn ∪ ∂NΩ.
It is easy to prove thatK ′

n σ-converges in Ω toK∪∂NΩ. Then the proof follows that of Theorem
6.2 employing the functionals (Ẽ ′n)n∈N defined in Lemma 7.1 with K ′

n in place of Kn. �
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8. Quasistatic evolution of cracks in composite materials

The aim of this section is to apply the stability results for unilateral minimality properties of
Section 7 to the study the asymptotic behavior of crack evolutions relative to varying bulk and
surface energy densities fn and gn. As mentioned in the Introduction, this problem is inspired by
the problem of crack propagation in composite materials. We restrict our analysis to the case of
antiplanar shear, where the elastic body is an infinite cylinder.

Let us recall the result of Dal Maso, Francfort and Toader [18] about quasistatic crack evolu-
tion in nonlinear elasticity. It is a very general existence and approximation result concerning a
variational theory of crack propagation inspired by the model introduced by Francfort and Marigo
in [22]. As already said, we consider the antiplanar case and for simplicity we neglect body and
traction forces, and so we adapt the mathematical tools employed in [18] to this scalar setting.

As in the previous sections, let Ω ⊂ RN (which for N = 2 represents a section of the cylindrical
hyperelastic body) be an open bounded set with Lipschitz boundary. The family of admissible
cracks is the class of rectifiable subsets of Ω, while the class of admissible displacements is given
by the functional space SBV p(Ω), where 1 < p < +∞. Let ∂DΩ be a subset of ∂Ω. Given
ψ ∈ W 1,p(Ω), we say that the displacement u is admissible for the fracture K and the boundary
datum ψ and we write u ∈ AD(ψ,K) if S(v) ⊆̃K and v = ψ on ∂DΩ\K. This can be summarized
by the notation Sψ(u) ⊆̃K, where Sψ(·) is defined in (7.1).

Let f(x, ξ) : Ω × RN → [0,+∞[ be a Carathéodory function which is convex and C1 in ξ for
a.e. x ∈ Ω, f(x, 0) = 0 for a.e. x ∈ Ω, and satisfies the growth estimate

(8.1) a1(x) + α|ξ|p ≤ f(x, ξ) ≤ a2(x) + β|ξ|p,
where a1, a2 ∈ L1(Ω) and α, β > 0. Let moreover g : Ω × SN−1 → [0,+∞[ be a Borel function
such that

(8.2) α ≤ g(x, ν) ≤ β.

The total energy of a configuration (u,K) is given by

E(u,K) :=
∫

Ω

f(x,∇u(x)) dx+
∫
K

g(x, ν)dHN−1(x).

We will usually refer to the first term as the bulk energy of u and we write

Eb(u) :=
∫

Ω

f(x,∇u(x)) dx,

while we will refer to the second term as the surface energy of K and we write

Es(K) :=
∫
K

g(x, ν)dHN−1(x).

Let us consider now a time dependent boundary datum ψ ∈ W 1,1
(
[0, T ];W 1,p(Ω)

)
(i.e., the

function t→ ψ(t) is absolutely continuous from [0, T ] to the Banach spaceW 1,p(Ω), with summable
time derivative, see for instance [13]), such that for all t ∈ [0, T ]

(8.3) ‖ψ(t)‖L∞(Ω) ≤ C.

In [18] Dal Maso, Francfort and Toader proved the existence (indeed in a much more general
setting) of an irreversible quasistatic crack evolution in Ω relative to the boundary displacement ψ,
i.e., the existence of a map t→ (u(t),K(t)) where u(t) ∈ AD(ψ(t),K(t)), ‖u(t)‖L∞(Ω) ≤ ‖ψ(t)‖∞
and such that the following three properties hold:

(1) irreversibility: K(t1) ⊆̃K(t2) for all 0 ≤ t1 ≤ t2 ≤ T ;

(2) global stability: for all K(t) ⊆̃K and v ∈ AD(ψ(t),K)

(8.4) E(u(t),K(t)) ≤ E(v,K);

(3) energy balance: the function t→ E(u(t),K(t)) is absolutely continuous and

(8.5)
d

dt
E(u(t),K(t)) =

∫
Ω

∇ξf(x,∇u(t))∇ψ̇(t) dx,
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where ψ̇ denotes the time derivative of t→ ψ(t).
For every n ∈ N let us consider admissible bulk and surface energy densities fn : Ω × RN →

[0,+∞[ and gn : Ω× SN−1 → [0,+∞[ for the model of [18] satisfying the growth estimates (8.1)
and (8.2) uniformly in n. Let us moreover assume that fn is such that for a.e. x ∈ Ω and for all
M ≥ 0

(8.6) |∇ξfn(x, ξ1n)−∇ξfn(x, ξ2n)| → 0

for all ξ1n, ξ
2
n such that |ξ1n| ≤M , |ξ2n| ≤M and |ξ1n − ξ2n| → 0. Notice that for instance fn(x, ξ) :=

an(x)|ξ|p with α ≤ an(x) ≤ β satisfies (8.6). We denote by En, Ebn and Esn the total, bulk and
surface energies associated to fn and gn.

