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Abstract

We define a manifold M where objects c ∈ M are curves, which we parame-
terize as c : S1 → lRn (n ≥ 2, S1 is the circle). Given a curve c, we define the
tangent space TcM of M at c including in it all deformations h : S1 → lRn of c.

We study geometries on the manifold of curves, provided by Sobolev–type
Riemannian metrics Hj .

We initially present some mathematical examples to show how the metrics Hj

simplify or regularize gradient flows used in Computer Vision applications.
We then provide some basilar results of Hj metrics; and, for the cases j =

1, 2, we characterize the completion of the space of smooth curves; we call this
completion(s) “H1 and H2 Sobolev–type Riemannian Manifolds of Curves”.

As a byproduct, we prove that the Fréchet distance of curves (see [MM06b])
coincides with the distance induced by the “Finsler L∞ metric” defined in §2.2 in
[YM04b].

1 Introduction
Suppose that c is an immersed curve c : S1 → lRn, where S1 ⊂ lR2 is the circle; we
want to define a geometry on M , the space of all such immersions c.

The tangent space TcM of M at c contains all the deformations h ∈ TcM of the
curve c, that are all the vector fields along c. Then, an infinitesimal deformation of the
curve c in “direction” h will yield (on first order) the curve c(u) + εh(u).

For the sake of simplicity, we postpone details of the definitions (in particular on
the regularity of c and h, and the topology on M ) to §2.

We would like to define a Riemannian metric on the manifold M of immersed
curves: this means that, given two deformations h, k ∈ TcM , we want to define a
scalar product 〈h, k〉c, possibly dependent on c. The Riemannian metric would then
entail a distance d(c0, c1) between the curves in M , defined as the infimum of the
length Len(γ) of all smooth paths γ : [0, 1] → M connecting c0 to c1. We call
minimal geodesic a path providing the minimum of Len(γ) in the class of γ with fixed
endpoints. (1)

At the same time, we would like to consider the curves as “geometric objects”; to
this end, we will define the space of geometrical curves B

def=M/Diff(S1), that is the
space of immersed curves up to reparametrization. To this end, we will ask that the
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(1)Note that this is an oversimplification of what we will actually do: compare definitions 8 and 10
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2 1 INTRODUCTION

metric (and all the energies) defined on M be independent of the parameterization of
the curves.

B and M are the Shape Spaces that are studied in this paper.

A number of methods have been proposed in Shape Analysis to define distances
between shapes, averages of shapes and optimal morphings between shapes. At the
same time, there has been much previous work in Shape Optimization, for example Im-
age Segmentation via Active Contours, 3D Stereo Reconstruction via Deformable Sur-
faces; in these later methods, many authors have defined Energy Functionals E(c) on
curves (or on surfaces), whose minima represent the desired Segmentation/Reconstruction;
and then utilized the Calculus of Variations to derive curve evolutions to search minima
of E(c), often referring to these evolutions as Gradient Flows. The reference to these
flows as gradient flows implies a certain Riemannian metric on the space of curves; but
this fact has been largely overlooked. We call this metric H0, and define it by

〈h, k〉H0
def=

1
L

∫
S1
〈h(s), k(s)〉ds

where h, k ∈ TcM , L is the length of c, ds
def=|ċ(θ)|dθ is integration by arc-parameter,

and 〈h(s), k(s)〉 is the usual Euclidean scalar product in lRn (that sometimes we will
also write as h(s) · k(s)).

For example, the well known Geometric Heat Flow is often referred as the gradient
flow for length: we show how it is indeed the gradient flow w.r.t. the H0 metric.

Example 1 Let c be an immersed curve, and h be a deformation of c. Let the differen-
tial operator Ds

def= 1
|ċ|∂θ be “the derivative with respect to arclength”. Let

len(c) def=
∫

S1
|ċ(θ)|dθ (1)

be the length of the curve; we recall that

∂ len(c)
∂h

=
∫

S1
〈Dsh · T 〉ds = −

∫
S1
〈h ·D2

sc〉ds (2)

where T = Dsc is the tangent to the curve, D2
sc is the curvature, intended as a vector.

Let C = C(θ, t) be an evolving family of curves trying to minimize L: we re-
call moreover that the resulting geometric heat flow (also known as motion by mean
curvature)

∂C

∂t
= D2

sC

is well defined only for positive times.
By comparing the above flow to the definition of H0, we realize that this flow is the

gradient descent (up to a conformal factor 1/ len(c)):

∂C

∂t
= − 1

len(c)
∇H0 len(c)

If one wishes to have a consistent view of the geometry of the space of curves in
both Shape Optimization and Shape Analysis, then one should use the H0 metric when
computing distances, averages and morphs between shapes.



3

Surprisingly, H0 does not yield a well define metric structure, since the associated
distance is identically zero (2).

Moreover, some simple Shape Optimization tasks are ill-defined when using the
H0 metric:

Remark 2 Let g : lRn → lRk, let

avg (g(c)) def=
1
L

∫
S1

g(c(s)) ds =
1
L

∫
S1

g(c(θ))|ċ(θ)|dθ ;

(here again L
def= len(c)); then

∂avg (g(c))
∂h

=
1
L

∫
S1
∇g(c)h + g(c)〈Dsh · T 〉ds−

− 1
L2

∫
S1

g(c) ds

∫
S1
〈Dsh · T 〉ds =

=
1
L

∫
S1
∇g(c)h +

(
g(c)− avg (g(c))

)
〈Dsh · T 〉ds (3)

If the curve is in the plane, that is n = 2, then we define the normal vector N ⊥ T
by rotating T counterclockwise, and define scalar curvature κ so that D2

sc = κN ;
then, integrating by parts, the above becomes

∂avg (g(c))
∂h

=
1
L

∫
S1

∂g

∂x
(c)h−

(∂g

∂x
(c(s))T

)
〈h · T 〉 −

−
(
g(c)− avg (g(c))

)
〈h ·D2

sc〉ds =

=
1
L

∫
S1

(∂g

∂x
(c)N − κ

(
g(c)− avg (g(c))

))
〈h ·N〉ds

Suppose now that we have a Shape Optimization functional E including a term of
the form avg (g(c)); let C = C(θ, t) be an evolving family of curves trying to minimize
E; this flow would contain a term of the form

∂C

∂t
= . . .

(
g(c(s))− g

)
κN . . .

unfortunately the above flow is ill defined: it is a backward heat flow on roughly half
of the curve. We present two simple examples.

