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Abstract. We show that local minimizers of functionals of the formZ
Ω

[f(Du(x)) + g(x , u(x))] dx, u ∈ u0 + W 1,p
0 (Ω),

are locally Lipschitz continuous provided f is a convex function with p − q
growth satisfying a condition of qualified convexity at infinity and g is Lipschitz

continuous in u. As a consequence of this, we obtain an existence result for a

related nonconvex functional.

1. Introduction

We consider the integral functional

I(u) =
∫

Ω

L(x , u(x) , Du(x)) dx,

where Ω ⊂ RN is a bounded open set (N ≥ 2) and L : Ω×R×RN → R is a
Caratheodory function satisfying the following growth hypothesis:

(1.1) c1|ξ|p − a(x)(1 + |η|) ≤ L(x , η , ξ) ≤ c2(1 + |ξ|)q + a(x)(1 + |η|)
where c2 ≥ c1 > 0, a ∈ L∞loc(Ω) is a nonnegative function and 1 < p ≤ q. As usual,
we say that L has standard growth (or p growth) if q = p and p − q growth when
p < q. For this integral I, we consider the Dirichlet problem

(P) min
{

I(u) : u ∈ u0 + W 1,p
0 (Ω)

}
,

where the boundary datum u0 is in W 1,p(Ω) and I(u0) < +∞. If L(x , u ,Du) is
convex with respect to the gradient variable Du, then solutions to (P) exist by the
direct method of the Calculus of Variations. Otherwise the minimum in (P) need
not be achieved and, as nonconvex integrals arise from variational models in several
branches of applied sciences, the question of establishing which conditions on L,
other than convexity, ensures the existence of solutions to (P) has been receiving
increasing attention in recent years.
The usual path for proving existence results for nonconvex minimum problems is
based on considering the auxiliary integral

(1.2) I∗∗(u) =
∫

Ω

L∗∗(x , u ,Du) dx

where L∗∗(x , η , ξ) is the convex envelope of L with respect to ξ, i.e. the great-
est convex function with respect to ξ satisfying L∗∗(x , η, ξ) ≤ L(x , η , ξ). Under
suitable assumptions on L, I∗∗ is the relaxed integral of I with respect to weak con-
vergence of Sobolev functions and it has a minimizer v among the feasible functions
u0 + W 1,p

0 (Ω). If it happens that the equality L∗∗(x , v ,Dv) = L(x , v ,Dv) holds
almost everywhere on Ω for the minimizer v of I∗∗, then it follows immediately from
L∗∗ ≤ L that v is a minimizer of the original integral I as well. Otherwise, one
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tries to modify v so as to find a new minimizer of I∗∗, say u, satisfying the required
equality L∗∗(x , u ,Du) = L(x , u ,Du) almost everywhere. The construction of u
out of v is based on solving differential inclusions and the possibility of doing this
obviously depends on the properties of L and L∗∗, as well as the regularity of the
original minimizer v.
As far as we know, the case of functions L with p growth has been the only case
studied so far. For this model, a well developed theory regarding attainment versus
nonattainment phenomena has been set up in recent years, see for instance the
results of [6], [7], [16], [27], [26], [4], [5] and [3]. We refer to this latter paper
and the references therein for a thorough description of all contributions to the
problem. In the most important and simplest case of sum-like functions L of the
form L(x , u ,Du) = f(Du) + g(u), this analysis shows that the minimum in (P) is
achieved when

(a) the convex envelope f∗∗ of f is affine on each connected component of
the detachment set {f∗∗ < f};

(b) g is piecewise monotone and moreover has no strict, local minima unless
f∗∗(0) = f(0);

otherwise minimizers do not likely exist, see the nonexistence results of [23], [6],
[7] and [16] and the examples in [3]. We refer to [3] for a discussion on how this
statement for sum-like integrals translates into the general case.
The strategy for establishing existence results in the p− q case goes as in the stan-
dard case, but a crucial difficulty arises. As mentioned above, the construction
of a new minimizer u out of v for the relaxed integral I∗∗ satisfying the equality
L∗∗(x , u ,Du) = L(x , u ,Du) almost everywhere requires continuity and differen-
tiability almost everywhere in the classical sense for the original solution v. Both
properties are shared by every local minimizer of integrals with p growth, see [17]
and [4] respectively. In the p − q framework, continuity of minimizers cannot be
granted on the ground of the growth assumptions only and classical, almost every-
where differentiability still remains an open problem.
A solution to this problem is to require stronger assumptions on L ensuring local
Lipschitz continuity of minimizers of the relaxed problem, a strategy which has been
successfully exploited in [2] and more recently in [15] for nonconvex, nonautonomous
integrands L(x ,∇u). Moreover, once a minimizer u of the nonconvex problem (P)
has been obtained from a local Lipschitz continuous minimizer v of the relaxed
problem, then u itself has to be locally Lipschitz continuous as well as it is a
minimizer of (1.2). Thus, the crucial link in this chain of reasoning is the proof
of local Lipschitz regularity of minimizers of I when L is convex in the gradient
variable.
Starting from [14], the regularity of minimizers of integrals where L = L(x , η , ξ)
has standard growth but is not supposed to be differentiable with respect to ξ has
been extensively studied. Because of this lack of smoothness, the usual ellipticity
condition, which is required for C1,α regularity in all classical papers such as [18],
[19] and [21] where L is of class C2 with respect to ξ, is replaced at first by a
qualified convexity assumption called p-uniform convexity which, in the simplest
case L = f(ξ), requires that for some ν > 0 the inequality

