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1 Introduction

Interfacial models of phase transitions are a widely studied topic dating back to Lord
Rayleigh and Van der Waals and can be grouped into two main classes: diffuse and
sharp interface models. Several models belonging to both the classes have been suc-
cessfully used to describe the formation of a (diffuse or sharp) interface between the
solid and the liquid phase of a fluid undergoing a first order phase transition. Thus a
very natural issue, which has proven to be challenging for both mathematicians and
material scientists, has arisen: to compare the main outcomes of the two approaches.
Roughly speaking, letting the thickness of the diffused interface beε, one is lead to
investigate, asε vanishes (i.e., when the diffused interface becomes sharp), what hap-
pens to some of the relevant physical quantities described by the diffuse model and
then to understand what is the relation between these coarsegrained quantities and
their counterparts given by the sharp interface model. In this paper we provide an
answer to this type of questions finding a relation, in the case of a non homogeneous
and anisotropic material, between the limit, asε goes to zero, of the chemical potential
of the system and the curvature of its sharp interface. Such arelation is commonly
known as theGibbs-Thomson relation. A complete answer to the same problem, in
the homogeneous and isotropic case, has been provided by Luckhaus and Modica in
[16].

Let Ω ⊂ R
N be a given bounded open set representing the region occupiedby

the physical system and letu : Ω → R be an order parameter (it may indeed be a
physical parameter such as the density of mass of the material) its values identifying
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the state of the system. Givenα < β, the setsΩα = {x ∈ Ω ; u(x) = α} and
Ωβ = {x ∈ Ω ; u(x) = β} correspond to the regions where theα or theβ phase
is present. When a phase transition occurs, the formation ofa thin interfacial layer of
smallε thickness separating the two pure bulk phasesΩα andΩβ has been successfully
described as a result of the minimization of a Ginzburg-Landau type free-energy (with
such a choice the model belongs to the so called gradient theory of phase transitions).
Under the hypothesis of isotropy of the physical system, foreveryu ∈ W 1,2(Ω), a
common choice for the free-energyF iso

ε of the system is

F iso
ε (u) =

∫

Ω
ε2|Du|2 +W (T, u) dx. (1.1)

HereW : [0,+∞) × R → [0,+∞), as a function of the order parameter, has a
double-well shape with wells inα and β wheneverT is beneath a certain critical
temperatureTc. Thus, working in the range of temperatureT < Tc, and looking at
isothermal phenomena, one usually drops the dependence on the temperature replacing
W (T, u) byW (u) in (1.1) and considers the problem of finding the equilibriumstates
of the system by minimizingF iso

ε subject to a mean-type constraint onu that can
be regarded as a constraint of constant mass if we think ofu as the density of the
system. For any given proportionm ∈ (α, β) of the mass of two phases, the coarse
grained interfacial energymiso

ε of the system is then obtained by solving the following
variational problem

miso
ε = min

{
F iso

ε (u);

∫

Ω
u = m|Ω|

}
. (1.2)

The issue of the convergence, asε goes to zero, ofmiso
ε to what can be considered

the interfacial energy of the system has been solved by Modica and Mortola in two
celebrated papers ([18], [19]). In particular they proved that

Γ- lim
ε→0

F iso
ε (u)

ε
= 2θHN−1(S(u)) =: F iso

0 (u),

whereS(u) denotes the jump set of the functionu ∈ BV(Ω; {α, β}) which parametrizes
the limiting interface,θ =

∫ β

α

√
W (t) dt is a constant representing the surface tension

of the system andHN−1 denotes the(N − 1)-dimensional (Hausdorff) surface mea-
sure. With such a result proved the authors were able to conclude that, asε → 0,
miso

ε → miso
0 where

miso
0 = min

{
F iso

0 (u); u ∈ BV(Ω; {α, β}),
∫

Ω
u = m|Ω|

}

and that, givenuε → u0 such thatF
iso
ε (uε)

ε
−miso

ε → 0, thenF iso
0 (u0) = m0.
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After this result was proved, an interesting issue to be addressed was related to the
asymptotic behavior of the chemical potential of the systemin the limit asε → 0.
To introduce this problem let us supposeu to be a regular function minimizing (1.2).
Thenu solves the Euler-Lagrange equation

ε2∆u−W ′(u) − λiso
ε = 0

whereλiso
ε is the Lagrange multiplier due to the volume constraint. On the other hand

λiso
ε represents the chemical potential of the system under transition (see [15], [26]).

Concerning the asymptotic behavior of the chemical potentials, Luckhaus and Modica
in [16] gave a positive answer to a conjecture made by Gurtin in [15]. They proved the
Gibbs-Thomson relation

lim
ε→0

λiso
ε

ε
= 2θλiso

0

whereλiso
0 is the mean curvature of the interface.

The aim of this paper is to prove an analogous result in the case when non homo-
geneous anisotropic models are taken into account. Following Taylor [25] (see also
[26]), the energyF an

ε of such a model in the Van der Walls-Cahn-Hilliard theory is
given, for anyu ∈W 1,2(Ω) by

F an
ε (u) =

∫

Ω
ε2f(x,Du) +W (u) dx, (1.3)

the hypotheses onf andW depending on the specific physical system one wants
to model. In the present paper, to exploit the standard method of Cahn-Hoffman
vector fields (see [11],[26]) we restrict ourselves to the case whenf ∈ C2(Ω ×
(RN ); [0,+∞)) satisfies standard growth condition of order 2 with respect to ξ and
is such that

√
f is a strictly convex Finsler norm. Moreover we will suppose that

W ∈ C3(R; [0,+∞)) is a double well potential with wells inα andβ and that it satis-
fiesp > 2 standard growth conditions (see Remark 3.4). In this setting the equilibrium
state of the system can be found by minimizing

man
ε := min

{
F an

ε (u);

∫

Ω
u = m|Ω|

}
. (1.4)

with m ∈ (α, β). It has been proved by Bouchitté in [9] (see also [5]) that

Γ- lim
ε→0

F an
ε (u)

ε
=

∫

S(u)

√
f(x, ν(x)) dHN−1 =: F an

0 (u),

whereν is the measure theoretic inner normal toS(u). Analogously to the isotropic
case,man

ε → man
0 where

man
0 = min

{
F an

0 (u); u ∈ BV(Ω; {α, β}),
∫

Ω
u = m|Ω|

}
.
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Moreover, givenuε → u0 such thatF
an
ε (uε)

