A REFINED BRUNN-MINKOWSKI INEQUALITY FOR CONVEX SETS

A. FIGALLI, F. MAGGI \& A. PRATELLI

Abstract

Starting from a mass transportation proof of the Brunn-Minkowski inequality on convex sets, we improve the inequality showing a sharp estimate about the stability property of optimal sets. This is based on a Poincaré-type trace inequality on convex sets that is also proved in sharp form.

1. Introduction

We deal with the Brunn-Minkowski inequality: given E and F non-empty subsets of \mathbb{R}^{n}, we have

$$
\begin{equation*}
|E+F|^{1 / n} \geq|E|^{1 / n}+|F|^{1 / n} \tag{1}
\end{equation*}
$$

where $E+F=\{x+y: x \in E, y \in F\}$ is the Minkowski sum of E and F, and where $|\cdot|$ stands for the (outer) Lebesgue measure on \mathbb{R}^{n}. The central role of this inequality in many branches of Analysis and Geometry, and especially in the theory of convex bodies, is well explained in the excellent survey [Ga] by R. Gardner. Concerning the case E and F are open bounded convex sets (shortly: convex bodies), it may be proved (see [BZ, HM]) that equality holds in (1) if and only if E and F are homothetic, i.e.

$$
\begin{equation*}
\exists \lambda>0, x_{0} \in \mathbb{R}^{n}: \quad E=x_{0}+\lambda F . \tag{2}
\end{equation*}
$$

Theorem 1 provides a refined Brunn-Minkowski inequality on convex bodies, in the spirit of $[\mathrm{Dk}, \mathrm{Gr}, \mathrm{Sc}, \mathrm{Ru}]$. We define the relative asymmetry of E and F as

$$
\begin{equation*}
A(E, F):=\inf _{x_{0} \in \mathbb{R}^{n}}\left\{\frac{\left|E \Delta\left(x_{0}+\lambda F\right)\right|}{|E|}: \lambda=\left(\frac{|E|}{|F|}\right)^{1 / n}\right\} \tag{3}
\end{equation*}
$$

and the relative size of E and F as

$$
\begin{equation*}
\sigma(E, F):=\max \left\{\frac{|F|}{|E|}, \frac{|E|}{|F|}\right\} . \tag{4}
\end{equation*}
$$

We note that $A(E, F)=A(F, E)$ and $\sigma(E, F)=\sigma(F, E)$.
Theorem 1. If E and F are convex bodies, then

$$
\begin{equation*}
|E+F|^{1 / n} \geq\left(|E|^{1 / n}+|F|^{1 / n}\right)\left\{1+\frac{A(E, F)^{2}}{C_{0}(n) \sigma(E, F)^{1 / n}}\right\} \tag{5}
\end{equation*}
$$

In [FMP], inequality (5) was derived as a corollary of the sharp quantitative Wulff inequality, with a constant $C_{0}(n) \approx n^{7}$ and with explicit examples proving the sharpness of decay rate of $A(E, F)$ and $\sigma(E, F)$ in the regime $\beta(E, F) \rightarrow 0$. Here, we introduce the Brunn-Minkowski deficit of the pair (E, F) by setting

$$
\beta(E, F):=\frac{|E+F|^{1 / n}}{|E|^{1 / n}+|F|^{1 / n}}-1,
$$

so that (5) becomes equivalent to

$$
\begin{equation*}
C_{0}(n) \sqrt{\beta(E, F) \sigma(E, F)^{1 / n}} \geq A(E, F) . \tag{6}
\end{equation*}
$$

As in [FMP], our approach to (5) is based on the theory of mass transportation. A one dimensional mass transportation argument is at the basis of the beautiful proof of (1) by Hadwiger and Ohmann [HO], see [Fe, 3.2.41] and [Ga, Proof of Theorem 4.1]. The impact of mass transportation theory in the field of sharp functional-geometric inequalities is now widely recognized, with many old and new inequalities treated from a unified and elegant viewpoint (see [Vi, Chapter 6] for an introduction). A proof of the Brunn-Minkowski inequality in this framework is already contained in the seminal paper by McCann [McC], see also Step two in the proof of Theorem 1.

