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A. The Aviles Giga functional is a well known second order functional that forms a model for blister-

ing and in a certain regime liquid crystals, a related functional models thin magnetized films. Given Lipschitz

domain Ω ⊂ IR2 the functional is Iε(u) = 1

2

∫
Ω
ε−1

∣∣∣1 − |Du|2
∣∣∣2 + ε

∣∣∣D2u
∣∣∣2 dz where u belongs to the subset of

functions in W
2,2

0
(Ω) whose gradient (in the sense of trace) satisfies Du(x) · ηx = 1 where ηx is the inward

pointing unit normal to ∂Ω at x.

In [Ja-Ot-Pe 02] Jabin, Otto, Perthame characterized a class of functions which includes all limits of

sequences un ∈ W
2,2
0

(Ω) with Iεn (un) → 0 as εn → 0. A corollary to their work is that if there exists such a

sequence (un) for a bounded domain Ω, then Ω must be a ball and (up to change of sign) u := limn→∞ un =

dist(·, ∂Ω). Recently [Lo 09] we provided a quantitative generalization of this corollary over the space of

convex domains using ‘compensated compactness’ inspired calculations of [De-Mu-Ko-Ot 01]. In this note

we use methods of regularity theory and ODE to provide a sharper estimate and a much simpler proof for the

case whereΩ = B1(0) without the requiring the trace condition on Du.

1. I

Let

Iε (u) :=

∫

Ω

ε−1
∣∣∣1 − |Du|2

∣∣∣2 + ε
∣∣∣D2u

∣∣∣2 dz. (1)

The functional Iε forms a model for blistering and (in certain regimes) for a model for liquid crystals

[Av-Gi 99], [Ji-Ko 00]. In addition there is a closely related functional modeling thin magnetic films

[De-Mu-Ko-Ot 01], [De-Mu-Ko-Ot 02], [Co-De-Mu-Ko-Ot 01], [Ri-Se 01], [Al-Ri-Se 00]. For function

u ∈ W
2,2

0
(Ω) we refer to Iε(u) as the Aviles Giga energy of u.

For an example of a candidate minimizer take the distance function from the boundary ψ(x) :=

dist(x, ∂Ω) convolved by a standard convolution kernel ρε with support of diameter ε. It has been conjec-

tured that for convex domains Ω, the minimizers of Iε have the structure suggested by this construction,

i.e. they are in some quantitative sense close to the distance function from the boundary, Section 5.3

[Or-Gio 94],[Av-Gi 86].

The first progress on this conjecture was achieved by Jin, Kohn [Ji-Ko 00] whose showed that if Iε is

minimized over

Λ (Ω) :=

{
v ∈ W

2,2

0
(Ω) : ∂v

∂ηz
= 1 where ηz is the inwards

pointing unit normal to ∂Ω at z

}
(2)

where Ω is taken to be an ellipse then as ε → 0 the energy of the minimizer of Iε tends to the energy of

ψ∗ρε. Their method was to take arbitrary u ∈ Λ(Ω) and to construct vectors fields Σ1, Σ2 out of third order

polynomials of the partial derivatives of u that have the property that the divergence of these vectors fields

is bounded above by Iε(u). Using the trace condition ∂u
∂η
= 1 and the fact that Ω is an ellipse the lower

bound provided by the divergence of Σ1,Σ2 can be explicitly calculated and shown to be asymptotically

sharp as ε → 0.
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As has been discussed in [Ji-Ko 00], [Av-Gi 86], [Am-De-Ma 99] the functional Iε minimized over

W
2,2

0
(Ω) has many features in common with the functional Jp(v) =

∫
JDv
|Dv+ − Dv− |p dH1 for the case

p = 3, when minimized over the space Dv ∈ BV(Ω) with |Dv(x)| = 1 a.e. x and v = 0 on ∂Ω. Aviles Giga

[Av-Gi 96] showed that if Ω is convex and polygonal then the distance function is the minimizer of J1

over the subspace of piecewise affine functions satisfying these conditions. They conjectured the same is

true for p = 3.

From a somewhat different direction a strong result has been proved [Ja-Ot-Pe 02] by Jabin, Otto,

Perthame who characterized a class of functions which includes all limits of sequences un ∈ W
2,2

0
(Ω) with

Iεn
(un)→ 0 as εn → 0. A corollary to their work is that if there exists such a sequence (un) for a bounded

domain Ω, then Ω must be a ball and (up to change of sign) u := limn→∞ un = dist(·, ∂Ω). In [Lo 09],

a quantitative generalization of this corollary was achieved for the class of bounded convex domains, a

corollary to the main result of [Lo 09] is the following.

Theorem 1 (Lorent 2009). Let Ω be a convex set with diameter 2, C2 boundary and curvature bounded

above by ε−
1
2 . Let Λ(Ω) be defined by (2). There exists positive constants C > 1 and λ < 1 such that if u

is a minimizer of Iε over Λ(Ω), then

‖u − ζ‖W1,2(Ω) ≤ C

(
ε + inf

y
|Ω4B1(y)|

)λ
(3)

where ζ(z) = dist(z, ∂Ω).

We take constant λ = 1
2731

and thus the control represented by inequality (3) is far from optimal.

Theorem 1 follows from Theorem 1 of [Lo 09] which is a characterization of domains Ω and functions

u for which the Aviles Energy is small, more specifically there exists a constant γ such that given u ∈
Λ(Ω) such that Iε(u) = β then |Ω4B1(0)| ≤ cβγ and

∫
B1(0)

∣∣∣∣Du(z) + z
|z|

∣∣∣∣
2

dz ≤ cβγ, here we can take γ =

512−1. The proof of Theorem 1 of [Lo 09] is fairly involved, it relies heavily on the characterization of

‘entropies’ for the Aviles Giga energy that was achieved in [De-Mu-Ko-Ot 01], (see Lemma 3). While

the calculations in [Lo 09] are elementary and self contained, they can appear quite unmotivated to those

unfamiliar with the background of [De-Mu-Ko-Ot 01]. In addition the trace condition on the gradient in

the definition of Λ(Ω) is used in an essential way.

The proof of Theorem 1 requires quite a careful construction of an upper bound of the Aviles Giga

energy of a minimizer on a domain with smooth boundary that is ‘close’ to a ball, then the theorem

follows by application of Theorem 1 [Lo 09]. The many steps required to complete the proof result in a

gradual loss of control resulting in the constant λ = 1
2731

.

The propose of this note is twofold, firstly to provide a simple proof of a characterization of the

minimizers of the Aviles Giga energy on a ball with a sharper estimate and secondly to prove the result

without the trace condition on the gradient, specifically to characterize the minimizers over W
2,2

0
(B1(0)).

Additionally we find it worthwhile to introduce new methods to study the characterization of minimizers

of Iε , the regularity theory and ODE approach of this note is quite different from previous methods of

[Av-Gi 96], [Ji-Ko 00], [Ja-Ot-Pe 02], [Lo 09]. Our main theorem is;

Theorem 2. Let u be a minimizer of Iε over W
2,2

0
(B1(0)). Then there exists ξ ∈ {1,−1}

∫

B1(0)

∣∣∣∣∣Du(x) + ξ
x

|x|

∣∣∣∣∣
2

dx ≤ cε
1
6 (log(ε−1))

13
6 .

The desirability of a simpler proof with a better estimate has already been discussed, it is of interest to

prove a characterization without a trace condition on the gradient due to the fact this is a strong assumption

that is inappropriate for a number of physical models. More specifically the condition Du(x) · η = 1 for

x ∈ ∂Ω is not natural in the context of blistering, Gioia Ortiz [Or-Gio 94] proposed instead Du(x) ·ηx = 0.

