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Abstract. Smooth Finsler metrics are a natural generalization of Riemannian
ones and have been widely studied in the framework of differential geometry. The
definition can be weakened by allowing the metric to be only Borel measurable.
This generalization is necessary in view of applications, such as, for instance, op-
timization problems. In this paper we show that smooth Finsler metrics are dense
in Borel ones, generalizing the results obtained in [15]. The case of degenerate
Finsler distances is also discussed.

1. Introduction

A Finsler metric on a differential manifold M is a map ϕ : TM → [0, +∞) such
that ϕ(x, ·) is convex and positively 1-homogeneous on TxM for every x ∈ M . A
non-symmetric distance on M can be associated to ϕ as follows:

dϕ (x, y) := inf
{∫ 1

0
ϕ(γ(t), γ̇(t)) dt

∣∣ γ ∈ Lip ([0, 1],M) , γ(0) = x, γ(1) = y

}
(1)

for x, y ∈ M , provided the class of admissible paths γ is non-void (for instance,
assume M connected). Distances of this kind are usually known in literature as
Finsler distances. Finsler metrics are a natural generalization of Riemannian ones.
The smooth case has been largely investigated in the last century in the framework
of differential geometry. The literature on the subject is wide; an introduction is
supplied, for instance, by [3].

The above definitions still make sense under weaker regularity assumptions on
the metric. In fact, we may allow ϕ to be only Borel-measurable. This generality
is necessary in view of applications. In optimization problems, for instance, one is
often interested in minimizing a cost functional which takes the form C(dϕ), where
ϕ is to be chosen in some suitable class of Finsler metrics. Then, if one restricts
himself to consider smooth or continuous metrics only, the problem may not have a
solution: indeed, when attacking the problem via the direct method of the Calculus
of Variations, it might happen that the minimizing sequences converge to distances
deriving from Finsler metrics that are shown to be Borel-measurable only (see [1, 5,
8]). Note that problems of this kind fall into the framework of shape optimization:
in fact, ϕ describes the geometric properties of the metric space (M, dϕ), and may
possibly depend on some quantities one is allowed to vary. For example, if a(·) is the
density of a viscous material that fills a region M of the space, the distance between
points is expected to be proportional to the resistance opposed by the medium and
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may be described by dϕ with ϕ(x, ξ) := a(x)|ξ|. If now we let a(·) vary in a suitable
family of functions satisfying integral and pointwise constraints, the corresponding
shape optimization problem is that of finding a ”best” way to distribute a certain
amount of this material on M . A problem of this kind has been considered, for
instance, in [7].

Measurable Finsler metrics have been also considered in [16, 17, 18], where this
point of view was adopted to suitably generalize the notions of Riemannian and
Finsler metrics for Lipschitz manifolds, namely topological manifolds with a count-
able basis whose changes of coordinates are Lipschitz maps. Lipschitz manifolds are
a generalization of polyhedra, and were introduced to treat the case of manifolds
with singularities, such as vertices, edges, conical points, even not isolated.

The perspective can be also reversed: instead of dealing with singularities carried
by the manifold, one could treat the case of a sufficiently smooth manifold equipped
with an irregular metric. For example, the problem concerning geodesics with ob-
stacles can be studied as a problem about metrics with singularities. This topic is
also of physical interest, since the irregularities of the metric may actually represent
irregularities of the materials where the physical phenomena take place: think, for
instance, to geometrical optics in non-homogeneous media.

With this regard, we underline the relation with the theory of Hamilton-Jacobi
equations. In the study of equations of eikonal type, a central role is in fact played
by a Finsler distance associated to the equation, the so called optical length function.
The metric character of equations of this kind has been recognized and explored by
several authors [20, 22, 23, 25]. The study of Finsler metrics in the weak measurable
setting acquires therefore further interest in view of generalizations of the theory of
viscosity solutions for Hamilton-Jacobi equations with discontinuous ingredients, a
topic which is the object of growing attention [4, 10, 11, 12, 26].

In this paper we consider the spaceDα of non-symmetric distances defined through
(1), where M is now replaced by the closure of a connected open subset Ω of RN ,
and ϕ varies in the family Mα of Borel-measurable Finsler metrics that satisfy the
following bounds for two fixed positive constants α and β:

α|ξ| ≤ ϕ(x, ξ) ≤ β|ξ| on Ω× RN .