ε
−man

ε → 0, thenu0 ∈ BV(Ω; {α, β}),∫
Ω u0 = m|Ω| andF an

0 (u0) = m0. The Euler-Lagrange equation, for a regularu, now
can be written as

ε2 div fξ(x,∇u) −W ′(u) − λan
ε = 0

and the analog of the Gurtin’s conjecture in this case can be phrased by saying that
the scaled chemical potentialsλan

ε

ε
converge, up to a multiplicative constant, to the non

homogeneous and anisotropic curvature of the limit interface asε goes to 0.
This problem has been addressed by several authors and partial results are known in

the homogeneous case (see [17], [26] and references therein). Instead, we prove this
generalized version of the Gurtin’s conjecture in the non homogeneous and anisotropic
setting. To this end we follow the main steps of the proof by Luckhaus and Modica.
However we point out that, working in the framework of Finsler metrics, we cannot
take advantage of the linearity of the Euler-Lagrange equation as in the isotropic case
and instead our analysis relies on more abstract propertiesof the minimizers of the
problem (1.4) as well as on some results in geometric measuretheory. In particular,
among the difficulties that we have to overcome, we need to generalize the statement
of the Reshetnyak continuity theorem (see [22]) to the Finsler setting. We also remark
that our statement is different from the statement of the main result in [16]. On one
hand, we do not need to assume anL∞ bound on the sequence of minimizers of (1.4),
on the other hand we do not assume the boundedness of the sequence of chemical
potentialsλan

ε since, by supposing higher regularity ofW (see Remark 3.4), we are
able to prove it by adapting a result by X. Chen in [12].

As a final comment we remark that, as the result by Luckhaus andModica suggests
the validity of the conjecture that De Giorgi stated in [13] and that has been proved (in
a modified form) in [23] in dimensionN ≤ 3 and independently in [21] in dimension
N = 2, our main result suggests the validity of the same conjecture in the anisotropic
setting. However, we would stress the fact that it is not possible to attack such a
problem by exploiting the same arguments present in the previously quoted papers
since some of the key ingredients (e.g., a monotonicity formula for the energy density
(see [21] Theorem 3.12)) of the proofs are not yet available in the Finsler setting.

The paper is organized as follows: in Section 2 we briefly review the definition and
the main properties of Finsler metrics and of anisotropic perimeters needed to set up
our problem. Section 3 is then devoted to the proof of our mainresult.
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ities”. The work by Yuko Nagase was supported by “Progetto Mecenas, Università di
Napoli Federico II and Compagnia di S. Paolo".
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2 Notation and preliminaries

Let Ω ⊂ R
N be a bounded open set with Lipschitz boundary. GivenE ⊂ R

N , we will
write E ∈ C2

b (R
N) if E is a bounded open subset ofR

N of classC2. Moreover we
will denote byνE the inner unit normal vector field to its boundary∂E. For any given
a, b ∈ R

N we denote bya · b anda ⊗ b the scalar and the tensor product betweena

andb, respectively, and by|a| the norm ofa. We denote bySN−1 the unit sphere in
R

N . We also denote byc a positive constant which may vary from line to line.

In the following section we introduce the Finsler setting. We refer the reader to [8]
and the references therein for details.

2.1 Finsler Metrics

Let φ : Ω × R
N → [0,+∞) be a continuous function satisfying the following proper-

ties:

φ(x, tξ) = |t|φ(x, ξ) , x ∈ Ω , ξ ∈ R
N , t ∈ R ; (2.1)

λ|ξ| ≤ φ(x, ξ) ≤ Λ|ξ| , x ∈ Ω , ξ ∈ R
N . (2.2)

We say thatφ is strictly convex if for anyx ∈ Ω the mapξ 7→ φ2(x, ξ) is strictly
convex onRN . We denote byφ◦ : Ω×R

N → [0,+∞) the dual function ofφ defined
as

φ◦(x, ξ∗) = sup

{
ξ∗ · ξ
φ(x, ξ)

; ξ ∈ SN−1
}

for anyx ∈ Ω andξ∗ ∈ R
N .

We say thatφ is astrictly convex smooth Finsler norm, and we writeφ ∈ N (Ω),
if in addition to properties (2.1) and (2.2),φ andφ◦ are strictly convex and of class
C2(Ω × (RN \ {0})). The following two sets

Bφ(x) = {ξ ∈ R
n| φ(x, ξ) ≤ 1},

Bφ◦(x) = {ξ∗ ∈ R
n| φ◦(x, ξ∗) ≤ 1}

will be, as usual, referred to asWulff shapeandFrank diagram, respectively.
We recall that theφ-vectorνφ(x) and theCahn-Hoffman vectornφ(x), associated

to a unit vectorν ∈ SN−1, are defined as

νφ(x) =
ν

φ◦(x, ν)
and nφ(x) = φ◦ξ(x, νφ).

By the elementary properties of Finsler norms it holds that,for anyx ∈ Ω andξ, ξ∗ ∈
R

N \ {0},
φ(x, φ◦ξ∗(x, ξ

∗)) = φ◦(x, φξ(x, ξ)) = 1. (2.3)
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As a consequence of (2.3), for anyx ∈ Ω it holds thatνφ(x) ∈ ∂Bφ(x), nφ(x) ∈
∂Bφ◦(x) and

νφ(x) · nφ(x) = 1. (2.4)

LetE ∈ C2
b (R

N) and, for anyx ∈ ∂E, let ν(x) be the unit inner normal to∂E at
x. For a givenC1 vector fieldX : ∂E → R

N we denote bydivφX theφ-tangential
divergenceof X on∂E defined as

divφX = tr
[
(Id−nφ ⊗ νφ)∇X̃ + φ◦x(x, νφ) ⊗ X̃

]
,

whereX̃ is any smooth extension ofX to a neighborhood of∂E.
Extending to a neighborhood of∂E the vector fieldsνφ andnφ by regular fields

while keeping the same notation, we are in a position to definetheφ-mean curvature
κφ of ∂E as

κφ = −divφ nφ .

Differentiatingφ◦(x, νφ) = φ(x, nφ) = 1 with respect toxi and exploiting (2.4) one
obtains that the following relations hold on∂E:

φ◦xi
(x, νφ) + n

j
φ

∂ν
j
φ

∂xi
= 0 , i = 1, . . . ,N, (2.5)

φxi
(x, nφ) + ν

j
φ

∂n
j
φ

∂xi
= 0 , i = 1, . . . ,N, (2.6)

n
j
φ

∂ν
j
φ

∂xi
+ ν

j
φ

∂n
j
φ

∂xi
= 0 , i = 1, . . . ,N. (2.7)

In the proof of our main result we will apply the following generalization of the
divergence theorem on manifolds in the Finsler setting whose proof is a consequence of
the integral representation formula for the first variationof theφ-anisotropic perimeter
(defined in (2.8)) in terms of theφ-mean curvature (see (2.3) and (3.2) in [6]).