In Section 3 of this note we present a direct proof of (5), independent from the structure theory for sets of finite perimeter that was heavily used in [FMP]. As a technical drawback, this approach does not provide a polynomial bound on $C_{0}(n)$, but only an exponential behavior in n. However, we believe this proof is more broadly accessible and substantially simpler. A technical element of this proof that we believe of independent interest is the Poincaré-type trace inequality on convex sets proved in Section 2, with a constant having sharp dependence on the dimension n and on the ratio between the in-radius and the out-radius of the set (see Remark 3).

2. A Poincaré-Type trace inequality on convex sets

In this section we aim to prove the following Poincaré-type trace inequality for a convex body:

Lemma 2. Let E be a convex body such that $B_{r} \subset E \subset B_{R}$, for $0<r<R$. Then

$$
\begin{equation*}
\frac{n \sqrt{2}}{\log (2)} \frac{R}{r} \int_{E}|\nabla f| \geq \inf _{c \in \mathbb{R}} \int_{\partial E}|f-c| d \mathcal{H}^{n-1} \tag{7}
\end{equation*}
$$

for every $f \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$.
It is quite easy to prove (7) by a contradiction argument, if we allow to replace $n(R / r)$ by a constant generically depending on E. However, in order to prove Theorem 1, we need to express this dependence just in terms of n and R / r, and thus require a more careful approach. Let us also note that, by a standard density argument, (7) holds true for every $f \in B V\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$ (see [AFP, EG]), in the form

$$
\frac{n \sqrt{2}}{\log (2)} \frac{R}{r}|D f|(E) \geq \inf _{c \in \mathbb{R}} \int_{\partial E}\left|\operatorname{tr}_{E}(f)-c\right| d \mathcal{H}^{n-1}
$$

where $|D f|$ denotes the total variation measure of $D f$ and where $\operatorname{tr}_{E}(f)$ is the trace of f on ∂E, defined as an element of $L^{1}\left(\mathcal{H}^{n-1}\lfloor\partial E)\right.$ (see [AFP, Theorem 3.87]). However, we shall not need this stronger form of the inequality.

Given a convex body E containing the origin in its interior, we introduce a weight function on directions defined for $\nu \in S^{n-1}$ as

$$
\|\nu\|_{E}:=\sup \{x \cdot \nu: x \in E\} .
$$

When F is a set with Lipschitz boundary and outer unit normal ν_{F}, we define the anisotropic perimeter of F with respect to E as

$$
P_{E}(F):=\int_{\partial F}\left\|\nu_{F}(x)\right\|_{E} d \mathcal{H}^{n-1}(x)
$$

and recall that $P_{E}(E)=n|E|$. Then, the anisotropic isoperimetric inequality, or Wulff inequality,

$$
\begin{equation*}
P_{E}(F) \geq n|E|^{1 / n}|F|^{(n-1) / n}, \tag{8}
\end{equation*}
$$

holds true, as it can be shown starting from (1) (see [Ga, Section 3]).
Proof of Lemma 2. Let us set

$$
\tau(E):=\inf _{F} \frac{\mathcal{H}^{n-1}(E \cap \partial F)}{\mathcal{H}^{n-1}(F \cap \partial E)}
$$

where F ranges over the class of open sets of \mathbb{R}^{n} with smooth boundary such that $|E \cap F| \leq|E| / 2$. Then, fixed $f \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$, we set $F_{t}=\left\{x \in \mathbb{R}^{n}: f(x)>t\right\}$ for every $t \in \mathbb{R}$. The proof of the lemma is then achieved on combining the following two statements.

Step one: We have that

$$
\int_{E}|\nabla f| \geq \tau(E) \int_{\partial E}|f-m| d \mathcal{H}^{n-1}
$$

where m is a median of f in E, i.e.

$$
\begin{array}{ll}
\left|F_{t} \cap E\right| \leq \frac{|E|}{2}, & \forall t \geq m, \\
\left|F_{t} \cap E\right|>\frac{|E|}{2}, & \forall t<m .
\end{array}
$$

