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1 Introduction

In recent years a number of variational models related to reconstruction problems in
Computer Vision have been proposed (for a survey see e.g. the monographs [7, 32, 37]).
For the image segmentation problem, Mumford and Shah [33] proposed to minimize the
functional

GMS(u,C) =
∫

Ω\C
|∇u|2dx+

∫
Ω
|u− g|2dx+H1(C),

where Ω ⊂ R2 is a bounded open set (the image domain), H1 denotes the one-dimensional
Hausdorff measure, and g ∈ L∞(Ω) is the input image. The functional has to be min-
imized over all closed sets C ⊂ Ω and all u ∈ C1(Ω \ C). The function u represents a
denoised approximation of the input image g, and C represents the set of boundaries of
the segmentation. The Mumford and Shah variational model can be extended to several
visual reconstruction problems (see March [29]): computation of depth from stereo images
(Shah [39]), computation of optical flow (Nesi [34]), shape from shading (Shah [40]).

The existence of minimizers of GMS has been proved independently by Dal Maso,
Morel and Solimini [21] and De Giorgi, Carriero and Leaci [23] using the compactness
and lower semicontinuity theorems of Ambrosio [3]. Mumford and Shah [33] studied the
properties of minimizers (u,C) of GMS assuming that C is a finite union of simple C1,1

curves meeting ∂Ω and meeting each other only at their endpoints. They proved that the
vertices of C may only be: (i) triple points where three curves meet with equal angles; (ii)
points on the boundary of Ω where one curve meets ∂Ω perpendicularly; (iii) ‘crack-tips’
where a curve ends and meets nothing.

In Computer Vision, the constraints imposed on the segmentations highlighted by
such results constitute a drawback of the variational model. In particular, corners and
T -junctions, which are relevant features for pattern recognition, are distorted. Since the
length measure is not sensitive to corners and junctions, to allow for such singularities in
the segmentations it is necessary to consider curvature-depending energies. Functionals
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that include both the integral of squared curvature
∫
C κ

2dH1 and a cost associated with
singularities along the curves themselves have been proposed by Anzellotti [6]. Mantegazza
[28], Shah [41], Terzopoulos [43, 44], functionals based on curvature have been proposed
by Nitzberg and Mumford [35] and Nitzberg, Mumford and Shiota [36] for the problem of
segmentation with depth.

We consider the functional

G(u,C, P ) = #(P ) +
∫

C
(1 + κ2) dH1 +

∫
Ω\(C∪P )

|∇u|2 dx+
∫

Ω
|u− g|2 dx,

where C is a family of curves, P is the set of the endpoints of the curves in C, and #(P ) is
the number of points in P . It should be noted that the functional G involves the recursive
application of a one-dimensional version of the Mumford-Shah functional along the curves
of the family C. The embedded structure of the resulting variational model reflects the
recursive embedding of visual singularities, from surfaces to contours, to points. This is
an instance of a general variational formulation of computer vision problems proposed by
Terzopoulos [43]. The functional G has been proposed in this form by Anzellotti; existence
results for minimizers of G can be found in [19].

In order to recover corners and junctions, in Blake and Zisserman [13] the contours
obtained by minimizing the Mumford-Shah energy are subject to a subsequent process,
in which the contours are regarded as fixed. The singularities along the curves are then
computed by minimizing the energy #(P )+

∫
C κ

2dH1. The drawback of such an approach
is that the one-dimensional process can no longer feed back to the contour-detecting energy∫
Ω\C |∇u|

2dx.
Existence results for minimizers of G are relatively simple, since energy bounds imply

a bound of the number of components of C and on their norm as W 2,2-functions. On the
contrary, the numerical minimization of the overall functional G is a difficult task, which
reflects the difficulties of the challenging problem of recovering geometrical properties of
the visible surfaces from two-dimensional image functions. An algorithm for minimizing
a curvature-depending functional, based on ideas of Γ-convergence, has been proposed by
Shah [41] when C is a family of closed curves with corner points, but without junctions.
In the present paper we propose the approximation of the full functional G by means of a
family of functionals which are, at least in principle, numerically more tractable, and we
prove the Γ-convergence of the approximating functionals to G.

From the analytical viewpoint, one of the main novelties of the approach is the idea
of an iteration of a gradient-theory approach to construct an approximation by energies
of ‘elliptic type’ of functionals as G defined on triplets (u,C, P ) of functions, curves and
points (i.e., objects of ‘dimension’ 2, 1 and 0). Another remarkable feature is that the
approximation result is subdivided in two parts: a first approximation is performed by
means of a new type of energies where points and curves are substituted by sets, while
the final approximation by functionals defined on smooth functions is reduced to the first
by means of the coarea formula and a ‘mollification’ argument where sharp interfaces are
substituted by ‘optimal profiles’.

The idea of an intermediate approach by functionals defined on sets is already con-
tained in the proofs of many approximation results for free-discontinuity problems (see
e.g. [15]) and is partially formalized in a paper by Bourdin and Chambolle in the case
of the Mumford-Shah functional (see [14] Lemma 2). In our case the first idea is to con-
struct a variational approximation of the functional #(P ) that simply counts the number
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of the points of a set P by another functional whose minimizers are discs of small radius
ε (additional conditions will force these discs to contain the target set of points); another
requirement is that this functional should be subsequently transformed to an energy de-
fined on functions by means of the coarea formula. Following some suggestions from a
paper by Braides and Malchiodi [17] such a functional is given by

E(1)
ε (D) =

1
4π

∫
∂D

(1
ε

+ εκ2(x)
)
dH1(x),

where κ denotes the curvature of ∂D. The number 1/4π is a normalization factor that
derives from the fact that minimizers of E(1)(D) are given by balls of radius ε. This
functional may be interpreted, upon scaling, as a singular perturbation of the perimeter
functional by a curvature term.

The next step is then to construct another energy defined on sets, that approximates
the functional

∫
C(1 + κ2)dH1, where C is a (finite) union of W 2,2-curves with endpoints

contained in P . To this end we approximate C away from D by sets A, whose energy is
defined as

E(2)
ε (A,D) =

1
2

∫
(∂A)\D

(1 + κ2) dH1.

Since no dependence on ε is present in this energy, the condition that A shrinks to C must
be imposed by requiring in addition that meas(A) ≤ aε = o(1) as ε → 0. The factor 1/2
depends on the fact that, as A tends to C, each curve of C is the limit of two arcs of ∂A.

The intermediate approximation is thus constructed by assembling the pieces above
and the simpler terms that account for u:

Eε(u,A,D) = E(1)
ε (D) + E(2)

ε (A,D) +
∫

Ω\(A∪D)
|∇u|2 dx+

∫
Ω
|u− g|2 dx

defined for A and D compactly contained in Ω (with the condition that meas(A) ≤ aε).
Note that A ∪D contains the singularities of u. In this way a triplet (u,C, P ) is approxi-
mated by means of a triplet (u,A,D) = (uε, Aε, Dε) as in Fig. 1.

Figure 1: curves C and points P = {pi}, and approximating sets A and D =
⋃

iDi

To obtain an energy defined on functions, we again use a gradient-theory approach
as by Modica and Mortola [31] (see also e.g. [15]), where it is shown that the perimeter
measures H1 ∂A and H1 ∂D are approximated by the measures H1

ε(s,∇s) dx and
H1

ε(w,∇w) dx where

H1
ε(s,∇s) = ζε|∇s|2 +

s2(1− s)2

ζε
, H1

ε(w,∇w) = ζε|∇w|2 +
w2(1− w)2

ζε
,
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ζε → 0 as ε → 0, and s and w are optimal-profile functions approximating 1 − χA and
1− χD, respectively. We define the curvature of s and w as

κ(∇s) =

{
div

( ∇s
|∇s|

)
if ∇s 6= 0

0 otherwise,
κ(∇w) =

{
div

( ∇w
|∇w|

)
if ∇w 6= 0

0 otherwise,

respectively. The next step is formally to replace the characteristic functions 1− χA and
1− χD by functions s and w. The term E(1)

ε (D) is then substituted by

G(1)
ε (w) =

∫
Ω

(1
ε

+ εκ2(∇w)
)
H1

ε(w,∇w) dx;

the term E(2)
ε (A,D) by

G(2)
ε (s, w) =

∫
Ω
w2(1 + κ2(∇s))H1

ε(s,∇s) dx,

and the constraint that meas(A) ≤ aε by an integral penalization

Iε(s, w) =
1
µε

∫
Ω
((1− s)2 + (1− w)2) dx,

(where µε → 0) that forces s and w to be equal to 1 almost everywhere in the limit as
ε→ 0, so that we construct a candidate functional

Gε(u, s, w) =
1

4πb0
G(1)

ε (w) +
1

2b0
G(2)

ε (s, w) +
∫

Ω
s2|∇u|2 dx+

∫
Ω
|u− g|2 dx+ Iε(s, w),

where b0 is a normalization constant.
The main result of the paper is showing that these elliptic energies are indeed vari-

ational approximations in the sense of De Giorgi’s Γ-convergence of the energy G, for a
suitable choice of ζε and µε (see Theorem 3.9)

The construction of Gε is close in spirit to the Ambrosio and Tortorelli approach ([5],
[15]). A technical but important difference is that in [5] the double-well potential s2(1−s)2
in the approximation of the perimeter is replaced by the single-well potential (1−s)2. This
modification breaks the symmetry between 0 and 1 and forces automatically s to tend to 1
as ε→ 0+. Unfortunately, it also forbids recovery sequences to be bounded in W 2,2. With
this substitution the curvatures terms in G(1) and G(2)

ε would necessarily be unbounded.
In our case the necessary symmetry breaking is obtained by adding the ‘lower order’ term
Iε.

Another issue raised by this approach is the proper definition of convergence of func-
tions or sets to curves and points. While in the results by Modica and Mortola [31] or
Ambrosio and Tortorelli [5] it is possible, and convenient, to identify sets of finite perime-
ter with characteristic functions in BV , and segmentation curves with free-discontinuity
sets of SBV functions, respectively, in our case we have chosen not to place our objects
in a common functional framework. On the contrary we have chosen a ‘lighter’ approach
by keeping the domains of the approximating functionals and of the limit disjoint. We
use the Hausdorff convergence to define the convergence of sets to curves and points, and
an ad hoc definition of convergence of functions, that takes into account the convergence
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of sub-level sets. This approach is in line with recent works as those by Alberti, Baldo
and Orlandi [1] on the convergence of Ginzburg-Landau energies (see also Sandier and
Serfaty [38]), or of Friesecke, James and Muller [27] on the limits of thin structures, where
the identification of some lower-dimensional geometric objects as limits of full-dimensional
functions is described using Γ-convergence.

We note that the complex form of the functionals Gε, in particular of G(1)
ε , seems

necessary despite the simple form of the target energy. Indeed, in order to describe an
energy defined on points in the limit, it seems necessary to consider degenerate functionals.
Our approach may be compared with that giving vortices in the Ginzburg-Landau theory
(see e.g. the book by Bethuel, Brezis and Hélein [12]) or concentration of energies for
functionals with critical growth (see e.g. the book by Flucher [26], and a recent approach
by Γ-convergence by Amar and Garroni [2]). In both cases energies on points are recovered
as limits of complex energies.

Finally we remark that the Γ-convergence result still holds, with minor changes in our
proof, by replacing the lower order term

∫
Ω |u−g|

2dx with a wide class of perturbations that
allow the application of the variational method to other visual reconstruction problems,
such as for instance the ones considered in [29, 34], and that numerical approximations may
be simplified by the use of a conjecture by De Giorgi on the approximation of curvature
functionals (see Section 7).

2 Notation and preliminary definitions

We denote by | · | and 〈·, ·〉 the usual euclidean norm and scalar product in R2, by dist
the euclidean distance in R2, and by Bρ(x0) the open ball centered at x0 with radius ρ.
For any set A, χA will be the characteristic function of A; that is, χA(x) = 1 if x ∈ A,
χA(x) = 0 if x /∈ A. We say that A is of class C∞ if A is open, and its restriction to
some neighbourhood of any x ∈ ∂A is the subgraph of a function of class C∞ with respect
to a suitable orthogonal coordinate system. If Ω ⊆ R2 is a bounded open set then we
write A ∈ C∞c (Ω) if A is of class C∞ and A ⊂⊂ Ω. The Hausdorff distance between two
closed sets C and K is defined as dH(C,K) = inf{r > 0 : C ⊂ (K)r,K ⊂ (C)r}, where
(A)r = {x ∈ R2 : dist(x,A) < r}, for a generic set A ⊆ R2.

We denote by meas(B) the Lebesgue measure of the set B ⊆ R2, by H1 the one-
dimensional Hausdorff measure and by # the counting measure. We will use standard
notation for the Lebesgue and Sobolev spaces Lp and W k,p.

2.1 Curves. Length and curvature energies

We call a curve any function γ : [a, b] → R2 in W 2,2(a, b) such that |γ̇| 6= 0 in [a, b]. The
points γ(a) and γ(b) are the endpoints of γ, the set [γ] = {γ(t) : t ∈ [a, b]} is the trace
of γ. A curve will be identified with its representative in C1([a, b]). A curve is simple
if γ(t1) = γ(t2) only if t1 = t2 or {t1, t2} = {a, b}. A regular closed curve is a curve on
some interval [a, b] that may be extended to a (b − a)-periodic W 2,2

loc function on R (i.e.,
its endpoints join smoothly).

Let C = {γi}i be a family of curves. If the curves γi are parameterized on disjoint
intervals [ai, bi] then with an abuse of notation we will write C : S → R2, where S =⋃

i[ai, bi]. We denote by [C] the trace of C, defined as the union of all the traces of the
curves in C; we say that C is disjoint if [γi] ∩ [γj ] = ∅ for any i, j with i 6= j.
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Let γ be a curve defined on [a, b]; we define the tangent unit vector at the point
t ∈ [a, b] as τ(t) = γ̇(t)/|γ̇(t)|, and the curvature κ(t) by κ(t) = |τ̇(t)|/|γ̇(t)|. Note that
the functionals

L(γ) =
∫ b

a
|γ̇(t)|dt, K(γ) =

∫ b

a
κ2(t)|γ̇(t)|dt

are independent of the particular parametrization chosen. L(γ) is the length of γ and K is
the integral of the square of the curvature along γ. Furthermore, given a subset I ⊆ [a, b],
we define the localized versions of L and K by

L(γ, I) =
∫

I
|γ̇(t)|dt, K(γ, I) =

∫
I
κ2(t)|γ̇(t)|dt,

respectively. We denote by s the arc-length parameter; then we have |γ̇(s)| = 1, τ(s) =
γ̇(s), κ(s) = |γ̈(s)|, and

K(γ) =
∫ L(γ)

0
κ2(s)ds =

∫ L(γ)

0
|γ̈(s)|2ds. (2.1)

We will need the following simple geometric lemma (for a proof see [8] Lemma 3.1 and
[19] Section 3). The angle between two vectors will be assumed to be in [0, π].

Lemma 2.1. Let γ be a curve defined on [a, b] and let ω denote the maximum angle
between its tangent vectors at any two points in [a, b]. The following inequalities hold:

(i) if ω > π/3 then L(γ)K(γ) ≥ 1;

(ii) if γ is a closed curve then ω ≥ π/2;

(iii) if ω ≤ π/3 then L(γ) ≤ 2|γ(b)− γ(a)|;

(iv) if γ is a simple regular closed curve then L(γ)K(γ) ≥ 4π2.

If A is a bounded subset of R2 of class C∞, then ∂A is locally the graph of a function
f of class C∞. Hence the curvature κ(x) of ∂A can be defined locally by means of the
classical formulas involving the second derivatives of f . The function κ(x) does not depend
on the choice of the coordinate system used to describe ∂A as a graph, and belongs to
L2(∂A,H1). Let A be a bounded subset of R2 of class C∞; a finite family C = {γi}i of
regular closed curves is a parametrization of ∂A if C is disjoint, each curve of the family
is simple, and [C] = ∂A. Then, using (2.1), we have

H1(∂A) =
∑
γ∈C

L(γ),
∫

∂A
κ2dH1 =

∑
γ∈C

K(γ). (2.2)

Note that each bounded subset A of R2 of class C∞ admits a parametrization.

2.2 Admissible families of curves

Let C = {γi}i be a family of curves; we denote by P (C) the set of the endpoints of all the
curves in C with the exception of those regular and closed. Then we define the functional

A(C) =
∑
γ∈C

(
K(γ) + L(γ)

)
+ #P (C).

Following [19] we give the definition of an admissible family of curves.
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Definition 2.2. We say that a family C = {γi}i of curves is admissible if the following
conditions are satisfied:

(i) A(C) < +∞;

(ii) γ̇i(t1) and γ̇j(t2) are parallel whenever γi(t1) = γj(t2) with t1 and t2 interior to the
domains of γi and γj, respectively, and with possibly i = j.

We say that C is an admissible family of curves in Ω if in addition [C] ⊂ Ω.

Condition (ii) asserts that two (possibly coinciding) curves may meet at a point differ-
ent from an endpoint only if they have the same tangent at that point. In [19] it has been
proved that if C is admissible, then the total number of curves in C is finite, so that [C]
is a closed set. Note that this does not follow simply from #P (C) < +∞ since the curves
in C may have common endpoints.

A notion of convergence of a sequence of traces of admissible families of curves, that
takes into account possible reparameterizations and that curves may converge to points,
has been introduced in [19] as follows.

Definition 2.3. We say that a sequence of traces of admissible families {[Ch]}h of curves
in Ω converges to the trace of an admissible family of curves [C] in Ω up to the finite set
of points P ⊂ Ω if for any h there exists an admissible family, whose trace is [Ch] (and
which is still denoted by Ch), such that the following conditions are satisfied:

(i) each of the families Ch contains a number m of curves {γ1
h, . . . , γ

m
h }, with m indepen-

dent of h, such that, for any i = 1, . . . ,m, the sequence {γi
h}h, reparametrized on a

fixed interval, converges weakly in W 2,2 to a curve γi;

(ii) the maximum distance of the trace of the remaining curves of Ch from the set P goes
to zero (i.e., dist ([Ch \ {γ1

h, . . . , γ
m
h }], P ) → 0) ;

(iii) if we set C ′ = {γ1, . . . , γm}, then [C ′] = [C].

