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1 Introduction

Interfacial models of phase transitions are a widely salitiigpic dating back to Lord
Rayleigh and Van der Waals and can be grouped into two magseta diffuse and
sharp interface models. Several models belonging to betltlisses have been suc-
cessfully used to describe the formation of a (diffuse orgheterface between the
solid and the liquid phase of a fluid undergoing a first ordexgghtransition. Thus a
very natural issue, which has proven to be challenging fdoin lnsathematicians and
material scientists, has arisen: to compare the main owsarhthe two approaches.
Roughly speaking, letting the thickness of the diffuseéiifasice bes, one is lead to
investigate, as vanishes (i.e., when the diffused interface becomes shahat hap-
pens to some of the relevant physical quantities descrilyettido diffuse model and
then to understand what is the relation between these cgeageed quantities and
their counterparts given by the sharp interface model. is paper we provide an
answer to this type of questions finding a relation, in theeadsa non homogeneous
and anisotropic material, between the limitzages to zero, of the chemical potential
of the system and the curvature of its sharp interface. Suga#ion is commonly
known as theGibbs-Thomson relationA complete answer to the same problem, in
the homogeneous and isotropic case, has been provided yawe and Modica in
[16].

Let @ ¢ RY be a given bounded open set representing the region occhpied
the physical system and let: 2 — R be an order parameter (it may indeed be a
physical parameter such as the density of mass of the miaiésigalues identifying
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the state of the system. Given < 3, the sets?, = {z € Q; u(x) = o} and
Q3 = {z € Q; u(xr) = B} correspond to the regions where theor the 5 phase
is present. When a phase transition occurs, the formatiartloifh interfacial layer of
smalle thickness separating the two pure bulk ph&3gsind(23 has been successfully
described as a result of the minimization of a Ginzburg-laantype free-energy (with
such a choice the model belongs to the so called gradientytidé@hase transitions).
Under the hypothesis of isotropy of the physical systemef@mryu € W?(Q), a
common choice for the free-energy*° of the system is

Fi%o(u) = /QszDuz—l—W(T, u) dx. (1.2)

HereW : [0,4+00) x R — [0,400), as a function of the order parameter, has a
double-well shape with wells imv and 3 wheneverT' is beneath a certain critical
temperaturél.. Thus, working in the range of temperatife< 7., and looking at
isothermal phenomena, one usually drops the dependenbe tentperature replacing
W (T, u) by W(u) in (1.1) and considers the problem of finding the equilibristates

of the system by minimizing’*® subject to a mean-type constraint arthat can

be regarded as a constraint of constant mass if we think @ the density of the
system. For any given proportion € («, 3) of the mass of two phases, the coarse
grained interfacial energy.’*° of the system is then obtained by solving the following
variational problem

Mm% = min {ngo(u); /Qu = m|Q} . (1.2)

The issue of the convergence, agoes to zero, ofn’*° to what can be considered
the interfacial energy of the system has been solved by Maalii Mortola in two
celebrated papers ([18], [19]). In particular they provieat t
: nga(u) N-1 150

F—ilin — = 20HY 7 (S(u)) =: F§*°(u),
whereS(u) denotes the jump set of the functiore BV (Q; {«, 5}) which parametrizes
the limiting interfacef = ff \/W (t) dt is a constant representing the surface tension
of the system an@("—! denotes thé N — 1)-dimensional (Hausdorff) surface mea-
sure. With such a result proved the authors were able to edadhat, ag — 0,
mi° — mb where

mi° = min {Féso(u); u € BV(Q; {a, 8}), / u= mQ|}
Q

and that, given,. — ug such that% — m?o — 0, theans"(uo) = mg.
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After this result was proved, an interesting issue to be estdrd was related to the
asymptotic behavior of the chemical potential of the systerthe limit ase — 0.
To introduce this problem let us suppaséo be a regular function minimizing (1.2).
Thenu solves the Euler-Lagrange equation

e2Au — W' (u) — N0 =0

where)*° is the Lagrange multiplier due to the volume constraint. Bndther hand
\iso represents the chemical potential of the system underiti@ngsee [15], [26]).
Concerning the asymptotic behavior of the chemical paés)tl uckhaus and Modica
in [16] gave a positive answer to a conjecture made by Gurtjd5]. They proved the
Gibbs-Thomson relation o

lim 2 = 2620

e—0 ¢

where)s° is the mean curvature of the interface.

The aim of this paper is to prove an analogous result in the gd®n non homo-
geneous anisotropic models are taken into account. FalpWaylor [25] (see also
[26]), the energyF " of such a model in the Van der Walls-Cahn-Hilliard theory is
given, for anyu € W1?(Q) by

Fo(u) = /Q e2f(x, Du) + W (u) d, (1.3)

the hypotheses ori and W depending on the specific physical system one wants
to model. In the present paper, to exploit the standard ndetficCahn-Hoffman
vector fields (see [11],[26]) we restrict ourselves to theecwhenf € C?(Q x
(RM); [0, 4+00)) satisfies standard growth condition of order 2 with respect and

is such that,/f is a strictly convex Finsler norm. Moreover we will suppobatt

W e C3(R; [0, +00)) is a double well potential with wells i and3 and that it satis-
fiesp > 2 standard growth conditions (see Remark 3.4). In thisrgettie equilibrium
state of the system can be found by minimizing

man = min{Fg"(u); /Qu:mQ|}. (1.4)

with m € («, ). It has been proved by Bouchitté in [9] (see also [5]) that

I- lim 20 _ / Vi@v(z)dHN Tt = F§™(u),
S(uw)

e—0 15

wherev is the measure theoretic inner normaltu). Analogously to the isotropic
casem?" — mg" where

m&" = min {Fg”(u); u € BV(Q;{a, 5}), /Qu = mﬂl} -
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™ (u,