Indeed, let $g=\max \{f-m, 0\}$ and let $G_{t}=\left\{x \in \mathbb{R}^{n}: g(x)>t\right\}$. Then by the Coarea Formula, the choice of m and the definition of $\tau(E)$ (note that F_{t} is admissible in $\tau(E)$ for a.e. $t \geq m$ by Morse-Sard Lemma)

$$
\begin{aligned}
\int_{E \cap F_{m}}|\nabla f| & =\int_{E}|\nabla g|=\int_{0}^{\infty} \mathcal{H}^{n-1}\left(E \cap \partial G_{t}\right) d t \\
& \geq \tau(E) \int_{0}^{\infty} \mathcal{H}^{n-1}\left(G_{t} \cap \partial E\right) d t=\tau(E) \int_{\partial E} g d \mathcal{H}^{n-1} \\
& =\tau(E) \int_{\partial E} \max \{f-m, 0\} d \mathcal{H}^{n-1} .
\end{aligned}
$$

The choice of m allows to argue similarly with $\max \{m-f, 0\}$ in place of g and to eventually achieve the proof of step one.

Step two: We have that

$$
\tau(E) \geq \frac{r}{R}\left(1-\frac{1}{2^{1 / n}}\right)
$$

To prove this, let us consider an admissible set F for $\tau(E)$ and set for simplicity

$$
\begin{equation*}
\lambda:=\frac{\mathcal{H}^{n-1}(E \cap \partial F)}{\mathcal{H}^{n-1}(F \cap \partial E)} . \tag{9}
\end{equation*}
$$

On denoting $F_{1}=F \cap E$ and $F_{2}=E \backslash \bar{F}$, we have that

$$
E \cap \partial F_{1}=E \cap \partial F_{2}=E \cap \partial F, \quad \text { with } \nu_{F}=\nu_{F_{1}}=-\nu_{F_{2}} \text { on } E \cap \partial F .
$$

Therefore

$$
\begin{align*}
P_{E}(E) & \geq P_{E}\left(F_{1}\right)+P_{E}\left(F_{2}\right)-\int_{E \cap \partial F_{1}}\left\|\nu_{F_{1}}\right\|_{E} d \mathcal{H}^{n-1}-\int_{E \cap \partial F_{2}}\left\|\nu_{F_{2}}\right\|_{E} d \mathcal{H}^{n-1} \\
& \geq P_{E}\left(F_{1}\right)+P_{E}\left(F_{2}\right)-2 R \mathcal{H}^{n-1}(E \cap \partial F) \\
& =P_{E}\left(F_{1}\right)+P_{E}\left(F_{2}\right)-2 R \lambda \mathcal{H}^{n-1}(F \cap \partial E) \tag{10}\\
& \geq P_{E}\left(F_{1}\right)+P_{E}\left(F_{2}\right)-2 R \lambda \mathcal{H}^{n-1}\left(\partial F_{1}\right) \\
& \geq\left(1-2 \lambda \frac{R}{r}\right) P_{E}\left(F_{1}\right)+P_{E}\left(F_{2}\right),
\end{align*}
$$

where we have used (9) and the elementary inequality

$$
r \leq\|\nu\|_{E} \leq R,
$$

for every $\nu \in S^{n-1}$. On combining (10), the anisotropic isoperimetric inequality (8) and the fact that $P_{E}(E)=n|E|$, we come to

$$
n|E| \geq n|E|^{1 / n}\left\{\left(1-2 \lambda \frac{R}{r}\right)\left|F_{1}\right|^{1 / n^{\prime}}+\left|F_{2}\right|^{1 / n^{\prime}}\right\}
$$

i.e. we have proved that

$$
\lambda t^{1 / n^{\prime}} \geq \frac{r}{2 R}\left(t^{1 / n^{\prime}}+(1-t)^{1 / n^{\prime}}-1\right)
$$

where $t=\left|F_{1}\right| /|E|$. As $t \in(0,1 / 2]$ by construction and

$$
s^{1 / n^{\prime}}+(1-s)^{1 / n^{\prime}}-1 \geq\left(2-2^{1 / n^{\prime}}\right) s^{1 / n^{\prime}}, \quad \forall s \in(0,1 / 2]
$$

the proof of step two is easily concluded.
Remark 3. Let us point out that the dependence on n and R / r given in the above result, that is $n(R / r)$, is sharp. In $\mathbb{R}^{n}=\mathbb{R}^{n-1} \times \mathbb{R}$, it suffices to consider the box E defined as

$$
E=Q \times\left[-R_{0}, R_{0}\right], \quad Q=\left[-\frac{r}{2}, \frac{r}{2}\right]^{n-1} .
$$