We need a further notion of convergence for sequences of compact sets.

Definition 2.4. We say that a sequence of compact sets {Kh}h converges in the Hausdorff
metric to the compact set K up to the finite set of points P if there exists a sequence of
compact sets {K̂h}h such that K̂h ⊆ Kh for any h, {K̂h}h converges to K in the Hausdorff
metric, and the maximum distance of Kh \ K̂h from the set P goes to zero.

A ‘dense’ class of families of curves with respect to the convergence in Definition 2.3
are those satisfying the finiteness property as defined in [8] (see Lemma 6.1).

Definition 2.5. We say that a family of curves C satisfies the finiteness property if C is
finite and there exists a finite set of points F such that [C] \ F can be written locally as
the graph of a function of class W 2,2.

The following notion of equivalent families of curves is useful when dealing with dif-
ferent parameterizations of [C].

Definition 2.6. Let C and C ′ be two admissible families of curves in Ω. We say that C
and C ′ are equivalent if [C] = [C ′], P (C) = P (C ′) and∑

γ∈C

L(γ) =
∑
γ∈C′

L(γ),
∑
γ∈C

K(γ) =
∑
γ∈C′

K(γ).
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3 The functional framework and the main results

In this section we define the curvature-depending functional introduced by Coscia in [19].
We then define two families of approximating functionals defined on boundaries of smooth
sets, and on smooth functions, respectively.

3.1 The energy functional

Let Ω ⊂ R2 be a bounded open set; let g ∈ L2(Ω) and let αK , αL and αP be positive
numbers. For any admissible family C of curves in Ω, and any finite set of points P ⊂ Ω
such that P (C) ⊆ P , we define the functionals:

F(C,P ) =
∑
γ∈C

(
αKK(γ) + αLL(γ)

)
+ αP #P,

F0(C,P ) = inf{F(Ĉ, P̂ ) : [Ĉ] = [C], P̂ \ [Ĉ] = P \ [C]}.
The functional F0 allows us to deal with the trace of of a family of curves independently
of the parametrization of the curves themselves.

Remark 3.1. The infimum in the definition of F0(C,P ) is a minimum; namely, there
exist an admissible family C∗ of curves in Ω and a finite set of points P ∗ ⊂ Ω such that

[C∗] = [C], P ∗ \ [C∗] = P \ [C], F(C∗, P ∗) = F0(C,P ). (3.1)

This can be easily proved by reasoning similarly as in the proof of [19] Theorem 4.2.

We denote by X(Ω) the family of all triplets (u,C, P ) such that P ⊂ Ω is a finite set of
points, C is an admissible family of curves in Ω such that P (C) ⊆ P and u ∈W 1,2(Ω\[C]),
and we introduce the functional G : X(Ω) → [0,+∞] defined by

G(u,C, P ) =
∫

Ω\[C]
|∇u|2 dx+ F0(C,P ) +

∫
Ω
|u− g|2 dx.

The compactness and lower semicontinuity result below for the functional G follows
from [19] Theorem 4.2. We say that a sequence of sets of points {Ph}h ⊂ Ω converges
to the set P if each of the sets Ph contains a number n of points {x1

h, . . . , x
n
h}, with n

independent of h, such that xi
h → xi for any i = 1, . . . , n, and

⋃n
i=1{xi} = P .

Theorem 3.2 (coerciveness and lower semicontinuity of G). Let {(uh, Ch, Ph)}h ⊂
X(Ω) be a sequence such that suph G(uh, Ch, Ph) < +∞; then there exist a subsequence
{(uhk

, Chk
, Phk

)}k and a triplet (u,C, P ) ∈ X(Ω), such that {[Chk
]}k converges to [C] up

to the set P , Phk
converges to P , uhk

⇀ u weakly in W 1,2(Ω′) for every Ω′ ⊂⊂ Ω\([C]∪P )
(in particular, uhk

→ u almost everywhere in Ω), and

lim inf
h→+∞

G(uh, Ch, Ph) ≥ G(u,C, P ).

Remark 3.3. By the results above, taking uh constant (e.g. uh = 0), we deduce that the
corresponding coerciveness property holds for F0(C,P ) and, consequently, for F(C,P ).

The object of this work is to obtain an approximation of the functional G in a suitable
sense by functionals defined on (smooth) functions. This approximation will be described
below, first introducing an intermediate approximation where curves and points are seen
as limits of (smooth) sets.
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3.2 The approximating functionals Eε defined on sets

We first introduce the functionals Eε defined on (functions and) boundaries of smooth sets
and approximating G. In the following, without losing generality, we assume αK = αL =
αP = 1. We set

Y (Ω) = {(u,A,D) : u ∈W 1,2(Ω); A,D ∈ C∞c (Ω)},

and, for every ε > 0, we denote by Eε : Y (Ω) → [0,+∞] the functional defined by

Eε(u,A,D) =
∫

Ω
(1− χA∪D)|∇u|2 dx+

1
2

∫
∂A

(1− χD)(1 + κ2) dH1

+
1
4π

∫
∂D

(1
ε

+ εκ2
)
dH1 +

∫
Ω
|u− g|2 dx,

where κ(x) denotes either the curvature of ∂A at x ∈ ∂A, or the curvature of ∂D at
x ∈ ∂D, respectively.

Let aε be a positive infinitesimal as ε → 0+; we denote by Eε : Y (Ω) → [0,+∞] the
functional defined by

Eε(u,A,D) =

{
Eε(u,A,D) if meas(A ∪D) ≤ aε

+∞ otherwise.

We define the following convergence for sequences {(uh, Ah, Dh)}h ⊂ Y (Ω).

Definition 3.4. We say that a sequence {(uh, Ah, Dh)}h ⊂ Y (Ω) converges weakly to the
triplet (u,C, P ) ∈ X(Ω), if meas(Ah ∪Dh) → 0 and the following properties hold:

(i) {∂Dh}h converges in the Hausdorff metric to the set P ;

(ii) {∂Ah}h converges in the Hausdorff metric to [C] up to the set P ;

(iii) uh → u in L1(Ω).

The above definition describes the concentration of the smooth sets Dh and Ah on
sets of points and traces of curves, respectively. We now define the Γ-convergence of the
functionals Eε to the functional G with respect to the convergence above.

Definition 3.5. We say that Eε Γ-converge to G as ε → 0+ if for every sequence {εh}h

of positive numbers converging to zero and for every triplet (u,C, P ) ∈ X(Ω) the following
two conditions are fulfilled :

(i) (liminf inequality) for every sequence {(uh, Ah, Dh)}h ⊂ Y (Ω) converging weakly to
(u,C, P ), we have

lim inf
h→+∞

Eεh
(uh, Ah, Dh) ≥ G(u,C, P ); (3.2)

(ii) (limsup inequality) there exists a sequence {(uh, Ah, Dh)}h ⊂ Y (Ω) converging weakly
to (u,C∗, P ∗) such that

lim sup
h→+∞

Eεh
(uh, Ah, Dh) ≤ G(u,C, P ), (3.3)

where C∗, P ∗ ⊂ Ω are as in (3.1).
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We will prove the following theorem which states that a sequence of triplets in Y (Ω),
asymptotically minimizing the functional Eε, admits a subsequence converging weakly to
a minimizer of G.

Theorem 3.6 (approximation by energies defined on sets). The functionals Eε Γ-
converge to G as ε→ 0+. Moreover, if {εh}h is a sequence of positive numbers converging
to zero, and {(uh, Ah, Dh)}h ⊂ Y (Ω) is a sequence such that

lim
h→+∞

(
Eεh

(uh, Ah, Dh)− inf
Y (Ω)

Eεh

)
= 0,

then there exist a subsequence {(uhk
, Ahk

, Dhk
)}k and a minimizer (u,C, P ) of G such that

{(uhk
, Ahk

, Dhk
)}k converges weakly to (u,C, P ).

The proof of the liminf inequality will be given by Theorem 4.4, that of the limsup
inequality by Theorem 6.3. The convergence of minimum problems is a direct consequence
of Γ-convergence (see [16] Section 1.5) and of the equi-coerciveness of Eε proved in Theorem
4.1.

3.3 The functionals Gε defined on smooth functions

We now introduce the functionals Gε approximating G and defined on smooth functions.
We set

W (Ω) = {(u, s, w) : u ∈W 1,2(Ω); 1− s, 1− w ∈ C∞0 (Ω; [0, 1])}.

If 1− s ∈ C∞0 (Ω; [0, 1]), using Sard’s theorem (see e.g. [4]), for a.e. λ ∈ (0, 1) we have

{s = λ} = ∂{s < λ}, {s < λ} ∈ C∞c (Ω), |∇s| 6= 0 on {s = λ}.

Then we set

κ(∇s) = div
(
∇s
|∇s|

)
on {s = λ} for a.e. λ ∈ (0, 1) ,

and, V : R → [0,+∞) being defined by V (t) = t2(1− t)2,

H1
ε(s,∇s) = ε|∇s|2 +

V (s)
ε

. (3.4)

The quantity κ(∇s) is the curvature of the level set {s = λ}, and H1
ε(s,∇s) is the Modica-

Mortola density of elliptic functionals approximating the perimeter functional (see [31],
[15]). If 1−w ∈ C∞0 (Ω; [0, 1]) the quantities κ(∇w) andH1

ε(w,∇w) are defined analogously.
Let now βε, µε be positive infinitesimals as ε→ 0+ such that

lim
ε→0+

ε| log ε|
βε

= 0, lim
ε→0+

βε

µε
= 0; (3.5)

for every ε > 0 we define

G(1)
ε (w) =

∫
Ω\{|∇w|=0}

( 1
βε

+ βεκ
2(∇w)

)
H1

ε(w,∇w) dx,
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and
G(2)

ε (s, w) =
∫

Ω\{|∇s|=0}
w2(1 + κ2(∇s))H1

ε(s,∇s) dx.

We denote by Gε : W (Ω) → [0,+∞] the functional defined by

Gε(u, s, w) =
∫

Ω
s2|∇u|2 dx+

1
4πb0

G(1)
ε (w) +

1
2b0

G(2)
ε (s, w) +

∫
Ω
|u− g|2 dx

+
1
µε

∫
Ω
(1− s)2 dx+

1
µε

∫
Ω
(1− w)2 dx, (3.6)

where b0 = 2
∫ 1
0

√
V (t)dt.

We define the following convergence for sequences {(uh, sh, wh)}h ⊂ W (Ω) that de-
scribes the concentration of the level sets of the smooth functions wh and sh on sets of
points and traces of curves, respectively. The definition is particularly complex in order to
ensure the compactness of the convergence under the hypothesis of uniform boundedness
of the energies Gε, since such an assumption does not guarantee analogous bounds for all
level sets.

Definition 3.7. We say that a sequence {(uh, sh, wh)}h ⊂W (Ω) converges weakly to the
triplet (u,C, P ) ∈ X(Ω), if, after setting

{x ∈ Ω : sh(x) < λ} = Aλ
h, {x ∈ Ω : wh(x) < θ} = Dθ

h,

the following properties hold:

(i) for any θ, λ ∈ (0, 1) there exist a finite set of points P θ ⊂ Ω and an admissible
family Cλ of curves in Ω such that the sequence {(uh, A

λ
h, D

θ
h)}h converges weakly to

(u,Cλ, P θ);

(ii) we have [C] =
⋂
{[Cλ] : 0 < λ < 1} and P =

⋂
{P θ : 0 < θ < 1}.

We now can define the Γ-convergence of the functionals Gε to the functional G with
respect to the convergence above.

Definition 3.8. We say that Gε Γ-converge to G as ε → 0+ if for every sequence {εh}h

of positive numbers converging to zero and for every triplet (u,C, P ) ∈ X(Ω) the following
two conditions are fulfilled:

(i) (liminf inequality) for every sequence {(uh, sh, wh)}h ⊂ W (Ω) converging weakly to
(u,C, P ), we have

lim inf
h→+∞

Gεh
(uh, sh, wh) ≥ G(u,C, P ); (3.7)

(ii) (limsup inequality) there exists a sequence {(uh, sh, wh)}h ⊂W (Ω) converging weakly
to (u,C∗, P ∗) such that

lim sup
h→+∞

Gεh
(uh, sh, wh) ≤ G(u,C, P ), (3.8)

where C∗ and P ∗ are as in (3.1).
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We will prove the following theorem which states that a sequence of triplets in W (Ω),
asymptotically minimizing the functional Gε, admits a subsequence converging weakly to
a minimizer of G.

Theorem 3.9 (approximation by functionals defined on smooth functions). The
functionals Gε Γ-converge to G as ε → 0+. Moreover, if {εh}h is a sequence of positive
numbers converging to zero, and {(uh, sh, wh)}h ⊂W (Ω) is a sequence such that

lim
h→+∞

(
Gεh

(uh, sh, wh)− inf
W (Ω)

Gεh

)
= 0,

then there exist a subsequence {(uhk
, shk

, whk
)}k and a minimizer (u,C, P ) of G such that

{(uhk
, shk

, whk
)}k converges weakly to (u,C, P ).

The proof of the liminf inequality will be given by Theorem 5.3, that of the limsup
inequality by Theorem 6.4. The convergence of minimum problems is a direct consequence
of Γ-convergence (see [16] Section 1.5) and of the equi-coerciveness of Gε proved in Theorem
5.1.

4 Approximation by functionals defined on sets

4.1 Equicoerciveness

We now prove the equicoerciveness of the family of functionals Eε.

Theorem 4.1. Let {εh}h be a sequence of positive numbers converging to zero. Let
{(uh, Ah, Dh)}h ⊂ Y (Ω) be a sequence such that

sup
h∈N

Eεh
(uh, Ah, Dh) < +∞. (4.1)

Then there exist a subsequence {(uhk
, Ahk

, Dhk
)}k and a triplet (u,C, P ) ∈ X(Ω) such that

{(uhk
, Ahk

, Dhk
)}k converges weakly to (u,C, P ). Moreover, the following properties hold:

(a) there exists a sequence {Ck}k of disjoint families of simple curves in Ω such that
[Ck] ⊆ ∂Ahk

for any k, {[Ck]}k converges to [C] up to the set P (see Definition 2.3),
and the maximum distance of ∂Ahk

\ [Ck] from the set P goes to zero;

(b) uhk
⇀ u weakly in W 1,2(Ω′) for every Ω′ ⊂⊂ Ω \ ([C] ∪ P ).

Proof. Step 1. We prove property (i) of the convergence in Definition 3.4.
Since {Dh}h ⊂ C∞c (Ω), for any h ∈ N there exists a parametrization of ∂Dh by means of a
finite family C̃h of regular closed curves such that C̃h is disjoint, each curve of the family
is simple, and [C̃h] = ∂Dh for any h.

Using (2.2), (4.1) and Lemma 2.1 (iv), for h large enough we have

M1 ≥ 1
4π

∫
∂Dh

(
εhκ

2 +
1
εh

)
dH1 =

1
4π

∑
γ∈ eCh

(
εhK(γ) +

1
εh
L(γ)

)
≥ 1

4π

∑
γ∈ eCh

2(L(γ)K(γ))1/2 ≥ #C̃h, (4.2)
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where M1 is a positive constant independent of h. Since #C̃h is uniformly bounded with
respect to h, there exists a subsequence {C̃hk

}k such that #C̃hk
= n independent of k.

Let C̃hk
= {γ̃1

hk
, . . . , γ̃n

hk
}.

From (4.2) it follows in particular that for any γ ∈ C̃h we have L(γ) ≤ 4πM1εh, so that
limh max{L(γ) : γ ∈ C̃h} = 0. Then, possibly passing to a subsequence (not relabelled),
there exists a finite set of points P = {x1, . . . , xn} ⊂ Ω (not necessarily all distinct) such
that for any ρ > 0 we can find kρ ∈ N with

[γ̃i
hk

] ⊆ Bρ(xi) for all k > kρ and i ∈ {1, . . . , n}. (4.3)

Since [C̃hk
] = ∂Dhk

property (i) then follows from (4.3).

Step 2: we prove property (a), which implies condition (ii) in Definition 3.4.
We set δ = min{|xi − xj | : xi, xj ∈ P, xi 6= xj}, and, for η > 0 with η ≤ δ/4, define

Qη =
( n⋃

i=1
Bη(xi)

)
∩ Ω,

so that there exists kη ∈ N such that ∂Dhk
⊂ Qη for any k > kη. Since Ah ∈ C∞c (Ω), then,

for k > kη we may write
∂Ahk

\Qη = [Ĉη,k] ∪N,

where Ĉη,k is a family of simple curves (not necessarily finite) having all the endpoints on
∂Qη, and N ⊆ ∂Qη. We denote by ω(γ) the maximum angle between the tangent vectors
to γ at any two points. We denote by γ ∈ C1

η,k the subset of Ĉη,k of the curves γ such
that ω(γ) > π/3. Using Lemma 2.1(ii) it follows that all closed curves in Ĉη,k belong to
C1

η,k. If γ ∈ Ĉη,k \C1
η,k, then γ joins two distinct points P i

k 6= P j
k such that P i

k, P
j
k ∈ ∂Qη.

We define γ ∈ C2
η,k as the subset of Ĉη,k of those γ such that

ω(γ) ≤ π/3 and P i
k ∈ ∂Bη(xi), P j

k ∈ ∂Bη(xj), with xi 6= xj .