The original functional proposed by Aviles Giga [Av-Gi 86] to study liquid crystals also has this trace
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condition. In addition for the micro-magnetic analogue of functional Iε there is nothing like a pointwise

condition on the trace, [De-Mu-Ko-Ot 02], [Co-De-Mu-Ko-Ot 01]. This micro-magnetic functional is

given by Mε(v) = ε−1
∫

IR2 |H(ṽ)|2 + ε
∫
Ω
|Dv|2 where H is the Hodge projection onto curl free vector fields

and ṽ is the extension of v to 0 outsideΩ, this functional is minimized over W1,2(Ω : S 1). As mentioned, in

the proof of Theorem 1 [Lo 09] the trace condition is used in an essential way, this is also true of the proof

of Theorem 5.1 [Ji-Ko 00]. In order to achieve a characterization for less rigid functionals, methods need

to be developed that do not use this trace condition. A related but different micro-magnetic functional Eε
was studied by Ignat, Otto [Ig-Ot 94]. They also achieved a characterization of minimizers Eε showing

that minimizers converge to Neel Walls, the focus of Eε was to provide a two dimensional approximation

of the micro-magnetic energy in the absence of an external field and crystal anisotropy.

The proof of Theorem 2 requires establishing the essentially folklore fact that critical points of the

Aviles Giga energy have W2,3 regularity and their gradients satisfy certain natural Caccioppoli inequal-

ities. The much more subtle question of regularity of critical points of functional Mε has been studied

by Carbou [Ca 97] and Hardt, Kinderlehrer [Ha-Kin 94]. The non-local term in Mε makes the Euler

Lagrange equation harder to study and in some sense weaker regularity has been proved, it is not clear

if the Caccioppoli inequalities needed for the proof presented in this note are available via the methods

of [Ca 97]. Working with a three dimensional model, different methods are used in [Ha-Kin 94] and

Caccioppoli inequalities are established off a discrete set1.

Roughly speaking the main open problems related to the Aviles Giga functional are either; (A) con-

jectures on how the energy concentrates, specifically the Γ-convergence conjecture of [Am-De-Ma 99]

and related problems. Or (B) conjectures about the minimizer of Iε . It is know from [Ji-Ko 00] that for

non-convex domains the minimizer does not need to be the distance function from the boundary (contrast

this with the main theorem of [Am-Le-Ri 99] which showed that for a sequence εn → 0, the minimizer mn

of the micro-magnetics functional Mεn
must converge to the rotated gradient of distance function for any

connected open Lipschitz domain). However as mentioned for general convex domains the conjecture re-

mains largely open, in [Lo 09] we developed methods that prove the conjecture for convex domains with

low Aviles Giga energy, it is likely these methods could be used to prove the same result for general low

energy domains with C2 boundary. For domains with Aviles Giga energy of order O(1) neither the meth-

ods of [Lo 09] or this note yield much. A very attractive open problem is to characterize the minimizers

in the case where Ω is an ellipse, given the sharp lower bound provided by [Ji-Ko 00] in this case there

seems to be much concrete information about this problem - yet it appears to be out of reach of current

methods.

2. P 

Beyond the regularity issues mentioned in the introduction the proof reduces to essentially applying an

ODE and using the Pythagorean Theorem. In order to sketch the main strategy of the proof we will make

a number of assumptions that we will later show are not needed.

We start by assuming for a moment that the cardinality of the set of critical points of Du is 1, i.e.

Card ({x ∈ B1(0) : |Du(x)| = 0}) = 1. (4)

In addition let us temporarily assume we have the (in the sense of trace) boundary condition

Du(x) = − x

|x| for x ∈ ∂B1(0). (5)

1It appears possible that the methods of [Ha-Kin 94] would establish the appropriate Caccioppoli inequalities everywhere in the

interior if the arguments were carried through for the two dimensional model, if this is the case the strategy of this note would likely

yield a characterization of minimizers of Mε for whereΩ = B1(0).
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So let z0 ∈ B1(0) be the point for which |Du(z0)| = 0. Take y0 = −z0IR ∩ ∂B1(0) and let X(0) = y0,
dX
dt

(s) = Du(X(s)). For z ∈ {X(s) : s ∈ [0, t]} let tz denote the tangent to this curve at z. Now for any t > 0

u(X(t)) = u(X(t)) − u(X(0)) =

∫

{X(s):s∈[0,t]}
Du(z) · tzdH1z.

If we also assume

|Du(z)| h 1 for z ∈ {X(s) : s ∈ [0, t]} (6)

then we could conclude that

|u(X(t))| h H1(X(s) : s ∈ [0, t]) ≥ |X(t) − X(0)| .

Now by (5) we know that the path X(t) has to run into B1(0) and can not escape this domain, so we must

have X(t)→ z0 as t→ ∞ we have |u(z0)| ≥ |z0 − X(0)| = |z0| + 1.

As will be established later in Lemma 3, inf
v∈W2,2

0
(B1(0)) Iε(v) ≤ cε log(ε−1). Hence if u is a mimiser of

Iε , ∫

B1(0)

∣∣∣1 − |Du|2
∣∣∣2 dx ≤ cε2 log(ε−1) (7)

so we know u ‘is close to being’ 1-Lipschitz and thus |u(z0)| v 1, hence |z0| h 0 and |u(z0)| h 1. Again

since u is close to 1-Lipschitz,

|u(x)| h 1 for any x ∈ B
ε

1
4
(0). (8)

Now for y ∈ ∂B1(0) let ex(y) =
∫
[x,y]

∣∣∣1 − |Du|2
∣∣∣ dH1. Let Jx(z) = z−x

|z−x| , note that |DJx(z)| ≤ 2
|x−z| , so by

the Co-area formula ∫

∂B1(0)

ex(y)dH1y =

∫

S 1

∫

J−1
x (θ)

∣∣∣1 − |Du(z)|2
∣∣∣ dH1zdH1θ

=

∫

B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |DJx(z)| dz

≤ c

∫

B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |z − x|−1 dz.

Now by Fubini and (7) we have
∫

B
ε

1
4

(0)

∫

B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |z − x|−1 dzdx ≤ cε

5
4

√
log(ε−1)

thus we can assume we chose x ∈ B
ε

1
4
(0) such that

∫
∂B1(0)

ex(y)dH1y ≤ cε
3
4

√
log(ε−1). Now

∫

[x,y]

∣∣∣∣∣Du(z) +
y − x

|y − x|

∣∣∣∣∣
2

dH1z =

∫

[x,y]
|Du(z)|2 + 2Du(z) · y − x

|y − x| + 1dH1z

≤ 2 |x − y| − 2u(x) + ex(y)

(8)

/ ex(y). (9)

So

∫

B1(0)

∣∣∣∣Du(z) + z−x
|z−x|

∣∣∣∣
2

|z − x| dz ≤ c

∫

y∈∂B1(0)

∫

[x,y]

∣∣∣∣∣Du(z) +
y − x

|y − x|

∣∣∣∣∣
2

dH1zdH1y

(9)

≤ c

∫

y∈∂B1(0)

ex(y) dH1y

≤ cε
3
4

√
log(ε−1). (10)



A SIMPLE PROOF OF THE CHARACTERIZATION OF FUNCTIONS OF LOW AVILES GIGA ENERGY 5

As for ‘most’ z ∈ B1(0),
∣∣∣∣ z
|z| −

z−x
|z−x|

∣∣∣∣ ≤ cε
1
8 so we have

∫
B1(0)

∣∣∣∣Du(z) + z
|z|

∣∣∣∣
2

dz
(10)

≤ cε
1
8 .

Now the big assumptions we made are (4), (6) and to a lesser extent (5). The main work of this note is

to find substitutes for these assumptions.

What assumption (4) provides is the existence of a long integral path of the vector field Du which using

assumption (6) we can show is close to a straight line. In order to find such a path, it is sufficient to show

that the set of critical points of Du are merely low in number, using the energy upper bound and regularity

of minimizers of Iε that is what we will be able to do.

Now if we define v(z) = u(εz) then v satisfies ∆2v + div
((

1 − |Dv|2
)

Dv
)
= 0 which is an Elliptic

equation with right-hand side bounded in H−1,p(Bε−1 (0)). Thus it is not hard to believe Dv is Holder so if

|Dv(z0)| = 0 for some z0 then there must be a constant c0 such that sup
{|Dv(z)| : z ∈ Bc0

(z0)
} ≤ 1

2
so after

rescaling we have that for every z1 such that |Du(z1)| = 0 we have that sup
{|Du(z)| : z ∈ Bc1ε(z0)

} ≤ 1
2
.