(1.3) f

(
ξ + ζ

2

)
≤ 1

2
f(ξ) +

1
2
f(ζ)− ν(1 + |ξ|2 + |ζ|2)

p−2
2 |ξ − ζ|2

holds for every ξ and ζ (see [15]). Later on this condition has been weakened by
assuming the so-called p-uniform convexity condition at infinity which means that
the previous condition holds only when the segment joining ξ and ζ lies entirely
outside some fixed ball BR(0). By approximating f with smooth functions, it is
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then possible to prove local Lipschitz regularity of local minimizers if L = f(ξ) or
local α-Hölder continuity for all α < 1 in the general case, see e.g. [12], [15] and [9].
As regards the regularity issue for minimizers of integrals with p − q growth, this
was first studied by Marcellini in [24] and many contributions have been given
since then, see [13] and [1] for a broad list of references. In these papers, the C1,α

regularity of minimizers is proved when L is of class C2 and uniformly elliptic,
provided p and q are not too far apart, that is 1 < q/p ≤ c(N) where c(N) goes
asimptotically to 1 as N diverges, see [24]. In particular, if L = f(ξ) is smooth
and uniformly elliptic, this regularity is achieved if q/p < N/(N − 2), see [25]
whereas the values of p and q must be closer in the nonhomogeneous case, namely
q/p < (N + 1)/N , otherwise counterexamples exist, see [13] for q/p > (N + 1)/N .
In this paper we prove two results. In both of them, the p− q growth of the energy
density is assumed.
Our first result regards regularity (Theorem 1.1): we prove local Lipschitz continu-
ity of local minimizers of (P) when L is the sum of two terms

(1.4) L(x , u ,Du) = f(Du) + g(x , u),

such that f satisfies the p − q growth hypothesis (1.1), is convex and p-uniformly
convex at infinity, see (1.3), and g is a Caratheodory function which is also Lip-
schitz continuous with respect to u, uniformly with respect to x ranging into a
compact subset of Ω. To prove this, we approximate I by a sequence of smooth
integrals with p growth and we prove that their minimizers are locally, Lipschitz
continuous, uniformly with respect to the sequence (Proposition 2.2). Finally, we
prove that the regularity properties of minimizers of the approximating integrals
pass to minimizers of the original integral I.
As a consequence of this regularity result, we prove (Theorem 5.1) the existence of
locally Lipschitz continuous minimizers of (P) when L is given by

L(x , u ,Du) = f(Du) + a(x)h(u),

where now f is a possibly nonconvex, yet p-uniformly convex at infinity function
with p − q growth and h is Lipschitz continuous. As explained above, the corre-
sponding relaxed functional I∗∗ has locally Lipschitz continuous minimizers and,
exploiting this and relying on the arguments of [4] and [3], we prove the existence
of solutions to (P) with the same regularity provided the hypotheses (a) and (b)
described above hold.
As regards notation, we denote the euclidean norm and the scalar product in RN

by | · | and 〈x, y〉 respectively, the open ball in RN with center at x and radius
r > 0 by Br(x) and we just write Br when the center is either x = 0 or clear by
the context. Moreover, we denote the closed segment in RN with endpoints x and
y by [x , y].
As usual, when f : RN → R is a lower semicontinuous function we denote by f∗∗

the convex envelope of f , i.e. the largest convex function below f . We use standard
notation for function spaces and measures.
After these preliminaries, we now state our main result on local, Lipschitz regularity
of minimizers of sum-like integrals (1.4). To this aim, let 1 < p ≤ q < +∞ and let
f : RN → [0 ,+∞) be a continuous function such that

(A1) f is p-uniformly convex at infinity with constants ν > 0 and R > 0;

(A2) f has p− q growth, i.e. there exist c2 ≥ c1 > 0 such that

c1|ξ|p ≤ f(ξ) ≤ c2 (1 + |ξ|q) , ξ ∈ RN .
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As we shall see in Proposition 3.1 below, the bound from below in (A2) actually
follows from (A1). As regards the lower order term, we assume that g : Ω×R → R
is a Caratheodory function such that

(A3) g(· , 0) ∈ L1(Ω) and there exists a function a ∈ L∞loc(Ω) such that

|g(x , u)− g(x , v)| ≤ a(x)|u− v|, u, v ∈ R,

holds for a.e. x ∈ Ω.

For these functions f and g, we consider the variational integral

(1.5) I(u) =
∫

Ω

[f(Du(x)) + g(x , u(x))] dx,

for those functions u ∈ W 1,1(Ω) such that the integral is well defined and we recall
that a function u ∈ W 1,1

loc (Ω) is a local minimizer of (1.5) if f(Du) + g(· , u) is in
L1

loc(Ω) and I(u) ≤ I(u + ϕ) for every ϕ ∈ W 1,1(Ω) with compact support in Ω.
For local minimizers of I, the following regularity result holds.

Theorem 1.1. Let f : RN → [0 ,+∞) be a convex function satisfying (A1) with
constants ν and R and (A2) with

(1.6) 1 < p ≤ q <
N + 1

N
p

and let g : Ω×R → R be a Caratheodory function satisfying (A3).
Let u ∈ W 1,1(Ω) be a local minimizer of (1.5). Then, u ∈ W 1,∞

loc (Ω) and, for every
ball Br(x0) ⊂⊂ Ω, the following estimate holds:

(1.7) sup
x∈Br/2(x0)

|Du(x)| ≤ C

{∫
Br(x0)

[1 + f(Du(x)) + g(x, u(x))] dx

}α

,

where C = C(p , q , N , ν , R , r , ‖a‖∞) and α = α(p , q , N).

2. Regular integrals and a priori Lipschitz regularity

As explained in the Introduction, to prove Theorem 1.1, we first investigate the
regularity properties of minimizers of regular integrals, i.e. integrals with smooth
integrands and standard growth. Indeed, let the integral I be associated with
functions f and g satisfying the following stronger properties for some 1 < p < +∞:

(H1) there exists a constant c3 > 0 such that

0 ≤ f(ξ) ≤ c3 (1 + |ξ|p) , ξ ∈ RN ;

(H2) f ∈ C2(RN ) and there exists L1 > 0 such that

〈Dξξf(ξ)λ, λ〉 ≥ L1

(
1 + |ξ|2

) p−2
2 |λ|2, λ, ξ ∈ RN ;

(H3) f ∈ C2(RN ) and there exists L2 > 0 such that

〈Dξξf(ξ)λ, λ〉 ≤ L2

(
1 + |ξ|2

) p−2
2 |λ|2, λ, ξ ∈ RN ;

(H4) g ∈ C2(Ω×R) and (A3) holds.

As we shall see in Section 3, the hypotheses (H1), (H2) and (H3) imply (A1) and
(A2).
We shall prove that local minimizers of regular integrals have Hölder continuous
derivatives as well as second order weak derivatives (Lemma 2.1) and that ev-
ery such minimizer of I in the non regular case satisfies a Moser type inequality
(Proposition 2.2). These proofs are similar, except for the lower order term g, to the
corresponding proofs of [8], [12] and [14] and hence we just outline the mainsteps
and we refer to the original paper for the details.
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Lemma 2.1. Assume that (H1),. . . ,(H4) hold and let u ∈ W 1,1
loc (Ω) be a local

minimizer of (1.5). Then, u ∈ C1,α
loc (Ω) ∩W 2,2

loc (Ω).