Then we set Cη,k = C1
η,k ∪ C2

η,k. Using (2.2) and (4.1) we have for k > kη

M2 ≥
∫

∂Ahk

(1− χDhk
(x))(1 + κ2) dH1

≥
∫

∂Ahk
\Qη

(1 + κ2) dH1 ≥
∑

γ∈Cη,k

(
K(γ) + L(γ)

)
, (4.4)

where M2 is a positive constant independent of k. Using (4.4), the inequality (K +L)2 ≥
4KL, and Lemma 2.1(i), we find

M2 ≥
∑

γ∈C1
η,k

(
K(γ) + L(γ)

)
≥ 2#C1

η,k ,

M2 ≥
∑

γ∈C2
η,k

L(γ) ≥ (δ − 2η)#C2
η,k .
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Since K(γ) ≤ M2 for any curve γ ∈ C1
η,k, again using Lemma 2.1(i), it follows that

L(γ) ≥ 1/M2 and

L(γ) ≥ min
{ 1
M2

, δ − 2η
}

for all γ ∈ Cη,k. (4.5)

Then, since η ≤ δ/4 and all closed curves in Cη,k are regular, we have

#P (Cη,k) ≤ 2#Cη,k, #Cη,k ≤
(1

2
+

2
δ

)
M2. (4.6)

It follows that Cη,k is a finite family and, since the traces of the curves in Cη,k are pairwise
disjoint, Cη,k is an admissible family of curves in Ω for any k > kη. Using (4.4) and (4.6)
we have

F(Cη,k, P (Cη,k)) ≤ 2
(
1 +

2
δ

)
M2 for all k > kη. (4.7)

Then, by the coerciveness of F (Remark 3.3) and possibly passing to a subsequence, there
exists an admissible family Cη of curves in Ω such that {[Cη,k]}k converges to [Cη], up to
a finite set of points contained in ∂Qη.

If γ ∈ Ĉη,k \ Cη,k, then ω(γ) ≤ π/3 and γ joins two distinct points P i
k 6= P j

k such that
P i

k, P
j
k ∈ ∂Bη(xq), for some q ∈ {1, . . . , n}. Then, by Lemma 2.1(iii) we get

L(γ) ≤ 2|P i
k − P j

k | ≤ 4η, if γ ∈ Ĉη,k \ Cη,k,

from which it follows that
∂Ahk

\ [Cη,k] ⊆
n⋃

i=1
B3η(xi). (4.8)

Let now {ηl}l be a sequence of positive numbers converging to zero as l → +∞. By
Remark 3.3 and (4.7), we have for l large enough

2
(
1 +

2
δ

)
M2 ≥ lim inf

k→+∞
F(Cηl,k, P (Cηl,k)) ≥ F(Cηl

, P (Cηl
)),

so that F(Cηl
, P (Cηl

)) is uniformly bounded with respect to l. Since the endpoints of
the curves Cηl

converge to a set of points contained in P , again using Remark 3.3, up
to a subsequence, there exists an admissible family C of curves in Ω such that {[Cηl

]}l

converges to [C] up to the set P , as l→ +∞. The proof of (a) is concluded by a diagonal
argument producing the family Ck, upon showing that P (C) ⊆ P . By construction, the
set of the limits of the endpoints of all the curves in Ck is contained in P . It remains to
show that no new endpoints arise. This may happen in two cases: i) if a sequence of closed
curves in Ck converges to a nonclosed curve; ii) if a sequence of regular closed curves in
Ck converges to a nonregular curve. Case (i) is ruled out by the uniform convergence, and
case (ii) is ruled out by the weak W 2,2

loc convergence of the curves in Ck (e.g. as in Step 1 of
the proof of [19] Theorem 4.2). It follows that P (C) ⊆ P ; moreover, by the construction
of the families of curves Cη,k, we have

(P \ P (C)) ∩ [C] = ∅. (4.9)

The proof of (a) is then completed.
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Step 3: we prove property (b), that implies condition (ii) in Definition 3.4.
Let {Ωj}j be a sequence of open sets Ωj ⊂⊂ Ω \ ([C] ∪ P ) invading Ω \ ([C] ∪ P ). The
distance dist(Ωj , [C]∪P ) is positive for any j, so that by (4.3), (4.8) and the convergence
of {[Ck]}k to [C], there exists ηj > 0 such that

Ωj ∩
( n⋃

i=1
B3ηj (x

i)
)

= ∅;

hence there exists kj ∈ N such that for all k ≥ kj

Ωj ∩ [C̃hk
] = Ωj ∩ ∂Dhk

= ∅, Ωj ∩ [Ĉηj ,k] = Ωj ∩ ∂Ahk
= ∅.

Then for any x ∈ Ωj there exists ρ > 0 such that either Bρ(x) ⊆ Ahk
or Bρ(x) ⊆ Ω \Ahk

,
for any k ≥ kj . Since meas(Ahk

) → 0 it follows that Ωj ∩ Ahk
= ∅ for any k ≥ kj .

Analogously Ωj ∩Dhk
= ∅.

Hence uhk
∈W 1,2(Ωj) for any k ≥ kj , and using (4.1) we have

sup
j

sup
k

∫
Ωj

(|uhk
|2 + |∇uhk

|2) dx ≤ sup
k

∫
Ω\(Ahk

∪Dhk
)
(|uhk

|2 + |∇uhk
|2) dx

≤ sup
k

∫
Ω\(Ahk

∪Dhk
)
(2|uhk

− g|2 + 2|g|2 + |∇uhk
|2) dx < +∞. (4.10)

Hence, possibly passing to a subsequence, {uhk
}k converges weakly in W 1,2(Ωj) and a.e.

in Ωj to a function u ∈ W 1,2(Ωj) for any j. By using a diagonal argument we obtain a
function u ∈ W 1,2

loc (Ω \ ([C] ∪ P )) and a subsequence {uhk
}k converging to u weakly in

W 1,2(Ω′) for every Ω′ ⊂⊂ Ω \ ([C] ∪ P ).
Using (4.10), the weak lower semicontinuity of the W 1,2 norm and the fact that {Ωj}j

invades Ω \ ([C] ∪ P ), we deduce that u ∈ W 1,2(Ω \ ([C] ∪ P )). Since P is a finite set of
points we have u ∈W 1,2(Ω \ [C]) and (b) is proved.

Remark 4.2. (i) In the following we will use the construction in Step 3 above; in particular
that possibly passing to a subsequence, there exists a sequence {ηh}h of positive numbers
converging to zero such that

∂Dh ⊂ Qηh
for all h, where Qηh

=
(⋃
{Bηh

(x) : x ∈ P}
)
∩ Ω, (4.11)

and there exists a sequence {Ch}h of disjoint families of simple curves in Ω that satisfies
condition (a) in Theorem 4.1 and such that P (Ch) ∈ ∂Qηh

for any h.
(ii) Note that in the proof of (a) (Step 2 above) we only need an estimate on the part

of the energy Eεh
(uh, Ah, Dh) not depending on uh.

4.2 Γ-convergence: lower inequality

We now prove the lower inequality (3.2) of the Γ-convergence of the family of functionals
Eε to the functional G. We need the following technical lemma. It asserts that the weak
convergence of (uh, Ah, Dh) to (u,C, P ) under an equi-boundedness assumption on the
energies Eε occurs in such a way that each curve is obtained as a limit of two curves
belonging to ∂Ah.
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Lemma 4.3. Let {εh}h be an infinitesimal sequence of positive numbers and let the se-
quence {(uh, Ah, Dh)}h ⊂ Y (Ω) converge weakly to (u,C, P ) ∈ X(Ω) and

sup
h∈N

Eεh
(uh, Ah, Dh) < +∞.

Then, there exists a sequence {Ch}h = {γ1
h, . . . , γ

m
h } of disjoint families of simple curves

in Ω such that [Ch] ⊆ ∂Ah for any h, {[Ch]}h converges to [C] up to the set P , m is
an even number independent of h, {γi

h}h converges weakly in W 2,2 to a curve γi for any
i ∈ {1, . . . ,m}, and

K(γ2i−1) = K(γ2i), L(γ2i−1) = L(γ2i), (4.12)

for i = 1, . . . , m
2 .

Proof. We denote by Ch = {γ1
h, . . . , γ

mh
h } the families of curves obtained in Theorem 4.1.

We also suppose that ηh and Ch are as in Remark 4.2(i), that mh = m is independent of
h, and the sequence {γi

h}h converges weakly in W 2,2 to a curve γi for any i ∈ {1, . . . ,m}.
Let C ′ = {γ1, . . . , γm}; then, by Definition 2.3(iii) and the construction of {Ch}h, we have
[C ′] = [C] and P (C ′) ⊆ P . Moreover C ′ is an admissible family of curves in Ω.

Let p ∈ P ; by (4.9), for any γ ∈ C ′ such that p is not an endpoint of γ we have
dist(p, [γ]) > 0. Then we define d(1) > 0 by

d(1) = min{dist(p, [γ]) : γ ∈ C ′, p ∈ P and p is not an endpoint of γ}.

Let p ∈ P (C ′) and let γ ∈ C ′ be a curve having p as an endpoint; since γ : [a, b] → R2 for
some interval [a, b] and γ ∈W 2,2(a, b), we may select ν = ν(p, γ) > 0 such that:

(i) if γ is not a closed curve, then γ−1(Bν(p)) = Iν , where Iν ⊂ [a, b] is an interval such
that the set {γ(t) : t ∈ Iν} intersects ∂Br(p) in only one point for any r < ν;

(ii) if γ is a closed curve, then γ−1(Bν(p)) = Iν ∪ I ′ν , where Iν , I ′ν ⊂ [a, b] are disjoint
intervals such that both the sets {γ(t) : t ∈ Iν} and {γ(t) : t ∈ I ′ν} intersect ∂Br(p)
in only one point for any r < ν.

We then set

d(2) = min{ν(p, γ) : γ ∈ C ′, p ∈ P (C ′) and p is an endpoint of γ}.

Note that d(2) > 0. We also set

δ = min{|x− y| : x, y ∈ P, x 6= y},

and we choose ρ > 0 such that ρ < min{d(1)/2, d(2), δ/2}. Then, let 0 < σ < ρ and let

Qρ =
⋃
{Bρ(x) : x ∈ P}, Qσ =

⋃
{Bσ(x) : x ∈ P}. (4.13)

As in the proof of Theorem 4.1, we have for h large enough ∂Ah∩(Ω\Qσ) = [Ch]∩(Ω\Qσ);
moreover the endpoints of all the curves in Ch are contained in Qσ.

Step 1: we cover [C] \Qρ by open rectangles in which [C] is the union of graphs.
For any point q ∈ [C] \Qρ let R(q) be an open rectangle centered at q, having two sides
parallel to the tangent line T[C](q) of [C] at q, and such that each curve γ ∈ C ′ meeting
R(q) has the following properties:
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(a) γ−1(R(q)) =
⋃H

j=1Ij , where H is a finite integer and the Ij are disjoint open intervals;

(b) γ(Ij) is a cartesian graph in R(q) of a function of class W 2,2 with respect to T[C](q)
for any j = 1, . . . ,H;

(c) γ does not meet the two sides of R(q) which are parallel to T[C](q).

Such a rectangle exists, since {γ1, . . . , γm} is an admissible family of curves.
We cover the set [C] \Qρ with the family of all such open rectangles {R(q)}q and such

that the diameter of R(q) is strictly smaller than ρ−σ for any q. As [C]\Qρ is a compact
set we get

(d) there exists a finite set of points M ⊂ [C] \Qρ such that the finite subfamily of open
rectangles {R(q)}q∈M with diameters strictly smaller than ρ− σ covers [C] \Qρ.

Note that Qσ ∩R(q) = ∅ for any q ∈M and the set (
⋃

q∈MR(q)) ∪Qρ covers [C].
Thanks to the W 2,2 weak convergence of γi

h to γi, for any q ∈ M and for h large
enough, we have that each curve γh ∈ Ch meeting R(q) satisfies properties (a), (b) and
(c) with the same integer H and the same intervals Ij .

Figure 2: description of Ah inside R(q)

Step 2: we locally parameterize ∂Ah \Qρ.
Let q ∈ M and let (ξ, η) denote the coordinates of points in a local coordinate system
in R(q), with the origin in q, such that T[C](q) coincides with the ξ-axis and R(q) =
(−ξ0, ξ0)× (−η0, η0). Then we have

[Ch] ∩R(q) =
⋃
{graph(f j

h) : 1 ≤ j ≤ r},

where, the curves γh ∈ Ch being simple and disjoint, for all ξ ∈ (−ξ0, ξ0)

f j
h ∈W

2,2(−ξ0, ξ0) for all j ∈ {1, . . . , r}, f1
h(ξ) < f2

h(ξ) < · · · < f r
h(ξ).

Since ∂Ah ∩ R(q) = [Ch] ∩ R(q) and meas(Ah) ≤ aεh
converges to zero, using the

W 2,2 weak convergence of γi
h to γi and property (c) above, we deduce that the following

properties are satisfied for h large enough:

{(ξ, η) ∈ R(q) : η < f1
h(ξ)} ∩Ah = ∅, {(ξ, η) ∈ R(q) : η > f r

h(ξ)} ∩Ah = ∅,

r is an even integer,

{(ξ, η) ∈ R(q) : f2k−1
h (ξ) < η < f2k

h (ξ)} ⊂ Ah for k = 1, . . . ,
r

2
, (4.14)
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{(ξ, η) ∈ R(q) : f2k
h (ξ) < η < f2k+1

h (ξ)} ∩Ah = ∅ for k = 1, . . . ,
r

2
− 1, (4.15)

and, for any k = 1, . . . , r
2 , the functions f2k−1

h , f2k
h converge weakly in W 2,2(−ξ0, ξ0) to

the same function fk ∈W 2,2(−ξ0, ξ0) such that graph(fk) ⊆ [γ] ∩R(q) for some γ ∈ C ′.

Step 3: We show that Ah \ Qρ may be decomposed into a finite number of connected
components converging to [C] and that the number of such connected components is #C ′/2.
Fix i ∈ {1, . . . ,m} and suppose that the curve γi is parametrized on the interval [a, b].
We construct a finite sequence of open rectangles {R(qn)}N

n=1, not necessarily all distinct,
with R(qn) ∈ {R(q)}q∈M for any n = 1, . . . , N , and having the following properties: for
any n ∈ {1, . . . , N} there exists an open interval Ii(n) = (an, bn) ⊂ [a, b] such that

Ii(n) ⊆ γi−1(R(qn)), [γi] \Qρ ⊂ γi
( N⋃

n=1
Ii(n)

)
, (4.16)

Ii(n) ∩ Ii(n+ 1) 6= ∅, bn < bn+1, for all n ∈ {1, . . . , N − 1}. (4.17)

We show that we can construct {R(qn)}n in such a way that there exist l ∈ {1, . . . ,m},
with l 6= i and open intervals I l(n) ⊆ γl−1(R(qn)), n = 1, . . . , N , such that

[γl] \Qρ ⊂ γl
( N⋃

n=1
I l(n)

)
, {γi(t) : t ∈ Ii(n)} = {γl(t) : t ∈ I l(n)}, (4.18)

for any n = 1, . . . , N .
Assume that γi has two endpoints p1, p2 with p1 6= p2. Hence, if q ∈M ∩ [γi] we have

R(q) ∩ Bρ(p) = ∅ for any p ∈ P such that p /∈ {p1, p2}. We will construct the sequence
{R(qn)}N

n=1 recursively. Choose q1 ∈M in such a way that R(q1) contains [γi] ∩ ∂Bρ(p1),
that is a single point because of property (i) above and since ρ < d(2). Suppose that the
rectangle R(qn) has been chosen; then we choose the rectangle R(qn+1) as follows.

Let (ξ, η) denote a local coordinate system in R(qn) such that T[C](qn) coincides with
the ξ-axis and R(qn) = (−ξ0, ξ0)× (−η0, η0). Then, for h large enough, [Ch]∩R(qn) is the
union of the graphs of r functions f j

h, j = 1, . . . , r. Let k ∈ {1, . . . , r/2}; using properties
(a), (b) and (4.14), (4.15), there exist an index l ∈ {1, . . . ,m}, possibly depending on n,
and open intervals

Ii
h(n) ⊆ γi

h
−1(R(qn)), I l

h(n) ⊆ γl
h
−1

(R(qn)),

such that

graph(f2k−1
h ) = {γi

h(t) : t ∈ Ii
h(n)}, graph(f2k

h ) = {γl
h(t) : t ∈ I l

h(n)}.

Since the functions f2k−1
h , f2k

h converge weakly in W 2,2(−ξ0, ξ0) to the same function fk,
and γi

h, γl
h converge weakly in W 2,2 to the curves γi and γl, respectively, it follows that

there exist open intervals Ii(n) = (an, bn) ⊆ γi−1(R(qn)) and I l(n) ⊆ γl−1(R(qn)), such
that

graph(fk) = {γi(t) : t ∈ Ii(n)} = {γl(t) : t ∈ I l(n)}.

Assume that p1 = γi(a) and set

xh = (−ξ0, f2k−1
h (−ξ0)), yh = (ξ0, f2k−1

h (ξ0)), zh = (ξ0, f2k
h (ξ0)).
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If n = 1, since R(q1) contains [γi] ∩ ∂Bρ(p1), the diameter of R(q) is strictly smaller
than ρ − σ, and ρ < d(2), we can choose the coordinate system (ξ, η) in such a way that
γi(a1) ∈ Bρ(p1) and γi(b1) /∈ Bρ(p1). For the same reason, if n = 1 we have l 6= i.
Since xh → γi(a1) and yh → γi(b1), we have xh ∈ Bρ(p1) and yh /∈ Bρ(p1) for h large
enough. If n > 1, using the property (i) of the function γi, ρ < d(2), and (4.17) we have
γi(bn) /∈ Bρ(p1). Since yh → γi(bn), it follows that yh /∈ Bρ(p1) for h large enough. Since
R(qn) is open, either yh ∈ Bρ(p2) or we can find qn+1 ∈ M , with R(qn+1) 6= R(qn), such
that yh ∈ R(qn+1). Then, since f2k−1

h and f2k
h converge weakly to the same function in

W 2,2(−ξ0, ξ0) as h→ +∞, we have either zh ∈ Bρ(p2) or zh ∈ R(qn+1) for h large enough.
If yh, zh ∈ Bρ(p2) we set n = N and the procedure stops. Otherwise, if yh, zh ∈

R(qn+1), we can find a local coordinate system in R(qn+1), with coordinates (ξ̃, η̃), such
that [Ch] ∩ R(qn+1) is the union of the graphs of r̃ functions f̃ j

h, j = 1, . . . , r̃, and there
exists s ∈ {1, . . . , r̃ − 1} such that

{(ξ̃, η̃) ∈ R(qn+1) : f̃s
h(ξ̃) < η̃ < f̃s+1

h (ξ̃)} ⊂ Ah,

yh ∈ graph(f̃s
h), zh ∈ graph(f̃s+1

h ). Moreover there exist open intervals

Ii
h(n+ 1) ⊆ γi

h
−1(R(qn+1)), I l

h(n+ 1) ⊆ γl
h
−1

(R(qn+1)),

such that graph(f̃s
h) = {γi

h(t) : t ∈ Ii
h(n+ 1)}, and graph(f̃s+1

h ) = {γl
h(t) : t ∈ I l

h(n+ 1)}.
Then, from the convergence properties of γi

h and γl
h it follows that there exist open intervals

Ii(n+ 1), satisfying (4.17), and I l(n+ 1) such that

{γi(t) : t ∈ Ii(n+ 1)} = {γl(t) : t ∈ I l(n+ 1)}.