Moreover, givenu. — ug such thathaT) —m?" — 0, thenup € BV(Q; {e, 5}),
Jo uo = m|Q] andF§™ (ug) = mo. The Euler-Lagrange equation, for a regulanow
can be written as

2 div fe(x, Vu) — W (u) — A" =0

and the analog of the Gurtin’s conjecture in this case canhbased by saying that
the scaled chemical potentiaﬂ%ﬁ converge, up to a multiplicative constant, to the non
homogeneous and anisotropic curvature of the limit interfass goes to 0.

This problem has been addressed by several authors aral pestilts are known in
the homogeneous case (see [17], [26] and references thehastead, we prove this
generalized version of the Gurtin’s conjecture in the nombgeneous and anisotropic
setting. To this end we follow the main steps of the proof bgkhaus and Modica.
However we point out that, working in the framework of Fimsteetrics, we cannot
take advantage of the linearity of the Euler-Lagrange eguoats in the isotropic case
and instead our analysis relies on more abstract propeartidee minimizers of the
problem (1.4) as well as on some results in geometric medkaogy. In particular,
among the difficulties that we have to overcome, we need tergdine the statement
of the Reshetnyak continuity theorem (see [22]) to the Einsbtting. We also remark
that our statement is different from the statement of thenmasult in [16]. On one
hand, we do not need to assumelah bound on the sequence of minimizers of (1.4),
on the other hand we do not assume the boundedness of thenseqfechemical
potentialsA?™ since, by supposing higher regularity bf (see Remark 3.4), we are
able to prove it by adapting a result by X. Chenin [12].

As a final comment we remark that, as the result by Luckhaudvamttica suggests
the validity of the conjecture that De Giorgi stated in [1L8Hahat has been proved (in
a modified form) in [23] in dimensio&V < 3 and independently in [21] in dimension
N = 2, our main result suggests the validity of the same conjeétuthe anisotropic
setting. However, we would stress the fact that it is not ibdesgo attack such a
problem by exploiting the same arguments present in theiqursly quoted papers
since some of the key ingredients (e.g., a monotonicity tdanfor the energy density
(see [21] Theorem 3.12)) of the proofs are not yet availabteeé Finsler setting.

The paper is organized as follows: in Section 2 we brieflyaenthe definition and
the main properties of Finsler metrics and of anisotropitnpeters needed to set up
our problem. Section 3 is then devoted to the proof of our mesuilt.
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Cicalese was partially supported by the European Researahdt under FP7, Ad-
vanced Grant n. 226234 “Analytic Techniques for Geometnit Bunctional Inequal-
ities”. The work by Yuko Nagase was supported by “Progettadfas, Universita di
Napoli Federico Il and Compagnia di S. Paolo".
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2 Notation and preliminaries

LetQ ¢ RY be a bounded open set with Lipschitz boundary. Giilea R”, we will
write E € C2(RY) if E is a bounded open subset®f' of classC2. Moreover we
will denote byvg the inner unit normal vector field to its bounddty. For any given
a,b € RN we denote by: - b anda ® b the scalar and the tensor product between
andb, respectively, and bju| the norm ofa. We denote bys™V 1 the unit sphere in
RY. We also denote by a positive constant which may vary from line to line.

In the following section we introduce the Finsler settinge Y&fer the reader to [8]
and the references therein for details.

2.1 Finsler Metrics

Let¢ : Q x RN — [0, 4+00) be a continuous function satisfying the following proper-
ties:

o(x,t8) = |t|op(x, &) , zeQ,eRY, teR; (2.1)

Al < o, 8) < Alg], reQ, EeRY. (2.2)

We say thatp is strictly convex if for anyz € Q the map¢ +— ¢?(x, &) is strictly
convex onR™. We denote by° : Q x RY — [0, +00) the dual function ofs defined
as

o * 5* ) 5 Nl}
x, =su ; £ 8
o) = {5 s ¢
for anyz € Q and¢* € RV,
We say thaip is astrictly convex smooth Finsler norrand we writep € N(92),
if in addition to properties (2.1) and (2.2, and ¢° are strictly convex and of class
C2%(Q2 x (RN \ {0})). The following two sets

By(x) = {§eR"¢(z,§) <1},
Byo(x) = {&" eR"¢%(z,8") <1}

will be, as usual, referred to &8ulff shapeandFrank diagram respectively.
We recall that thep-vectorv,(z) and theCahn-Hoffman vecton,(z), associated
to a unit vector € SN-1, are defined as
1%
vy(r) = ——— and ngy(z) = ¢2(x,vy).
6(7) (w0 o(x) = d¢(x,vp)
By the elementary properties of Finsler norms it holds tfwatanyz € 2 and¢, £ €
R\ {0},
d(z, d¢-(2,£7)) = ¢°(z, ¢¢(2,§)) = L. (2.3)
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As a consequence of (2.3), for amye Q it holds thatv,(z) € 0By(x), ng(x) €
0By (x) and
vg(x) - ng(z) =1 (2.4)

Let E € C2(RY) and, for anyz € OF, letv(z) be the unit inner normal toE at
x. For a givenC? vector fieldX : 9E — RY we denote bylivy X the ¢-tangential
divergenceof X ondF defined as

divy X = tr [(Id —ng @ vg)VX + ¢2(x,v4) @ )2} ,

whereX is any smooth extension of to a neighborhood opE.