Let f and g be the effective energy densities associated to fn and gn in the sense of Theorem
7.3, i.e., let f be given by Proposition 3.1 and let g be the restriction to Ω×SN−1 of the function g′

defined in (7.3). Notice that by Proposition 2.5 we have that the function f(x, ·) is C1; moreover
it is convex in ξ and satisfies the growth estimate (8.1). On the other hand, g satisfies the growth
estimate (8.2), so that f and g are admissible bulk and surface energy densities for the model of
[18].

Let t → ψn(t) be a sequence of admissible time dependent boundary displacements satisfying
(8.3) and such that

ψn → ψ strongly in W 1,1
(
[0, T ],W 1,p(Ω)

)
.

Let t→ (un(t),Kn(t)) be a quasistatic evolution for the boundary datum ψn relative to the energy
densities fn and gn according to [18]. Let us assume moreover the following stronger form of global
stability at time t = 0

(8.7) En(un(0),Kn(0)) ≤ En(v,K)

for all (v,K) such that v ∈ AD(ψ(0),K). The minimality (8.7) readily implies that Kn(0) =
Sψn(0)(un(0)). Notice that the existence of a quasistatic crack evolution satisfying (8.7) is easily
achieved by performing a global minimization at time t = 0 in the step by step procedure employed
in [18], as done for example in [21]: see also Remark 8.2.

The main result of this section is the following Theorem which asserts that the σ-limit in Ω of
Kn(t) (see Definition 5.11) still determines a quasistatic crack growth with respect to the effective
energy densities f and g.

Theorem 8.1. There exists a quasistatic crack growth t → (u(t),K(t)) relative to the energy
densities f and g and the boundary datum ψ such that up to a subsequence (not rebelled) the
following hold:

(1) for all t ∈ [0, T ]
Kn(t) σ-converges in Ω to K(t),

and there exists a further subsequence nk (depending possibly on t) such that

unk
(t) ⇀ u(t) weakly in SBV p(Ω);

(2) for every t ∈ [0, T ] we have convergence of total energies

En(un(t),Kn(t)) → E(u(t),K(t)),

and in particular separate convergence for bulk and surface energies, i.e.,

Ebn(un(t)) → Eb(u(t)) and Es(Kn(t)) → Es(K(t)).

Proof. By the global stability conditions (8.7) and (8.4), by the energy balance condition (8.5),
by the growth estimates on fn and gn, and by the L∞-bound ‖un(t)‖∞ ≤ ‖ψn(t)‖∞ ≤ C, we have
that there exists a constant C such that for all t ∈ [0, T ] and for all n ∈ N

(8.8) ‖∇un(t)‖p +HN−1(Kn(t)) + ‖un(t)‖L∞(Ω) ≤ C.

We divide the proof into three steps.
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Step 1: Compactness for the cracks. In view of (8.8), using a variant of Helly’s theorem
for increasing functions (see for instance [19, Theorem 6.3] for the case of Hausdorff converging
compact sets), we can find a subsequence (not rebelled) of (Kn(·))n∈N and an increasing map
t→ K(t) such that Kn(t) σ-converges in Ω to K(t) for all t ∈ [0, T ].

Step 2: Compactness for the displacements. Notice that the sequence (un(t))n∈N is relatively
compact in SBV p(Ω) by (8.8). We now want to select a particular limit point of this sequence.
With this aim, let us consider

(8.9) ϑn(t) :=
∫

Ω

∇ξfn(x,∇un(t))∇ψ̇n(t) dx and ϑ(t) := lim sup
n→+∞

ϑn(t).