We clearly have that $B_{r} \subset E \subset B_{R}$, with $R=\sqrt{R_{0}^{2}+(n-1) r^{2}}$. Now, let us consider as a test set for the trace constant the half-space $F=\mathbb{R}^{n-1} \times(0, \infty)$, so that

$$
\partial F \cap E=Q \times\{0\}, \quad \partial E \cap F=\left(\partial Q \times\left(0, R_{0}\right)\right) \cup\left(Q \times\left\{R_{0}\right\}\right) .
$$

The boundary ∂Q is the union of $2(n-1)$ cubes of dimension $(n-2)$ and size r. Thus,

$$
\mathcal{H}^{n-1}(\partial F \cap E)=r^{n-1}, \quad \mathcal{H}^{n-1}(\partial E \cap F)=2(n-1) R_{0} r^{n-2}+r^{n-1}
$$

For $R_{0} \gg \sqrt{n-1} r$ we have $R \approx R_{0}$, and therefore

$$
\frac{n \sqrt{2}}{\log (2)} \frac{R}{r} \leq \tau(E) \leq \frac{2(n-1) R_{0} r^{n-2}+r^{n-1}}{r^{n-1}} \approx n \frac{R_{0}}{r} \approx n \frac{R}{r}
$$

This shows the sharpness of our trace constant, up to a numeric factor.

3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We consider two convex bodies E and F, and we aim to prove (6). Without loss of generality, we may assume that $|E| \geq|F|$. By approximation, we can also assume that E and F are smooth and uniformly convex. Eventually, we can directly consider the case

$$
\begin{equation*}
\beta(E, F) \sigma(E, F)^{1 / n} \leq 1 \tag{11}
\end{equation*}
$$

Indeed, as we always have $A(E, F) \leq 2$, if $\beta(E, F) \sigma(E, F)^{1 / n}>1$ then (6) holds trivially with $C_{0}(n)=2$. Observe further that, since $\sigma(E, F) \geq 1$, (11) implies

$$
\begin{equation*}
\beta(E, F) \leq 1 \tag{12}
\end{equation*}
$$

We divide the proof in several steps.
Step one: John's normalization. A classical result in the theory of convex bodies by F . John [J] ensures the existence of a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
B_{1} \subset L(E) \subset B_{n}
$$

We note that

$$
\beta(E, F)=\beta(L(E), L(F)), \quad A(E, F)=A(L(E), L(F)), \quad|L(E)| \geq|L(F)|
$$

Therefore in the proof of Theorem 1 we may also assume that

$$
\begin{equation*}
B_{1} \subset E \subset B_{n} \tag{13}
\end{equation*}
$$

In particular, under this assumption one has $1 \leq r \leq R \leq n$, so that by Lemma 2 we can write

$$
\begin{equation*}
\frac{n^{2} \sqrt{2}}{\log (2)} \int_{E}|\nabla f| \geq \inf _{c \in \mathbb{R}} \int_{\partial E}|f-c| d \mathcal{H}^{n-1} \tag{14}
\end{equation*}
$$

for every $f \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap L^{\infty}\left(\mathbb{R}^{n}\right)$.
Step two: Mass transportation proof of Brunn-Minkowski. We prove the Brunn-Minkowski inequality by mass transportation. By the Brenier Theorem [Br1, Br2], there exists a convex function $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that its gradient $T=\nabla \varphi$ defines a map $T \in B V\left(\mathbb{R}^{n}, \bar{F}\right)$ pushing forward $|E|^{-1} 1_{E}(x) d x$ to $|F|^{-1} 1_{F}(x) d x$, i.e.

$$
\begin{equation*}
\frac{1}{|F|} \int_{F} h(y) d y=\frac{1}{|E|} \int_{E} h(T(x)) d x \tag{15}
\end{equation*}
$$

for every Borel function $h: \mathbb{R}^{n} \rightarrow[0, \infty)$. As shown by Caffarelli [Ca1, Ca2], under our assumptions the Brenier map is smooth up to the boundary, i.e. $T \in C^{\infty}(\bar{E}, \bar{F})$. Moreover, the push-forward condition (15) takes the form

$$
\begin{equation*}
\operatorname{det} \nabla T(x)=\frac{|F|}{|E|}, \quad \forall x \in E . \tag{16}
\end{equation*}
$$