Extending to a neighborhood ofF the vector fields/, andn, by regular fields
while keeping the same notation, we are in a position to defieeé-mean curvature
kg Of OF as

H¢ = — diV¢ n¢ .

Differentiating¢°(z, v4) = ¢(z,ns) = 1 with respect tac; and exploiting (2.4) one
obtains that the following relations hold &/F:

62 (x 1/¢)—|—nj6y¢:0 i=1...,N (2.5)
x; 9 ¢6‘x, 9 9 9 9
G, (@ n¢)+yj%:0 i=1,...,N (2.6)
i ) ¢8xz ) 9 ) 9
;o ,
n¢8w¢+y¢6‘xi:0’ i=1...,N. (2.7)

In the proof of our main result we will apply the following gemalization of the
divergence theorem on manifolds in the Finsler setting wipoeof is a consequence of
the integral representation formula for the first variatibithe ¢-anisotropic perimeter
(defined in (2.8)) in terms of th@-mean curvature (see (2.3) and (3.2) in [6]).

Theorem 2.1.Let E € CARY). LetU < R¥ be a neighborhood ofE andg €
C3(U;RYN). Then

/ KV - g ¢°(x,v) dHN 1 = —/ divg g ¢°(x,v) dHNL
oF oF

2.2 BV -functions and anisotropic perimeters

In this section we recall the basic definitions B% functions (for more details on
the subject we refer the reader to [3]) and then introducentition of anisotropic
perimeter. We end the section by recalling some well knovaulte in geometric
measure theory that will be used in the proof of our main tesul
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Given a vector-valued measureon 2, we denote byju| its total variation and
we adopt the notatioiM (£2) for the set of all signed measures @nwith bounded
total variation. The Lebesgue measure of alses denoted by E|. The Hausdorff
(N — 1)-dimensional measure d&" is denoted by~ 1.

We recall thatu € L(Q2) belongs to the spacBV (Q) of functions of bounded
variation if its distributional derivative®;u belong toM(€2). We denote byDu the
R¥-valued measure whose componentsiaye, . .. , D,u.

We say that a sekF is of finite perimeteiin ) if its characteristic functiony g €
BV () and we denote by’(E) = |Dxg|(£2) the perimeterof E in Q. The family
of sets of finite perimeter can be identified with the funcsiore BV (Q2; {0, 1}). For
such functionsDu can be represented as

Du(B) = / vy dHN 1
S(u)NB

for every Borel seB C (2, whereS(u) denotes the complement of the set of Lebesgue
points ofu andv, € RY is the measure theoretic inner normalSt@:). It holds that
for B = {z; u(x) =1}

P(E) = |Dul(Q) = HN71(S(u) N Q).
The following proposition is a particular case of the chaife formula inBV (Q2).

Proposition 2.2.Leta < 3, leth : R — R be aC* function and let: € BV (Q; {«, 5}).
Then

Dh(u) = (h(8) — h(e)vu " 5.

We now recall the definitions and some properties of the #moigiz total variation
for BV-functions and introduce the anisotropic perimeter (fotHer details we refer
the reader to [2]). Let. € BV(Q) and¢ € N (£2). We define thenisotropic¢-total
variation of Du as

|Duly(£2) = sup {/Qu divodr; o € C3(SURY) ) o(z) € B¢(z)} .

We observe that by the hypothesesgowe can deduce from Theorem 5.1 in [2] that
the ¢-total variation isL($2)-lower semicontinuous and admits the following integral
representation

Du¢(Q):/Q¢°(J:,uu)d|Du| ., VueBV(Q).

Note that if¢(x, &) = |¢| then thep-total variation| Du|,(£2) agrees with Du|(€2).
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We now recall the definition and some properties of anisatrpprimeters. We
will follow the notation of [7]. LetE ¢ RY be a set of finite perimeter if? and let
¢ € N(Q), we define thes-anisotropic perimeteof F in ) as

PoB) = [ ¢ (av(e) an 28)

whered'E is the reduced boundary & andv is the measure theoretic unit inner nor-
mal toOFE. We observe that the-total variation ofy ; agrees with the-anisotropic
perimeter ofF in ©, that is,

Py(E) = |DxEls(S2).

We warn the reader that the definition of theanisotropic perimeter is sometimes
given with¢ in place ofg°.

We now state two useful propositions from geometric meathaery that we will
use in the proof of our main result. Their proofs can be foumdl0] and in [4],
respectively. In the sequel we will denote By Q2) the class of open subsets Qf
Moreover we recall that a Radon space is a topological spade that every finite
Borel measure is inner regular.

Proposition 2.3 (supremum of a family of measuregpt i : A(Q) — [0,+c0) be
superadditive on open sets with disjoint compact closuets, be a positive measure,
{4;}: be positive Borel functions such that

mm>Aww

for all open setd C Q.
Then for all open setl C €2 we have

1(A) z/Asupwi(l“) dA.