Let us see that there exists u(t) ∈ SBV p(Ω) such that

(8.10) ϑ(t) =
∫

Ω

∇ξf(x,∇u(t))∇ψ̇(t) dx

and

(8.11) unk
(t) ⇀ u(t) weakly in SBV p(Ω)

for a suitable subsequence nk depending on t. In fact let us consider a subsequence nk such that

ϑ(t) = lim
k→+∞

∫
Ω

∇ξf(x,∇unk
(t))∇ψ̇nk

(t) dx,

and
unk

(t) ⇀ u weakly in SBV p(Ω).
By Proposition 5.8 we get Sψ(t)(u) ⊆̃K(t), so that u ∈ AD(ψ(t),K(t)). By global stability for
(un(t),Kn(t)) we have that∫

Ω

fnk
(x,∇unk

(t)) dx ≤
∫

Ω

fnk
(x,∇v) dx+

∫
H\Knk

(t)

gnk
(x, ν) dHN−1(x)

for all v ∈ AD(ψnk
(t),H) with Knk

(t) ⊆̃H. Then by the stability result of Theorem 7.3 we get
that

(8.12)
∫

Ω

f(x,∇u) dx ≤
∫

Ω

f(x,∇v) dx+
∫
H\K(t)

g(x, ν) dHN−1(x)

for all v ∈ AD(ψ(t),H) with K(t) ⊆̃H and

(8.13)
∫

Ω

fnk
(x,∇unk

(t)) dx→
∫

Ω

f(x,∇u) dx.

We claim that

(8.14) lim
k→+∞

∫
Ω

∇ξfnk
(x,∇unk

(t))∇Φ dx =
∫

Ω

∇ξf(x,∇u)∇Φ dx

for all Φ ∈ W 1,p(Ω). This has been done in [18, Lemma 4.11] in the case of fixed bulk energy,
and our proof is just a variant based on the Γ-convergence results of Section 4 and on assumption
(8.6) which permit to deal with varying energies. Let us consider sj ↘ 0 and kj → +∞: we have
by Lagrange Theorem∫

Ω

fnkj
(x,∇unkj

(t) + sj∇Φ)− fnkj
(x,∇unkj

(t))

sj
dx =

∫
Ω

∇ξfnkj
(x,∇unkj

(t) + s̃j∇Φ)∇Φ dx

where s̃j ∈ [0, sj ]. Up to a further subsequence for kj , by (8.13) and by the lower semicontinuity
given by Proposition 4.3 we can assume that for j large enough

(8.15)
∫

Ω

f(x,∇u+ sj∇Φ)− f(x,∇u)
sj

dx− 1
j
≤
∫

Ω

∇ξfnkj
(x,∇unkj

(t) + s̃j∇Φ)∇Φ dx.

By Lemma 2.4 we have

lim inf
j→+∞

∫
Ω

∇ξfnkj
(x,∇unkj

(t) + s̃j∇Φ)∇Φ dx = lim inf
j→+∞

∫
Ω

∇ξfnkj
(x,∇unkj

(t))∇Φ dx,
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so that by (8.15) we get∫
Ω

∇ξf(x,∇u)∇Φ dx ≤ lim inf
j→+∞

∫
Ω

∇ξfnkj
(x,∇unkj

(t))∇Φ dx.

Changing Φ with −Φ, we get that (8.14) is proved. In particular since ∇ψ̇nk
(t) → ψ̇(t) strongly

in Lp(Ω,RN ) we have

ϑ(t) = lim
k→+∞

∫
Ω

∇ξf(x,∇unk
(t))∇ψ̇nk

(t) dx

= lim
k→+∞

∫
Ω

∇ξf(x,∇unk
(t))∇ψ̇(t) dx+ lim

k→+∞

∫
Ω

∇ξf(x,∇unk
(t))(∇ψ̇nk

(t)−∇ψ̇(t)) dx

=
∫

Ω

∇ξf(x,∇u)∇ψ̇(t) dx.

Setting u(t) := u we deduce that (8.10) and (8.11) hold, u(t) ∈ AD(ψ(t),K(t)) and

(8.16)
∫

Ω

f(x,∇u(t)) dx ≤
∫

Ω

f(x,∇v) dx+
∫
H\K(t)

g(x, ν) dHN−1(x)

for all v ∈ AD(ψ(t),H) with K(t) ⊆̃H. Notice that from the global stability (8.7) at time t = 0,
which implies Kn(0) = Sψn(0)(un(0)), by Lemma 7.1 (where we take Kn = ∅) we deduce

(8.17)
∫

Ω

f(x,∇u(t)) dx+
∫
K(0)

g(x, ν) dHN−1(x) ≤
∫

Ω

f(x,∇v) dx+
∫
H

g(x, ν) dHN−1(x)

for all v ∈ AD(ψ(t),H) and

(8.18) E(u(0),K(0)) = lim
n→+∞

En(un(0),Kn(0)).