We are going to consider the eigenvalues $\left\{\lambda_{k}(x)\right\}_{k=1, \ldots, n}$ of $\nabla T(x)=\nabla^{2} \varphi(x)$, ordered so that $\lambda_{k} \leq \lambda_{k+1}$ for $1 \leq k \leq n-1$. We also define, for every $x \in E$,

$$
\lambda_{A}(x)=\frac{\sum_{k=1}^{n} \lambda_{k}(x)}{n}, \quad \quad \lambda_{G}(x)=\left(\prod_{k=1}^{n} \lambda_{k}(x)\right)^{1 / n}
$$

Thanks to (16) we have

$$
\lambda_{G}(x)=\left(\frac{|F|}{|E|}\right)^{1 / n}
$$

for every $x \in E$. We are in the position to prove the Brunn-Minkowski inequality. Let $S(x):=x+T(x)$, then $S(E) \subset E+F$. As $\operatorname{det} \nabla S=\prod_{k=1}^{n}\left(1+\lambda_{k}\right)>1$, we have $|\operatorname{det} \nabla S|=\operatorname{det} \nabla S$. Thus

$$
\begin{equation*}
|E+F|^{1 / n} \geq|S(E)|^{1 / n}=\left(\int_{E} \operatorname{det} \nabla S\right)^{1 / n}=\left(\int_{E} \prod_{k=1}^{n}\left(1+\lambda_{k}\right)\right)^{1 / n} \tag{17}
\end{equation*}
$$

We observe that

$$
\begin{equation*}
\prod_{k=1}^{n}\left(1+\lambda_{k}\right)=1+\sum_{m=1}^{n} \sum_{\left\{1 \leq i_{1}<\cdots<i_{m} \leq n\right\}} \prod_{j=1}^{m} \lambda_{i_{j}} \tag{18}
\end{equation*}
$$

Note that the set of indexes $\left(i_{1}, \ldots, i_{m}\right)$ with $1 \leq i_{j}<i_{j+1} \leq n$ counts $\binom{n}{m}$ elements. For each fixed $m \geq 1$, the arithmetic-geometric mean inequality implies that

$$
\begin{equation*}
\sum_{\left\{1 \leq i_{1}<\cdots<i_{m} \leq n\right\}} \prod_{j=1}^{m} \lambda_{i_{j}} \geq\binom{ n}{m} \prod_{\left\{1 \leq i_{1}<\cdots<i_{m} \leq n\right\}}\left(\prod_{j=1}^{m} \lambda_{i_{j}}\right)^{1 /\binom{n}{m}} \tag{19}
\end{equation*}
$$

This last term is equal to

$$
\begin{equation*}
\binom{n}{m} \prod_{k=1}^{n} \lambda_{k}^{\binom{n-1}{m-1} /\binom{n}{m}}=\binom{n}{m} \lambda_{G}^{m} . \tag{20}
\end{equation*}
$$

On putting (18), (19) and (20) together, and applying the binomial formula to $\left(1+\lambda_{G}\right)^{n}$ we come to

$$
\begin{equation*}
\prod_{k=1}^{n}\left(1+\lambda_{k}\right)-\left(1+\lambda_{G}\right)^{n}=\sum_{m=1}^{n} \Gamma_{m} \tag{21}
\end{equation*}
$$

where Γ_{m} denotes the difference between the left and the right hand side of (19). We observe that $\Gamma_{m} \geq 0$ whenever $1 \leq m \leq n$, and in particular $\Gamma_{1}=n\left(\lambda_{A}-\lambda_{G}\right)$. On combining this with (17), (16), and $\lambda_{G}=(\operatorname{det} \nabla T)^{1 / n}$, we find that

$$
|E+F|^{1 / n} \geq\left(\int_{E}\left(1+\lambda_{G}\right)^{n}\right)^{1 / n}=|E|^{1 / n}\left(1+\left(\frac{|F|}{|E|}\right)^{1 / n}\right)=|E|^{1 / n}+|F|^{1 / n}
$$

i.e. we prove the Brunn-Minkowski inequality for E and F.

