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Abstract
In the first part we study general properties of the metrics obtained by isometrically identifying

a generic metric space with a subset of a Banach space; we obtain a rigidity result. We then discuss
the Hausdorff distance, proposing some less–known but important results: a closed–form formula for
geodesics; generically two compact sets are connected by a continuum of geodesics.

In the second part we present and study a family of distances on the space of compact subsets
of RN (that we call “shapes”). These distances are “geometric”, that is, they are independent of
rotation and translation; and the resulting metric spaces enjoy many interesting properties, as, for
example, the existence of geodesics. We view our metric space of shapes as a subset of Banach (or
Hilbert) spaces: so we can define a “tangent manifold” to shapes, and (in a very weak form) talk of a
“Riemannian Geometry” of shapes. Some of the metrics that we propose are topologically equivalent
to the Hausdorff distance.
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1 Introduction
A wide interest for the study of Shape Spaces arose in recent years, in particular inside the Computer
Vision community.

There are two different (but interconnected) fields of applications for a good Shape Space in Computer
Vision:

Shape Optimization where we want to find the shape that best satisfies a design goal; a topic of
interest in Engineering at large;

Shape Analysis where we study a family of Shapes for purposes of statistics, (automatic) cataloging,
probabilistic modeling, among others; possibly also to create an a-priori model for a better Shape
Optimization.

To achieve the above, some structure is clearly needed on the Shape Space so that our goals can be
studied and the problem can be solved.

1.1 Shape spaces
A common way to model shapes is by representation/embedding:

• we represent the shape A by a function uA

• and then we embed this representation in a space E so that we can operate on the shapes A by
operating on the representations uA.

A preliminary version of this paper appeared as arXiv:0707.1174v1.
∗Scuola Normale Superiore, Pisa, Italy
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Most often, this representation/embedding scheme does not directly provide a Shape Space satisfying
all desired properties. In particular, in many cases it happens that the representation is “redundant”,
that is, the same shape has many different possible representations. An appropriate quotient is then
introduced.

There are many examples of Shape Spaces in the literature that are studied by means of the repre-
sentation/embedding/quotient scheme. We review two such examples.

1. The space of embedded curves. When studying embedded curves, usually, for the sake of mathe-
matical analysis, the curves are modeled as smooth immersed parametric curves; a quotient w.r.t.
the group of possible reparametrizations of the curve c (that coincides with the group of smooth
diffeomorphisms Diff(S1)) is applied afterward to all the mathematical structures that are defined
(such as the manifold of curves, the Riemannian metric, the induced distance, etc.). The resulting
Riemannian spaces of embedded curves have been studied by Michor–Mumford et al [18, 19, 31]
and Yezzi–Mennucci [30, 29]; more recently by Mennucci et al [17] and Sundaramoorthi et al
[24, 21, 25, 26, 27, 28, 22, 23].

2. The familyM of all non-empty compact subsets of RN . This is the shape space that we will study
in the main part of this paper.
A standard representation is obtained by associating a closed subset A to the distance function

uA(x)def= inf
y∈A
|x− y| (1)

or the signed distance function

bA(x)def=uA(x)− uRN\A(x) . (2)

See Sec. 4 for a list of properties of uA.
We may then define a topology of shapes by deciding that An → A when uAn → uA uniformly on
compact sets. This convergence coincides with the Kuratowski topology of closed sets (see Sec. 5.3).
We may also operate “linearly” on shapes by operating on uA or bA. So we may define shape
averages and shape principal component analysis; see [12] and (4) here.
When this Shape Space is used for shape analysis, a registration of the shapes to a common pose
is often performed; or a quotient is enacted, as explained in Sec. 2.1.1.

1.2 Goals
To a certain degree, our theory should be independent of rotation and translation; that is, whatever we
do with shapes should not depend on “where in the space” we do it.

In the rest of the paper we will denote by M the family of the nonempty compact sets in RN and
we will build many examples of metrics d onM. We will always require these metrics to be Euclidean
invariant: if R is a Euclidean transformation of the space (a rigid transformation), then

d(RΩ1, RΩ2) = d(Ω1,Ω2) . (3)

What other properties and operations may be interesting for applications?

1.2.1 Means and averages

As mentioned before, a goal of Shape Analysis is to define shape metrics, shape averages, shape principal
component analysis, shape probabilities. . .

For example, if we represent shapes Aj , j = 1 . . . n by their signed distance function bAj , then we may
define Signed Distance Level Set Averaging

Ā =
{
x | f(x) ≤ 0

}
, where f(x) = 1

N

N∑
n=1

bAn(x) (4)
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(Note that in general a linear combination of (signed) distance functions will not be a (signed) distance
function). A benefit of this definition is that it is easily computable; a defect is that, if the shapes are
far away, then Ā will be empty. Another defect is that this definition is quite ad hoc: it is not coupled
with any other structure that we may wish to add to the Shape Space, such as a metric d. We may then
look at the problem from a different point of view.

Considering a generic metric space (M,d), define the Distance Based Averaging 1 of any given col-
lection a1 . . . an ∈M , as a minimum point ā of the sum of its squared distances:

ā = arg min
a

n∑
j=1

d(a, aj)2 (5)

Supposing now that the Shape SpaceM is given a metric d, we can use the abstract definition above
to define shape averages; this definition has many advantages.

• It comes from a minimality criterion, so it is “optimal” in a certain sense (contrary to the definition
in eqn. (4)).

• If the distance is invariant w.r.t. a group action, then the shape average is invariant as well (see
Sec. 2.1.1). For example, in the case of geometric curves, where the distance is independent of
parameterization, then the shape average will be independent of the parameterization of a1 . . . an.

• Suppose that M is a smooth Riemannian manifold and that d is the distance derived from the
metric; then, when a1 . . . an are near enough, ā exists and is unique [11].

• It coincides with the arithmetic mean in Euclidean spaces; more generally, when M is a smooth
submanifold of a Hilbert space and a1 . . . an are near enough, then ā is an approximation of the
arithmetic mean.

1.2.2 Averages, midpoints and geodesics

Let (M,d) be a metric space. A geodesic is a continuous path connecting x to y that has minimum
length in the class of all such paths. The metric space (M,d) is intrinsic if the distance d(x, y) between
x, y ∈ M is equal to the infimum of the length of all continuous paths connecting x to y. See Sec. 2.1
for details.

Definition 1.1 (Midpoint). Let x, y ∈M ; a point z ∈M such that

d(z, y) = d(z, x) = 1
2d(x, y)

is called a midpoint.

It is easily verified that, if (M,d) is intrinsic and x, y are connected by a geodesic, a point halfway
through the geodesic is a midpoint; see Lemma 2.4.8 in Sec. 2.4.3 in [5]. Vice versa, suppose (M,d) is
complete and that for every x, y ∈M there exists a midpoint z, then d is intrinsic, and every two points
in M may be joined by a geodesic; see Thm. 2.4.16 in Sec. 2.4.4 in [5].

Consider now a Shape Space that is a complete finite dimensional Riemannian metric; let d be the
distance between shapes; then the average shape A of two shapes A1, A2, (as defined in eqn. (5) above)
is also a midpoint.

The above shows that averages, midpoints and geodesics are deeply linked.
For this reason, we will end up studying whether the Shape Space admits geodesics.

1.2.3 Motions and tangent spaces

Many operations performed in Shape Optimization may be related to these concepts and operations:

• given the motion of a shape, we would like to define its derivative, that is the infinitesimal motion,
1Also known as Karcher mean due to the seminal work [11], but it is also sometimes attributed to Fréchet, in 1948
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• given a vector field of infinitesimal motions, we would like to be able to flow shapes according to
the field,

• the family of all such infinitesimal motions should define a tangent space to the Shape Space.

One easy way to define all the above is again by representation/embedding: if we embed the Shape
Space in a vector space E, then we can define the infinitesimal motions as vectors in E. At the same time,
if E is a Banach space with norm ‖ · ‖, we can define a distance of shapes simply by d(A,B)def=‖uA−uB‖
(so that the embedding A 7→ uA is isometric). For this reason, in the first part of the paper we will study
general properties of isometric embeddings of metric spaces into Banach spaces.

1.3 The proposed framework
In this paper we will study the familyM of all non empty compact subsets of RN .

Having fixed a decreasing smooth function ϕ : [0,∞)→ (0,∞), we will define in eqn. (31) the Lp–like
distance of compact sets by

dp,ϕ(A,B)def=‖ϕ ◦ uA − ϕ ◦ uB‖Lp .

Under appropriate hypotheses on ϕ, we will prove that this distance satisfies the requirements listed
in the previous sections, and some more, as follows.

• The metric space (M, dp,ϕ) is complete (Prop. 6.12).

• The mapping A 7→ ϕ ◦ uA associates isometricallyM to a closed subset of Lp(RN ).

• dp,ϕ is Euclidean invariant.

• dp,ϕ induces a well-defined distance on the Shape Space of compact sets up to Euclidean transfor-
mation (Prop. 6.14).

• Compact sets can be connected by minimizing geodesics; the Geodesic Distance Based Averaging
of shapes exists (Thm. 6.20).

• The metric spaces (M, dgp,ϕ), (M, dp,ϕ) and (M, dH) have the same topology. Here dgp,ϕ is the
distance induced by the length of paths in (M, dp,ϕ) and dH is the well-known Hausdorff distance
of compact sets (Thm. 6.11 and Thm. 6.30).

• Certain motions can be infinitesimally represented by vectors in Lp(RN ). In particular, to any
Lipschitz path γ(t) : R → M of compact sets in (M, dp,ϕ) we can associate the path f : R →
Lp(RN ) by f(t, x) = ϕ(uγ(t)(x)); and then we can represent (for almost all t) the motion of γ(t)
by the weak partial derivative ∂tf (see Sec. 6.4).

• In the case p = 2, N = 2, for compact sets with smooth boundary, the metric can be explained as
a Riemannian metric of deformations of the boundary (see Sec. 6.6).

The last two properties are what distinguishes this framework from the Hausdorff distance of compact
sets.

1.4 Plan of the paper
The plan of the paper is as follows.

In Sec. 2 we foremost review the theory of metric spaces, provide definitions of the length of a path,
of the metric derivative, of the induced distance dg, of geodesics. We define the action of a group on
a metric space and the properties of quotient distances. We propose some properties of metric spaces
isometrically embedded in Banach spaces.

In Sec. 3 we list definitions and notations.
In Sec. 4 we review properties of the distance function uA, and the fattening of sets.
Considering the spaceM of nonempty compact subsets of RN , in Sec. 5 we define onM the renowned

Hausdorff distance dH , review some of its properties; we also provide some original results, such as a
closed form formula for geodesics and a generic condition for non-uniqueness of geodesics.
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In Sec. 6 we discuss the main subject of this paper. We define in eqn. (31) the Lp–like distance of
compact sets. We prove many properties regarding the metric space (M, dp,ϕ): we prove in Prop. 6.11
that this metric space has the same topology as (M, dH), in Prop. 6.12 that it is complete; adding some
more hypotheses on ϕ, we prove in Thm. 6.20 that any two compact sets may be joined by a geodesic
in (M, dp,ϕ). In §6.4 we show a variational description of geodesics and in §6.6 (when p = 2, N = 2) we
use it to describe (M, dp,ϕ) as a weak kind of Riemannian manifold, that has an explicit description for
sets with smooth boundary. In §6.7, assuming that ϕ is convex and ϕ(|x|) ∈ W 1,p(RN ), we show that
the metric space (M, dgp,ϕ) has the same topology as (M, dp,ϕ) and (M, dH); where dgp,ϕ is the distance
induced by the length of paths in (M, dp,ϕ). In §6.8 we present a simple numerical method for computing
geodesics and two results.

We conclude in Sec. 7 showing some possible further expansions of the presented framework.

2 Metric spaces and embeddings in Banach spaces
2.1 Metric spaces
We recall some basilar definitions and results in the abstract theory of metric spaces.

Suppose that (M,d) is a metric space. We will denote with

B(x, ρ)def={x | d(x, y) < ρ}, (6)
D(x, ρ)def={x | d(x, y) ≤ ρ} (7)

the open ball and the closed disc in this metric space; note that in general D contains the closure of B,
but it may be strictly larger.

Definition 2.1. We induce from d the length Lend γ of a continuous path

γ : [α, β]→M

by using the total variation

Lend γdef= sup
T

n∑
i=1

d
(
γ(ti−1), γ(ti)

)
, (8)

where the supremum is computed over all finite subsets T = {t0, · · · , tn} of [α, β] and t0 ≤ · · · ≤ tn.When
Lend γ <∞ we will say that γ is rectifiable.

Definition 2.2. We define the metric derivative [3, 2]

|γ̇|(t)def= lim
s→0

d
(
γ(t+ s), γ(t)

)
s

. (9)

(The above notation does not imply that there is an actual object “γ̇” and that the metric derivative
is the “norm” of this object — the symbol |γ̇| is atomic).

The metric derivative enjoys the following properties.

Lemma 2.3. • If γ is absolutely continuous, then the above limit (9) exists for almost all t.

• For any absolutely continuous γ, let

lend γdef=
∫ β

α

|γ̇|(t) dt ; (10)

then
Lend γ = lend γ .

• If Lend γ < ∞ then there exists a continuous monotonic θ : [0,Lend(γ)] → [α, β] such that for
c = γ ◦ θ we have |ċ| = 1 for almost all θ. Such a path c is called the reparameterization to arc
parameter of γ.
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See Thm. 1.1.2, Lemma 1.1.4 in [2], and Thm. 4.1.1 in [3].

Definition 2.4. We define the induced distance dg by

dg(x, y)def= inf
γ

Lend γ, (11)

where the infimum is taken in the class of all continuous paths γ connecting x to y. If the infimum is a
minimum, the path providing the minimum is called a geodesic.

Note that it may be the case that dg(x, y) =∞ for some choices of x, y. Note also that dg ≥ d.
The topology of (M,d) and (M,dg) may be quite different, as we see in this example.