The aim is to show that continuous (smooth) Finsler metrics are dense in Borel
ones. More precisely, we will show that any element of Dα is the uniform limit of a
suitable sequence of distances derived through (1) from continuous (smooth) metrics
belonging to Mα (Theorems 4.1 and 4.5). The hard side of the job corresponds
to Theorem 4.1: indeed, once the density result is proved for continuous metrics,
the analogous result for smooth ones is obtained through a standard mollification
argument.

These results can be read as the counterpart of those obtained in [15], where
the case of symmetric distances was considered, and analogous density theorems for
continuous and smooth Riemannian metrics were obtained. As a matter of fact, the
proofs exploit similar ideas; in particular, the key observation still corresponds to
Lemma 3.1 (cf. [15, Lemma 3.4]), which allows to replace the uniform convergence
of distances with a pointwise convergence on a fixed, countable subset of Ω×Ω. On
the other hand, new arguments have to be introduced to overcome the difficulties
produced by the non-symmetric character of distances here considered.

We also wish to underline the content of Theorem 4.2: it amounts to saying that
any geodesic distance d, locally equivalent to the Euclidean one, can be obtained
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from a convex Finsler metric through (1), a fact which is not trivial at all: notice
indeed that the Finsler metric ϕd(x, ξ), obtained from d by derivation (cf. formula
(7) below), is proved to be convex in ξ for almost every x only.

The density results obtained for α > 0 are then extended to the case α = 0. The
main difference between the two cases relies on the fact that, while Dα is closed
as a metric space when α > 0, this is no longer true when α = 0. This fact is
investigated in more detail in Section 5 through suitable, explicit examples. We
remark that the family D0 includes distances for which the local equivalence with
the Euclidean one fails to hold somewhere. The interest for this class of degenerate
distances is motivated by the study of Hamilton-Jacobi equations of eikonal type in
the critical case (see [12, 20]).

Finally, we remark that our results also holds ifRN is replaced by a N -dimensional,
differential manifold without boundary and of class C1. Since all arguments exploit
local properties, proofs can actually be rephrased by using local coordinates. We
have preferred, however, to consider this more special case not to add further tech-
nicalities.

Our paper is organized as follows: Section 2 is devoted to notation and defini-
tions. In particular, some results holding in classical metric spaces are generalized to
cover the case of non-symmetric distances. In Section 3 we state some preliminary
propositions, in Section 4 we prove our main results for the class of non-symmetric
distances Dα when α > 0, and in Section 5 we examine the case α = 0.

2. Notation and definitions

We write here a list of symbols used throughout this paper.

Ω open connected subset of RN

SN−1 (N − 1) – dimensional unitary sphere of RN

Br(x), Br open ball in RN of radius r centred in x and 0 respectively
I closed interval [0, 1]
Lk k-dimensional Lebesgue measure
Hk k-dimensional Hausdorff measure
|x| Euclidean norm of the vector x ∈ RN

R+ non-negative real numbers
P(RN ) family of all subsets of RN .

We will denote by N an integer number. A subset of RN is said to be negligible if its
N -dimensional Lebesgue measure is null. When not otherwise specified, the word
curve or path will always denote a Lipschitz function from the interval I := [0, 1] to
Ω. The family of all such curves will be denoted by Lip(I, Ω), and is equipped with
the metric of uniform convergence; in particular, we will say that the sequence (γn)n

converges to γ to mean that supt∈I |γn(t)− γ(t)| tends to zero as n goes to infinity.
Unless otherwise specified, any curve γ is always supposed to be parametrized by
constant speed, i.e. in such a way that |γ̇(t)| is constant for L1-a.e. t ∈ I. We will
denote by Lipx,y the family of curves γ which join x to y, i.e. such that γ(0) = x and
γ(1) = y. The domain Ω will be always assumed to satisfy the following condition:

∀ r > 0 ∃ Cr ≥ 1 s.t. dΩ(x, y) ≤ Cr|x− y| ∀ x, y ∈ Ω ∩Br, (Ω)
3



where dΩ is the Euclidean geodesic distance in Ω, i.e. the distance defined through
formula (4) below with ϕ(x, ξ) = |ξ| identically in Ω× RN . Note that (Ω) depends
on the regularity of ∂Ω; when the latter can be (locally) expressed as a graph of a
function h, (Ω) is equivalent to require that h is Lipschitz continuous.

For a measurable function f : I → RN , ‖f‖∞ stands for
√∑N

i=0 ‖fi‖2
L∞(I), where

fi and ‖fi‖L∞(I) denote the i-th component of f and the L∞-norm of fi respectively.

