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We consider the problem of mass reduction for elastic bodies by appearance of cavities. In this work, this
problem is related to the minimization of a surface energy, depending on the stress tensor in the original
equilibrium configuration. Special cases of mechanical interest are also analysed.
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1. Introduction

The problem of mass minimization for elastic bodies is much studied and represents a continuous source
of interest with respect to optimization theory as well as to structural design. Over the recent decades,
several approaches have been proposed to both theoretical and applied studies on the subject, such as
homogenization techniques, topological derivatives and variational methods involving varying domains
(seeAllaire, 2007 Bendsoe 1995 Bucur, 2007 Bucur & Buttazzg 2002 Henrot & Pierre 20095.

In this paper, we deal with the problem of mass reduction of a given elastic foitlya variational
framework and, in order to take into account the material failure constraint, as usual, we fix the maximum
amount of volume to subtract from the initial body.

Usually, the material failure corresponds to a pointwise inequality for the stress field. However, this
leads to subtle mathematical issues since it involves the dependence of the solution of the equilibrium
problem on the domain. Here, on the basisagfriori estimates on the stress field, we also give a
justification of the classical approach which fixes the volume we can remove in safety (S&ction
Therefore, the problem under examination becomes the determination of the best geometry and location
of the cavities inside the body.

In this paper, we propose a new variational approach based on the minimization of a Wulff-like
energy (Sectior). Indeed, the creation of a cavity inside the elastic body increases the total elastic
energy and the exceeding energy can be reduced to an energy distribution on the boundary of the cavity.
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Then, it seems to be reasonable to consider a surface energy as an optimality criterion. On the basis of
these considerations, the variational problem takes the form

min [/ [Tn|dxN-1
K K

whereT is the stress tensor in the original equilibrium configuration of the bkdig the cavity and

n is the outward unit normal t6K. Besides the interest in the mass reduction, the above variational
problem poses some questions regarding relative isoperimetric properties or generalized Wulff energies
which seem not yet completely known (deensecal99], and references therein). Moreover, we note

that our approach can be related to the variational analysis of cavitation phenomena in elastomeric mate-
rials carried inSivaloganathan & Spect¢2000. Finally, we discuss some special cases of mechanical
interest (Sectio®).

Kc@,|Kl[=Vt,

2. Setting of the problem

Let us consider an elastic body occupying a regular reglox R3, or in general a subset &N, in
equilibrium under the given tractidron the boundarg Q. Its elastic state is completely determined by

the triplet(u, E, T) representing the displacement, the strain tensor and the stress tensor fields, respec-
tively, and satisfying the kinematical condition

1
E=>(Vu+ vu') inQ, (2.1)
the constitutive equation
T=C[E] inQ (2.2)
and the equilibrium conditions
dvT =0 inQ,
(2.3)
Tn=f onog,

wheren is the outward unit normal to the boundarg. Finally, we recall that the elastic strain energy
for the solution(u, E, T) is given by

5(9)=}/T.de,
2 /o

so that, according to the well-known principle of minimum complementary energy in linear elasticity
(seeNecas & Hlavacek198)), it results that

—min 11 -1
5(9)_m|nI§/QT~(C [T]dx

T satisfies(2.3)} . (2.4)

The existence of minimizers for the previous variational problem is well established (see, for instance,
Necas & Hlavacek1981). In the sequel, we will always assume that the trigletE, T) and the set
Q\K enjoy the regularity requirements needed for the subsequent developments.

Here, we are interested in analysing the consequence of making a ‘hole’ inside the body and, in par-
ticular, if this can be done in an optimal way, i.e. optimizing a quantity which is particularly significant
for the elastic state.
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Let K cc Q be a compact set representing the hole (seelfid®y subtracting from the body the
material insideK , we get a new material body whose equilibrium configuratityK is characterized
by the elastic statéuk , Ex, Tk). The new stress fiel@ix satisfies the equilibrium conditions

divTk =0 inQ\K,
Tkn=f onoQ, (2.5)
Tkn=0 onokK.