Step 3: Conclusion. Let us consider t → (u(t),K(t)) with u(t) and K(t) defined in Step 2
and Step 1 respectively. In order to see that t→ (u(t),K(t)) is a quasistatic crack evolution with
respect to f and g, we have to check the energy balance condition, since admissibility, irreversibility
and global stability (see (8.16) and (8.17)) hold by construction in view of Steps 1 and 2.

The inequality

(8.19) E(u(t),K(t)) ≥ E(u(0),K(0)) +
∫ t

0

∫
Ω

∇ξf(x,∇u(τ))∇ψ̇(τ) dx dτ, t ∈ [0, T ]

is a consequence of the global stability condition of (u(t),K(t)) (see [18, Lemma 7.1] for details).
On the other hand by lower semicontinuity given by Proposition 4.3 and by Proposition 5.7

(applied to g′ from which g is obtained by restriction) we have for all t ∈ [0, T ]

(8.20) E(u(t),K(t)) ≤ lim inf
n→+∞

En(un(t),Kn(t)).

By (8.9), (8.10), (8.18), (8.19) and (8.20), and by applying also Fatou’s Lemma in the limsup
version, we get for all t ∈ [0, T ]

E(u(t),K(t)) ≤ lim inf
n→+∞

En(un(t),Kn(t)) ≤ lim sup
n→+∞

En(un(t),Kn(t))

= lim sup
n→+∞

[
En(un(0),Kn(0)) +

∫ t

0

ϑn(s) ds
]
≤ E(u(0),K(0)) +

∫ t

0

ϑ(s) ds

= E(u(0),K(0)) +
∫ t

0

∫
Ω

∇ξf(x,∇u(τ))∇ψ̇(τ) dx dτ ≤ E(u(t),K(t)).

We conclude that

E(u(t),K(t)) = E(u(0),K(0)) +
∫ t

0

∫
Ω

∇ξf(x,∇u(τ))∇ψ̇(τ) dx dτ

and

(8.21) lim
n→+∞

En(un(t),Kn(t)) = E(u(t),K(t)).
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Finally by lower semicontinuity for the bulk and surface energies under weak convergence for the
displacements and σ-convergence in Ω for the cracks, from (8.21) we conclude that

lim
n→+∞

Ebn(un(t)) = Eb(u(t)) and lim
n→+∞

Esn(Kn(t)) = Es(K(t)),

so that the theorem is proved. �

Remark 8.2. Following the arguments of preceding proof, it turns out that Theorem 8.1 also
holds in the following discretized in time version, which is closer in spirit to the approach of
Francfort and Marigo [22] to quasistatic crack propagation, and of the subsequent papers on the
subject ([1], [16], [18], [19], [21], and [23]).

Let 0 = tδ0 < · · · < tδh = T be a subdivision of [0, T ] with step δ > 0, and let (uiδ,n,K
i
δ,n) be

such that

(uiδ,n,K
i
δ,n) ∈ argmin {Ebn(u) + Esn(K) : u ∈ AD(ψ(tδi ),K), Ki−1

δ,n ⊆̃K},

where we set K−1
δ,n := ∅. Let δn → 0, and let t→ (un(t),Kn(t)) be the discretized in time evolution

defined as
un(t) := uiδn,n, Kn(t) := Ki

δn,n, tδn
i−1 ≤ t < tδn

i ,

with un(T ) := uhn

δn,n
and Kn(T ) := Khn

δn,n
.

Then there exists a quasistatic crack growth t→ (u(t),K(t)) relative to the energy densities f
and g and the boundary datum ψ such that, up to a subsequence (not rebelled), points (1) and
(2) of Theorem 8.1 hold.

Remark 8.3. Notice that for all t ∈ [0, T ] Kn(t) converges to K(t) also in the sense of σp-
convergence by Dal Maso, Francfort and Toader [18] (see Section 5 just before Corollary 5.9 for
a definition). In fact, by compactness of σp-convergence, up to a further subsequence we have
that Kn(t) σp-converges to some K̃(t); by Corollary 5.9 K̃(t) is contained in K(t) so that the
pair (u(t), K̃(t)) is a unilateral minimizer with respect to f and g. Following Step 3 we obtain
that Esn(Kn(t)) → Es(K̃(t)), which together with Esn(Kn(t)) → Es(K(t)) implies K(t)=̃K̃(t) for
all t ∈ [0, T ].

We conclude that in order to deal with the study of the asymptotic behavior of quasistatic
crack evolutions, the notion of σ-convergence and σp-convergence of rectifiable sets are equivalent.
Notice however that, as pointed out in the Introduction, in order to handle the problem using
directly the tool of σp-convergence, one needs a Transfer of Jump Sets like our Theorem 6.4,
which seems difficult to be derived without any Γ-convergence argument.
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