Example 2.5. Consider

M = {x ∈ R2 | 0 ≤ x1 ≤ 1, x2 = 0} ∪⋃
n≥1
{x ∈ R2 | 0 ≤ x1 ≤ 1, x2 = x1/n}

and d the Euclidean distance (see fig. 1). Then (M,d) is compact but (M,dg) is not.

Figure 1: Example 2.5

When d = dg, we will say that the metric space is path–metric, or that d is intrinsic.
The following results hold.

Proposition 2.6. • A path γ : [a, b]→M is continuous and rectifiable in (M,d) iff it is continuous
and rectifiable in (M,dg).

• The length Lend
g

defined by dg coincides with Lend on all such paths.

• dg = (dg)g, that is, the space (M,dg) is always intrinsic.

These results are found in [5] (for the first point, look at Exercises 2.1.4 and 2.1.5 in [5]).

We will use the following propositions.

Proposition 2.7. If for a choice of ρ > 0

Dg(x, ρ)def={x | dg(x, y) ≤ ρ} (12)

is compact in the (M,d) topology, then x and any y ∈ Dg(x, ρ) may be connected by a geodesic.

The proof is simply obtained by the direct method in the Calculus of Variations (see Thm. 9.2 in [16]).

Proposition 2.8. Suppose that a1 . . . an ∈ M are given; a sufficient condition for the existence of the
Geodesic Distance Based Averaging ā of a1 . . . an

ā = argmina τ(a) , where τ(a)def=
n∑
j=1

dg(a, aj)2 (13)

is that, defining
ρ∗ = min

i=1,...n
τ(ai)

we have that ρ∗ <∞ and that Dg(a1, 2
√
ρ∗ + ε) is compact in the (M,d) topology, for ε > 0 small.
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The proof is in Sec. A.2.
A similar proposition can be stated for d.

Proposition 2.9. Suppose that a1 . . . an ∈M are given; let

ρ∗ = min
i

n∑
j=1

d(ai, aj)2 (14)

and i∗ the index that achieves the above minimum. Suppose that D(ai∗ ,
√
ρ∗ + ε) is compact for ε > 0

small. Then there exists a point ā that is the Distance Based Averaging of a1 . . . an, as defined in (5).

The proof is similar so we omit it.
An intrinsic space such that any disc D(x, ρ) is compact is called finitely compact in [6]. Such

a space satisfies the hypotheses of the previous propositions. A classical example is given by finite
dimensional complete Riemannian manifolds.

2.1.1 Distances, quotients and groups

Let dM (x, y) be a distance on a spaceM and G a group acting onM . We suppose that dM is invariant
w.r.t. G, i.e.

dM (gx, gy) = dM (x, y) ∀g ∈ G .

(This generalizes the idea of eqn. (3)).
A distance dB may be defined on B = M/G by

dB([x], [y]) = inf
x∈[x],y∈[y]

dM (x, y) = inf
g,h∈G

dM (gx, hy)

that is the lowest distance between two orbits; we write dB(x, y) for simplicity. Since dM is invariant
w.r.t. the group action, dB coincides with

dB(x, y) = inf
g∈G

dM (gx, y) . (15)

It is easy to see that dB satisfies the triangle inequality; but it may be the case that dB(x, y) = 0
even when x 6= y. We state a simple sufficient condition.

Lemma 2.10. If the orbits are compact, then dB is a distance.

When studying metrics d on a Shape Space the quotient is particularly useful in at least two cases.

• For the purpose of Shape Analysis, shapes are usually intended “up to rotation, translation and
scaling”, while in Shape Optimization each shape has a distinctive position and orientation. For
this reason, when we wish to distinguish between the two different ideas of “Shape Spaces”, we will
call a space for Shape Optimization a “preshape space”.
When we want to pass from a preshape space to a shape space, we will apply the quotient above by
choosing G to be the Euclidean group of rotations and translation (and sometimes of scaling).

• When the representation is redundant. In the example 1 of embedded curves we proposed in the
introduction, we would set G = Diff(S1), the family of reparametrizations of the circle.

2.2 Embeddings in Banach spaces
In most of what follows, we will be able to identify M (using an isometry i) with a subset of a Banach
space E with norm ‖ · ‖. We remark that in the following an “isometry” is a map i such that d(x, y) =
‖i(x)−i(y)‖ (and this should not be confused with the concept of “isometrical immersions of Riemannian
manifolds”).
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2.2.1 Radon-Nikodym property

The following result from [1] will come handy.

Theorem 2.11. Suppose that E is the dual of a separable Banach space F . Let γ : [a, b] → E be a
Lipschitz path. By Theorem 8.1 in [1], for almost all t there exists the derivative γ̇(t) that is defined as

γ̇(t)def=w- lim
τ→0

γ(t+ τ)− γ(t)
τ

, (16)

where the limit is according to the weak-* topology; moreover

‖γ̇(t)‖ = lim
τ→0

∥∥∥∥γ(t+ τ)− γ(t)
τ

∥∥∥∥ , (17)

so ‖γ̇(t)‖ coincides with the metric derivative (9). 2 We can then define (following (10)) the length of γ
using the integral

len γdef=
∫ b

a

‖γ̇(t)‖ dt . (18)

It follows easily (by applying duality w.r.t. F in eqn. (16)) that

γ(b)− γ(a) =
∫ b

a

γ̇(t) dt , (19)

and, by Lemma 2.3,
LendE γ = len γ , (20)

where LendE γ is the total variation length (8) of paths in E computed using the usual distance dE(x, y) =
‖x− y‖.

Here is a simple example where the above Theorem does not apply. Consider the map t 7→ 1[t,t+1] in
L1(R). It is Lipschitz, but its derivative should be t 7→ δt+1 − δt. 3

2.2.2 The Radon-Nikodym property

It is common to say that E enjoys the Radon-Nikodym property, when the limit in (16) exists in the
strong sense and for almost all t.

We now recall this basilar definition.

Definition 2.12. A Banach space E is uniformly convex if ∀ε > 0∃δ > 0,

∀x, y ∈ E, ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε =⇒ ‖(x+ y)/2‖ < (1− δ) .

Examples of uniformly convex Banach spaces include Lp(Ω,A, µ) for p ∈ (1,∞). Uniformly convex
Banach spaces have many interesting properties: for example, they are reflexive (Milman–Pettis Theorem,
3.31 in [4]); moreover, if xn → x in weak sense and lim sup ‖xn‖ ≤ ‖x‖ then xn → x in the strong sense
(prop. III.32 in [4]).

So we obtain a sufficient condition.

Corollary 2.13. If E is uniformly convex and separable, then it enjoys the Radon-Nikodym Property
(indeed eqn. (16) and eqn. (17) imply that the limit in (16) is valid also in the strong sense).

2So in this case the metric derivative is the norm of an actual vector.
3 1A is the characteristic, or indicator, function of the set A.
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2.2.3 Embeddings in uniformly convex Banach spaces

If E is uniformly convex then in particular the closed ball {x ∈ E : ‖x‖ ≤ 1} is strictly convex; this has
an interesting implication.

Lemma 2.14. Suppose the closed balls in E are strictly convex. Consider E as a metric space, with
distance dE(x, y) = ‖x− y‖. The segment connecting x, y ∈ E is the unique (up to reparameterization)
geodesic.

Proof. We will prove that, for x, y, for any geodesic γ : [0, 1]→M connecting x to y, if γ is reparameter-
ized to arc parameter then γ(1/2) = (x+ y)/2; iterating this reasoning with finer subdivision we obtain
that γ(t) = (tx+ (1− t)y).

With no loss of generality, up to translation and scaling, suppose y = −x and ‖x‖ = 1. The segment
t 7→ tx is a geodesic for t ∈ [−1, 1], by Theorem 2.11 and its length is 2. Suppose now that γ : [−1, 1]→M
is another geodesic: then the length of γ is 2 and, up to reparameterization, ‖γ̇‖ = 1 at almost all points.
In particular, setting z = γ(0), ‖z − y‖ ≤ 1 and ‖x− z‖ ≤ 1; but then, by the triangle inequality,

‖z − y‖ = ‖z + x‖ = ‖x− z‖ = 1 .

Suppose that z 6= 0; then ‖(z + x) − (x − z)‖ > 0; by strict convexity, though, this implies that
‖((z + x) + (x− z))/2‖ = ‖x‖ < 1 and this is a contradiction.

Theorem 2.15. Suppose that (M,d) is a complete space and that i : M → E is an isometrical immersion
in a uniformly convex Banach space E. If, given x, y ∈M , d(x, y) = dg(x, y), then the segment connecting
i(x), i(y) is all contained in i(M).

In particular, if (M,d) is intrinsic then i(M) is convex and then any two points in M can be joined
by a unique geodesic (unique up to reparameterization).

Proof. Note that i(M) is complete and then it is closed in E. We will prove that, for any x, y ∈ i(M),
(x + y)/2 ∈ i(M). We can iterate this idea to further subdivide. Since i(M) is closed then this proves
the whole segment connecting x, y is in i(M). By the above lemma the segment is the unique geodesic.

We now fix x, y ∈ i(M): there must be paths γn : [−1, 1] → i(M) connecting x to y with length
Lend(γn) < Ln

def=‖x− y‖+ 2/n.
As in the lemma before, we suppose for simplicity that y = −x and ‖x‖ = 1 (so Ln = 2 + 2/n); and

we reparameterize so that ‖γ̇n‖le1 + 1/n: hence setting zn = γn(0)

‖zn − y‖ = ‖zn + x‖ ≤ 1 + 1/n , ‖x− zn‖ ≤ 1 + 1/n .

and then by the triangle inequality ‖zn + x‖ → 1, ‖zn − x‖ → 1. Setting

wn = (zn + x)/‖zn + x‖ , vn = (x− zn)/‖zn − x‖

we can prove that ‖(wn + vn)/2‖ → 1 hence by the uniform convexity of E we obtain that wn − vn → 0
and zn → 0. Since zn ∈ i(M) and i(M) is closed then 0 ∈ i(M).

The above is a “rigidity theorem”, in that it restricts the class of metric spaces that can be isometri-
cally embedded in a uniformly convex Banach space E.

Corollary 2.16. A compact finite dimensional Riemannian manifold M cannot be isometrically embed-
ded4 in a uniformly convex Banach space E: indeed in this space M there are two points that can be
joined by more than one geodesic.

When E is not uniformly convex, on the other hand, strange behavior arises.

Proposition 2.17. Let L∞ = L∞(Ω,A, µ) and suppose Ω is not an atom of µ, that is, suppose the
dimension of L∞ is greater than 1. Given generic f, g ∈ L∞, there is an uncountable number of geodesics
connecting them.

4In the sense explained at the beginning of section 2.2.
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Proof. We can assume without loss of generality that g = 0 and that ‖f‖ = 1. We abbreviate

{|f | = 1} = {x ∈ Ω : |f(x)| = 1}

and similarly for similar expressions. Let A = {|f | = 1}. We will prove that if there is only one
geodesic then |f | = 1A. Indeed if |f | 6= 1A then µ{|f | < 1} > 0. Let 0 < t < 1 be such that
µ{|f | < t} > 0; obviously µ{|f | ≥ t} > 0 since ‖f‖ = 1; let A′ = {|f | ≥ t} and A′′ = {|f | < t}. Given
any increasing diffeomorphism b : [0, 1]→ [0, 1] with b′(s) ≤ 1/t,

γ(t)def=tf1A′ + b(t)f1A′′

is a geodesic. Indeed its derivative is

γ′(t)def=f1A′ + b′(t)f1A′′

and ‖γ′(t)‖ = 1 by construction.
The family of f s.t. |f | = λ1A is closed and has empty interior.

The idea of isometrical embedding is quite powerful: indeed any separable metric space may be
isometrically embedded in `∞ (that is the dual of the separable space `1): so the breadth of application
of the Theorem 2.11 is general and is at the basis of many results in [1]. But the embedding in `∞ that
is studied in [1] is not suited for our practical applications.

• It would not respect the geometric properties of the space (as we discussed in Sec. 1.2).

• It would be too difficult to find a satisfactory notion of “shooting of geodesics” using this embedding:
that is, to define a way, given a point p and a direction v, to find a (possibly unique) geodesic starting
from p and with first derivative v in p.

For all above reasons, we will consider isometrical embeddings in this paper as well but we will (for the
most interesting applications) use an explicitly chosen embedding in uniformly convex Banach spaces.

3 Definitions
We introduce some definitions that will be used in the rest of the paper

• We will denote by e1, . . . en the canonical basis of RN .

• We will write s+ = max{s, 0}, for s ∈ R.

• We will write B(x, r) or Br(x) for the open ball

Br(x) = {y ∈ RN : |x− y| < r}

of center x and radius r > 0 in RN ; we will write Br for Br(0). Similarly Dr(x) will be the disk
(or closed ball)

Dr(x) = {y ∈ RN : |x− y| ≤ r} (21)

of center x and radius r > 0 in RN and Dr = Dr(0).

• We will say that a family Ai∈I of sets in RN is equibounded if there is a R > 0 such that Ai ⊆ DR

for all i.

• We denote by LN the N dimensional Lebesgue measure, and ωN
def=LN (B1); we write

∫
A
f(x) dx

for the Lebesgue integral.
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4 Distance function and fattening
Let A ⊆ RN be a closed set. We here recall some useful properties of the distance function uA that was
defined in eqn. (2).

• uA is the viscosity solution of the eikonal equation

|∇f(x)| − 1 = 0

in RN \ A, with boundary condition that f = 0 on A; the viscosity solution is unique in the class
of continuous function f that are bounded from below.

• uA is Lipschitz of constant 1, hence it is differentiable almost everywhere.

• Suppose that uA is differentiable at x; when x /∈ A we have |∇u(x)| = 1, otherwise ∇u(x) = 0.

