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A surface energy approach to the mass reduction
problem for elastic bodies
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We consider the problem of mass reduction for elastic bodies by appearance of cavities. In this work, this
problem is related to the minimization of a surface energy, depending on the stress tensor in the original
equilibrium configuration. Special cases of mechanical interest are also analysed.

Keywords: Wulff shapes; shape optimization; variational problems in elasticity.

1. Introduction

The problem of mass minimization for elastic bodies is much studied and represents a continuous source
of interest with respect to optimization theory as well as to structural design. Over the recent decades,
several approaches have been proposed to both theoretical and applied studies on the subject, such as
homogenization techniques, topological derivatives and variational methods involving varying domains
(seeAllaire, 2007; Bendsoe, 1995; Bucur, 2007; Bucur & Buttazzo, 2002; Henrot & Pierre, 2005).
In this paper, we deal with the problem of mass reduction of a given elastic bodyΩ in a variational
framework and, in order to take into account the material failure constraint, as usual, we fix the maximum
amount of volume to subtract from the initial body.

Usually, the material failure corresponds to a pointwise inequality for the stress field. However, this
leads to subtle mathematical issues since it involves the dependence of the solution of the equilibrium
problem on the domain. Here, on the basis ofa priori estimates on the stress field, we also give a
justification of the classical approach which fixes the volume we can remove in safety (Section3).
Therefore, the problem under examination becomes the determination of the best geometry and location
of the cavities inside the body.

In this paper, we propose a new variational approach based on the minimization of a Wulff-like
energy (Section4). Indeed, the creation of a cavity inside the elastic body increases the total elastic
energy and the exceeding energy can be reduced to an energy distribution on the boundary of the cavity.
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Then, it seems to be reasonable to consider a surface energy as an optimality criterion. On the basis of
these considerations, the variational problem takes the form

min
K

{∫

∂K
|Tn|dHN−1

∣
∣
∣
∣ K ⊂ Ω, |K | = V

}
,

whereT is the stress tensor in the original equilibrium configuration of the body,K is the cavity and
n is the outward unit normal to∂K . Besides the interest in the mass reduction, the above variational
problem poses some questions regarding relative isoperimetric properties or generalized Wulff energies
which seem not yet completely known (seeFonseca, 1991, and references therein). Moreover, we note
that our approach can be related to the variational analysis of cavitation phenomena in elastomeric mate-
rials carried inSivaloganathan & Spector(2000). Finally, we discuss some special cases of mechanical
interest (Section5).

2. Setting of the problem

Let us consider an elastic body occupying a regular regionΩ ⊂ R3, or in general a subset ofRN , in
equilibrium under the given tractionf on the boundary∂Ω. Its elastic state is completely determined by
the triplet(u,E,T) representing the displacement, the strain tensor and the stress tensor fields, respec-
tively, and satisfying the kinematical condition

E =
1

2
(∇u + ∇u>) in Ω, (2.1)

the constitutive equation

T = C[E] in Ω (2.2)

and the equilibrium conditions
{

div T = 0 inΩ,

Tn = f on ∂Ω,
(2.3)

wheren is the outward unit normal to the boundary∂Ω. Finally, we recall that the elastic strain energy
for the solution(u,E,T) is given by

E(Ω) =
1

2

∫

Ω
T ∙ E dx,

so that, according to the well-known principle of minimum complementary energy in linear elasticity
(seeNecas & Hlavacek, 1981), it results that

E(Ω) = min

{
1

2

∫

Ω
T ∙ C−1[T]dx

∣
∣
∣
∣T satisfies(2.3)

}
. (2.4)

The existence of minimizers for the previous variational problem is well established (see, for instance,
Necas & Hlavacek, 1981). In the sequel, we will always assume that the triplet(u,E,T) and the set
Ω\K enjoy the regularity requirements needed for the subsequent developments.

Here, we are interested in analysing the consequence of making a ‘hole’ inside the body and, in par-
ticular, if this can be done in an optimal way, i.e. optimizing a quantity which is particularly significant
for the elastic state.
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FIG. 1.

Let K ⊂⊂ Ω be a compact set representing the hole (see Fig.1). By subtracting from the body the
material insideK , we get a new material body whose equilibrium configurationΩ\K is characterized
by the elastic state(uK ,EK ,TK ). The new stress fieldTK satisfies the equilibrium conditions






div TK = 0 in Ω\K ,

TK n = f on ∂Ω,

TK n = 0 on ∂K .