Theorem 2.4(disintegration of a measurd)et X, Y be Radon separable metric spaces,
p € P(X), letr: X — Y be aBorel map and lex = m;u € P(Y'). Then there exist
a A-a.e. uniquely determined Borel family of probability me@s{ ., },cy C P(X)
such that

py(X \ 7 1(y)) =0 for \-aeycY

Aﬂ@wm:4<ﬁwfmwm0w@

for every Borel magf : X — [0, +o0].

and
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3 The Gibbs-Thomson relation

In this section we briefly review the gradient theory of nomiogeneous and anisotropic
phase transitions in order to present the Gibbs-Thomsatiorland state our main
result. We warn the reader that, in what follows, we have niheehoice of not pre-
senting some well known results, due to other authors, iin thiégenerality. Instead,
we will state them under more strong hypotheses which bastditr setting.

In the physical literature several theories are availablembdel the formation of
transition layers between the pure phases of a system whidbérgoes a phase tran-
sition. Among them the Van der Waals-Cahn-Hillard gradignatory is suitable to
introduce, in a rigorous mathematical way, the so callearse-grained chemical po-
tential and to state th&ibbs-Thomsonrelation.

Leta < 3 and letug € BV(Q; {a, 3}) be an order parameter of a physical system
which is subject to the volume constraifyf uo dz = m|<2| for somem € («, 3) and
that is undergoing a first order phase transition betweepliasesy and. In what
follows we setQ), := {z € Q; up(z) = a} andQg := {z € Q; ug(z) = F} and we
agree to identify the “interface” of transition of the systevith the jump sef5(ug) of
ug that is the reduced boundary of the et

In the Van der Waals-Cahn-Hilliard theory the sharp inteef&(uo) is replaced by
a diffused interface. This can be seen, for a giver & < 252 as the sefz €
Q; ue(x) € (a4 0,0 —0)}, where, ag varies,u, is the order parameter of a family
of equilibrium states for the physical system and minimittesfollowing Ginzburg-
Landau type energy

E(u) = /Qazf(x,Du) + W(u) dx,

subject to the volume constraint
1
(u)g = — / udr =m, (3.1)
€] Jao

for somef : Q@ x RY — [0, +-c0) two homogeneous in the gradient variable and some
double-well potentialV : R — [0, +o0) vanishing only inoc and 3. By assuming
suitable regularity and growth hypothesesfoand1V, a first goal of this theory is to
prove that the thickness of the diffused interface is of pedend that it converges to
S(ug) ase — 0.

In this framework, by looking at. as the density of mass of the system, the chem-
ical potential)\. of the state identified by. is defined as the variation of the internal
energy with respect to the mass. Thus it is the Lagrange plighiassociated to the
minimization of £, subject to the constraint (3.1). SupposifigiV andu. enough
regular, one can write the Euler-Lagrange equation for suptoblem to find that:.
solves

Ae = e2div fe(z, Dug) — W (ue). (3.2)



10 Marco Cicalese, Yuko Nagase and Giovanni Pisante

By recalling that theGibbs-Thomsomelation for a thermodynamic system with two
phases states that the chemical potential is proportioriaktcurvature of the interface
between the phases, we obtain that, in our framework, suetation is proved if we
show that, up to a multiplicative constar{g converges, as goes to 0, to the (non
homogeneous and anisotropic) curvature of the limit iagef To rigorously prove
such a result is the goal of the present section. We notidethibgoroblem has been
considered by several authors. In particular Luckhaus aadid4 in [16] solved the
problem in the homogeneous and isotropic case wiiére¢) = [£|? thus proving a
conjecture by Gurtin (see [15]). Partial answers to thidfmm have been provided
by Braun, Coriell, McFadden, Sekerka and Wheeler in [L7hmd¢ase: < 3 and f
homogeneous. Even under these restrictions the authossndo@rovide a complete
proof of the result since their argument relies on a formghgsotic expansion of the
equation (3.2).

In what follows, givena < 3, f : @ x RN — [0,4+00) a function of clasg?
andW : R — [0, +oc) a function of clasg”®, we will consider the following set of
hypotheses oyf andV:

1) f(z,-) is positively 2-homogeneous and strictly convex for everg ,

( c1/€)? < f(x,€) < cl€)? for everyz € Q and¢ € RY,
with 0 < ¢1 < cp. We note that in this hypothesgsf = ¢° for somegp € N'(Q).

{teR; W(t) =0} = {e, 3},

(H2)
ca(JtP — 1) < W) < (|t +1), VteR

with p > 2 and 0< ¢3 < ¢4.
Fore > 0 andm € («, 3) we introduce a conveniently scaled version of the func-
tionals&. by defining the functional&. : L(Q) — [0, +oo] as

/Q <6f(w7Du) + @) dr  if ue WH2(Q), (u)q =m,

+o00 otherwise

The followingI'-convergence result has been proved (under more mild hgpe#) in
[9] (see also [5]). We state it in a form that is suitable for purposes.

Theorem 3.1.Let f and W satisfy(H1) and (H2) respectively and leE. be as in
(3.3). ThenE. I'-converges, with respect to the'(2)-topology, to the functional
Eo: LY() — [0, +00], defined as

_ 20Py({x € Q: u(x) =a}) if ueBV(Q{a,p}), (Wo=m
Fo(w) +00 otherwise
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wheref = ff VW (t)dt, with ¢° = \/f.