Step three. Lower bounds on the deficit. In this step we aim to prove

$$
\begin{equation*}
\frac{1}{|E|} \int_{E}\left|\nabla T(x)-\lambda_{G} \operatorname{Id}\right| d x \leq C(n) \sqrt{\beta(E, F)} \sqrt{\beta(E, F)+\sigma(E, F)^{-1 / n}} . \tag{22}
\end{equation*}
$$

Let us set, for the sake of brevity,

$$
s=\frac{1}{|E|} \int_{E} \operatorname{det} \nabla S, \quad t=\left(1+\lambda_{G}\right)^{n}
$$

From Step two we deduce that

$$
\begin{equation*}
\frac{|E+F|^{1 / n}-\left(|E|^{1 / n}+|F|^{1 / n}\right)}{|E|^{1 / n}} \geq s^{1 / n}-t^{1 / n}=\frac{s-t}{\sum_{h=1}^{n} s^{(n-h) / n} t^{(h-1) / n}} . \tag{23}
\end{equation*}
$$

As $t \leq s$ and $|E| s=|S(E)| \leq|E+F|$,

$$
\begin{align*}
\sum_{h=1}^{n} s^{(n-h) / n} t^{(h-1) / n} & \leq n s^{(n-1) / n} \leq n\left(\frac{|E+F|}{|E|}\right)^{(n-1) / n} \tag{24}\\
& =n\left((1+\beta(E, F)) \frac{|E|^{1 / n}+|F|^{1 / n}}{|E|^{1 / n}}\right)^{n-1} \leq C(n)
\end{align*}
$$

where we have also made use of (12) and of the fact that $|F| \leq|E|$. A similar argument shows that the left hand side of (23) is controlled by $2 \beta(E, F)$, and therefore we conclude that

$$
\begin{equation*}
C(n) \beta(E, F) \geq s-t=\frac{1}{|E|} \int_{E}\left(\prod_{k=1}^{n}\left(1+\lambda_{k}\right)-\left(1+\lambda_{G}\right)^{n}\right) d x \tag{25}
\end{equation*}
$$

Then, by (25) and (21), as $\Gamma_{m} \geq 0$ whenever $1 \leq m \leq n$ and $\Gamma_{1}=n\left(\lambda_{A}-\lambda_{G}\right)$, we get

$$
\begin{equation*}
C(n) \beta(E, F) \geq \frac{1}{|E|} \int_{E} \sum_{m=1}^{n} \Gamma_{m}(x) d x \geq \frac{1}{|E|} \int_{E} \Gamma_{1}(x) d x=\frac{n}{|E|} \int_{E}\left(\lambda_{A}-\lambda_{G}\right) \tag{26}
\end{equation*}
$$

An elementary quantitative version of the arithmetic-geometric mean inequality proved in [FMP, Lemma 2.5], ensures that

$$
7 n^{2}\left(\lambda_{A}-\lambda_{G}\right) \geq \frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left(\lambda_{k}-\lambda_{G}\right)^{2} .
$$

In particular, as $\left(\lambda_{n}-\lambda_{1}\right)^{2} \leq 2\left[\left(\lambda_{n}-\lambda_{G}\right)^{2}+\left(\lambda_{G}-\lambda_{1}\right)^{2}\right]$ we obtain from (26)

$$
\begin{equation*}
C(n) \beta(E, F) \geq \frac{1}{|E|} \int_{E} \frac{\left(\lambda_{n}-\lambda_{1}\right)^{2}}{\lambda_{n}} d x . \tag{27}
\end{equation*}
$$

By Hölder inequality

$$
\begin{equation*}
\frac{1}{|E|} \int_{E}\left(\lambda_{n}-\lambda_{1}\right) d x \leq C(n) \sqrt{\beta(E, F) \frac{1}{|E|} \int_{E} \lambda_{n}} \tag{28}
\end{equation*}
$$

