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Abstract

As noted by the second author in the context of unstable two-phase porous
medium flow, entropy solutions of Burgers’ equation can be recovered from a
minimizing movement scheme involving the Wasserstein metric in the limit
of vanishing time step size [4]. In this paper, we give a simpler proof by
verifying that the anti-derivative is a viscosity solution of the associated
Hamilton Jacobi equation.

AMS Subject classification: 76S05 (35Q35 49Q20 76T99)

Introduction

The aim of this paper is twofold. On one side we give a simpler proof of a
result found by the second author ([4]). This amounts in proving that the
minimizing movements scheme for the Energy E(θ) =

∫

xθdx on a two-phase
Wasserstein space produces the entropy solution of the Burgers’ equation.
The difference with respect to the approach of [4] consists in the fact that
we pass to the anti-derivative of the limit function and prove that it is the
viscosity solution of the associated Hamilton Jacobi equation. This provides
some technical simplifications.
On the other hand we discuss, mostly at an informal level, the gradient flow
structure that this result suggests. Indeed, on an heuristic level the fact that
the Burgers’ equation is the equation of the gradient flow of E(θ) =

∫

xθdx
on a two-phase Wasserstein space is obvious (see Section 2.3). It is less
obvious why the minimizing movement scheme converges to the entropy
solution.

∗University of Nice
†Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
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Shortly said, the situation is the following: E is not semi convex on the
two-phase Wasserstein space and this leads to multiple solutions of the ini-
tial value problem (in correspondence with the lack of uniqueness for weak
solutions of Burgers’ equation). Now, given the structure of the minimizing
movements technique, it is natural to argue that the limit curve obtained
is the one which locally decreases the energy E fastest or equivalently,
which locally has the largest energy dissipation rate |∇E|2. This is just a
reformulation of Dafermos’ observation that the entropy solution is the weak
solution which decreases entropy −

∫

θ(1−θ)dx fastest among all weak solu-
tions. This is our explanation why the minimizing movement scheme picks
the entropy solution (see also Section 1.2).
Still, it should be noted that this explanation is purely formal (and actually
not needed for the rigorous proof). As we discuss in the final sections, there
are explicit examples in R2 of C1 functions for which there is not a gradient
flow trajectory that decreases the energy fastest, and thus in particular the
minimizing movements scheme cannot produce such a trajectory (see Section
3.1). Also, it is very possible that a gradient flow trajectory which decreases
the energy fastest exists, but is not obtained by the minimizing movements
scheme (see Section 3.2).

We wish to thank the referee for valuable comments on the preliminary
version of the paper.

1 Two words on Wasserstein distance between mea-

sures with infinite mass

In this paper we are going to deal with the Wasserstein distance between
measures on R with infinite mass. As this is somehow unusual, we present
here the main features of the resulting metric space. Yet, we won’t prove the
results collected here, because anyway their proofs are just minor variant of
those available in the standard setting of probability measures.
Let H : R → R be the Heaviside function

H(x) :=

{

1, if x ≥ 0,
0, if x < 0,

}

and let M+ be the set of functions θ : R → [0, 1] such that

L(θ) := sup{x :

∫ x

−∞
θ = 0} > −∞,

R(θ) := inf{x :

∫ +∞

x
1− θ = 0} < +∞,















bounded “mixing zone”,

∫

R

θ −H = 0, volume constraint.

(1.1)
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Notice that H ∈ M
+. Define

M
− :=

{

θ : R → [0, 1]
∣

∣1− θ ∈ M
+
}

.

Given two functions θ0, θ1 ∈ M
± we define their Wasserstein distance W2

(here and in the following we are identifying a measure with its density) as

W 2
2 (θ0, θ1) := inf

T :T♯θ0=θ1

∫

|T (x)− x|2θ0(x) dx.

As for the standard transport problem, it is easy to check that there exists a
unique non decreasing map Topt such that (Topt)♯θ0 = θ1, and that this map
is the unique minimizer of the problem above. Furthermore, Topt minimizes
also the transport problem written in terms of plans.
Thanks to the volume constraint and the bounded mixing zone, it is imme-
diate to verify that for L ≤ min{L(θ0), L(θ1)} and R ≥ max{R(θ0), R(θ1)}
it holds Topt(x) = x for any x /∈ [L,R]. In other words, only a finite amount
of mass is moved in the optimal transportation, so that it also holds

W2(θ0, θ1) =W2(θ0|[L,R], θ1|[L,R]).

The fact that the transport problem in M
± is equivalent to a transport

problem where the masses involved are finite, yields that several properties
of the standard transport problem are true also in the current setting. For
instance, the dual formulation holds:

1

2
W 2

2 (θ0, θ1) = sup
(φ,φ̃)

∫ R

L

(

x2

2
− φ0(x)

)

θ0(x)dx+

∫ R

L

(

x2

2
− φ1(x)

)

θ1(x)dx,

where the sup is taken among all couples (φ0, φ1) of convex conjugate func-
tions. The sup is always realized and any optimal couple (φ0opt, φ

1
opt) satisfies

φ0opt(x) + φ1opt(Topt(x)) = xTopt(x) for any x ∈ R.
Notice that the metric space (M±,W2) is not complete, indeed: measures
with densities θ with either L(θ) = −∞ or R(θ) = +∞ may arise as limits.
Yet, this will create no troubles to our discussion, because on the one hand
we will work with densities ≤ 1 (which rules out singular parts at the limit),
and on the other hand solutions of the Burgers equation have finite speed
of propagation, so that if we start from a density with bounded mixing
zone, also its evolution will have bounded mixing zone (we will recover this
property also at the level of time discretized solutions, see (3.10) and (3.13)).
Finally, we remark that as for the standard Wasserstein space, the space
(M±,W2) can be seen as a sort of infinite dimensional manifold (according
to the interpretation provided in [5]), where the scalar product gθ at some
θ ∈ M

± is given by

gθ(δθ, δθ) :=

∫

|v|2θ,
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for any admissible perturbation δθ - which must satisfy
∫

δθ = 0 - where v
is defined from δθ by

−∂x(vθ) = δθ, v ∈ L2(R; θL1).

This statement should be understood in the following sense: a curve (θt) ⊂
M

± is absolutely continuous w.r.t. W2 if and only if it solves the continuity
equation

∂tθt + ∂x(vtθt) = 0,

for some family of vector fields vt such that
∫

vt = 0 for a.e. t. In this case

the metric speed |θ̇t| of (θt) is given by
√

∫

|vt|2θt for a.e. t.
Notice that in particular the Benamou-Brenier formula holds:

W 2
2 (θ

0, θ1) = inf

∫ 1

0

∫

|vt|2θt dt,

where the infimum is taken among all absolutely continuous curves (θt) such
that θ0 = θ0 and θ1 = θ1. These latter statements can be made rigorous
following the arguments presented in [5] and [1].

2 Heuristics

2.1 Burgers’ equation

Let λ ∈ (0,∞) be a fixed parameter. From the method of characteristics we
learn that the initial value problem for

∂tθ + ∂x

(

θ(θ − 1)

θ + λ−1(1− θ)

)

= 0 (2.1)

generically is not solvable in the class of continuous θ. On the other hand, it
is well-known that for given initial data, (2.1) allows several weak solutions
θ. A measurable function θ : (0,∞) × R → [0, 1] is called weak solution of
(2.1) with initial data given by a measurable function θ0 : R → [0, 1] if

∫

R

∫ ∞

0
∂tϕ(x, t)θ(x, t) + ∂xϕ(x, t)

θ(x, t)(θ(x, t)− 1)

θ(x, t) + λ−1(1− θ(x, t))
dxdt

=

∫

R

ϕ(x, 0)θ0(x)dx

for all ϕ ∈ C∞
c ([0,∞) × R).

The most striking example of non-uniqueness occurs when

θ0(x) = H(x) :=

{

1, if x ≥ 0,
0, if x < 0.

}

(2.2)

Among the infinitely many weak solutions which start from (2.2), let us
mention three:
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• The stationary solution:

θ(t, x) = H(x).

• The “rarefaction wave”:

θ(t, x) =











0 for x ≤ −λt
1+λ−1r

1+λ−1r−r+
√
λ(1+λ−1r−r)

for r := x
t , −λt ≤ x ≤ t

1 for x ≥ t











.