Thus by (7) we have that we can have as most c log(ε−1) critical points of Iε that are spaced out by ε. So

cutting B1(0) into N =
[

4cπ
log(ε−1)

]
equal angles slices which we denote by T1,T2, . . . TN then at least half of

them do not have any critical points of Du. So if T1 is one of them, taking y0 to be the center of the arc

T1 ∩ ∂B1(0) the ODE X(0) = y0, dX
dt

(s) = Du(X(s)) has to run until it hits ∂T1.

Now the second main assumption we made is (6). Again since for minimizer u we know that Iε(u) ≤
cε log(ε−1), so ∫

B1(0)

∣∣∣1 − |Du|2
∣∣∣
∣∣∣D2u

∣∣∣ dx ≤ cε log(ε−1).

Take v ∈ S 1, for all but c(ε log(ε))
1
3 lines L parallel to v we have that

∫
L

∣∣∣1 − |Du|2
∣∣∣
∣∣∣D2u

∣∣∣ dH1x ≤
(ε log(ε))

2
3 . Now on the line L if there is a point z1 ∈ L with

∣∣∣1 − |Du(z1)|2
∣∣∣ ≥ 5(ε log(ε−1))

1
3 then we

must be able to find z2, z3 we have inf
{∣∣∣1 − |Du(y)|2

∣∣∣ : y ∈ [z2, z3]
}
≥ 4(ε log(ε−1))

1
3 and

∣∣∣1 − |Du(z3)|2
∣∣∣ ≥

5(ε log(ε−1))
1
3 ,

∣∣∣1 − |Du(z2)|2
∣∣∣ ≤ 4(ε log(ε−1))

1
3 then

(ε log(ε))
2
3 ≥

∫ z3

z2

∣∣∣1 − |Du(y)|2
∣∣∣
∣∣∣D2u(y)

∣∣∣ dH1y ≥ 4(ε log(ε−1))
1
3

∫ z3

z2

∣∣∣D2u(y)
∣∣∣ dH1y ≥ 4(ε log(ε))

2
3

which is a contradiction. Thus for most lines L we know that sup
{∣∣∣1 − |Du(z)|2

∣∣∣ : y ∈ L ∩ B1(0)
}
≤

5(ε log(ε))
1
3 . For vector w ∈ IR2 define 〈w〉 := {λw : λ ∈ IR} and given subspace V let PV denote the

orthogonal projection onto V. For subset S ⊂ IRn let |S | denote the Lebesgue n-measure of S . Now if we

run an ODE X(0) = y0, dX
dt

(s) = Du(X(s)) between 0 and t then taking v =
X(t)−X(0)

|X(t)−X(0)| then we have a set

G ⊂ P〈v〉([X(0), X(t)]) with
∣∣∣P〈v〉([X(0), X(t)])\G

∣∣∣ ≤ c(ε log(ε−1))
1
3 and if z ∈ {X(s) : s ∈ [0, t]} ∩ P−1

〈v〉(x) for

some x ∈ G, then
∣∣∣|Du(z)|2 − 1

∣∣∣ ≤ 5(ε log(ε))
1
3 thus the part of the path {X(s) : s ∈ [0, t]} that is in the set

P−1
〈v〉(G) is such that |Du(z)| h 1. So the H1 measure of the set of points x ∈ {X(s) : s ∈ [0, t]} for which we

can assume |Du(x)| h 1 is of measure as least |X(0) − X(t)| − c(ε log(ε−1))
1
3 and hence assumption (6) can

in effect be justified. It is worth noting that the idea of following integral curves of the vector field given

by Du (where u is the limit of a sequence of functions whose Aviles Giga energy tends to zero) was used

by [Ja-Ot-Pe 02] and later by [Ig-Ot 94].

Finally we also assumed (5), the only purpose of this assumption was to allow us to run an ODE starting

from y0 ∈ ∂B1(0) without it immediately trying to leave the domain. Recall y0 was the point at the center

of the arc ∂T1∩∂B1(0). If instead of starting at this point we started at y0+c
ηy0

(log(ε−1))2 then running the ODE

forwards and backwards until both ends hit ∂T1, then we will have a path of length (at least) c(log(ε−1))−2

which will be very close to a straight line, see figure 1. Let s < 0, r > 0 be such that X(s), X(e) are the

endpoints of the path (where we assume without loss of generality X(s) is closer to ∂B1(0) than X(e)). If

we are able to show that X(s) ∈ ∂T1 ∩ ∂B1(0) then the argument can proceed very much as described in

the paragraphs above. The only way this can fail is if the path is (close to) a line of length c(log(ε−1))−1

and runs, (roughly speaking) parallel to ∂T1∩∂B1(0). However as |u(X(e)) − u(X(s))| ≥ c(log(ε−1))−1 this
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implies we must have |u(X(e))| ≥ c(log(ε−1))−1, but since the path is close to ‘parallel’ to ∂B1(0) ∩ ∂T1

we have dist(X(e), ∂B1(0)) ≤ c log(ε−1)−2 which contradicts 1-Lipschitz type property as represented by

inequality (7), thus we must have that X(s) ∈ ∂T1 ∩ ∂B1(0). By use of this argument assumption (5) can

be avoided.

3. T E.L. 

Note that if u is a critical point of Iε it weakly satisfies the E.L. equation i.e.

ε∆2u + ε−1div
((

1 − |Du|2
)

Du
)
= 0. (11)

Let w ∈ W1,1 define wi := ∂w
∂xi

, similarly for v ∈ W2,1, s ∈ W3,1 define vi j := ∂2v
∂xi∂x j

and si jk := ∂3 s
∂xi∂x j∂xk

.

Lemma 1. Suppose u ∈ W2,2(Ω) is a weak solution of (11). Define Ωε−1 := ε−1Ω and let v : Ωε−1 → IR be

defined by v (z) := u (εz) ε−1 , then v satisfies

∆
2v + div

((
1 − |Dv|2

)
Dv

)
= 0 (12)

weakly inΩε−1 .

Proof. Follows directly from the definition of u.

Lemma 2. We will show that any v ∈ W2,2 (Ωε−1 ) that satisfies (12) weakly in Ωε−1 is such that for any

U ⊂⊂ Ωε−1 , v ∈ W3,2 (U) and v satisfies

∫ 2∑

i, j,p=1

vi jpφi jp +
((

1 − |Dv|2
)
· Dv

)
p

Dφp dz = 0 (13)

for any φ ∈ C1
0

(U).

Proof. Given set S ⊂ IR2, let d(x, S ) = inf {|z − x| : z ∈ S } and define Nδ(S ) := {x : d(x, S ) < δ}.
Step 1. For δ > 0 let Πδ := Ωε−1\Nδ(∂Ωε−1 ). We will show that D2v ∈ W1,2(Π2δ).

Proof of Step 1. Let g(x) := Dv(x)
(
1 − |Dv(x)|2

)
and w := ∆v. Since v ∈ W2,2(Ωε−1 ), by Sobolev

embedding Dv ∈ Lp(Ωε−1) for any p < ∞, hence g ∈ Lq(Ωε−1 ) for any q < ∞. So
∫

w∆φ =

∫
g · Dφ for any φ ∈ C∞0 (Ωε−1 ).

Let ρ ∈ C∞
0

(B1) be the standard convolution kernel and define ρσ(z) = ρ
(

z
σ

)
σ−2. Given function

f ∈ W1,1 we denote the convolution of f and ρσ by f ∗ ρσ. Let ε ∈ (0, δ) and define wε := w ∗ ρε and

gε := g ∗ ρε. Now for any φ ∈ C∞
0

(Ωε−1 ), defining φε = φ ∗ ρε we have
∫

wε∆φ =

∫
w∆φε =

∫
g · Dφε =

∫
gε · Dφ

which gives that ∆wε(z) = −divgε(z) for any z ∈ Πδ. Let ψ ∈ C∞0 (Πδ) with ψ = 1 on Π2δ and |Dψ| < cδ−1

and
∣∣∣D2ψ

∣∣∣ < cδ−2 . Define s(x) = wε(x)ψ(x), so

∆s = −divgεψ + 2Dwε · Dψ + wε∆ψ.