Theorem 2.1.Let E ∈ C2
b (R

N). LetU ⊂ R
N be a neighborhood of∂E and g ∈

C1
0(U ; RN ). Then

∫

∂E

κφνφ · g φ◦(x, ν) dHN−1 = −
∫

∂E

divφ g φ
◦(x, ν) dHN−1.

2.2 BV -functions and anisotropic perimeters

In this section we recall the basic definitions ofBV functions (for more details on
the subject we refer the reader to [3]) and then introduce thenotion of anisotropic
perimeter. We end the section by recalling some well known results in geometric
measure theory that will be used in the proof of our main result.
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Given a vector-valued measureµ on Ω, we denote by|µ| its total variation and
we adopt the notationM(Ω) for the set of all signed measures onΩ with bounded
total variation. The Lebesgue measure of a setE is denoted by|E|. The Hausdorff
(N − 1)-dimensional measure onRN is denoted byHN−1.

We recall thatu ∈ L1(Ω) belongs to the spaceBV (Ω) of functions of bounded
variation if its distributional derivativesDiu belong toM(Ω). We denote byDu the
R

N -valued measure whose components areD1u, . . . ,Dnu.
We say that a setE is of finite perimeterin Ω if its characteristic functionχE ∈

BV (Ω) and we denote byP (E) = |DχE |(Ω) theperimeterof E in Ω. The family
of sets of finite perimeter can be identified with the functionsu ∈ BV (Ω; {0,1}). For
such functionsDu can be represented as

Du(B) =

∫

S(u)∩B

νu dHN−1

for every Borel setB ⊂ Ω, whereS(u) denotes the complement of the set of Lebesgue
points ofu andνu ∈ R

N is the measure theoretic inner normal toS(u). It holds that
for E = {x ; u(x) = 1}

P (E) = |Du|(Ω) = HN−1(S(u) ∩ Ω).

The following proposition is a particular case of the chain-rule formula inBV (Ω).

Proposition 2.2.Letα < β, leth : R → R be aC1 function and letu ∈ BV(Ω; {α, β}).
Then

Dh(u) = (h(β) − h(α))νuHN−1|S(u).

We now recall the definitions and some properties of the anisotropic total variation
for BV-functions and introduce the anisotropic perimeter (for further details we refer
the reader to [2]). Letu ∈ BV(Ω) andφ ∈ N (Ω). We define theanisotropicφ-total
variation of Du as

|Du|φ(Ω) = sup

{∫

Ω
u div σ dx ; σ ∈ C1

0(Ω; RN) , σ(x) ∈ Bφ(x)

}
.

We observe that by the hypotheses onφ we can deduce from Theorem 5.1 in [2] that
theφ-total variation isL1(Ω)-lower semicontinuous and admits the following integral
representation

|Du|φ(Ω) =

∫

Ω
φ◦(x, νu)d|Du| , ∀u ∈ BV(Ω).

Note that ifφ(x, ξ) = |ξ| then theφ-total variation|Du|φ(Ω) agrees with|Du|(Ω).
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We now recall the definition and some properties of anisotropic perimeters. We
will follow the notation of [7]. LetE ⊂ R

N be a set of finite perimeter inΩ and let
φ ∈ N (Ω), we define theφ-anisotropic perimeterof E in Ω as

Pφ(E) =

∫

∂
∗
E∩Ω

φ◦(x, ν(x)) dHN−1, (2.8)

where∂
∗

E is the reduced boundary ofE andν is the measure theoretic unit inner nor-
mal to∂E. We observe that theφ-total variation ofχE agrees with theφ-anisotropic
perimeter ofE in Ω, that is,

Pφ(E) = |DχE |φ(Ω).

We warn the reader that the definition of theφ-anisotropic perimeter is sometimes
given withφ in place ofφ◦.

We now state two useful propositions from geometric measuretheory that we will
use in the proof of our main result. Their proofs can be found in [10] and in [4],
respectively. In the sequel we will denote byA(Ω) the class of open subsets ofΩ.
Moreover we recall that a Radon space is a topological space such that every finite
Borel measure is inner regular.

Proposition 2.3 (supremum of a family of measures).Let µ : A(Ω) → [0,+∞) be
superadditive on open sets with disjoint compact closures,letλ be a positive measure,
{ψi}i be positive Borel functions such that

µ(A) ≥
∫

A

ψi dλ

for all open setA ⊂ Ω.
Then for all open setA ⊂ Ω we have

µ(A) ≥
∫

A

sup
i

ψi(x) dλ.

Theorem 2.4(disintegration of a measure).LetX,Y be Radon separable metric spaces,
µ ∈ P(X), letπ : X → Y be a Borel map and letλ = π♯µ ∈ P(Y ). Then there exist
a λ-a.e. uniquely determined Borel family of probability measures{µy}y∈Y ⊂ P(X)
such that

µy(X \ π−1(y)) = 0 for λ-a.e.y ∈ Y

and ∫

X

f(x) dµ(x) =

∫

Y

(∫

π−1(y)
f(x)dµy(x)

)
dλ(y)

for every Borel mapf : X → [0,+∞].
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3 The Gibbs-Thomson relation

In this section we briefly review the gradient theory of non homogeneous and anisotropic
phase transitions in order to present the Gibbs-Thomson relation and state our main
result. We warn the reader that, in what follows, we have madethe choice of not pre-
senting some well known results, due to other authors, in their full generality. Instead,
we will state them under more strong hypotheses which best fitin our setting.

In the physical literature several theories are available to model the formation of
transition layers between the pure phases of a system which undergoes a phase tran-
sition. Among them the Van der Waals-Cahn-Hillard gradienttheory is suitable to
introduce, in a rigorous mathematical way, the so calledcoarse-grained chemical po-
tential and to state theGibbs-Thomsonrelation.

Let α < β and letu0 ∈ BV(Ω; {α, β}) be an order parameter of a physical system
which is subject to the volume constraint

∫
Ω u0 dx = m|Ω| for somem ∈ (α, β) and

that is undergoing a first order phase transition between thephasesα andβ. In what
follows we setΩα := {x ∈ Ω ; u0(x) = α} andΩβ := {x ∈ Ω ; u0(x) = β} and we
agree to identify the “interface” of transition of the system with the jump setS(u0) of
u0 that is the reduced boundary of the setΩα.