Proof. By classical results, u is locally bounded and hence the local C1,α regularity
follows from [21]. As to the second derivatives, let

∆k,τv(x) =
v(x + τek)− v(x)

τ
, x ∈ Ω ∩ (Ω− τek), τ 6= 0,

be the difference quotient of v : Ω → R in the direction of the unit vector ek,
k = 1, . . . , N , and set Br = Br(x0) where B3r ⊂⊂ Ω. As u is a local minimizer, it
is a solution of the Euler-Lagrange equation so that∫

Ω

[〈Dξf(Du), Dϕ〉+ gu(· , u)ϕ] dx = 0,

holds for every test function ϕ ∈ C1
c (B2r) where g(· , u) obviously stands for the

function x ∈ Ω → g(x , u(x)) and similarly for the derivative gu(x , u(x)). Then,
choosing ϕ = ∆k,−τ

(
η2∆k,τu

)
as a test function where η ∈ C2

c (B2r) is a suitable
cut-off function and arguing as in Theorem 8.1 in [20], we find that∫

Br

(
1 + |Du|2 + |Du(x + τek)|2

) p−2
2 |∆k,τ (Du)|2 dx ≤

≤ C

r2

∫
B3r

(
1 + |Du|2

) p
2 dx + C

∫
Br

|∆k,τ (gu(· , u))||∆k,τu| dx.

for some constant C. As Du is locally bounded, the coefficient of |∆k,τ (Du)|2 in
the equation above is bounded from below for every 1 < p < +∞, so that, letting
τ → 0, we conclude that u ∈ W 2,2

loc (Ω). �

Proposition 2.2. Let f ∈ C2(RN ) be a convex function satisfying (A1) with con-
stants ν and R and (A2) with

(2.1) 1 < p ≤ q <
N + 1

N
p

and let g : Ω×R → R satisfy (H4).
Let u ∈ W 1,∞

loc (Ω) ∩ W 2,2
loc (Ω) be a local minimizer of (1.5). Then, for every ball

Br(x0) ⊂⊂ Ω, the following estimate holds:

sup
x∈Br/2(x0)

|Du(x)| ≤ C

{∫
Br(x0)

(1 + |Du|p) dx

}α

,

where C = C(p , q , N , ν , R , r , ‖a‖∞) and α = α(p , q , N).

Proof. The proof is analogous to the proof of Proposition 3.1 of [8] and it is enough
we prove the following claim from which the conclusion follows by using (2.1) and
Step 2 of the result mentioned above.
Claim. Set Br = Br(x0) and let η ∈ C1

c (Br) be a cut-off function such that
0 ≤ η ≤ 1. There exists a constant C = C(p , q , N , ν , R , r , ‖a‖∞) such that

(2.2)

∫
Br

(
1 + |Du|2

) p
2 +δ−1 |D(|Du|2 −R2)+|2η2 dx ≤

≤ C
max {1 , 1 + δ}
min {1 , 1 + δ}

∫
Br

(1 + |Du|2)q− p
2 +δ+1(η2 + |Dη|2) dx

for every δ > −1 where a+ denotes the positive part of a.
For δ > −1, set Φ(t) = (1 + R2 + t)δt, t ≥ 0 and consider

Ψk(x) = Φ
(
(|Du(x)|2 −R2)+

)
Dku(x), x ∈ Ω, k = 1 , . . . , N.
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Recalling the definition of difference quotients given in Lemma 2.1, we write the
Euler-Lagrange equation using

Θk,τ (x) = η2(x)4k,−τΨk(x), x ∈ Ω,

as a test function for a small enough τ 6= 0. Hence, writing Φ as a shorthand for
Φ

(
(|Du|2 −R2)+

)
, we find∫

Br

〈4k,τ

(
Dξf(Du)η2

)
, DΨk〉 dx =

=
∫

Br

[
〈2Dξf(Du), ηDη〉+ gu(· , u)η2

]
4k,−τΨk dx.

Adding on k, using Einstein’s summation convention and letting τ go to zero, we
obtain ∫

Br

D2
ξiξj

f(Du)D2
k,juη2DiΨk dx =(2.3)

=
∫

Br

{
−2Dξi

f(Du)ηDkηDiΨk +
[
2Dξi

f(Du)ηDiη + gu(· , u)η2
]
DkΨk

}
dx.

Now, we estimate from below the left hand side of the equation above. To this
aim, we first recall that f , as a p-uniformly convex at infinity function of class C2,
satisfies

〈D2
ξξf(ξ)λ, λ〉 ≥ c(ν)(1 + |ξ|2)

p−2
2 |λ|2, λ ∈ RN ,

for every |ξ| ≥ R by (b) of Proposition 3.1. Hence, recalling that Ψk = ΦDku,
computing the derivatives and noticing that 2D2

k,juDku can be actually replaced
by Dj

(
(|Du|2 −R2)+

)
because everything is zero when |Du| ≤ R, we find that∫

Br

D2
ξiξj

f(Du)D2
k,juη2DiΨk dx ≥

≥ c(ν)
∫

Br

(
1 + |Du|2

) p−2
2

[
|D2u|2Φ + |D

(
(|Du|2 −R2)+

)
|2Φ′

]
η2 dx.