Hence we can choose the index l independent of n and, since l 6= i if n = 1, we have l 6= i for
any n. Then, using the property (a) above of γi, after a finite number of steps conditions
(4.16), (4.17) and (4.18) are satisfied and the procedure stops. The same argument also
holds, with slight changes, if γi is a closed curve (either regular or not), by using property
(ii) and again the condition ρ < d(2).

Step 4: proof of the energy equalities in (4.12).
By (4.16) and (4.18) there exist closed intervals J i

ρ and J l
ρ, contained in the intervals of

parametrization of γi and γl, respectively, such that [γi] \Qρ = γi(J i
ρ), [γl] \Qρ = γl(J l

ρ),
and

K(γi, J i
ρ) = K(γl, J l

ρ), L(γi, J i
ρ) = L(γl, J l

ρ),

for any ρ > 0. Then, letting ρ → 0+, the intervals J i
ρ and J l

ρ invade the intervals of
parametrization of γi and γl, so that we have

K(γi) = K(γl), L(γi) = L(γl).

Let now i′ 6= i, l; since the curves γh ∈ Ch are simple and disjoint, using (4.14), (4.15)
and arguing as before, we find an index l′ 6= i′, with l′ 6= i, l, such that K(γi′) = K(γl′)
and L(γi′) = L(γl′). By repeating this argument it follows that m is an even number and
the curves {γ1, . . . , γm} can be ordered in such a way that the relation (4.12) holds. This
concludes the proof of the lemma.
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Theorem 4.4 (lower bound). Let {εh}h be a sequence of positive numbers converging to
zero. For every triplet (u,C, P ) ∈ X(Ω) and for every sequence {(uh, Ah, Dh)}h ⊂ Y (Ω)
converging weakly to (u,C, P ), we have

lim inf
h→+∞

Eεh
(uh, Ah, Dh) ≥ G(u,C, P ).

Proof. Let (u,C, P ) ∈ X(Ω) and let {(uh, Ah, Dh)}h ⊂ Y (Ω) converge weakly to (u,C, P ).
Possibly extracting a subsequence we may assume that

lim
h→+∞

Eεh
(uh, Ah, Dh) = lim inf

h→+∞
Eεh

(uh, Ah, Dh) < +∞,

otherwise the result is trivial. Let {Ωj}j be a sequence of open sets Ωj ⊂⊂ Ω \ ([C] ∪ P )
invading Ω \ ([C] ∪ P ).

Using Theorem 4.1(b) and possibly passing to a subsequence, we have uh ⇀ u weakly
in W 1,2(Ωj), so that∫

Ωj

|u− g|2 dx = lim
h→+∞

∫
Ωj

|uh − g|2 dx ≤ lim inf
h→+∞

∫
Ω
|uh − g|2 dx

for any j, from which it follows

lim inf
h→+∞

∫
Ω
|uh − g|2 dx ≥

∫
Ω
|u− g|2 dx. (4.19)

By Definition 3.4(i) and (ii), and again using the weak W 1,2(Ωj) convergence of uh to u,
we have

lim inf
h→+∞

∫
Ω\(Ah∪Dh)

|∇uh|2 dx ≥ lim inf
h→+∞

∫
Ωj

|∇uh|2 dx ≥
∫

Ωj

|∇u|2 dx,

for any j. Since u ∈W 1,2(Ω \ [C]), it follows

lim inf
h→+∞

∫
Ω\(Ah∪Dh)

|∇uh|2 dx ≥
∫

Ω\[C]
|∇u|2 dx. (4.20)

Using (4.2), (4.3) and Definition 3.4(i), we find

lim inf
h→+∞

1
4π

∫
∂Dh

(
εhκ

2 +
1
εh

)
dH1 ≥ #P. (4.21)

To prove the statement of the theorem it will be enough to show that

lim inf
h→+∞

1
2

∫
∂Ah

(1− χDh
)(1 + κ2) dH1 ≥

∑
γ∈ bC

(
K(γ) + L(γ)

)
, (4.22)

where Ĉ is an admissible family of curves in Ω such that [Ĉ] = [C] and P (Ĉ) ⊆ P . Indeed,
collecting inequalities (4.19–4.22) we find

lim inf
h→+∞

Eεh
(uh, Ah, Dh) ≥

∫
Ω\[C]

|∇u|2 dx+ F(Ĉ, P ) +
∫

Ω
|u− g|2 dx

≥
∫

Ω\[C]
|∇u|2 dx+ F0(C,P ) +

∫
Ω
|u− g|2 dx = G(u,C, P ),
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which is the desired result.
Let {Ch}h be disjoint families of simple curves in Ω satisfying Theorem 4.1(a), {ηh}h

be as in Remark 4.2(i), and

lim inf
h→+∞

∫
∂Ah

(1− χDh
)(1 + κ2) dH1 ≥ lim inf

h→+∞

∫
∂Ah\Qηh

(1 + κ2) dH1

≥ lim inf
h→+∞

∑
γ∈Ch

(
K(γ) + L(γ)

)
. (4.23)

Let Ch = {γ1
h, . . . , γ

m
h }; then P (Ch) ∈ ∂Qηh

for any h, and the sequence {γi
h}h converges

weakly in W 2,2 to a curve γi for any i ∈ {1, . . . ,m}. Let C ′ = {γ1, . . . , γm}; then C ′ is
an admissible family of curves in Ω such that [C ′] = [C] and P (C ′) ⊆ P . Moreover, by
Lemma 4.3, the curves γ1, . . . , γm satisfy (4.12).

Arguing as in the proof of (4.5) we have L(γ) ≥ c > 0 for any γ ∈ Ch, where c is a
constant independent of h. From the weak convergence in W 2,2 of γi

h we easily deduce (as
in Step 1 in the proof of [19] Theorem 4.2)

lim inf
h→+∞

∑
γ∈Ch

(
K(γ) + L(γ)

)
≥

∑
γ∈C′

(
K(γ) + L(γ)

)
.

Then it follows that

lim inf
h→+∞

1
2

∫
∂Ah

(1− χDh
)(1 + κ2) dH1 ≥ 1

2

∑
γ∈C′

(
K(γ) + L(γ)

)
.

Using Lemma 4.3 we set
Ĉ = {γ2i}i=1,..., m

2
,

so that we have [Ĉ] = [C ′] = [C], P (Ĉ) = P (C ′) ⊆ P , and Ĉ is an admissible family of
curves in Ω. Then, using (4.12), it follows

1
2

∑
γ∈C′

(
K(γ) + L(γ)

)
=

∑
γ∈ bC

(
K(γ) + L(γ)

)
,

which implies (4.22) and concludes the proof of the theorem.

5 Approximation by energies defined on smooth functions

In this section we prove the equicoerciveness of the family Gε and inequality (3.7).

5.1 Equicoerciveness

The equicoerciveness of Gε will be proved by applying the previous results on energies
defined on sets to the sub-level sets of the functions sh and wh.

Theorem 5.1. Let {εh}h be a sequence of positive numbers converging to zero. Let
{(uh, sh, wh)}h ⊂W (Ω) be a sequence such that

sup
h∈N

Gεh
(uh, sh, wh) < +∞. (5.1)
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Then there exist a subsequence {(uhk
, shk

, whk
)}k and a triplet (u,C, P ) ∈ X(Ω) such that

{(uhk
, shk

, whk
)}k converges weakly to (u,C, P ). Moreover, uhk

⇀ u weakly in W 1,2(Ω′)
for every Ω′ ⊂⊂ Ω \ ([C] ∪ P ).

Proof. We first check Definition 3.7(i) in the following Steps 1–5. We set βεh
= βh and

µεh
= µh; we also denote the value in (5.1) by M .

Step 1: Energy estimates for Dθ
h = {wh < θ}.

For any θ ∈ (0, 1) we have

meas(Dθ
h) ≤ 1

(1− θ)2

∫
Ω
(1− wh)2 dx ≤ µhM

(1− θ)2
. (5.2)

Using the coarea formula (see e.g. [4]) and the algebraic inequality εh|∇wh|2+ε−1
h V (wh) ≥

2|∇wh|
√
V (wh), we have

G(1)
εh

(wh) ≥ 2
∫

Ω\{|∇wh|=0}
|∇wh|

√
V (wh)

( 1
βh

+ βhκ
2(∇wh)

)
dx

≥ 2
∫ 1

0

√
V (θ)

∫
{wh=θ}∩{|∇wh|6=0}

( 1
βh

+ βhκ
2(∇wh)

)
dH1dθ. (5.3)

By Sard’s theorem, for any h there exists a negligible set Twh
⊆ (0, 1) such that

{wh = θ} = ∂{wh < θ}, {wh < θ} ∈ C∞c (Ω) for θ ∈ (0, 1) \ Twh
,

and, denoting by κ the curvature of {wh = θ},

|∇wh| 6= 0 on {wh = θ}, |div(∇wh/|∇wh|)| = |κ| on {wh = θ} for θ ∈ (0, 1) \ Twh
,

(for a similar argument see the proof of [9] Theorem 4.2). Using (5.3) and Fatou’s Lemma
it follows

M ≥ 2
∫

(0,1)\Tw

√
V (θ) lim inf

h→+∞

∫
∂{wh<θ}

( 1
βh

+ βhκ
2
)
dH1 dθ, (5.4)

where Tw =
⋃

h∈N Twh
. Hence, there exists a negligible set Fw ⊇ Tw such that, for any

θ ∈ (0, 1) \ Fw, we have

lim inf
h→+∞

∫
∂Dθ

h

( 1
βh

+ βhκ
2
)
dH1 ≤Mθ < +∞, (5.5)

where Mθ is a positive constant depending on θ, but not on h.

Step 2: Compactness properties of Dθ
h.

Let θ ∈ (0, 1)\Fw; as in Step 1 of the proof of Theorem 4.1, using (5.5), up to the extraction
of a subsequence possibly depending on θ, there exists a finite set of points P θ ⊂ Ω such
that Definition 3.7(i) is satisfied. Hence, we can find a dense countable subset N = {θi}i

of (0, 1), a sequence of finite sets of points {P θi}i ⊂ Ω and, by using a diagonal argument,
a subsequence {whk

}k such that, for any θi ∈ N , Definition 3.7(i) is satisfied.
Fix θ ∈ (0, 1) and let θi ∈ N be such that θi > θ, and, consequently, Dθ

hk
⊆ Dθi

hk
.

Using Definition 3.7(i), for any δ > 0 there exists k0 = k0(δ) such that, for any k > k0, we
have Dθi

hk
∩Bδ(x) 6= ∅ for any x ∈ P θi . Since Dθ

hk
is open, for any δ > 0 and any x ∈ P θi
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such that Dθ
hk
∩Bδ(x) 6= ∅, we may choose θn = θn(x) such that θn ∈ N , θn < θ and, for

k large enough, Dθn
hk
∩Bδ(x) 6= ∅. We set

θ̂ = max{θn(x) : x ∈ P θi}.

Then, for any x ∈ P θi , the inclusion Dbθ
hk
⊆ Dθ

hk
implies

D
bθ
hk
∩Bδ(x) ⊆ Dθ

hk
∩Bδ(x) ⊆ Dθi

hk
∩Bδ(x).

Since θ̂, θi ∈ N , by letting δ → 0+, it follows that condition (i) in Definition 3.7 is satisfied
for any θ ∈ (0, 1) by setting P θ = P

bθ.
Step 3: Energy estimates for Aλ

h = {sh < λ}.
For any λ ∈ (0, 1) we have

meas(Aλ
h) ≤ 1

(1− λ)2

∫
Ω
(1− sh)2 dx ≤ µhM

(1− λ)2
. (5.6)

Again using the coarea formula we have

G(2)
εh

(sh, wh) ≥ 2
∫ 1

0

√
V (λ)

∫
{sh=λ}∩{|∇sh|6=0}

w2
h

(
1 + κ2(∇sh)

)
dH1dλ. (5.7)

Arguing as before, for any h there exists a set Tsh
⊆ (0, 1) of zero Lebesgue measure such

that {sh = λ} = ∂{sh < λ}, and {sh < λ} ∈ C∞c (Ω) for any λ ∈ (0, 1) \ Tsh
. Using (5.7)

we find
M ≥ 2

∫
(0,1)\Ts

√
V (λ)

∫
∂{sh<λ}

w2
h(1 + κ2) dH1dλ,

where Ts =
⋃

h∈N Tsh
, from which, for any θ ∈ (0, 1), it follows

M ≥ 2
∫

(0,1)\Ts

√
V (λ)

∫
∂Aλ

h

(1− χDθ
h
)θ2(1 + κ2) dH1dλ, (5.8)

since θ2 ≤ w2
h for any x /∈ Dθ

h. Then, using Fatou’s Lemma we have

M ≥ 2θ2

∫
(0,1)\Ts

√
V (λ) lim inf

h→+∞

∫
∂Aλ

h

(1− χDθ
h
)(1 + κ2) dH1dλ.

Hence, for any θ ∈ (0, 1) there exists a set F θ
s ⊇ Ts of zero Lebesgue measure such that,

for any λ ∈ (0, 1) \ F θ
s , we have

lim inf
h→+∞

∫
∂Aλ

h

(1− χDθ
h
)(1 + κ2) dH1 ≤ Mλ

θ2
< +∞, (5.9)

where Mλ is a positive constant depending on λ, but not on h.

Step 4: W 2,2-weak compactness properties of Aλ
h for a dense set of λ.

Let P θ be as in Step 2 and P =
⋂
{P θ : 0 < θ < 1}. Since #P θ < +∞ for all θ ∈ (0, 1)

and P θ1 ⊆ P θ2 when θ1 ≤ θ2, then there exists θ0 ∈ (0, 1) such that P = P θ0 .
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Let θ = θ0 and λ ∈ (0, 1) \ F θ0
s . By Remark 4.2(i), using (5.6) and (5.9), up to the

extraction of a subsequence possibly depending on λ, it follows that there exist a sequence
{Cλ

h}h of disjoint families of simple curves and an admissible family Cλ of curves in Ω
with P (Cλ) ⊆ P , such that [Cλ

h ] ⊆ ∂Aλ
h, {[Cλ

h ]}h converges to [Cλ] up to the set P , and
the maximum distance of ∂Aλ

h \ [Cλ
h ] from P goes to zero as h→ +∞. Then we can find

a dense countable subset D = {λi}i of (0, 1), a sequence {Cλi}i of admissible families of
curves in Ω with P (Cλi) ⊆ P and, by using a diagonal argument, a subsequence {shk

}k, a
sequence {Cλi

k }k of disjoint families of simple curves for any i ∈ N, such that [Cλi
k ] ⊆ ∂Aλi

hk
,

{[Cλi
k ]}k converges to [Cλi ] up to the set P , and the maximum distance of ∂Aλi

hk
\ [Cλi

k ]
from P goes to zero.

Choose σ > 0 and ρ > σ, and let Qρ, Qσ be defined as in (4.13). Let λi ∈ D; we cover
[Cλi ] \Qρ by a finite family {R(q)}q∈M of open rectangles with diameters strictly smaller
than ρ − σ satisfying properties (a)–(d) as in the proof of Lemma 4.3. Using (4.14), for
any q ∈M we have for large enough k:

Aλi
hk
∩R(q) =

r/2⋃
j=1

Bλi
k (j, q), Bλi

k (j, q) ∩Bλi
k (l, q) = ∅ if j 6= l,

Bλi
k (j, q) = {(ξ, η) ∈ R(q) : f2j−1

k (ξ) < η < f2j
k (ξ)} for j = 1, . . . ,

r

2
, (5.10)

where r = r(λi, q) is a finite integer, (ξ, η) denotes a local coordinate system in R(q) and
f2j−1

k , f2j
k are functions of class W 2,2.

By Step 3 in the proof of Lemma 4.3 there exists ρ0 > 0 such that, for any ρ < ρ0

there exists k0 = k0(ρ) such that, for any k > k0, the set Aλi
hk
\ Qρ has a finite number

of connected components equal to #Cλi/2. Moreover, if Aλi
k is a connected component of

Aλi
hk
\Qρ, we have limk dH(∂Aλi

k , [γ] \Qρ) = 0, where γ ∈ Cλi . Then, for any q ∈M such
that [γ] ∩R(q) 6= ∅ and for any k > k0 we have Aλi

k ∩R(q) 6= ∅. Let now λm ∈ D be such
that λm < λi: from the inclusion Aλm

hk
⊆ Aλi

hk
it follows that [Cλm ] ⊆ [Cλi ]. Let Aλm

k be
a connected component of Aλm

hk
\Qρ: if Aλm

k ∩ Aλi
k 6= ∅, then, arguing as in Step 3 in the

proof of Lemma 4.3 , for any k > k0 it follows that

Aλi
k ∩R(q) 6= ∅ =⇒ Aλm

k ∩R(q) 6= ∅. (5.11)

Step 5: compactness properties of Aλ
h with respect to the Haurdorff distance for all λ.