In the Van der Waals-Cahn-Hilliard theory the sharp interfaceS(u0) is replaced by
a diffused interface. This can be seen, for a given 0< σ < β−α

2 as the set{x ∈
Ω ; uε(x) ∈ (α+ σ, β − σ)}, where, asε varies,uε is the order parameter of a family
of equilibrium states for the physical system and minimizesthe following Ginzburg-
Landau type energy

Eε(u) =

∫

Ω
ε2f(x,Du) +W (u) dx,

subject to the volume constraint

(u)Ω =
1
|Ω|

∫

Ω
u dx = m, (3.1)

for somef : Ω×R
N → [0,+∞) two homogeneous in the gradient variable and some

double-well potentialW : R → [0,+∞) vanishing only inα andβ. By assuming
suitable regularity and growth hypotheses onf andW , a first goal of this theory is to
prove that the thickness of the diffused interface is of order ε and that it converges to
S(u0) asε→ 0.

In this framework, by looking atuε as the density of mass of the system, the chem-
ical potentialλε of the state identified byuε is defined as the variation of the internal
energy with respect to the mass. Thus it is the Lagrange multiplier associated to the
minimization ofEε subject to the constraint (3.1). Supposingf , W anduε enough
regular, one can write the Euler-Lagrange equation for sucha problem to find thatuε

solves
λε = ε2 div fξ(x,Duε) −W ′(uε). (3.2)
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By recalling that theGibbs-Thomsonrelation for a thermodynamic system with two
phases states that the chemical potential is proportional to the curvature of the interface
between the phases, we obtain that, in our framework, such a relation is proved if we
show that, up to a multiplicative constant,λε

ε
converges, asε goes to 0, to the (non

homogeneous and anisotropic) curvature of the limit interface. To rigorously prove
such a result is the goal of the present section. We notice that the problem has been
considered by several authors. In particular Luckhaus and Modica in [16] solved the
problem in the homogeneous and isotropic case wheref(x, ξ) = |ξ|2 thus proving a
conjecture by Gurtin (see [15]). Partial answers to this problem have been provided
by Braun, Coriell, McFadden, Sekerka and Wheeler in [17] in the casen ≤ 3 andf
homogeneous. Even under these restrictions the authors does not provide a complete
proof of the result since their argument relies on a formal asymptotic expansion of the
equation (3.2).

In what follows, givenα < β, f : Ω × R
N → [0,+∞) a function of classC2

andW : R → [0,+∞) a function of classC0, we will consider the following set of
hypotheses onf andW :

(H1)
f(x, ·) is positively 2-homogeneous and strictly convex for everyx ∈ Ω,

c1|ξ|2 ≤ f(x, ξ) ≤ c2|ξ|2 for everyx ∈ Ω andξ ∈ R
N ,

with 0< c1 ≤ c2. We note that in this hypotheses
√
f = φ◦ for someφ ∈ N (Ω).

(H2)
{t ∈ R ; W (t) = 0} = {α, β},

c3(|t|p − 1) ≤W (t) ≤ c4(|t|p + 1) , ∀ t ∈ R

with p ≥ 2 and 0< c3 ≤ c4.
For ε > 0 andm ∈ (α, β) we introduce a conveniently scaled version of the func-

tionalsEε by defining the functionalsEε : L1(Ω) → [0,+∞] as

Eε(u) =





∫

Ω

(
εf(x,Du) +

W (u)

ε

)
dx if u ∈W 1,2(Ω) , (u)Ω = m,

+∞ otherwise.

(3.3)

The followingΓ-convergence result has been proved (under more mild hypotheses) in
[9] (see also [5]). We state it in a form that is suitable for our purposes.

Theorem 3.1.Let f andW satisfy(H1) and (H2) respectively and letEε be as in
(3.3). ThenEε Γ-converges, with respect to theL1(Ω)-topology, to the functional
E0 : L1(Ω) → [0,+∞], defined as

E0(u) =

{
2θPφ({x ∈ Ω : u(x) = α}) if u ∈ BV(Ω; {α, β}) , (u)Ω = m

+∞ otherwise,
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whereθ =
∫ β

α

√
W (t) dt, withφ◦ =

√
f .

Corollary 3.2. Let {εn} be a sequence of positive real numbers converging to zero.
For anym ∈ (α, β) andp > 2 let uεn ∈W 1,2(Ω) be a solution of the problem

mεn = min

{∫

Ω

(
ε2
nf(x,Du) +W (u)

)
dx ;

∫

Ω
u dx = m|Ω|

}
. (3.4)

Then upon extracting a subsequence (not relabelled),uεn → u0 ∈ BV(Ω; {α, β}) in
L1(Ω). MoreoverΩα is a solution of

m0 = min

{
Pφ(E) ; |E| =

β −m

β − α
|Ω|
}
,

with φ◦ =
√
f .

We now state our main result.

Theorem 3.3.Let f satisfy hypotheses(H1) andW : R → [0,∞) be of classC3

satisfying(H2) withW ′′(α) ,W ′′(β) ≥ c0 > 0. Let{uεn} andu0 be as in Corollary
3.2 andλεn be as in(3.2). Suppose thatΩα ∈ C2

b (R
N), then, up to subsequences (not

relabeled),

lim
n→∞

λεn

εn
=

2θ
β − α

λ0

whereθ =
∫ β

α

√
W (t) dt andλ0 is theφ-anisotropic curvature ofΩ ∩ ∂∗Ωα being√

f = φ◦.

Before proving our result we make some comments on our hypotheses.

Remark 3.4 (regularity hypotheses onf andW ). We observe that the case of a less
regularf , for instance such that

√
f is a crystalline norm, would be of great inter-

est. Unfortunately in this case the approach due to Cahn and Hoffmann (see [11]),
as we use in the present paper, cannot be exploited (the Cahn-Hoffmann vector field
is not even uniquely defined in the crystalline case). We alsoobserve that all the as-
sumptions onW but (H1) are required only in order to prove the boundedness of the
sequence{λε

ε }. For this reason they could be removed if the previous sequence would
be assumed to be a priori bounded as in [16].