Then, we turn to the right hand side of (2.3) which we can estimate recalling that

|Dξf(ξ)| ≤ c4(1 + |ξ|2)
q−1
2

because f is convex, smooth and has q-growth from above by (A2). Using the fact
that |gu(· , u)| can be estimated by ‖a‖∞ on Br because of (A3) we have∫

Br

(
1 + |Du|2

) p−2
2

[
|D2u|2Φ + |D

(
(|Du|2 −R2)+

)
|2Φ′

]
η2 dx ≤

≤ C

∫
Br

(
1 + |Du|2

) q−1
2 |D2u|Φ(η + |Dη|)η dx+

+C

∫
Br

(
1 + |Du|2

) q
2 |D

(
(|Du|2 −R2)+

)
||Φ′|(η + |Dη|)η dx

with C depending only on q, c2 of (A2), ν and the norm ‖a‖∞ on Br. Then, setting
V (x) = 1 + R2 + (|Du(x)|2 − R2)+ for x ∈ Ω and recalling the definition of Φ, we
exploit Young inequality to extract from the two terms at the right hand side of
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the previous estimate two terms similar to those at the left, i.e∫
Br

V
p
2−1+δ|D2u|2(|Du|2 −R2)+η2 dx+

+
∫

Br

V
p
2−2+δAδ(u , R)|D

(
(|Du|2 −R2)+

)
|2η2 dx ≤

≤ C

∫
Br

V q− p
2 +δ

{
Aδ(u , R) + (|Du|2 −R2)+

} (
η2 + |Dη|2

)
dx

where Aδ(u , R) = 1 + R2 + (1 + δ)(|Du|2 −R2)+. Dropping the term proportional
to |D2u|2, the conclusion follows easily. �

3. Approximation of p-uniformly convex functions

In this section, we show that a p-uniformly convex function at infinity with p − q
growth can be approximated by a sequence of smooth, uniformly elliptic functions
with p-growth. In the sequel, we agree to say that a function f : RN → R is convex
outside BR if

f

(
ξ1 + ξ2

2

)
≤ 1

2
f(ξ1) +

1
2
f(ξ2)

whenever [ξ1 , ξ2] ⊂ RN \BR and that f is convex at infinity if it is convex outside
some ball BR and similarly for p-uniformly convex functions.
We begin recalling some properties of p-uniformly convex functions at infinity for
which we refer to [8].

Proposition 3.1. Let f : RN → [0 ,+∞) satisfy (A1) with constants ν and R.
Then,

(a) there exist constants µ1 = µ1(p , ν) > 0, µ2 = µ2(p , ν , R ,M) > 0 where
M = max∂BR

f and a function h : RN → [−µ2 ,+∞), convex outside BR,
such that

f(ξ) = µ1(1 + |ξ|2)
p
2 + h(ξ), ξ ∈ RN ;

(b) if f ∈ C2(RN ), there exists c(ν) > 0 such that

〈D2
ξξf(ξ)λ, λ〉 ≥ c(ν)

(
1 + |ξ|2

) p−2
2 |λ|2, λ ∈ RN , |ξ| ≥ R;

(c) there exist R0, ν0 > 0 depending only on p, ν, R and M with the property
that, for every ζ ∈ RN \BR0 , there exists d(ζ) ∈ RN such that

f(ξ) ≥ f(ζ) + 〈d(ζ), ξ − ζ〉+ ν0(1 + |ξ|2 + |ζ|2)
p−2
2 |ξ − η|2, ξ ∈ RN ;

(d) if f satisfies (A2), there exists µ3 > 0 such that

|d(ξ)| ≤ µ3

(
1 + |ξ|2

) q−1
2 , ξ ∈ RN \BR0 ;

(e) f = f∗∗ outside BR0 .

Lemma 3.2. Let f : RN → [0 ,+∞) be a convex function satisfying (A1) with
constants ν, R and (A2). Then, there exist functions fk : RN → [0 ,+∞) with the
following properties:

(a) fk is convex, fk ≤ fk+1 and fk → f uniformly on compact sets;
(b) each function fk satisfies (A1) with constants ν′ and R′ independent of

k;
(c) each function fk satisfies (H1) with constant c′3 = c′3(k).
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Proof. From Proposition 3.1, there exist constants µ1, µ2 > 0 and a function
h : RN → [−µ2 ,+∞), convex outside BR, such that

f(ξ) =
µ1

2
(
1 + |ξ|2

) p
2 +

[µ1

2
(
1 + |ξ|2

) p
2 + h(ξ)

]
=

µ1

2
(
1 + |ξ|2

) p
2 +H(ξ), ξ ∈ RN .

Since h is convex outside BR and ξ →
(
1 + |ξ|2

) p
2 is p-uniformly convex, then H is

p-uniformly convex outside BR with some constant ν′ depending only on p and ν.
Then, using (c) of Proposition 3.1, we find R′ = R0 such that

H(ξ) ≥ H(ζ) + 〈d(ζ), ξ − ζ〉, ξ ∈ RN ,

for some vector d(ζ), |ζ| ≥ R′.
For k > R′, define Hk : RN → R by setting

Hk(ξ) =

{
H(ξ) for |ξ| ≤ k,

sup {H(ζ) + 〈d(ζ), ξ − ζ〉 : R′ ≤ |ζ| ≤ k} for |ξ| > k.

Each function Hk is continuous, Hk = H on RN \ BR′ , Hk ≤ Hk+1 ≤ H and
Hk → H uniformly on compact sets. It is also easy to prove that Hk is a convex
function outside BR′ . In fact, let [ξ1 , ξ2] be a segment lying entirely outside BR′ .
For every |ζ| ≥ R′, we find

H(ζ) + 〈d(ζ),
ξ1 + ξ2

2
− ζ〉 =

1
2

[H(ζ) + 〈d(ζ), ξ1 − ζ〉] +
1
2

[H(ζ) + 〈d(ζ), ξ2 − ζ〉]

whence

Hk

(
ξ1 + ξ2

2

)
= sup

R′≤|ζ|≤k

{
H(ζ) + 〈d(ζ),

ξ1 + ξ2

2
− ζ〉

}
≤

≤ 1
2

sup
R′≤|ζ|≤k

{H(ζ) + 〈d(ζ), ξ1 − η〉}+
1
2

sup
R′≤|ζ|≤k

{H(ζ) + 〈d(ζ), ξ2 − η〉} =

=
1
2
Hk(ξ1) +

1
2
Hk(ξ2).