Fix λ ∈ (0, 1) and let λi ∈ D be such that λi > λ. Let {σm}m, {ρm}m be sequences of
positive numbers converging to zero as m→ +∞, and let {R(q)}

q∈fM(m)
be finite families

of open rectangles covering [Cλi ] \Qρm in such a way that

{R(q)}
q∈fM(m1)

⊆ {R(q)}
q∈fM(m2)

(5.12)

for any m1, m2 with m1 < m2. Such families are easily constructed by a recursive
procedure: set M̃(0) = ∅ and {R(q)}

q∈fM(m)
is obtained by adding to the covering related

to m− 1 a finite covering of ([Cλi ] \Qρm) \
⋃

q∈fM(m−1)
R(q) by open rectangles satisfying

(a)–(d) as in Step 1 of Lemma 4.3 with ρ = ρm and σ = σm.
Then for any m ∈ N and any q ∈ M̃(m) we have

Aλ
hk
∩R(q) ⊆

r/2⋃
j=1

Bλi
k (j, q).
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Since Aλ
hk

is open, for any q ∈ M̃(m) and any j ∈ {1, . . . , r
2(λi, q)} such that Aλ

hk
∩

Bλi
k (j, q) 6= ∅, we may choose λn = λn(j, q) such that λn ∈ D, λn < λ and, for k large

enough, Aλn
hk
∩Bλi

k (j, q) 6= ∅. Let

λm = max
{
λn(j, q) : q ∈ M̃(m), j = 1, . . . ,

r

2
(λi, q)

}
.

Then, for any q ∈ M̃(m) and any l ∈ {1, . . . , r
2(λm, q)}, the inclusion Aλm

hk
⊆ Aλ

hk
implies

Bλm
k (l, q) ⊆ Aλ

hk
∩Bλi

k (j, q) ⊂ Bλi
k (j, q) (5.13)

for some j ∈ {1, . . . , r
2(λi, q)}.

As in Step 3 of the proof of Lemma 4.3, the convergence of [Cλm
k ] to [Cλm ] up to the

set P implies that, for any m and any q ∈ M̃(m),

lim
k→+∞

dH

(r/2⋃
l=1

∂Bλm
k (l, q), [Cλm ] ∩R(q)

)
= 0, (5.14)

where r = r(λm, q). Moreover, using (5.10), if Bλm
k (l, q) ⊆ Bλi

k (j, q), it follows that
∂Bλm

k (l, q), ∂Bλi
k (j, q) converge in the Hausdorff metric to the same compact set, that is

the graph of a function of class W 2,2. Hence, using (5.13) and (5.14) we find that

lim
k→+∞

dH

(
∂Aλ

hk
∩R(q), [Cλm ] ∩R(q)

)
= 0

for any m and any q ∈ M̃(m). Then

lim
k→+∞

dH(∂Aλ
hk
\Qρm , [C

λm ] \Qρm) = 0 for any m ∈ N. (5.15)

As m→ +∞, λm increases; we show that there exists m0 ∈ N such that for any m ≥ m0

we have λm = λm0 ∈ D. Let m0 ∈ N be such that for any m ≥ m0 there exists k0 = k0(ρm)
such that, for any k > k0, the set Aλi

hk
\Qρm has #Cλi/2 connected components. If m > m0

then λm ≥ λm0 ; let now q ∈ M̃(m) and j ∈ {1, . . . , r
2(λi, q)} be such that

R(q) /∈ {R(q)}
q∈fM(m0)

, R(q) ⊃ Aλ
hk
∩Bλi

k (j, q) 6= ∅.

Using (5.13) there exist Aλi
k , Aλm

k , connected components of Aλi
hk
\ Qρm , Aλm

hk
\ Qρm ,

respectively, such that
Aλm

k ∩ Aλi
k ∩R(q) 6= ∅. (5.16)

Then, using (5.11) and (5.12), there exists q ∈ M̃(m0) such that (5.16) holds, from which
it follows that there exists a connected component Aλm0

k of Aλm0
hk

\Qρm0
such that Aλm0

k ∩
Aλm

k 6= ∅. Again using (5.11) and (5.12), for any q ∈ M̃(m) such that Aλm
k ∩ R(q) 6= ∅

we have Aλm0
k ∩ R(q) 6= ∅. Hence we may choose λm = λm0 , with λm0 < λ. Then, by

using (5.15) and letting ρm → 0+, there exists a sequence of compact sets {Kλ
k}k such

that Kλ
k ⊆ ∂Aλ

hk
, limk dH(Kλ

k , [C
λm0 ]) = 0, and the maximum distance of ∂Aλ

hk
\ Kλ

k from
the set P goes to zero. The proof of the compactness property of the level sets Aλ

h is then
completed setting Cλ = Cλm0 .
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Step 6: proof of condition (ii) in Definition 3.7.
Let λi, λm ∈ D be such that λm < λi; then [Cλm ] ⊆ [Cλi ]. For a given ρ > 0 let Aλi

k , Aλm
k

be connected components respectively of Aλi
hk
\ Qρ, Aλm

hk
\ Qρ such that Aλi

k ∩ Aλm
k 6= ∅.

If ρ is small enough, using (5.11) it follows that the sets ∂Aλi
k and ∂Aλm

k converge in the
Hausdorff metric, as k → +∞, to the same compact set [γ] \ Qρ, where [γ] = [γ′] and
γ ∈ Cλi , γ′ ∈ Cλm . Then, by letting ρ→ 0+, we have

[Cλi ] ∩ [Cλm ] =
⋃
{[γj ] : γj ∈ Ĉλi}, (5.17)

where Ĉλi is a subfamily of Cλi . By Step 5 above, for any λ ∈ (0, 1) there exists λp ∈ D
such that the sequence of compact sets Kλ

k ⊆ ∂Aλ
hk

converges to [Cλp ] in the Hausdorff
metric. Then, using (5.17), there exists λ0 ∈ D such that

[Cλ0 ] =
⋂
{[Cλ] : 0 < λ < 1}.

Since P (Cλ0) ⊆ P , the proof is completed by setting C = Cλ0 .

Step 7: compactness properties for uh.
For any λ ∈ (0, 1) we have

M ≥
∫

Ω
s2h|∇uh|2 dx ≥ λ2

∫
Ω
(1− χAλ

h
)|∇uh|2 dx

since λ2 ≤ s2h for any x /∈ Aλ
h. Hence, for any θ ∈ (0, 1) and for any λ ∈ (0, 1), we get∫

Ω
(1− χAλ

h∪Dθ
h
)|∇uh|2 dx ≤

M

λ2
< +∞, for all h ∈ N. (5.18)

Moreover, using (5.2) and (5.6), we find

meas(Aλ
h ∪Dθ

h) ≤
( 1

(1− θ)2
+

1
(1− λ)2

)
µhM = o(1)

as h→ +∞, for any θ, λ ∈ (0, 1).
Since P = P θ0 and C = Cλ0 , using the results previously obtained, there exist sub-

sequences {shk
}k and {whk

}k with the following properties: the maximum distance of
∂Dθ0

hk
from the set P goes to zero, there exists a sequence {Cλ0

k }k of disjoint families of
simple curves, such that [Cλ0

k ] ⊆ ∂Aλ0
hk

, {[Cλ0
k ]}k converges to [C] up to the set P , and

the maximum distance of ∂Aλ0
hk
\ [Cλ0

k ] from P goes to zero. Then, by using (5.18) with
λ = λ0 and θ = θ0, and by repeating the same arguments of the proof of Theorem 4.1, the
compactness property of the functions uh follows. This yields condition (i) in Definition
3.7 and concludes the proof of the theorem.

Remark 5.2. By using the method of proof of Theorem 5.1, an analogous equicoercivity
result can be obtained in the two-dimensional case for the families of functionals considered
in [9].
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5.2 Γ-convergence: lower bound

We now prove the liminf inequality (3.7).

Theorem 5.3. Let {εh}h be a sequence of positive numbers converging to zero. For every
triplet (u,C, P ) ∈ X(Ω) and for every sequence {(uh, sh, wh)}h ⊂W (Ω) converging weakly
to (u,C, P ), we have

lim inf
h→+∞

Gεh
(uh, sh, wh) ≥ G(u,C, P ).

Proof. Let (u,C, P ) ∈ X(Ω) and let {(uh, sh, wh)}h ⊂W (Ω) converge weakly to (u,C, P ).
Possibly extracting a subsequence we may assume that

lim
h→+∞

Gεh
(uh, sh, wh) = lim inf

h→+∞
Gεh

(uh, sh, wh) < +∞.

Using Definition 3.7(i), the inequality

lim inf
h→+∞

∫
Ω
|uh − g|2 dx ≥

∫
Ω
|u− g|2 dx (5.19)

follows as in the proof of Theorem 4.4. Let λ ∈ (0, 1) and θ ∈ (0, 1); we have∫
Ω
s2h|∇uh|2 dx ≥ λ2

∫
Ω
(1− χAλ

h∪Dθ
h
)|∇uh|2 dx. (5.20)

Let {Ωj}j be a sequence of open sets Ωj ⊂⊂ Ω \ ([Cλ] ∪ P θ) invading Ω \ ([Cλ] ∪ P θ).
By Theorem 5.1, possibly passing to a subsequence, uh ⇀ u weakly in W 1,2(Ωj). Using
Definition 3.7(i), we have

lim inf
h→+∞

λ2

∫
Ω
(1− χAλ

h∪Dθ
h
)|∇uh|2 dx ≥ λ2 lim inf

h→+∞

∫
Ωj

|∇uh|2 dx ≥ λ2

∫
Ωj

|∇u|2 dx,

for any j. Since u ∈W 1,2(Ω \ [C]) and [C] ⊆ [Cλ], using (5.20) it follows

lim inf
h→+∞

∫
Ω
s2h|∇uh|2 dx ≥ λ2

∫
Ω\[Cλ]

|∇u|2 dx = λ2

∫
Ω\[C]

|∇u|2 dx.

By letting λ→ 1 we obtain

lim inf
h→+∞

∫
Ω
s2h|∇uh|2 dx ≥

∫
Ω\[C]

|∇u|2 dx. (5.21)

Using the coarea formula and Sard’s Theorem as in (5.3) and (5.4), we get

lim inf
h→+∞

G(1)
εh

(wh) ≥ 2 lim inf
h→+∞

∫
(0,1)\Tw

√
V (θ)

∫
∂{wh<θ}

( 1
βh

+ βhκ
2
)
dH1dθ.

Using Fatou’s Lemma, Definition 3.7(i) and (4.21), we obtain

lim inf
h→+∞

G(1)
εh

(wh) ≥ 2
∫

(0,1)\Tw

√
V (θ) lim inf

h→+∞

∫
∂Dθ

h

( 1
βh

+ βhκ
2
)
dH1dθ

≥ 2
∫

(0,1)\Tw

4π#P θ
√
V (θ)dθ,
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from which, since P ⊆ P θ, we get

lim inf
h→+∞

G(1)
εh

(wh) ≥ 4πb0#P. (5.22)

Let θ ∈ (0, 1); again using the coarea formula and Sard’s Theorem as in (5.7) and (5.8),
we obtain

lim inf
h→+∞

G(2)
εh

(sh, wh) ≥ 2 lim inf
h→+∞

∫
(0,1)\Ts

√
V (λ)

∫
∂Aλ

h

(1− χDθ
h
)θ2(1 + κ2) dH1dλ,

from which, using Fatou’s Lemma, we get

lim inf
h→+∞

G(2)
εh

(sh, wh) ≥ 2θ2

∫
(0,1)\Ts

√
V (λ) lim inf

h→+∞

∫
∂Aλ

h

(1− χDθ
h
)(1 + κ2) dH1dλ. (5.23)

Hence, there exists a negligible set F θ
s ⊇ Ts such that estimate (5.9) holds. Let λ ∈

(0, 1) \ F θ
s ; by Remark 4.2, using (5.6) and (5.9), up to the extraction of a subsequence

possibly depending on λ and θ, it follows that there exist a sequence {Cλ,θ
h }h of disjoint

families of simple curves and an admissible family Cλ,θ of curves in Ω with P (Cλ,θ) ⊆ P θ,
such that [Cλ,θ

h ] ⊆ ∂Aλ
h, {[Cλ,θ

h ]}h converges to [Cλ,θ] up to the set P θ, and the maximum
distance of ∂Aλ

h \ [Cλ,θ
h ] from P θ goes to zero as h→ +∞.

Arguing as in (4.23) we then obtain

lim inf
h→+∞

∫
∂Aλ

h

(1− χDθ
h
)(1 + κ2) dH1 ≥

∑
γ∈Cλ,θ

(
K(γ) + L(γ)

)
. (5.24)

Let ρ > 0, Qρ,θ =
⋃
{Bρ(x) : x ∈ P θ}, and let Aλ,θ

h be a connected component of
Aλ

h \ Qρ,θ. Then, by Step 3 of Lemma 4.3, there exist pairs of curves γi
h, γ

j
h ∈ Cλ,θ

h and
γi, γj ∈ Cλ,θ such that, possibly passing to a subsequence, the following properties hold
for h large enough:

∂Aλ,θ
h \Qρ,θ = ([γi

h]∪ [γj
h]) \Qρ,θ for all ρ > 0, γi

h ⇀ γi, γj
h ⇀ γj weakly in W 2,2, (5.25)

the endpoints of γi
h, γ

j
h belong to Qρ,θ, and

[γi] = [γj ], K(γi) + L(γi) = K(γj) + L(γj). (5.26)

If θ = θ0 we may set Cλ,θ0 = Cλ. Hence, by Definition 3.7(i), it follows that [Cλ,θ] = [Cλ]
for any θ ∈ (0, 1). Since P = P θ0 ⊆ P θ, if θ = θ0 we set Qρ,θ0 = Qρ. Then, for each
connected component Aλ

h of Aλ
h \ Qρ, by (5.25) and (5.26), for h large enough we may

write
∂Aλ

h \Qρ,θ =
⋃ {

∂Aλ,θ
h \Qρ,θ : Aλ,θ

h ⊆ Aλ
h

}
for all ρ > 0, θ ∈ (0, 1),

from which, again using (5.25) and letting ρ→ 0+, it follows∑
γ∈Cλ,θ

(
K(γ) + L(γ)

)
=

∑
γ∈Cλ

(
K(γ) + L(γ)

)
. (5.27)
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Hence, using (4.12), there exists an admissible family C̃λ of curves in Ω such that [C̃λ] =
[Cλ], P (C̃λ) ⊆ P , and ∑

γ∈Cλ

(
K(γ) + L(γ)

)
= 2

∑
γ∈ eCλ

(
K(γ) + L(γ)

)
. (5.28)

As in Step 6 of Theorem 5.1 there exists λ0 ∈ D such that C = Cλ0 . Let now λ > λ0 and
let γ ∈ C̃λ be the weak limit in W 2,2 of γh ∈ Cλ

h , up to the extraction of a subsequence.
Then, using (5.25), for any h there exists a connected component Aλ

h of Aλ
h \Qρ such that

[γh] \Qρ ⊆ ∂Aλ
h. Let Aλ0

h be a connected component of Aλ0
h \Qρ such that Aλ0

h ∩Aλ
h 6= ∅.

Since Aλ0
h ⊆ Aλ

h, using (5.11) and arguing as in the proof of Lemma 4.3, there exist
γ′ ∈ Cλ0 and a sequence of curves {γ′h}h with γ′h ∈ Cλ0

h for any h such that, up to a
subsequence, γ′h ⇀ γ′ in W 2,2 and

[γ] = [γ′], K(γ) + L(γ) = K(γ′) + L(γ′).

Hence, since C = Cλ0 , for any λ > λ0 there exist a subfamily Ĉλ of C̃λ and a subfamily
Ĉ of C such that [Ĉ] = [C], P (Ĉ) ⊆ P , and∑

γ∈ eCλ

(
K(γ) + L(γ)

)
≥

∑
γ∈ bCλ

(
K(γ) + L(γ)

)
=

∑
γ∈ bC

(
K(γ) + L(γ)

)
. (5.29)

Let λ ≤ λ0; since the inclusion Aλ
h ⊆ Aλ0

h implies [Cλ] ⊆ [Cλ0 ] and Definition 3.7(ii)
implies [Cλ0 ] = [C] ⊆ [Cλ], we have [Cλ] = [C]. Then, arguing as before, for any λ < λ0

there exist subfamilies of curves Ĉλ and Ĉ such that [Ĉ] = [C], P (Ĉ) ⊆ P , and inequality
(5.29) holds. Collecting (5.23), (5.24) and (5.27) we obtain for any θ ∈ (0, 1):

lim inf
h→+∞

G(2)
εh

(sh, wh) ≥ 2θ2

∫
(0,1)\Ts

√
V (λ)

∑
γ∈Cλ

(
K(γ) + L(γ)

)
dλ,

from which, using (5.28) and (5.29), it follows

lim inf
h→+∞

G(2)
εh

(sh, wh) ≥ 2b0θ2
∑
γ∈ bC

(
K(γ) + L(γ)

)
.

By letting θ → 1 we get

lim inf
h→+∞

G(2)
εh

(sh, wh) ≥ 2b0
∑
γ∈ bC

(
K(γ) + L(γ)

)
. (5.30)

Since [Ĉ] = [C] and P (Ĉ) ⊆ P , using (3.6) and collecting the inequalities (5.19), (5.21-
5.22) and (5.30), we find

lim inf
h→+∞

Gεh
(uh, sh, wh) ≥

∫
Ω\[C]

|∇u|2 dx+ F(Ĉ, P ) +
∫

Ω
|u− g|2 dx

≥
∫

Ω\[C]
|∇u|2 dx+ F0(C,P ) +

∫
Ω
|u− g|2 dx = G(u,C, P ),

which is the desired result.
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6 Γ-convergence: upper bounds

In this section we prove the limsup inequalities (3.3) and (3.8) of the Γ-convergence of
the functionals Eε and Gε to the functional G, respectively. We recall that a set Ω is
star-shaped if there exists x0 ∈ Ω such that ξ(x − x0) + x0 ∈ Ω for any x ∈ Ω and any
ξ ∈ [0, 1].