• An intermediate solution

θ(t, x) =







0 for x ≤ − 1
1+λ−1 t

1
2 for − 1

1+λ−1 t ≤ x ≤ 1
1+λ−1 t

1 for x ≥ 1
1+λ−1 t







.

As is well known, the notion of entropy solution restores uniqueness [3]. A
function is called entropy solution of (2.1) provided it is a weak solution and
satisfies

∫

R

∫ ∞

0
η(θ)∂tϕ+ q(θ)∂xϕdx dt ≥ 0,

for all ϕ ∈ C∞
c ([0,+∞) × R), ϕ ≥ 0, all convex functions η : R → R (called

entropies), and q : R → R defined by

q(x) :=

∫ x

0
η′(y)f ′(y)dy,

where f(z) := z(z − 1)/(z + λ−1(1− z)).
Dafermos [2] has observed that for a scalar conservation law as above,
Kruzkov’s (or Lax’) notion of entropy solution is formally equivalent to the
following criterium. Select a strictly convex entropy η. Then the entropy so-
lution θ∗ is characterized by the following property: For every weak solution
θ that agrees with θ∗ up to time T one has

lim
t↓T

∫

R
η(θ∗(t, x))dx −

∫

R
η(θ∗(T, x))dx

t− T
≤ lim

t↓T

∫

R
η(θ(t, x))dx −

∫

R
η(θ(T, x))dx

t− T
.

In words: Among all weak solutions, it is the entropy solution that decreases
the total entropy fastest instantaneously. Dafermos proved the equivalence
for the class of piecewise smooth functions with smooth discontinuity lines.
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2.2 Abstract gradient flow

We are going to discuss in the Section 2.3 the gradient flow structure of the
Burger’s equation. But before doing so, we collect here some heuristic ideas
which drove our intuition in attacking the problem.
Recall that the gradient flow equation for an energy E defined on, say, Rd is

u′(t) = −∇E(u(t)), (2.3)

where the unknown is the curve u : [0,+∞) → Rd and it is specified the
initial value u(0) = u0 ∈ Rd. It is well known that if the energy E is C2

or semi-convex, then there is both existence and uniqueness for equation
(2.3). When E is only C1, existence is still ensured by Peano’s theorem, but

uniqueness may fail. A typical example being E(x) := −x 4

3 on R: with the
initial condition u0 = 0 we have uncountably many solutions, among which

the constant u1(t) ≡ 0 and the curve u2(t) =
(

8
9

)
3

2 t
3

2 . Clearly, these two
solutions have a very different behavior: the first is stationary, while the
second shows the maximal decrease of the energy.
To better formalize this concept, let us observe that the infinitesimal rate
of dissipation of the energy is prescribed by the gradient flow equation, as
it holds

d

dt
E(u(t)) = ∇E(u(t)) · u′(t) = −|∇E|2(u(t)).

If E is C2, also the second derivative of the energy is given, being equal to

d2

dt2
E(u(t)) = − d

dt
|∇E|2(u(t)) = 2∇E(u(t)) ·

(

∇2
E(u(t)) · ∇E(u(t))

)

.

If E is only C1, different solutions may very well have different second order
variations of the energy. For instance, with the example E(x) := −x 4

3 above
we have

d2

dt2
E(u1(t)) = 0,

d2

dt2
E(u2(t)) = −

(

8

9

)2 d2

dt2
t2 = −2

(

8

9

)2

.

Thus we see that among the two gradient flow trajectories, the one which
decreases the energy fastest is characterized by a smaller second order deriva-
tive of the energy, or, which is the same, by a larger derivative of |∇E|2(u(t)).
Thus if one looks for a concepts that isolates the curve u2(t) among all the

gradient flows trajectories of E(x) = −x 4

3 as the one with the highest dis-
sipation of the energy, it seems reasonable to look for the curve with the
largest derivative of |∇E|2(u(t)). In practice, in order to avoid situations
where the derivative does not exist or is not sufficient to isolate the curve
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with highest energy dissipation (this is the case, for instance, of the func-

tional E(x) := −x 3

2 ), it is better to substitute the infinitesimal notion of
derivative of |∇E|2(u(t)), with a local one, as in the following definition.

Definition 1 (Local maximal increase of the slope and local maximal de-
crease of the functional). We say that a solution u(t) of (2.3) has the local
maximal increase of the slope if for any t0 ≥ 0 and any solution ũ(t) of

{

ũ(0) = u(t0),
ũ′(t) = −∇E(ũ(t)),

(2.4)

there exists δ > 0 such that it holds |∇E(ũ(t))| ≤ |∇E(u(t + t0))| for any
t ≤ δ.
Similarly, we say that a solution u(t) of (2.3) has the local maximal decrease
of the energy if for any t0 ≥ 0 and any solution ũ(t) of (2.4) there exists
δ > 0 such that E(ũ(t)) ≥ E(u(t+ t0)) for any t ≤ δ.

The two notions of maximal decrease are linked. Indeed, if a solution u(t)
has the local maximal increase of the slope, then it has the local maximal
decrease of the energy. To see this, observe that, since we are assuming the
energy to be C1, it holds

E(u(t0 + t))− E(u(t0)) =

∫ t0+t

t0

d

ds
E(u(s))ds

=

∫ t0+t

t0

∇E(u(s)) · u′(s)ds = −
∫ t0+t

t0

|∇E(u(s))|2ds.

(2.5)

Therefore, if we have δ > 0 and a curve ũ(t) which solves (2.4) and satisfies
|∇E(ũ(t))| ≤ |∇E(u(t + t0))| for any t ≤ δ, from the equality E(ũ(0)) =
E(u(t0)) and (2.5) for u and ũ we can conclude that E(ũ(t)) ≥ E(u(t + t0))
for any t ≤ δ.
It is unclear to us whether the opposite implication is true or not; let us just
point out once again that what we are going to say below is just heuristic
and serves as a motivation for the rigorous result of Section 3 (see also the
last section).

There is a well-known approximation scheme which produces solutions of
the initial value problem of (2.3): the method of minimizing movements,
which consists in the following. We choose a parameter τ > 0 and define
a sequence uτn by imposing uτ0 := u0 and then recursively choosing uτn+1

among the minimizers of

u 7→ E(u) +
|u− uτn|2

2τ
.
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Then we define the piecewise constant curves t 7→ uτ (t) := uτ[t/τ ], where by

[x] we denote the integer part of the real number x.
Under only mild assumptions on E, it can be proved that as τ goes to 0, the
family of curves uτ (t) converges (possibly up to considering some particular
sequence τn ↓ 0) locally uniformly to a solution of (2.3).
What we want to point out here, is that given the structure of the mini-
mizing movement technique, when uniqueness of solutions of (2.3) fails, the
solution found by this method should be one which satisfies the local maxi-
mal decrease of the energy, and the local maximal increase of the slope, if
it exists1.

2.3 Bringing together both concepts

We want to show that the equation















∂tθ + ∂x

(

θ(θ − 1)

θ + λ−1(1− θ)

)

= 0 in R+ × R,

θ(0, x) = θ0(x),

(2.6)

where the initial value θ0 : R 7→ R satisfies θ0 ∈ M
+, 0 ≤ θ0 ≤ 1 can be

seen as a gradient flow equation. The calculations we run here are purely
heuristical, but they serve as motivation for the rigorous result given in the
next section.
To justify that equation (2.6) is the equation of a gradient flow, we need to
specify a manifold and an energy. Let us recall that a curve t 7→ u(t) is a
gradient flow on a manifold N for the energy E if it satisfies

〈u̇(t), w〉 = −〈dE(u(t)), w〉 , (2.7)

for any t > 0 and any w in the tangent space of N at u(t).
Our manifold N is a subspace of the ‘manifold’ M+ × M

−, where M
± has

been introduced in the Section 1:

N :=

{

(θ, θ̃) : θ ∈ M+, θ̃ ∈ M
−, θ + θ̃ ≡ 1

}

. (2.8)

In the following we will often write θ ∈ N meaning (θ, 1− θ) ∈ N. Also, for
θ ∈ N, we will often identify θ and 1− θ with the measures θL1, (1− θ)L1.
On N we put two distances. The first, d, is given by

d2
(

(θ0, θ̃0), (θ1, θ̃1)
)

:=
1

λ
W 2

2 (θ
0, θ1) +W 2

2 (θ̃
0, θ̃1).