Now div(gεψ) = divgεψ + gε · Dψ and 2Dwε · Dψ = div(2wεDψ) − 2wε∆ψ and thus

∆s = div(−gεψ + 2wεDψ) + gε · Dψ − wε∆ψ. (14)

Let X = Ds, so by (14) we have that

curl(X) = 0 and div(X + gεψ − 2wεDψ) = gε · Dψ − wε∆ψ. (15)
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For any C2 vector field V, let H(V) denote the Hodge projection of V onto the subspace of curl free

vector fields, i.e. H(V) = −D∆−1divV, so H(V) satisfies div(H(V) + V) = 0 and curlH(V) = 0 on IR2. So

from (15) then we have

curl(X − H(gεψ − 2wεDψ)) = 0 and div(X − H(gεψ − 2wεDψ)) = gε · Dψ − wε∆ψ. (16)

Let η ∈ C∞(IR2) be such that

Dη = X − H(gεψ − 2wεDψ), (17)

so finally we have

∆η = gε · Dψ − wε∆ψ. (18)

Since by Holder gε ·Dψ−wε∆ψ ∈ L
3
2 (IR2) by Standard Lp estimates on Riesz transforms (see Proposition

3, Section 1.3. [St 71]) we know ‖D2η‖
L

3
2 (IR2)

≤ c‖gε‖
L

3
2 (Πδ)
+ c‖wε‖

L
3
2 (Πδ)
≤ c. By Sobolev embedding

‖Dη‖L6(IR2) ≤ c. (19)

Recall X = Ds where s = wεψ and ψ ∈ C∞0 (Πδ). So SptX ⊂ Πδ and note that by Holder, ‖Dη‖L2(Πδ) ≤ c.

Thus as ‖Ds‖L2(IR2) = ‖Ds‖L2(Πδ) ≤ c and using L2 boundedness of the Hodge projection

‖Ds‖L2(IR2)

(17)

≤ ‖Dη‖L2(Πδ) + ‖H(gεψ − 2wεDψ)‖L2(IR2) ≤ c. (20)

Since Ds = Dwεψ +wεDψ, so ‖Dwεψ‖L2(IR2)

(20)

≤ c+ ‖wεDψ‖L2(IR2). Now wε = 4vε and so ‖wεDψ‖L2(IR2) ≤
c‖D2vε‖L2(Πδ) ≤ c for any ε > 0. Hence

‖Dwε‖L2(Π2δ) < c for all ε > 0. (21)

Let q ∈ C∞
0

(Π2δ) with q ≡ 1 on Π3δ. Let zε = vε,1q so 4zε = 4vε,1q + 2Dvε,1 · Dq + vε,14q. Thus as

4vε,1 = wε,1

‖4zε‖L2(IR2) ≤ ‖4vε,1q‖L2(IR2) + 2‖Dvε,1 · Dq‖L2(IR2) + ‖vε,14q‖L2(IR2)

(21)

≤ c.

Now as we have seen before by L2 estimates on Riesz transforms, this implies D2zε ∈ L2(IR2). As

D2zε = D2vε,1q + 2Dvε,1 ⊗ Dq + vε,1 D2q we have that
∫

Π3δ

∣∣∣D2vε,1
∣∣∣2 dx ≤ c

∫

IR2

∣∣∣D2zε
∣∣∣2 dx + c

∫

IR2

∣∣∣Dvε,1
∣∣∣2 + c

∫

IR2

∣∣∣vε,1
∣∣∣2 dx ≤ c for every ε > 0. (22)

And thus ∫

Π3δ

∣∣∣D3vε
∣∣∣2 ≤ c for every ε > 0.

Now for any εn → 0, D2vεn
is a bounded sequence in W1,2(Π3δ), so for some subsequence kn, D2vεkn

⇀

ζ ∈ W1,2(Π3δ : IR2×2). Clearly ζ = D2v for a.e. in Π3δ. Let i, j, k ∈ {1, 2} and φ ∈ C∞
0

(Π3),
∫

v,i jφ,k = lim
n→∞

∫
vεkn ,i jφ,kdx

= lim
n→∞

∫
−vεkn ,i jkφdx

=

∫
−ζi j,kφdx.

Thus v,i j ∈ W1,2(Π3δ) for any i, j ∈ {1, 2} and hence D2v ∈ W1,2(Π3δ).

Step 2. We will show that v satisfies (13).
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Proof of Step 2. Take any arbitrary φ ∈ C∞(Ωε−1), letting ψh(z) :=
φ(z+hep)−φ(z)

h
we know from (12)

∫ ∑

i, j

vi j (y) φi jp (y) +
(
1 − |Dv (y)|2

)
Dv (y) Dφp (y) dy

= lim
h→0

h−1

∫ 2∑

i, j=1

vi j (y)ψh
i j (y) +

(
1 + |Dv (y)|2

)
Dv (y) Dψh (y) dy

= 0 (23)

thus integrating by parts ∫ ∑

i, j

vi jpφi j +
((

1 − |Dv|2
)

Dv
)

p
Dφdy = 0.

Repeating the argument gives us (13). �

Lemma 3. Let u ∈ W
2,2

0
(B1(0)) be the minimizer of Iε , then

Iε(u) ≤ cε log(ε−1). (24)

Proof. Let ρ be the standard rotationally symmetric convolution kernel with Sptρ ⊂ B2(0) and let

ρε(z) := ρ( z
ε
)ε−2 . Let w(x) = 1 − |x| and wε = w ∗ ρε . So if y ∈ B4ε(0)

∣∣∣D2wε(y)
∣∣∣ ≤

∣∣∣∣∣
∫

(w(z) − 1)D2ρε(y − z)dz

∣∣∣∣∣ ≤ cε−4

∫

B6ε (0)

|w(z) − 1| dz ≤ cε−1 . (25)

Note Dw(y) = − y

|y| and D2w(y) =
y⊗y

|y|3 − |y|
−1 Id so

∣∣∣D2w(y)
∣∣∣ ≤ 4

|y| . So

∣∣∣D2wε(y)
∣∣∣ ≤

∣∣∣∣∣
∫

D2w(z)ρε(y − z)dz

∣∣∣∣∣ ≤ 4

∫
ρε (y − z)

|z|
dz ≤ c

|y|
for any y < B4ε(0). (26)

Thus
∫

B1(0)

∣∣∣D2wε

∣∣∣2 dy ≤
∫

B4ε (0)

∣∣∣D2wε

∣∣∣2 dy +

∫

B1(0)\B4ε(0)

∣∣∣D2wε

∣∣∣2 dy
(25),(26)

≤ c + c

∫ 1

4ε

r−1dr ≤ c log(ε−1).

Now
{
x ∈ IR2 : wε(x) = 0

}
is a circle of radius h h 1 so defining v(x) = wε

(
x
h

)
h, v ∈ W

2,2

0
(B1(0)) and

∫
B1(0)

∣∣∣D2v
∣∣∣2 dx ≤ c log(ε−1). Now if x < B4ε(0), |Dwε(x) − Dw(x)| =

∣∣∣
∫

(Dw(z) − Dw(x))ρε(x − z)dz
∣∣∣ ≤ cε

|x| .

So
∣∣∣|Dwε(x)|2 − 1

∣∣∣2 ≤ c ||Dwε(x)| − 1|2 ≤ cε2

|x|2 . Thus
∫

B1(0)

∣∣∣1 − |Dwε(x)|2
∣∣∣2 dx ≤ cε2 +

∫

B1(0)\B4ε(0)

∣∣∣1 − |Dwε(x)|2
∣∣∣2 dx

≤ cε2 +

∫ 1

4ε

ε2

r
dr

≤ c log(ε−1)ε2

and this establishes (24). �

Lemma 4. Let u ∈ W
2,2

0
(B1(0)) be a minimizer of Iε . Let C1 be a some small positive constant to be

chosen later. Define A(x, α, β) := Bβ(x)\Bα(x). We divide B1(0) into N =
[
C−2

1
log(ε−1)

]
slices of equal

angle, denote their closure by T1,T2, . . . TN . There must exists a set Π ⊂ {1, 2, . . . N} with Card (Π) ≥ N
2

such that if i ∈ Π

inf
{
|Du (z)| : z ∈ Ti ∩ A(0, c log(ε−1)ε, 1 − 2ε)

}
>

1

2
and

sup
{
|Du (z)| : z ∈ Ti ∩ A(0, c log(ε−1)ε, 1 − 2ε)

}
< 2. (27)
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Proof of Lemma 4. Define v (z) = u (εz) ε−1 . Let S i = ε
−1Ti for i = 1, 2, . . . N. For i ∈ {2, 3, . . . N − 1}

define

S̃ i = S i−1 ∪ S i ∪ S i+1 and let S̃ 1 = S N−1 ∪ S 1 ∪ S 2, S̃ N = S N−1 ∪ S N ∪ S 1.