6.1 Upper bound for functionals defined on sets

First we prove in the following lemma that the families of curves satisfying the finiteness
property are dense in the class of the admissible families of curves in Ω. Such a density
result has been proved by Bellettini and Mugnai in [10] for admissible families of regular
closed curves. In this case they also show that the approximating families Ch have traces
contained in the trace of the target family C. In the present paper we give a different proof,
without such a requirement, but that takes into account the presence of the endpoints
P (C). In the proof we will make use of some of the results in [10].

Lemma 6.1. Let Ω be a star-shaped bounded open set in R2 and let C = {γ1, . . . , γm} be an
admissible family of curves in Ω. Then there exist an admissible family Ĉ = {γ̂1, . . . , γ̂m}
of curves in Ω such that [Ĉ] = [C], P (Ĉ) = P (C),∑

bγ∈ bC
(
K(γ̂) + L(γ̂)

)
=

∑
γ∈C

(
K(γ) + L(γ)

)
, (6.1)

and a sequence {Ch}h of admissible families of curves in Ω such that Ch = {γ1
h, . . . , γ

m
h }

and the following properties hold:

(i) Ch satisfies the finiteness property for any h;

(ii) [Ch] ⊂ Ω and #P (Ch) = #P (C) for any h;

(iii) P (Ch) converges to P (C);

(iv) the sequence {γi
h}h, parameterized on a fixed interval, converges strongly in W 2,2 to

γ̂i for any i = 1, . . . ,m.

Proof. We first assume that [C] ⊂ Ω.

Step 1: In order to construct locally the family Ch we cover [C] \ P (C) with a finite
number of open sets. We use open rectangles to cover [C] \ P (C) away from P (C) and
conical sets close to P (C).
For any point q ∈ [C]\P (C) let R(q) be an open rectangle centered at q, having two sides
parallel to the tangent line T[C](q) of [C] at q, and such that each curve γ ∈ C meeting
R(q) satisfies properties (a)–(c) in Step 1 of the proof of Lemma 4.3 (that will be used
also in the present proof with the same notation) and

(d) if Ij are as in (a), then q ∈ γ(Ij) for any j (in particular, if H = 1 in (a) this reduces
to q ∈ [γ]).
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Such a rectangle exists, since C is an admissible family of curves.
Let v, τ ∈ R2 with |τ | = 1, θ ∈ (0, π/2) and a > 0; we define the open finite half-cone

Λ ⊂ R2, with vertex at v, radius a and axis in the direction of τ , as the set

Λ = {x ∈ R2 : |x− v| cos θ < 〈x− v, τ〉 < a}.

Let now p ∈ P (C) and let γ ∈ C be a curve having p as an endpoint. If γ is not closed let
c = γ−1(p) and let τ(p) be the tangent unit vector of γ at p, defined as limt→c γ̇(t)/|γ̇(t)|.
If γ is closed the two tangent unit vectors of γ at p are defined analogously. Then the
family C has a finite number of tangent vectors at p. For any of such vectors τ(p) let
Λ(p) ⊂ R2 be an open finite half-cone, with vertex at p and axis in the direction of τ(p),
such that each curve γ ∈ C meeting Λ(p) has the following properties:

(e) p is an endpoint of γ and τ(p) is a tangent unit vector of γ at p;

(f) γ is a cartesian graph in Λ(p) of a function of class W 2,2 with respect to the axis of
the half-cone;

(g) γ does not meet the lateral sides of Λ(p).

Such a finite half-cone exists, since C is an admissible family of curves.
We cover the set [C] with a family of open rectangles {R(q)}q and a finite family of

half-cones {Λ(pj)}N
j=1 having the above properties. Since [C] is a compact set, there exists

a finite set of points {q1, . . . , qM} ⊂ [C] \ P (C) such that the finite subfamily of open
rectangles {R(qi)}M

i=1 and the half-cones cover [C].

Step 2: The construction of {Ch} by finite induction on curves {Ci
h} i ∈ {1, . . . ,M}

will be obtained by reparameterizing locally the curves in {Ci−1
h } as ordered graphs and

subsequently splitting these graphs. The parameter h will enter in this splitting in such a
way that Ch converges to C. In this step we describe the inductive hypotheses.
For any h ∈ N let C0

h = C, let 1 ≤ i ≤M , and suppose that Ci−1
h has been defined. Then

Ci
h is obtained by modifying Ci−1

h only on R(qi), i.e. [Ci
h] \R(qi) = [Ci−1

h ] \R(qi), in such
a way that the following properties are satisfied:

(i′) Ci
h is an admissible family consisting of m curves;

(ii′) for any j = 1, . . . ,M , each curve γh ∈ Ci
h such that [γh]∩R(qj) 6= ∅ satisfies properties

(a)-(d);

(iii′) there exists a finite set of points Fi such that the set [Ci
h]∩R(qi) \Fi can be written

locally as the graph of a function of class W 2,2;

Besides these geometric conditions, in which h enters only as a parameter, we will also
have the following convergence property:

(iv′) the curves of Ci
h converge strongly in W 2,2 to the curves of a family Ĉi such that

[Ĉi] = [C] and ∑
bγ∈ bCi

(
K(γ̂) + L(γ̂)

)
=

∑
γ∈C

(
K(γ) + L(γ)

)
. (6.2)
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Step 3: Ordered local reparameterization of Ci−1
h

With fixed q = qi let (ξ, η) denote the coordinates of points in a local coordinate system
in R(q), with the origin in q, such that the tangent line T[C](q) of [C] at q coincides with
the ξ-axis and R(q) = (−ξ0, ξ0)× (−η0, η0). We denote

R+(q) = {(ξ, η) ∈ R(q) : ξ > 0} and R−(q) = {(ξ, η) ∈ R(q) : ξ < 0}. (6.3)

We will work on R+(qi), since the modification of Ci−1
h on R−(qi) is analogous.

By the inductive properties of Ci−1
h we have

(Ci−1
h )−1(R+(qi)) =

⋃{
(γh)−1(R+(qi)) : γh ∈ Ci−1

h

}
=

⋃
{Ikl : 1 ≤ l ≤ n(k), 1 ≤ k ≤ m},

(6.4)
where n(k) ∈ N ∪ {0} is the number of times that the k-th curve of Ci−1

h crosses R+(qi)
for k = 1, . . . ,m, and Ikl are open pairwise disjoint intervals. Note that (6.4) holds
also for C = C0

h, so that the induction process may start. Then there exist r functions
f j

h, j = 1, . . . , r, of class W 2,2(0, ξ0), with r =
∑m

k=1 n(k), such that each function f j
h

corresponds in a one-to-one way to an interval Ikl such that the graph of f j
h is the image

γh(Ikl) for some curve γh ∈ Ci−1
h . In particular we have

[Ci−1
h ] ∩R+(qi) =

⋃
{graph(f j

h) : 1 ≤ j ≤ r},

and, the family Ci−1
h being admissible,

f j′

h (ξ) = fk′
h (ξ) whenever f j

h(ξ) = fk
h (ξ). (6.5)

For any ξ ∈ [0, ξ0] let {j1, . . . , jr} be a permutation dependent on ξ of {1, . . . , r} such that

f j1
h (ξ) ≤ f j2

h (ξ) ≤ · · · ≤ f jr

h (ξ).

Then we define r functions gj
h : [0, ξ0] → (−η0, η0), j = 1, . . . , r, by means of

g1
h(ξ) = f j1

h (ξ), . . . , gr
h(ξ) = f jr

h (ξ) for any ξ ∈ [0, ξ0]. (6.6)

Using (6.5) it follows that the function gj
h is continuous for any j = 1, . . . , r. Then we

have
g1
h(ξ) ≤ g2

h(ξ) ≤ · · · ≤ gr
h(ξ) for any ξ ∈ [0, ξ0], (6.7)

and
[Ci−1

h ] ∩R(qi) =
⋃
{graph(gj

h) : 1 ≤ j ≤ r}.

Using (6.5) it follows that gj
h ∈W

2,2[0, ξ0] for any j = 1, . . . , r (see also [10] Lemma 4.3).
We now construct an admissible family Ĉi

h of curves, having the same trace and the
same number of curves as Ci−1

h , and such that the images in R+(qi) of the curves of Ĉi
h

are given by the graphs of the functions gj
h. By (6.6), for any j ∈ {1, . . . , r}, there exists

an index sj ∈ {1, . . . , r} such that f j
h(ξ0) = g

sj

h (ξ0) and sj /∈ {s1, . . . , sj−1}. Fix now
j ∈ {1, . . . , r} and let Ikl be such that the graph of f j

h is the image γh(Ikl) for some curve
γh ∈ Ci−1

h . Using (6.6) and property (d) we have f j
h(0) = g

sj

h (0). Then we modify the
curve γh only in the interval Ikl in order to obtain a new curve γ̂h whose image γ̂h(Ikl) is
given by graph(gsj

h ). We repeat this construction for every j ∈ {1, . . . , r}.
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The family Ci−1
h is modified in the rectangle R−(qi) in an analogous way. We then

obtain an admissible family Ĉi
h of m curves such that

[Ĉi
h] = [Ci−1

h ], P (Ĉi
h) = P (Ci−1

h ) = P (C).

Moreover, using (6.6) and the locality of the weak derivatives of Sobolev functions, we
have ∑

bγ∈ bCi
h

(
K(γ̂) + L(γ̂)

)
=

∑
γ∈Ci−1

h

(
K(γ) + L(γ)

)
(6.8)

(see also the proof of [10] Lemma 3.9).

Step 4: Compatibility of the reparameterization of Ci−1
h with (iv′).

We now prove that the curves of Ĉi
h converge strongly in W 2,2 to the curves of a family

Ĉi such that [Ĉi] = [C] and equality (6.2) holds. If i = 1 the family Ĉ1
h does not depend

on h, we have [Ĉ1
h] = [C] and the equality of the energies is given by (6.8). Then, for any

i = 2, . . . ,M , we set

Qi =
i⋃

j=1
R(qj).

By using the inductive property (iii′) of Ci−1
h there exists a finite set of points Zi−1 such

that the set [Ci−1
h ]∩Qi−1 \Zi−1 can be written locally as the graph of a function of class

W 2,2. It follows that we may write

(Ci−1
h )−1(R+(qi) ∩Qi−1) =

L⋃
l=1

Jl,

where Jl are open pairwise disjoint intervals which satisfy the following properties (see
also the Appendix):

(v′) for any l, l′ ∈ {1, . . . , L} either Ci−1
h (Jl) ∩ Ci−1

h (Jl′) = ∅ or Ci−1
h (Jl) = Ci−1

h (Jl′);

(vi′) x /∈ Ci−1
h (Jl) for every l ∈ {1, . . . , L} and for every point x ∈ Zi−1.

For any l ∈ {1, . . . , L} there exists an index jl ∈ {1, . . . , r} and an interval (ξl,1, ξl,2) ⊂
[0, ξ0] such that

Ci−1
h (Jl) = {(ξ, η) ∈ R+(qi) ∩Qi−1 : ξl,1 < ξ < ξl,2, η = f jl

h (ξ)},

and the intervals Jl correspond to the intervals (ξl,1, ξl,2) in a one-to-one way. Using (6.6)
and properties (v′), (vi′) it follows that the functions gj

h can be chosen in such a way
that, for any interval (ξl,1, ξl,2), the index jl corresponds in a one-to-one way to an index
j′l ∈ {1, . . . , r} such that

f jl
h (ξ) = g

j′l
h (ξ) for any ξ ∈ (ξl,1, ξl,2). (6.9)

An analogous result holds in R−(qi). Moreover, by induction we have

[Ci−1
h ] \Qi−1 = [C] \Qi−1,
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so that
[Ĉi

h] ∩R(qi) \Qi−1 = [C] ∩R(qi) \Qi−1. (6.10)

Using the property (iv′) of the family Ci−1
h it follows that, up to a subsequence, the

functions f j
h converge strongly in W 2,2. Since the family Ci−1

h has been constructed by
modifying the family C only on the set Qi−1, using (6.9), (6.10) and the property (iv′) of
Ci−1

h , it follows that the family Ĉi
h converges strongly in W 2,2 to a family of curves Ĉi

with [Ĉi] = [C]. Equality (6.2) then follows from (6.8), the same equality for Ĉi−1, and
the W 2,2 convergence of Ĉi

h.

Step 5: Definition of Ci
h by splitting the curves of Ĉi

h in R(qi).
We now define the family Ci

h in R+(qi). Let ν ≤M be an integer, let {qi1 , . . . , qiν} denote
the subset of the points of {q1, . . . , qM} that lie in R+(qi), and let {ξi1 , . . . , ξiν} denote the
respective ξ coordinates. Let φ : [0, ξ0] → [0, 1] denote a C∞ function such that φ(ξ) > 0
for any ξ /∈ {0, ξi1 , . . . , ξiν , ξ0} and φ vanishes at the points {0, ξi1 , . . . , ξiν , ξ0} with all its
derivatives. Then, for any h, h′ ∈ N we define

g̃j
h,h′(ξ) = gj

h(ξ) +
j

h′r
φ(ξ), for any j = 1, . . . , r, (6.11)

for any ξ ∈ [0, ξ0]. For h′ large enough we have −η < g̃j
h,h′(ξ) < η for any ξ ∈ [0, ξ0].

Fix j ∈ {1, . . . , r} and let Ikl be such that the graph of gj
h is the image γ̂h(Ikl) of a curve

γ̂h ∈ Ĉi
h. We then modify the curve γ̂h only in the interval Ikl in order to obtain a new

curve γ̂h,h′ whose image γ̂h,h′(Ikl) is given by graph(g̃j
h,h′). We repeat this construction for

every j ∈ {1, . . . , r}. Set

F+
i = {qi1 , . . . , qiν} ∪

(
[Ĉi

h] ∩ ∂R+(qi)
)
, (6.12)

which is a finite set of points.
We modify the family Ĉi

h in the rectangle R−(qi) in an analogous way, and we define
a finite set of points F−i . We have thus obtained a family of m curves Ci

h,h′ by modifiying
Ci−1

h only on R(qi) and such that, for any h, Ci
h,h′ converges strongly to Ĉi

h in W 2,2

as h′ → +∞. By using a diagonal argument we obtain a family Ci
h of curves which

satisfies properties (i′) and (iv′). Using (6.7) and (6.11) property (ii′) is satisfied for h
large enough; in particular, property (d) of the curves of Ci

h in the rectangles follows
from (6.12). Moreover, again using (6.7) and (6.11) property (iii′) is satisfied by setting
Fi = F+

i ∪ F−i .
By induction there exists a finite set of points Z = ZM such that the set [CM

h ]∩QM \Z
can be written locally as the graph of a function of class W 2,2. Hence the set

[CM
h ] \

(
Z ∪

N⋃
j=1

Λ(pj)
)

can also be written locally as the graph of a function of class W 2,2. Moreover, we can
choose the half-cones Λ(pj) pairwise disjoint.

Step 6: Extension of the construction to the half-cones.
We now construct the family of curves Ch by modifying CM

h only on the half-cones, i.e.

[Ch] \
( N⋃

j=1
Λ(pj)

)
= [CM

h ] \
( N⋃

j=1
Λ(pj)

)
,
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in such a way that for any j = 1, . . . , N , there exists a finite set of points Gj such that
the set [Ch] ∩ Λ(pj) \ Gj can be written locally as the graph of a function of class W 2,2.
Moreover P (Ch) = P (C). The modification of CM

h on the half-cones Λ(pj) is performed
in the same way as the previous modification on the half-rectangles R+(qi). Arguing as
before, we then obtain a sequence of admissible families Ch ofm curves converging strongly
in W 2,2 to a family Ĉ such that [Ĉ] = [C], P (Ĉ) = P (C) and equality (6.1) holds.

By construction, there exists a finite set of points F such that [Ch] \F can be written
locally as the graph of a function of class W 2,2 for any h large enough, so that Ch satisfies
the finiteness property for any h large enough. Since [C] ⊂ Ω we have also P (Ch) = P (C)
and [Ch] ⊂ Ω for large enough h. Hence, if [C] ⊂ Ω the lemma is proved.

Step 7: We remove the assumption [C] ⊂ Ω.
Let Ω be star-shaped with respect to the point x0, and let {ck}k ⊂ (0, 1) be a sequence
of points such that limk→+∞ ck = 1. We define a sequence C ′k of families of curves in the
following way. For any curve γ ∈ C, with γ : [a, b] → R2, we define

γ′k(t) = x0 + ck(γ(t)− x0) for any t ∈ [a, b].

Since Ω is star-shaped with respect to x0 and 0 < ck < 1 for any k we have

[C ′k] =
⋃
{[γ′k] : γ′k ∈ C ′k} ⊂ Ω for any k.

Since ck → 1 one can check that C ′k converges strongly in W 2,2 to C. The proof of the
lemma then follows from the case [C] ⊂ Ω and a diagonal argument.

The lemma below follows from a result by Chambolle and Doveri ([18], Proposition 1
of Appendix).

Lemma 6.2. Let K ⊂ Ω be a compact set, and let {Kh}h ⊂ Ω be a sequence of compact
sets converging to K in the Hausdorff metric such that suph∈NH1(Kh) < +∞. Assume
that the sets Kh have for any h a fixed finite number of closed connected components. Let
u ∈ W 1,2(Ω \ K). Then there exists a sequence {uh}h with uh ∈ W 1,2(Ω \ Kh) for any h,
such that uh → u strongly in L2(Ω) and ∇uh → ∇u strongly in L2(Ω; R2).

We now may prove the limsup inequality of Γ-convergence. Given a target triplet
(u,C, P ), with the aid of Lemma 6.1 (and some results in the Appendix) we may suppose
that C is composed by disjoint curves. The approximating setsDh, Ah are then constructed
as suitable neighbourhoods of P and C, respectively. The functions uh are then constructed
with the help of Lemma 6.2 above.

Theorem 6.3 (upper bound). Let Ω be a bounded, open and star-shaped set, and let
{εh}h be a sequence of positive numbers converging to zero. For every triplet (u,C, P ) ∈
X(Ω) there exists a sequence {(uh, Ah, Dh)}h ⊂ Y (Ω) converging weakly to (u,C∗, P ∗)
such that

lim sup
h→+∞

Eεh
(uh, Ah, Dh) ≤ G(u,C, P ), (6.13)

where C∗ and P ∗ are as in (3.1).