1let us underline that actually there may be no solution which locally decreases the

energy fastest. See the last section for an example.
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The second, D, is defined as

D2
(

(θ0, θ̃0), (θ1, θ̃1)
)

:= inf

∫ 1

0

(

1

λ

∫

|vt|2θt +
∫

|ṽt|2θ̃t
)

dt,

where the infimum is taken among all curves t 7→ (θt, θ̃t) ∈ N such that
both t 7→ θt and t 7→ θ̃t are absolutely continuous w.r.t. W2 and vt, ṽt
are the associated velocity vector fields, i.e. it holds vt ∈ L2(R; θtL

1), ṽt ∈
L2(R; θ̃tL

1), for a.e. t and

∂tθt + ∂x(vtθt) = 0, ∂tθ̃t + ∂x(ṽtθ̃t) = 0.

We remark that D is the ‘Riemannian distance’ associated to the scalar
product g(θ,θ̃) defined by

g(θ,θ̃)
(

(δθ, δθ̃), (δθ, δθ̃)
)

:=
1

λ

∫

|v|2θ +
∫

|ṽ|2θ̃, (2.9)

where (δθ, δθ̃) is an admissible variation of (θ, θ̃) ∈ N, which means
∫

δθ =
∫

δθ̃ = 0 and δθ = −δθ̃, and v ∈ L2(R, θ), ṽ ∈ L2(R, θ̃) are derived from
δθ, δθ̃ by

−∂x(vθ) = δθ, −∂x(ṽθ̃) = δθ̃. (2.10)

Notice that in particular this implies

vθ + ṽθ̃ ≡ 0. (2.11)

In other words, the distance D is the arc distance associated to the embed-
ding of N into the weighted product M+×M

−, while d is the corresponding
chord distance. In the next section, where we will derive our rigorous result,
we will use the distance d, which is more manageable, but for the moment
we use D, for which it is easier to derive the gradient flow equation.

The other ingredient needed to have a gradient flow is the energy functional.
Our is E : N → R defined by:

E(θ, θ̃) := E(θ) =

∫

x(θ(x)−H(x)) dx. (2.12)

Formally, the differential diff E(θ, θ̃) of E at (θ, θ̃) computed along the direc-
tion (δθ0, δθ̃0) is easy to compute, and it is given by

diff E(θ, θ̃)(δθ0, δθ̃0) =

∫

xδθ0(x) dx.

The gradient gradE(θ, θ̃) is then, by definition, the tangent vector (δθ, δθ̃)
defined by the formula

g(θ,θ̃)
(

(δθ0, δθ̃0), (δθ, δθ̃)
)

= diffE(θ, θ̃)(δθ0, δθ̃0), ∀(δθ0, δθ̃0)
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Associating to (δθ0, δθ̃0) and (δθ, δθ̃) the vector fields (v0, ṽ0) and (v, ṽ) re-
spectively via (2.10) and then using the definition (2.9) of the scalar product
g we get

1

λ

∫

v0vθ +

∫

ṽ0ṽθ̃ =

∫

v0θ, for any (v0, ṽ0) satisfying (2.11).

Using twice (2.11) we then get
∫

v0θ

(

v

(

λ−1 +
θ

1− θ

)

− 1

)

= 0, ∀v0,

which identifies gradE(θ, θ̃) = (δθ,−δθ) from

v =
1− θ

θ + λ−1(1− θ)
and thus δθ = ∂x

θ(θ − 1)

θ + λ−1(1− θ)
. (2.13)

Hence, we just ‘proved’ that t 7→ (θt, θ̃t) is a gradient flow of E on N if and
only if

∂tθt = −∂x
(

θt(θt − 1)

θt + λ−1(1− θt)

)

,

which is (2.6).

We conclude this introduction showing that in our situation the energy func-
tional is not semi convex and that the lower semicontinuous envelope of
|gradE|2 vanishes.
We start from the lower semicontinuous envelope of |gradE|2. Formula (2.13)
yields that |gradE|2(θ, 1− θ) is given by

1

λ

∫
∣

∣

∣

∣

1− θ

θ + λ−1(1− θ)

∣

∣

∣

∣

2

θ+

∫
∣

∣

∣

∣

θ

θ + λ−1(1− θ)

∣

∣

∣

∣

2

(1− θ) =

∫

θ(1− θ)

θ + λ−1(1− θ)
.

(2.14)
This formula shows that if θ attains only the values 0, 1, the norm of the
gradient is equal to 0. Since the set of such (θ, 1− θ)’s is dense in N we get
the claim.
The same formula shows that−|gradE|2 =

∫ 1
−1 η(θ), with η strictly convex in

[−1, 1]. This shows that −|gradE|2 is a suitable entropy for equation (2.1).
By the heuristic argument presented in the Section 2.2, we can therefore
hope that using the minimizing movement technique, we gain a solution of
the Burger’s equation which locally decreases −|gradE|2 fastest, which in
turn implies that this solution is the entropy solution.

To prove the lack of semiconvexity we argue by contradiction. Consider the
functions

θε(x) :=











0 if x < −ε,
1

2
+
x

2ε
if x ∈ [−ε, ε],

1 if x > ε.










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By formula (2.14) we have that |gradE|(θ0, 1 − θ0) = 0, hence if E was
K-convex for some K ∈ R we would have

E(θε)− E(θ0) ≥
K

2
D2
(

(θε, 1− θε), (θ0, 1− θ0)
)

, ∀ε > 0. (2.15)

A simple computation shows that

E(θε)− E(θ0) = −ε
2

6
, (2.16)

and that W 2
2 (θε, θ0) = O(ε3) (because, roughly said, a mass of order ε is

moved of a distance of order ε) and similarly W 2
2 (1 − θε, 1 − θ0) = O(ε3),

hence
d2
(

(θε, 1− θε), (θ0, 1− θ0)
)

= O(ε3). (2.17)

Finally, sinceD is the arc distance and d the chord distance of the embedding
of N in M

+ ×M
− it is natural to expect (we won’t prove this - here we are

just at an heuristic level) that it holds

lim
(θn,θ̃n)→(θ,θ̃)

D2
(

(θn, θ̃n), (θ, θ̃)
)

d2
(

(θn, θ̃n), (θ, θ̃)
) = 1. (2.18)

Equations (2.16), (2.17) and (2.18) contradicts (2.15), so our argument is
complete.

3 Rigorous result

In this section we formulate and prove the main result of this paper.
To state the result rigorously, we need to fix some notation. Fix θ0 ∈ N

and τ > 0. Define the discrete solution θτ : [0,∞) × R → R by putting
θτ0(x) := θ0(x), then defining θτ(n+1)τ ∈ N as the unique minimizer of

∫

x(θ(x)−H(x)) +
1

2τλ
W 2

2 (θ, θ
τ
nτ ) +

1

2τ
W 2

2 (1− θ, 1− θτnτ ) (3.1)

among all θ ∈ N, and finally interpolating piecewise constantly:

θτt (x) := θτnτ (x), ∀x ∈ R, t ∈ (nτ, (n+ 1)τ).

Also, we define V τ : [0,∞)× R → R by

V τ
t (x) :=

∫ x

−∞
θτt (x

′)dx′.

The main results of this paper are the following theorems:
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Theorem 2 (Entropy solution). With the notation just described, as τ ↓ 0,
the functions θτ converge weakly (in duality with continuous functions with
compact support) to a limit function θ which is the entropy solution of (2.1)
with initial condition θ0.

Theorem 3 (Viscosity solution). As τ ↓ 0, the functions V τ converge locally
uniformly to a limit function V which is the viscosity solution of























∂tV +
∂xV (∂xV − 1)

∂xV + λ−1(1− ∂xV )
= 0 in R+ × R,

V (0, x) =

∫ x

−∞
θ0(z)dz.

(3.2)

Furthermore, the function V is 1-Lipschitz in x and 1
4-Hölder continuous in

t.

It is clear that the two theorems are equivalent, because the entropy solution
of (2.1) corresponds to the viscosity solution of (3.2) (for instance, because
both are obtained as viscous limit as ε ↓ 0). Therefore we will focus on the
proof of Theorem 3.
The hard part of this approach is in deriving appropriate informations for
the single time step approximation. We do this work in the next section,
after that, we will see that the passage to the limit (done in Section 3.2) will
be straightforward.
We underline that in the time discretized problem (3.1) we used the ‘chord
distance’ d and not the ‘arc distance’ D.

3.1 One step estimates

In this section we study the one-step minimization problem and derive all
the properties which will lead to the proof of our main result. Recall that
we write θ ∈ N meaning (θ, 1− θ) ∈ N.