Define

G0 :=

{
i ∈ {1, 2, . . . N} :

∫

S̃ i

∣∣∣1 − |Dv|2
∣∣∣2 +

∣∣∣D2v
∣∣∣2 dz ≤ C1

}
. (28)

Note that by (24) of Lemma 3 we know
∫

Bε−1 (0)

∣∣∣1 − |Dv|2
∣∣∣2+

∣∣∣D2v
∣∣∣2 dx ≤ c log(ε−1), so C1(N−Card (G0)) ≤

c log(ε−1), thus (assuming we chose C1 small enough)
C−2

1

2
log(ε−1) ≤ Card (G0).

Step 1. Let i ∈ G0 , we will show that for any y0 ∈ S̃ i such that B2 (y0) ⊂ S̃ i and ψ ∈ C∞
0

(B2 (y0)) such

that ψ ≡ 1 on B1 (y0) we have

∫ ∣∣∣D3v
∣∣∣2 ψ6dz ≤ c. (29)

Proof of Step 1. Let Y = (4π)−1
∫

B2(y0)
Dv, T = (4π)−1

∫
B2(y0)

v and we define ṽ (z) = v (z)−Y ·(z − y0)−T .

Let φ := ṽψ6. So φp = ṽpψ
6 + 6ṽψ5ψp and

φpi = vpiψ
6
+ 6ṽpψ

5ψi + 6ṽiψ
5ψp + 6ṽ

(
ψ5ψp

)
i
. (30)

φpi j = vpi jψ
6 + 6vpiψ

5ψ j + 6vp jψ
5ψi + 6ṽp

(
ψ5ψi

)
j

+6vi jψ
5ψp + 6ṽi

(
ψ5ψp

)
j
+ 6ṽ j

(
ψ5ψp

)
i
+ 6ṽ

(
ψ5ψp

)
i j
. (31)

By the fact that B2(y0) ⊂ S̃ i we know
∫

B2(y0)

∣∣∣D2v
∣∣∣2 ≤ C1, by Poincare’s inequality this implies

‖Dṽ‖L2(B2(y0)) ≤ c and ‖ṽ‖L2(B2(y0)) ≤ c. So from (31)
∣∣∣∣∣
∫

vi jpφi jp −
∫ (

vi jp

)2
ψ6

∣∣∣∣∣
(31)

≤ c‖vi jpψ
3‖L2

(
‖D2v‖L2(B2(y0)) + ‖Dṽ‖L2(B2(y0)) + ‖ṽ‖L2(B2(y0))

)

≤ c‖D3vψ3‖L2 . (32)

Now ∣∣∣∣∣
∫ ((

1 − |Dv|2
)

Dv
)

p
· Dφp dz

∣∣∣∣∣ =

∣∣∣∣∣
∫ ((

1 − |Dv|2
)

Dv
)
· Dφppdz

∣∣∣∣∣

≤
∣∣∣∣∣
∫ ((

1 − |Dv|2
)

Dv
)
·
(
Dφpp − Dvppψ

6
)

dz

∣∣∣∣∣

+

∣∣∣∣∣
∫ ((

1 − |Dv|2
)

Dv
)
· Dvppψ

6dz

∣∣∣∣∣
(31)

≤ c‖
(
1 − |Dv|2

)
Dv‖L2(B2(y0))‖D2v‖L2(B2(y0))

+‖D3vψ3‖L2‖
(
1 − |Dv|2

)
Dvψ3‖L2

(28)

≤ c
(
1 + ‖D3vψ3‖L2(B2(y0))

)
. (33)

Recalling the fact that by Lemma 2, v satisfies (13) we have
∣∣∣∣∣∣∣∣

∫ 2∑

i, j,p=1

(
vi jp

)2
ψ6dz

∣∣∣∣∣∣∣∣
(13)
=

∣∣∣∣∣∣∣∣

∫ 2∑

i, j,p=1

(
vi jp

)2
ψ6 − vi jpφi jp −

∫ ((
1 − |Dv|2

)
Dv

)
p
· Dφpdz

∣∣∣∣∣∣∣∣
(32),(33)

≤ c‖D3vψ3‖L2 + c.
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And this establishes (29).

Proof of Lemma 4. By Theorem 2, Section 5.6 [Ev 98]

‖D2v‖L4(B2(y0)) ≤ ‖D2v‖W1,2(B2(y0)) ≤ c + ‖D3v‖L2(B2(y0))

(13)

≤ c.

By Sobolev embedding this implies Dv is 1
2
-Holder in B1 (y0).

Since
∫

B1(y0)

∣∣∣1 − |Dv|2
∣∣∣2 dz ≤ C1. Let L =

{
z ∈ B1 (y0) :

∣∣∣1 − |Dv|2
∣∣∣2 ≤
√
C1

}
so we have |B1 (y0) \L| ≤

√
C1. So B

4C
1
4
1

(y0) ∩ L , ∅ so we can pick z1 ∈ B
4C

1
4
1

(y0) ∩ L. Since Dv is 1
2

Holder

||Dv (y0)| − 1| ≤ |Dv (y0) − Dv (z1)| + C
1
4

1

≤ c |y0 − z1|
1
2 + C

1
4

1

≤ cC
1
8

1
,

assuming we chose C1 small enough this implies |Dv(y0)| ∈ ( 1
2
, 2). Since y0 is an arbitrary point in

S̃ i\N2(∂S̃ i) and Du(εy0) = Dv(y0) this implies (27). �

Lemma 5. Let u ∈ W2,2(B1(0)). Suppose
∫

B1(0)

∣∣∣1 − |Du|2
∣∣∣
∣∣∣D2u

∣∣∣ dz ≤ β (34)

and ∫

B1(0)

∣∣∣1 − |Du|2
∣∣∣ dz ≤ β. (35)

We will show that for any w ∈ S 1 we can find a set Gw ⊂ Pw⊥ (B1(0)) with

|Pw⊥ (B1(0)) \Gw | ≤ β
1
3 (36)

and for any x ∈ Gw we have

sup
{
||Du (z)| − 1| : z ∈ P−1

w⊥ (x) ∩ B1(0)
}
≤ 5β

1
3 . (37)

Proof of Lemma. Let

Bw :=

x ∈ Pw⊥ (B1(0)) :

∫

P−1

w⊥ (x)∩B1(0)

∣∣∣1 − |Du|2
∣∣∣
∣∣∣D2u

∣∣∣ +
∣∣∣1 − |Du|2

∣∣∣ dz ≤ β
2
3

 .

By Chebyshev’s inequality we have |Pw⊥ (B1(0)) \Bw | ≤ 2β
1
3 . For any x ∈ Pw⊥ (B

1−β
2
3
(0)) we know

∣∣∣P−1
w⊥ (x) ∩ B1(0)

∣∣∣ ≥ β 1
3 and so if in addition x ∈ Bw we have that there must exists zx ∈ P−1

w⊥ (x)∩B1(0) such

that |1 − |Du(zx)|| ≤ β 1
3 .

Suppose x ∈ Bw ∩Pw⊥ (B
1−β

2
3
(0)) and for some yx ∈ P−1

w⊥ (x)∩B1(0) we have |1 − |Du(yx)|| ≥ 5β
1
3 . Then

as we can assume without loss of generality that Du is continuous on P−1
w⊥ (x) ∩ B1(0) and so there must

exists ax, bx ∈ P−1
w⊥ (x)∩B1(0) such that ||Du(ax)| − |Du(bx)|| ≥ β

1
3 and inf {|Du(x)| : x ∈ [ax, bx]} ≥ 1+4β

1
3 .