Proof. First assume that C∗ satisfies the finiteness property and that [C∗] ⊂ Ω.
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Step 1: reduction to families of disjoint simple curves.
By adapting a method introduced by Bellettini, Dal Maso and Paolini in [8] we may
construct a sequence C ′h = {γ1

h, . . . , γ
m
h } of families of simple curves of class C∞ such that

{γi
h}h converges strongly in W 2,2 to a curve γi for any i = 1, . . . ,m, the family C ′ =

{γ1, . . . , γm} is admissible and satisfies the finiteness property, C ′ and C∗ are equivalent
and the following properties hold for any h:

P (C ′h) = P (C ′),
(
[γi

h] ∩ [γj
h]

)
\ P (C ′) = ∅ for all i, j, i 6= j. (6.14)

The proof of the construction of this family is obtained by a careful modification of results
in [8]. We have included a complete proof in the Appendix for the reader’s convenience.

Step 2: Construction of the sequences of sets {Ah}h and {Dh}h.
Let C ′h = {γ1

h, . . . , γ
m
h } with m independent of h. Since the curves γi

h are of class C∞ and
are converging strongly in W 2,2, for any p ∈ P (C ′) and any curve γi

h ∈ C ′h having p as an
endpoint, the following properties hold for any h large enough:

(i) if γi
h is not a closed curve, then [γi

h] intersects ∂Br(p) in only one point for any r ≤ εh;

(ii) if γi
h is a closed curve, then [γi

h] intersects ∂Br(p) in only two points for any r ≤ εh.

Then we define
Dh =

⋃
{Bεh

(p) : p ∈ P ∗}. (6.15)

Moreover, for h large enough and any regular closed curve γi
h ∈ C ′h we have [γi

h]∩Dh = ∅.
Since γi

h → γi strongly in W 2,2 for any i = 1, . . . ,m, using (6.14) and properties (i)
and (ii), we may find m sequences of sets {Ai

h}h ⊂ C∞c (Ω) such that meas(Ai
h) → 0 for

any i, and the following properties hold for any i = 1, . . . ,m and for any h:

[γi
h] \Dh ⊂ Ai

h, A
i
h ∩A

j
h = ∅ for all i 6= j,

∂Ai
h \Dh = [γi+

h ] ∪ [γi−
h ], (6.16)

where γi+
h and γi−

h are simple curves of class C∞ such that [γi+
h ]∩ [γi−

h ] = ∅, and γi+
h → γi

and γi−
h → γi strongly in W 2,2. Then we set

Ah =
m⋃

i=1
Ai

h,

and we have Ah, Dh ∈ C∞c (Ω) for h large enough.

Step 3: Construction of the sequence of functions {uh}h.
Let Kh =

⋃m
i=1[γ

i
h] \Dh. The sequence of compact sets {Kh}h converges in the Hausdorff

metric to the set [C ′] = [C∗]; moreover the number of connected components of Kh is m
for all h and suph∈NH1(Kh) < +∞. Then, since u ∈W 1,2(Ω \ [C∗]), by Lemma 6.2 there
exists a sequence {ûh}h with ûh ∈ W 1,2(Ω \ Kh) for any h, such that ûh → u strongly in
L2(Ω) and ∇ûh → ∇u strongly in L2(Ω; R2).

Let {ρh}h be a sequence of positive numbers converging to zero such that

{x ∈ Ω : dist(x,Kh) < ρh} ⊂ Ah for any h.
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Let then {gh}h ⊂ C∞(R2) be a sequence of functions such that 0 ≤ gh ≤ 1 for any h and

gh(x) = 1 on {x ∈ Ω : dist(x,Kh) < ρh/2}, gh(x) = 0 on {x ∈ Ω : dist(x,Kh) ≥ ρh},
(6.17)

for any h. Then we define uh = (1− gh)ûh for any h so that uh ∈W 1,2(Ω).

Step 4: Estimate of the upper bound.
By construction we have {(uh, Ah, Dh)}h ⊂ Y (Ω) and {(uh, Ah, Dh)}h converges weakly
to (u,C∗, P ∗).

Since ûh → u in L2(Ω) and meas(Ah) → 0, using the definition of the function gh, we
have ‖uh − ûh‖L2 → 0 and

lim
h→+∞

∫
Ω
|uh − g|2 dx =

∫
Ω
|u− g|2 dx. (6.18)

Since ∇ûh → ∇u in L2(Ω; R2), meas(Ah∪Dh) → 0, and uh(x) = ûh(x) if x /∈ Ah, we have

lim
h→+∞

∫
Ω
(1− χAh∪Dh

)|∇uh|2 dx = lim
h→+∞

∫
Ω
(1− χAh∪Dh

)|∇ûh|2 dx =
∫

Ω\[C∗]
|∇u|2 dx.

(6.19)
Using (6.15) we get

lim
h→+∞

1
4π

∫
∂Dh

( 1
εh

+εhκ2
)
dH1 = lim

h→+∞

1
4π

∑
p∈P ∗

∫
∂Bεh

(p)

( 1
εh

+εhκ2
)
dH1 = #P ∗. (6.20)

Then, using (6.16), we have

lim sup
h→+∞

1
2

∫
∂Ah

(1− χDh
)(1 + κ2) dH1 ≤ lim

h→+∞

1
2

∫
∂Ah\Dh

(1 + κ2) dH1

=
1
2

lim
h→+∞

m∑
i=1

(
K(γi+

h ) + L(γi+
h ) +K(γi−

h ) + L(γi−
h )

)
=

∑
γ∈C′

(
K(γ) + L(γ)

)
. (6.21)

Since C ′ and C∗ are equivalent, collecting (6.18)–(6.21), we obtain

lim sup
h→+∞

Eεh
(uh, Ah, Dh) ≤

∫
Ω\[C∗]

|∇u|2 dx+ F(C∗, P ∗) +
∫

Ω
|u− g|2 dx = G(u,C, P ).

(6.22)

Step 5: We remove the assumptions that C∗ satisfies the finiteness property and [C∗] ⊂
Ω.
By Lemma 6.1 there exist an admissible family C0 of curves in Ω such that [C0] = [C∗],
P (C0) = P (C∗), ∑

γ∈C0

(
K(γ) + L(γ)

)
=

∑
γ∈C∗

(
K(γ) + L(γ)

)
,

and a sequence {C0
k}k of admissible families of curves in Ω satisfying the properties (i)-(iv)

of Lemma 6.1. Then we have

lim
k→+∞

F(C0
k , P

0
k ) = F(C∗, P ∗), (6.23)
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where P 0
k = P (C0

k) ∪ (P ∗ \ P (C∗)).
Since the sequence of compact sets {[C0

k ]}k converges in the Hausdorff metric to the
set [C0] = [C∗], the number of connected components of [C0

k ] and H1([C0
k ]) are uniformly

bounded with respect to k, and u ∈W 1,2(Ω \ [C∗]), by Lemma 6.2 there exists a sequence
{u0

k}k with u0
k ∈W 1,2(Ω \ [C0

k ]) for any k, such that

lim
k→+∞

∫
Ω
|u0

k − g|2 dx =
∫

Ω
|u− g|2 dx, lim

k→+∞

∫
Ω\[C0

k ]
|∇u0

k|2 dx =
∫

Ω\[C∗]
|∇u|2 dx.

(6.24)
Using (6.23) and (6.24) we get

lim
k→+∞

(∫
Ω\[C0

k ]
|∇u0

k|2 dx+ F(C0
k , P

0
k ) +

∫
Ω
|u0

k − g|2 dx
)

= G(u,C, P ),

from which, since C0
k satisfies the finiteness property and [C0

k ] ⊂ Ω, using (6.22) and a
diagonal argument, the statement of the theorem follows.

6.2 Upper bound for functionals defined on smooth functions

Theorem 6.4. Let Ω be a star-shaped bounded open set, and let {εh}h be a sequence of
positive numbers converging to zero. For every triplet (u,C, P ) ∈ X(Ω) there exists a
sequence {(uh, sh, wh)}h ⊂W (Ω) converging weakly to (u,C∗, P ∗) such that

lim sup
h→+∞

Gεh
(uh, sh, wh) ≤ G(u,C, P ),

where C∗ and P ∗ are as in (3.1).

Proof. Step 1: We use Theorem 6.3 to find recovery sets by means of which to construct
sequences sh, wh.
We set βεh

= βh and µεh
= µh. Let {(uh, Ah, Dh)}h ⊂ Y (Ω) be the sequence converging

weakly to (u,C∗, P ∗) and satisfying (6.13) constructed in the proof of Theorem 6.3. In
particular, we have

Dh =
⋃
{Bβh

(ph) : ph ∈ Ph}, (6.25)

where {Ph}h is a sequence of finite sets of points converging to P ∗, and βh satisfies (3.5).
Since Ah, Dh ∈ C∞c (Ω) for any h, we may choose the sequence {Ph}h in such a way that

{x ∈ Ω : dist(x,Ah) < 2εh| log εh|} ⊂⊂ Ω, {x ∈ Ω : dist(x,Dh) < 2εh| log εh|} ⊂⊂ Ω,

for h large enough. Moreover, as in (6.16), for any h we may write

∂Ah \D0
h =

m⋃
i=1

[γi
h], D0

h = {x ∈ Ω : δDh
(x) < −2εh| log εh|}, (6.26)

where γi
h, i = 1, . . . ,m, are simple curves such that [γi

h] ∩ [γj
h] = ∅ for any i 6= j, and

the family {γ1
h, . . . , γ

m
h } converges strongly in W 2,2 to a family of curves having the same

trace of C∗. The curves γi
h can be chosen in such a way that

{x ∈ Ω : dist(x, [γi
h]) ≤ 2εh| log εh|} ∩ {x ∈ Ω : dist(x, [γj

h]) ≤ 2εh| log εh|} = ∅
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for any i 6= j, i, j ∈ {1, . . . ,m}, and for large enough h. Furthermore, we choose the
sequence {Ah}h in such a way that

lim
h→+∞

meas(Ah)
βh

= 0. (6.27)

Step 2: Upper bound by ‘mollification’ of the sets Ah, Dh.
Let η ∈W 1,2

loc (R) be defined by η(t) = 1
2

(
1 + tanh t

2

)
. Note that

η′(t) =
√
V (η(t)). (6.28)

It is well known that η is an ‘optimal profile’ for the transition energy in the Modica
and Mortola perimeter approximation (see also [15] Section 3.2). For any h ∈ N let
ζh : [0,+∞) → [0, 1] be a C∞ function such that

ζh = 1 on [0, | log εh|], ζh = 0 on [2| log εh|,+∞),

ζ ′h < 0 in (| log εh|, 2| log εh|), ‖ζ ′h‖L∞([| log εh|,2| log εh|]) = O(1/| log εh|).

As in [9], we set

ηh(t) =

η
( t

εh

)
ζh

( t

εh

)
+ 1− ζh

( t

εh

)
if t ≥ 0

1− ηh(−t) if t < 0.

Let A ⊂ R2 and let δA denote the signed distance function from ∂A negative inside A:

δA(x) = dist(x,A)− dist(x,R2 \A).

Moreover we recall the notation (A)r = {x ∈ R2 : dist(x,A) < r}.
We now construct the sequences of functions {sh}h and {wh}h. We set

sh(x) = ηh(δAh
(x)), wh(x) = ηh(δDh

(x)) for all x ∈ Ω. (6.29)

Since Ah, Dh ∈ C∞c (Ω) we have (uh, sh, wh) ∈ W (Ω) for h large enough. Moreover, one
can check that the sequence {(uh, sh, wh)}h converges weakly to (u,C∗, P ∗). Set now

D1
h = {x ∈ Ω : |δDh

(x)| < εh| log εh|}, D2
h = {x ∈ Ω : εh| log εh| < |δDh

(x)| < 2εh| log εh|}.

Using the definition of G(1)
ε we have

G(1)
εh

(wh) =
∫

D1
h

( 1
βh

+ βhκ
2(∇wh)

)
H1

εh
(wh,∇wh) dx

+
∫

D2
h

( 1
βh

+ βhκ
2(∇wh)

)
H1

εh
(wh,∇wh) dx = Ih + IIh. (6.30)

Using (3.4), (6.28), the equality |∇wh| = |η′h(δDh
)|, and the coarea formula we get for h

large enough

Ih = 2
∫

D1
h

|∇wh|
√
V (wh)

( 1
βh

+ βhκ
2(∇wh)

)
dx

= 2
∫ θ2

h

θ1
h

√
V (θ)

∫
{wh=θ}

( 1
βh

+ βhκ
2
)
dH1dθ,
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where θ1
h = εh/(1 + εh) and θ2

h = 1/(1 + εh). Then, we easily get

Ih = 2
∫ θ2

h

θ1
h

√
V (θ)dθ

∫
∂Dh

( 1
βh

+ βhκ
2
)
dH1 +O(εh| log εh|)

∫ θ2
h

θ1
h

√
V (θ)dθ

(see also the proof of [9] Theorem 4.3), from which, using (6.20), we obtain

lim
h→+∞

Ih = 8π#P ∗
∫ 1

0

√
V (θ)dθ. (6.31)

Again using the coarea formula and arguing as above we get

IIh = O(1)
∫

D2
h

H1
εh

(wh,∇wh) dx,

from which, using the explicit form of wh (e.g. as in [31, 42]), it follows that limh IIh = 0.
Then, using (6.30) and (6.31) we have

lim
h→+∞

G(1)
εh

(wh) = 4πb0#P ∗. (6.32)

We now set

A1
h = {x ∈ Ω : |δAh

(x)| < εh| log εh|}, A2
h = {x ∈ Ω : εh| log εh| < |δAh

(x)| < 2εh| log εh|}.

Using the definition of G(2)
ε we have

G(2)
εh

(sh, wh) =
∫

A1
h

w2
h

(
1 + κ2(∇sh)

)
H1

εh
(sh,∇sh) dx

+
∫

A2
h

w2
h

(
1 + κ2(∇sh)

)
H1

εh
(sh,∇sh) dx = Ĩh + ĨIh. (6.33)

Using the coarea formula and arguing as before we get for h large enough

Ĩh ≤ 2
∫

A1
h\D

0
h

|∇sh|
√
V (sh)(1 + κ2(∇sh))dx = 2

∫ θ2
h

θ1
h

√
V (θ)

∫
{sh=θ}\D0

h

(1 + κ2) dH1dθ.

Then it follows that

Ĩh ≤ 2
∫ θ2

h

θ1
h

√
V (θ)dθ

∫
∂Ah\D0

h

(1 + κ2) dH1 +O(εh| log εh|), (6.34)

from which, using (6.21) and (6.26), we obtain

lim sup
h→+∞

Ĩh ≤ 4
∑

γ∈C∗

(
K(γ) + L(γ)

) ∫ 1

0

√
V (θ)dθ. (6.35)

Analogously we have that limh ĨIh = 0. Using (6.33) and (6.35) we have

lim sup
h→+∞

G(2)
εh

(sh, wh) ≤ 2b0
∑

γ∈C∗

(
K(γ) + L(γ)

)
. (6.36)
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Then, from Steps 3 and 4 in the proof of Theorem 6.3, by taking ρh in (6.17) small enough
we have uh(x) = ûh(x) if x /∈ A0

h, with A0
h = {x ∈ Ω : δAh

(x) < −2εh| log εh|}. Moreover,
∇ûh → ∇u in L2(Ω; R2), from which it follows

lim sup
h→+∞

∫
Ω
s2h|∇uh|2 dx ≤ lim

h→+∞

∫
Ω\A0

h

|∇ûh|2 dx =
∫

Ω\[C∗]
|∇u|2 dx. (6.37)

Moreover we have
lim

h→+∞

∫
Ω
|uh − g|2 dx =

∫
Ω
|u− g|2 dx. (6.38)

Finally, using (3.5), (6.25) and (6.27) we get

lim sup
h→+∞

1
µh

∫
Ω
(1− wh)2 dx ≤ lim

h→+∞

meas((Dh)2εh| log εh|)
µh

= 0, (6.39)

and

lim sup
h→+∞

1
µh

∫
Ω
(1− sh)2 dx ≤ lim

h→+∞

meas((Ah)2εh| log εh|)
µh

= 0. (6.40)

The statement of the theorem then follows collecting (6.32) and (6.36)-(6.40).

7 Connection with a conjecture by E. De Giorgi

In this section we prove the upper inequality of Γ-convergence for a family of functionals
based on a conjecture by E. De Giorgi [22]. According to that conjecture the Γ-convergence
for curvature-depending functionals can be obtained by replacing

div
( ∇s
|∇s|

)
by 2ε∆s− V ′(s)

ε

in the approximating functionals. An analogous replacement takes place for the term
involving κ(∇w). The resulting approximating functionals are more convenient for the
purpose of numerical computations. However, the validity of the lower inequality is an
open problem.

For every ε > 0 we define

Ĝ(1)
ε (w) =

∫
Ω

( 1
βε

+
βε

b1

(
2ε∆w − V ′(w)

ε

)2)
H1

ε(w,∇w) dx,

Ĝ(2)
ε (s, w) =

∫
Ω
w2

(
1 +

1
b1

(
2ε∆s− V ′(s)

ε

)2)
H1

ε(s,∇s) dx,

where b1 = (8/b0)
∫ 1
0 V (t)3/2dt. We denote by Ĝε : W (Ω) → [0,+∞] the functional defined

by

Ĝε(u, s, w) =
∫

Ω
s2|∇u|2 dx+

1
4πb0

Ĝ(1)
ε (w) +

1
2b0

Ĝ(2)
ε (s, w) +

∫
Ω
|u− g|2 dx

+
1
µε

∫
Ω
(1− s)2 dx+

1
µε

∫
Ω
(1− w)2 dx.

We prove the following proposition.
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Proposition 7.1. Let Ω be a star-shaped bounded open set, and let {εh}h be a sequence
of positive numbers converging to zero. For every triplet (u,C, P ) ∈ X(Ω) there exists a
sequence {(uh, sh, wh)}h ⊂W (Ω) converging weakly to (u,C∗, P ∗) such that

lim sup
h→+∞

Ĝεh
(uh, sh, wh) ≤ G(u,C, P ),

where C∗ and P ∗ are as in (3.1).