The main problem is ‘how to chood€’ in the best way, for instance, maximizing the volume of
the hole|K| and at the same time optimizing a suitable functional. Certainly, we cannot subtract too
much material from the body without exceeding its strength. Therefore, we need to impose a ‘failure’
constraint that, usually, takes the form of an inequality suck @) < C, where the choice of the
mappingF relies on constitutive assumptions. We shall assume as failure constraint

ITklloo < C. (2.6)

In order to study a well-posed optimization problem, the set of the equilibrium stress fields correspond-
ing to different choices oK cc © and satisfying the constrain?.g) must be closed (with respect to
the topology adopted) and this leads to the question: ‘igwdepends orK?’ To give a satisfactory,
though not exhaustive, answer to this question is a difficult matter since it requires the stady fufr(
varying domains. In particular, some continuity propertylef with respect toK is needed. For these
guestions, we refer to the booBsicur & Buttazzo(2002), Henrot & Pierreg(2005 and the papeBucur
et al. (2007 for applications to elasticity. The approach pursued in these works involves the Hausdorff
convergence of closed sets with some additional restriction (i.e. convexity, cone conditions and so on)
in order to have convergence of displacements sequences in a Sobolev space.

The optimization problem in this framework seems to lead to extra difficulties due to the lack of
control onK to invade all ofQ or to be disconnected or not.

3. Making holes in safety

To estimate the maximum material volume that we can subtract from the®@adgpecting the failure
constraint, we could consider a property which is preserved in all the equilibrium configurations. A
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possible choice (maybe the simplest one) is to consider the mean equilibrium stress. Indeed, we have
the following result.

THEOREM3.1 (Mean stress theorem) Litcc Q be any given compact subset. DeandTk be the
equilibrium stress fields relative 0 andQ\ K, respectively. Then,

/ TdX:/ Tk dX.
o) Q\K

Proof. Letu: @ — R2 be any affine displacement field and EEbe the corresponding strain tensor.
Taking into account condition2(3) and @.5), by using integration by parts, we get

E~/de=/T~de=/ Tn-udnuN-?
Q Q 0Q

:/ TKn-udHN‘l—/ Tkn-uduN-1
09 oK

:/ TK~de=E-/ T dx.
Q\K Q\K

By the arbitrariness dE, we get the thesis. O
We can consider a norm of the mean stress
/ TK dx
Q\K

1
|2\K]|

as a representative quantity of the stress state of the body. If we choose for the cor&iBjahd

following form:

Sk = 3.1

& <C, (3.2)

in view of (3.2), the best amount of material to subtract from the body is given by

/ Tk dx

\K

/ Tk dx
2\K

Summarizing, we have fixed the maximum volume allowed for theksby limiting the mean stress.
However, limiting the mean stress is not a proper failure criterion since, as it is well known, failure
criteria involve pointwise bounds on the stress components, so we need to establish some estimate in
order to relate the volume &€ with local bounds on the stress. To this aim, we recall the following
remarkable result due to Signorini and we refer to the comprehensive trelégggio (1977 for the

related proof as well as for several examples and discussions.

>

|2\K| = !
- C

which yields that

1
Vi =|K|=]2|-=
|I|IC‘

3.1 Bounds on the stress
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Let us introduce some notations. We regard the stress t@nasithe vectos € R® whose compo-
nents are given by = Tj; fori = 1,2, 3andsy = To3, S5 = T31 andss = Ty2. Moreover, we denote by
q € R™1 a vector field whose components constitute an orthogonal system+af functions defined
onQ c RS, i.e. such that

[ aga=0 iz].
Q

Let B e R%6 be a given positive-semi-definite symmetric constant matrix and finally, let

1 1
D:—/ ® gdx, ®s:—/ ® sdx.
2] Jo 9% 4 121 o

THEOREM 3.2 (Signorini’s inequality) The state of stress in a material body having configur@tion
satisfies the inequality

/ Bs-sdx > |Qtr{B[Q®9) ' D Xq® 9)]}. (3.3)
Q

It is worth noting that if, for instanceB is a diagonal matrix with the only non-vanishing elements
given byBjj (i =1,...,6), then, after settind; = Djj (j =0, 1,..., m), the inequality 8.3) gives
the following form:

m

'_S 2
S Imax = Z (q'JVIZ) ) (3.4)
j=0 j

which yields a lower bound for the maximum modulus of itie stress component. Observe that the
inequality 3.4) could be directly derived in this simplified framework. We refenfilaggio (1977,
Chapter IV, Section 18) for other significant forms of the maBileading to lower bound on the maxi-
mum normal or tangential stress as well as the second invariant of the stress deviator as occurring in the
von Mises criterion. Here, we limit ourselves to illustrate by a simple example how the combined use of
the Signorini inequality and a failure criterion allows us to fix the maximum volume of the removable
setK.