Remark 3.5 (regularity hypotheses onΩα). The hypothesis on the regularity ofΩα is
needed to apply Theorem 2.1. We remark that this hypothesis can be dropped in the
homogeneous case in dimensionn ≤ 7. Indeed in this case it is possible to exploit the
standard regularity theory for Almgren’s elliptic parametric integrals (see [1], [24] and
also [20] Chapter 12).
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Proof of Theorem 3.3Without loss of generality we takeα = −1 andβ = 1. More-
over, for simplicity of notation we drop the dependence onn in the sequences and we
set

lε = −λε

ε
, eε+(x) = εf(x,Duε(x)) +

W (uε(x))

ε
,

eε−(x) = εf(x,Duε(x)) −
W (uε(x))

ε
.

We also note that, by the hypotheses onf , there existsφ ∈ N (Ω) such that
√
f = φ◦,

moreover since{uε} is a minimizing sequence, there exists a constantM such that for
anyε ∈ (0,1) ∫

Ω
eε+(x) dx ≤M. (3.5)

The proof is divided in four steps.
Step 1 (discrepancy and curvature terms)By Lemma 3.6, upon extracting a subse-

quence (not relabeled) to{lε}, there existsl0 = limε→0 lε. Our next aim is to identify
l0. By adding and subtracting

∫
Ω εf(x,Duε) dx in equation (3.17), we get that, for

anyg ∈ C1
0(Ω; RN ),

−
∫

Ω
lεuε div g dx = −

∫

Ω

(
εf(x,Duε) −

W (uε)

ε

)
divg dx

︸ ︷︷ ︸
Aε

+

∫

Ω
2εf(x,Duε) div g − εfxj

(x,Duε)gj + εfξi
(x,Duε)DjuεDigj dx

︸ ︷︷ ︸
Bε

.

(3.6)

The termAε =
∫
Ω e

ε
−(x) dx is usually referred to as thediscrepancy termwhile the

termBε is referred to as thecurvature term.
We now recall thatuε → u0 in L1(Ω) and thatu0 ∈ BV(Ω; {−1,1}) by Corollary

3.2. Thus taking the limit asε→ 0 in the left hand side of (3.6), we get

lim
ε→0

(
lε

∫

Ω
uε div g dx

)
= l0

∫

Ω
u0 div g dx = 2l0

∫

Ω∩∂Ωα

ν · g dHN−1

= 2l0

∫

Ω∩∂Ωα

νφ · g φ◦(x, ν)dHN−1,

whereν(x) : ∂Ωα → SN−1 is the outer unit normal to∂Ωα. It remains to study the
limit asε→ 0 ofAε andBε. This will be our purpose in the next steps of the proof.

Step 2 (re-parametrization ofuε) In this step we use a standard strategy (see [16]) to
re-parametrizeuε using a primitive of

√
W and we then prove a key convergence result

for theφ◦-total variations of the re-parametrizations. We set

ϕ(s) =

∫ s

−1

√
W (t) dt
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and we definevε(x) = ϕ(uε(x)). It holds that

Dvε = ϕ′(uε)Duε =
√
W (uε)Duε.

The family{vε} is uniformly bounded inBV(Ω). Indeed, by exploiting the classical
Modica-Mortola’s trick we have that

∫

Ω
|Dvε| dx ≤ 1

2

∫

Ω

ε|Duε|2
2

+
W (uε)

ε
dx ≤ c

∫

Ω
eε+ dx ≤ cM. (3.7)

By the compactness theorem inBV (see [3]), there existsv0 ∈ BV(Ω) such that, up
to subsequences,

lim
ε→0

∫

Ω
|vε − v0| dx = 0 and

∫

Ω
|Dv0| ≤ lim inf

ε→0

∫

Ω
|Dvε| .

Let us denote byϕ−1 the inverse function ofϕ. By the previous convergence results
we easily deduce that

u0 = ϕ−1(v0).

Thanks to the chain rule formula forBV- functions (see Proposition 2.2) we can also
explicitly computeDv0.

Dv0 = D(ϕ(u0)) = (ϕ(1) − ϕ(−1))νu0HN−1|S(u0)

=

∫ 1

−1

√
W (s)ds νu0HN−1|S(u0) = θ νu0HN−1|S(u0).

(3.8)

We claim that theφ-total variation ofDvε converges asε → 0 to theφ-anisotropic
perimeter of the jump set ofu0, that is

lim
ε→0

∫

Ω

√
f(x,Dvε) dx =

∫

Ω∩∂Ωα

√
f(x, νu0) dHN−1 = θPφ(Ωα). (3.9)

The claim is a consequence of Theorem 3.1 and of a density argument. Indeed, first
we note that by the homogeneity assumptions onf and by Theorem 3.1 we have

lim sup
ε→0

∫

Ω

√
f(x,Dvε) dx = lim sup

ε→0

∫

Ω

√
f(x,Duε)

√
W (uε) dx

≤ 1
2

lim sup
ε→0

∫

Ω
εf(x,Duε) +

W (uε)

ε
dx

=
1
2

lim sup
ε→0

Eε(uε) = θPφ(Ωα).

(3.10)

In order to obtain thelim inf inequality we start by observing that, sincevε → v0 in
BV(Ω), by Reshetnyak lower semicontinuity theorem (see for example Theorem 2.38
in [3]), we have
∫

Ω
|Dv0|φ =

∫

Ω

√
f

(
x,

Dv0

|Dv0|

)
d|Dv0| ≤ lim inf

ε→0

∫

Ω

√
f(x,Dvε) dx. (3.11)
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Moreover, for anyζ ∈ SN−1 by the defnition of dual norm and by (3.8) (again using
the notationφ◦ =

√
f ), we can write

∫

Ω
φ◦
(
x,

Dv0

|Dv0|

)
d|Dv0| ≥

∫

Ω

1
φ(x, ζ)

∣∣∣∣
Dv0

|Dv0|
· ζ
∣∣∣∣ d|Dv0|

= θ

∫

Ω∩∂Ωα

1
φ(x, ζ)

|νu0 · ζ| dHN−1.

(3.12)

Let now {ζi}i∈N be a dense subset ofSN−1. From (3.12), applying Proposition 2.3

with λ = HN−1|∂Ωα
,µ(A) =

∫
Ω φ

◦
(
x, Dv0

|Dv0|

)
d|Dv0| andψi = θ χ∂Ωα

1
φ(x,ζ) |νu0 · ζi|,

we obtain
∫

Ω
φ◦
(
x,

Dv0

|Dv0|

)
d|Dv0| ≥ θ

∫

Ω
sup
i∈N

1
φ(x, ζi)

|νu0 · ζi| dHN−1

= θ

∫

Ω∩∂Ωα

φ◦(x, νu0) dHN−1.