• Fix x ∈ RN , x /∈ A, we will call projection point a point y ∈ A of minimum distance, i.e. a point
such that uA(x) = |x− y|. There is always at least one projection point.
The two following facts are equivalent:

1. uA is differentiable at x;
2. there is a unique projection point y ∈ A;

and when both hold
∇u(x) = x− y

|x− y|
. (22)

• uA is convex if and only if A is convex.

• If λ > 0
uλA(λz) = λuA(z) , (23)

where λAdef={λz : z ∈ A} is the rescaled set.

For all of the above see [14] (where the above properties are discussed for general Riemannian manifolds)
and references therein.

For A ⊆ RN a closed set and r ≥ 0, we define the fattened set to be

A+Dr = {x+ y | x ∈ A, |y| ≤ r} =
⋃
x∈A

Dr(x) = {y | uA(y) ≤ r}.

The fattened set is closed. The fattening operation is a semi group, in the sense that A + D0 = A and
for r, s > 0

(A+Dr) +Ds = A+Dr+s ;
similarly the distance function satisfies

uA+Dr (x) = (uA(x)− r)+ . (24)

We also present this Lemma that will be useful in the following.

Lemma 4.1. Let r > 0. Let F = A+Dr and E = {x : uA(x) = r} for convenience.

• The boundary ∂F of F is contained in the set E.

• E is Lebesgue negligible.

Proof. • If uA(z) < r then z is in the topological interior of F .

• Let z ∈ E s.t. uA(z) = r; let x ∈ A be a projection point of z; then the ball Dr(x) is contained
in F and z is in its boundary. Setting y = (x + z)/2, the ball Dr/2(y) is contained in F and z
is in its boundary; but moreover for all points w ∈ Dr/2(y) with w 6= z we have |w − x| < r,
hence uA(w) < r. We conclude that Dr/2(y) intersects E only in z. This proves that the Lebesgue
density of the set E in the point z cannot be one, so E is negligible.

(The above proves also that F satisfies an interior sphere condition).

11



5 Hausdorff distance
Let againM be the family of the nonempty compact sets in RN . A fundamental example of metric on
M is the Hausdorff distance

dH(A,B)def= inf{δ > 0 | B ⊆ (A+Dδ), A ⊆ (B +Dδ)} .

The Hausdorff distance may be defined in many equivalent ways,

dH(A,B) = max{max
A

uB ,max
B

uA} (25)

= sup
x∈RN

|uA(x)− uB(x)| , (26)

as shown in §C in Chap. 4 in [20] and §2.2 in Chap. 4 in [7].
This metric enjoys many important properties.

Theorem 5.1. The metric space (M, dH) satisfies:

1. given r > 0, the family of equibounded compact sets

{A ∈M | A ⊆ Dr}

is compact; in particular, given B ∈M, the set

{A ∈M | dH(A,B) ≤ ρ}

is compact.

2. (M, dH) is complete.

3. (M, dH) is intrinsic (that is, dH = (dH)g).

4. Any two A,B ∈M may be joined by a geodesic γ.

The first statement (1) is a well-known property of the Hausdorff distance, see e.g. Example 4.13 and
Theorem 4.18 in [20]. By exploiting the characterization (26), it also follows from a diagonal/compactness
argument and the results presented in Sec. 5.3. The second follows from the first. The third and fourth
property in 5.1 derive from the proposition 5.3 below.

We complement the above with this family of nice properties.

Proposition 5.2. 1. For any fixed A ∈M, the fattening map λ 7→ A+Dλ is Lipschitz (of constant
one) as a map from [0,∞) to (M, dH).

2. For any fixed λ > 0, the “fattened area map” Lλ : M → R defined as Lλ(A)def=LN (A + Dλ) is
continuous on (M, dH).

3. The area map L(A)def=LN (A) is upper semi continuous.

4. Let
# :M→ N ∪∞

be the number #Ω of connected components of a compact set Ω. Then # is lower semi continuous
in the metric space (M, dH). 5

As a corollary, the family of connected compact sets is a closed family in (M, dH).

5. Let A ∈ M and x in the topological interior of A, and R > 0 be s.t. BR(x) ⊆ A, then we define
the carving motion γ : [0, R]→M as γ(0) = A and

γ(t) = A \Bt(x) (27)

for t ∈ (0, R]. Then this motion is an arc parameterized 6 geodesic. See also Example 6.23.
5This result does not hold for closed sets.
6In the sense that its metric derivative is 1 for all t, see lemma 2.3.
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6. Let Φ : [−T, T ]×RN → RN be a locally Lipschitz map. Given A compact, let At = Φ(t, A) be the
image: then the path t 7→ At is Lipschitz in (M, dH).

Suppose that G is a group of diffeomorphisms of RN . This group G acts onM; for any g ∈ G, the
action of g on A ∈ M is g(A) = {g(x) : x ∈ A}. The last result shows that any such action is locally
Lipschitz.

Proof. 1. Follows from (24).

2. If An → A then for fixed ε > 0 there exists N such that for all n ≥ N ,

An ⊆ A+Dε , A ⊆ An +Dε

and then
An +Dλ ⊆ A+Dε+λ , A+Dλ−ε ⊆ An +Dλ .

Passing to Lebesgue measures,

LN (A+Dλ−ε) ≤ lim inf
n
LN (An +Dλ) ≤ lim sup

n
LN (An +Dλ) ≤ LN (A+Dε+λ) .

We let ε → 0: the LHS converges to the measure of the set {uA < λ} and the RHS converges to
the measure of the set {uA ≤ λ}: by Lemma 4.1 they are equal.

3. Since it is the pointwise limit Lλ(A) ↓ L(A) for λ→ 0.

4. See Thm. 2.3 in Chap. 4 in [7].

5. For 0 ≤ s < t ≤ R we have γ(t) ⊆ γ(s) and γ(s) ⊆ γ(t) +D(t−s).

6. Let R > 0 s.t. A ⊆ DR. Let L be the Lipschitz constant of Φ on [−T, T ]× A, then At ⊆ DR+LT
for all t. Fix s, t ∈ [−T, T ] , given y ∈ At let x ∈ A s.t. y = Φ(t, x) then consider z = Φ(s, x) ∈ As,
by Lipschitzianity |y − z| ≤ L|t− s|: so At ⊆ As +DL|t−s|.

5.1 The maximal geodesic
In this section we describe an explicit formula to compute the geodesic connecting two compact sets A
to B.

Proposition 5.3 (Maximal geodesic). Let A,B ∈ M be two compact sets, let µ = dH(A,B). For all
t ∈ [0, µ] we define the set

Ct
def={z : uA(z) ≤ t, uB(z) ≤ (µ− t)}

then t 7→ Ct is an arc parameterized geodesic connecting A to B; and in particular its length is µ.
Moreover C is maximal in the sense that, for any arc parameterized geodesic γ : [0, µ]→M connect-

ing A to B we have γ(t) ⊆ Ct ∀t ∈ [0, µ].

The proof is in Sec. A.3.
Remark 5.4. The above results still hold for the Hausdorff metric space of compact subsets of a finitely
compact intrinsic metric space — in particular they hold for finite dimensional Riemannian manifolds.

We provide an explicit example.
Example 5.5. Let A be a square of side 2 centered at the origin, and B a disc of radius 1 centered at
(4, 0). (In the figure cartesian axes are drawn for easy comparison with the following steps).

13



BA

The Hausdorff distance is µ = dH(A,B) =
√

26− 1. Let us fix t = µ/2. We now fatten the set A by
t and the set B by µ− t (that in this case is again t), and obtain these shapes.

Eventually we intersect the two fattenings to obtain Ct.

The above maximal geodesic enjoys some properties.

Corollary 5.6. • Let A,B, Ã, B̃ ∈M with A ⊆ Ã and B ⊆ B̃ and suppose that

µ = dH(A,B) = dH(Ã, B̃) .

Let Ct, C̃t be maximal geodesics connecting A to B and respectively Ã to B̃: then Ct ⊆ C̃t ∀t ∈
[0, µ].

• Let E be the convex hull of A ∪B, let µ = dH(A,B). For all t ∈ [0, µ] we define the set

C̃t = Ct ∩ E = {z ∈ E : uA(z) ≤ t, uB(z) ≤ (µ− t)}

then t 7→ C̃t is another arc parameterized geodesic connecting A to B.

14



• If A,B are convex sets, Ct and C̃t are convex for all t ∈ [0, µ].

Proof. The proof of the first result follows immediately from the definition of Ct. For the second we
reread the proof in Sec. A.3, noting that, if z ∈ E then y ∈ E as well. For the third we remind that the
two distance functions are convex.

The maximal geodesic defined in above Prop. 5.3 may not be suited for applications in Computer
Vision. Consider this example.
Example 5.7. Let A ⊂ R2 be a square of unit side, and B = A+(4, 0) be its translation; then dH(A,B) =
4. The map

γ : [0, 4]→M , γ(t) = A+ (t, 0)

that translates A to B is an arc parameterized geodesic, but is not the maximal geodesic. The maximal
geodesic Ct is much larger, the set C2 (at time t = 2) is depicted in Figure 2.

A B
C

2

Figure 2: Example 5.7

5.2 Multiple geodesics
Unfortunately (M, dH) is quite “unsmooth”; we will indeed prove that generically a pair A,B ∈M may
be joined by a continuum of geodesics.
Example 5.8. We first provide an example.

A = {x = 0, 0 ≤ y ≤ 2}

B = {x = 2, 0 ≤ y ≤ 1}

Et =
{
x = 1, 0 ≤ y ≤ 3

2
}
∪ {y = 0, 1 ≤ x ≤ t}

with 1 ≤ t ≤
√

5/2;

A

B

E
t

and in the picture we represent (dashed) the fattened sets A+D√5/2 and B+D√5/2. Note that dH(A,B) =√
5 while dH(A,Et) = dH(B,Et) =

√
5/2. So for all t ∈ [1,

√
5/2], Et is a midpoint of a distinct geodesic

between A and B.
The above idea is generalized in the following results.

Lemma 5.9. Let A,B ∈M, suppose A\B has non-empty topological interior, let θ = maxA uB(x) > 0.
For any non-empty open G ⊆ A \ B such that G ∩ {uB = θ} = ∅, setting E = A \ G then dH(A,B) =
dH(E,B).

15



The proof is in Sec. A.4. Note that such sets G exist, since the set {uB = θ} is compact and negligible,
due to Lemma 4.1.

Lemma 5.10. Let A,B ∈ M, with A 6= B, let µ = dH(A,B). Let Ct the maximal geodesic. Suppose
that for a t ∈ (0, µ) the set Ct \ (A ∪B) has non-empty interior: then there is a continuum of different7
geodesics connecting A to B.

The proof is in Sec. A.5.
We then propose a general Theorem.

Theorem 5.11. Let A,B ∈ M, with A 6= B, let µ = dH(A,B); suppose that there is an x in the
boundary of A s.t. 0 < uB(x) < µ: then there is a continuum of different geodesics connecting A to B.

Proof. Let Ct be the maximal geodesic connecting A to B, as defined in Prop. 5.3. Choose ε > 0 small
such that 2ε < uB(x) < µ − 2ε; there is a point y near x such that |x − y| < ε but y /∈ A: such point
satisfies uA(y) < ε and ε < uB(y) < µ− ε hence it is in the topological interior of Ct when t = ε, but is
outside of A and B. So we can apply the previous Lemmas.

(Note the similarity of the above arguments to the proof 2.17 – and for a reason!).

Lemma 5.12. Let (An), A ⊆M. Suppose that An → A in the sense of Hausdorff convergence, then for
any x ∈ ∂A there exists a sequence with xn ∈ ∂An such that xn → x.

Theorem 5.13. Generically any pair A,B ∈M is connected by a continuum of different geodesics.

Proof. If a pair A,B ∈M does not satisfy the hypothesis of Thm. 5.11, then

∂A ⊆ {uB = µ} ∪B , ∂B ⊆ {uA = µ} ∪A , (28)

where µ = dH(A,B). Let U inM2 be the set of all such pairs; note that any pair (A,A) is in U .
We will prove that U is closed and has empty interior (w.r.t. the Hausdorff convergence).
The fact that U is closed follows from the previous Lemma and eqn. (26).
Fix (A,B) ∈ U .
We choose an “exposed boundary point” x ∈ A ∪ B; to fix ideas, we let a = max{x1 : x ∈ A ∪ B}

(where x1 is the first component of x) and x be a point providing the above maximum; then A ∪ B is
contained in the half space H = {z : z1 ≤ a}.

Suppose wlog that x ∈ A; let y = x+ εe1 with ε > 0 small; then add to A the segment xy to create
Ã. The pair (Ã, B) /∈ U , since the segment xy is contained in the boundary of Ã, but xy is not contained
in B (since by construction xy is outside of H) and uB is not constant on it.

Since this construction holds for any ε > 0, then U has empty interior.

To end the section, we review some examples of pairs A,B that are connected by a unique geodesic.
Note how the condition (28) is satisfied in these examples.

Definition 5.14. Following [8], F is a set of positive reach if there exists r > 0 such that for any x
with uF (x) < r there exists a unique projection point y ∈ F ; this defines a projection map πF (x) = y.
The reach is the largest such r. For any 0 < s < r the projection πF is Lipschitz on {uF ≤ s}.

Examples of sets of positive reach are:

• convex sets (in this case r =∞);

• compact sets with non-empty interior and C2-regular boundary;

• compact submanifolds of RN that are C2-regular.

Example 5.15. Suppose that F is a set of positive reach r, choose µ ∈ (0, r). Suppose that A is a compact
subset of ∂F , and B is a compact subset of {uF = µ} s.t. πF (B) = A. Then dH(A,B) = µ; there is a
unique geodesic Ct connecting A to B, and Ct is given by all interpolated points

tx+ (µ− t)πF (x)
µ

for all x ∈ B.
7That is, not “equal up to reparameterization”.
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When A = ∂F , the above is known as grassfire evolution.
The above encompasses many examples.