• If for example g(x) = x, then avg (g(c)) = avg (c) is the center of mass of the
curve. Let us fix a target point v ∈ lR2. Let E(c) def= 1

2 |avg (c)−v|2 be a functional
that penalizes the distance from the center of mass to v; by direct computation

∂E

∂h
= (avg (c)− v) · ∂avg (c)

∂h
=

=
1
L

∫
S1

〈
(c− v) ·

(
N − κ(c− c)

)〉
〈h ·N〉ds

(where c = avg (c) for simplicity); so we conclude that the H0 gradient descent
flow is

∂C

∂t
= −∇H0E(c) = 〈(v − c) ·N〉N − κN

〈
(c− c) · (v − c)

〉
(4)

(2)This striking fact was first described in [Mum]; it is generalized to spaces of submanifolds in [MM05]
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(up to a part tangent to the curve).
P

v

c

c

Let P
def={w : 〈(w − c) · (v − c)

〉
≥ 0} be the halfplane

that is the region of the plane that is “on the v side” w.r.t.
c. This gradient descent flow (4) does move the center
of mass towards the point v: indeed there is a first term
〈(v − c) · N〉N that moves the whole curve towards v;
and a second term that tries to decrease the curve length
out of P and increase the curve length in P : and this is
ill posed.

• Similarly if g(x) = |x− c|2, then E(c) def=avg
(
|c− c|2

)
is the standard deviation

of the curve. The derivative is

2
L

∫
S1

(
〈(c− c) ·N〉 − κ

(
g(c)− avg (g(c))

))
〈h ·N〉ds

The flow to minimize this should be

∂C

∂t
= −〈(c− c) ·N〉N + κN

(
g(c)− avg (g(c))

)
and this is ill posed where the curve is inside of the circle of center avg (c) and
radius

√
avg (g(c))

The above phenomenon is also visible in many applications, where the Active Con-
tour curve would “fractalize” in an attempt to minimize the task energy. For this reason,
a regularization term is often added to the energy: this remedy, though, does change
the energy, and ends up solving a different problem.

§1.i Sobolev–type Riemannian Metrics
To overcome this limitation, in [SYM05] and [SYM06b] we proposed a family of So-
bolev–type Riemannian Metrics

Definition 3 Let c ∈ M , L be the length of c, and h, k ∈ TcM . Let λ > 0. We assume
h and k are parameterized by the arclength parameter of c. We define, for j ≥ 1
integer,

i). 〈h, k〉Hj

def= 〈h, k〉H0 + λL2j
〈
Dj

sh, Dj
sk
〉

H0

ii). 〈h, k〉H̃j

def=avg (h) · avg (k) + λL2j
〈
Dj

sh, Dj
sk
〉

H0

where again avg (h) def= 1
L

∫
S1 h(s) ds and Dj

s is the j-th derivative with respect to ar-
clength. (3)

It is easy to verify that the above definitions are inner products. Note that we have
introduced length dependent scale factors so that the above inner products (and corre-
sponding norms) are independent of curve rescaling.

Changing the metric will change the gradient and thus the gradient descent flow;
this change will alter the topology in the space of curves, but the change of topology
does not affect the energy to be minimized, or its global minima; whereas it may reg-
ularize the flows, and avoid that the flows be trapped in local minima; many examples
and applications can be found in the survey paper [SYM06a].

(3)Note that 〈h, k〉H0 = avg (h · k) so the difference in the two metrics is in using avg (h · k) instead of
avg (h) · avg (k)
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§1.ii Previous work

In [YM04a, YM04b, YM05] we addressed the problem of defining a metric in the
space M of parameterized immersed curves c : S1 → lRn (with special attention to the
case n = 2); we discussed the general setting of Finsler and Riemannian metrics, and
related problematics; we proposed a set of goal properties. we discussed some models
available in the literature. Eventually we proposed and studied conformal metrics such
as

〈h, k〉H0
φ

def= len(c)
∫
〈h(s), k(s)〉ds (5)

we proved results regarding this metric, and in particular, that the associate distance is
non degenerate. We also proved that, supposing that only unit length curves with an
upper bound on curvature are allowed, then there exist minimal geodesics.

The same approach was proposed independently by J. Shah in [Sha05], who more-
over proved that in the simplest case given by (5), minimal geodesics are represented
by a curve evolution whose velocity is proportional to the curve normal vector field.

Another possible definition appeared in [MM06b] (by Michor and Mumford), who
proposed the metric

〈h, k〉H0
A

def=
∫

(1 + Aκ2(s))〈h(s), k(s)〉ds (6)

where κ is the curvature of c, and A > 0 is a fixed constant; they proved many results
regarding this metric; in particular, that the induced distance is non degenerate, and
that completion of smooth curves is in between the space Lip of rectifiable curves, and
the space BV2 of rectifiable curves whose curvature is a bounded measure.

More recently in [SYM05] and [SYM06b] we studied the family of Sobolev–type
metrics defined in 3.

In [SYM05] we have experimentally shown that Sobolev flows are smooth in the
space of curves, are not as dependent on local image information as H0 flows, are
global motions which deform locally after moving globally, and do not require deriva-
tives of the curve to be defined for region-based and edge-based energies. In general,
Sobolev gradients can be expressed in terms of the traditional H0 gradient, that is, we
have the formulas

∇HnE = ∇H0E ∗Kλ,n (7)

∇H̃nE = ∇H0E ∗ K̃λ,n (8)

for suitable convolutional kernels K̃λ,n,Kλ,n. We have moreover shown mathemati-
cally that the Sobolev–type gradients regularize the flows of well known energies, by
reducing the degree of the P.D.E., as shown in this example:

Example 4 in the case of the elastic energy E(c) =
∫

c
κ2 ds =

∫
c
|D2

sc|2 ds, the H0

gradient is ∇H0E = LDs(2D
(3)
s c + 3|D2

sc|2Dsc) that includes fourth order deriva-
tives; whereas the H̃1-gradient is

Lcss + L(|Dssc|2Dsc) ∗ K̃λ,1 (9)

that is an integro-differential second order P.D.E.
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In [SYM06b] and [SYM06a] we have shown numerical experiments on real-life
cases, and shown that the regularizing properties may be explained in the Fourier do-
main: indeed, if we calculate Sobolev gradients ∇HnE of an arbitrary energy E in the
frequency domain, then

∇̂HnE(l) =
∇̂H0E(l)

1 + λ(2πl)2n
for l ∈ Z (10)

and

∇̂H̃nE(0) = ∇̂H0E(0), ∇̂H̃nE(l) =
∇̂H0E(l)
λ(2πl)2n

for l ∈ Z\{0}, (11)

(see eqn. 13 for the precise definition of Fourier coefficients). It is clear from the
previous expressions that high frequency components of∇H0E(c) are increasingly less
pronounced in the various forms of the Hn gradients.