The previous inequality, togheter with (3.10) and (3.11) prove the claim.

Step 3 (negligibility of the discrepancy term)We now prove that the discrepancy term
vanishes asε goes to 0. By using a simple algebraic argument (see Lemma 1 in[16])
the claim will follow directly by formula (3.9).

Setaε =
√
εf(x,Duε) andbε =

√
W (uε)

ε
. Formula (3.9) reads as

lim
ε→0

∫

Ω
aεbε dx = θPφ(Ωα).

Moreover, again by Theorem 3.1, we also have that

lim
ε→0

∫

Ω
a2

ε + b2
ε dx = lim

ε→0
Eε(uε) = 2θPφ(Ωα).

By the previous relations we get the claim noticing that

lim
ε→0

∫

Ω
(aε − bε)

2 dx = lim
ε→0

(∫

Ω
a2

ε + b2
ε dx− 2

∫

Ω
aεbε

)
dx = 0

which turns out to imply, by the energy estimate,

0 ≤ lim
ε→0

∫

Ω
|a2

ε − b2
ε| dx = lim

ε→0

∫

Ω
|(aε + bε)(aε − bε)| dx

≤ lim
ε→0

(∫

Ω
|a2

ε − aεbε| dx+

∫

Ω
|aεbε − b2

ε| dx
)

≤ cM lim
ε→0

∫

Ω
(aε − bε)

2 = 0 .
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Step 4 (convergence of the curvature term)In this last step we analyze the limit be-
haviour ofBε asε goes to 0. We claim that

lim
ε→0

Bε = −2θ
∫

Ω∩∂Ωα

ν · g κφ dHN−1,

where we have denoted by whereν(x) : ∂Ωα → SN−1 is the outer unit normal to
∂Ωα. To prove the claim we start by noticing that from the energy estimate (3.5), we
can deduce that

0 = lim
ε→0

∫

Ω
|εf(x,Duε) −

√
f(x,Duε)

√
W (uε)| dx

= lim
ε→0

∫

Ω
|εf(x,Duε) −

√
f(x,Dvε)| dx.

(3.13)

We now use the homogeneity off to rewriteBε as

Bε =

∫

Ω
2εf(x,Duε)H(x,Duε) dx,

where we have set

H(x, ξ) = tr

[
(Id−1

2
fξ(x, ξ)√
f(x, ξ)

⊗ ξ√
f(x, ξ)

) Dg +
fx(x, ξ)

2f(x, ξ)
⊗ g

]
.

Let Ωε := {x ∈ Ω : |Dvε|φ 6= 0}. By the boundedness of the functionH, the
equality Duε

|Duε|φ
= Dvε

|Dvε|φ
onΩε and by using (3.13) we have

lim
ε→0

Bε

2
= lim

ε→0

∫

Ω
εf(x,Duε)H(x,Duε) dx = lim

ε→0

∫

Ωε

√
f(x,Dvε)H(x,Dvε) dx

= lim
ε→0

∫

Ω
tr

[
(Id−φ◦ξ

(
x,

Dvε

|Dvε|φ

)
⊗ Dvε

|Dvε|φ
)Dg + φ◦x

(
x,

Dvε

|Dvε|φ

)
⊗ g

]
d|Dvε|φ

where we recall thatφ◦ =
√
f . We are now in a position to apply Lemma 3.7, (3.8)

and Theorem 2.1 to conclude that

lim
ε→0

Bε = 2
∫

Ω∩∂Ωα

tr
[
(Id−φ◦ξ (x, νφ) ⊗ νφ)Dg + φ◦x (x, νφ) ⊗ g

]
d|Dv0|φ

= 2θ
∫

Ω∩∂Ωα

tr [(Id−nφ ⊗ νφ)Dg + φ◦x(x, νφ) ⊗ g]φ◦(x, ν) dHN−1

= 2θ
∫

Ω∩∂Ωα

divφ g φ
◦(x, ν) dHN−1 = −2θ

∫

Ω∩∂Ωα

ν · g κφ dHN−1.

The following Lemma is obtained adapting an argument by X. Chen in [12] to the
Finsler setting. Note that, unlike Chen’s result, here we have to deal with Dirichlet
instead of Neumann boundary conditions.
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Lemma 3.6.Let f satisfy hypotheses(H1) andW : R → [0,∞) be of classC3

satisfying(H2) withW ′′(α), W ′′(β) ≥ c0 > 0 . Let{uεn} be as in Corollary 3.2 and

λεn be as in(3.2). Then the sequence
{

λεn

εn

}
is bounded.

Proof. For simplicity of notation, we drop the dependence onn in the sequences and
we setlε = −λε

ε
. We observe that, sinceuε is a minimizer for (3.4), it satisfies the

elliptic equation

lε = −εdiv fξ(x,Duε) +
W ′(uε)

ε
, (3.14)

and it has constant mean value inΩ

(uε)Ω =
1
|Ω|

∫

Ω
uε dx = m ∈ (−1,1). (3.15)

We observe that (3.5) implies that{uε} is uniformly bounded inL2(Ω) and more-
over, by the hypotheses onW , we can easily deduce that

∫

Ω
(|uε| − 1)2 dx ≤ cMε (3.16)

Following an argument by Chen (see the proof of Lemma 3.4 in [12]), using a
smoothing procedure and the elliptic regularity theory, one can infer from (3.14),
(3.15) and (3.5) the boundedness of{lε}ε∈(0,1). To this aim we write the weak form
of (3.14) using as a test functionϕ = g ·Duε, whereg ∈ C1

0(Ω; RN ). Integrating by
parts we have

−
∫

Ω
lεuε div g dx =ε

∫

Ω
fξ(x,Duε) ·Dϕ+

W ′(uε)

ε
ϕ dx

= −
∫

Ω
eε+(x) div g dx−

∫

Ω
εfx(x,Duε) · g dx

+

∫

Ω
tr[(εfξ(x,Duε) ⊗Duε)Dg] dx.