(2.5)

The main problem is ‘how to chooseK ’ in the best way, for instance, maximizing the volume of
the hole|K | and at the same time optimizing a suitable functional. Certainly, we cannot subtract too
much material from the body without exceeding its strength. Therefore, we need to impose a ‘failure’
constraint that, usually, takes the form of an inequality such asF(TK ) 6 C, where the choice of the
mappingF relies on constitutive assumptions. We shall assume as failure constraint

‖TK ‖∞ 6 C. (2.6)

In order to study a well-posed optimization problem, the set of the equilibrium stress fields correspond-
ing to different choices ofK ⊂⊂ Ω and satisfying the constraint (2.6) must be closed (with respect to
the topology adopted) and this leads to the question: ‘howTK depends onK?’ To give a satisfactory,
though not exhaustive, answer to this question is a difficult matter since it requires the study of (2.5) for
varying domains. In particular, some continuity property ofTK with respect toK is needed. For these
questions, we refer to the booksBucur & Buttazzo(2002), Henrot & Pierre(2005) and the paperBucur
et al. (2001) for applications to elasticity. The approach pursued in these works involves the Hausdorff
convergence of closed sets with some additional restriction (i.e. convexity, cone conditions and so on)
in order to have convergence of displacements sequences in a Sobolev space.

The optimization problem in this framework seems to lead to extra difficulties due to the lack of
control onK to invade all ofΩ or to be disconnected or not.

3. Making holes in safety

To estimate the maximum material volume that we can subtract from the bodyΩ respecting the failure
constraint, we could consider a property which is preserved in all the equilibrium configurations. A
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possible choice (maybe the simplest one) is to consider the mean equilibrium stress. Indeed, we have
the following result.

THEOREM 3.1 (Mean stress theorem) LetK ⊂⊂ Ω be any given compact subset. LetT andTK be the
equilibrium stress fields relative toΩ andΩ\K , respectively. Then,

∫

Ω
T dx =

∫

Ω\K
TK dx.

Proof. Let u: Ω → R3 be any affine displacement field and letE be the corresponding strain tensor.
Taking into account conditions (2.3) and (2.5), by using integration by parts, we get

E ∙
∫

Ω
T dx =

∫

Ω
T ∙ E dx =

∫

∂Ω
Tn ∙ u dHN−1

=
∫

∂Ω
TK n ∙ u dHN−1 −

∫

∂K
TK n ∙ u dHN−1

=
∫

Ω\K
TK ∙ E dx = E ∙

∫

Ω\K
TK dx.

By the arbitrariness ofE, we get the thesis. �
We can consider a norm of the mean stress

SK :=
1

|Ω\K |

∥
∥
∥
∥

∫

Ω\K
TK dx

∥
∥
∥
∥ (3.1)

as a representative quantity of the stress state of the body. If we choose for the condition (2.6) the
following form:

SK 6 C, (3.2)

in view of (3.2), the best amount of material to subtract from the body is given by

|Ω\K | =
1

C

∥
∥
∥
∥

∫

Ω\K
TK dx

∥
∥
∥
∥ ,

which yields that

V := |K | = |Ω| −
1

C

∥
∥
∥
∥

∫

Ω\K
TK dx

∥
∥
∥
∥ .

3.1 Bounds on the stress

Summarizing, we have fixed the maximum volume allowed for the setK by limiting the mean stress.
However, limiting the mean stress is not a proper failure criterion since, as it is well known, failure
criteria involve pointwise bounds on the stress components, so we need to establish some estimate in
order to relate the volume ofK with local bounds on the stress. To this aim, we recall the following
remarkable result due to Signorini and we refer to the comprehensive treatiseVillaggio (1977) for the
related proof as well as for several examples and discussions.
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Let us introduce some notations. We regard the stress tensorT as the vectors ∈ R6 whose compo-
nents are given bysi = Tii for i = 1, 2, 3 ands4 = T23, s5 = T31 ands6 = T12. Moreover, we denote by
q ∈ Rm+1 a vector field whose components constitute an orthogonal system ofm+ 1 functions defined
onΩ ⊂ R3, i.e. such that

∫

Ω
qi qj dx = 0, i 6= j .