However by the fundamental theorem of Calculus

4β
1
3 ||Du(ax)| − |Du(bx)|| ≤

∫ bx

ax

|1 − |Du||
∣∣∣D2u

∣∣∣ ≤ β 2
3

which is a contradiction. Thus taking Gw := Bw ∩ Pw⊥ (B
1−β

1
3
(0)) completes the proof of the lemma. �
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Lemma 6. Suppose ũ is a C2 function that satisfies (34), (35) and Λ ⊂ B1(0) is convex with the property

that inf {|Dũ(x)| : x ∈ Λ} > 1
3

and sup {|Dũ(x)| : x ∈ Λ} < 3.

Given function X : IR → IR2 that solves X(0) = x and Ẋ(s) = Dũ(X(s)), suppose s1 < 0 < s2 are such

that X(s) ∈ Λ for any s ∈ [s1, s2] then

ũ(X(s2)) − ũ(X(s1)) ≥ (1 − β 1
3 ) |X(s2) − X(s1)| − cβ

1
3 . (38)

And if in addition X(s1), X(s2) < Br(x) for some Br(x) ⊂ Ω, then

{X(s) : s ∈ [s1, s2]} ⊂ N
c
β

1
6√
r

([X(s1), X(s2)]). (39)

Proof. Let w ∈ S 1 be orthogonal to X(s2) − X(s1). Let Gw be the set satisfying (36) and (37) from

Lemma 5. Let P = {X(t) : t ∈ [s1, s2]} and Γ = P ∩ P−1
w⊥ (Gw). So H1(Γ) ≥ |Pw⊥ ([X(s1), X(s1)]) ∩Gw | ≥

|X(s2) − X(s1)| − β 1
3 and so

ũ(X(s2)) − ũ(X(s1)) =

∫

P

Dũ(z) · tzdH1z

≥ (1 − cβ
1
3 )H1(Γ) +

1

3
H1(P\Γ)

≥ (1 − cβ
1
3 ) |X(s2) − X(s1)| + 1

3
H1(P\Γ) − cβ

1
3 (40)

which establishes (38). Now

ũ(X(s2)) − ũ(X(s1)) ≤
∫

[X(s1),X(s2)]

|Dũ(z)| dH1z

≤ (1 + cβ
1
3 ) |Pv⊥ ([X(s2), X(s1)] ∩Gw)| + 3 |Pv⊥ ([X(s2), X(s1)] \Gw)|

≤ |X(s2) − X(s1)| + cβ
1
3 (41)

now putting (40) and (41) together we have H1(P\Γ) ≤ cβ
1
3 . Now this and the second inequality of (40)

and inequality (41) imply that

|X(s2) − X(s1)| − cβ
1
3 ≥ H1(P). (42)

If X(s1), X(s2) < Br(x) then as X(0) = x ∈ P and as P is connected we know H1(P) ≥ |X(s1) − X(0)| +
|X(s2) − X(0)| ≥ 2r which by (42) implies |X(s1) − X(s2)| ≥ r and so |X(s1) − X(s2)| (1 + cβ

1
3

r
) ≥ H1(P).

Now letting tz denote the tangent to the curve P at point z we have
∫

P

∣∣∣∣∣tz −
X(s2) − X(s1)

|X(s2) − X(s1)|

∣∣∣∣∣
2

dH1z =

∫

P

2 − 2tz ·
(

X(s2) − X(s1)

|X(s2) − X(s1)|

)
dH1z

= 2H1(P) − 2 |X(s2) − X(s1)|

≤ cβ
1
3

r
.

By Holder’s inequality and the fundamental theorem of Calculus this immediately implies (39). �

Lemma 7. Suppose u is a minimizer of Iε over W2,2
0

(B1(0)). There exists r h ε
1
6 (log(ε−1))

13
6 and ξ ∈

{1,−1} such that

inf {ξu(z) : z ∈ Br(0)} ≥ 1 − cε
1
6 (log(ε−1))

13
6 (43)

Proof. First recall that by Lemma 3, (24) we know that Iε(u) ≤ cε log(ε−1). Let T1,T2, . . . TN be as

defined in Lemma 4. By Lemma 4 there exists i ∈ {1, 2, . . . N} such that Ti satisfies (27).

By Lemma 2 we know u ∈ W3,2(B1−2ε(0)). Now by approximation of Sobolev functions (see Theorem

3, section 5.33 [Ev 98]), for any small τ > 0 we can find ũ ∈ C∞(B1−2ε(0)) such that

‖ũ − u‖W3,2(B1−2ε (0)) < τ. (44)
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Since ∫

B1(0)

∣∣∣1 − |Du|2
∣∣∣2 dx ≤ cε2 log(ε−1) (45)

and ∫

B1(0)

∣∣∣1 − |Du|2
∣∣∣
∣∣∣D2u

∣∣∣ dx ≤ cε log(ε−1). (46)

By Sobolev embedding we have that u is 1
2
-Holder and thus

sup {|u(z)| : z ∈ ∂B1−2ε(0)} ≤ c
√
ε. (47)

Now assuming τ is small enough, as by Sobolev embedding Dũ is Holder continuous, ũ must satisfy

sup {|ũ(z)| : z ∈ ∂B1−2ε (0)} ≤ c
√
ε and

inf
{
|Dũ (z)| : z ∈ A(0, c log(ε−1)ε, 1 − 2ε) ∩ Ti

}
>

1

3
and

sup
{
|Dũ (z)| : z ∈ A(0, c log(ε−1)ε, 1 − 2ε) ∩ Ti

}
< 3. (48)

It is also clear that for small enough τ, ũ satisfies Iε(ũ) ≤ cε log(ε−1).

Step 1. Let ϑ denote the center point of ∂B1−2ε (0) ∩ Ti define ς = 2(1 − cos( π
N

)), so ς h
C4

1
π2

(log(ε−1))2 . Let

% = (1 − ς)ϑ. For any set A let conv(A) denote the convex hull of the set A. Note that (see figure 1)

dist (%, conv(∂B1−2ε(0) ∩ Ti)) >
ς

2
. (49)

Let X : IR→ IR2 be the solution of X(0) = % and Ẋ(s) = Dũ(X(s)). Let Ti := Ti ∩ A(0, c log(ε−1)ε, 1 −
2ε). Let t2 > 0 be the smallest number such that X(t2) ∈ ∂Ti and let t1 < 0 be the largest number so that

X(t1) ∈ ∂Ti. Let s ∈ {t1, t2} be such that

d(X(s), ∂B1−2ε (0)) = min {d(X(t1)), ∂B1−2ε(0)), d(X(t2)), ∂B1−2ε(0))} . (50)

Let e ∈ {t1, t2} \ {s}. See figure 1.

We will show X(s) ∈ ∂B1−2ε(0) ∩ BC2
1
(log(ε−1))−1/2(ϑ) and X(e) ∈ ∂Ti\∂B1−2ε (0).

Proof of Step 1. We claim

cos−1

(
X(s) − X(e)

|X(s) − X(e)|
· ϑ
|ϑ|

)
≤ π

2
− 1

129
. (51)

Let ψ = cos−1
(

X(s)−X(e)

|X(s)−X(e)| ·
ϑ
|ϑ|

)
. Suppose (51) not true, i.e. ψ ≥ π

2
− 1

129
. Since X(s), X(e) < Bς(ϑ) and by

(44), (45), (46) ũ satisfies (34), (35) for β = ε log(ε−1) so applying Lemma 6 we have that by (39)

% ∈ N
cε

1
6 (log(ε−1))

7
6
([X(s), X(e)]), (52)

i.e. points %, X(s2), X(s1) are roughly (with error cε
1
6 (log(ε−1))

7
6 ) aligned, so by (49) we must have

X(e) ∈ ∂Ti\∂B1−2ε (0)

and in particular |X(e) − X(s)| > C2
1

2
(log(ε−1))−1. Note also by (50) and by (52) we have that

d(X(s), ∂B1−2ε (0)) ≤ c(log(ε−1))−2. (53)

Thus by (38)

ũ(X(e)) − ũ(X(s)) ≥
C2

1

3
(log(ε−1))−1. (54)