As $\lambda_{1} \leq(|F| /|E|)^{1 / n}=\sigma(E, F)^{-1 / n}$, from (28) we come to

$$
\frac{1}{|E|} \int_{E} \lambda_{n} \leq C(n) \sqrt{\beta(E, F) \frac{1}{|E|} \int_{E} \lambda_{n}}+\sigma(E, F)^{-1 / n}
$$

which easily implies

$$
\begin{equation*}
\frac{1}{|E|} \int_{E} \lambda_{n} \leq C(n)\left(\beta(E, F)+\sigma(E, F)^{-1 / n}\right) \tag{29}
\end{equation*}
$$

by Young's inequality. We eventually combine (29) with (28), and prove that

$$
\begin{equation*}
\frac{1}{|E|} \int_{E}\left(\lambda_{n}-\lambda_{1}\right) d x \leq C(n) \sqrt{\beta(E, F)} \sqrt{\beta(E, F)+\sigma(E, F)^{-1 / n}} \tag{30}
\end{equation*}
$$

Then (22) follows immediately.

Step four. Trace inequality. On combining (22) with (14), we conclude that, up to a translation of F,

$$
C(n) \sqrt{\beta(E, F)} \sqrt{\beta(E, F)+\sigma(E, F)^{-1 / n}}|E| \geq \int_{\partial E}\left|T(x)-\lambda_{G} x\right| d \mathcal{H}^{n-1}(x) .
$$

If $F^{\prime}=\lambda_{G}^{-1} F$ and $P: \mathbb{R}^{n} \backslash F^{\prime} \rightarrow \partial F^{\prime}$ denotes the projection of $\mathbb{R}^{n} \backslash F^{\prime}$ over F^{\prime}, then, since by construction T takes value in \bar{F}, we get

$$
\begin{equation*}
C(n) \sqrt{\beta(E, F)} \sqrt{\beta(E, F)+\sigma(E, F)^{-1 / n}} \geq \frac{\lambda_{G}}{|E|} \int_{\partial E \backslash F^{\prime}}|P(x)-x| d \mathcal{H}^{n-1}(x) . \tag{31}
\end{equation*}
$$

We now consider the map $\Phi:\left(\partial E \backslash F^{\prime}\right) \times(0,1) \rightarrow E \backslash F^{\prime}$ defined by

$$
\Phi(x, t)=t x+(1-t) P(x)
$$

Let $\left\{\varepsilon_{k}(x)\right\}_{k=1}^{n-1}$ be a basis of the tangent space to ∂E at x. Since Φ is a bijection, we find

$$
\begin{align*}
\left|E \backslash F^{\prime}\right|=\int_{0}^{1} d t \int_{\left(\partial E \backslash F^{\prime}\right)} \mid(x-P(x)) & \wedge \tag{32}\\
& \left(\bigwedge _ { k = 1 } ^ { n - 1 } \left(t \varepsilon_{k}(x)\right.\right. \\
& \left.\left.+(1-t) d P_{x}\left(\varepsilon_{k}(x)\right)\right)\right) \mid d \mathcal{H}^{n-1}(x)
\end{align*}
$$

where $d P_{x}$ denotes the differential of the projection P at x. As P is the projection over a convex set, it decreases distances, i.e. $\left|d P_{x}(e)\right| \leq 1$ for every $e \in S^{n-1}$. Thus,

$$
\left|t \varepsilon_{k}(x)+(1-t) d P_{x}\left(\varepsilon_{k}(x)\right)\right| \leq 1, \quad \forall k \in\{1, \ldots, n-1\} .
$$

Recalling that $\lambda_{G}=\sigma(E, F)^{-1 / n}$, we combine this last inequality with (31) and (32) to get

$$
\begin{aligned}
\frac{\left|E \backslash F^{\prime}\right|}{|E|} & \leq \frac{1}{|E|} \int_{\partial E \backslash F^{\prime}}|x-P(x)| d \mathcal{H}^{n-1}(x) \\
& \leq C(n) \sigma(E, F)^{1 / n} \sqrt{\beta(E, F)} \sqrt{\beta(E, F)+\sigma(E, F)^{-1 / n}} \\
& \leq C(n) \sigma(E, F)^{1 / n} \sqrt{\beta(E, F)}\left(\sqrt{\beta(E, F)}+\sigma(E, F)^{-1 / 2 n}\right) \\
& =C(n)\left(\sqrt{\beta(E, F) \sigma(E, F)^{1 / n}}+\beta(E, F) \sigma(E, F)^{1 / n}\right) \\
& \leq C(n) \sqrt{\beta(E, F) \sigma(E, F)^{1 / n}}
\end{aligned}
$$