Let B ∈ R6,6 be a given positive-semi-definite symmetric constant matrix and finally, let

D =
1

|Ω|

∫

Ω
q ⊗ q dx, q ⊗ s =

1

|Ω|

∫

Ω
q ⊗ sdx.

THEOREM 3.2 (Signorini’s inequality) The state of stress in a material body having configurationΩ
satisfies the inequality

∫

Ω
Bs ∙ sdx > |Ω|tr{B[(q ⊗ s)>D−1(q ⊗ s)]}. (3.3)

It is worth noting that if, for instance,B is a diagonal matrix with the only non-vanishing elements
given byBii (i = 1, . . . , 6), then, after settingM j = D j j ( j = 0, 1, . . . ,m), the inequality (3.3) gives
the following form:

|si |max>




m∑

j =0

(qj si )
2

M2
j





1
2

, (3.4)

which yields a lower bound for the maximum modulus of thei th stress component. Observe that the
inequality (3.4) could be directly derived in this simplified framework. We refer toVillaggio (1977,
Chapter IV, Section 18) for other significant forms of the matrixB leading to lower bound on the maxi-
mum normal or tangential stress as well as the second invariant of the stress deviator as occurring in the
von Mises criterion. Here, we limit ourselves to illustrate by a simple example how the combined use of
the Signorini inequality and a failure criterion allows us to fix the maximum volume of the removable
setK .

Let us consider the plane elastic bodyΩ in Fig. 2, wherea andh are the dimensions of the rectangle
Ω, loaded by two opposite normal pressure having constant modulusf = |f|. We want to bound the
maximum modulus ofT22 and to this aim we take only one functionq0 = 1. Then,

M2
0 =

1

|Ω\K |

∫

Ω\K
1 dx = 1,

and moreover, tocomputeq0s2, we takeψ = x2 and apply the identity (Villaggio, 1977, (16.6))
∫

∂(Ω\K )
ψ f ds =

∫

Ω\K
T∇ψ dx

holding for everyC1-mappingψ . Therefore, we get
∫

∂(Ω\K )
ψ f ∙ e2 ds = f ah =

∫

Ω\K
s2 dx = |Ω\K |1s2
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FIG. 2.

and so by (3.4), we obtain the estimate

|s2|max>
f ah

3ah − |K |
.

Finally, we can conclude by noting that, according with (2.6), if we assume as failure criterion the
inequality |s2|max 6 s∗, by combining this condition with the previous one, we obtain the desired
estimate on the maximum volume allowed forK . More precisely, we have

f ah

3ah − |K |
6 |s2|max6 s∗

and so

|K | 6
ah(3s∗ − f )

s∗ .

4. The main variational problem

We remark that assuming the volume of the hole as the unique descriptor of the problem is not enough.
Indeed, the holeK could be placed anywhere insideΩ and this, in general, seems not an optimal choice
due to the inhomogeneity of the stress state. In fact, the geometry ofK should be related to the stress
distributionTK and, as we have just observed, the dependence onK makes this problem difficult. To
avoid this difficulty, a reasonable choice could be to place the hole where the stress tensorT of the
reference stateΩ is lower in order to get a nearly uniform engagement of the material. In the spirit of
shape optimization (Bendsoe, 1995; Bucur & Buttazzo, 2002), this leads to minimize the elastic body
strain energy. To this aim, let us begin by estimating the change of energy in the elastic body to the
creation of an inner holeK . Let us recall that the elastic strain energy at the equilibrium is given by

E(Ω\K ) =
1

2

∫

Ω\K
TK ∙ EK dx.

Moreover, denoting byE(Ω) the elastic energy relative to the initial configurationΩ and setting
ΩK = Ω\K , we have the following simple well-known result.
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PROPOSITION4.1 LetK ⊂⊂ Ω be any compact subset. Then,

E(ΩK )− E(Ω) > 0.