Corollary 3.2. Let {¢,,} be a sequence of positive real numbers converging to zero.
Foranym € (a, 3) andp > 2letu., € W12(Q) be a solution of the problem

Mg, = min {/Q (672Lf(3(:,Du) + W(u)) dz ; /Qudm = m|Q} . (3.4)

Then upon extracting a subsequence (not relabelled),— uo € BV(Q; {a, 5}) in
LY(). Moreover(,, is a solution of
g—m

mo=nin{ P(B); 181 = T=2ja}.

with ¢° = /f.
We now state our main result.

Theorem 3.3.Let f satisfy hypothese@Z1) and W : R — [0, 00) be of classC®
satisfying(H2) with W (a) ,W"(3) > ¢o > 0. Let{u., } andug be as in Corollary
3.2 and)\.,, be as in(3.2). Suppose th&,, € Cf(]RN), then, up to subsequences (not

relabeled),

I &_ 20
nggo En _ﬁ—a 0

wheref = ff W (t)dt and \g is the ¢-anisotropic curvature of2 N 9*Q,, being
VI =¢°

Before proving our result we make some comments on our hggeth

Remark 3.4 (regularity hypotheses ofi and V). We observe that the case of a less
regular f, for instance such thay/f is a crystalline norm, would be of great inter-
est. Unfortunately in this case the approach due to Cahn affindnn (see [11]),
as we use in the present paper, cannot be exploited (the Batfimann vector field

is not even uniquely defined in the crystalline case). We als®rve that all the as-
sumptions ori¥ but (H1) are required only in order to prove the boundedné&#seo
sequence{%}. For this reason they could be removed if the previous semeould

be assumed to be a priori bounded as in [16].

Remark 3.5 (regularity hypotheses ai,). The hypothesis on the regularity f, is
needed to apply Theorem 2.1. We remark that this hypothesise dropped in the
homogeneous case in dimensior< 7. Indeed in this case it is possible to exploit the
standard regularity theory for Almgren’s elliptic parameintegrals (see [1], [24] and
also [20] Chapter 12).
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Proof of Theorem 3.3Vithout loss of generality we take = —1 andg = 1. More-
over, for simplicity of notation we drop the dependencendn the sequences and we

set
=25 (@) = ef(e, Ducla)) + D)
e (z) = ef(z, Dus(z)) — w.
We also note that, by the hypothesesfothere existg € N(2) such that/f = ¢°,
moreover sincéu. } is @ minimizing sequence, there exists a constdrguch that for

anye € (0,1)
/Qei(m) de < M. (3.5

The proof is divided in four steps.

Step 1 (discrepancy and curvature terrBy)Lemma 3.6, upon extracting a subse-
guence (not relabeled) @ }, there existdy = lim._ol.. Our next aim is to identify
lo. By adding and subtracting, e f (z, Du.) dz in equation (3.17), we get that, for
anyg € C3(Q;RY),

—/lEu‘S divg dx = —/ <€f(x,Du5) - M) divg dx
Q Q €

Ae

—|—/ 2e f(x, Due) divg — efe;(x, Due)gj + efe, (2, Duc) Dju.D;g; de .
Q

(3.6)

B

The termA. = [, e (z) dx is usually referred to as thiiscrepancy terrwhile the
term B, is referred to as theurvature term

We now recall thati. — ug in L1(Q) and thatug € BV(2; {—1,1}) by Corollary
3.2. Thus taking the limit as — 0 in the left hand side of (3.6), we get

lim (lg/ugdivgdx) :lo/uodivgdm:2l0/ v-gdHNT1
e—0 Q Q QNI
= 2l0/ Vg g ¢°(,v)dH N,
QNON.
wherev(x) : 0, — SN-1is the outer unit normal t6S2,. It remains to study the

limit ase — 0 of A. andB.. This will be our purpose in the next steps of the proof.

Step 2 (re-parametrization ef.) In this step we use a standard strategy (see [16]) to
re-parametrize. using a primitive ofy’ W and we then prove a key convergence result
for the ¢°-total variations of the re-parametrizations. We set

o(s) = /Sl VW (t)dt
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and we define.(z) = ¢(uc(z)). It holds that

Dve = ¢'(uz)Due = /W (ue) Due.

The family {v.} is uniformly bounded iBV (). Indeed, by exploiting the classical
Modica-Mortola’s trick we have that

1 Du,|?
/ |Dv.|dx < —/ el Du| + W (ue) dx < c/ el dxr < cM. (3.7)
0 2 )a 2 € 0

By the compactness theoremBV (see [3]), there existsy € BV (Q2) such that, up
to subsequences,

lim [ |v. —wvo|dx =0 and / | Dvg| < liminf/ |Dvg| .
e—0 Jq Q e—=0 Jo

Let us denote by ! the inverse function op. By the previous convergence results
we easily deduce that

ug = gp_l(vo).
Thanks to the chain rule formula f&V- functions (see Proposition 2.2) we can also
explicitly computeDuvy.