Example 5.16 (Orthogonal translation). Let A ∈ M, suppose that there is an N − 1 dimensional affine
space H containing A, choose a vector v orthogonal to H and define B = v + A (B is the translation
of A by the vector v); then dH(A,B) = |v| and the translation Ct = A + tv/|v| is the unique geodesic
connecting A to B.
Example 5.17 (Fattening). Suppose that A is a set of positive reach r, let µ ∈ (0, r) and B = A+Dµ be
a fattening, then dH(A,B) = µ and the fattening Ct = A+Dt is the unique geodesic connecting A to B.

Note that in general the “fattening” is a geodesic, but it may fail to be unique.

5.3 Hausdorff and Kuratowski convergence
We provide some extra definitions.

Definition 5.18 (Kuratowski convergence). Let Ω,Ωn be nonempty closed sets in RN . We will say that
Ωn → Ω in the Kuratowski sense if these equivalent facts hold:

• uΩn → uΩ pointwise;

• uΩn → uΩ pointwise on a dense subset of RN ;

• uΩn → uΩ uniformly on compact subsets of RN .

This definition is not the standard one, but it is equivalent, see §4.B in [20]. The equivalence of the
statements in the above definition is due to the fact that distance functions are 1-Lipshitz functions. The
above three equivalent facts express a “rigidity” of distance functions, that is again seen in the following.

Lemma 5.19. Let Ωn be nonempty closed sets and suppose that limn uΩn(x) exists and is finite, for all
x in a dense subset D of RN ; call f(x) = limn uΩn(x). Then there is a nonempty closed set Ω such that
Ωn → Ω in the Kuratowski sense and uΩ(x) = f(x) for all x ∈ D.

Proof. The proof may follow from the theory of Viscosity Solutions: as remarked in Sec. 4, indeed uΩ is
the unique solution to the eikonal equation; moreover viscosity solutions do enjoy the required rigidity
property. The proof is anyway easily derived by a direct argument and the Ascoli–Arzelà theorem
(similarly to the arguments of Chap. 2 in [7] and of Chap. 4 in [20] 8). We propose a direct proof in
Sec. A.6.

The Kuratowski convergence and the Hausdorff convergence coincide for equibounded families.

Lemma 5.20. Suppose that Ω is compact and non-empty and that Ωn are non-empty closed sets. These
facts are equivalent.

• Ωn is equibounded and Ωn → Ω in the Kuratowski sense;

• dH(Ωn,Ω)→ 0;

• uΩn → uΩ uniformly.

Proof. The equivalence of the first two is proved in Sect. C in Chap. 4 [20]. Eqn. (26) shows that the
third condition is equivalent to the second.

8But, see an important correction in Remark 2.7 in [15].
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6 Lp–like metrics of shapes
The definition of the Hausdorff distance by eqn. (26) leads us back to the paradigm of representa-
tion/embedding; but in this case it is unfortunately not precise, since the Banach metric that we use,
namely

‖f‖ = ‖f‖∞
def= sup

x
|f(x)| ,

is usually associated to the space of continuous bounded functions — whereas the distance function uA
is not bounded! What follows is a simple yet effective workaround.
Hypotheses 6.1. We fix p ∈ [1,∞]; we fix a function ϕ : [0,∞) → (0,∞) monotonically strictly
decreasing and of class C1, such that

ϕ(|x|) ∈ Lp(RN ). (29)

When p =∞ we also ask that limt→∞ ϕ(t) = 0 as an extra hypothesis.
In the rest of the paper ϕ will always satisfy the above assumption (and possibly others, that will be
specified when needed).

Note that, when p <∞, the above (29) is equivalent to asking that∫ ∞
0

tN−1ϕ(t)p dt <∞ (30)

and this implies that limt→∞ ϕ(t) = 0.
An example of such a function is ϕ(t) = exp(−t), or ϕ = (1 + t)−(N+1)/p.
We will often write

vA
def=ϕ ◦ uA

for simplicity.

Lemma 6.2. Let Ω ⊆ RN be closed and non-empty; suppose p <∞; then the following are equivalent.

(a) vΩ ∈ Lp(RN ).

(b) Ω is bounded (and then Ω is compact).

Proof. We first prove that (a) =⇒ (b) by contradiction. Let us assume that Ω is unbounded. Then
there exists a sequence {xk} ⊆ Ω such that |xk| → ∞ and |xk − xq| > 2 for all k, q ∈ N, k 6= q. The
sequence of sets B1(xk) is disjoint. It is easy to see that vΩ(x) > ϕ(1) for x ∈

⋃
k B1(xk) and then

v /∈ Lp.
Then we prove that (b) =⇒ (a). If Ω is bounded we can find a disk DR such that Ω ⊆ DR. Then

easily we have uΩ ≥ uDR =⇒ vΩ ≤ vDR , but vDR ∈ Lp (as is easily proved by vDR(x) = ϕ((|x| −R)+)
and by (30)) so that vΩ ∈ Lp as well.

Let againM be the family of the nonempty compact sets in RN .
Definition 6.3. Given A,B ∈M, we define

dp,ϕ(A,B)def=‖ϕ ◦ uA − ϕ ◦ uB‖Lp(RN ) . (31)
By the above lemma, this distance is finite. We will often write d for dp,ϕ in the following, for simplicity.
Similarly we will write dg for the induced distance dgp,ϕ.

The above distance is obtained by the representation of a shape A as vA, combined with the embedding
of vA in Lp(RN ). For this reason, we may identify our shape space with

N def= {vΩ | Ω ∈M} (32)

that is a subset of Lp.
Remark 6.4. By the definition of d, the map Ω 7→ vΩ is an isometrical embedding of M inside Lp and
the image is N ; N is a closed subset of Lp, by the completeness result 6.12 that we will prove in the
following. We will exploit this embedding in the following, in particular in §6.6.
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It is immediate to verify that dp,ϕ satisfies these properties.

• The embedding A 7→ vA is injective: if vA = vB a.e. then uA = uB a.e. (since ϕ is strictly
decreasing, and so it is injective); since distance functions are continuous, this implies that uA = uB
and then A = B. Consequently, for all A,B ∈M, dp,ϕ(A,B) = 0 iff A = B.

• dp,ϕ is Euclidean invariant, as we requested in sec. 1.2.

• When p <∞, for any A,B compact there holds

dp,ϕ(A,B) < p

√
‖vA‖pLp + ‖vB‖pLp . (33)

Indeed we note that for a, b > 0 we have

|a− b|p < max{ap, bp} < ap + bp ;

so

dp,ϕ(A,B)p =
∫
RN
|vA(x)− vB(x)|p dx <

∫
RN

vA(x)p + vB(x)p dx .

• When p =∞ instead
d∞,ϕ(A,B) < ϕ(0) .

• (Separation at infinity) Given two bounded sets A,B and τ ∈ RN we have

lim
|τ |→∞

dp,ϕ(A,B + τ) = p

√
‖vA‖pLp + ‖vB‖pLp (34)

for p <∞, while
lim
|τ |→∞

d∞,ϕ(A,B + τ) = ϕ(0) . (35)

Proof. For the case p =∞ it derives from the hypothesis limt→∞ ϕ(t) = 0. When p <∞, it comes
from a general result for Lp functions, see Sec. A.1.

• (Scaling) If p <∞ and λ > 0 is a rescaling of the space, then the rescaled distance may be expressed
as

dp,ϕ(λA, λB) = λN/pdp,ϕ̃(A,B) (36)

where ϕ̃(r) = ϕ(λr); indeed

dp,ϕ(λA, λB)p =
∫
|vλA(x)− vλB(x)|p dx (37)

= λN
∫
|vλA(λz)− vλB(λz)|p dz (38)

= λN
∫
|ϕ(λuA(z))− ϕ(λuB(z))|p dz (39)

= λNdp,ϕ̃(A,B)p

where to go from (37) to (38) we used the change of variable x = λz and the property (23) of the
distance function to change (38) to (39).

Remark 6.5. The inequality (33) easily implies that the closed balls of the distance d in general are not
compact sets. Indeed it is enough to consider a compact set Ω and the closed ball

D = {A | d(A,Ω) ≤ 2r}

with r = ‖vΩ‖Lp . Then the sequence {Ω + nτ}n∈N with τ ∈ RN \ {0} is contained in D and it does not
have any convergent subsequence.
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We will nonetheless prove in the following that the metric space (M, d) is locally compact.
To continue with our study of d, we prove this fundamental inequality.

Lemma 6.6 (Local equiboundedness). There is a continuous and increasing function b : R+ → R+ with
b(0) = 0 and limr→∞ b(r) = ‖ϕ(|x|)‖Lp such that, for any Ω,Ω′ ∈M satisfying

‖vΩ − vΩ′‖Lp < b(r)

we have Ω′ ⊆ Ω +Dr.

Proof. Set Kdef=Ω +Dr. By the relation in eqn. (24)

vK(x) = ϕ
(
(uΩ(x)− r)+).

To prove the proposition for p ∈ [1,∞), suppose that x0 ∈ Ω′, but x0 /∈ K; for y ∈ B(x0, r/2) recall
the simple triangle inequality

uΩ(y) ≥ r − |x0 − y| ≥ |x0 − y| ≥ uΩ′(y)

hence
vΩ(y) ≤ ϕ(r − |x0 − y|) ≤ ϕ(|x0 − y|) ≤ vΩ′(y)

so

‖vΩ − vΩ′‖pLp ≥
∫
B(x0,r/2)

|vΩ′ − vΩ|p dx ≥

≥
∫
B(x0,r/2)

|ϕ(|x0 − y|)− ϕ(r − |x0 − y|)|p dx = b(r)p

where

b(r)p def= ωNN

∫ r/2

0
tN−1(ϕ(t)− ϕ(r − t))p dt

and where ωN is the N-volume of the ball B1 in RN . It is easy to prove that b is continuous and increasing
(by direct derivation); that b(0) = 0 and that limr→∞ b(r) = ‖ϕ(|x|)‖Lp . With some calculus it is also
possible to prove that

b(r) ∼ |ϕ′(0)|r1+N/p (40)

for r small. (This estimate is sharp, see Example 6.23).
The case p =∞ is simpler: in this case we can note that

‖vΩ − vΩ′‖∞ ≥ vΩ′(x0)− vΩ(x0) ≥ ϕ(0)− ϕ(r)

and set b(r) = ϕ(0)− ϕ(r).

Corollary 6.7. For d(Ω,Ω′) small enough 9

dH(Ω,Ω′) ≤ b−1
(
d(Ω,Ω′)

)
.

Remark 6.8. The above does not hold for arbitrarily large distance d(Ω,Ω′): indeed, let Ω = {0} and
Ωn = {ne1}: then d(Ω,Ωn)→ 21/p‖ϕ(|x|)‖Lp (as we mentioned in eqn. (34)).

We can also obtain a converse inequality, as follows.

Lemma 6.9. There is a family of continuous functions fR : R+ → R+ with fR(0) = 0 such that for any
Ω,Ω′ ∈M with Ω,Ω′ ⊆ BR

d(Ω,Ω′) ≤ fR
(
dH(Ω,Ω′)

)
.

9Precisely, for d(Ω, Ω′) < limr→∞ b(r) = ‖ϕ(|x|)‖Lp .
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Proof. Note that ϕ is uniformly continuous; so when p = ∞ we choose f1 to be a (continuous and
increasing) modulus of continuity for ϕ, and then for any R > 0 we set fR ≡ f1, and use eqn. (26).

We now provide the proof for p < ∞. Since BR contains both Ω and Ω′, then uΩ, uΩ′ ≥ uBR and
then

vΩ(x), vΩ′(x) ≤ ϕ((|x| −R)+)

so for r ≥ R ∫
RN\Br

|max{vΩ(x), vΩ′(x)}|p dx ≤ aR(r)

where
aR(r)def=

∫
RN\Br

ϕ(|x| −R)p dx = ωNN

∫ ∞
r

tN−1ϕ(t−R)p dt (41)

(where ωN is the N-volume of the ball B1, and ωNN is the (N − 1)-volume of its boundary) and note
that aR(r)→ 0 for r →∞. At the same time, let l(r) = sup[0,r] |ϕ′|: then

∀x ∈ Br, |vΩ(x)− vΩ′(x)| ≤ l(r + 2R)|uΩ(x)− uΩ′(x)|

so ∫
Br

|vΩ(x)− vΩ′(x)|p dx ≤ ωNrN l(r + 2R)p sup
x∈Br

|uΩ(x)− uΩ′(x)|p ≤

≤ ωNrN l(r + 2R)pdH(Ω,Ω′)p

Summarizing,

d(Ω,Ω′)p =
∫
RN\Br

|vΩ(x)− vΩ′(x)|p dx+
∫
Br

|vΩ(x)− vΩ′(x)|p dx ≤

≤ aR(r) + ωNr
N l(r +R)pdH(Ω,Ω′)p

Let eventually, for s ≥ 0,
gR(s) = inf

r≥R

[
aR(r) + ωNr

N l(r + 2R)p s
]

(42)

and note that it is concave and monotonically increasing, and that lims→0 gR(s) = 0; and let fR(s) =
p
√
gR(sp).

Remark 6.10. Suppose that ϕ is convex and that ϕ′(0) = −1, then l ≡ 1 in the above proof. When s > 0
the minimum in (42) is obtained by r = R if s > ϕ(0)p, otherwise by

r = R+ ϕ−1( p
√
s) .

A special case is ϕ(t) = exp(−t), N = 2, we obtain fR(s) ∼ s|R− log s|2/p for s small.
Another interesting case is ϕ(t) = (1 + t)−(N+1)/p, in this case, for R > 1, N ≥ 2, we obtain

fR(s) ∼ s
1

N+1 for s small.
Combining the two lemmas 6.9 and 6.7, we obtain this result.