A family of metrics similar to the first example above (but for the length dependent
scale factors) is currently studied in [MM06a]: the Sobolev-type weak Riemannian
metric on Imm(S1,R2)

〈h, k〉Gn
c

=
∫

S1

n∑
i=0

〈Di
sh, Di

sk〉ds =
∫

S1
〈An(h), k〉ds where

An(h) = An,c(h) =
n∑

i=0

(−1)iD2i
s (h)

in that paper the geodesic equation, horizontality, conserved momenta, lower and upper
bounds on the induced distance, and scalar curvatures are computed. Note that this
norm is equivalent to the norms in 3: see remark 19.

Many other approaches to Shape Analysis are present in the literature; for example,
much earlier than the above, Younes in [You98] had proposed a computable definition
of distance of curves, modeled on elastic curves.

A different approach to the study of shapes is obtained when the shape is defined
to be a curve up to reparametrization, rotation, translation, scaling.

For example Mio, Srivastava et al in [KSMJ03, MS04] use a different choice of
curve representation: they represent a planar curve c by a pair of angle-velocity func-
tions ċ(u) = exp(φ(u) + iθ(u)) (identifying lR2 = IC), and then defining a metric
on (φ, θ). They propose models of spaces of curves where the metrics involve higher
order derivatives in [KSMJ03]. See the proof of thm. 24 for an example comparison of
the two approaches.

§1.iii Paper outline
In the rest of this paper we present a mathematical study of the geometries presented in
[SYM05, SYM06b, SYM06a]; our end aim being a characterization of the Riemannian
Geometry induced by H1 and H2 metrics. In section 2 we properly define the model
space for the manifold of curves, and discuss benefits and shortcomings of different
choices of hypotheses. In section §2.i we define the Fréchet distance of curves (see
[MM06b]) and prove that it coincides with the distance induced by the “Finsler L∞

metric” defined in §2.2 in [YM04b]. In Section 3 we define Hj Sobolev–type Rieman-
nian metrics, prove some basilar properties; eventually we characterize the completion
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of smooth curves in the H1 and H2 metric: this complete spaces are the “H1 and H2

Sobolev–type Riemannian Manifolds of Curves”.

2 Spaces of curves
As anticipated in the introduction, we want to define a geometry on M , the space of all
immersions c : S1 → lRn.

We will sometimes distinguish exactly what M is, choosing between the space
Imm(S1, lRn) of immersions, the space Immf (S1, lRn) of free immersions, and Emb(S1, lRn)
of embeddings (see §2.4,§2.5 in [MM06b]).

We will equip M with a topology τ stronger than the C1 topology: then any such
choice M is an open subset of the vector space C1(S1, lRn) (that is a Banach space),
so it is a manifold.

The tangent space TcM of M at c contains vector fields h : S1 → lRn along c.
Note that we represent both curves c ∈ M and deformations h ∈ TcM as functions

S1 → lRn; this is a special structure that is not usually present in abstract manifolds:
so we can easily define “charts” for M :

Remark 5 (Charts in M ) Given a curve c, there is a neighbourhood Uc of 0 ∈ TcM
such that for h ∈ Uc, the curve c + h is still immersed; then this map h 7→ c + h is the
simplest natural candidate to be a chart of Φc : Uc → M ; indeed, if we pick another
curve c̃ ∈ M and the corresponding Uc̃ such that Uc̃ ∩ Uc 6= ∅, then the equality
Φc(h) = c + h = c̃ + h̃ = Φc̃(h̃) can be solved for h to obtain h = (c̃− c) + h̃.

The above is trivial but is worth remarking for two reasons: it stresses that the topology
τ must be strong enough to mantain immersions; and is a basis block to what we will
do in the space Bi,f defined below.

We look mainly for metrics in the space M that are independent on the parameter-
ization of the curves c: to this end, we define these spaces of geometrical curves

Bi = Bi(S1, lR2) = Imm(S1, lR2)/Diff(S1)

and
Bi,f = Bi,f (S1, lR2) = Immf (S1, lR2)/Diff(S1)

that are the quotients of the spaces Immf and Immf (S1, lR2) by Diff(S1); alternatively
we may quotient by Diff+(S1) (the space of orientation preserving automorphisms of
S1), and obtain spaces of geometrical oriented curves.

Remark 6 (on model spaces and properties) We have two possible choices in mind
for the topology τ to put on M : the Fréchet space of C∞ functions; or a Hilbert space
such as standard Sobolev space Hj(S1 → lRn).

Suppose we define on M a Riemannian metric: we would like Bi to have a nice
geometrical structure; we would like our Riemannian Geometry to satisfy some useful
properties.

Unfortunately, this currently seems an antinomy.
If M is modeled on a Hilbert space Hj , then most of the usual calculus carries

on; for example, the exponenential map would be locally a diffeomorphism; but the
quotient space M/Diff(S1) is not a smooth bundle, (since the tangent to the orbit
contains ċ and this is in Hj−1 in general!).
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If M is modeled on the Fréchet space of C∞ functions, then the quotient space
M/Diff(S1) is a smooth bundle; but some of the usual calculus fails: the Cauchy
theorem does not hold in general; and the exponenential is not locally surjective.

Suppose in the following that τ is the Fréchet space of C∞ functions, for simplicity;
then Bi,f is a manifold, the base of a principal fiber bundle while Bi is not (see in §2.4.3
in [MM06b]).

To define charts on this manifold, we imitate what was done for M :

Proposition 7 (Charts in Bi,f ) Let Π be the projection from Immf (S1, lR2) to the
quotient Bi,f .

Let [c] ∈ Bi,f : we pick a curve c such that Π(c) = [c]. We represent the tangent
space T[c]Bi,f as the space of all k : S1 → lRn such that k(s) is orthogonal to ċ(s).

Again we can define a simple natural chart Φ[c] by projecting the chart Φc (defined
in 5): the chart is

Φ[c](k) def=Π(c(·) + k(·))

that is, it moves c(u) in direction k(u); and it is easily seen that the chart does not
depend on the choice of c such that Π(c) = [c]. We can solve Φ[c](k) = Φ[c̃](k̃) (this is
not so easy to prove: see [MM06b], or 4.4.7 and 4.6.6 in [Ham82]).

We now define a Finsler metric F on M ; this is a lower semi continuous function
F : TM → lR+ such that F (c, ·) is a norm on TcM , for all c.

If γ : [0, 1] → M is a path connecting two curves c0, c1, then we may define a
homotopy C : S1 × [0, 1] → lRn associated to γ by C(θ, v) = γ(v)(θ), and viceversa.