Finally, for k > R′, define fk : RN → [0 ,+∞) by setting

fk(ξ) =
µ1

2
(
1 + |ξ|2

) p
2 + Hk(ξ), ξ ∈ RN ,

so that, up to an additive constant, fk(ξ) ≥ c′1|ξ|p for some constant c′1 > 0 indepen-
dent of k. Then, it is obvious that the sequence {fk}k is increasing and converges
to f uniformly on compact sets. As to the convexity of the functions fk, it follows
from the fact that f is convex, fk is convex outside BR′ and the equality fk = f

holds in Bk\BR′ . Moreover, since Hk is convex outside BR′ and ξ →
(
1 + |ξ|2

)p/2 is
p-uniformly convex, fk is p-uniformly convex outside BR′ and (b) follows. Finally,
from (A2) and (d) of Proposition 3.1, we find that

|d(ζ)| ≤ µ3

(
1 + k2

) q−1
2 , R′ ≤ |ζ| ≤ k,

and this implies

0 ≤ fk(ξ) ≤ µ1

2
(
1 + |ξ|2

) p
2 + |Hk(ξ)| ≤ µ1

2
(
1 + |ξ|2

) p
2 + µ4

(
1 + k2

) q−1
2 (|ξ|+ k)

for ξ > R′ whence (c) follows. �

Lemma 3.3. For every function fk of Lemma 3.2, there exists a sequence of func-
tions fk,j : RN → [0 ,+∞) with the following properties:

(a) fk,j → fk uniformly on compact sets;
(b) each function fk,j satisfies (A1) and (A2) with constants ν′′ > 0, R′′ > 0

and c′′2 ≥ c′′1 > 0, independent of j and k;
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(c) each function fk,j satisfies (H1) and (H2) with constants c′′3 = c′′3(k) and
L′′1 = L′′1(j).

Proof. Setting

fk,j(ξ) =
∫

RN

σ(ζ)fk(ξ + ζ/j) dζ + εj

(
1 + |ξ|2

) p
2 , ξ ∈ RN ,

where σ ∈ C∞
c (B1) is a nonnegative, radially symmetric mollifier and εj → 0+, the

conclusion follows easily and we refer to either [14] or [12] for the details. �

Lemma 3.4. For every function fk,j of Lemma 3.3, there exists a sequence of
functions fk,j,l : RN → [0 ,+∞) with the following properties:

(a) fk,j,l → fk,j uniformly on compact sets;
(b) each function fk,j,l satisfies properties (A1) and (A2) with constants ν′′′ >

0, R′′′ > 0 and c′′′2 ≥ c′′′1 > 0, independent of j, k and l;
(c) each function fk,j,l satisfies properties (H1) and (H2) with constants c′′′3 =

c′′′3 (k) and L′′′1 = L′′′1 (j) independent of l;
(d) each function fk,j,l satisfies (H3) with constant L′′′2 = L′′′2 (k, j, l).

Proof. Starting from fk,j , the construction of a sequence {fk,j,l}l satisfying (H1),
(H2) with constants independent of l and such that (H3) holds can be found in [14]
and [12]. The same construction implies that, if fk,j satisfies (A1) and (A2), the
same properties pass to the fk,j,l with possibly new constants depending only on
the corresponding constants of Lemma 3.3. �

4. Proof of the regularity result

Combining the a priori estimates of Section 2 and the approximation results of
Section 3 we can prove our Lipschitz regularity result.

Proof of Theorem 1.1. Let {fk}k, {fk,j}j and {fk,j,l}l be the sequences of functions
associated to f by Lemmas 3.2, 3.3 and 3.4. We regularize g too by considering the
smooth functions gl : Ω×R → R defined by

gl(x , u) =
∫

B1

σ(y)
(∫ 1

−1

ρ(η)g(x + y/l , u + η/l) dη

)
dy, (x , u) ∈ Ω×R,

where g is obviously set equal to zero outside Ω and σ ∈ C∞
c (B1), ρ ∈ C∞

c (−1 , 1)
are the usual nonnegative, radially symmetric mollifiers. From (A3), for every
compact set K ⊂ Ω, there are constants Ci depending only on K and a such that

|gl(x , u)− gl(x , v)| ≤ C1|u− v|, x ∈ K, u, v ∈ R,(4.1) ∫
K

|gl(x , w(x))| dx ≤ C2

(∫
K+B1

|g(x , 0)| dx +
∫

K

|w(x)| dx

}
,(4.2)

for every function w ∈ L1
loc(Ω).

Then, let u ∈ W 1,p
loc (Ω) be a local minimizer of (1.5), set Br = Br(x0) ⊂⊂ Ω and

consider the smooth functions

un(x) =
∫

B1

σ(y)u(x + y/n) dy

where u is zero outside Ω. We localize all integrals to the ball Br and we write

I(w) = F (w) + G(w) =
∫

Br

f(Dw(x)) dx +
∫

Br

g(x , w) dx, w ∈ W 1,1
loc (Ω).
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We define in the obvious way Fk, Fk,j , Fk,j,l and similarly Gl. Moreover, we penalize
G when w is different from un, i.e we consider the integrals

Gn(w) = G(w) +
∫

Br

arctan2 (w − un) dx, w ∈ W 1,1
loc (Ω),

and similarly Gn,l. Finally, we define In = F+Gn, In,k = Fk+Gn, In,k,j = Fk,j+Gn

and In,k,j,l = Fk,j,l + Gn,l.
Then, we wish to minimize In,k,j,l in the Dirichlet class A = u + W 1,p

0 (Br), i.e.
subject to the boundary condition of u. To this aim, we first recall that Lemma 3.4
implies that there are constants c′′′1 , independent of k, j and l and c′′′3 depending
only on k such that

(4.3) c′′′1 |ξ|p ≤ fk,j,l(ξ) ≤ c′′′3 (k) (1 + |ξ|p) , ξ ∈ RN ,

whence, using the first estimate from below, (4.2) and Poincaré’s inequality, we
obtain

(4.4)
∫

Br

|Dw|p dx ≤ C [1 + In,k,j,l(w)] , w ∈ A,

where C depends on g, a and u but does not depend on any of the indices n, k,
j and l. Thus, the existence of a minimizer of In,k,j,l on A, say vn,k,j,l, follows
immediately from this estimate and the convexity of each function fk,j,l. Moreover,
(4.4) and the minimality of vn,k,j,l yield that

(4.5)
∫

Br

|Dvn,k,j,l|p dx ≤ Mk

for some constant Mk independent of n, j and l. Thus, up to a subsequence, there
is vn,k,j ∈ A such that vn,k,j,l ⇀ vn,k,j weakly in W 1,p(Br) and

(4.6)
∫

Br

|Dvn,k,j |p dx ≤ Mk.