Theorem 6.11. The topology induced by dp,ϕ over the space M coincides with the topology induced by
dH .

This implies that all topological properties of the Hausdorff distance are valid for the distance d as
well.

The two distances though are not equivalent, since

lim
|τ |→∞

dH(A,B + τ) =∞

while equations (34) and (35) show that the limit is finite for dp,ϕ. When p < ∞ then dp,ϕ and dH are
also not locally equivalent, as seen in the examples 6.23 below.
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6.1 Completeness
By Thm. 6.11, we know that (M, d) is locally compact.

We now prove that it is complete.

Proposition 6.12. The space (M, d) is complete.

Proof. Let Ωn be a Cauchy sequence; this means that {vΩn}n is a Cauchy sequence in Lp. Since Lp is
complete, vΩn → g in Lp.

By lemma 6.6 we know that there exists a compact set K such that the sets Ωn ⊆ K for all n. In
particular, for any x ∈ RN , uΩn(x) ≤ maxy∈K |y − x| and then

vΩn(x) ≥ h(x)def= min
y∈K

ϕ(|y − x|) ;

note that h(x) > 0 at all points.
It is well-known (see e.g. thm 4.9 in [4]) that, up to a subsequence that we indicate with {vk}k, there

is also convergence vk(x)→ g(x) for almost all x. By the above reasoning, g(x) ≥ h(x) > 0 in all points
of convergence.

Let uk(x)def=ϕ−1vk(x) and u = ϕ−1g; then uk(x) → u(x) on a dense subset, so by Lemmas 5.19 and
5.20, u = uΩ where Ωdef= {u = 0}.

Summarizing, this proposition together with Theorems 5.1 and 6.11 imply that N is a complete (that
is, closed) and locally compact subset of Lp. (N was defined in eqn. (32) as the family of all functions
vA for A compact sets).
Remark 6.13. The above implies an interesting property of the subset N of Lp: it admits a small
neighbourhood U on Lp such that, for f ∈ U , there is at least a v ∈ N providing the minimum of the
distance infv∈N ‖f − v‖. As far as we know, this minimum may fail to be unique.

6.2 Shape Analysis
The family of distances is suitable for Shape Analysis.

Proposition 6.14. Let G = O(N) nRN be the Euclidean group ( i.e. the group generated by rotations,
translations and reflections); as in (15), we can define the quotient metric by

dq([A], [B]) = inf
g∈G

d(gA,B). (43)

Then the above infimum is a minimum; so dq([A], [B]) > 0 when [A] 6= [B].

Proof. Choose a minimizing sequence {gn = (Rn, Tn)}n∈N, that is

inf
g∈G

d(gA,B) = lim
n→∞

d(gnA,B) = lim
n→∞

d(RnA+ Tn, B).

Then {Tn}n∈N must be bounded; we prove this by contradiction. Let us assume that |Tn| → ∞, then by
(33) we would have that

d(A,B) < p

√
‖vA‖pLp + ‖vB‖pLp

and by Lemma A.1 that
lim
n→∞

d(RnA+ Tn, B) = p

√
‖vA‖pLp + ‖vB‖pLp ,

so {gn} is not a minimizing sequence.
So the translation part of every minimizing sequence of (43) must be bounded. By compactness we

have that there exists a limit transformation g = (R, T ) ∈ K and subsequence such that gnk →k g; by
continuity of d(fA,B) with respect to f ∈ G, we have that d(gA,B) = dq([A], [B]).
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6.3 dg and geodesics
Let d = dp,ϕ in the following.

Proposition 6.15. Given any two A,B ∈M with A 6= B then for all λ ∈ (0, 1), λvA + (1− λ)vB /∈ N .

Proof. It is easy to show that fλ = λvA + (1− λ)vB assumes the value ϕ(0) only on the intersection of
the two sets A∩B, for any λ ∈ (0, 1). Then fλ ∈ N implies that fλ = vA∩B . If A∩B = ∅ the proof ends.
Suppose wlog that A\B 6= ∅. Let x ∈ A\B then ϕ(0) = vA(x) > vB(x) ≥ vA∩B(x); so fλ(x) > vA∩B(x)
achieving a contradiction.

Similarly, the convex combination λuA + (1−λ)uB of two distance functions uA, uB is not a distance
function (but for the special cases λ ∈ {0, 1} or A = B).

Corollary 6.16. Suppose that p ∈ (1,∞). Given any two A,B ∈ M with A 6= B we have that
d(A,B) < dg(A,B).

The result follows from the previous proposition and Thm. 2.15.
In the above cases d is not intrinsic. So, to prove that the metric d admits geodesics, we have to

study dg as well.
We will need the following extra hypotheses in many results following.

Hypotheses 6.17. Let ϕ be as defined in 6.1. We moreover suppose that there is a constant T > 0
such that ϕ(t) is convex for t ≥ T . When p <∞, we suppose that

ϕ′(|x|) ∈ Lp(RN ). (44)
The above implies that limt→∞ ϕ′(t) = 0. Note also that (44) is equivalent to asking that∫ ∞

0
tN−1|ϕ′(t)|p dt <∞ . (45)

Proposition 6.18. If 6.17 holds then the space (M, dp,ϕ) is Lipschitz–arc connected.

The proof is in Sec. A.7.
When M is Lipschitz-arcwise connected, the induced metric dg = (dp,ϕ)g is a finite metric, that is,

dg(A,B) <∞ for all A,B compact.
We can prove an equiboundedness result for dg (that is stronger than the one in Prop. 6.6).

Proposition 6.19. Suppose that 6.17 holds. Fix a compact nonempty set Ω and an r > 0; then there is
a K compact such that for any closed set Ω′ satisfying dg(Ω,Ω′) < r we have Ω′ ⊆ K.

Proof. Let b(r) be defined by Prop. 6.6. Let dg(Ω,Ω′) < r and γ : [0, 1] → N be a Lipschitz path (of
constant L) connecting γ(0) = Ω to γ(1) = Ω′ such that

Lend γ ≤ dg(Ω,Ω′) + 1 .

Up to reparameterization, we also assume that L ≤ r + 2. Let n be large so that (r + 2)/n ≤ b(r), and
let K = Ω +Drn (note that n only depends on r). Let Ai = γ(i/n) for i = 0, . . . , n; we know that

d(Ai, Ai+1) ≤ dg(Ai, Ai+1) ≤ L/n < (r + 2)/n ≤ b(r)

since γ is L-Lipschitz; so we apply recursively the proposition 6.6 on each Ai: we obtain that

Ai+1 ⊆ Ai +Dr

hence Ω′ ⊆ Ω +Drn = K.

The above results have many interesting consequences.

Theorem 6.20. Suppose that 6.17 holds. For any ρ > 0,

Dg(A, ρ)def={A | dg(A,B) ≤ ρ}

is compact in the (M, d) topology; so
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• we obtain by Prop. 2.7 and Prop. 6.18 that geodesics do exist;

• and by Prop. 2.8 that the Geodesic Distance Based Averaging

Ā = argminA
n∑
j=1

dg(A,Aj)2 (46)

of any given collection A1, . . . An exists.

Two examples of geodesics are in Fig. 3 on page 32 and in Fig. 4 on page 33.

6.4 Variational description of geodesics
In this section we restrict p ∈ (1,∞).

We first state these general results, based on well-known Lp theory.

Proposition 6.21. Suppose that t 7→ f(t, ·) is a Lipschitz path from t ∈ [0, 1] to Lp(RN ); then, for
almost all t, f admits a strong derivative df

dt that is the limit

df

dt
(t, ·)def= lim

τ→0

f(t+ τ, ·)− f(t, ·)
τ

(47)

in Lp(RN ). This follows from Corollary 2.13. Moreover

• f admits a weak partial derivative ∂tf , and ∂tf = df
dt for almost all t.

• If f admits a pointwise partial derivative in t for almost all t, x, that we will call h, then ∂tf = h.

The proof is in Sec. A.8.
If γ(t) is a Lipschitz path in (M, d), then it is associated to a function f(t, x) = ϕ(uγ(t)(x)). If γ is

Lipschitz then f(t, ·) satisfies the hypotheses of the above proposition. The first point means that we can
represent the “abstract” derivative dγ

dt by means of the weak derivative ∂tf(t, ·) ∈ Lp(RN ). The second
point is used to compute the derivative in practical cases, such as the following examples.

The above proposition can also be used to provide a variational description of geodesics. Let γ :
[0, 1] →M be a path; by Lemma 2.3 the variational length Lend γ can be computed using the integral
length lend γ of the metric derivative |γ̇(t)|; by Theorem 2.11 the metric derivative |γ̇(t)| coincides with
the norm ‖v̇γ(t)‖Lp of the derivative v̇γ(t) in the Banach space Lp; by the above result, ‖v̇γ(t)‖Lp =
‖∂tf(t, x)‖Lp . Summarizing

Lend γ =
∫ 1

0
‖∂tf(t, ·)‖Lp dt . (48)

So to find the geodesic between two compact sets A,B, we need to minimize the above, with the following
constraints

• f(0, ·) = vA, f(1, ·) = vB

• for any fixed t, ϕ−1 ◦ f(t, ·) is a distance function.

It is possible to prove (using a reparameterization lemma and Hölder inequality) that the geodesic is
also the minimum of the action

J(γ) =
∫ 1

0
‖∂tf(t, x)‖pLp dt =

∫ 1

0

∫
RN
|∂tf(t, x)|p dx dt . (49)

Equivalently, setting g(t, x) = uγ(t)(x), to find geodesics we can minimize

J(γ) =
∫ b

a

∫
RN
|ϕ′(g)∂tg(t, x)|p dxdt

with the constraint that g(0, ·) = uA, g(1, ·) = uB , and, for any fixed t, g(t, ·) is a distance function.
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6.4.1 Examples

Example 6.22. Let N = 2, p = 2, ϕ(t) smooth, r ≥ 0. Consider the path γ(t) of disks of center (t, 0) ∈ R2

and radius r in R2, for t ∈ [0, 1]. We want to compare the length of this path as computed using the
Hausdorff distance and using the distance d.

• We have dH(γ(0), γ(1)) = 1, that is also the length LendH γ of the path γ.

• We use the expression (48). We have

vγt(x1, x2) =
{
ϕ(0) if x2

2 + (x1 − t)2 ≤ r2 ,

ϕ
(√

x2
2 + (x1 − t)2 − r

)
otherwise .

Upon derivation with respect to t,

∂tvγt(x1, x2) =
{

0 if x2
2 + (x1 − t)2 ≤ r2 ,

t−x1√
x2

2+(x1−t)2
ϕ′(
√
x2

2 + (x1 − t)2 − r) otherwise

so (using polar coordinates around (t, 0))

‖∂tvγt‖
2
L2(R2) =

∫
R2
|∂tvγt(x1, x2)|2 dx =

π

∫ ∞
r

(
ϕ′(ρ− r)

)2
ρ dρ = πb+ raπ

where
a =

∫ ∞
0

(
ϕ′(s)

)2 ds , b =
∫ ∞

0

(
ϕ′(s)

)2
sds .

For example, when ϕ(t) = e−t then the length Lend γ is√
π(1 + 2r)

2 .

A more general computation of the length of motions of convex bodies will be performed in Sec. 6.6.1.

Example 6.23. Let A be compact. We consider again the carving motion that we saw in 5.2.(5); to
simplify the matter, suppose that the origin is in the topological interior of A; let R > 0 s.t. BR ⊆ A;
for t ∈ [0, R] let γ(t) = At = A \Bt, be the carving of a small ball from A.

We suppose p ∈ (1,∞), and we also suppose that ϕ′(0) 6= 0, for simplicity.
We can explicitly compute (for r > 0, s > 0 with r + s ≤ R)

f(r, x) = vγ(r)(x) =
{
ϕ(r − |x|) if |x| ≤ r
vA(x) if |x| > r

hence

‖vAs − vAr+s‖
p
Lp = ωNN

∫ r+s

s

tN−1
(
ϕ(0)− ϕ(s+ r − t)

)p
dt+

+ ωNN

∫ s

0
tN−1

(
ϕ(s− t)− ϕ(s+ r − t)

)p
dt ≤

≤ ωNr
pLp(r + s)N

where L is the Lipschitz constant of ϕ(t) for small t. We have thus proved that the carving motion is
Lipschitz for the distance dp,ϕ.

Note that dH(A,At) = t, but
dp,ϕ(A,At) ∼ t1+N/p ;
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so the two distances are not locally equivalent when p ∈ [1,∞); moreover the estimate (40) is sharp.

Suppose now moreover that p ∈ (1,∞). Using Prop. 6.21 we can compute the metric derivative of γ

|γ̇|(r) = ‖∂rf(r, ·)‖Lp = p

√
ωNN

∫ r

0
sN−1

∣∣∣ϕ′(r − s)∣∣∣p ds

and using Theorem 2.11 we obtain that the length of γt for t ∈ [a, b] is

Lend γ|[a,b] =
∫ b

a

p

√
ωNN

∫ r

0
sN−1

(
ϕ′(r − s)

)p
dsdr ;

in particular for r small we obtain
Lend γ|[0,r] ∼ r1+N/p . (50)

So dg(A,Ar) ≤ O(r1+N/p), hence the two distances dg and dH are not locally equivalent when p ∈ (1,∞);

6.5 Tangent bundle
Let p ∈ (1,∞). We identifyM with N ⊆ Lp, as by remark 6.4.

Given a v ∈ N , let TvN ⊆ Lp be the contingent cone

TvN
def=
{

lim
n
tn(vn − v) | tn > 0, vn ∈ N , vn → v

}
=

=
{
λ lim

n

vn − v
‖vn − v‖Lp

| λ ≥ 0, vn → v

}
,

where we consider all sequences tn, vn such that the limit exists; it is intended that the above limits are
in the sense of strong convergence in Lp.

According to Cor. 2.13 if γ : [a, b] → N is a Lipschitz path then γ̇(t) exists (in the strong sense) in
Lp(RN ) for almost all t; so γ̇(t) ∈ TγN for almost all t.