Definition 8 (standard distance) Given a metric F in M , we could consequently de-
fine the standard distance of two curves c0, c1 as the infimum of the length∫ 1

0

F (γ(t), γ̇(t)) dt

in the class of all γ connecting c0, c1.

This is not, though, the most interesting distance for applications: we are indeed inter-
ested in studying metrics and distances in the quotient space B

def=M/Diff(S1).
We suppose that

Definition 9 the metric F (c, h) is “curve-wise parameterization invariant”, that is, it
does not depend on the parameterization of the curves c

then F may be projected to B
def=M/Diff(S1); we will say that F is a geometrical

metric.

c1
oφ’

γ’

c
0

Oc
Consider two geometrical curves [c0], [c1] ∈ B, and a path
γ : [0, 1] → Bi connecting [c0], [c1]: then we may lift it to a
homotopy C : S1 × [0, 1] → lRn; in this case, the homotopy
will connect a c0 ◦ φ0 to c1 ◦ φ1, with φ0, φ1 ∈ Diff(S1).
Since F does not depend on the parameterization, we can
factor out φ0 from the definition of the projected length.

To summarize, we define the
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Definition 10 (geometric distance) Given c0, c1, we define the class A of homotopies
C connecting the curve c0 to a reparameterization (4) c1 ◦ φ of the curve c1, that is,
C(u, 0) = c0(u) and C(u, 1) = c1(φ(u)). We define the geometric distance dF of
[c0], [c1] in B

def=M/Diff(S1) as the infimum of the length

LenF (C) def=
∫ 1

0

F (C(·, v), ∂vC(·, v)) dv

in the class of all such C ∈ A. (5)

Any homotopy that achives the minimum of LenF (C) is called a geodesic.

We call such distances dF (c0, c1), dropping the square brackets for simplicity. (6)

We provide an interesting example of the above ideas.

§2.i L∞-type Finsler metric and Fréchet distance
We digress from the main theme of the paper to prove a result that will be used in the
following.

For any fixed immersed curve c and θ ∈ S1, we define for convenience πN : lRn →
lRn to be the projection on the space N(θ) orthogonal to the tangent vector Dsc(θ),

πN(θ)w = w − 〈w,Dsc(θ)〉Dsc(θ) ∀w ∈ lRn. (12)

Consider two immersed curves c0 and c1; the Fréchet distance df (as found in
[MM06b]) is defined by

Definition 11 (Fréchet distance)

df (c0, c1)
def= inf

φ
sup

u
|c1(φ(u))− c0(u)|

where u ∈ S1 and φ is chosen in the class of diffeomorphisms of S1.

This is a well defined distance in the space Bi (that is not, though, complete w.r.t. this
distance: its completion is the space of Fréchet curves).

Another similar distance was defined in §2.2 in [YM04b] by a different approach,
using a Finsler metric:

Definition 12 (Finsler L∞ metric) If we wish to define a norm F (c, ·) on TcM that
is modeled on the norm of the Banach space L∞(S1 → lRn), we define

F∞(c, h) def=‖πNh‖L∞ = sup
θ
|πN(θ)h(θ)|

We define the distance d∞(c0, c1) as in 10.

Section §2.2.1 in [YM04b] discusses the relationship between the distance d∞ and the
Hausdorff distance of compact sets; we discuss here the relationship between df and
d∞: indeed we prove that df = d∞.

(4)If we use Diff+(S1) to define B then φ must be orientation preserving as well.
(5)Note the difference between Len(C) and len(c), that was defined in eqn. (1).
(6)We are abusing notation: these dF are not, properly speaking, distances in the space M , since the

distance between c and a reparameterization c ◦ φ is zero.
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Theorem 13 df = d∞.

Proof. Fix c0 and c1, and define A as in 10.
We recall that d∞ is also equal to the infimum of

d∞(c0, c1) = inf
C∈A

∫ 1

0

sup
θ

∣∣∂C

∂v
(θ, v)

∣∣ dv

as well (the proof follows immediatly from prop. 3.10 in [YM04b])
Consider a homotopy C = C(u, v) ∈ A connecting the curve c0 to a reparameter-

ization c1 ◦ φ of the curve c1:

sup
u
|c1(φ(u))− c0(u)| = sup

u
|C(u, 1)− C(u, 0)| =

= sup
u

∣∣∣∣∫ 1

0

∂C

∂v
(u, v) dv

∣∣∣∣ ≤ ∫ sup
u

∣∣∣∂C

∂v
(u, v)

∣∣∣ dv

so that df ≤ d∞.
On the other side, let

Cφ(θ, v)def=(1− v)c0(θ) + vc1(φ(θ))

be the linear interpolation: then

∂Cφ

∂v
(u, v) = c1(φ(u))− c0(u)

(that does not depend on v) so that

sup
u

∣∣∣∣∫ 1

0

∂Cφ

∂v
(u, v) dv

∣∣∣∣ = ∫ sup
u

∣∣∣∂Cφ

∂v
(u, v)

∣∣∣ dv

and then, for that particular homotopy Cφ,

Len∞(Cφ) = sup
u
|c1(φ(u))− c0(u)|

we compute the infimum of all possible choices of φ and get that

d∞(c0, c1) = inf
C

Len∞(C) ≤ inf
φ

Len∞(Cφ) = inf
φ

sup
u
|c1(φ(u))−c0(u)| = df (c0, c1)

The theorem holds as well if we use orientation preserving diffeomorphism Diff+(S1)
both in the definition of the Fréchet distance and in the definition of L∞.

3 Sobolev-type Hj metrics
We start by generalizing the definition 3. Fix λ > 0. Suppose that h ∈ L2, then we can
express it in Fourier series:

h(s) =
∑
l∈Z

ĥ(l) exp
(

2πi

L
ls

)
(13)
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where ĥ ∈ `2(Z→ C).
For any α > 0, given the Fourier coefficients ĥ, k̂ : Z → C of h, k, we define the

fractional Sobolev inner product

〈h, k〉Hα
0

def=
∑
l∈Z

(2πl)2αĥ(l) · k̂(l) (14)

that is independent of curve scaling; then we can define

〈h, k〉Hα

def=avg (h · k) + λ 〈h, k〉Hα
0

〈h, k〉H̃α

def=avg (h) · avg (k) + λ 〈h, k〉Hα
0

(15)

When α = j integer, these definition coincide with the one in 3. So, for any α > 0,
we represent the Sobolev–type metrics by

〈h, k〉Hα =
∑
l∈Z

(1 + λ(2πl)2α)ĥ(l) · k̂(l) (16)

〈h, k〉H̃α = ĥ(0) · k̂(0) +
∑
l∈Z

λ(2πl)2αĥ(l) · k̂(l). (17)

Remark 14 Unfortunately for j that is not an integer, the inner products (therefore,
norms) are not local, that is, they cannot be written as integrals of derivatives of the
curves. An interesting representation is by kernel convolution: given r ∈ R+, we can
represent them, for j integer j > r + 1/4, as

〈h, k〉H̃r =
∫

c

∫
c

Djh(s)K(s− s̃)Djk(s̃) dsds̃

that is, 〈h, k〉H̃r =
〈
Djh, K ∗Djk

〉
H0 , for a specific kernel K, ( ∗ denotes convolu-

tion in S1 w.r.t. arc parameter).