Fix θ0 ∈ N, τ > 0 and consider the variational problem :

minimize over θ ∈ N
∫

x(θ(x)−H(x)) dx +
1

2τλ
W 2

2 (θ, θ0) +
1

2τ
W 2

2 (1− θ, 1− θ0).
(3.3)

In order to identify the Euler-Lagrange equation for the minimizer θ1 of
(3.3), we start from some heuristic arguments. Let V0,W0 be the cumulated
volume functions of θ0 and 1− θ0 defined by

V0(x) :=

∫ x

−∞
θ0(y)dy, W0(x) := −

∫ ∞

x
1− θ0(y)dy,

12



and define similarly V1,W1 from θ1.
Recalling the dual formulation of the transport problem, we know that (3.3)
can be written as

min
θ

max
(φ,φ̃),(ψ,ψ̃)

∫

x(θ(x)−H(x))

+
1

τλ

(∫ R

L
(
x2

2
− φ(x))θ0(x) +

∫ R

L
(
x2

2
− φ̃(x))θ(x)

)

+
1

τ

(
∫ R

L
(
x2

2
− ψ(x))(1 − θ0(x)) +

∫ R

L
(
x2

2
− ψ̃(x))(1 − θ(x))

)

,

(3.4)

for appropriate L ≪ 0 and R ≫ 0, where (φ, φ̃) and (ψ, ψ̃) are con-
vex conjugate functions. Thus the minimum θ1 is part of the solution
(θ1, (φ0, φ1), (ψ0, ψ1)) of this latter saddle point problem. By the proper-
ties of the dual formulation of the optimal transport problem we know that
Φ0 := ∂xφ0 is the optimal transport map (because it is increasing) from θ0
to θ1. Similarly, putting Ψ0 := ∂xψ0, Φ1 := ∂xφ1 and Ψ1 := ∂xψ1, we have
that Ψ0,Φ1,Ψ1 are the optimal transport maps from 1−θ0 to 1−θ1, from θ1
to θ0 and from 1−θ1 to 1−θ0 respectively. In particular, V1(x) = V0(Φ1(x)),
W1(x) =W0(Ψ1(x)) and it holds

V0(Φ1(x)) +W0(Ψ1(x)) = x. (3.5)

Also, the minimality in θ1 gives (ignoring the constraint θ1(x) ∈ [0, 1], but
respecting the volume constraint

∫

(θ1 −H) = 0):

τλx+
x2

2
− φ1(x)− λ

(

x2

2
− ψ1(x)

)

= const.. (3.6)

Differentiating gives

Φ1(x) = (1− λ)x+ λΨ1(x) + τλ, which is equivalent to

Ψ1(x) = (1− λ−1)x+ λ−1Φ1(x)− τ.
(3.7)

Equations (3.5) and (3.7) are the Euler-Lagrange equations of θ1. However,
the process we used to find them is not rigorous, as the constraint θ1(x) ∈
[0, 1] does not allow to deduce (3.6), as in points x where θ1(x) ∈ {0, 1} only
an inequality can be obtained.
To derive rigorously the Euler-Lagrange equations, it is better to proceed the
other way around by constructing two functions satisfying (3.5) and (3.7),
then to associate to them the corresponding density θ1 and finally proving
that θ1 is indeed the solution of the variational problem (3.3).
We start constructing Φ0 and Ψ0. Recall the definition of L(θ), R(θ) in (1.1).

13



Proposition 4. For any x0 ∈ R there exists a unique Φ0(x0) and a unique
Ψ0(x0) such that it holds

Φ0(x0) = V0(x0) +W0((1− λ−1)Φ0(x0) + λ−1x0 − τ), (3.8)

Ψ0(x0) =W0(x0) + V0((1− λ)Ψ0(x0) + λx0 + τλ). (3.9)

The functions Φ0,Ψ0 are both continuous, non decreasing and satisfy

Φ0(x0) ∈ [x0 − τλ, x0], Ψ0(x0) ∈ [x0, x0 + τ ], ∀x0 ∈ R, (3.10)

and

Φ0(x0) =

{

x0 − τλ, if x0 ≤ L(θ0),
x0, if x0 ≥ R(θ0) + τ,

Ψ0(x0) =

{

x0, if x0 ≤ L(θ0)− τλ,
x0 + τ, if x0 ≥ R(θ0).

(3.11)

Also, it holds

Φ0(x0) = Ψ0((1− λ−1)Φ0(x0) + λ−1x0 − τ),

Ψ0(x0) = Φ0((1− λ)Ψ0(x0) + λx0 + τλ),
(3.12)

Proof. Let F : R2 → R be defined by

F (x, y) := y − V0(x)−W0((1− λ−1)y + λ−1x− τ).

Then F is Lipschitz and from the fact that 0 ≤ ∂xW0 ≤ 1 and λ−1 >
0 we get ∂yF (x, y) ≥ min{1, λ−1} > 0, which grants, for any x0 ∈ R,
existence and uniqueness of Φ0(x0) such that F (x0,Φ0(x0)) = 0, which is
(3.8). The continuity of Φ0 follows from the one of F . Using the fact that
V0,W0 are non decreasing, we deduce that F (x, y) is non increasing in x,
and therefore that Φ0 is non decreasing. A direct computation based on
the identity V0(x) +W0(x) = x for any x ∈ R shows that F (x0, x0) ≥ 0
and F (x0, x0 − τλ) ≤ 0 from which the first line in (3.10) follows. To prove
the first part of (3.11) observe that V0(x) = 0,W0(x) = x for x ≤ L(θ0)
and V0(x) = x,W0(x) = 0 for x ≥ R(θ0), then check directly that the stated
values of Φ0 fulfill the condition F (x0,Φ0(x0)) = 0 in the appropriate ranges
for x0.
The corresponding properties of Ψ0 are proven analogously.
Thus it remains to prove (3.12). Consider the first of the two. By definition
of Ψ0, that is true if and only if it holds

Φ0(x0) =W0((1− λ−1)Φ0(x0) + λ−1x0 − τ)

+ V0
(

(1− λ)Φ0(x0) + λ
(

(1− λ−1)Φ0(x0) + λ−1x0 − τ
)

+ λτ
)

.

Since the argument of V0 in this expression is equal to x0, the conclusion
comes from (3.8). The second identity in (3.12) is proved analogously.
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Define the functions Φ1,Ψ1 : R → R as the - potentially multivalued -
inverses of Φ0,Ψ0 respectively:

Φ1(x1) :=
{

x0 : Φ0(x0) = x1

}

, Ψ1(x1) :=
{

x0 : Ψ0(x0) = x1

}

.

Proposition 5. The functions Φ1,Ψ1 are maximally monotone functions,
strictly increasing and satisfy

Φ1(x1) ⊂ [x1, x1 + λτ ], Ψ1(x1) ⊂ [x1 − τ, x1], (3.13)

and

Φ1(x1) =

{

x1 + τλ, if x1 ≤ L(θ0)− τλ,
x1, if x1 ≥ R(θ0) + τ,

Ψ1(x1) =

{

x1, if x1 ≤ L(θ0)− τλ,
x1 − τ, if x1 ≥ R(θ0) + τ.

(3.14)

Furthermore, it holds

Ψ1(x1) = (1− λ−1)x1 + λ−1Φ1(x1)− τ,

Φ1(x1) = (1− λ)x1 + λΨ1(x1) + τλ
(3.15)

and
V0(Φ1(z1)) +W0(Ψ1(z1)) = {z1}. (3.16)

Proof. All the properties are trivial consequences of the analogous ones
proved in Proposition 4 for Φ0,Ψ0.

¿From (3.16) we deduce that the equations

{V1(x1)} := V0(Φ1(x1)), {W1(x1)} :=W0(Ψ1(x1)), (3.17)

define the pair of functions V1,W1 : R → R for which it holds

V1(x1) +W1(x1) = x1, ∀x1 ∈ R. (3.18)

By construction, V1,W1 are non decreasing, and thus (3.18) forces that both
are Lipschitz with ∂xV1, ∂xW1 ∈ [0, 1].
Let θ1(x) := ∂xV1(x) ∈ [0, 1], notice that from (3.18) we get that 1−θ1(x) =
∂xW1(x) and that from (3.17) we have

θ1 = (Φ0)♯θ0, 1− θ1 = (Ψ0)♯(1− θ0). (3.19)

Also, from (3.14) and the fact that V0(x) = 0 for x ≪ 0 and W0(x) = 0 for
x ≫ 0 we deduce that V1(x) = 0 for x ≪ 0 and W1(x) = 0 for x ≫ 0 and
thus that it holds

V1(x) =

∫ x

−∞
θ1(y)dy, W1(x) = −

∫ +∞

x
1− θ1(y)dy.