In the sequel, a function d defined on Ω× Ω will be said to be a distance on Ω if
the following conditions hold:

(i) d(x, x) = 0 for every x ∈ Ω;
(ii) d(x, y) ≤ d(x, z) + d(z, y) for every x, y, z ∈ Ω.

With respect to the classical definition of distance, two conditions are not required:
first, d may be non-symmetric, namely the identity d(x, y) = d(y, x) may fail to
hold in Ω × Ω; second, d can possibly be degenerate, namely it might happen that
d(x, y) = 0 for some x 6= y. Degenerate distances, however, are only considered at
the end of the paper, in Section 5.

We begin by extending to this setting some well known definitions and classical
results for usual distances. We will omit the proofs of the next theorems, which can
be derived by minor changes from those proposed, for instance, in [2] in the classical
case.

First, let us define the d-length of γ, obtained as the supremum of the d-lengths
of inscribed polygonal curves:

Ld(γ) := sup
{ m−1∑

i=0

d
(
γ(ti), γ(ti+1)

) ∣∣∣ 0 = t0 < t1 < .. < tm = 1, m ∈ N
}

. (2)

Definition 2.1 (Geodesic distance). We will say that d is a geodesic distance if it
satisfies the following identity:

d(x, y) = inf
{
Ld(γ) | γ ∈ Lipx,y

}
for every (x, y) ∈ Ω× Ω.

All distances considered in the sequel will fulfill the following hypotheses:
(d1) d is geodesic;
(d2) there exist two non-negative constants α and β such that

α|x− y| ≤ d(x, y) ≤ β|x− y| locally in Ω

(i.e. for every x0 ∈ Ω there exists an open ball Br(x0) ⊂ Ω such that the
above inequality holds for every x, y ∈ Br(x0)).

Any distance d which satisfies the above hypotheses induces on Ω a topology which
is equivalent to the Euclidean one when α > 0, and weaker, in general, if α = 0.
Notice that α > 0 implies that d is non-degenerate. By applying to our framework a
classical theorem due to Busemann (cf. [2, Theorem 4.3.1]), we obtain what follows.

Proposition 2.2. The length functional Ld is lower semicontinuous with respect to
the uniform convergence of paths, namely if (γn)n converges to γ, then

Ld(γ) ≤ lim inf
n→+∞ Ld(γn).

Moreover, when α > 0, for every couple of points x, y in Ω there exists a curve
γ ∈ Lipx,y which is a path of minimal d-length, i.e. such that Ld(γ) = d(x, y).
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As in the symmetric case, we can define the metric derivative of a curve.

Definition 2.3 (Metric derivative). Given a curve γ, we define the metric derivative
|γ̇|d(t) of γ at the point t ∈ (0, 1) as

|γ̇|d(t) := lim sup
h→0+

d(γ(t), γ(t + h))
h

. (3)

The d-length of a curve γ admits an integral representation in terms of its metric
derivative.

Theorem 2.4. For every curve γ the lim sup at the right-hand side of (3) is actually
a limit for L1-a.e. t ∈ I. Moreover we have

Ld(γ) =
∫ 1

0
|γ̇|d(t) dt.

We now make precise what we mean by weak Finsler metric.

Definition 2.5. A Borel-measurable function ϕ : Ω × RN → R+ is said to be a
(weak) Finsler metric on Ω if

(i) ϕ(x, ·) is positively 1-homogeneous for every x ∈ Ω;
(ii) ϕ(x, ·) is convex for LN -a.e. x ∈ Ω.

We will say that the metric ϕ is convex if (ii) holds for every x ∈ Ω. We will say
that ϕ is a continuous (resp. smooth) Finsler metric if ϕ(·, ξ) is continuous (resp.
smooth) on Ω for every ξ ∈ RN .

We now fix two non-negative constants α and β and we consider the following
family of functions:

Mα :=
{
ϕ Finsler metrics on Ω

∣∣ α|ξ| ≤ ϕ(x, ξ) ≤ β|ξ| on Ω× RN
}

.

For each ϕ ∈Mα, we can define a function dϕ on Ω× Ω through the formula

dϕ (x, y) := inf
{
Lϕ (γ) | γ ∈ Lipx,y

}
, (4)

where the length functional Lϕ is defined by

Lϕ(γ) :=
∫ 1

0
ϕ(γ(t), γ̇(t)) dt. (5)

The main properties of dϕ are summarized below.