In the following example we write explicitly the element of the contingent cone relative to a particular
path.
Example 6.24. We fix Ω ∈ M. We define the fattening Ωt = Ω + Dt for t ≥ 0. We are interested in
evaluating the derivative γ̇(t). As previously done, we use the relationship (24) namely

uΩt(x) = (uΩ(x)− t)+ (51)

and note that this map is jointly Lipschitz in (t, x): hence both uΩt(x) and vΩt(x) are almost everywhere
differentiable. The pointwise derivative is given by:

w = lim
τ→0

1
τ

[
vΩt+τ − vΩt

]
=
{
−ϕ′(uΩ(x)− t) for x /∈ Ωt,
0 for x ∈ Ω̊t.

(52)

where Ω̊t is the topological interior. Note that the derivative may not exist for x ∈ ∂Ωt. If ϕ′(|x|) ∈ Lp
then w ∈ Lp, and it can be shown that

w = lim
τ→0

1
τ

[
vΩt+τ − vΩt

]
in the Lp sense; then w is in the contingent cone. In particular, by Rem. 1.1.3 in [2], we obtain that the
path γ is Lipschitz for t ∈ [0, T ].

Unfortunately the contingent cone is not capable of expressing some shape motions.
Example 6.25. We consider again the carving motion that we saw in 5.2.(5) and in Example 6.23. We
define for convenience the functions

wt
def= vAt − vA
‖vAt − vA‖Lp

.
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These do not admit a limit in Lp(RN ) when t→ 0+.
Suppose by contradiction that limt→0+ wt = w in Lp(RN ). Let us fix r > t > 0, then for any x

outside of Br we have that vAt(x) = vA(x) and consequently wt(x) = 0, hence w(x) = 0 for almost any
x outside of Br. By arbitrariness of r this would imply that w = 0 for almost every x. At the same time
since ‖wt‖Lp = 1 for all t > 0 then ‖w‖Lp = 1; so w cannot exist.

We conclude that the “velocity” of the carving motion does not admit a representation in TvN at
the time t = 0.

6.6 Riemannian metric
Let now p = 2. The set N may fail to be a smooth submanifold of L2; yet we will, as much as possible,
pretend that it is, in order to induce a sort of “Riemannian metric” on N from the standard L2 metric.

We define the “Riemannian metric” on N simply by

〈h, k〉def=〈h, k〉L2

for h, k ∈ TvN and correspondingly a norm by

|h|def=
√
〈h, h〉 .

Remark 6.26. We also argue that the distance induced by this “Riemannian metric” coincides with the
geodesically induced distance dg. Indeed let γ : [a, b] → M be a Lipschitz path in N ; by Cor. 2.13 the
derivative γ̇(t) exists in L2(RN ) for almost all t; so we may define the “Riemannian length” of the path
as in eqn. (18), namely

len γdef=
∫ b

a

‖γ̇(θ)‖L2 dθ .

Then we define the “Riemannian distance” dR(x, y) as the infimum of len γ for all γ connecting x to y.
But by Theorem 2.11 len γ = Lend γ and dR = dg.

6.6.1 Riemannian metric for smooth convex sets

We propose an explicit computation of the Riemannian metric. We fix p = 2, N = 2. Let Ω ⊆ R2

be a convex set with smooth boundary of length L. Let y(θ) : [0, L] → ∂Ω be a parameterization of
the boundary, ν(θ) the unit vector normal to ∂Ω and pointing external to Ω: then the following “polar”
change of coordinates holds:

ψ : R+ × [0, L]→ R \ Ω , ψ(ρ, θ) = y(θ) + ρν(θ)

We suppose that y(θ) moves on ∂Ω in anticlockwise direction; so

ν = J∂sy , ∂ssy = −κν , ∂sν = κ∂sy

where J is the rotation matrix (of angle −π/2), κ is the curvature, and ∂sy is the tangent vector (obtained
by deriving y with respect to arc parameter).

We can then express a generic integral through this change of coordinates as∫
R2\Ω

f(x) dx =
∫
R+

∫
∂Ω
f(ψ(ρ, s))|1 + ρκ(s)| dρds

where s is arc parameter, and ds is integration in arc parameter.
We want to study a smooth deformation of Ω, that we call Ωt; then the boundary parameterization

y(θ, t) depends on a time parameter t. Suppose also that κ(θ) > 0, that is, that the set is strictly convex:
then for small smooth deformations, the set Ωt will still be strictly convex (“small” is intended in the
C2 norm). By deriving

∂t∂sy = ∂s(∂ty)− ∂sy〈∂sy, ∂s(∂ty)〉 = πν(∂s(∂ty))

where
πν(w)def=ν〈ν, w〉 = w − ∂sy〈∂sy, w〉
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is the projection of w on the line generated by ν. Supposing now that ρ = ρ(t) as well, we can express
the point ψ(ρ, θ) in a first order approximation wrt changes in t, θ as

dψ =
(
∂ty + ρ′ν + ρJπν(∂s(∂ty))

)
dt+

(
∂θy + ρ∂θν

)
dθ

where moreover (
∂θy + ρ∂θν

)
dθ =

(
∂sy + ρ∂sν

)
ds =

(
1 + ρκ

)
∂syds .

If y(θ, t), ρ(t) are expressing a constant point x = ψ(ρ, θ), then dψ = 0; we apply scalar products
w.r.t. ν and ∂sy to the above relations

〈ν, (∂ty)〉+ ρ′ = 0 , 〈∂sy, ∂ty〉dt− ρ〈ν, ∂s(∂ty)〉dt+ (1 + ρκ)ds = 0 .

We assume now that each point of ∂Ωt moves orthogonally to it; this means that ∂ty ⊥ ∂sy; so we
can express the motion using a scalar field α = α(θ, t) ∈ R, by setting ∂ty = αν. So we simplify the
above to obtain the relationships

ρ′ = −α ,
ds

dt
= ρ〈ν, ∂s(αν)〉

(1 + ρκ) = ρ ∂sα

(1 + ρκ) .

Let now
hα(x)def=∂tvΩt(x) ,

so hα is the vector in TvN that is associated to the velocity field α that is moving the border of Ω.
Now, for x /∈ Ωt we can write

x = ψ(ρ, θ) = y(θ, t) + ρ(t)ν(θ, t)

so by following the above relations we know that uΩt(x) = ρ(t) hence

hα(x) = −ϕ′(ρ(t))α(θ, t)

whereas hα(x) = 0 for x ∈ Ω̊t (the topological interior of Ωt).
We now wish to use the above computation to pull back the “Riemannian Metric” that we presented

in the beginning of Sec. 6.6 to the family of orthogonal deformations of ∂Ω. So let us fix two smooth
vector fields α(s)ν(s) and β(s)ν(s), each orthogonal to ∂Ω; these represent two possible infinitesimal
deformations of ∂Ω; those correspond to two vectors hα, hβ ∈ TvN . By our initial definition

〈h, k〉def=〈h, k〉L2 =
∫
R2
hα(x)hβ(x) dx

so by pull back we impose that
〈α, β〉def=

∫
R2
hα(x)hβ(x) dx .

Using the previous computation we can then expand and obtain that

〈α, β〉 =
∫
R2\Ω

hα(x)hβ(x) dx =

=
∫
∂Ω

[∫
R+

(ϕ′(ρ))2(1 + ρκ(s)) dρ
]
α(s)β(s) ds

that is,
〈α, β〉 =

∫
∂Ω

(a+ bκ(s))α(s)β(s) ds (53)

with
a =

∫
R+

(ϕ′(ρ))2 dρ , b =
∫
R+

(ϕ′(ρ))2ρ dρ .
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6.6.2 Riemannian metric for smooth sets

If Ω is smooth but not convex, then the above formula holds up to the cutlocus. We define a function
R(s) : [0, L]→ R+ that spans the cutlocus, that is,

Cut = {ψ(R(s), s), s ∈ [0, L]} .

Ω

Cut

ψ is a diffeomorphism between the sets

{(ρ, s) s ∈ [0, L], 0 < ρ < R(s)} ↔ R2 \ (Ω ∪ Cut)

moreover R(s) is Lipschitz (by results in [10],[13]).
In this case the metric has the form

〈α, β〉 =
∫
∂Ω

[∫ R(s)

0
(ϕ′(ρ))2(1 + ρκ(s)) dρ

]
α(s)β(s) ds . (54)

Remark 6.27. The above metric (53) is resemblant of the metric presented in [18] for the motion of
planar curves, that had though the form∫

∂Ω
(a+ bκ2(s)) k(s) · h(s) ds , (55)

where h(s), k(s) are vectors that represent infinitesimal displacements of the curve (not necessarily or-
thogonal to the curve).

In Sec. 3.6 in [18] it is proved that the completion of the space of smooth curves according to the
distance derived from the metric (55) is contained in the space of Lispchitz curves.

Let now Ξ be the family of all connected compact sets in R2, and Ξ∞ be the subfamily of all connected
compact sets whose boundary is a smooth curve. It is known (see Prop. 5.2) that Ξ is a closed subset of
M, according to the Hausdorff distance and it is reasonably easy to show that Ξ∞ is dense in Ξ. Since
these are topological results, they hold also for the metrics presented in this paper, by Theorems 6.11
and 6.30.

So there is a fundamental difference between the metric in (53) and (55).
Let us discuss intuitively what happens when a family of sets (An)n ⊂ Ξ∞ approximates a generic

connected compact set.

• On one hand, when the set An is not convex the metric (53) is substituted by the metric (54),
where the cutlocus plays an important part in reducing the cost of moving the boundary.

• But, even more importantly, the term κ in (54) allows for the formation of kinks in the boundaries
of An so that An can approximate A, whereas the term κ2 in (55) is stronger and the boundaries
are not allowed to form singularities.

6.7 Bounds on dg

We can propose a converse of Prop. 6.19 when additional assumptions hold. In this section we will
assume that 6.17 holds, and also that ϕ is convex (for simplicity).

Lemma 6.28. We note that
|∇vA(x)| = |ϕ′(uA(x))| (56)

holds for almost all x /∈ A; indeed we remarked in Sec. 4 that uA is Lipschitz (hence almost everywhere
differentiable) and |∇uA(x)| = 1 almost everywhere.
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Lemma 6.29. Let p ∈ [1,∞). Assume that 6.17 holds and that ϕ is convex. Let r > 0 and

c1p,ϕ(r)def= sup
A⊂Dr

‖∇vA‖Lp . (57)

Then
c1p,ϕ(r)p = ωNr

N |ϕ′(0)|p + ωNN

∫ ∞
r

tN−1|ϕ′(t− r)|p dt . (58)

Proof. By convexity ϕ′ is monotonically non decreasing and ϕ′(0) ≤ ϕ′(t) < 0. Let A ⊂ Dr compact,
then for x ∈ Dr, if uA is differentiable at x, we have

|∇vA(x)| = |ϕ′(uA(x))||∇uA(x)| ≤ |ϕ′(0)| ;

whereas for x /∈ Dr

uA(x) ≥ uDr (x) = |x| − r =⇒ ϕ′(uA(x)) ≥ ϕ′(|x| − r) =⇒ |ϕ′(uA(x))| ≤ |ϕ′(|x| − r)| .

Equality is obtained by choosing A = Aε to be finite collections of points that are ε–nets in Dr (i.e.
Aε +Dε ⊇ Dr) and letting ε→ 0.

Theorem 6.30. Let p ∈ (1,∞). Assume again that 6.17 holds and that ϕ is convex. Then for any
continuous path γ and any r > 0 such that ∀t, γ(t) ⊂ Dr we have

Lend(γ) ≤ c1p,ϕ(r) LendH (γ) , (59)

and then
∀A,B ⊂ Dr, dg(A,B) ≤ c1p,ϕ(2r) dH(A,B) .

As a corollary, the topology induced by dg on M coincides with the topology induced by d and by
dH . Note though the intrinsic distances dH and dg are not equivalent, see Remark 6.31 below.

Proof. Let γ be a path as above. Up to reparametrization 2.3 we assume that γ : [0, l] → M with
l = LendH γ and that the metric derivative is |γ̇| ≡ 1: hence

dH(γ(t), γ(s)) ≤ |t− s|

that means that
∀x, |uγ(t)(x)− uγ(s)(x)| ≤ |t− s|

so uγ(t)(x) is jointly Lipshitz continuous and whenever it is differentiable we have that∣∣∣∣∂∂tuγ(t)(x)
∣∣∣∣ ≤ 1

and then ∣∣∣∣∂∂tvγ(t)(x)
∣∣∣∣ ≤ |ϕ′(uγ(t)(x))|

∣∣∣∣∂∂tuγ(t)(x)
∣∣∣∣ .

By Thm. 2.11 and Prop. 6.21 and eqn. (48)

Lend γ =
∫ l

0
‖∂
∂t
vγ(t)‖Lp dt

and we use the previous Lemma and (56).
For the second inequality, let A,B ∈ M and Dr as above, we use Thm. 5.1 to obtain a geodesic for

the Hausdorff metric connecting A to B; then, by triangle inequality, γ(t) ⊂ D2r for all t; and again
apply the same reasoning.

Remark 6.31. The example 6.23 shows that there is no constant c such that

Lend(γ) ≥ c LendH (γ)

(i.e. the reverse of eqn. (59) does not hold). Indeed in that example we noted in eqn. (50) that
Lend γ|[0,r] ∼ r1+N/p but LendH γ|[0,r] = r for r small.

By the same equation (50) we also obtain that dg(A,Ar) ≤ cr1+N/p for r > 0 small and c > 0 a
constant depending on ϕ. Indeed we recall the definition eqn. (11) and remark that the path γ is one of
the possible paths that connect A to Ar, so dg(A,Ar) ≤ Lend γ|[0,r]. At the same time dg(A,Ar) = r.
This shows that the intrinsic distances dH and dg are not equivalent.
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6.8 Numerical Approximation
In this section we explain a simple method to numerically approximate the geodesic between two given
compact sets A,B. We assume that p ∈ (1,∞). Two examples of geodesics computed with this method
(choosing p = 2, ϕ(t) = exp(−t)) are in Fig. 3 on the following page and in Fig. 4 on page 33.