Proof. Let (u,E,T) and(uK ,EK ,TK ) be the solutions of the elastic problem in the configurationsΩ
andΩ\K , respectively. To apply the principle of minimum complementary energy (2.4), it is sufficient
to consider tensor fieldsT ∈ L2(Ω,R9) satisfying divT = 0 in Ω andTn = f on ∂Ω. To this aim,
we extendTK to zero outsideΩ\K . If the boundary ofK is at least Lipschitz regular, the new tensor
field, still denoted byTK , belongs toL2(Ω,R9) ∩ BV(Ω,R9), where BV(Ω,R9) denotes the space
of tensor fields of bounded variation (see, for instance,Attouchet al., 2006; Evans & Gariepy, 1992).
In such a case (it suffices thatK is a set of finite perimeter), by applying the divergence theorem (see
Attouchet al., 2006; Evans & Gariepy, 1992, for fields of bounded variation), because of the boundary
conditionTK n = 0 on∂K , it follows that divTK = 0 inΩ andTK n = f on ∂Ω. Therefore,TK is a
statically admissible stress field forΩ.

By virtue of (2.4), we get that

E(Ω) 6
1

2

∫

Ω
TK ∙ C−1[TK ]dx =

1

2

∫

Ω\K
TK ∙ C−1[TK ]dx = E(ΩK ).

�
Moreover, by virtue of the following Eshelby-like result, we find that the energy change

E(ΩK )− E(Ω) is concentrated on the boundary of the holeK (seeLewinski & Sokolowski, 2003,
for a detailed study of energy change due to small cavities).

THEOREM4.2 LetK ⊂⊂ Ω be any compact subset and let(u,E,T) and(uK ,EK ,TK ) be the solutions
of the elastic problem in the configurationsΩ andΩ\K , respectively. Then,

E(ΩK )− E(Ω) =
∫

∂K
Tn ∙ uK dHN−1. (4.1)

Proof. Let us recall (see, for instance,Temam, 1983) that for every symmetric tensor̃T ∈ L2(Ω,R9)
such that diṽT ∈ L2(Ω,R3) and for every displacement̂u ∈ H1(Ω,R3), we have the following
identity:

1

2

∫

Ω
T̃ ∙ (∇û + ∇û>)dx +

∫

Ω
û ∙ div T̃ dx =

∫

∂Ω
T̃n ∙ û dHN−1. (4.2)

As in Proposition4.1, we extendTK to zero outsideΩ\K . SinceTK ∈ BV(Ω,R9), formula (4.2) still
holds. Taking into account the conditions (2.3) and (2.5), by formula (4.2), we get that

∫

Ω
(TK − T) ∙ E dx

=
∫

∂Ω
TK n ∙ u dHN−1 −

∫

∂Ω
Tn ∙ u dHN−1 = 0.

Hence,
∫

Ω
TK ∙ E dx =

∫

Ω
T ∙ E dx. (4.3)
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SinceK is assumed to have Lipschitz regular boundary, we consider aH1(Ω,R3)-extension ofuK (see,
for instance,Attouchet al., 2006; Evans & Gariepy, 1992) on the wholeΩ. Note that such extension
of the displacement field is independent of the previous extension made on the fieldTK . By applying
again (4.2) to the fieldsTK and the new field, still denoted byEK , which is defined on the whole ofΩ
and is obtained as the symmetric part of the gradient of the above extension ofuK , we also get that

∫

Ω
TK ∙ EK dx =

∫

Ω
T ∙ EK dx. (4.4)

Therefore, we can evaluate

E(ΩK )− E(Ω) =
1

2

(∫

Ω\K
TK ∙ EK dx −

∫

Ω
T ∙ E dx

)
.

SinceTK = 0 on K , by (4.3) and (4.4), we have

E(ΩK )− E(Ω) =
1

2

(∫

Ω
T ∙ EK dx −

∫

Ω
TK ∙ E dx

)
. (4.5)

On the other hand, in view of the symmetry ofC, we have
∫

Ω
TK ∙ E dx =

∫

Ω\K
TK ∙ E dx =

∫

Ω\K
C[EK ] ∙ E dx

=
∫

Ω\K
C[E] ∙ EK dx =

∫

Ω\K
T ∙ EK dx.