Let us consider the plane elastic ba@yin Fig. 2, wherea andh are the dimensions of the rectangle
Q, loaded by two opposite normal pressure having constant modulds|f|. We want to bound the
maximum modulus oT>», and to this aim we take only one functiga = 1. Then,

1

M3 = ——— 1
[2\K] Jo\k

=1,
and moreover, toomputegeS;, we takey = x2 and apply the identity\(illaggio, 1977, (16.6))

/ l//de:/ TVy dx
3(2\K) Q\K

holding for everyC!-mappingy . Therefore, we get

/ yf-eds= fah= sdx = [2\K|1s,
0(2\K) Q\K
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and so by 8.4), we obtain the estimate

ol > fah
Simax 2 3ah— K|

Finally, we can conclude by noting that, according with€, if we assume as failure criterion the
inequality |s2|max < S*, by combining this condition with the previous one, we obtain the desired
estimate on the maximum volume allowed #r More precisely, we have

fah < |92lmax < S*
3ah—|K| X 52maX\
and so
ah(3s* — f
i< 2=

4. The main variational problem

We remark that assuming the volume of the hole as the unique descriptor of the problem is not enough.
Indeed, the hol& could be placed anywhere insigdkand this, in general, seems not an optimal choice
due to the inhomogeneity of the stress state. In fact, the geomekysbiould be related to the stress
distribution Tk and, as we have just observed, the dependend€ orakes this problem difficult. To

avoid this difficulty, a reasonable choice could be to place the hole where the stressTteofsitre
reference stat@ is lower in order to get a nearly uniform engagement of the material. In the spirit of
shape optimizationBendsoe1995 Bucur & Buttazzg 2002, this leads to minimize the elastic body
strain energy. To this aim, let us begin by estimating the change of energy in the elastic body to the
creation of an inner hol&. Let us recall that the elastic strain energy at the equilibrium is given by

1
E(Q\K) = E/Q\KTK - Ek dx.

Moreover, denoting by (Q) the elastic energy relative to the initial configuratigh and setting
Qk = 2\K, we have the following simple well-known result.
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PROPOSITION4.1 LetK cc ©Q be any compact subset. Then,
E(Qx)—&E(2) =20,

Proof. Let (u, E, T) and(uk, Ex, Tk) be the solutions of the elastic problem in the configurati@ns
and Q\ K, respectively. To apply the principle of minimum complementary ene2dy), (it is sufficient
to consider tensor field§ € L?(Q, R®) satisfying divT = 0in Q andTn = f on 6Q. To this aim,
we extendT g to zero outside2\K. If the boundary oK is at least Lipschitz regular, the new tensor
field, still denoted byT k, belongs toL2(2, R®) N BV(Q, R?), where BUQ, R®) denotes the space
of tensor fields of bounded variation (see, for instadeguch et al, 2006 Evans & Gariepy1992).
In such a case (it suffices thKt is a set of finite perimeter), by applying the divergence theorem (see
Attouchet al, 2006 Evans & Gariepy1992 for fields of bounded variation), because of the boundary
conditionTkn = 0 onoK, it follows that divTk = 0in 2 andTkn = f onoQR. Therefore,Tk is a
statically admissible stress field f@r.

By virtue of (2.4), we get that

£(Q) < 5/ Tk - CYTkldx = 3/ Tk - CYTk]dx = £(Qk).
e 2 Jo\k

]
Moreover, by virtue of the following Eshelby-like result, we find that the energy change
E(Qk) — £(Q) is concentrated on the boundary of the h&le(seelLewinski & Sokolowskj 2003
for a detailed study of energy change due to small cavities).

THEOREM4.2 LetK cc Q be any compact subsetand(efE, T) and(uk, Ex, Tk) be the solutions
of the elastic problem in the configuratiofflsand 2\ K, respectively. Then,

E(Qk) — E(Q) =/K Tn - ug dN-1 (4.1)

~
o

Proof. Let us recall (see, for instancéemam 1983 that for every symmetric tensdr € L2(Q, R9)
such that dii e L2(Q,R3) and for every displacemerit € H1(Q, R3), we have the following
identity:

3/ T’-(V0+V0T)dx+/ deiVT’dx:/ Fn . aduN-L 4.2)
2 /o Q 0Q

As in Propositior4.1, we extendl k to zero outside?\K. SinceTk e BV (2, R?), formula @.2) still
holds. Taking into account the conditioris3) and @.5), by formula @.2), we get that