Notice also that by (3.14) and (3.17) we obtain

L(θ1) ≥ L(θ0)− λτ, R(θ1) ≤ R(θ0) + τ. (3.20)
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Proposition 6. θ1 is the unique solution of the variational problem (3.3).

Proof. It is sufficient to prove that for any L ≤ min{L(θ0), L(θ1)}, R ≥
max{R(θ0), R(θ1)} and for any θ̃ ∈ N such that L ≤ L(θ̃), R ≥ R(θ̃) it
holds

∫

x(θ1(x)−H(x)) +
1

2τλ
W 2

2 (θ1, θ0) +
1

2τ
W 2

2 ((1− θ1), (1 − θ0))

≤
∫

x(θ̃(x)−H(x)) +
1

2τλ
W 2

2 (θ̃, θ0) +
1

2τ
W 2

2 ((1− θ̃), (1− θ0)),

with equality if and only if θ̃ = θ1.
Define the functions φ1, ψ1 by

φ1(x) :=

∫ x

0
Φ1(x

′)dx′, ψ1(x) :=

∫ x

0
Ψ1(x

′)dx′,

and notice that since Φ1,Ψ1 are increasing, φ1, ψ1 are convex. Let φ0, ψ0

be the respective Legendre transform. By construction, the couple of func-
tions 1

2x
2 − φ0(x),

1
2x

2 − φ1(x) is admissible for the dual formulation of the
transport problem, hence it holds

1

2
W 2

2 (θ0, θ̃) ≥
∫ R

L
(
1

2
x2 − φ0(x))θ0(x)dx+

∫ R

L
(
1

2
x2 − φ1(x))θ̃(x)dx. (3.21)

For the same reason, it holds

1

2
W 2

2 (1−θ0, 1−θ̃) ≥
∫ R

L
(
1

2
x2−ψ0(x))(1−θ0)(x)dx+

∫ R

L
(
1

2
x2−ψ1(x))(1−θ̃)(x)dx.

(3.22)

And therefore (noticing that
∫

x(θ(x)−H(x)) =
∫ R
L x(θ(x)−H(x))):

∫

x(θ̃(x)−H(x)) +
1

2τλ
W 2

2 (θ̃, θ0) +
1

2τ
W 2

2 ((1 − θ̃), (1 − θ0))

≥
∫ R

L
x(θ̃(x)−H(x))dx

+
1

τλ

(
∫ R

L
(
1

2
x2 − φ0(x))θ0(x)dx+

∫ R

L
(
1

2
x2 − φ1(x))θ̃(x)dx

)

+
1

τ

(∫ R

L
(
1

2
x2 − ψ0(x))(1 − θ0)(x)dx+

∫ R

L
(
1

2
x2 − ψ1(x))(1 − θ̃)(x)dx

)

.

Now we claim that the right hand side of this expression is independent on
θ̃. This is so because the part depending of θ̃ is given by

1

τλ

∫ R

L
θ̃
(

τλx+
1

2
x2 − φ1(x)− λ

(1

2
x2 − ψ1(x)

)

)

dx,
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and the quantity multiplying θ̃ is, by (3.15), constant, so that the volume

constraint
∫ R
L θ̃ −H = 0 gives the claim.

Now notice that equality holds in (3.21) if and only if (Φ0)♯θ0 = θ̃ and that
equality holds in (3.22) if and only if (Ψ0)♯(1 − θ0) = (1 − θ̃). Thus the
conclusion comes from (3.19).

After having identified the minimizer of the variational problem, our aim is
to show that the function V τ : [0, τ ] ×R defined by

V τ (t, x) :=

{

V0(x), if t ∈ [0, τ),
V1(x) if t = τ,

is a ‘discrete viscosity solution’ of (3.2). The rigorous statement is the
following.

Proposition 7 (Discrete viscosity solution). Let ϕ : [0,∞) × R → R be a
smooth function and define its time discretized ϕτ : [0, τ ] × R → R by

ϕτ (t, x) :=

{

ϕ(0, x), if t ∈ [0, τ),
ϕ(τ, x), if t = τ.

We claim that for any x1 ∈ R it holds

V τ (t, x)− ϕτ (t, x) ≥ V τ (τ, x1)− ϕτ (τ, x1), ∀t, x ∈ [0, τ ] ×R

⇒ (∂tϕ+ f(∂xϕ))(τ, x1) ≥ −Rem(τ, x1, ϕ),

(3.23)

and that

V τ (t, x)− ϕτ (t, x) ≤ V τ (τ, x1)− ϕτ (τ, x1), ∀t, x ∈ [0, τ ] × R

⇒ (∂tϕ+ f(∂xϕ))(τ, x1) ≤ Rem(τ, x1, ϕ),
(3.24)

where f : R → R is given by

f(z) :=
z(z − 1)

z + λ−1(1− z)
,

and the remainder term Rem(τ, x1, ϕ) is bounded by

∣

∣Rem(τ, x1, ϕ)
∣

∣ ≤ Cτ sup
{

|∂ttϕ(t, x)|+ |∂xxϕ(t, x)|+ |∂t∂xϕ(t, x)|
}

, (3.25)

for some universal constant C, the supremum being taken among all t ∈ [0, τ ]
and x ∈ [x1, x1 + τ max{λ, 1}].

Proof. Let x1 ∈ R and x0 ∈ Φ1(x1). Then by (3.17) we know that it holds

V1(x1) = V0(x0), (3.26)
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while the identity V0(x) +W0(x) = x for any x ∈ R and (3.8) yields

λ−1(x1 − x0) + τ = V0(x0)− V0((1− λ−1)x1 + λ−1x0 − τ). (3.27)

With these two we prove (3.23). Notice that from (3.26) and the touching
property we get

∂tϕ(τ, x1) =
ϕ(τ, x1)− ϕ(0, x1)

τ
+Rem1

=
ϕτ (τ, x1)− ϕτ (0, x0)

τ
+
ϕ(0, x0)− ϕ(0, x1)

τ
+Rem1

(touching) ≥ V τ (τ, x1)− V τ (0, x0)

τ
+ ∂xϕ(τ, x1)

x0 − x1
τ

+Rem1 +Rem2

(3.26) = ∂xϕ(τ, x1)
x0 − x1

τ
+Rem1 +Rem2,

(3.28)

where both Rem1 and Rem2 satisfy the bound (3.25).
Using (3.27) we also get

∂tϕ(τ, x1) =
ϕ(τ, x1)− ϕ(0, x1)

τ
+Rem1

=
ϕτ (τ, x1)− ϕτ (0, (1 − λ−1)x1 + λ−1x0 − τ)

τ

+
ϕ(0, (1 − λ−1)x1 + λ−1x0 − τ)− ϕ(0, x1)

τ
+Rem1

(touching) ≥ V τ (τ, x1)− V τ (0, (1 − λ−1)x1 + λ−1x0 − τ)

τ

+ ∂xϕ(τ, x1)

(

x0 − x1
τλ

− 1

)

+Rem1 +Rem3

(3.26) =

(

−1 +
x0 − x1
τλ

)

(∂xϕ(τ, x1)− 1) + Rem1 +Rem3,

(3.29)

where Rem3 also satisfies (3.25).
Now observe that the touching property and the fact that ∂xV ∈ [0, 1]
implies ∂xϕ ∈ [0, 1], and that (3.13) gives x0−x1

τ ∈ [0, λ]. Hence (3.23)
follows from (3.28) and (3.29) noticing that

min
a∈[0,λ]

max
{

ab,
(

1− a

λ

)

(1− b)
}

= −f(b), ∀b ∈ [0, 1].