Remark 15 The norm ‖h‖H̃j has an interesting interpretation in connection with ap-
plications in Computer Vision.

Consider a deformation h ∈ TcM and write it as h = avg (h)+h̃: this decomposes

TcM = lRn ⊕DcM (18)

with
DcM

def=
{

h : S1 → lRn | avg (h) = 0
}

If we assign to lRn its usual euclidean norm, and to DcM the scale-invariant Hα
0

norm defined in eqn. (14), then we are naturally lead to decompose as in eqn. (15), that
is

‖h‖2
H̃α = |avg (h) |2lRn + λ‖h̃‖2

Hα
0

(19)

This means that the two spaces lRn and DcM are orthogonal w.r.t. H̃α.
In the above, lRn is akin to be the space of translations and DcM the space of non-

translating deformations. That labeling is not rigorous, though! since the subspace of
TcM that does not move the center of mass avg (c) is not DcM , but rather{

h :
∫

S1
h +

(
c− avg (c)

)
〈Dsh · T 〉ds = 0

}



12 3 SOBOLEV-TYPE HJ METRICS

according to eqn. (3).
The decomposition (19) is at the base of a two step alternating algorithm for min-

imization of H̃1 Sobolev Active Contours (see §3.4 in [SYM05]), where the tracking
of contours is done by, alternatively, minimizing an energy on curves translations, and
then on curves deformations in DcM with the metric ‖h̃‖H1

0
. The resulting algorithm

is independent of the choice of λ.
Note that

√
〈h, h〉Hα

0
is a norm on DcM (by (21)), and it is a seminorm and not a

norm on TcM .

We define Finsler norms as

FHj (c, h) = ‖h‖Hj =
√
〈h, h〉Hj , FH̃j (c, h) = ‖h‖H̃j =

√
〈h, h〉H̃j

and consequently we define distances dHj and dH̃j as explained in 10.

§3.i Preliminary results
We improve a result from [SYM05] (7): we show that the norms associated with the
inner products Hj and H̃j are equivalent. We first prove

Lemma 16 (Poincaré inequalities) Pick h : [0, L] → lRn, weakly differentiable, with
h(0) = h(L) (so h is periodically extensible) so that

h(u)− h(0) =
∫ u

0

h′(s) ds = −
∫ L

u

h′(s) ds

then derive these equations

h(u)− h(0) =
1
2

(∫ u

0

h′(s) ds−
∫ L

u

h′(s) ds

)
⇒

⇒ avg (h)− h(0) =
1

2L

∫ L

0

(∫ u

0

h′(s) ds−
∫ L

u

h′(s) ds

)
du ⇒

⇒ |avg (h)− h(0)| ≤ 1
2L

∫ L

0

(∫ u

0

|h′(s)|ds +
∫ L

u

|h′(s)|ds

)
du =

=
1

2L

∫ L

0

(∫ L

0

|h′(s)|ds

)
du =

1
2

∫ L

0

|h′(s)|ds

so that (by extending h and replacing 0 with an arbitrary point)

sup
u
|h(u)− avg (h) | ≤ 1

2

∫ L

0

|h′(s)|ds (20)

the constant 1/2 is optimal and is approximated by a family of h such that

h′(s) = a(1[0,ε)(s)− 1[ε,2ε)(s))

when ε → 0 (for a fixed a ∈ lRn). (8)

(7)and we provide a better version that unfortunately was prepared too late for the printed version of
[SYM05]

(8)
1A(x) is the characteristic function, taking value 1 for x ∈ A, 0 for x 6∈ A.
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By using Hölder inequality we can then derive many useful Poincaré inequalities
of the form ‖h− avg (h) ‖p ≤ cp,q,j‖h′‖q. By Fourier transform we can also prove for
p = q = 2 that ∫ L

0

|h(s)− avg (h) |2 ds ≤ L2j

(2π)2j

∫ L

0

|h(j)(s)|2 ds (21)

where the constant c2,2,j = (L/2π)2j is optimal and is achieved by h(s) = a sin(2πs/L)
(with a ∈ lRn). (9)

Proposition 17 Fix a smooth immersed curve c : S1 → lRn, let L = len(c). By
Hölder’s inequality, we have that |avg (h) |2 ≤ 1

L

∫ L

0
|h(s)|2 ds so that ‖h‖H̃j ≤

‖h‖Hj . On the other hand,

1
L

∫ L

0

|h(s)− avg (h) |2 ds =
1
L

∫ L

0

|h(s)|2 ds− |avg (h) |2 (22)

so that (by the Poincaré inequality (21)),

‖h‖2
Hj =

∫ L

0

1
L
|h(s)|2 + λL2j−1|h(j)(s)|2 ds

=
1
L

∫ L

0

|h(s)− avg (h) |2 ds +
∫ L

0

λL2j−1|h(j)(s)|2 ds + |avg (h) |2

≤ |avg (h) |2 + L2j−1
( 1

(2π)2j
+ λ
)∫ L

0

|h(j)(s)|2 ds ≤ 1 + (2π)2jλ

(2π)2jλ
‖h‖2

H̃j

Consequently,

dH̃j ≤ dHj ≤

√
1 + (2π)2jλ

(2π)2jλ
dH̃j

More in general

Proposition 18 For i = 0, . . . , j, choose a0 ≥ 0 and ai ≥ 0 with a0 + a0 > 0 and
aj > 0. Define a Hj-type Riemannian norm (10)

‖h‖2
(a),j

def=a0|avg (h) |2 +
j∑

i=0

aiL
2i−1

∫ L

0

|h(i)(s)|2ds (23)

then all such norms are equivalent.
Moreover, choose r with 1 ≤ r ≤ j, and choose b0 ≥ 0, bi ≥ 0 with b0 + b0 >

0, br > 0: then the norm ‖h‖(a),j is stronger than the norm ‖h‖(b),r.

Proof. The proof is just an application of (22) and of (21) (repeatedly); note also that
for 1 ≤ i < j equation (21) becomes∫ L

0

|h(i)(s)|2 ds ≤ L2j−2i

(2π)2j−2i

∫ L

0

|h(j)(s)|2 ds (24)

since avg
(
h(i)
)

= 0.