/(TK —T)-Edx
Q

:/ TKn-ud”HN‘l—/ Tn-udiN-t=o.
0Q 0Q

Hence,

/TK-de:/T~de. (4.3)
Q Q
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SinceK is assumed to have Lipschitz regular boundary, we consitigi(@, R3)-extension ofik (see,
for instance Attouch et al,, 2006 Evans & Gariepy1992 on the wholeQ. Note that such extension
of the displacement field is independent of the previous extension made on thE ieRly applying
again @.2) to the fieldsT k and the new field, still denoted lgi , which is defined on the whole @?
and is obtained as the symmetric part of the gradient of the above extensignwe also get that

/TK~EKdX=/T-EKdX. (4.4)
Q Q

Therefore, we can evaluate

S(QK)—8<9>=%(/Q\KTK.Ede_/QT.de).

SinceTk = 0 onK, by (4.3 and @.4), we have

5(QK)—5(Q)=%(/QT-EKdX—/QTK-de). 4.5)

On the other hand, in view of the symmetry©fwe have

/TK ~EdX=/ Tk ~EdX=/ (C[EK]-EdX
Q O\K O\K

= (C[E]-Edez/ T . Ek dx.
Q\K AN\K

Finally, by the last two equations, we obtain that
E(Qk)—E(Q) =/ T - Ex dx,
K
which, in view of @.2) applied to the regiofK, yields that

E(QK) — E(Q) =/ Tn - ug dN-1. O
oK

The previous considerations and the energy estimates led us to think that, roughly speaking, the
creation of a hole inside an elastic body can be related to a kind of surface energy. Indeed, a direct
approach could consider the temun in (4.1) as a state variable of an optimal control problem (see
Bucur & Buttazzg 2002. However, this approach seems to be difficult because of the dependence of
uk on the variable domai®\K. Therefore, we observe that according #01j, the elastic energy
change occurring in the body after the creation of the holean be reduced to an energy-like term
localized onoK. Indeed, by using Poincarinequality (see, for instancByvans 1997 and since the
elastic stateik is determined up to a constant, we have

E£(2k) — £(Q) =/ T - ug dN < Jlug ||oo/ ITnjdxN-1
oK oK

<C||VuK||oo/ ITnidHN-L, (4.6)
oK
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Now, by virtue of the failure constrain® (6) and the constitutive equatiof.@), assuming the elasticity
tensorC is invertible, we have

[Vuklleo < M,

for some positive constaml. Therefore, since the Poin@constant is in fact bounded by the volume
(actually by the diameter) a®\K, according to 4.6), we can estimate the lower bound of the energy
increment due to the creation of a hole by minimizing the energy whose density is the norm of the
stress vector acting on the boundary of the hole. Then, we are led to study the following minimization

problem:
min [/ ITnjdx N1
K oK

Let us note that4.7) is a Wulff problem Ambrosig 1997 Brothers & Morgan 1994 Fonseca
199)) for the energy density”(x, n(x)) = |Tn|, where| - | denotes the Euclidean norm. The Wulff
problem is known as describing the equilibrium shape of a perfect crystal of one material in contact
with a single surrounding medium for which the dependence of the surface energy on the mormal
relates the surface tension with the bulk crystalline lattice. If the property

KCQ,|K|=V]. 4.7)

rx,nx))>a>0 (4.8)

holds, the existence of minimizers for the problefi/{ can be proved by applying the direct methods

of the calculus of variations. Indeed, we have compactness among the sets of finite perimeter and by the
lower semi-continuity of the surface energy ($&msecal99]), we get minimizers. 1f4.8) fails, the
existence problem is more involved and in many cases it is an open problem. Different minimization
strategies are studied, for instanceBintazzo & Guason(1997) whereK varies among the convex sets

or in Granieri & Maddalen2008 where the set variable is regarded as a Radon measure. In Sgction

we will investigate some geometrical properties of the minimizers in relation to the properties of the
stress field.

5. Wulff shapes in stress fields

Now, we shall consider some special cases of stress fields, namely, the homogeneous ones, and we will
study the main geometric properties of the optimal hilegiven, as in 4.7), by the minimizers of the
functional

FK)= [ it 5.1)
oK
under the constrainK| = V.

5.1 Necessary condition of optimality

For surface integrals like those appearingari), it is possible to compute the derivatives with respect to
the variations of the domaid and then derive the stationarity properties of the minimum configurations.
Here, we closely follow the discussion made in Chapter blefrot & Pierre(2005. To characterize
the optimum is quite standard to consider a variation of the domain through a family of maps

Pe(X) 1= X+ eV(X),
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wherev is a given vector field ilRN such that for every,
| (K)| = [K].