The implication (3.24) is proved following exactly the same lines.
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3.2 Passage to the limit

Here we conclude the proof of Theorem 3. It will be split in two propositions:
in Proposition 10 we prove the compactness of {V τ} w.r.t. local uniform
convergence and the regularity of any limit function V , and in Proposition
11 that any limit V is indeed a viscosity solution of (3.2). This latter fact
will also implies, thanks to uniqueness of viscosity solutions, that the limit
function V is unique.
In order to get the time regularity of V τ we start analyzing the one of θτ .
In what follows we will write, for simplicity, d(θ, θ̃) in place of d((θ, 1 −
θ), (θ̃, 1− θ̃)) for θ, θ̃ ∈ N, i.e.

d2(θ, θ̃) :=
1

λ
W 2

2 (θ, θ̃) +W 2
2 (1− θ, 1− θ̃).

Proposition 8 (Compactness and time regularity at the level of θ’s). The
curves t 7→ θτt ∈ N are relatively compact w.r.t. d and any limit curve t 7→ θt
is 1

2 -Hölder continuous.

Proof. Let L < R ∈ R. The subspace N
R
L of N of θ’s such that L(θ) ≥ L

and R(θ) ≤ R is compact w.r.t. weak convergence. Given that we are re-
stricting the attention to the measures on the interval [L,R], weak topology
is equivalent to W2 topology and thus also equivalent to d-topology.
Now fix T > 0 and notice that (3.20) ensures that L(θτt ) ≥ L(θ0)− λT and
R(θτt ) ≤ R(θ0)+T for any τ > 0 and t ∈ [0, T ]. Hence the set {θτt }τ>0,t∈[0,T ]

is relatively compact in N. Thus a standard diagonalization argument shows
that for any sequence τk → 0 there exists a subsequence, not relabeled, such
that for every t ∈ Q∩ [0, T ] the functions θτkt converge to some θt ∈ N when
k → ∞. To conclude the proof it is sufficient to show that actually there is
convergence for any t and that the limit curve is 1

2 -Hölder continuous. To
this aim, notice that from the minimality of θτ(n+1)τ we get

1

2τ
d2(θτ(n+1)τ , θ

τ
nτ ) ≤ E(θτnτ )− E(θτ(n+1)τ ).

Therefore, fixing t ≥ s ≥ 0 and adding up these inequalities for n which
varies from [s/τ ] to [t/τ ]− 1 we obtain

1

2τ

[t/τ ]−1
∑

n=[s/τ ]

d2(θτ(n+1)τ , θ
τ
nτ ) ≤ E(θτ[s/τ ]τ )− E(θτ[t/τ ]τ ) ≤ C, (3.30)

where C := sup
NR

L
E − inf

NR
L
E, L := L(θ0) − λT , R := R(θ0) + T , and

C <∞ because of continuity and compactness.
To conclude, fix 0 ≤ s ≤ t ∈ Q and let τ go to 0 in the following chain of
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inequalities:

d(θτ[t/τ ]τ , θ
τ
[s/τ ]τ ) ≤

[t/τ ]−1
∑

n=[s/τ ]

d(θτ(n+1)τ , θ
τ
nτ )

≤
(

[t/τ ]−1
∑

n=[s/τ ]

d2(θτ(n+1)τ , θ
τ
nτ )

)1/2
(

[ t

τ

]

−
[ s

τ

]

)1/2

(3.30)

≤
√
Cτ

√

t− s

τ
+ 1 ≤

√

C(t− s+ τ).

�

Thus we have some limit function θt(x). Let Vt(x) :=
∫ x
−∞ θt(y)dy. Observe

that the W2-convergence of the θτk(t, ·) to θ(t, ·) implies the local uniform
convergence of V τ

t to Vt. In order to pass from the modulus of continuity of
t 7→ θt to the one of t 7→ Vt we will use the following simple lemma.

Lemma 9. Let V1, V2 : R → [0,∞) be two 1-Lipschitz and non decreasing
functions such that V1(x) = V2(x) = x for x≫ 0. Then it holds:

|V1(x)− V2(x)| ≤
(∫

R

|V1(z)− V2(z)|dz
)1/2

∀x ∈ R(3.31)

∫

R

|V1(x)− V2(x)|dx =

∫

{y>0}
|V −1

1 (y)− V −1
2 (y)|dy, (3.32)

where V −1
i is defined, as usual, as V −1

i (y) := inf{x : V (x) ≥ y}, i = 1, 2.

Proof. To prove (3.31) fix x, suppose that V1(x) ≥ V2(x) and note that
since both functions are 1-Lipschitz and non decreasing the parallelogram
whose vertices are (x, V2(x)), (x + V1(x) − V2(x), V1(x)), (x, V1(x)), (x +
V2(x) − V1(x), V2(x)) is contained in the set of those couples (x′, y) such
that V2(x

′) ≤ y ≤ V1(x
′).

The identity (3.32) is obvious.

Proposition 10 (Compactness and time regularity at the level of V ’s).
The set of curves t 7→ V τ

t is relatively compact w.r.t. uniform convergence
and any limit function Vt is 1-Lipschitz w.r.t. the x variable and 1

4-Hölder
continuous w.r.t. the time variable t. Moreover if τn ↓ 0 is such that θτnt →
θt weakly for any t ≥ 0 and V τ

t → Vt uniformly, then Vt(x) =
∫ x
−∞ θt(y)dy

for any t ≥ 0.

Proof. It is well known - and trivial - that weak convergence of measures
implies pointwise convergence of the cumulated distribution functions out
of a countable set. In our case, the measures have density ≤ 1, hence
the distribution functions are Lipschitz and thus weak convergence of the
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densities implies local uniform convergence of the distribution functions. To
pass from local uniform convergence to uniform convergence recall that for
θ̃ ∈ N it holds Ṽ (x) = 0 for x ≤ L(θ̃) and Ṽ (x) = x for x ≥ R(θ̃), where
Ṽ (x) :=

∫ x
−∞ θ̃ and that in our setting there is finite speed of propagation

(see (3.10)). Hence the last statement is proved and relative compactness
follows from the compactness claim in Proposition 8.
The fact that any limit function Vt(x) is 1-Lipschitz in x follows from the
fact that θt(x) ≤ 1 for any t, x, so we turn to the time regularity. In the
following we will indicate by V −1

t the inverse of the function x → Vt(x)
and by ‖Vt − Vs‖p the Lp norm (depending on t, s) of the function x →
Vt(x)− Vs(x). Fix τ > 0 and recall that for any n,m ∈ N it holds

W2(θ
τ
nτ , θ

τ
mτ ) = ‖(V τ

nτ )
−1 − (V τ

mτ )
−1‖2. (3.33)

Fix T > 0 and notice that arguing as in the proof of Proposition 8 we get
that for any t ∈ [0, T ] and τ > 0 it holds V τ

t (x) = 0 for x ≤ L(θ0)− λT and
V τ
t (x) = x for x ≥ R(θ0) + T . Hence the Hölder inequality gives

‖(V τ
t )

−1 − (V τ
s )

−1‖1 ≤
√

R(θ0)− L(θ0) + (λ+ 1)T ‖(V τ
t )

−1 − (V τ
s )

−1‖2,
(3.34)

for any t ∈ [0, T ] and τ > 0.
Hence for t ∈ [0, T ], τ > 0, x ∈ R and some generic C ≥

√

R(θ0)− L(θ0) + (λ+ 1)T
it holds:

|V τ
t (x)− V τ

s (x)|
(3.31)

≤
(

‖V τ
t − V τ

s ‖1
)1/2 (3.32)

=
(

‖(V τ
t )

−1 − (V τ
s )

−1‖1
)1/2

(3.34)

≤ C
(

‖(V τ
t )

−1 − (V τ
s )

−1‖2
)1/2 ≤ C





[t/τ ]−1
∑

n=[s/τ ]

∥

∥(V τ
(n+1)τ )

−1 − (V τ
nτ )

−1
∥

∥

2





1/2

≤ C

(

[ t

τ

]

−
[ s

τ

]

)1/4




[t/τ ]−1
∑

n=[s/τ ]

∥

∥(V τ
(n+1)τ )

−1 − (V τ
nτ )

−1
∥

∥

2

2





1/4

(3.33)

≤ C

(

t− s+ τ

τ

)1/4




[t/τ ]−1
∑

n=[s/τ ]

W 2
2 (θ

τ
(n+1)τ , θ

τ
nτ )





1/4

≤ C

(

t− s+ τ

τ

)1/4




[t/τ ]−1
∑

n=[s/τ ]

λd2(θτ(n+1)τ , θ
τ
nτ )





1/4
(3.30)

≤ C
(

λ(t− s+ τ)
)1/4

,

from which the stated Hölder continuity of the limit function follows. �

Proposition 11 (Any limit V is a viscosity solution). Any limit function
(t, x) 7→ Vt(x) produced by Proposition 10 is a viscosity solution of (3.2). In
particular, the limit V is unique.