Since ũ is 3-Lipschitz and d(X(s), ∂B1−2ε (0)) ≤ 2ς we have ũ(X(s)) ≤ 6ς ≤ c
(log(ε−1))2 . Thus by (54) we

have

|ũ(X(e))| ≥
C2

1

4
(log(ε−1))−1. (55)
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F 1

Now let L be the line parallel to [X(s), X(e)] that passes through %, by (39) we can pick ν ∈ L ∩
B
ε

1
6 (log(ε−1))

7
6
(X(s)) and let µ = (X(e) + 〈ϑ〉) ∩ (ν + ϑ⊥). Note that by trigonometry

d(µ, ∂B1−2ε(0)) ≤ d(ν, ∂B1−2ε(0)) + c(log(ε−1))−2. (56)

And so

d(µ, ∂B1−2ε(0)) ≤ d(X(s), ∂B1−2ε(0)) + c(log(ε−1))−2
(53)

≤ c(log(ε−1))−2. (57)

Recall we have assumed by contradiction that ψ ≥ π
2
− 1

129
. By (52) X(s), %, X(e) are with error

(ε
1
6 (log(ε−1)))

7
6 aligned and by (50) X(s) is closer (or equally close) to ∂B1−ε(0) than X(e), so X(s) · ϑ|ϑ| >

X(e) · ϑ|ϑ| −cε
1
6 (log(ε−1))

7
6 , hence ψ ≤ π

2
+ 1

129
. We will denote a triangle with corners at a, b, c by T (a, b, c).

Consider the right angle triangle T (ν, X(e), µ). Now let ψ̃ denote the angle of the corner of the triangle

T (ν, X(e), µ) at X(e). By construction as |ν − X(s)| < ε 1
6 (log(ε−1))

7
6 so

∣∣∣ψ − ψ̃
∣∣∣ ≤ ε 1

6 (log(ε−1))
13
6 ≤ 1

128
− 1

129
,

thus ψ̃ ∈
[
π
2
− 1

128
, π

2
+ 1

128

]
. Thus

127

128
|ν − X(e)| ≤ |ν − X(e)| sin(ψ̃) ≤ |µ − ν| ≤ 2πC2

1(log(ε−1))−1.

So

|ν − X(e)| ≤ 8C2
1(log(ε−1))−1. (58)

Thus

|X(e) − µ| ≤ cos(ψ̃) |ν − X(e)|
(58)

≤ 8C2
1(log(ε−1))−1 cos

(
π

2
− 1

128

)

≤
C2

1(log(ε−1))−1

16
. (59)
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Hence

d(X(e), ∂B1−2ε(0))
(59)

≤ d(µ, ∂B1−2ε (0)) +
C2

1
(log(ε−1))−1

16

(57)

≤
C2

1(log(ε−1))−1

16
+ c(log(ε−1))−2.

Thus |ũ(X(e))| ≤ 3C2
1
(log(ε−1))−1

16
+ c

(
log(ε−1)

)2
which is a contradicts (55). So (51) is established.

Let ω = L ∩ (ϑ + ϑ⊥). Consider the right angle triangle T (ω, %, ϑ). By trigonometry we know that

|ω − ϑ| tan
(
π
2
− ψ

)
= ς which implies |ω − ϑ| ≤ 258ς, hence X(s) ∈ ∂B1−2ε(0) ∩ B C2

1
(log(ε−1 ))−1

2

(ϑ). As we

know already X(e) ∈ ∂Ti\B1−2ε (0) this completes the proof of Step 1.

Step 2. We will show
∣∣∣∣∣∣cos−1

(
X(s)

|X(s)|
· (X(s) − X(e))

|X(s) − X(e)|

)∣∣∣∣∣∣ ≤ cε
1
6 log(ε−1)

7
6 . (60)

Proof of Step 2. Let θ = cos−1
(

X(s)

|X(s)| ·
(X(s)−X(e))

|X(s)−X(e)|

)
. Let

κ = (X(s) + (X(s))⊥) ∩ (X(e) + IRX(s)) .

Note that the points X(s), X(e), κ forms the corners of a right-angle triangle where the angle at the point

X(e) is θ. Since κ < Ti and as Ti is convex, [κ, X(e)] intersects ∂Ti at one point only, so let ζ = (κ, X(e)) ∩
∂Ti. We claim that ζ ∈ ∂B1−2ε(0). To see this suppose it is not true, then the line segment [κ, X(e)] must

cross one of the flat sides of ∂Ti. Recall the angle at 0 of the ‘pie slice’ Ti is 2π
N

. So the angle between

ϑ and either of the sides of ∂Ti is π
N

. However the line segment [κ, X(e)] is parallel to the line segment

[0, X(s)] so cos−1
(
ϑ
|ϑ| ·

κ−X(e)

κ−X(e)

)
< π

N
. Now in order for [κ, X(e)] to cross the flat sides of ∂Ti without first

intersecting ∂B1−2ε(0) it has to make a larger angle with ϑ than the flat sides of ∂Ti so this a contradiction.

Thus the claim is established and we have cos(θ) |X(s) − X(e)| ≥ |X(e) − ζ |.
Now since X(s) ∈ ∂B1−2ε(0) so |ũ(X(s))| ≤ c

√
ε and thus

ũ(X(e))
(38)

≥ (1 − c(ε log(ε−1))
1
3 ) |X(e) − X(s)| − c(ε log(ε−1))

1
3

≥ |X(e) − ζ |
cos θ

− c(ε log(ε−1))
1
3 . (61)

By Lemma 5 there exists a line segment Γ ⊂ Ti parallel to [X(e), ζ] whose end points are within

(ε log(ε−1))
1
3 of X(e), ζ and for which sup {||Dũ(z)| − 1| : z ∈ Γ} ≤ c(ε log(ε−1))

1
3 . Let a, b be the end points

of Γ, so by the fundamental theorem of Calculus, |ũ(a) − ũ(b)| ≤ (1 + c(ε log(ε−1))
1
3 ) |a − b|. Since ũ is

Lipschitz on Ti and |ũ(ζ)| ≤ c
√
ε we have that |ũ(X(e))| ≤ (1 + c(ε log(ε−1))

1
3 ) |X(e) − ζ |, thus putting this

together with (61) we have

|X(e) − ζ | ≥ |X(e) − ζ |
(1 + c(ε log(ε−1))

1
3 ) cos θ

− c(ε log(ε−1))
1
3 . (62)

Recall Bς(%) ⊂ Ti and as we know X(s) is closer to ∂B1−2ε (0) than X(e), so by (52) we have that

|X(e) − ζ | ≥ ς

2
, so by (62) we have cos(θ) ≥ 1 − cε

1
3 (log(ε−1))

7
3 which implies |θ| ≤ cε

1
6 (log(ε−1))

7
6

and this completes the proof of Step 2. �

Proof of Lemma completed. By Step 1 we know X(s) ∈ B C2
1

(log(ε−1 ))−1

2

(ϑ), so the angle between the

line segment [X(s), 0] and the sides of ∂Ti is at least C2
1(log(ε−1)−1/4. So if we consider the triangle
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T (0, X(s), X(e)). Let η be the angle of the triangle at corner 0, so η ≥ C2
1
(log(ε−1))−1

4
. Recall the angle at

corner X(s) is θ and by (60) θ ≤ cε
1
6 (log(ε−1))

7
6 . So by the law of sins,

|X(e)|
sin θ
=
|X(e)−X(s)|

sin η
. So

|X(e)| ≤ 2 sin θ

sin η
≤ cε

1
6 (log(ε−1))

13
6 . (63)

Now as noted previously, (47) and (44), |ũ(X(s))| ≤ c
√
ε. So by (38) we have that

|ũ(X(e))| ≥ (1 − (ε log(ε−1)
1
3 ) |X(e) − X(s)| − c(ε log(ε−1))

1
3

≥ (1 − (ε log(ε−1))
1
3 )d(X(e), ∂B1−2ε(0)) − c(ε log(ε−1))

1
3

≥ 1 − cε
1
6 (log(ε−1))

13
6 . (64)

So we must have r ∈ (|X(e)| + 1
2
ε

1
6 (log(ε−1))

13
6 , |X(e)| + cε

1
6 (log(ε−1))

13
6 ) such that

∫

∂Br(0)

∣∣∣1 − |Dũ|2
∣∣∣ dH1z

(45),(44)

≤ cε
5
6 (log(ε−1))−

10
6 .