Finally, by the last two equations, we obtain that

E(ΩK )− E(Ω) =
∫

K
T ∙ EK dx,

which, in view of (4.2) applied to the regionK , yields that

E(ΩK )− E(Ω) =
∫

∂K
Tn ∙ uK dHN−1. �

The previous considerations and the energy estimates led us to think that, roughly speaking, the
creation of a hole inside an elastic body can be related to a kind of surface energy. Indeed, a direct
approach could consider the termuK in (4.1) as a state variable of an optimal control problem (see
Bucur & Buttazzo, 2002). However, this approach seems to be difficult because of the dependence of
uK on the variable domainΩ\K . Therefore, we observe that according to (4.1), the elastic energy
change occurring in the body after the creation of the holeK can be reduced to an energy-like term
localized on∂K . Indeed, by using Poincarè inequality (see, for instance,Evans, 1997) and since the
elastic stateuK is determined up to a constant, we have

E(ΩK )− E(Ω)=
∫

∂K
Tn ∙ uK dHN−1 6 ‖uK ‖∞

∫

∂K
|Tn|dHN−1

6C‖∇uK ‖∞

∫

∂K
|Tn|dHN−1. (4.6)
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Now, by virtue of the failure constraint (2.6) and the constitutive equation (2.2), assuming the elasticity
tensorC is invertible, we have

‖∇uK ‖∞ 6 M,

for some positive constantM . Therefore, since the Poincarè constant is in fact bounded by the volume
(actually by the diameter) ofΩ\K , according to (4.6), we can estimate the lower bound of the energy
increment due to the creation of a hole by minimizing the energy whose density is the norm of the
stress vector acting on the boundary of the hole. Then, we are led to study the following minimization
problem:

min
K

{∫

∂K
|Tn|dHN−1

∣
∣
∣
∣ K ⊂ Ω, |K | = V

}
. (4.7)

Let us note that (4.7) is a Wulff problem (Ambrosio, 1997; Brothers & Morgan, 1994; Fonseca,
1991) for the energy densityΓ (x, n(x)) = |Tn|, where| ∙ | denotes the Euclidean norm. The Wulff
problem is known as describing the equilibrium shape of a perfect crystal of one material in contact
with a single surrounding medium for which the dependence of the surface energy on the normaln
relates the surface tension with the bulk crystalline lattice. If the property

Γ (x, n(x)) > α > 0 (4.8)

holds, the existence of minimizers for the problem (4.7) can be proved by applying the direct methods
of the calculus of variations. Indeed, we have compactness among the sets of finite perimeter and by the
lower semi-continuity of the surface energy (seeFonseca, 1991), we get minimizers. If (4.8) fails, the
existence problem is more involved and in many cases it is an open problem. Different minimization
strategies are studied, for instance, inButtazzo & Guasoni(1997) whereK varies among the convex sets
or in Granieri & Maddalena(2008) where the set variable is regarded as a Radon measure. In Section5,
we will investigate some geometrical properties of the minimizers in relation to the properties of the
stress field.

5. Wulff shapes in stress fields

Now, we shall consider some special cases of stress fields, namely, the homogeneous ones, and we will
study the main geometric properties of the optimal holesK given, as in (4.7), by the minimizers of the
functional

F(K ) =
∫

∂K
|Tn|dHN−1, (5.1)

under the constraint|K | = V .

5.1 Necessary condition of optimality

For surface integrals like those appearing in (5.1), it is possible to compute the derivatives with respect to
the variations of the domainK and then derive the stationarity properties of the minimum configurations.
Here, we closely follow the discussion made in Chapter 5 ofHenrot & Pierre(2005). To characterize
the optimum is quite standard to consider a variation of the domain through a family of maps

φε(x) := x + εv(x),
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wherev is a given vector field inRN such that for everyε,

|φε(K )| = |K |.

In particular, the above condition yields that
∫

∂K
v ∙ n dHN−1 =

∫

K
div v dx = 0. (5.2)

Indeed, letI (ε) = |φε(K )| and observing that∇φε = I + ε∇v, we get that

det(∇φε) = 1 + εdiv (v)+ ε2l2(∇v)+ ε3l3(∇v),

wherel i denotes thei th dimensional orthogonal invariant, i.e.l2(A) = (trace(A))2 − trace(A2) and
l3(A) = det(A) for every matrixA. Therefore, we evaluate

0 = I ′(0) =
∫

K

d

dε
det(∇φε)|ε=0 dx =

∫

K
div v dx.

If K is a minimum, takingKε = φε(K ), we have that

d

dε
F(Kε)|ε=0 = 0, (5.3)

provided that the vector fieldv satisfies the conditionv = 0 on the boundary ofΩ. If K is regular, say
with C1-boundary, (5.3) takes the following form (see Proposition 5.4.18 ofHenrot & Pierre, 2005):

∫

∂K
[H |Tn| + ∇|Tn| ∙ n](v ∙ n)dHN−1 = 0, (5.4)

whereH is the mean curvature andn is the unit outward normal vector of∂K . By the arbitrariness of
the vector fieldv, as usual in calculus of variations, the condition (5.2) implies the following optimality
necessary condition:

H |Tn| + ∇|Tn| ∙ n = constant on∂K . (5.5)

5.2 Hydrostatic stress

LetΩ ⊂ R2 be a rectangle region (Fig.3) representing the equilibrium configuration of a material body
whose equilibrium stress field is given byT = λI .