Proposition 2.6. The function dϕ given by (4) is well defined on Ω×Ω and satisfies
the following properties:

(i) 0 ≤ dϕ(x, y) ≤ dϕ(x, z) + dϕ(z, y) for all x, y, z ∈ Ω;
(ii) α|x− y| ≤ dϕ(x, y) ≤ β|x− y| locally in Ω.

Proof. Let γ be a curve. Since the map t 7→ (
γ(t), γ̇(t)

)
is Lebesgue measurable on

I, and ϕ is Borel measurable on Ω×RN , their composition ϕ(γ(t), γ̇(t)) is Lebesgue
measurable on I. Therefore the integral in (5) is well defined and so is dϕ. The
remainder of the assertion is a simple consequence of the definitions. ¤

Next proposition clarifies the relation between the functional (5) and the (intrin-
sic) metric length functional. The proof can be derived by minor changes from that
of Theorem 4.3 in [16].
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Proposition 2.7. Let d := dϕ with ϕ ∈Mα. Then, for any γ ∈ Lip(I, Ω), we have
that Ld(γ) ≤ Lϕ(γ). In particular, d is a geodesic distance according to Definition
2.1. If α > 0, we have moreover:

Ld(γ) = inf
{

lim inf
n→+∞ Lϕ(γn)

∣∣∣ (γn)n converges to γ in Lip(I, Ω)
}

, (6)

namely Ld is the relaxed functional of Lϕ on Lip(I,Ω).

Remark 2.8. By Proposition 2.7, Lϕ will coincide with Ld whenever Lϕ is lower
semicontinuous on Lip(I,Ω). This happens, for instance, when ϕ is lower semicon-
tinuous on Ω × RN and ϕ(x, ·) is convex on RN for every x ∈ Ω (cf. [6, Theorem
4.1.1]).

Let us denote by Dα the family of distances on Ω generated by the metrics Mα,
namely

Dα := {dϕ distance on Ω given by (4) |ϕ ∈Mα}.
We endow Dα with the metric given by the uniform convergence on compact subsets
of Ω × Ω. The convergence of a sequence of distances (dn)n to d with respect to
this metric will be denoted by dn

Dα−→ d. When α > 0, this convergence is equivalent
to the Γ-convergence of the relative length functionals Ldn to Ld with respect to
the uniform convergence of paths. This result has been proved in [8, Theorem
3.1] considering usual symmetric distances, but actually it still holds in the non-
symmetric case too and the proof is the same. Moreover, we have (cf. [8, Theorem
3.1]):

Theorem 2.9. Assume α > 0. Then the set Dα, endowed with the metric given by
the uniform convergence of distances on Ω× Ω, is a metrizable compact space.

Let us stress that the interesting part of the result provided by Theorem 2.9
corresponds to the closed character of the space Dα, since the compactness trivially
follows from Ascoli-Arzelà Theorem. The requirement that α is strictly positive is
necessary, as we will see in Section 5.

In general, as condition (Ω) is satisfied, Dα can be seen as a subspace of Finsler
distances on RN : indeed, given d ∈ Dα, a suitable Finsler distance d on RN which
extends d can be constructed as shown in [15, Remark 2.7]. Therefore, by possibly
replacing d with d, the following definition always makes sense:

ϕd (x, ξ) := lim sup
h→0+

(
d (x, x + hξ)

h
∧ β|ξ|

)
(x, ξ) ∈ Ω× RN . (7)

The function ϕd is a Finsler metric, as proved in [18]; moreover, for each n ∈ N,
there holds

|ϕd(x, ξ)− ϕd(x, η)| ≤ βCn|ξ − η| for every x ∈ Bn ∩ Ω, ξ, η ∈ RN ,

where Cn are the constants appearing in (Ω). We will refer to ϕd as the metric
associated to d by derivation. In view of Proposition 2.6 and [15, Remark 2.10], for
every curve γ the following holds:

|γ̇|d(t) = lim sup
h→0+

d (γ(t), γ(t) + hγ̇(t))
h

≤ β|γ̇(t)| for L1-a.e. t ∈ I,
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therefore by Theorem 2.4

Ld(γ) =
∫ 1

0
ϕd(γ(t), γ̇(t)) dt for all γ ∈ Lip(I, Ω), (8)

i.e. Ld = Lϕd
on Lip(I, Ω) (cf. [18, Theorem 2.5]). In particular, d = dϕd

according
to (4).

We recall the following definitions for set-valued maps (cf. [13]).