(9)This h is not the only solution; for n = 2 we also have h(s) = (cos(2πs/L), sin(2πs/L)).
(10)the scalar product can be easily inferred
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So our definitions of ‖ · ‖Hj and ‖ · ‖H̃j are in a sense the simpler choices of a
Sobolev type norm that are scale invariant; in particular,

Remark 19 the Hj type metric

‖h‖2
M

def=
∫ j∑

i=0

|h(i)(s)|2 ds

studied in [MM06a] is equivalent to our choices,

b1‖ · ‖H̃j ≤ ‖ · ‖M ≤ b2‖ · ‖H̃j

but the constants b1, b2 depend on the length of the curve.

Following these propositions, we will prove some properties of the H1 metric, and
we will know that they can be extended to H̃1 and to more general Hj-type metrics
defined as in (23).

We prove this fundamental inequality (25):

Proposition 20 Fix a smooth immersed curve c : S1 → lRn, let L = len(c).
We rewrite for convenience

‖h‖2
H1 ≥ λL2 〈h′, h′〉H0 = λL

∫ L

0

|h′(s)|2 ds = λ

∫
|ċ(u)|du

∫
|h′(u)|2|ċ(u)|du

where h′ = Dsh; then by Cauchy-Schwartz∫
|ċ(u)|du

∫
|h′(u)|2|ċ(u)|du ≥

(∫
|h′(u)||ċ(u)|du

)2

Suppose now that C(u, v) is a smooth homotopy of immersed curves C(·, v): then set
h(u, v) = ∂vC(u, v) so that Dsh = Ds∂vC = ∂uvC/|∂uC|. Summarizing the above

‖∂vC(·, v)‖H1 ≥
√

λ

∫
|∂uvC(u, v)|du (25)

As argued in 18, the above result extends to all Hj-type norms (23) .

We related the H1-type metric to the L∞ type metrics

Proposition 21 The H̃1 metric is stronger than the L∞ metric defined in 12.
As a consequence, by theorem 17 and 13, the Hj and H̃j distances are lower

bounded by the Fréchet distance (with appropriate constants depending on λ).

Proof. Indeed, by (20) there follows

sup
θ
|πN(θ)h(θ)| ≤ sup

θ
|h(θ)| ≤ |avg (h) |+ 1

2

∫
|h′|ds ≤

≤ |avg (h) |+
√

L

2

√∫
|h′|2ds ≤

√
2

√
|avg (h) |2 +

L

4

∫
|h′|2ds

(πN was defined in eqn. (12)). For example, choosing λ = 1/4,

F∞(c, h) ≤
√

2‖h‖H̃1
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We also establish relationship between the length len(c) of a curve and the Sobolev
metrics:

Proposition 22 Suppose again that C(u, v) is a smooth homothopy of immersed curves,
let L(v) def= len(C(·, v)) be the length at time v; then

∂vL =
∫
〈∂uvC,

∂uC

|∂uC|
〉du ≤

∫
|∂uvC|du ≤ 1√

λ
‖Cv(·, v)‖H1

by (25).

We have many interesting consequences:

•
|L(1)− L(0)| ≤ 1√

λ
Len(C) (26)

where the length Len(C) of the homotopy/path C is computed using either H1

or H̃1 (or using any metric as in (23) above, but in this case the constant in (26)
would change).

• Define the length functional c 7→ len(c) on our space of curves; embed the space
of curves with a H1 metric; then the length functional is Lipschitz.

• The “zero curves” are the constant curves (that have zero length); these are points
in the space of curves where the space of curves is, in a sense, singular; by the
above, the “zero curves” are a closed set in the H1 space of curves, and an
immersed curve c is distant at least len(c)

√
λ from the “zero curves”.

But the most interesting consequence is that

Theorem 23 (Completion of B1 w.r.t. H1) let dH1 be the distance induced by H1;
the metric completion of the space of curves is contained in the space of all rectifiable
curves.

Proof. This statement is a bit fuzzy: indeed dH1 is not a distance on M , whereas in
B objects are not functions, but classes of functions. So it must be intended “up to
reparametrization of curves”, as follows. (11)

Let (cn)n∈lN be a Cauchy sequence. Since dH1 does not depend on parametriza-
tion, we assume that all cn are parametrized by arc parameter, that is, |∂θcn| = ln
constant in θ. By proposition 21 , all curves are contained in a bounded region;
since len(cn) = 2πln by proposition 22 above, the sequence ln is bounded. So the
(reparametrized) family (cn) is equibounded and equilipschitz: by Ascoli-Arzelà the-
orem, up to a subsequence, we obtain that cn converges uniformly to a Lipschitz curve
c, and |∂θc| ≤ limn ln.

We also prove that

Theorem 24 Any rectifiable planar curve is approximable by smooth curves according
to the distance induced by H1.

(11)The concept is clarified by introducing the concept of horizontality in M , that we must unfortunately
skip for sake of brevity
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Proof. Let c be a rectifiable curve, and assume that it is non-constant.
As a first step, we assume that c is not flat, that is, the image of c is not contained

in a line in the plane. We sketch how we can approximate c by smooth curves. The
precise arguments are in section 2.1.4 in [YM04b]; see in particular the proofs of 2.12
and 2.15 in the appendix. Since the metric is independent of reparametrization and
rescaling, we rescale c, and assume that |∂θc| = 1.

We identify S1 with [0, 2π). Let in the following L2 = L2([0, 2π]. We define the
measurable angle function to be a function τ : [0, 2π) → [0, 2π) such that ∂θc(θ) =
(cos τ(θ), sin τ(θ)). We define

S =
{
τ ∈ L2([0, 2π]) | φ(τ) = (0, 0)

}
where φ : L2 → lR2 is defined by

φ1(τ) =
∫ 2π

0

cos τ(s)ds , φ2(τ) =
∫ 2π

0

sin τ(s)ds

(this is similar to what was done in Srivastava et al. works on “Shape Representation
using Direction Functions”, see [KSMJ03]).