21



Proof. We already know by Proposition 10 that any limit V is continuous.
Now let (t, x) 7→ ϕt(x) be a smooth function, and t0 > 0, x0 ∈ R arbitrary.
We need to prove that

Vt(x)− ϕt(x) ≥ Vt0(x0)− ϕt0(x0), ∀t ≥ 0, x ∈ R

⇒ ∂tϕt0(x0) + f(∂xϕt0(x0)) ≥ 0,
(3.35)

with f(z) := z(z−1)
z+λ−1(1−z)

. This will show that V is a viscosity supersolution.

The proof of the subsolution property will follow along the same lines.
Up to modify a bit ϕ, it is not restrictive to assume that V − ϕ has a
strict minimum in (t0, x0). For τ > 0 let ϕτ : [0,∞) × R → R be the
time discretization of ϕ defined by ϕτt (x) := ϕ(τ [t/τ ], x) and notice that
ϕτ converges to ϕ locally uniformly as τ ↓ 0. Now let τn ↓ 0 be such that
V τn converges uniformly to a limit V and observe that the local uniform
convergence of V τn −ϕτn implies that for n≫ 1 the function V τn −ϕτn has a
minimum (possibly not unique) in some point (tn, xn) such that (tn, xn) →
(t0, x0) as n → ∞. Therefore applying Proposition 7 (in particular the
implication in (3.23)) we deduce

∂tϕtn(xn) + f(∂xϕtn(xn)) ≥ −Cτn,

where C depends only on the behavior of ϕ in a neighborhood of (t0, x0).
Letting n→ ∞ (3.35) is proved.

4 Two examples on the maximal decrease of en-

ergy

4.1 Lack of maximal decrease

Let us underline once again that the proof of the existence of an entropy
solution of the Burger’s equation via the minimizing movement scheme, was
motivated by the discussion made in section 1.2, but this motivation was
just heuristic, and the rigorous result is actually independent on that.
In this appendix, we want to produce an example of a C1 function on R2 for
which it does not exist a gradient flow trajectory that ‘ locally decreases the
energy fastest’. This means, in particular, that the minimizing movement
approach cannot produce such a curve.
For n ∈ N consider the function gn : [0,+∞) → R defined by

gn(x) :=

{

−nx 3

2 if x ≤ n−7,

−n− 19

2 if x ≥ n−7.

Now let, for any n ∈ N, g̃n : [0,+∞) → R be a regularization of gn near the
point x = n−7, so that g̃n ∈ C∞(0,+∞), gn is convex and decreasing around
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n−7 and g̃n = gn far from n−7. Let χ : [0, 1] → [0, 1] be a C∞ function such
that χ(0) = 0, χ(1) = 1 and such that its derivatives of any order are 0 in
0 and 1.
We will define our C1 function f : R2 → R by using polar coordinates. For
better clarity in the formula, we put an := 1

n , bn := an+an+1

2 . Let

f(r, θ) :=























































0 if θ ∈ [π/2, 2π],
(

1− χ

(

θ − 1

π/2− 1

))

g̃1(r) if θ ∈ [1, π/2],

χ

(

θ − bn
an − bn

)

g̃n(r) if θ ∈ [bn, an],

(

1− χ

(

θ − an+1

bn − an+1

))

g̃n+1(r) if θ ∈ [an+1, bn],

so that on the half-lines {(r, an)}r≥0 the function f is given by

Figure 1: Schematic description of the behavior of f

f(r, an) = g̃n(r),

on the ‘bisector’ half-lines
{(

r, bn
)}

r≥0
its value is 0, and between these lines

we have a smooth approximation.
By definition, it is clear that f is continuous on the whole R2, and that is
C∞ on R2 \{(r, 0)}r≥0 , so that we only have to check that f is continuously
differentiable on the positive axis {(r, 0)}r≥0. To this aim observe that

∣

∣

∣

∣

d

dr
f(r, θ)

∣

∣

∣

∣

≤|g̃′n(r)|,
∣

∣

∣

∣

1

r

d

dθ
f(r, θ)

∣

∣

∣

∣

≤ max
x∈[0,1]

{|χ′(x)|} |g̃n(r)|
r|an − bn|

,
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for θ ∈ [bn−1, bn]. For the derivative w.r.t. r we have

|g̃′n(r)| ≤ |g′−n (n−7)| = 3
2n

− 5

2 → 0,

as n→ ∞ uniformly on r, where g′−n is the left derivative of gn. To analyze
the derivative w.r.t. θ we distinguish the case r far from 0 and r close to 0.
In the first case, say r > δ > 0, from the fact that |an − bn| = O(n−2) we
have, for n sufficiently large, the bound

|g̃n(r)|
r|an − bn|

≤ n−
19

2

δO(n−2)
= O(n−

15

2 ) → 0.

For the case r close to 0 from the concavity of gn on [0, n−7] we have

|g̃n(r)|
r

≤ |gn(n−7)|
n−7

and therefore
|g̃n(r)|

r|an − bn|
≤ |gn(n−7)|
n−7O(n−2)

= n−
1

2 → 0.

Thus f ∈ C1(R2).
Now consider the gradient flow equation

{

u(0) = 0,
u′(t) = −∇f(u(t)), t ≥ 0.

(4.1)

We claim that there is no solution u(t) of this equation such that for any
other solution u(t) it holds f(u(t)) ≤ f(u(t)) on some interval of the kind
[0, δ], for some δ > 0. That is, there is no solution that locally decreases
the energy fastest near 0.
In order to prove this, consider a generic solution u(t) = (r(t), θ(t)) of (4.1).
We may assume without loss of generality that r(t) > 0 for t > 0, so that
θ(t) is well defined and continuous for positive times. We claim that it holds
θ(t) 6= bn for any t > 0, n ∈ N. Indeed, if equality holds for some t0, n0,
then, since f is C∞ around u(t0) = (r(t0), θ(t0)) and ∇f(u(t0)) = 0, we
must have u(t) = u(t0) for any t ∈ [0,+∞), which contradicts the initial
condition u(0) = 0. Therefore, by continuity, we know that it must hold

θ(t) ∈ (bn−1, bn), ∀t ∈ (0,+∞), (4.2)

for some fixed n ∈ N. Now, it is not hard to see (we omit the details) that
among all solutions of (4.1) satisfying (4.2), there is one which decreases
the energy fastest: the curve un(t) = (rn(t), an), where rn(t) is the unique
solution of







rn(0) = 0,
r′n(t) = −g̃′n(u(t)), t ≥ 0,
rn(t) > 0 t > 0.

(4.3)
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Therefore, if a solution of (4.1) which decreases the energy fastest exists, it
must be equal to un(t) for some n ∈ N. However, it is not hard to check
that for n < m it holds f(um(t)) < f(un(t)) in some interval of the kind
(0, δm) (see the figures describing the graph of gn - notice that δm ↓ 0 as
m → ∞). Therefore a solution which locally decreases the energy fastest
does not exist.

4.2 Convergence of minimizing movements to a limit curve

which does not decrease locally the energy fastest

In this final section we give an explicit example of C1 function on R2 such
that: for some point (x0, y0) there exists more than one gradient flow tra-
jectory of f starting from x0, one - and only one - of these trajectories
decreases the energy fastest, and the minimizing movement scheme con-
verges to a unique limit curve which is not the one decreasing the energy
fastest.
Let γ1, γ2 : [0,+∞) → R2 be the curves defined by

γ1(t) := (e−t+1, 2− t), ∀t ≥ 0,

γ2(t) :=

{

(e−t+1, 2− t) if t ≤ 1

(2− t− (t−1)2

2 , 2− t+ (t−1)2

2 ) if t ≥ 1,

(see also the Figure 2)

Figure 2: Trajectories of γ1 and γ2.

and f1, f2 : R
2 → R the functions

f1(x, y) :=
x2

2
+ y,

f2(x, y) := x+ y − 1

2
− 2

3
|y − x| 32 .
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Finally, let f : R2 → R be defined by:

f(x, y) :=







f1(x, y) if x ≥ y,
f2(x, y) if (x, y) = γ2(t), for some t > 1,
f3(x, y) otherwise,

as in the Figure 3, where f3 is chosen so that f3 ≥ f2 on R2, f is C1 in
the whole R2 and C2 in R2 \ {(1, 1)}. Observe that such a choice of f3 is
possible because

f1(1, 1) = f2(1, 1) ∇f1(1, 1) = ∇f2(1, 1),

and f1 ≥ f2 on the diagonal {x = y}.