(3.17)

By choosingg = Dψ for a suitableψ ∈ C2(Ω) in (3.17) we get

lε

∫

Ω
∆ψ uε dx =

∫

Ω
tr[D2ψ

(
eε+(uε) Id−εfξ(x,Duε) ⊗Duε

)
]

+ εfx(x,Duε) ·Dψ dx.
(3.18)

Setting

I ′ε =

∫

Ω
∆ψ uε dx

and

I ′′ε =

∫

Ω
tr[D2ψ

(
Id eε+(x) − εfξ(x,Duε) ⊗Duε

)
] + εfx(x,Duε) ·Dψ dx ,
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we can write

lε =
I ′′ε
I ′ε

and the proof will follow once we find an upper-bound forI ′′ε and a lower-bound
for I ′ε uniformly w.r.t. ε. The desired bounds will be obtained choosing carefully
the functionψ. Let ρη be a standard family of mollifiers and consider, forη < η0,
u

η
ε = ρη ∗ uε ∈ C∞(Ω) theη-regularization ofuε. Here we have assumed thatuε has

been extended by reflection to theη0-neighborhood ofΩ

{x ∈ R
N ; dist(x,Ω) ≤ η0}.

Let Ω̃ ⊂⊂ Ω and letψ̃ be the unique solution of the Dirichlet problem
{
−∆ψ̃ = u

η
ε − (uη

ε)eΩ
in Ω̃,

ψ̃ = 0 on∂Ω̃.

By classical regularity results (cfr.[14] Theorem 6.14)ψ̃ ∈ C2,α(Ω̃). Let ψ be a
smooth extension of̃ψ in R

N with compact support inΩ′ with Ω̃ ⊂ Ω′ ⊂ Ω (see [14]
Lemma 6.37). We observe that, by the definition ofu

η
ε and by (3.16), the following

estimate holds:

‖uη
ε‖C(Ω) ≤

∥∥∥∥
∫

B1

ρ1(y)uε(x− ηy) dy

∥∥∥∥
C(Ω)

≤ 1 + sup
x∈Ω

∫

B1

ρ1(y) | |uε(x− ηy)| − 1| dy

≤ 1 + cη−
N
2
∥∥|uε| − 1

∥∥
L2(Ω)

≤ 1 + cε
1
2η−

N
2 .

A similar computation gives

‖uη
ε‖C1(Ω) ≤ cη−1(1 + ε

1
2η−

N
2 ).

By classical elliptic estimates we also have that

‖ψ‖C2(Ω) ≤ c‖uη
ε‖C1(Ω) ≤ cη−1(1 + ε

1
2η−

N
2 ).

The previous estimates together with assumption (H1) and (3.5) imply the following
estimate forI ′′ε :

|I ′′ε | ≤c‖ψ‖C2(Ω)

∫

Ω
eε+(x) + ε|Duε|2| tr[fξ

(
x,

Duε

|Duε|

)
⊗ Duε

|Duε|
]| dx

+ c‖ψ‖C1(Ω)

∫

Ω
ε|Duε|2

∣∣∣∣fx

(
x,

Duε

|Duε|

)∣∣∣∣ dx

≤cK‖ψ‖C2(Ω)

∫

Ω
eε+(x) dx ≤ cKMη−1(1 + ε

1
2η−

N
2 )

(3.19)
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where
K = sup

(x,ξ)∈Ω×SN−1
{|fξ (x, ξ) | + |fx (x, ξ) |}.

ConcerningI ′ε, we first observe that it can be conveniently rewritten as

I ′ε =

∫

eΩ
(uη

ε − (uη
ε)eΩ

)uε dx+

∫

Ω′\eΩ
∆ψ uε dx

=

∫

eΩ
(uη

ε − uε)uε dx+

∫

eΩ
(u2

ε − 1) dx + |Ω̃|
(

1− (uε)
2
eΩ

)

+ |Ω̃|(uε)eΩ
((uε)eΩ

− (uη
ε)eΩ

) +

∫

Ω′\eΩ
∆ψ uε dx.

(3.20)

In order to estimate the different terms in (3.20) we set

φ̃(s) :=

∫ s

−1

√
W̃ (t) dt with W̃ (t) = min{W (t),1 + |t|2}

and we note that, by the assumptions onW , there exists a constantsc > 0 such that

c|s1 − s2|2 ≤ |φ̃(s1) − φ̃(s2)| , ∀ s1, s2 ∈ R. (3.21)

Moreover, forṽε = φ̃(uε) we have, as in (3.7), that
∫

Ω
|∇ṽε|dx ≤ cM.

From the previous inequality, the definition ofuη
ε and (3.21) we infer that

‖∇uη
ε‖L2(Ω) ≤ cη−1‖uε‖L2(Ω) ≤ cη−1

and that
∫

Ω
|uη

ε − uε|2dx ≤
∫

Ω

∫

B1

ρ1(y)|uε(x− ηy) − uε(x)|2 dy dx

≤ c

∫

Ω

∫

B1

ρ1(y)|ṽε(x− ηy) − ṽε(x)| dy dx

≤ cη‖∇ṽε‖L1(Ω) ≤ cMη.

(3.22)

We can now deduce from (3.22) that
∫

eΩ
(uη

ε − uε)uε dx ≥ −
∫

eΩ
|uη

ε − uε| |uε| dx

≥ −‖uη
ε − uε‖L2(Ω)‖uε‖L2(Ω) ≥ −cη 1

2

(3.23)
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and, by (3.16), that
∫

eΩ
|u2

ε − 1| dx =

∫

Ω
(uε − 1)(uε + 1) dx

≥ −c‖uε − 1‖L2(Ω)

(
‖uε‖L2(Ω) + 1

)
≥ −cε 1

2 .

(3.24)

We now choosẽΩ such that|(uε)eΩ
| ≤ c < 1 which turns out to imply, forε small

enough, that

|Ω̃|(uε)eΩ
((uε)eΩ

− (uη
ε)eΩ

) ≥ −c|Ω̃| ‖uε − uη
ε‖L2(Ω) ≥ −cη 1

2 (3.25)

and that
|Ω̃|
(

1− (uε)
2
eΩ

)
≥ c|Ω̃|. (3.26)

Indeed, by Rellich Theorem,{uε} is precompact inL2∗(Ω) and then, up to extracting
a subsequence, we have that

(uε)eΩ
=

|Ω|
|Ω̃|

(uε)Ω − 1

|Ω̃|

∫

Ω\eΩ
uεdx =

|Ω|
|Ω̃|

m− 1

|Ω̃|

∫

Ω\eΩ
uεdx.