In this case, the variational problem (4.7) becomes the isoperimetric problem

min
K

{P(K )|K ⊂ Ω, |K | = V}, (5.6)

whereP(K ) is the perimeter ofK andP(K ) = HN−1(∂K ) if the boundary ofK is sufficiently regular.
If K is regular, say withC1-boundary, by (5.5), we deduce that∂K ∩ Ω has constant mean curvature.
The same happens wheneverT is an isometry. By De Giorgi regularity results (see, for instance,Evans
& Gariepy, 1992), this is also true for sets of finite perimeter. It is possible to characterize the optimal
solutions as follows.
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Let CV ⊂ R2 be any ball such that|CV | = V . Of course, by the isoperimetric property of the ball,
if CV can be contained into the rectangleΩ, thenCV is the best hole. Otherwise, we have to solve a
relative isoperimetric problem. In such a case, for simplicity, considerΩ as an infinite stripR of height
h and considerC the biggest ball inscribed inR. Let E ⊂ R be a regular set such that|E| = V > |C|.
By continuity, we can find two vertical lines (see Fig.4) which enclose two regionsEl and Er of E
both of measure|C|2 . Let D be the distance between such lines and letEc be the remainder ofE, i.e. the
region ofE enclosed by the two vertical lines.

Now, let B = |Ec|
h and takeF as in Fig.5. We claim thatF is the best hole inside the stripR.

Indeed, by the isoperimetric property of the ball, we obtain that

P(E) > P(C)+ 2D.

On the other hand, we have

Bh = |Er | 6 Dh.

Therefore, we get

P(E) > P(C)+ 2B = P(F).

In the general case of reference domainΩ, explicit computations are more difficult to obtain. Indeed,
also in the case of a convex setΩ, it is not known if the solution of the relative isoperimetric problem is
convex or not. This is true in the plane by considering the convex hull, but this approach fails in higher
dimensions. For an account on these problems, characterizations and regularity of the minimizers, we
refer toPeri (2001), Cianchi(1989), Rosales(2003), Stredulinski & Ziemer(1997) and the references
therein. Nevertheless, we have always an optimal hole, at least in the class of sets of finite perimeter.

Observe that in the caseT = λI , the optimal hole can touch∂Ω since the stressT is uniformly
distributed. Hence, in such a case, our starting elastic problem does not admit any solution since we
would haveK ⊂⊂ Ω. Therefore, these examples show the necessity to consider local conditions on the

FIG. 3.

FIG. 4.
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FIG. 5.

FIG. 6.

stress in order to get solutions of applicative interest. In particular, we expect the stress to be higher and
higher whenever the hole approaches the boundary∂Ω. In the case ofT = λI discussed above, if for
safety requirement the hole has to place at a minimum distanced from the boundary ofR, the best hole
looks like the one in Fig.6.

In the general case of constant stress, by diagonalization we can considerT as a diagonal matrix
whose elements are the eigenvalues ofT. For N = 2, letλ1 andλ2 be such eigenvalues. Ifλ1 = λ2, the
variational problem reduces to the isoperimetric problem just discussed.

5.3 Uniaxial stress

If one eigenvalue vanishes, sayλ2 = 0, then|Tn| = |λ1n1|. Therefore, problem (4.7) can be written as

min
K

{∫

∂K
|F ∙ n|dHN−1

∣
∣
∣
∣ K ⊂ Ω, |K | = V

}
, (5.7)

whereF is the constant vector field given byF = (λ1, 0). These kind of problems are studied inGranieri
& Maddalena(2008) in the setting of Radon measures. In the paperGranieri & Maddalena(2008), it is
shown that if,e.g.Ω = [0, 2]2 andV = 1, an optimal set is given by the rectangle of width 2 and height
1
2 as shown in Fig.7.