Do = D(p(u0)) = (#(1) — o(— 1) o HY ™ s ug)

1
- /1 W(s)ds VUOHN_l‘S(Uo) = QVUOHN_1|S(UO)'

We claim that thep-total variation of Dv. converges as — 0 to the ¢-anisotropic
perimeter of the jump set afy, that is

. N-1 _
l% (z, Dv.) do = /deﬂa \/ f(z,vy,) dH = 0Py(Qq). (3.9)

The claim is a consequence of Theorem 3.1 and of a densitynangfu Indeed, first
we note that by the homogeneity assumptiong’ @md by Theorem 3.1 we have

limsup/Q V f(z, Dvs)dx = lirns(t)lp/Q V. f (@, Duo)/W (uz) da

5—>0

(3.8)

1
<=z hmsup/ ef(x, Dug) + Wiue) dz (3.10)
2 e—0 Q g
1
= limsup E.(u:) = 0Py(Q0).
2 e—0

In order to obtain théim inf inequality we start by observing that, singe — wvg in
BV(Q), by Reshetnyak lower semicontinuity theorem (see for exapeorem 2.38
in [3]), we have

/|Dv0|¢:/ f<x,ﬂ> d| Duy| <liminf/ V@, Dvo)de.  (3.11)
Q Q | Dol =0 Jg
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Moreover, for anyt € SV~ by the defnition of dual norm and by (3.8) (again using
the notationy° = /f), we can write

° D’Uo) / 1 D’UO ‘
x, d|Dvg| > - (| d|Dwv
L (= ) @4l = [ 50 [z ¢| diPwo

g - ¢| dHN

(3.12)

=0 /QﬂaQa ¢(z, ()

Let now {¢; };en be a dense subset 6V~ From (3.12), applying Proposition 2.3

with A = MY a0, w(A4) = Jo, 67 (2, (2) dlDvol andui = 0 xo, 57255 o - G,
we obtain

xr,—— | d|Dvg| > 6 | su Vo - G| dH
/Q¢ ( |Dv0| ‘ 0‘ Q zelg QZ)(‘T gz) | 0 ‘G ‘

= 9/ ¢°(, vyy) dHN 7L,
QNN

The previous inequality, togheter with (3.10) and (3.1Dwverthe claim.

Step 3 (negligibility of the discrepancy terie now prove that the discrepancy term
vanishes as goes to 0. By using a simple algebraic argument (see Lemm#l6jn
the claim will follow directly by formula (3.9).

Seta. = \/ef(x, Du.) andb, = \/%. Formula (3.9) reads as

lim [ acbe de = 0Py(20).

e—0 Jo

Moreover, again by Theorem 3.1, we also have that
lim [ a?+b2de = lim E.(u.) = 20P4(Q0).
e—0 /o e—0

By the previous relations we get the claim noticing that
lim [ (a. —b.)?dz = lim </ a? 4+ b2 dx — 2/ a5b5> dz =0
e—0 Jq e—0 Q Q

which turns out to imply, by the energy estimate,

0< liHcl) la? — b?| dx = lim/ |(ac + bs)(ae — be)| dx
£— QO —0

<hm</ |a? a€b|dm+/|a€€ b|dm>

< ¢M lim ( —b.)? =

e—0



The Gibbs-Thomson relation 15

Step 4 (convergence of the curvature tetm}his last step we analyze the limit be-
haviour of B, ase goes to 0. We claim that

lim B, = —29/ V-gKg dHN L,
e—0 QNAQ

where we have denoted by wherér) : 99, — SV~1is the outer unit normal to
09),. To prove the claim we start by noticing that from the energyneate (3.5), we
can deduce that

0= lim/ lef(x, Duz) — v/ f(x, Duc)/W (uz)| dz
e—0 /o
=lim [ |ef(z, Dus) — /f(x, Dv:)| dx.

e—0Jo

(3.13)

We now use the homogeneity ¢fto rewrite B. as
B. = / 2: f(x, Dug)H(x, Du.) dz,
Q

where we have set

1fe@o ¢ PACRY)
2\/f(x,&)  Vf(@9 T 2f(.¢)

LetQ. .= {x € @ : |Dv.s # 0}. By the boundedness of the functiéh, the

equ.’;\lityu’g’u“;| = |£U“j on (. and by using (3.13) we have

) D

Xg| -

H(z,&) =tr l(ld—

B
lim — = lim [ ef(z, Duc)H (z, Du.)dx = hm \/ (z, Dve)H (x, Dve) d

e—0 2 e—0 Jqo

_ o Do, ) Do, R ( Do, > ]
= lim [tr [(Id— T, ® Dg + ® gl d|Dv
50 o |:( ¢§ ( ‘D’U5|¢ ‘D’UE‘¢) g ¢:$ |D 6‘ g ‘ E|¢
where we recall thap® = /f. We are now in a position to apply Lemma 3.7, (3.8)
and Theorem 2.1 to conclude that

lim B, = 2/ tr [(Id —¢¢ (2, v) ® vy)Dg + ¢ (x,v4) @ g| d|Duo|y
QMo

E—)O

= 29/ tr [(Id —ng @ vg)Dg + ¢2(z,v4) @ g] ¢°(x,v) dHN
QNoN

= 29/ divg g ¢°(z,v) dHN 7t = —29/ Vg kg dHN L,
QNoN QNONa

O
The following Lemma is obtained adapting an argument by XerCin [12] to the
Finsler setting. Note that, unlike Chen'’s result, here weeha deal with Dirichlet
instead of Neumann boundary conditions.
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Lemma 3.6.Let f satisfy hypotheseg71) and W : R — [0, 00) be of classC®

satisfying(H2) with W” (a), W"(3) > co > 0. Let{u,, } be as in Corollary 3.2 and
Men

A, be asin(3.2). Then the sequene[e;} is bounded.