As proved in 2.12 in [YM04b], S is a manifold near τ . As shown in the proof
of 2.15 in [YM04b], there exists a function π : V → S defined in a neighbourhood
V ⊂ L2 of τ such that, if f(s) ∈ L2 is smooth, then π(f)(s) is smooth. Let fn be a
smooth approximation of τ , with fn → τ in L2; then gn

def=π(fn) → τ . Let then

Gn(θ, t)def=π(tτ + (1− t)gn)(θ)

be a the projection on S of the linear path connecting τ to gn. Since S is smooth in
V , then the L2 distance ‖τ − gn‖ is equivalent to the geodesic induced distance; in
particular,

lim
n
ES(Gn) = 0

where

ES(G)def=
∫ 1

0

‖∂tG(·, t)‖2
L2 dt

is the action of the path G in S ⊂ L2.
The above Gn can be associated to an homotopy by definining

Cn(s, t)def=c(0) +
∫ s

0

(cos(Gn(θ, t)), sin(Gn(θ, t))) dθ

note that Cn(s, 0) = c(s) and Cn(s, 1) is a smooth closed curve.
We now compute the H̃1 action of Cn,

EH̃1(Cn)def=
∫ 1

0

‖∂tCn‖2
H1 dt =

∫ 1

0

∫ 2π

0

|∂tCn|2 + |Ds∂tCn|2 dsdt

Since any Cn(·, t) is by arc parameter, then Ds∂tCn = ∂stCn so

Ds∂tCn = N(s)∂tGn(s, t)

where
N(s)def=(− sin(Gn(s, t)), cos(Gn(s, t)))
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is the normal to the curve; so the second term in the action EH1(Cn) is exactly equal
to ES(Gn), that is,

EH1(Cn) =
∫ 1

0

‖∂tCn‖2
H1 dt =

∫ 1

0

∫ 2π

0

|∂tCn|2 dsdt + ES(Gn)

We can also prove that
∫ 1

0

∫ 2π

0
|∂tCn|2 dsdt → 0, so EH1(Cn) → 0, and then

lim
n

LenH1(Cn) = 0

As a second step, to conclude, we assume that c is flat, that is, the image of c is
contained in a line in the plane; then, up to translation and rotation,

c(θ) = (c1(θ), 0)

since c is by arc parameter, ċ1 = ±1. Let then f : [0, 2π] be smooth and with support
in [1, 3] and f(2) = 1; let moreover

C(θ, t)def=(c1(θ), tf(θ))

so
|∂θC| =

√
1 + (f ′(θ))2 ≥ 1

and then, by direct computation, we can prove that

LenH1(C) < ∞

moreover, any curve C(·, t) for t > 0 is not flat, so it can be approximated by smooth
curves

§3.ii The completion of M according to H2 distance
Let d(c0, c1) be the geometric distance induced by H2 on M (as defined in 10). Let
E(c)def=

∫
|D2

sc|2 ds be defined on non-constant smooth curves. We prove that

Theorem 25 E is locally Lipschitz in M w.r.t. d, and the local Lipschitz constant
depends on the length of c.

As a corollary, all non-constant curves in the completion of C∞(S1 → lRn) ac-
cording to the metric H2 admit curvature as a measurable function, and the curvature
satisfies E(c) < ∞.

Viceversa, any non-constant curve admitting curvature in a weak sense and satis-
fying E(c) < ∞ is approximable by smooth curves.

The rest of this section is devoted to proving the above three statements.
Fix a curve c0; let L0

def= len c0 be its length.
By eqn. (26) and prop. 18, we know that the “length function” c 7→ len(c) is

Lipschitz in M w.r.t the distance d, that is,

| len c0 − len c1| ≤ a1d(c0, c1)

where a1 is a positive constant (dependent on λ).
Choose any c1 with d(c0, c1) < L0/(4a1).
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Let C(θ, t) be a time varying smooth homotopy connecting c0 to (a reparametriza-
tion of) c1; choose it so that Len C < 2d(c0, c1); then Len C < L0/(2a1).

Let L(t)def= lenC(·, t) be the length of the curve at time t. Since at all times t ∈
[0, 1], d(c0, C(·, t)) < L0/(2a1), then |L(t)− L0| < a1L0/(2a1) = L0/2; in particu-
lar,

L0/2 < L(t) < L03/2 .

By using this last inequality, we are allowed to discard L(t) in most of the following
estimates.

We call ‖f‖def=
√∫

|f(s)|2 ds and

N(t)def=‖D2
s∂tC(·, t)‖ =

√∫
|D2

s∂tC|2 ds

for convenience; using this notation, we recall that

‖∂tC‖H2 =

√
λL(t)3N(t)2 +

1
L(t)

‖∂tC‖2 ;

so ‖∂tC‖H2 ≥
√

λL3/2N(t).
Up to reparametrization in the t parameter, we can suppose that the path t 7→ C(·, t)

in M is by (approximate) arc parameter, that is ‖∂tC‖H2 is (almost) constant in t; so
we assume, with no loss of generality, that ‖∂tC‖H2 ≤ 2d(c0, c1) for all t ∈ [0, 1], and
then N(t) ≤ a2d(c0, c1) where a2 = 2/

√
(L0/2)3λ.

We want to prove that

E(c1)− E(c0) ≤ a5d(c0, c1)

where the constant a5 will depend on L0 and λ.
By direct computation

∂tE(C(·, t)) =
∫
|D2

sC|2〈Ds∂tC,DsC〉ds + 2
∫
〈D2

sC, ∂tD
2
sC〉ds

we deal with the two addenda in this way:

i). by Poincaré inequality (20) we deduce

sup
θ
|Ds∂tC| ≤

1
2

∫
|D2

s∂tC|ds ≤
√

L(t)

√∫
|D2

s∂tC|2 ds =
√

L(t)N(t)

since avg (Ds∂tC) = 0.

So we estimate the first term as∫
|D2

sC|2〈Ds∂tC,DsC〉ds ≤ E(C)
√

L(t)N(t) .

ii). The commutator of Ds and ∂t is 〈Ds∂tc,Dsc〉Ds: indeed

∂tDs =
1

|∂θc|
∂θ∂t + (∂t

1
|∂θc|

)∂θ = Ds∂t −
〈∂t∂θc, ∂θc〉
|∂θc|3

∂θ =

= Ds∂t − 〈Ds∂tc,Dsc〉Ds



§3.ii The completion of M according to H2 distance 19

so

∂tD
2
sC = Ds∂tDsC − 〈Ds∂tC,DsC〉D2

sC =
= D2

s∂tC −Ds(〈Ds∂tC,DsC〉DsC)− 〈Ds∂tC,DsC〉D2
sC =

= D2
s∂tC − (〈D2

s∂tC,DsC〉DsC)− (〈Ds∂tC,D2
sC〉DsC)−

−2(〈Ds∂tC,DsC〉D2
sC)

so (since |DsC| = 1)

‖∂tD
2
sC‖ ≤ 2‖D2

s∂tC‖+ 3‖D2
sC‖ sup |Ds∂tC|

that yields an estimate of the second term∫
〈D2

sC, ∂tD
2
sC〉ds ≤

√
E(C)

(
2N(t) + 3

√
E(C)

√
L(t)N(t)

)
by using Cauchy-Schwartz.