Thus, sincem < 1, we may choosẽΩ sufficiently big in order to have that

|(uε)eΩ
| ≤ |Ω|

|Ω̃|
m+

1

|Ω̃|

(
‖uε‖2∗ |Ω \ Ω̃|

1
(2∗)′

)

≤ |Ω|
|Ω̃|

m+
1

|Ω̃|
c|Ω \ Ω̃|

1
(2∗)′ ≤ c < 1,

that, in turn, implies (3.25) and (3.26). It remains to observe that, choosingΩ′ such
that |Ω′ \ Ω̃| 1

2 ≤ η2, we have that
∣∣∣∣∣

∫

Ω′\eΩ
∆ψ uε dx

∣∣∣∣∣ ≤
∫

Ω′\eΩ
‖ψ‖C2(Ω)|uε| dx ≤ c‖ψ‖C2(Ω)‖uε‖2,Ω|Ω′ \ Ω̃| 1

2

≤ cη(1 + ε
1
2η−

N
2 )

and we can conclude, combining (3.20),(3.23),(3.24),(3.25) and (3.26), that

I ′ε ≥ |Ω̃|(1−m2) − c(ε
1
2 + η

1
2 ) − cη−1(1 + ε

1
2η−

N
2 ). (3.27)

Gathering together (3.27) and (3.19) it follows that

|lε| ≤
cKMη−1(1 + ε

1
2η−

N
2 )

|Ω̃|c− c(ε
1
2 + η

1
2 ) − cη(1 + ε

1
2η−

N
2 )
,

which implies the desired estimate for a sufficiently smallη independent ofε.
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The following result is a version of the Reshetnyak continuity theorem (see [22] and
also [16]) in the Finsler setting.

Lemma 3.7.Let Ω ⊂ R
N be a bounded open set. Letφ be a strictly convex Finsler

norm and{vε} be a family of functions of classC1(Ω) and letv0 ∈ BV (Ω). Assume
that vε converges tov0 in BV(Ω) and that

lim
ε→0

∫

Ω
φ(x,Dvε) dx = |Dv0|φ(Ω). (3.28)

Then for any functionF (x, p) ∈ C(Ω × R
n) satisfying

F (x, tp) = tF (x, p) for x ∈ Ω, p ∈ R
n, t ≥ 0 (3.29)

and
F (x, p) = 0 for x 6∈ K, p ∈ R

n (3.30)

withK is a fixed compact subset ofΩ, we have

lim
ε→0

∫

Ω
F (x,Dvε) dx =

∫

Ω
F

(
x,

νv0

φ(x, νv0)

)
d|Dv0|φ.

Proof. Let θε : Ω → {(x, p) ; x ∈ Ω , p ∈ ∂Bφ(x)} be defined by

θε(x) =

(
x,

Dvε(x)

φ(x,Dvε(x))

)

and let us consider the family of measuresµε = (θε)♯|Dvε|φ. By the definition ofµε,
for anyf ∈ Cc(Ω × R

N)

∫

Ω×RN

f(x, p) dµε =

∫

Ω
f

(
x,

Dvε

φ(x,Dvε(x))

)
φ(x,Dvε(x)) dx. (3.31)

Analogously let us consider the functionθ0 : Ω → {(x, p) ; x ∈ Ω , p ∈ ∂Bφ(x)}
defined as

θ0(x) =

(
x,

νv0

φ(x, νv0)

)

and the measureµ0 = (θ0)♯|Dv0|φ. We therefore have that for anyf ∈ Cc(Ω × R
N )

∫

Ω×RN

f(x, p) dµ0 =

∫

Ω
f (x, νv0) d|Dv0|. (3.32)

By the regularity ofF and by (3.30) we have that (3.31) and (3.32) hold forf = F .
Thus, taking into account (3.29), the claim follows by proving thatµε

∗
⇀ µ0.

Since

µε(Ω × R
N ) =

∫

Ω
φ(x,Dvε(x)) dx ,
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µε is uniformly bounded by (3.28). Then, up to subsequences, itweakly star converges
to a Radon measureµ. It remains to prove thatµ = µ0.

Applying Theorem 2.4 withY = Ω,X =
⋃

x∈Ω ({x} × ∂Bφ(x)), π(x, y) = x, for
everyx ∈ Ω there exist a probability measureλx supported on{x}×∂Bφ(x), (that we
will simply identify by ∂Bφ(x)) such that, for every Borel functionf : X → [0,+∞],

∫

Ω×RN

f(x, p) dµ =

∫

Ω

∫

∂Bφ(x)
f(x, p) dλx(p) dω(x) (3.33)

whereω = π♯µ. Thus it is left to prove thatω = |Dv0|φ and thatλx = δ
(

νv0(x)

φ(x,νv0(x))

)
.

Let us considerh ∈ Cc(Ω; RN ). Usingf(x, p) = h(x) · p in (3.33), we have
∫

Ω×RN

h(x) · p dµ =

∫

Ω
h(x) ·

∫

∂Bφ(x)
p dλx(p) dω(x). (3.34)

By weak star convergence and by the hypotheses we get
∫

Ω×RN

h(x) · p dµ = lim
ε→0

∫

Ω×RN

h(x) · p dµε

= lim
ε→0

∫

Ω
h(x) · Dvε(x)

φ(x,Dvε(x))
d|Dvε|φ

= lim
ε→0

∫

Ω
h(x) ·Dvε(x) dx =

∫

Ω
h(x) · dDv0(x)

(3.35)

By (3.34) and (3.35) we deduce that
(∫

∂Bφ(x)
pdλx(p)

)
dω(x) = dDv0(x)

which gives|Dv0|φ << ω. Thus there exists aω-measurable functionγ : Ω → R
+

such that|Dv0|φ = γω and that, forω-a.e.x ∈ Ω, it holds
∫

∂Bφ(x)
p dλx(p) =

νv0(x)

φ(x, νv0(x))
γ(x)

and then

φ

(
x,

∫

∂Bφ(x)
pdλx(p)

)
= γ(x). (3.36)

By (3.28) we finally have
∫

Ω

( ∫

∂Bφ(x)
φ(x, p)dλx(p)

)
dω(x) = µ(Ω × R

N) = lim
ε→0

µε(Ω × R
N )

= lim
ε→0

∫

Ω
d|Dvε|φ =

∫

Ω
d|Dv0|φ

=

∫

Ω
γ(x) dω(x) =

∫

Ω
φ

(
x,

∫

∂Bφ(x)
pdλx(p)

)
dω(x).

(3.37)
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By gathering together (3.36) and (3.37) we have

φ

(
x,

∫

∂Bφ(x)
p dλx(p)

)
=

∫

∂Bφ(x)
φ(x, p)dλx(p)

which, by the strict convexity ofφ, impliesλx = δ
(

νv0(x)

φ(x,νv0(x))

)
.
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