In particular, the above condition yields that

/ v~nd7{N‘1=/ divvdx = 0. (5.2)
oK K
Indeed, letl (¢) = |¢.(K)| and observing tha¥ ¢, = | + ¢ Vv, we get that

det(Ve,) = 1+ ediv (V) + £22(VV) + £3l3(Vv),

wherel; denotes théth dimensional orthogonal invariant, ile(A) = (tracgA))? — tracg A%) and
[3(A) = det(A) for every matrixA. Therefore, we evaluate

d
0=1'(0) =/ —det(Ve,)|,_, dx =/ divvdx.
K de K
If K is a minimum, takindk. = ¢.(K), we have that
E.7—'(K )._o=0 (5.3)
dg 3 |£=0 - "

provided that the vector field satisfies the conditiom = 0 on the boundary of2. If K is regular, say
with C1-boundary, §.3) takes the following form (see Propositiord5.8 of Henrot & Pierre 2005:

/ [H|Tn|+ V|Tn|-n](v-n)dXN"t =0, (5.4)
oK

whereH is the mean curvature amdis the unit outward normal vector 6K . By the arbitrariness of
the vector fields, as usual in calculus of variations, the conditiér?] implies the following optimality
necessary condition:

H|Tn|+ V|Tn|-n = constant oK. (5.5)

5.2 Hydrostatic stress

Let @ c R? be a rectangle region (Fig) representing the equilibrium configuration of a material body
whose equilibrium stress field is given by= Al.
In this case, the variational problem. ) becomes the isoperimetric problem

min(P(K)IK € Q. 1K| =V}, (5.6)

whereP(K) is the perimeter oK andP(K) = #N~1(aK) if the boundary oK is sufficiently regular.

If K is regular, say witlC*-boundary, by %.5), we deduce thatK N ©Q has constant mean curvature.
The same happens wheneveis an isometry. By De Giorgi regularity results (see, for instaisans

& Gariepy, 1992, this is also true for sets of finite perimeter. It is possible to characterize the optimal
solutions as follows.
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LetCy c R? be any ball such thg€y| = V. Of course, by the isoperimetric property of the ball,
if Cy can be contained into the rectandle thenCy is the best hole. Otherwise, we have to solve a
relative isoperimetric problem. In such a case, for simplicity, congitlas an infinite strigR of height
h and conside€ the biggest ball inscribed iR. Let E ¢ R be a regular set such thd| =V > |C].
By continuity, we can find two vertical lines (see F#).which enclose two regiong; and E; of E
both of measuré%. Let D be the distance between such lines andElebe the remainder dt, i.e. the
region of E enclosed by the two vertical lines.

Now, letB = 'ETC' and takeF as in Fig.5. We claim thatF is the best hole inside the strip.

Indeed, by the isoperimetric property of the ball, we obtain that

P(E) > P(C) + 2D.

On the other hand, we have
Bh = |E/| < Dh.

Therefore, we get
P(E) = P(C) + 2B =P(F).

In the general case of reference doméinexplicit computations are more difficult to obtain. Indeed,
also in the case of a convex g} it is not known if the solution of the relative isoperimetric problem is
convex or not. This is true in the plane by considering the convex hull, but this approach fails in higher
dimensions. For an account on these problems, characterizations and regularity of the minimizers, we
refer toPeri(2001), Cianchi(1989, Rosaleg2003, Stredulinski & Ziemer1997) and the references
therein. Nevertheless, we have always an optimal hole, at least in the class of sets of finite perimeter.
Observe that in the case = il, the optimal hole can touch® since the stres$ is uniformly
distributed. Hence, in such a case, our starting elastic problem does not admit any solution since we
would haveK cc Q. Therefore, these examples show the necessity to consider local conditions on the

I N

FIG. 3.

Q h

FIG. 4.
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FIG. 5.

FiG. 6.

stress in order to get solutions of applicative interest. In particular, we expect the stress to be higher and
higher whenever the hole approaches the boundaryin the case off = Al discussed above, if for
safety requirement the hole has to place at a minimum disthfrcan the boundary oR, the best hole
looks like the one in Fig6.