Definition 6.32 (Cube). We let Q = [−1, 1]N be the closed cube of center in the origin and side equal
to 2. Let Q(x, r)def=x+ rQ the cube of center x and side 2r > 0.

Definition 6.33 (Discretization grids). Let us fix nt, ns large and define δs > 0, δt = 1/nt small (the
“thinness” parameters); consider the following equispaced partitions

Rδs,ns
def= {iδs : i = −ns, . . . , ns}N ⊆ RN , (60)

Tnt
def= {iδt : i = 0, . . . , nt} = {0, δt, 2δt, . . . 1} ⊆ [0, 1] ; (61)

for simplicity in the following we call T = Tnt the time grid and R = Rδs,ns the space grid.

Note that R ⊂ Q(0, δsns).

Definition 6.34 (Pixelization). Given A closed, the pixelization of A to R is

ΠR(A)def={x ∈ R : A ∩Q(x, δs/2) 6= ∅} .

Note that ΠR ◦ΠR = ΠR. Note also that ΠR is not continuous.10

Definition 6.35. We also define the discretized (pseudo) distance

dR(A,B)def=
[
δNs
∑
x∈R
|vA(x)− vB(x)|p

]1/p

(62)

and the time–discretized length of a path

lendT (C)def=
∑

t∈T,t<1
d
(
C(t), C(t+ δt)

)
. (63)

Combining the two we obtain a time-and-space–discretized length lendRT (C).

Remark 6.36. We called dR a pseudo distance since it is not guaranteed that dR(A,B) = 0 =⇒ A = B.
This can be seen setting δs < 1/2, A = Q(0, 1) and B = A \ E where E = B(e1δs/4, δs/8) is a small
open ball contained in A and that does not intersect R. (e1 is the first vector of the canonical basis.) At
the same time though dR is symmetric and satifies the triangle equation.

6.8.1 Finding numerical geodesics

We fix A,B ⊆ RN compact. We assume that p ∈ (1,∞). We assume that ns is large so that

A ⊆ Q(0, nsδs) , B ⊆ Q(0, nsδs) .

We let T = Tnt and R = Rδs,ns . We define C(T,R) the space of all the discretized paths C : T → P(R)
such that

C(0) = ΠR(A) , C(1) = ΠR(B) .

To find a numerical approximation to the geodesic connecting A to B, we solve the problem

dgT,R(A,B)def= min
C∈C(T,R)

lendRT (C) . (64)

10As map from (M, dH) into itself, where again M is the family of the nonempty compact sets in RN and dH is the
Hausdorff distance.
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The complexity of the minimization problem is exponential, 11 thus we reduce it using an iterative
method. To this end we define

P+
C(t) = {x ∈ R : x /∈ C(t),B(x) ∩ C(t) 6= ∅} (65)

P−C(t) = {x ∈ R : x ∈ C(t),B(x) \ C(t) 6= ∅} (66)

where B(x) are the (2N) points (at most) that are nearest neighbours to x in the grid R. We notice that
for any t ∈ T both P+

C(t) and P
−
C(t) are discretized version of the boundary of C(t), the first one from the

outside and second from the inside.
For any t ∈ T, t 6= 0, 1 and x ∈ R we define the one–point–variation

Vx,t : C(T,R)→ C(T,R)

by

(Vx,tC)(t′) =
{
{x}∆C(t′) if t = t′

C(t′) otherwise
(67)

where ∆ is the set symmetric difference.
Let C0 ∈ C(T,R) be a starting path; in our experiment we defined it by level set of the linear

interpolation of signed distance functions (2), that is

C0(t) = {x ∈ R : tbB(x) + (1− t)bA(x) ≤ 0} .

We then evolve it in such a way that at any step n ∈ N we decrease the quantity lendRT (Cn). Let

(x̂, t̂) = argmin(x,t)∈P+
Cs
∪P−

Cs

lendRT (Vx,tCn) (68)

then we define Cn+1 = Vx̂,t̂Cn.
We tested this algorithm on some simple shapes; two examples of geodesics (choosing p = 2, ϕ(t) =

exp(−t)) are in Fig. 3 and in Fig. 4 on the next page. To produce the examples below, we iterated the
above algorithm until the energy seemed to stabilize.

Figure 3: Example of geodesics connecting a disk and a square.

Remark 6.37. This numerical method is presented only for the sake of exemplification. No study of
the actual convergence of this algorithm has been performed (yet). The approximation step may be
ameliorated, in its current form it does not explore carving motions (altough it allows for changes in
topology).

11There are indeed 2(2ns+1)N (nt−1) elements in C(T, R).
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Figure 4: Example of a geodesic connecting non-convex sets

7 Other Banach–like metrics of shapes
The paradigm that we presented in the previous section may be exploited in other similar ways; to
conclude the paper, we shortly present some different embeddings (leaving to a possible future paper the
detailed study of their properties).

7.1 Signed distance based representation
We may use the signed distance function bA, that was defined in (2), to define a metric of shapes:

d′(A,B)def=‖ϕ(bA)− ϕ(bB)‖Lp(RN )

in this case, we require that the function ϕ : R→ (0,∞) is monotonically decreasing and of class C1 and
such that

ϕ(|x| − t) ∈ Lp(RN ) ∀t. (69)
The resulting metric is slightly stronger than the one we studied in the preceding sections; in partic-

ular,
Remark 7.1. Let F be the class of all finite subsets of RN ; this class is dense in M when we use the
metric dp,ϕ, or the Hausdorff metric; but it is not dense when we use the metric d′.

7.2 W 1,p metrics
Another interesting choice of metric is obtained by embedding the representation in W 1,p, for p ∈ (1,∞)

We require that all hypotheses in 6.1 and 6.17 hold. Namely, ϕ : [0,∞) → (0,∞) is Lipschitz, C1

and monotonically decreasing, and ϕ(|x|) ∈ W 1,p(RN ); for the case p < ∞ we are equivalently asking
that ∫ ∞

0
tN−1(ϕ(t)p + |ϕ′(t)|p) dt <∞

and this implies that limt→∞ ϕ(t) = 0 = limt→∞ ϕ′(t). We also assume that there is a T > 0 s.t. ϕ(t) is
convex for t ∈ [T,∞).
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Proposition 7.2. For any A compact we have vA ∈W 1,p(RN ).

Proof. We already know by Lemma 6.2 that vA ∈ Lp(RN ).
By hypotheses above, vA is Lipschitz; and then, for almost all x, ∇vA = ϕ′(uA)∇uA; where |∇uA| = 1

for almost all x /∈ A, while ∇uA = 0 for almost all x ∈ A. We also know that when t > T , ϕ′(t) < 0, ϕ′
is increasing and ϕ′(t) ↑ 0.

Let R > 0 be large so that A ⊆ BR, then

uA(x) ≥ |x| −R

and then when |x| ≥ R+ T we obtain that

ϕ′(uA(x)) ≥ ϕ′(|x| −R)

that is ∫
RN\BR+T

|ϕ′(uA(x))|p dx ≤
∫
RN\BR+T

|ϕ′(|x| −R)|p dx <∞ .

At the same time, since vA is Lipschitz, then
∫
BR+T

|∇vA|dx is finite.

Definition 7.3. Given A,B ∈M, we define

d1,p,ϕ(A,B)def=‖ϕ(uA)− ϕ(uB)‖W 1,p(RN )

We just state a simple property of this metric.

Proposition 7.4. Let again F be the class of all finite subsets of RN : this class is dense in M if and
only if ϕ′(0) = 0.

The proof is in Sec. A.9.

We just conclude with one last remark.
Remark 7.5. The embedding of ϕ◦uA inW 2,p is not feasible: if A is smooth but is not convex, the second
derivative of uA along the cutlocus is expressed by a measure (see 4.13 in [14]) and then ϕ ◦ uA /∈W 2,p.

8 On the choice of hypotheses
Using arguments in Geometric Measure Theory, it is possible to prove this result.

Proposition 8.1. Let f : [0,∞)→ [0,∞) be a measurable function such that
∫∞

0 f(t)ptN−1 dt. Suppose
that A ⊂ RN is compact, let uA be its distance function. Then f ◦ uA ∈ Lp(RN ).

Using this result, it is possible to prove Prop. 6.18 and Prop. 7.2 without using the “convexity”
hypothesis listed in 6.17; hence this hypothesis may be dropped in many other results. Similarly it is
possible to prove Lemma 6.2 without using the fact that ϕ is “strictly decreasing” (as listed in 6.1).
The above Proposition 8.1 though requires a long proof; and relaxing requirements in 6.1 and 6.17
would require longer and more complex proofs in many other propositions. At the same time these
generalizations would not improve the usefullness of this theory in applications. So we decided to omit
them.

9 Conclusions
We have studied a metric space of shapes (M, dp,ϕ); this space has a “weak distance”, in that it has many
compact sets, and geodesics do exist; but it can be associated in some cases to a smooth Riemannian
metric, as we saw in eqn. (53). Moreover, by the properties that we saw in sec. 2.2 (and in particular, by
the properties of Lp spaces for p ∈ (1,∞) that we proved in Thm. 2.15) we can also hope that geodesics
can be studied in the O.D.E. sense (although possibly in a very weak sense).
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A Proofs
A.1 Proof of eqn. (34)
Lemma A.1. Let p ∈ [1,∞). Suppose that f, g ∈ Lp(RN ); let τ ∈ RN and define the translates
gτ (x) = g(x − τ); let moreover σ ∈ O(N) be an orthogonal transformation and fσ(x) = f(σ(x)) be a
rotation of f ; then

lim
|τ |→∞

‖fσ − gτ‖Lp = p

√
‖f‖pLp + ‖g‖pLp (70)

where the limit is uniform in σ.

Proof. The result is obviously true if f, g ∈ Cc(RN ). We will prove that the set of f, g such that eqn. (70)
holds is closed; since Cc is dense in Lp, this will prove QED. Choose sequences (fn)n, (gn)n ⊂ Lp such
that fn → f, gn → g in Lp(RN ); define the translates gn,τ (x) = gn(x − τ), and the rotated versions
f̂n(x) = fn(σ(x)) where σ ∈ O(N); suppose moreover that fn, gn satisfy eqn. (70) that is

lim
|τ |→∞

‖f̂n − gn,τ‖Lp = p

√
‖fn‖pLp + ‖gn‖pLp , (71)

where the limit, for each fixed n, is uniform wrt the choice of σ ∈ O(N). We estimate∣∣∣ ‖fσ − gτ‖Lp − ‖f̂n − gn,τ‖Lp ∣∣∣ ≤ ‖fσ − gτ − f̂n + gn,τ‖Lp ≤

≤ ‖fσ − f̂n‖Lp + ‖gτ − gn,τ‖Lp = ‖f − fn‖Lp + ‖g − gn‖Lp

(the last equality derives from Euclidean invariance of the Lebesgue measure). This proves that the term
‖f̂n − gn,τ‖Lp converges to ‖fσ − gτ‖Lp as n → ∞ and uniformly w.r.t. τ and σ. Passing to limits in
eqn. (71) on the LHS we can write

lim
n→∞

lim
|τ |→∞

‖f̂n − gn,τ‖Lp = lim
|τ |→∞

lim
n→∞

‖f̂n − gn,τ‖Lp = lim
|τ |→∞

‖fσ − gτ‖Lp ,

whereas clearly the RHS of eqn. (71) converges to the RHS of eqn. (70).

A.2 Proof of 2.8
Proof. Note first that the infimum of τ(a) is finite, since it does not exceed ρ∗. Recall that

dg(a, aj) = inf
γj
lj

where lj is the length of a Lipschitz path γj connecting a, aj . So we can rewrite the problem (13) as

inf
γ1...γn

θ(γ1 . . . γn), where θ(γ1 . . . γn)def=
n∑
j=1

(lj)2 ,

where the infimum is computed on all choices of Lipschitz paths γ1 . . . γn of length l1 . . . ln connecting
ai to a common point x ∈ M ; for simplicity we represent them as γi : [0, li]→ M parameterized by arc
parameter. By the triangle inequality

dg(ai, γj(t)) ≤ dg(ai, x) + dg(x, γj(t)) ≤ li + lj .
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Let then γi,k be a sequence of choices that converges to the infimum:

θ(γ1,k . . . γn,k)→k inf
γ1...γn

θ(γ1 . . . γn)

so for large k,
θ(γ1,k . . . γn,k) ≤ ρ∗ + ε ,

but then in particular li,k ≤
√
ρ∗ + ε. Hence

dg(a1, γj,k(t)) ≤ 2
√
ρ∗ + ε

for all j = 1, . . . n and t ∈ [0, lj,k]. So all the paths are contained in a compact set. By Ascoli–Arzelà
theorem, we can then extract a uniformly convergent subsequence and use the fact that the length is
lower semi continuous.

A.3 Proof of 5.3
Proof. • Obviously Ct is compact and C0 = A,Cµ = B.

• We prove that Ct is not empty. Let z ∈ B; if uA(z) = 0 then z ∈ A so z ∈ Ct. If uA(z) > 0, let
x ∈ A be a projection point of z so that uA(z) = |x− z| = l > 0, let

y = x+ min{t, l} (z − x)
|z − x|

.

Obviously uA(y) ≤ |x − y| ≤ t. If t ≥ l then y = z so uB(y) = 0 and y ∈ Ct. If t < l then
|z − y| = l − t ≤ µ− t so uB(y) ≤ µ− t and again y ∈ Ct.

• We prove that for all 0 ≤ s < t ≤ µ

dH(Cs, Ct) ≤ t− s .