By the fundamental theorem of Calculus was have that

|ũ(x) − ũ(y)| ≤ cε
5
6 (log(ε−1))−

10
6 for all x, y ∈ ∂Br(0). (65)

Let ξ =
ũ(X(e))

|ũ(X(e))| . Pick z ∈ ∂Br(0) ∩ Ti, since ũ is Lipschitz on Ti we know

|ũ(z) − ũ(X(e))| ≤ cε
1
6 (log(ε−1))

13
6 . (66)

Thus for any x ∈ ∂Br(0)

ξũ(x)
(66)(65)

≥ ξũ(X(e)) − cε
1
6 (log(ε−1))

13
6

(64)

≥ 1 − cε
1
6 (log(ε−1))

13
6 , (67)

together with (44) (using the fact that (44) implies ‖ũ − u‖L∞(B1−2ε (0)) ≤ cε) this completes the proof of

Lemma 7.

Proof of Theorem completed. Let r h ε
1
6 (log(ε−1))

13
6 , ξ ∈ {−1, 1} be the numbers that satisfy (43) from

Lemma 7. Let A(x) = x
|x| note |DA(x)| ≤ c

|x| . Note by Fubini

∫

Br (0)

∫

B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |DA(x − z)| dzdx

=

∫

B1(0)

(∫

Br(0)

|DA(x − z)| dx

) (
1 − |Du(z)|2

)
dz

≤ cε

√
log(ε−1). (68)

So there must exist a set G ⊂ Br(0) with |G| ≥ ε 1
3 (log(ε−1))

13
3 such that if x ∈ G we have

∫

B1(0)

∣∣∣1 − |Du(z)|2
∣∣∣ |DA(x − z)| dz ≤ cε

1
3 . (69)

For θ ∈ S 1, y ∈ IR2 define l
y

θ
:= y + IR+θ. Pick x ∈ G, by the Co-area formula

∫

ψ∈S 1

∫

lx
ψ

∣∣∣1 − |Du(z)|2
∣∣∣ dH1zdH1ψ ≤ cε

1
3 .
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For each ψ ∈ S 1 let xψ = ∂Br(0) ∩ lx
ψ, yψ = ∂B1(0) ∩ lx

ψ and eψ =
∫

lx
ψ

∣∣∣1 − |Du(z)|2
∣∣∣ dH1z. So

∫

[xψ ,yψ]

|Du(z) + ξψ|2 dH1z =

∫

[xψ ,yψ]

|Du(z)|2 + 2ξDu(z) · ψ + 1dH1z

≤ 2
∣∣∣yψ − xψ

∣∣∣ − 2ξu(xψ) + ceψ

(43)

≤ cε
1
6 (log(ε−1))

13
6 + ceψ. (70)

Thus
∫

B1(0)\Br(x)

∣∣∣∣∣Du(z) + ξ
z

|z|

∣∣∣∣∣
2

dz ≤
∫

B1(0)\Br(x)

∣∣∣∣∣Du(z) + ξ
z

|z|

∣∣∣∣∣
2

|DA(x − z)| dz

≤
∫

S 1

∫

[xψ ,yψ]

|Du(z) + ξψ| dH1zdH1ψ

(70)

≤ cε
1
6 (log(ε−1))

13
6 + c

∫

S 1

eψdH1ψ

≤ cε
1
6 (log(ε−1))

13
6 .

Hence
∫

B1(0)

∣∣∣∣∣Du(z) + ξ
z

|z|

∣∣∣∣∣
2

dz ≤
∫

Br (0)

∣∣∣∣∣Du(z) + ξ
z

|z|

∣∣∣∣∣
2

dz + cε
1
6 (log(ε−1))

13
6

≤ c

∫

Br(0)

|1 − ||Du(z)| − 1||2 dz + cε
1
6 (log(ε−1))

13
6

≤ cε
1
6 (log(ε−1))

13
6 . �

R

[Al-Ri-Se 00] F. Alouges; T. Riviere;S. Serfaty. Neel and cross-tie wall energies for planar micromagnetic configurations. A tribute

to J. L. Lions. ESAIM Control Optim. Calc. Var. 8 (2002), 31–68

[Am-De-Ma 99] L. Ambrosio. C. Delellis, C. Mantegazza. Line energies for gradient vector fields in the plane. Calc. Var. Partial

Differential Equations 9 (1999).

[Am-Le-Ri 99] L. Ambrosio; M. Lecumberry; T. Riviere. Viscosity property of minimizing micromagnetic configurations......

[Am-Ki-Le-Ri 02] L. Ambrosio; B. Kirchheim; M. Lecumberry; T. Riviere, On the rectifiability of defect measures arising in a

micromagnetics model. Nonlinear problems in mathematical physics and related topics, II, 29–60, Int. Math. Ser. (N. Y.), 2,

Kluwer/Plenum, New York, 2002.

[Av-Gi 86] P. Aviles; Y. Giga. A mathematical problem related to the physical theory of liquid crystal configurations. Miniconfer-

ence on geometry and partial differential equations, 2 (Canberra, 1986), 1–16, Proc. Centre Math. Anal. Austral. Nat. Univ.,

12, Austral. Nat. Univ., Canberra, 1987.

[Av-Gi 96] P. Aviles; Y. Giga. The distance function and defect energy. Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 5,

923–938.

[Av-Gi 99] P. Aviles; Y. Giga. On lower semicontinuity of a defect energy obtained by a singular limit of the Ginzburg-Landau type

energy for gradient fields. Proc. Roy. Soc. Edinburgh Sect. A 129 (1999), no. 1, 1–17.

[Ca 97] G. Carbou. Regularity for critical points of a nonlocal energy. Calc. Var. Partial Differential Equations 5 (1997), no. 5,

409–433.

[De-Mu-Ko-Ot 01] A. DeSimone; S. Müller; R. Kohn; F. Otto, A compactness result in the gradient theory of phase transitions.

Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 4, 833–844.

[De-Mu-Ko-Ot 02] A. DeSimone; S. Müller; R. Kohn; F. Otto. A reduced theory for thin-film micromagnetics. Comm. Pure Appl.

Math. 55 (2002), no. 11, 1408–1460.

[Co-De-Mu-Ko-Ot 01] S. Conto; A. DeSimone; S. Müller; R. Kohn; F. Otto. Multiscale modeling of materials—the role of analysis.

Trends in nonlinear analysis, 375–408, Springer, Berlin, 2003.

[Ev 98] L.C. Evans. Partial differential equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Provi-

dence, RI, 1998.

[Or-Gio 94] G. Gioia, M. Ortiz. The morphology and folding patterns of buckling-driven thin-film blisters. J. Mech. Phys. Solids

42 (1994), no. 3, 531–559.



A SIMPLE PROOF OF THE CHARACTERIZATION OF FUNCTIONS OF LOW AVILES GIGA ENERGY 17

[Ha-Kin 94] R. Hardt, D. Kinderlehrer. Some regularity results in ferromagnetism. Comm. Partial Differential Equations 25 (2000),

no. 7-8, 1235–1258.

[Ig-Ot 94] R. Ignat and F. Otto. A compactness result in thin-film micromagnetics and the optimality of the Nel wall. J. Eur. Math.

Soc. (JEMS), 10(4):909-956, 2008.

[Ja-Ot-Pe 02] P. Jabin, F. Otto, B. Perthame. Line-energy Ginzburg-Landau models: zero-energy states. Ann. Sc. Norm. Super. Pisa

Cl. Sci. (5) 1 (2002), no. 1, 187–202.

[Ji-Ko 00] W. Jin; R.V. Kohn. Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000), no. 3, 355–390.

[Lo 09] A. Lorent. A quantitative characterisation of functions with low Aviles Giga energy on convex domains.

http://arxiv.org/abs/0902.0154v1

[Ri-Se 01] T. Riviere; S. Serfaty. Limiting domain wall energy for a problem related to micromagnetics. Comm. Pure Appl. Math.

54 (2001), no. 3, 294–338.

[St 71] E.M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton

University Press, Princeton, N.J. 1970

M D, U  C, 2600 C A., C, O 45221,

E-mail address: lorentaw@uc.edu