In the general case of constant stress, by diagonalization we can cohsidea diagonal matrix
whose elements are the eigenvalues oforN = 2, let A, and/2 be such eigenvalues. 1y = 15, the
variational problem reduces to the isoperimetric problem just discussed.

5.3 Uniaxial stress

If one eigenvalue vanishes, say = 0, then|Tn| = |A1n1|. Therefore, problemd4(7) can be written as

min I/ IF - njdnN-t
K oK

whereF is the constant vector field given By= (11, 0). These kind of problems are studieddnanieri

& Maddalena(2008 in the setting of Radon measures. In the papenieri & Maddaleng2008), it is
shown that ife.g.Q = [0, 2] andV = 1, an optimal set is given by the rectangle of width 2 and height
$ as shown in Fig?7.

The optimal set depends not only on the vector fieldut also on the geometry of the reference
domainQ. For instance, in a reference domain as in Bigsince in every rectangle the optimal set is
a rectangle of maximal width, the solution is a set similar to the one sketched i8. Fige conjecture
that the optimal set will look like the first one sketched in Figwhile the second could be excluded
since the necessary conditidh %) is not satisfied. Indeed, considering for simplicity the ball centred at
the origin and radius equal to 1, fay > 0, we comput&/|Tn| = A1(1— xf, —X1X2). Hence, condition
(5.9 yields that

Kc, K=V, (5.7)

A1HX1 4+ A1(X1 — Xio’ - X1X22,) = 11(2x1 — X% - X1+ Xf) = A1X1,

which is not constant on the right side@K .
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FIG. 7.

Q

FIG. 8.
K
FIG. 9.

5.4 Uniform stress fields
By setting 0< 11 < A2, we need to solve a relative Wulff problem. In fact, if we introduce the norm

defined as
) /12,2 242
IX]| :==|Tx| = /lel + izxz,

the problem 4.7) becomes the following:

min [/ InldEN"1 K c Q, K] =v]. (5.8)
K oK
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It is known that (see, e.dzonsecal991; Brothers & Morgan 1994 in the wholeR? the solution is
given by the Wulff shape

W = Xg +rB,,
whereB, = {x € R?|||x||. < 1} is the unit ball in the dual norm, while the factor> 0 is chosen to

satisfy the volume constraint. Note that the Wulff shape is unique modulo translations. We observe that
the norm|| - || is induced by the scalar product

X -y = A2x1y1 + A3X2Y2.
By the definition of dual norm, we have
Xl = max(x - yly € R?, |ly|l = 1}.

The above maximum problem can be explicitly solved (Lagrange multiplier) leading to the following
expression:

/szf /llxg

+ .
21(3x2 4 22x2)12 - )5(23%2 + 12x3)1/2

X[« =

Therefore, the Wulff shape turns out to be an ‘ellipsoid’. Now, since the ellipsoid is symmetric with
respect to the vertical axis, if we tale as an infinite strip of heightt, we can repeat the arguments
used in the discussion of the cafe= 1l replacing semicircle with ‘semi-ellipsoid’. More general
configurations require a careful study of a relative Wulff problem since no general theory seems to be
available at the moment to treat similar questions.

5.5 A special case of non-constant stress field

Let 11 = Axg and 2 = Jix2 be the eigenvalues of the stress tensorLet us consider the field
F = (AX1, AX2). It results that

[F-nf < [Tn]. (5.9)

If V is the volume to subtract fro2, we introduce the following problem:

min [/ |F - njdx?t
oK

we have the following theorem.

|K|:V]. (5.10)

THEOREMb5.1 A solution of problem&.10) is given by the balB;, wherer > 0is such thaiB;| = V.
Proof. Let |K| = V. Since di = 2, we have

/|F~n|d7-[l>/ F.ndut
oK oK

On the other hand,

— |A[2V.

/ div F dH2
K

/ |F - n|dH! = |A|272r2 = |2]2V. O
0By
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We observe that on the b, equality in 6.9) holds. Therefore, for eve)K | = V, we infer that

/ ||Tn||d7—t1=/ |F.n|dH1</ |F-n|dH1</ [T ot
0By 0By oK oK

Therefore, ifB; C Q, the ballB; turns out to be the best hole inside We observe that these arguments

also hold in higher dimension. Moreover, the same conclusion holds for stress tensors whose eigenvalues
produce a field of the for® = Vu, whereu(x) = log|x| whenN = 2 andu(x) = == whenN = 3, so

that divF = 4u = 0. For more details, we refer the reader to the p&panieri & Maddaleng2008.
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