Proof. For simplicity of notation, we drop the dependencenon the sequences and
we setl, = —%. We observe that, since. is a minimizer for (3.4), it satisfies the
elliptic equation

!/
I = —ediv fe(x, Du.) + 2 (ue) (3.14)
g

and it has constant mean valuefin
1
(uc)o = —/ usdr=m € (=1,1). (3.15)
Q| Jo

We observe that (3.5) implies thét. } is uniformly bounded in.?(©2) and more-
over, by the hypotheses 6i7, we can easily deduce that

/ (|uc| — 1)? dz < cMe (3.16)
Q

Following an argument by Chen (see the proof of Lemma 3.4 #j)[lusing a
smoothing procedure and the elliptic regularity theorye @an infer from (3.14),
(3.15) and (3.5) the boundedness{af}.c(o,1). To this aim we write the weak form

of (3.14) using as a test functign= g - Du., whereg € C3(Q; RY). Integrating by
parts we have

!
- [ tenedivgde = [ st Duey Do+ V0D
Q Q -
=— / eS (z)divgdr — / efe(x, Du.) - gdx (3.17)
& Q
+/ tr[(e fe(x, Duc) ® Du.)Dgl dx.
Q

By choosingg = D1 for a suitabley € C?(Q) in (3.17) we get

le /Q Ay u. dr = /Q tr[D?y (e (ue) Id —¢ fe(z, Du.) ® Du.)]

+efy(x, Duc) - DY dx.

(3.18)

Setting
Il = / A ue dx
Q

and

I = / tr[D? (Id €%, (2) — e fe(w, Du.) ® Due)] + e fo(x, Due) - Dip da
Q
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we can write

I’
I
and the proof will follow once we find an upper-bound 8t and a lower-bound
for I/ uniformly w.r.t. . The desired bounds will be obtained choosing carefully
the functiony. Let p, be a standard family of mollifiers and consider, for< 7y,
ud = py * u. € C*°(Q) then-regularization of... Here we have assumed thathas
been extended by reflection to thgneighborhood of?

le

{z e RY; dist(x, Q) < no}.
LetQ cc ©Q and lety be the unique solution of the Dirichlet problem

{—A& =ul - (ul)g InQ,

=0 onox.

By classical regularity results (cfr.[14] Theorem 6.14) € sza(ﬁ). Let ¢ be a
smooth extension af in R with compact support i’ with 2 c ' C Q (see [14]
Lemma 6.37). We observe that, by the definitionuéfand by (3.16), the following
estimate holds:

[ullc) < H/ p1(y)ue(z — ny) dy
By c(Q)

<1+ sup / 1) | Jue(e — )| — 1] dy
e By

_N
2

_N 1
<l+enp 2 H|UE| - lHLZ(Q) <1+ce2n

A similar computation gives

N
2

_ 1
[ull|cray < en A +e2n”2).
By classical elliptic estimates we also have that
%

).

The previous estimates together with assumption (H1) ark) ®@ply the following
estimate forl:

_ 1
¥l cegy < cllullleyoy < en (1 +e2n

Du Du
T < € Du-1?lt € cld
fc”w”cm/ge*(x)“ uelrlfe ( Du5|> Du) ¥
+ el lloso / cADuP g (2 2% da (3.19)
() Q 7|D’U,€

N
2

<cKWlloxe) | €& (a)da < KMy AL+ by ¥)
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where

K= sup {|f£ (xag)‘—"_‘fm (1‘,5”}

(z,£)eQxSN-1

Concerningl/, we first observe that it can be conveniently rewritten as

I :/~(ug — (u)g)ue dx + AYu.de
Q oN\Q

:/~(ug — U )ue dx + /ﬁ(u? —1)dz + 19 (l - (u&%) (3.20)

Q

+ 10 (ue)g((ue)g — (WD)g) + | At ue da,
Q\Q

In order to estimate the different terms in (3.20) we set

b(s ::/ W (t)dt with W (t) = min{W (t),1+ |¢|?

(s) 71\/ (t) (t) W) |t}

and we note that, by the assumptionsi@nthere exists a constants> 0 such that
clst— 522 < |¢(s1) — p(s2)] , Vs1,82 €R. (3.21)

Moreover, foro. = ¢(u.) we have, as in (3.7), that
/ |V |de < eM.
Q

From the previous inequality, the definition«f and (3.21) we infer that

IVu?|l 20y < en el 2y < en™t

and that
/ u? — e de < / / 1) lue( — ny) — ue(w) Pdy de
Q QJB;

: C/Q /Bl p1(Y)|0e(z — ny) — 0e ()| dy dx (3.22)

< enl|Vie| paq) < eMn.

We can now deduce from (3.22) that

/~(ug—u€)u€dm> —/~ug—u€||u€dx
Q

a (3.23)

n 1
> —llud = uell (o) lue | L2y = —cn?
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and, by (3.16), that

[t [0+
¢ “ (3.24)

1
2

> —clue = 1 ey (el 2y +1) = —eet.