Now, we claim that the sequence {In,k,j,l}l Γ-converges to In,k,j with respect to
the weak W 1,p-topology induced on A so that vn,k,j is a minimizer of In,k,j (Corol-
lary 7.20 in [10]). Indeed, the convexity of the functions fk,j,l and (4.3) imply
(Theorem 5.14 in [10]) that {Fk,j,l}l Γ-converges to Fk,j in the weak topology of
W 1,p and we only have to check that

lim
l

Gn,l(wl) = Gn(w),

whenever wl ∈ A and wl ⇀ w. To see this, let wl′ be any subsequence of wl

and choose a further subsequence wl′′ such that wl′′ → w strongly in Lp(Br) and
almost everywhere by Rellich’s theorem and such that the sequence {Gn,l′′(wl′′)}l′′

converges. The conclusion follows from (4.1), the chain of inequalities

|Gn,l′′(wl′′)−Gn(w)| ≤ |Gn,l′′(wl′′)−Gn,l′′(w)|+ |Gn,l′′(w)−Gn(w)| ≤

≤ C1

∫
Br

|wl′′ − w| dx +
∫

Br

|gl′′(x , w)− g(x , w)| dx

and Lebesgue’s dominated convergence theorem.
Now, we repeat the previous argument starting from (4.6). Up to a subsequence,
{vn,k,j}j converges to a function vn,k ∈ A weakly in W 1,p(Br), the integrals In,k,j Γ-
converge to In,k in the same topology and vn,k is a minimizer of In,k onA. Moreover,
the same estimates used for (4.4), the minimality of vn,k and the inequality Fk ≤ F
which follows immediately from (a) of Lemma 3.3 yield

(4.7)
∫

Br

|Dvn,k|p dx ≤ C [1 + In,k(vn,k)] ≤ C [1 + I(u)]



INTEGRALS WITH p-q GROWTH 11

where C depends on g, a and u but neither on k nor n. Therefore, up to a sub-
sequence oncemore, vn,k ⇀ vn weakly in W 1,p(Br) for some vn ∈ A and (a) of
Lemma 3.2 and Proposition 5.4 in [10] imply that {In,k}k Γ-converges to In in the
weak topology of A. Thus, vn has to be a minimizer of In on A and, passing to the
limit in (4.7), we find that

(4.8)
∫

Br

|Dvn|p dx ≤ C [1 + In(vn)] ≤ C [1 + I(u)] .

At last, up to a further subsequence, we have that vn ⇀ v weakly in W 1,p(Br) for
some v ∈ A.
Now, we prove that v is in W 1,∞

loc (Br). In fact, we can apply Lemma 2.1 and
Proposition 2.2 to the local minimizers vn,k,j,l of In,k,j,l. Therefore, (4.4) yields

sup
Br/2

|Dvn,k,j,l| ≤ C

{∫
Br

(1 + |Dvn,k,j,l|p) dx

}α

≤ C [1 + In,k,j,l(vn,k,j,l)]
α

where C is independent of n, k, j and l. Passing to the limit with respect to l, j,
k and using the Γ-convergence results proved above and (4.8), we conclude that

sup
Br/2

|Dv| ≤ C [1 + I(u)]α

which gives (1.7) for v.
Finally, we prove that v = u, thus completing the proof. Recalling the definition of
In, the strong convergence of un to u and the weak convergence of vn to v, we find
by lower semicontinuity and by the minimality of vn for In that

I(v) +
∫

Br

arctan2(v − u) dx ≤ lim inf
n→+∞

In(vn) ≤ lim inf
n→+∞

In(u) = I(u).

Since u is a local minimizer of I, we conclude that v = u a.e. on Br. �

5. Application to nonconvex integrals

In this final section, we show how the Lipschitz regularity result of Section 1 can
be applied to establish the existence of locally Lipschitz continuous minimizers for
nonconvex multiple integrals with p− q growth.
Indeed, let now f : RN → [0 ,+∞) be a possibly nonconvex, lower semicontinuous
function satisfying (A1), (A2) for some 1 < p ≤ q and in this case let g : Ω×R → R
be a Caratheodory function featuring the following special structure:

g(x , u) = a(x)h(u), x ∈ Ω, u ∈ R,

where a ∈ L∞(Ω), a ≥ 0 and h : R → R is a Lipschitz continuous function whose
Lipschitz constant can be taken equal to 1 without loss of generality. It is clear that
g satisfies (A3). For these functions f and g we consider the variational integral

I(u) =
∫

Ω

[f(Du(x)) + a(x)h(u(x))] dx, u ∈ W 1,p(Ω),

and the corresponding Dirichlet problem

(P) min
{

I(u) : u ∈ u0 + W 1,p
0 (Ω)

}
where the boundary datum u0 is any function in W 1,p(Ω) yielding a finite value of
I, i.e. I(u0) < +∞.
As mentioned in the Introduction, the lack of convexity of f affects the lower
semicontinuity of I along weakly converging sequences of Sobolev functions and
hence the existence of solutions to (P) cannot be established by applying Tonelli’s
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direct method. Therefore, to prove attainment for (P), we consider the convexified
integral

(5.1) I∗∗(u) =
∫

Ω

[f∗∗(Du(x)) + a(x)h(u(x))] dx, u ∈ W 1,p(Ω),

where f∗∗ : RN → [0 ,+∞) is the convex envelope of f and the corresponding
minimum problem

(P∗∗) min
{

I∗∗(u) : u ∈ u0 + W 1,p
0 (Ω)

}
.

This latter problem has a solution v because I∗∗ is now lower semicontinuous along
weakly converging sequences of functions in W 1,p(Ω) as f∗∗ is now convex and
minimizing sequences of I∗∗ are sequentially weakly compact in the same space by
the growth assumptions (A2) and (A3) on f and g and by (e) of Proposition 3.1.
Then, Theorem 1.1 applies yielding v ∈ W 1,∞

loc (Ω) whence, following the ideas of [4]
and [3], it is possible to prove that, under appropriate hypotheses on f and g, v
can be modified so as to find a new solution u to (P∗∗) such that f∗∗(Du) = f(Du)
almost everywhere on Ω. As f∗∗ ≤ f by construction, it follows immediately that
u is a solution also to the original Dirichlet problem (P) and moreover that u too
has to be locally Lipschitz continuous by Theorem 1.1 again as it is a solution to
(P∗∗).
Indeed, the following existence result holds. We refer to [22] for a one-dimensional
version of this result.