The optimal set depends not only on the vector fieldF but also on the geometry of the reference
domainΩ. For instance, in a reference domain as in Fig.8, since in every rectangle the optimal set is
a rectangle of maximal width, the solution is a set similar to the one sketched in Fig.8. We conjecture
that the optimal set will look like the first one sketched in Fig.9, while the second could be excluded
since the necessary condition (5.5) is not satisfied. Indeed, considering for simplicity the ball centred at
the origin and radius equal to 1, forx1 > 0, we compute∇|Tn| = λ1(1− x2

1,−x1x2). Hence, condition
(5.5) yields that

λ1Hx1 + λ1(x1 − x3
1 − x1x2

2) = λ1(2x1 − x3
1 − x1 + x3

1) = λ1x1,

which is not constant on the right side of∂K .
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FIG. 7.

FIG. 8.

FIG. 9.

5.4 Uniform stress fields

By setting 0< λ1 < λ2, we need to solve a relative Wulff problem. In fact, if we introduce the norm
defined as

‖x‖ := |Tx| =
√
λ2

1x2
1 + λ2

2x2
2,

the problem (4.7) becomes the following:

min
K

{∫

∂K
‖n‖dHN−1

∣
∣
∣
∣ K ⊂ Ω, |K | = V

}
. (5.8)
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It is known that (see, e.g.Fonseca, 1991; Brothers & Morgan, 1994) in the wholeR2 the solution is
given by the Wulff shape

W = x0 + r B∗,

whereB∗ = {x ∈ R2|‖x‖∗ 6 1} is the unit ball in the dual norm, while the factorr > 0 is chosen to
satisfy the volume constraint. Note that the Wulff shape is unique modulo translations. We observe that
the norm‖ ∙ ‖ is induced by the scalar product

x ∙ y = λ2
1x1y1 + λ2

2x2y2.

By the definition of dual norm, we have

‖x‖∗ = max{x ∙ y|y ∈ R2, ‖y‖ = 1}.

The above maximum problem can be explicitly solved (Lagrange multiplier) leading to the following
expression:

‖x‖∗ =
λ2x2

1

λ1(λ
2
2x2

1 + λ2
1x2

2)
1/2

+
λ1x2

2

λ2(λ
2
2x2

1 + λ2
1x2

2)
1/2
.

Therefore, the Wulff shape turns out to be an ‘ellipsoid’. Now, since the ellipsoid is symmetric with
respect to the vertical axis, if we takeΩ as an infinite strip of heighth, we can repeat the arguments
used in the discussion of the caseT = λI replacing semicircle with ‘semi-ellipsoid’. More general
configurations require a careful study of a relative Wulff problem since no general theory seems to be
available at the moment to treat similar questions.

5.5 A special case of non-constant stress field

Let λ1 = λx1 and λ2 = λx2 be the eigenvalues of the stress tensorT. Let us consider the field
F = (λx1, λx2). It results that

|F ∙ n| 6 ‖Tn‖. (5.9)

If V is the volume to subtract fromΩ, we introduce the following problem:

min

{∫

∂K
|F ∙ n|dH1

∣
∣
∣
∣ |K | = V

}
. (5.10)

we have the following theorem.

THEOREM 5.1 A solution of problem (5.10) is given by the ballBr , wherer > 0 is such that|Br | = V .

Proof. Let |K | = V . Since divF = 2, we have
∫

∂K
|F ∙ n|dH1 >

∣
∣
∣
∣

∫

∂K
F ∙ n dH1

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

K
div F dH2

∣
∣
∣
∣ = |λ|2V.

On the other hand,
∫

∂Br

|F ∙ n|dH1 = |λ|2πr 2 = |λ|2V. �
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We observe that on the ballBr equality in (5.9) holds. Therefore, for every|K | = V , we infer that

∫

∂Br

‖Tn‖dH1 =
∫

∂Br

|F ∙ n|dH1 6
∫

∂K
|F ∙ n|dH1 6

∫

∂K
‖Tn‖dH1.

Therefore, ifBr ⊂ Ω, the ballBr turns out to be the best hole insideΩ. We observe that these arguments
also hold in higher dimension. Moreover, the same conclusion holds for stress tensors whose eigenvalues
produce a field of the formF = ∇u, whereu(x) = log |x| whenN = 2 andu(x) = 1

|x| whenN = 3, so
that divF = Δu = 0. For more details, we refer the reader to the paperGranieri & Maddalena(2008).
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