where in the last inequality we have used (11). As

$$
A(E, F) \leq \frac{\left|E \Delta F^{\prime}\right|}{|E|}=2 \frac{\left|E \backslash F^{\prime}\right|}{|E|}
$$

this proves (6) and we achieve the proof of the theorem.
We conclude noticing that the constant $C_{0}(n)$ in the above theorem can be taken to be

$$
C_{0}(n) \approx p(n) c_{0}^{n}
$$

where $p(n)$ is a polynomial in n, and c_{0} is any constant greater than $\sqrt{2}$. Indeed, a quick inspection of the proof shows that all the terms to be considered for $C(n)$ are polynomials, except for the estimate given in Step three -more precisely in (24)-
which gives a term like $n c^{n}$, with $c>2$ (recall that, up to loosing a numeric factor in $C_{0}(n)$, we can assume from the beginning that $\beta(E, F)$ is smaller than an arbitrarily small constant). Eventually, when applying Hölder inequality in (28) we take a square root of the constant $C(n)$ appearing in (27), thus coming to the choice $c_{0}>\sqrt{2}$.

Acknowledgment. We thank Dario Cordero-Erausquin and Eric Carlen for stimulating the writing of this paper. The work was supported by the GNAMPAINDAM through the 2007-2008 research project Disuguaglianze geometrico funzionali in forma ottimale e quantitativa, by the ERC Advanced Grants 2008 Analytic Techniques for Geometric and Functional Inequalities, and by the MEC through the 2008 project MTM2008-03541.

References

[AFP] L. Ambrosio, N. Fusco \& D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
[Br1] Y. Brenier, Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math., 305 no. 19 (1987), 805-808.
[Br2] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (4) (1991) 375-417.
[BZ] Y. D. Burago \& V. A. Zalgaller, Geometric inequalities, Springer, New York, 1988. Russian original: 1980.
[Ca1] L. A. Caffarelli, The regularity of mappings with a convex potential. J. Amer. Math. Soc. 5 (1992), no. 1, 99-104.
[Ca2] L. A. Caffarelli, Boundary regularity of maps with convex potentials. II. Ann. of Math. (2) 144 (1996), no. 3, 453-496.
[Di] A. Dinghas, Über einen geometrischen Satz von Wulff für die Gleichgewichtsform von Kristallen, (German) Z. Kristallogr., Mineral. Petrogr. 105 (1944) 304-314.
[Dk] V. I. Diskant, Stability of the solution of a Minkowski equation. (Russian) Sibirsk. Mat. Ž. 14 (1973), 669-673, 696.
[EG] L. C. Evans \& R. F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. viii+268 pp.
[Fe] H. Federer, Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969 xiv+676 pp.
[FMP] A. Figalli, F. Maggi \& A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, submitted paper.
[Ga] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355-405.
[Gr] H. Groemer, On the Brunn-Minkowski theorem. Geom. Dedicata 27 (1988), no. 3, 357-371.
[HO] H. Hadwiger \& D. Ohmann, Brunn-Minkowskischer Satz und Isoperimetrie, Math. Zeit. 66 (1956), 1-8.
[HM] R. Henstock \& A. M. Macbeath, On the measure of sum sets, I. The theorems of Brunn, Minkowski and Lusternik, Proc. London Math. Soc. 3 (1953), 182-194.
[J] F. John, An inequality for convex bodies, Univ. Kentucky Research Club Bull., 8 (1942), 8-11.
[McC] R.J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1) (1997) 153179.
[Ru] I. Z. Ruzsa, The Brunn-Minkowski inequality and nonconvex sets. (English summary) Geom. Dedicata 67 (1997), no. 3, 337-348.
[Sc] R. Schneider, On the general Brunn-Minkowski theorem. Beiträge Algebra Geom. 34 (1993), no. 1, 1-8.
[Ur] J. I. E. Urbas, Regularity of generalized solutions of Monge-Ampére equations. Math. Z. 197 (1988), no. 3, 365-393.
[Vi] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence, RI, 2003. xvi+370 pp.