Theorem 5.1. Let f : RN → [0 ,+∞) ba a lower semicontinuous function satisfy-
ing (A1), (A2) for

1 < p ≤ q <
N + 1

N
p

and let g : Ω×R → R be a Caratheodory function such that

g(x , u) = a(x)h(u), x ∈ Ω, u ∈ R,

where a ∈ L∞(Ω), a ≥ 0 and h : R → R is Lipschitz continuous with Lipschitz
constant 1. Assume also that

(5.2) f∗∗ is affine on each connected component of {f∗∗ < f};
(5.3) for every η0 ∈ R, there is δ = δ(η0) > 0 such that h is monotone on each

interval [η0 − δ , η0] and [η0 , η0 + δ];
(5.4) if f∗∗(0) < f(0), h has no strict local minima;
(5.5) there exists an open set Ω0 ⊂ Ω such that a = 0 a.e on Ω0 and a > 0 a.e.

on Ω \ Ω0.

Then, the minimum problem (P) admits a locally Lipschitz continuous solution.

In this statement, the hypotheses (A1), (A2) are related only with the existence
and the regularity of solutions to (P∗∗) whereas the hypotheses (5.2), (5.3), (5.4)
and (5.5) are related with the existence of solutions to the nonconvex problem (P).
As is well known, they cannot be dropped without affecting attainment for (P), see
the examples in [23] and [3] and the results of [6] and [16]. Among them, the truly
restricting ones are (5.2) and (5.4) – though the latter has to be enforced only when
f∗∗(0) < f(0) – whereas (5.3) and (5.5) are only mild regularity hypotheses on the
coefficients a and h. Note also that (5.3) implies that h is piecewise monotone and
hence has at most countably many strict, local extrema, say {mi}i. Moreover, (5.5)
is equivalent to the requirement that a be almost everywhere null on a neighborhood
of every point x where the Lebesgue value of a vanishes. If a is continuous, a
sufficient condition for this to happen is that the boundary of {a = 0} be negligible.
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The proof is based on the ideas developed for Theorems 2.1 in [4] and [3] and relies
on the construction of comparison functions originally introduced by De Blasi and
Pianigiani in [11]. We refer to Lemma 3.5 of [3] for the proof.

Lemma 5.2. Let K ⊂ RN be a compact, convex set and let w ∈ W 1,p(Ω), 1 < p <
+∞, be a continuous, almost everywhere differentiable function such that

(a) w is differentiable at x0 ∈ Ω with (classical) gradient ξ0 = ∇w(x0);

(b) ξ0 ∈ int(K).

Then, there exist ε0 > 0, two families of compact sets {A±
ε }ε such that

Br1ε(x0) ⊂ A±
ε ⊂ Br2ε(x0) ⊂⊂ Ω, 0 < ε ≤ ε0,(5.5)

for some 0 < r1 ≤ r2 and also two corresponding families of continuous, almost
everywhere differentiable functions {w±ε }ε in W 1,p(Ω) such that the following prop-
erties hold for every 0 < ε ≤ ε0:

w±ε = w on Ω \ int(A±
ε );(5.6)

w(x) < w+
ε (x) < w(x) + 2ε for every x ∈ int(A+

ε );(5.7+)

w(x)− 2ε < w−ε (x) < w(x) for every x ∈ int(A−
ε );(5.7−)

ε ≥ w+
ε (x)− [w(x0) + 〈∇w(x0), x− x0〉] ≥ ε/2 for every x ∈ Br1ε(x0)(5.8+)

−ε/2 ≥ w−ε (x)− [w(x0) + 〈∇w(x0), x− x0〉] ≥ −ε for every x ∈ Br1ε(x0)(5.8−)

∇w±ε (x) ∈ ∂K for a.e. x ∈ A±
ε .(5.9)

Corollary 5.3. Let K and w be as in Lemma 5.2 and let f : RN → [0 ,+∞) be a
lower semicontinuous function such that

f∗∗(ξ) = 〈m, ξ〉+ q, ξ ∈ K

for some m ∈ RN and q ∈ R. Then,

(5.10)
∫

A±ε

f∗∗
(
Dw±ε

)
dx ≤

∫
A±ε

f∗∗(Dw) dx, 0 < ε ≤ ε0.

Proof. From (5.9), the fact that w − w±ε is compactly supported in Ω and the
convexity of f∗∗, we find that∫

A±ε

f∗∗(Dw±ε ) dx =
∫

A±ε

[
〈m,Dw±ε 〉+ q

]
dx =

=
∫

A±
ε

[〈m,Dw〉+ q] dx ≤
∫

A±ε

f∗∗(Dw) dx.

�

We can now prove Theorem 5.1.

Proof of Theorem 5.1. Without loss of generality, we can assume that the open
set D = {f∗∗ < f} has just one connected component and hence (5.2) and the
growth assumption (A2) imply that D ⊂ K for some compact, convex set K ⊂ RN .
Moreover,

f∗∗(ξ) = 〈m, ξ〉+ q, ξ ∈ K,(5.11)

f∗∗(ξ) = f(ξ), ξ ∈ ∂K,(5.12)

because of (5.2).
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Then, let w ∈ u0 + W 1,p
0 (Ω) be a solution to the relaxed problem (P∗∗). By

Theorem 1.1, w ∈ W 1,∞
loc (Ω) and therefore it is continuous and almost everywhere

(classically) differentiable by Rademacher’s theorem. Set

E(w) = {x ∈ Ω : Dw(x) ∈ D}.
We shall prove that there exists a solution u to (P∗∗) such that |E(u)| = 0, i.e.
f∗∗(Du) = f(Du) a.e. on Ω which shows that u is a solution to (P) as well. To
this aim, let Ω0 be the open set of (5.5) so that, at almost every point x of Ω \Ω0,
the Lebesgue value of a at x is positive, i.e.

lim
ρ→0+

−
∫

Bρ(x)

a dx > 0 for a.e. x ∈ Ω \ Ω0.

Recall also that, by (5.5), h has at most countably many strict, local minimum or
maximum point, say {mi}i and that h is monotone on a neighborhood of every
point u 6= mi. Then, when w is a solution to (P∗∗), write

E(w) = E0(w) ∪ (∪iEi(w))

where

E0(w) = {x ∈ E(w) : h is monotone around w(x)},
Ei(w) = {x ∈ E(w) : w(x) = mi}.