Summing up

|∂tE(C(·, t))| ≤ 2
√

E(C)N(t) + 4E(C)
√

L(t)N(t)

or, since
√

x ≤ 1 + x,

|∂tE(C(·, t))| ≤ 2N(t) + 2E(C)N(t) + 4E(C)
√

L(t)N(t)

We recall that N(t) ≤ a2d(c0, c1), L(t) ≤ L03/2, so we rewrite the above as

|∂tE(C(·, t))| ≤ 2a2d(c0, c1) + 2E(C)a2d(c0, c1) + 4E(C)a4a2d(c0, c1)

with a4 =
√

L03/2. Apply Gronwall’s Lemma to obtain

E(c1) ≤
(
E(c0) + 2a2d(c0, c1)

)
exp

(
(2 + 4a4)a2d(c0, c1)

)
.

Let
g(y)def=

(
E(c0) + 2a2y

)
exp

(
(2 + 4a4)a2y

)
then E(c1) ≤ g(d(c0, c1)); since g is convex, and g(0) = E(c0), then there exists a
a5 > 0 such that g(y) ≤ E(c0) + a5y when 0 ≤ y ≤ L0/(4a1); since we assumed
that d(c0, c1) < L0/(4a1), then

E(c1) ≤ E(c0) + a5d(c0, c1) .

Note that a5 is ultimately dependent on L0 and λ.
This ends the proof of the first statement of 25.

To prove the second statement, let (cn)n∈lN be a Cauchy sequence. Since dH1 ≤
adH2 , then as in the proof of 23, we assume that, up to reparametrization and a choice
of subsequence, cn converges uniformly to a Lipschitz curve c.

Let L0 = len c. We have assumed in the statement that c is non-constant; then
L0 > 0.

Again, the “length function” c 7→ len(c) is Lipschitz, so we know that the sequence
len(cn) is Cauchy in lR, so it converges; moreover the “length function” c 7→ len(c) is



20 3 SOBOLEV-TYPE HJ METRICS

lower semicontinuous w.r.t. uniform convergence, so limn len(cn) ≥ len(c) > 0. So
we assume, up to a subsequence, that 2L0 ≥ len(cn) ≥ L0

We proved above that, in a neighbourhood of c of size L0/(8a1), the function
E(c)def=

∫
|D2

sc|2 ds is Lipschitz; so we know that the sequence E(cn) is bounded, and
then (since curves are by arc parameter and len(cn) ≥ L0) the energy

∫
|∂2

θc|2 ds is
bounded: then ∂θcn are uniformly Hölder continuous, so by Ascoli-Arzelà compact-
ness theorems, up to a subsequence, ∂θcn(θ) converges.

As a corollary we obtain that limn len(cn) = len(c), that c is parametrized by arc
parameter, and that Dscn(θ) converges to Dsc(θ).

Since the functional
∫
|∂2

θcn|2 ds is bounded in n, then by a theorem in [Bre86], c
admits weak derivative ∂2

θc and
∫
|∂2

θc|2 ds < ∞, and equivalently,
∫
|D2

sc|2 ds < ∞.

For the third statement, viceversa, let c be a rectifiable curve, and assume that it is
non-constant, and E(c) < ∞. Since the metric is independent of rescaling, we rescale
c, and assume that |∂uc(u)| = 1.

We express in Fouries series

c(u) =
∑
n∈Z

ln exp(inu) (27)

(by equating S1 = lR/2π), then we decide that

C(u, t)def=
∑
n∈Z

ln exp(inu− f(n)t) (28)

with f(n) = f(−n) ≥ 0 and lim f(n)/ log(n) = ∞; (for example, f(n) = |n| or
f(n) = (log(|n|+ 2))2): then C(·, t) is smooth for any t > 0

We want to prove that, for t small, C(·, t) is near c in the H2 metric; to this end, let
C̃ be the linear interpolator

C̃(u, t, τ)def=(1− τ)c(u) + τC(u, t) =
∑
n∈Z

lneinu(1− τ + τe−f(n)t) (29)

we will prove that∫ 1

0

(∫
S1
|∂τ C̃|2 ds + λL4

∫
S1
|D2

s∂τ C̃|2 ds

)
dτ < δ(t) (30)

where limt→0 δ(t) = 0, and L is the length of C̃(·, t, τ).
We need some preliminary results:

• we prove that ∫
S1
|∂uuc− ∂uuC̃|2 du < δ1(t) (31)

where limt→0 δ1(t) = 0, uniformly in τ ∈ [0, 1]; we write∫
S1
|∂uuc− ∂uuC̃|2 du = 2πτ2

∑
n∈Z

|ln|2|n|4(1− e−f(n)t)2

and since
2π
∑
n∈Z

|ln|2|n|4 = E(c) =
∫

S1
|∂uuc|2 ds < ∞

and limt→0(1− e−f(n)t)2 = 0, we can apply Lebesgue dominated convergence
theorem.
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• We prove that
|∂uc− ∂uC̃| < δ2(t) (32)

where limt→0 δ2(t) = 0, uniformly in u and τ ∈ [0, 1]; indeed

|∂uc− ∂uC̃| ≤ τ
∑
n∈Z

|ln||n|(1− e−f(n)t) ≤

≤
√∑

n∈Z
|ln|2|n|4

√ ∑
n∈Z,n 6=0

1
n2

(1− e−f(n)t)2

again we apply Lebesgue dominated convergence theorem.

• By the above we also obtain that for t small,

3/2 ≥ |∂uC̃| ≥ 1/2 uniformly in τ, u (33)

• We can similarly prove that

|c− C̃| < δ3(t) (34)

By direct computation

D2
s∂τ C̃ =

∂uuτ C̃

|∂uC̃|2
+
〈∂uuC̃, ∂uC̃〉∂uτ C̃

|∂uC̃|4

but then, for t small, by (33),

|D2
s∂τ C̃| ≤ 4|∂uuτ C̃|+ 24|∂uuC̃||∂uτ C̃|

We use the fact that

∂uuτ C̃ = ∂uuC − ∂uuc , ∂uτ C̃ = ∂uC − ∂uc , ∂τ C̃ = C − c,

so by eqn. (31) and eqn. (32)∫ ∫
|D2

s∂τ C̃|2 dsdτ ≤ a1(δ1(t) + E(c)δ2(t))

and by eqn. (34)
∫ ∫

|∂τ C̃|2 dsdτ ≤ 8δ3(t). Eventually we combine all above to
bound eqn. (30) by setting δ(t) = a2δ3(t) + λa2(δ1(t) + E(c)δ2(t)).

This concludes the proof.
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