Figure 3: Schematic behavior of f .

We claim that:

A) Both γ1 and γ2 are gradient flow trajectories of f starting from (e, 2),

B) Among all gradient flows trajectories of f starting from (e, 2), γ2 is
the only one which locally decreases the energy fastest,

C) The minimizing movements scheme starting from (e, 2) converges to
γ1.

If we prove these, our example is concluded.
(A) is trivial. For (B) start observing that all the gradient flow trajecto-
ries (g.t.f. in the following) starting from (e, 2) coincide with γ1 and γ2 for
t ≤ 1, because f is C2 in R2 \ {(1, 1)}. For the same reason, it is enough
to check that γ2 is the g.f.t. which decreases the energy fastest at time
t = 1. Observe that ∇f(x, x) = ∇f1(x, x) and that for x < 1 we have
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(∂xf1)(x, x) < (∂yf1)(x, x), therefore for every g.f.t. γ of f starting from
(1, 1) there exists T > 0 such that either {γ(t)}0<t<T stays below the diago-
nal or it stays above (because the diagonal can be crossed only from above to
below, thus there exists at most one time T > 0 such that γ(T ) ∈ {(x, x)}).
The class of g.f.t. starting from (1, 1) which initially stay below the diago-
nal contains only one element: the curve t 7→ γ1(t + 1). The class of g.f.t.
which initially stay above the diagonal contains infinitely many: we claim
that the curve t 7→ γ2(t + 1) is the one that decreases the energy fastest
within this class. Consider the gradient flows of f2 starting from (1, 1): it
is easy to check that the curve t 7→ γ2(t + 1) is one of them, and that it
is actually the one which decreases f2 the fastest. Since f3 ≥ f2 in the set
{y ≥ x}, t 7→ γ2(t+1) decreases the energy f fastest among all the gradient
flows starting from (1, 1). Thus, to conclude the proof of (B) it is enough
to compare the energies along γ1 and γ2.
Simple calculations show that:

f1
(

γ1(1 + t)
)

=
e−2t

2
+ 1− t =

3

2
− 2t+ 2t2 +O(t3),

f2
(

γ2(1 + t)
)

=
3

2
− 2t− 2

3
t3,

so that f
(

γ2(1+ t)
)

= f2
(

γ2(1+ t)
)

< f1
(

γ1(1+ t)
)

= f
(

γ1(1+ t)
)

for small
t > 0.
Now we pass to (C). If we apply the minimizing movements approach to
the function f1 starting from (e, 2), we get the sequence of discrete solutions
(xnτ , y

n
τ ) given by

xnτ :=
e

(1 + τ)n
,

ynτ := 2− nτ,

and it is obvious that as τ ↓ 0 the points (x
[t/τ ]
τ , y

[t/τ ]
τ ) converge to γ1(t)

(here [·] stands for the integer part). Therefore it is enough to prove that
the minimizing movements scheme for f starting from (e, 2) never selects a
point lying above the diagonal. To prove this, we use the following lemma:

Lemma 12. There exists constants a, c > 0 such that for every 0 < τ < a
and n ∈ N it holds

e

(1 + τ)n
−
(

2− nτ
)

> cτ.

The next proposition contains the proof of (C):

Proposition 13. The minimizing movements scheme for f starting from
(e, 2) converges to γ1.
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Proof. We know that up to passing to a sequence τk ↓ 0 the minimizing
movements scheme converges to a gradient flow for f starting from (e, 2).
Observe that it is sufficient to show the convergence to γ1 in the region
{x > 0, y > 1/

√
2}, because outside such region f is C2 and thus any

gradient flow coinciding with γ1 inside the region must actually coincide
with γ everywhere.
Let a, c be as in the previous lemma and notice that thanks to such lemma
it is sufficient to show that for (x0, y0) ∈ R2 such that

x0 − y0 > cτ,

x0 > 0,

y0 >
1√
2

0 < τ < min
{

a, c,
1

2
√
2

}

(4.4)

there is no minizer of

(x, y) 7→ f(x, y) +
|x− x0|2 + |y − y0|2

2τ
, (4.5)

such that x ≤ y. Indeed, once this is proved, an easy induction argument
based on Lemma 12 shows that the minimizing movements scheme starting
from (e, 2) and with τ sufficiently small stays below the diagonal at least
until it goes out the region {x > 0, y > 1/

√
2}, which, as said, is sufficient

to conclude.
Thus assume that x0, y0, τ satisfy (4.4). In the set {x ≤ y} we have f2 ≤
f3 = f , and therefore

inf
x≤y

f(x, y) +
|x− x0|2 + |y − y0|2

2τ
≥ inf

x≤y
f2(x, y) +

|x− x0|2 + |y − y0|2
2τ

.

Thus to prove that the minimizers of (4.5) stay below the diagonal is suffi-
cient to prove that

inf
x≤y

f2(x, y) +
|x− x0|2 + |y − y0|2

2τ
> inf

x≥y
f1(x, y) +

|x− x0|2 + |y − y0|2
2τ

.

(4.6)
Let us compute the value of the infimum in the left hand side of the above
expression. It is immediate to verify that a minimizing point (x′, y′) for
the expression exists: either it lies in the set {x < y} or it lies along the
diagonal. Assume it is in {x < y}, then by explicit computation of ∇f2 we
would have

x′ − x0
τ

= −1−
√

y′ − x′

y′ − y0
τ

= −1 +
√

y′ − x′,
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putting z0 := x0 − y0 and z′ := x′ − y′, subtracting the two equalities above
and taking the squares we get

z′2 + z′(4τ2 − 2z0) + z20 = 0.

In order for this equation to admit a solution z′ it must hold

τ4 − z0τ
2 > 0,

which is impossible by the assumptions τ < c (because z0 = x0 − y0 > cτ >
τ2).
Thus the minimum of the LHS of (4.6) lies on the diagonal. It is then
obvious that it is given by (x′, y′) = (x0+y02 , x0+y02 ). Simple calculations
show that (4.6) is then equivalent to

x0 + y0 −
1

2
+

1

τ

(

x0 − y0
2

)2

>
x20

2(1 + τ)
+ y0 −

τ

2
,

which can be rewritten as

x20

(

1

4
− τ

2(1 + τ)

)

+ x0

(y0
2

− τ
)

+
y20
4

+
τ2

2
− τ

2
> 0,

which is always true for x0, y0, τ as in the hypothesis.

We conclude with the proof of Lemma 12.

Proof of Lemma 12 We will prove that there exists constants a, c > 0 such
that for every τ, x > 0 with τ < a it holds

e

(1 + τ)x
−
(

2− xτ
)

> cτ. (4.7)

We distinguish two casee: either x ≤ 1
τ or x ≥ 1

τ . Assume that x ≤ 1
τ and

observe that for g(τ) := (1 + τ)1/τ it holds

g(τ) = e− eτ + o(τ),

therefore for a > 0 sufficiently small and some c0 > 0 it holds

g(τ) < e− c0τ, ∀τ ≤ a,

which gives

e

(1 + τ)
1

τ

> 1 + c0
τ

(1 + τ)1/τ
> 1 + τ

c0
e

= 1 + τc1.

Now write x = 1
τ − y and observe that

e

(1 + τ)x
=

e

(1 + τ)1/τ
(1 + τ)y > (1 + τc1)(1 + τ)y

> (1 + τc1)(1 + yτ) > 1 + τy + τc1 = (2− xτ) + c1τ.
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Now assume that x ≤ 1
τ . Clearly it is sufficient to prove that

e

(1 + τ)x
−
(

2− xτ
)

>
e

(1 + τ)1/τ
− 1.

Put x = 1
τ + y to reduce the previous inequality to

e

(1 + τ)1/τ

(

1− 1

(1 + τ)y

)

< τy.

Recall that e < (1+τ)1+1/τ for every τ > 0 so that e
(1+τ)1/τ

< 1+τ . Plugging

this bound in the inequality above and making simple manipulations we
reduce our claim to

(1 + τ)1−y > 1 + τ(1− y),

which is true for any τ, y > 0. �

We thank E. Esselborn for a careful reading of the manuscript.

References

[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces
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