We now choosé? such that/(u: )| < ¢ < 1 which turns out to imply, foe small
enough, that
~ ~ 1
[ (ue)g ((ue)g — (ud)g) = —clQ lue — w120y = —en? (3.25)
and that N N
9] (1- ()2) = el (3.26)

Indeed, by Rellich Theoremu. } is precompact ir.? (©2) and then, up to extracting
a subsequence, we have that
Q 1 Q 1
(ue)g = ‘ | —(ug)o — = _Uugdr = | ‘ _uedx
o] € Jon2 2" 9l Joa

Thus, sincen < 1, we may choos@ sufficiently big in order to have that

el

‘(UE)Q| [|u EHZ*‘Q\Q“Z*),
\QI \QI ( )
e 1 e
‘Q|m+‘~|c\Q\Q|( V< e< 1,

that, in turn, implies (3.25) and (3.26). It remains to obsdhat, choosing’ such
that|Q’ \ Q|7 < 72, we have that

Ay usde
Q\Q

Iy ook
< Q/\ﬁ HwHCZ(QﬂUe‘ dx < C”w”Cz(Q)HueHZ,Q‘Q \Q‘Z

1 N
<en(l4ezn7)
and we can conclude, combining (3.20),(3.23),(3.24)4Bahd (3.26), that

N
2

I'>1Q(1—m?) —clez +n2) —en M1 +e2n 7). (3.27)

Gathering together (3.27) and (3.19) it follows that

N

1
cKMn=Y(1+¢e2n2)
Qe — c(e? +192) — en(1+e2n~ %)

le| <

which implies the desired estimate for a sufficiently smatidependent of. =
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The following result is a version of the Reshetnyak contintieorem (see [22] and
also [16]) in the Finsler setting.

Lemma 3.7.LetQ C RY be a bounded open set. Lethe a strictly convex Finsler
norm and{v. } be a family of functions of clags!(Q) and letvg € BV (£2). Assume
thatv. converges tap in BV(£2) and that

lincl] ¢(x, Dve) dx = [Dug|e(2). (3.28)
£— (9]

Then for any functior' (x, p) € C(£2 x R™) satisfying
F(x,tp) =tF(z,p) for z€Q, peR" t>0 (3.29)

and
F(z,p)=0 for z¢ K, peR" (3.30)

with K is a fixed compact subset @f we have

v
lim | F(x, Dv dm:/F <x,¢> d| Dol -
=—0Jq ( e) Q O(, vy) Dol

Proof. Letf. : Q@ — {(z,p); x € Q, p € IBy(x)} be defined by

R

and let us consider the family of measufgs= (6.);|Dv.|4. By the definition ofy.,
forany f € C.(Q x RY)

/QxRN f(z,p)du. = /Qf (x %) o(z, Dv.(x)) da. (3.31)

Analogously let us consider the functidg : Q@ — {(z,p); z € Q, p € 0By(x)}

defined as
1 Z
Oo(z) = | =, %
ol) ( ¢(x,uvo)>

and the measurgy = (6o);|Dvols. We therefore have that for anfye C.(Q x RY)

/ f(.p) dpso = / f (2, 11y) d|Duol. (3.32)
QxRN Q

By the regularity off” and by (3.30) we have that (3.31) and (3.32) holdffee F'.
Thus, taking into account (3.29), the claim follows by praythaty,. — /.
Since

Ny = x, Du.(2)) dx
(2 x R )—/qu( , Dve(z)) da
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e 1S uniformly bounded by (3.28). Then, up to subsequencesakly star converges
to a Radon measuye It remains to prove that = puo.

Applying Theorem 2.4 with” = Q, X = |, .o ({2} x 0By(x)), 7(x,y) = x, for
everyz € Q) there exist a probability measukg supported o{z} x 0By (z), (that we
will simply identify by 9B4(x)) such that, for every Borel functiofi: X — [0, 400,

/ F(,p) du = / / F(,p) dAo(p) deo(z) (3.33)
QxRN 0 JoB,(z)

wherew = myu. Thus itis left to prove that = |Duvg|y and thath, = ¢ ((ﬁ(”i’&)

T;vug (7))

Let us consideh € C.(Q;RY). Using f(x,p) = h(zx) - pin (3.33), we have

/QxRN h(fv)-pdu=/gh(l“)-/aBm)de(p) dw(z). (3.34)

By weak star convergence and by the hypotheses we get

/ h(z) - pdup =lim h(z) - pdue.
QxRN =0 JaxrN
. Dv.(x)
=lim [ h(x)  ————F——d|Dv. (3.35)
c—0 Jq (z) é(x, Due(x)) | o
=lim [ h(x): Dve(z)dx = / h(z) - d Dvop(x)
e—0 Jq Q

By (3.34) and (3.35) we deduce that

(/ pd)\x(p)> dw(x) = dDwvp(x)
0By (x)

which gives|Dwg|, << w. Thus there exists @-measurable function : O — R
such thaf Dvgl|s = yw and that, fow-a.e.x € €, it holds

_ Vvo(x) -
/(QB(b(w)pd)\x(p) - d)(l‘,llvo(x))r)/( )

¢ (a: / pc%(p)) =7(). (3.36)
9By (x)
By (3.28) we finally have

/Q (/83 ($)¢(Ji,p)d)\x(p)> dw(z) = p(Q x RY) = gig(l)ue(ﬂ x RV)

and then

:lim/ d|Dv€|¢:/ d| Dol (3.37)
e—0 /o Q

= /Q y(x) dw(z) = /Q ¢ (x /a B¢(m)pdAx(p)> dw(z).
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By gathering together (3.36) and (3.37) we have

¢ (x’/83¢(x)pd/\x(p)> = /(3B¢(z) o(z,p)dAz(p)

which, by the strict convexity af, implies\, = & (”“07@))

B (w10 ()
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