Proof. The proof is similar to that of Theorem 6.4. Hence we sketch the estimate for the
term Ĝ(2)

εh , the estimates for the other terms being similar.
The optimal sequence {(uh, sh, wh)}h is constructed in the same way as in the proof of

Theorem 6.4. By using the same notations, we decompose the term Ĝ(2)
εh (sh, wh) into the

integrals over the sets A1
h and A2

h, respectively denoted by Ih and IIh. For any x ∈ A1
h we

have for h large enough
∆δAh

(x) = κt
h(x),

where κt
h(x) is the curvature of the level set {x : δAh

(x) = t}. Then, using (6.28) and
(6.29), we have 2εhη′′h(t) = V ′(ηh(t))/εh, and

2εh∆sh −
V ′(sh)
εh

= 2εhη′h∆δAh
+ 2εhη′′h −

V ′(ηh)
εh

= 2εhη′hκ(∇sh).

Using the coarea formula and arguing as in the proof of Theorem 6.4 we get for h large
enough

Ih ≤ 2
∫

A1
h\D

0
h

|∇sh|
√
V (sh)

(
1 +

4
b1
ε2h(η′h)2κ2(∇sh)

)
dx

= 2
∫ θ2

h

θ1
h

√
V (θ)

∫
{sh=θ}\D0

h

(
1 +

4
b1
ε2h(η′h)2κ2

)
dH1dθ

= 2
∫ θ2

h

θ1
h

√
V (θ)dθ

∫
∂Ah\D0

h

dH1

+
8
b1

∫ θ2
h

θ1
h

V (θ)3/2dθ

∫
∂Ah\D0

h

κ2dH1 +O(εh| log εh|)

= 2
∫ θ2

h

θ1
h

√
V (θ)dθ

∫
∂Ah\D0

h

(1 + κ2) dH1 +O(εh| log εh|),

which coincides with the estimate (6.34). The other terms are estimated in an analogous
way.

Remark 7.2. The result of Proposition 7.1 holds essentially with the same proof even if
the terms Ĝ(1)

ε and Ĝ(2)
ε are replaced with the following functionals

Ĝ(1)
ε (w) =

βε

2ε

∫
Ω

(
2ε∆w − V ′(w)

ε

)2
dx+

1
βε

∫
Ω
H1

ε(w,∇w) dx,

and

Ĝ(2)
ε (s, w) =

∫
Ω
H1

ε(s,∇s) dx+
1
2ε

∫
Ω
w2

(
2ε∆s− V ′(s)

ε

)2
dx,

which are simpler for numerical computations (see for instance [24], [25], [30]).
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8 Appendix

By adapting a method introduced by Bellettini, Dal Maso and Paolini in [8] we will prove
the result in Step 1 of Theorem 6.3.

Proposition 8.1. Let C∗ satisfy the finiteness property and [C∗] ⊂ Ω. Then there exists
a sequence C ′h = {γ1

h, . . . , γ
m
h } of families of simple curves of class C∞ such that {γi

h}h

converges strongly in W 2,2 to a curve γi for any i = 1, . . . ,m, the family C ′ = {γ1, . . . , γm}
is admissible and satisfies the finiteness property, C ′ and C∗ are equivalent, and (6.14)
holds for all h.

Before proving this proposition we introduce some notation following [8]. Let S be the
union ofm closed and pairwise disjoint intervals [ai, bi], i = 1, . . . ,m, and let C : S → R2 be
a family of curves that satisfies the finiteness property (Definition 2.5). Then there exists
a finite number of points {t1, . . . , tp} ∈ S such that {a1, b1, . . . , am, bm} ⊆ {t1, . . . , tp} and
the unique finite partition P of S\{t1, . . . , tp} composed of open intervals having endpoints
in {t1, . . . , tp} satisfies the following properties:

(i) for any I,H ∈ P either C(I) ∩ C(H) = ∅ or C(I) = C(H);

(ii) C is injective on I for every I ∈ P;

(iii) C(ti) /∈ C(H) for every H ∈ P and for every i = 1, . . . , p.

For every I ∈ P the set C(I) will be called a branch of C, and for every i = 1, . . . , p the
point C(ti) is called a node of C. Observe that P (C) is contained in the set of all the nodes
of C. Let B be a branch of C, and let x ∈ B; then the number of elements of C−1(x)
depends only on B and does not depend on x. This number is called the multiplicity of the
branch B. If T is an open subinterval of S \ {t1, . . . , tp}, then the set C(T ) will be called
an arc of C. Let J be an arc of C; since J is contained in a branch B, the multiplicity of
J is the multiplicity of B.

Let C be an admissible family of curves in Ω that satisfies the finiteness property, and
let q be a node of C such that q /∈ P (C). Then there exists a tangent unit vector τ(q) of
[C] at q. Let B1 and B2 be two branches of C having endpoint q. We say that B1 and
B2 lie on the same side with respect to q if there exists a neighbourhood U of q such that
(x − q) · τ(q) > 0 for every x ∈ (B1 ∪ B2) ∩ U . Otherwise, we say that B1 and B2 lie on
opposite sides with respect to q.

We say that two open intervals I,H ∈ P are consecutive if their closures I,H have
one point belonging to {t1, . . . , tp} in common. If B,B′ are two branches of C having
multiplicity one, then they are consecutive if there exist two consecutive open intervals
I,H ∈ P such that B = C(I) and B′ = C(H). Two consecutive branches have a common
endpoint and if the family C is admissible they lie on opposite sides with respect to it.

The following property can be proved (see [8], Section 6):

(iv) let C be an admissible family of curves in Ω that satisfies the finiteness property and
let all branches of C have multiplicity one. Then, given a branch B of C having
endpoint q /∈ P (C), the number of branches of C having endpoint q and lying on the
same side of B with respect to q is the same of the number of the branches having
endpoint q and lying on the opposite side.
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Remark 8.2. Let C be as in (iv) and let q be a node of C such that q /∈ P (C). Let
R(q) be an open rectangle centered at q and having two sides parallel to the tangent line
of [C] at q. We use the local coordinates (ξ, η) and the notation introduced for R±(q) in
(6.3). If R(q) is sufficiently small, by the Implicit Function Theorem it follows that the
set R+(q) ∩ ([C] \ {q}) is composed of r different arcs J1, . . . , Jr having q as an endpoint.
For any k = 1, . . . , r the arc Jk is the cartesian graph in R+(q) of a function fk of class
W 2,2 with respect to the ξ-axis. Following [8] we order the arcs J1, . . . , Jr in such a way
that f1(ξ) < f2(ξ) < · · · < fr(ξ) for any ξ ∈ (0, ξ0) and we call the index k the ordering
number of Jk with respect to q. Let now B be a branch of C having endpoint q and such
that B ∩ R+(q) 6= ∅. Each branch B′ having endpoint q and lying on the same side of
B with respect to q contains one and only one arc Jk. We say that the index k is the
ordering number of B′ with respect to q.

By using property (iv) above, the set R−(q)∩ ([C]\{q}) is composed of r different arcs
which are the cartesian graphs in R−(q) of functions of class W 2,2. Then the branches
having endpoint q and lying on the opposite side of B with respect to q can be ordered in
an analogous way using such functions.

We can now prove Proposition 8.1
Proof. We may assume (up to a reparametrization which does not change the energy
F(C∗, P ∗)) that C∗ is a map C∗ : S → R2, where the set S is a finite union of closed
and pairwise disjoint intervals, and

∣∣dC∗

dt (t)
∣∣ = 1 for any t ∈ S. Let {t1, . . . , tp} denote the

finite subset of S as above, and let P denote the corresponding partition of S \{t1, . . . , tp}
into open intervals. First we construct a sequence {C̃h}h of admissible families of curves in
Ω such that C̃h : S → R2, C̃h converges strongly to C∗ in W 2,2(S; R2), and the following
properties are satisfied for any h: (a) P (C̃h) = P (C∗); (b) the family C̃h satisfies the
finiteness property; (c) the nodes of C̃h coincide with the nodes of C∗; (d) all branches of
C̃h have multiplicity one.

We follow the construction of [8] Lemma 6.1. Let (q1, q2) be a pair of consecutive nodes
of C∗, and let B be a branch joining q1 and q2 having multiplicity r. Then C∗−1(B) =⋃r

j=1 Ij , with Ij ∈ P for any j = 1, . . . , r. The branch B is approximated by r branches
B1

h, . . . , B
r
h. Let ϕ : R2 → [0,+∞) of class C∞ which vanishes at the points q1, q2 with

all its derivatives, a function v ∈ C∞(R2; R2), and h0 ∈ N such that, if we set for any
j = 1, . . . , r,

Bj
h = C̃h(Ij), C̃h(t) = C∗(t) +

j

hr
ϕ(C∗(t))v(C∗(t)), t ∈ Ij , (8.1)

then, for any h > h0, C̃h is injective on Ij , and Bj
h ∩B

j′

h = ∅ for any j 6= j′ (to construct
such functions we may use the method of proof of Lemma 6.1 of [8]). We repeat this
construction for all pairs of consecutive nodes of C∗ and for all branches. It follows that
for any h > h0 the approximating branches corresponding to different branches of C∗ are
disjoint [8]. Moreover, since [C∗] ⊂ Ω we have also [C̃h] ⊂ Ω for large enough h. Then we
obtain a sequence {C̃h}h of families of curves with the required properties.

Now we show that for any h > h0 there exists a family of curves Ĉh satisfying the
finiteness property such that Ĉh and C̃h are equivalent, all branches of Ĉh have multiplicity
one, and consecutive branches have the same ordering number. We adapt the construction
of [8] Theorem 6.1 to our purposes. For any h > h0 we associate to the family of curves
C̃h a finite undirected graph Gh whose vertices are the nodes of C̃h, and whose edges are
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the branches of C̃h [11]. A chain of edges of the graph Gh is called simple if it does not
use the same edge twice; a cycle is a simple chain whose endpoints are the same vertex.

Fix h > h0; to construct the family Ĉh we first show that there exists a finite number
of chains of edges of the graph Gh with the following properties:

(i) every edge of Gh is contained in the family of chains;

(ii) the endpoints of every chain which is not a cycle belong to P (C̃h); every cycle contains
at most one vertex belonging to P (C̃h);

(iii) the chains are all simple and pairwise disjoint;

(iv) if E1 and E2 are two edges of the same chain with a common vertex v, and E2 is the
successor of E1 in the chain, then v /∈ P (C̃h), E1 and E2 lie on opposite sides with
respect to v and have the same ordering number.

We construct the chains of edges {Ei}i inductively. Let vi and vi+1 denote the vertices
of Ei and let v1 be a vertex of Gh such that v1 ∈ P (C̃h). We choose the first edge E1

of the chain as an arbitrary edge having vertex v1. Now suppose that the edge Ei−1 has
been defined. If vi ∈ P (C̃h) then Ei−1 is the last edge of the chain, and the construction
is concluded. Otherwise, we define Ei as the unique branch of C̃h lying on the opposite
side of Ei−1 with respect to vi and having the same ordering number. By using the same
method of proof of [8] Theorem 6.1 it follows that the chain {E1, . . . , Ei} is simple. By
induction we then get a simple chain {Ei}i which satisfies the properties (ii) and (iv).

Then we repeat the algorithm starting from an edge not contained in the previous
chain and having a vertex belonging to P (C̃h). After a finite number of implementations
of the algorithm all edges having a vertex belonging to P (C̃h) are reached, since one can
prove, arguing as in [8], that all the chains obtained are simple and pairwise disjoint. We
repeat the algorithm starting from an edge not contained in the previous chains: arguing
again as above we obtain cycles which do not contain vertices belonging to P (C̃h). It
follows that after a finite number of implementations of the algorithm all edges of the
graph Gh are reached, so that all the properties (i)-(iv) are satisfied.

We now reparametrize the curves of the family C̃h on a finite union Sh of closed and
pairwise disjoint intervals in such a way that |d eCh

dt (t)| = 1 for any t ∈ Sh. We still denote
by C̃h : Sh → R2 this parametrization. Let {th1 , . . . , thp} denote the finite subset of Sh such
that, for any l = 1, . . . , p, we have thl = C̃−1

h (q) for some node q of C̃h. Let P still denote
the partition of Sh \ {th1 , . . . , thp} into open intervals. Since each branch B of the family
C̃h corresponds to an edge of the graph Gh in a one-to-one way, there exists a bijection
between the set of all edges of Gh and the partition P.

We now construct the family of curves Ĉh using the family of chains obtained above.
We reparametrize [C̃h] by means of the following surgery operations on the set Sh as in the
proof of [8] Theorem 6.1. Let {Ei}i be a chain of edges, and let {Ii}i ⊆ P be the sequence
of the corresponding intervals according to the bijection. For any i let Ii = (ai, bi). If
C̃h(ai) 6= vi, we reverse the orientation of the branch C̃h(Ii) in such a way that vi becomes
the image of ai and vi+1 becomes the image of bi. Next, for any i, we glue together bi
with ai+1 by means of translations of the intervals Ii. We then get a curve γ defined on a
single interval I = (a, b) such that γ(a) is the initial endpoint of the chain {Ei}i and γ(b)
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is the terminal endpoint. Since the tangent vector of [C̃h] exists at any node q /∈ P (C̃h)
and |d eCh

dt (t)| = 1, the property (iv) of the chain ensures that γ̇ is continuous in (a, b).
Repeating this procedure for all the chains we obtain an admissible family of curves

which we denote by Ĉh. Then the properties (i)-(iv) of the chains imply that Ĉh and C̃h

are equivalent. Moreover, by construction, the family Ĉh has all branches with multiplicity
one and consecutive branches have the same ordering number.

Since (8.1) implies that thl → tl for any l = 1, . . . , p, we may repeat on S \ {t1, . . . , tp}
the same surgery operations made on Sh \ {th1 , . . . , thp}. We then obtain a set S′ and a
family of curves C ′ : S′ → R2 such that C ′ and C∗ are equivalent. Since the graphs Gh

are all isomorphic for any h > h0, by identifying isomorphic graphs, the chains of edges
constructed above do not depend on h and we may reparametrize the families of curves Ĉh

on the set S′ independent of h. It follows that Ĉh converges strongly to C ′ in W 2,2(S′; R2).
We now construct sequences {Ĉh,k}k of families of simple curves such that, for any

h > h0, Ĉh,k converges strongly to Ĉh in W 2,2(S′; R2), and there exists k0 ∈ N such that
for any k > k0

P (Ĉh,k) = P (Ĉh) = P (C ′), ([γi
h,k] ∩ [γj

h,k]) \ P (C ′) = ∅ for all γi
h,k, γ

j
h,k ∈ Ĉh,k, i 6= j.

We follow the construction of [8] Lemma 6.2. Fix h > h0 and let q be a node of Ĉh such
that q /∈ P (Ĉh). Let τ(q) be a tangent unit vector of [Ĉh] at q, and let ν(q) be a normal
unit vector of [Ĉh] at q. Let R(q) be an open rectangle centered at q and having two sides
parallel to τ(q). Let (ξ, η) denote the coordinates of points in a local coordinate system in
R(q), with the origin in q, such that the tangent line of [Ĉh] at q coincides with the ξ-axis
and R(q) = (−ξ0, ξ0)× (−η0, η0). Let R±(q) as in (6.3). If R(q) is sufficiently small, using
Remark 8.2 we may write:

R+(q) ∩ ([Ĉh] \ {q}) =
⋃
{J i+

h : 1 ≤ i ≤ n}, R−(q) ∩ ([Ĉh] \ {q}) =
⋃
{J i−

h : 1 ≤ i ≤ n},

where the index i denotes the ordering number of the arcs J i+
h , J i−

h with respect to q.
Let Ĉ−1

h (q) = {th1 , . . . , thn}. For any i = 1, . . . , n, let Ii+
h = Ĉ−1

h (J i+
h ), Ii−

h = Ĉ−1
h (J i−

h ),
and Ii

h = Ii+
h ∪Ii−

h ∪{thi }. Since consecutive branches of Ĉh have the same ordering number,
Ii+
h and Ii−

h are consecutive open intervals of S′, hence the set Ii
h is an open interval. We

choose the normal unit vector ν(q) in such a way that (0, 1) are the components of ν(q)
with respect to the system of coordinates (ξ, η). We now define (see the proof of [8] Lemma
6.2):

Ĉh,k(t) = Ĉh(t) + ν(q)
i

kn
ψ(π(Ĉh(t))), (8.2)

if t ∈ Ii
h for some i = 1, . . . , n, and Ĉh,k(t) = Ĉh(t) elsewhere on S′. In (8.2) π : R(q) →

(−ξ0, ξ0) denotes the projection of R(q) onto (−ξ0, ξ0), and ψ : (−ξ0, ξ0) → [0, 1] denotes
a C∞ function with the following properties: ψ(0) = 1, ψ(ξ) = 0 for any ξ0

2 ≤ ξ < ξ0,
ψ′(ξ) < 0 for any 0 < ξ < ξ0

2 , and ψ(−ξ) = ψ(ξ) for any ξ ∈ [0, ξ0).
Using (8.2) we have Ĉh,k(Ii

h)∩ Ĉh,k(I
j
h) = ∅ for any i 6= j. We repeat this construction

for any node q of Ĉh such that q /∈ P (Ĉh), by taking the rectangles R(q) pairwise disjoint.
Then we obtain, for any h > h0, a sequence {Ĉh,k}k of families of curves with the required
properties for large enough k.

Hence, for any h > h0, by using a diagonal argument we obtain a sequence of families
of simple curves satisfying (6.14) and converging strongly in W 2,2 to the curves γi of C ′.
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Since any family of curves can be approximated in the W 2,2 norm by a family of curves of
class C∞, the sequence {C ′h}h of families of simple curves is then obtained by means of a
diagonal argument. Finally, since [C∗] ⊂ Ω we have also [C ′h] ⊂ Ω for large enough h.
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