We shall prove the theorem by proving the following three claims.
Claim 1. There exists a solution v to (P∗∗) such that |E(v) ∩ Ω0| = 0.
Claim 2. There exists a solution u to (P∗∗) such that |E(u) ∩ Ω0| = 0 and
|E0(u)| = 0.
Claim 3. For the solution u of Claim 2, we have |Ei(u)| = 0 for every i.
In fact, they imply that |E(u)| = 0, i.e. u is a solution to (P).
Proof of Claim 1. Let w be a solution to (P∗∗) and assume |E(w)∩Ω0| > 0. As
Ω0 is open and a vanishes a.e. on Ω0, it follows from Corollary 5.3 that for every
point x0 ∈ E(w) ∩ Ω0 where w is differentiable, the corresponding functions w±ε
are solutions to (P∗∗) for small ε, regardless of the choice of + or −. Moreover,
f∗∗(Dw±ε ) = f(Dw±ε ) a.e. on A±

ε because of (5.9) and (5.12). Then, exploiting
(5.5), we use Vitali’s covering theorem to find countably many modified functions
wj = w±εj

and pairwise disjoint sets Aj = A±
εj
⊂ Ω0 such that

|E0(w) \ (∪jAj) | = 0.

It is then easy to check the series v = w +
∑

j(wj − w) (it is actually a finite sum
at every point) is a solution to (P∗∗) such that |E(v) ∩ Ω0| = 0.
Proof of Claim 2. Let v be the solution to (P∗∗) of Claim 1 and assume
|E0(v)| > 0. Pick one such point x0 ∈ E0(v) where v is (classically) differen-
tiable and recall that h is monotone, say increasing, on a neighborhood of w(x0).
Then, the corresponding functions v−ε associated to v by Lemma 5.2 satisfy∫

A−ε

a(x)h(v−ε ) dx ≤
∫

A−
ε

a(x)h(v) dx

for small ε because of (5.7−) and therefore (5.6) and Corollary 5.3 show that v−ε is
a solution to (P∗∗) such that f∗∗(Dv−ε ) = f(Dv−ε ) a.e. on A−

ε for small ε. Finally,
the very same covering argument of Claim 1 yields a solution u to (P∗∗) satisfying
|E(u) ∩ Ω0| = 0 and |E0(u)| = 0 as expected.
Proof of Claim 3. Assume that |Ei(u)| > 0 for some i and, to simplify the
notations, write m = mi and E = Ei(u). As E is a level set of u of positive measure,
Du = 0 a.e. on E and hence the very definition of E implies that f∗∗(0) < f(0).
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Thus, m is a strict local maximum of h by (5.4) and there are left and right intervals
around m where h is increasing and decreasing respectively.
Now, choose a density point x0 ∈ E where u is (classically) differentiable with
Du(x0) = 0 and, recalling that E ⊂ Ω \Ω0, assume also that it is a Lebesgue point
of a where

(5.13) lim
ρ→0+

−
∫

Bρ(x0)

a dx = a(x0) > 0.

We shall find a contradiction by exploiting Lemma 5.2 oncemore. To this aim, we
choose a sequence εj → 0+ in (0 , ε0] where ε0 is given by Lemma 5.2 and we set

ηj =
1
εj

sup {|u(x)−m| : |x− x0| < 2r2εj}

where r2 comes from the same lemma. Obviously, ηj → 0+ since u is differentiable
at x0 with ∇u(x0) = 0 by assumption and we can assume also that m ± ηjεj

remains always in the intervals around m where h is monotone. Moreover, possibly
extracting a subsequence still denoted by {εj}j , we can assume in addition that the
minimum between h(m− ηjεj) and h(m + ηjεj) is actually achieved for every j by
terms that always have the same sign inside, say h(m + ηjεj), so that

(5.14) 0 < h(m)−h(m+ηjεj) = max {h(m)− h(m− ηjεj) , h(m)− h(m + ηjεj)}
holds for every j.
According to this assumption, we choose the + functions in Lemma 5.2 and, to
simplify the notations, we set uj = u+

εj
and Aj = A+

εj
for every j. Finally, set

Bi,j = Briεj (x0) for i = 1, 2 and every j so that (5.5) turns into

(5.15) B1,j ⊂ Aj ⊂ B2,j

and set also

J1
j =

1∫
Aj

a(x) dx

∫
Aj

a(x) [h(m)− h(uj(x))] dx,

J2
j =

1∫
Aj

a(x) dx

∫
Aj

a(x) [h(m)− h(u(x))] dx.

Since u = uj on Ω \Aj by (5.6) and∫
Aj

f∗∗(Duj) dx ≤
∫

Aj

f∗∗(Du) dx

by Corollary 5.3, we will get a contradiction to the minimality of u by showing that
eventually J1

j − J2
j > 0.

In fact, note first that (5.8+) reduces to εj/2 ≤ uj(x)−m ≤ εj for every x ∈ B1,j .
Hence, recalling (5.13), (5.15) and that h is decreasing on an interval to the left of
m, we find that

J1
j ≥

1∫
B2,j

a dx

∫
B1,j

a [h(m)− h(uj)] dx ≥

≥
(

r1

r2

)N −
∫

B1,j
a dx

−
∫

B2,j
a dx

[h(m)− h(m + εj/2)] ≥

≥ 1
2

(
r1

r2

)N

[h(m)− h(m + εj/2)]

for large enough j. As to J2
j , we have

J2
j =

1∫
Aj

a dx

∫
Aj\E

a [h(m)− h(u)] dx
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for every j and |m− u| ≤ ηjεj on Aj by the definition of ηj . Hence,

0 ≤ h(m)− h(u(x)) ≤ max {h(m)− h(m− ηjεj) , h(m)− h(m + ηjεj)} =

= h(m)− h(m + ηjεj)

for every x ∈ Aj and every j because of the behaviour of h around m and by (5.14)
whence

0 ≤ J2
j ≤

(
r2

r1

)N 2‖a‖∞|B2,j \ E|
a(x0)|B2,j |

[h(m)− h(m + ηjεj)]

for large j because of (5.13). Since ηj → 0+ and h is decreasing to the right of m,
we conclude that eventually h(m)−h(m+εj/2) ≥ h(m)−h(m+ηjεj) > 0. Finally,
as x0 is a density point of E by assumption, the ratio |B2,j \E|/|B2,j | goes to zero
and the conclusion follows. �
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