The figure 5 may help in reading the following step. 12

Let z ∈ Ct, we will prove that uCs(z) ≤ t− s. Since uA(z) ≤ t, there is a x ∈ A s.t. |x− z| ≤ t; let
y be the interpolated point

y = x+ s (z − x)
|z − x|

so that |y − x| = s and |z − y| = |x − z| − s ≤ t − s and then uA(y) ≤ s. Since z ∈ Ct then
uB(z) ≤ µ − t, also |z − y| ≤ t − s so by triangle inequality uB(y) ≤ µ − s; we already noted
uA(y) ≤ s, so we proved that y ∈ Cs; eventually uCs(z) ≤ |z − y| ≤ t− s.
Working symmetrically we can prove that for any z ∈ Cs we have that uCt(z) ≤ t− s.

• We prove that for all 0 ≤ s < t ≤ µ

dH(Cs, Ct) = t− s ;

indeed
µ = dH(A,B) ≤ dH(A,Cs) + dH(Cs, Ct) + dH(Ct, B) ≤ µ ,

but then the inequalities must be equalities.

• dH(A, γ(s)) ≤ s implies that for all x ∈ γ(s), uA(x) ≤ s; and similarly for dH(γ(s), B) ≤ µ− s; so
x ∈ Cs.

12Note that the drawings of Cs and Ct in the figure are not faithful to the actual Cs and Ct — the maximal geodesic is
much larger than that, and corners are rounded out. Exact examples of maximal geodesics are in Sec. 5.1
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Figure 5: Artistic depiction to guide into the proof of Prop. 5.3.

A.4 Proof of 5.9
Proof. We provide a detailed proof for convenience of the reader.

• We prove that maxA uB(x) = maxE uB(x). We foremost note that maxA uB(x) ≥ maxE uB(x)
since E ⊆ A. From G ∩ {uB = θ} = ∅ we obtain A ∩ {uB = θ} = E ∩ {uB = θ}, so we conclude
that maxA uB(x) = maxE uB(x).

• We prove that maxB uA(x) = maxB uE(x) by proving that uA(z) = uE(z)∀z ∈ B. We foremost
note that uA ≤ uE . Let z ∈ B. We have that z ∈ A iff z ∈ E, in that case uA(z) = uE(z) = 0.
Otherwise let x ∈ A be a projection point; necessarily x is a boundary point of A, so x ∈ E, so
uA(z) ≥ uE(z), hence they are equal.

A.5 Proof of 5.10
Proof. Let θB = maxCt uB(x), θA = maxCt uA(x), for any non-empty open G contained in Ct \ (A ∪B)
and such that G ∩ {uB = θB} = ∅ and G ∩ {uA = θA} = ∅ we set E = Ct \G, by Lemma 5.9

dH(A,E) = t , dH(E,B) = µ− t ;

so we can build a geodesic from A to B that passes through E.

A.6 Proof of 5.19
Proof. We set un

def=uΩn ; since un is 1-Lipschitz, that is

∀x, y ∈ RN |un(x)− un(y)| ≤ |x− y| , (72)

passing to the limit in the above (72), we obtain

∀x, y ∈ D |f(x)− f(y)| ≤ |x− y| . (73)

So there is a unique extension of f to a positive function g : RN → R that is again 1-Lipschitz, that is,

∀x, y ∈ RN |g(x)− g(y)| ≤ |x− y| . (74)

It is easy to prove that un(x)→ g(x) for all x; then (by imitating the proof of Ascoli–Arzelà theorem)
we prove that un → g uniformly on compact sets.

Let Ω = {g = 0}; to prove that Ω is nonempty, let xn be such that un(xn) = 0; let y ∈ D, then
un(y) is a bounded sequence, hence xn is bounded, since |y − xn| ≤ un(y); so up to a subsequence, xn
converges to a point x such that g(x) = 0.

To conclude the proof, we need to prove that g = uΩ. To this end, we first prove that g ≥ uΩ: indeed,
fixing x, un(x) = |x− yn| for at least one point yn ∈ Ωn; since un(x)→ g(x), then the sequence {yn} is
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bounded, so (up to a subsequence nk) it converges to a point y; since the family un is 1-Lipschitz and
un(yn) = 0 then g(y) = 0, that is y ∈ Ω: hence

g(x) = lim
k
unk(x) = lim

k
|ynk − x| = |y − x| ≥ uΩ(x) .

Conversely, let y ∈ Ω be such that uΩ(x) = |x− y|; then by (74) g(x) ≤ g(y) + |x− y| = |x− y| = uΩ(x).

A.7 Proof of 6.18
Proof. For t ∈ [0, 1], let γ(t) = tΩ be the path that connects the singleton {0} to Ω by rescaling; we
prove that γ is Lipschitz.

Let R > 0 be such that Ω ⊆ DR, where DR is the disk centered at zero (see eqn. (21)).
Since ϕ(x) is convex for x large and limx→∞ ϕ′(x) = 0 then ϕ is Lipschitz. Let V be the Lipschitz

constant of ϕ.
Let for convenience f(t, x) = utΩ(x).
It is not difficult to prove that the map f(t, x) is jointly Lipschitz. Let F be the Lipschitz constant.
This proves the result when p =∞, indeed

d∞,ϕ(sΩ, tΩ) ≤ FV |t− s| .

When p <∞, we proceed as follows.
As a first step we study the pointwise time derivative of utΩ(x). By Rademacher’s Theorem utΩ(x)

is differentiable at almost all t, x. Fix such a t, x; note that

utΩ(x) = tuΩ

(x
t

)
(75)

(as in eqn. (23)); hence, taking derivatives w.r.t. x we obtain

∇utΩ(x) = ∇uΩ

(x
t

)
while taking derivatives w.r.t. t we obtain

∂tutΩ(x) = uΩ

(x
t

)
− 1
t
〈∇uΩ

(x
t

)
· x〉 = 1

t
(utΩ(x)− 〈∇utΩ(x) · x〉) .

Suppose moreover that x /∈ tΩ and let y ∈ tΩ be the minimum distance point from x: then (as
remarked in Sec. 4)

utΩ(x) = |x− y| , ∇utΩ(x) = x− y
|x− y|

so

∂tutΩ(x) = 1
t

(
|x− y| −

〈
x− y
|x− y|

· x
〉)

=

= − 1
t|x− y|

〈x− y · y〉 = −〈 x− y
|x− y|

· y
t
〉 (76)

so if Ω ⊆ DR we obtain that |∂tutΩ(x)| ≤ R.
If instead x ∈ tΩ and utΩ(x) is differentiable at (t, x) then ∇utΩ(x) = 0 and ∂tutΩ(x) = 0; indeed

utΩ(x) = 0 and u ≥ 0 everywhere.
As a second step we remark that the time derivative of vtΩ(x) exists as a strong limit in Lp. For the

case p > 1 this may follow from Prop. 6.21. Since this would not cover the case p = 1, we provide a
direct proof, that is based on the above computation, and on Lebesgue dominated convergence theorem.
Indeed ∣∣∣∣vtΩ(x)− vsΩ(x)

t− s

∣∣∣∣ = |ϕ′(ξ)|
∣∣∣∣f(t, x)− f(s, x)

t− s

∣∣∣∣ ≤ |ϕ′(ξ)|F ,
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where ξ = ξ(t, x) is a value intermediate between f(t, x) and f(s, x). Clearly ξ ≥ (|x| −R)+ hence

|ϕ′(ξ)| ≤
∣∣∣ϕ′((|x| −R)+

)∣∣∣
for |x| large; so by eqn. (45) we obtain that |ϕ′(ξ)| ∈ Lp(RN ). (See the similar proof of Prop. 7.2 for
more details). To conclude we compute

‖∂tvtΩ(x)‖pLp =
∫
RN
|ϕ′(utΩ(x))|p|∂tutΩ(x)|p dx ≤ Rp

∫
RN
|ϕ′(utΩ(x))|p dx , (77)

and we argue as above to state that this quantity is finite, and bounded uniformly in t. By Rem. 1.1.3
in [2], we conclude that γ is Lipschitz.

Remark A.2. Asking that ϕ satisfy both (29) and (44) is equivalent to asking that ϕ(|x|) ∈W 1,p. By
using the equality in (77) and in (76), it is possible to show that, for most compact sets, the rescaling is
a Lipschitz path if and only if ϕ(|x|) ∈W 1,p. 13

A.8 Proof of 6.21
Proof. • We extend f(t, x) = f(1, x) for t > 1 and f(t, x) = f(0, x) for t < 0. Note that the extended

map is still a Lipschitz map t 7→ f(t, ·) with values in Lp(RN ); let c be its Lipschitz constant. We
define

gτ (t, x)def= f(t+ τ, x)− f(t, x)
τ

so
‖gτ (t, x)‖Lp(RN ) ≤ c .

Hence ∫ 1

0

∫
RN
|gτ (t, x)|p dx dt ≤ cp .

This means that the family gτ is bounded in Lp([0, 1] × RN ), so we can find a sequence τn → 0
such that gτn → w weakly, i.e.

lim
n

∫ 1

0

∫
RN

gτn(t, x)ψ(t, x) dxdt =
∫ 1

0

∫
RN

w(t, x)ψ(t, x) dx dt (78)

for all ψ ∈ C∞c ([0, 1]× RN ). For all such ψ (extending ψ(t, x) = 0 when t /∈ [0, 1])∫ 1

0

∫
RN

gτ (t, x)ψ(t, x) dx dt =
∫ 1

0

∫
RN

f(t, x)ψ(t− τ, x)− ψ(t, x)
τ

dxdt

hence
lim
n

∫ 1

0

∫
RN

gτn(t, x)ψ(t, x) dxdt = −
∫ 1

0

∫
RN

f(t, x)∂tψ(t, x) dxdt

by dominated convergence, so we conclude that f admits a weak derivative and the derivative is
w. The relationship (19) in Lp(RN ), that is

f(b, ·)− f(a, ·) =
∫ b

a

df

dt dt

implies that ∫ b

a

ξ
df

dt
dt = −

∫ b

a

dξ

dt
f dt

for all ξ ∈ C∞c ([0, 1]); but then setting ψ(t, x) = ξ(t), we obtain that df
dt = ∂tf .

13It is moreover plausible that, if (44) does not hold, then in general two compact sets may not be connected by a
rectifiable continuous path.
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• Suppose that the pointwise limit

lim
τ→0

gτ (t, x) = lim
τ→0

f(t+ τ, x)− f(t, x)
τ

(79)

exists for almost all t, x; we call h(t, x) this limit. We reason as above in eqn. (78), by dominated
convergence we obtain that

lim
τ→0

∫ 1

0

∫
RN

gτ (t, x)ψ(t, x) dxdt =
∫ 1

0

∫
RN

h(t, x)ψ(t, x) dxdt (80)

so h is a representative of the weak partial derivative.

A.9 Proof of 7.4
First of all, we remark that F is dense in M according to the Hausdorff distance. In particular it is
easy to build approximating sequences. One method is as follows. Let A compact; let {xn}n be a dense
subset of A; let An

def= {xk | k ≤ n}; then dH(A,An)→n 0 (dH being the Hausdorff distance).

Proof. When ϕ′(0) < 0 it is easy to find examples to show that F is not dense in M. Let N = 1,
A = [0, 1], suppose by contradiction that there exists (An)n ⊂ F such that An →n A according to d1,p,ϕ;
then An →n A according to dp,ϕ and hence dH(A,An) →n 0, by Thm. 6.11. By direct inspection we
observe that uAk is a piecewise linear function and, for all x ∈ (0, 1) but for finitely many choices, uAk
is differentiable and |u′Ak(x)| = 1; we also know that uAn →n uA uniformly; so we obtain that

|v′Ak(x)| = |ϕ′(uAk(x)) u′Ak(x)| → |ϕ′(0)|

for almost all x ∈ [0, 1] — whereas v′A(x) = 0 for all x ∈ (0, 1).

Vice versa, suppose now that ϕ′(0) = 0. Fix A compact, let {xn}n be a dense subset of A and
An

def= {xk | k ≤ n}; we will prove that An →n A according to d1,p,ϕ.
We remarked above that dH(A,An) →n 0, and (by Thm. 6.11) that vAn →n vA in Lp. We need to

prove that ∇vAn →n ∇vA in Lp.
For any x ∈ A, ∇vA(x) exists and is zero (this is obviously true in the topological interior, whereas

when x is in the boundary it derives from ϕ′(0) = 0). At the same time, for almost every x ∈ A and for
all n we know (see Lemma 6.28) that ∇vAn exists and

|∇vAn(x)| = |ϕ′(uAn(x))|

so we can write ∫
A

|∇vAn(x)−∇vA(x)|p dx =
∫
A

|ϕ′(uAn(x))|p dx→n 0

exploiting the fact that uAn →n uA uniformly.
We now consider the complement Ac of A. We will argue that ∇vAn →n ∇vA in Lp(Ac).
Let L be the Lipschitz constant of ϕ: then L is the Lipschitz constant of any function vB for B

compact. Working as in Prop. 7.2, we select R > 0 large so that A,An ⊆ BR. For all n and almost every
x, when |x| ≤ R+ T we know that |∇vAn(x)| ≤ L; whereas when |x| ≥ R+ T we know that

|∇vAn(x)| = |ϕ′(uAn(x))| ≤ |ϕ′(|x| −R)|

where the last function is in Lp. So, by dominated convergence, it suffice to show that ∇vAn →n ∇vA
pointwise. We sketch the argument. Suppose now that x /∈ A and that, for all n, uAn and uA are
differentiable at x: we will argue that ∇uAn(x) →n ∇uA(x). By the results presented in Sec. 4 we will
prove convergence of the projection points. Let yn the projection of xn to An and y the projection of x
to A: then yn → y. If this is not the case, then there is a subsequence and a z 6= y such that ynk →k z:
but then z ∈ A is another projection point of x, contradicting the fact that uA is differentiable at x.
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