Definition 2.10. Let X be a subset of RN and C : X → P(RN ) a set-valued map
such that C(x) is compact for every x ∈ X. We will say that

(i) C(·) is Borel measurable on X if the set {x ∈ X : C(x) ∩A 6= ∅ } is Borel-
measurable in RN for every open subset A of RN .

(ii) C(·) is upper semicontinuous at x ∈ X if for all ε > 0, there exists δ > 0
such that

C(z) ⊂ C(x) + Bε for all z ∈ Bδ(x) ∩X.

(iii) C(·) is lower semicontinuous at x ∈ X if for all ε > 0, there exists δ > 0
such that

C(x) ⊂ C(z) + Bε for all z ∈ Bδ(x) ∩X.

(iv) C(·) is continuous at x ∈ X if it is both upper and lower semicontinuous at
x.

The support function of a subset C of RN is the function σC defined by

σC(ξ) := sup{〈ξ, p〉 | p ∈ C } for every ξ ∈ RN ,

which is convex and positively 1-homogeneous on RN .
Given a Borel measurable set-valued map C : Ω → P(RN ) such that C(x) is

compact and contains 0 for every x ∈ Ω, a Finsler metric ϕ can be defined on
Ω× RN as follows:

ϕ(x, ξ) := σC(x)(ξ) for all (x, ξ) ∈ Ω× RN .

Moreover, if C(·) is upper semicontinuous (resp. lower semicontinuous) on Ω, then
ϕ(·, ξ) is upper semicontinuous (resp. lower semicontinuous) on Ω as well, for every
ξ ∈ RN .

3. Some preliminary results

We collect in this section some results we will need in the proofs of our main
theorems. To begin, we state a simple but important consequence of Ascoli-Arzelà
Theorem.

Lemma 3.1. Let (dn)n be a sequence contained in Dα which converges pointwise to

some d ∈ Dα on a dense subset of Ω× Ω. Then dn
Dα−→ d.

A first application of Lemma 3.1 is provided in the proof of the following proposition.

Proposition 3.2. Assume α > 0. Let ϕ, ϕn ∈ Mα and d and dn be the distances
associated respectively to ϕ and ϕn through (4). Then dn

Dα−→ d in the following cases:
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(i) (ϕn)n converges uniformly to ϕ on compact subsets of Ω× RN ;
(ii) ϕn are lower semicontinuous in x, convex in ξ and converge increasingly to

ϕ pointwise on Ω× RN ;
(iii) (ϕn)n converges decreasingly to ϕ pointwise on Ω× RN .

Proof. By Lemma 3.1 it is sufficient to prove that (dn)n converges pointwise to d.
For any fixed (x, y) ∈ Ω×Ω set X := Lipx,y. We want to prove that limn dn(x, y) =
d(x, y).

(i) For γ ∈ X and the uniform convergence of ϕn we have

Lϕ(γ) = lim
n→+∞Lϕn(γ) ≥ lim sup

n→+∞
dn(x, y),

which entails d(x, y) ≥ lim supn dn(x, y) by taking the infimum over all possible
curves γ ∈ X. Let us now choose a sequence of curves (γn)n ⊂ X such that
Lϕn(γn) ≤ dn(x, y) + 1/n. Since the curves γn are equi-Lipschitz continuous (as
Lϕn(γn) ≥ α

∫ 1
0 |γ̇n(t)| dt and all curves are parametrized by constant speed), the

uniform convergence of the metrics implies that lim supn |Lϕn(γn) − Lϕ(γn)| = 0,
therefore

d(x, y) ≤ lim inf
n→+∞ Lϕ(γn) = lim inf

n→+∞ Lϕn(γn) = lim inf
n→+∞ dn(x, y),

hence the claim.
(ii) (Lϕn)n is an increasing sequence of lower semicontinuous functionals on X (cf.

Remark 2.8), which converges pointwise to Lϕ (i.e. limn Lϕn(γ) = Lϕ(γ) for each
γ ∈ X). By [14, Remark 5.5] the functionals Lϕn Γ-converge to Lϕ. In particular,
since the functionals Lϕn are equi-coercive (as Lϕn(γ) ≥ α

∫ 1
0 |γ̇|dt for every n), we

have, by the crucial result of Γ-convergence [14, Theorem 7.4], that the sequence
(infX Lϕn)n converges to infX Lϕ, that is

lim
n→+∞ dn(x, y) = lim

n→+∞ inf
γ∈X

Lϕn(γ) = inf
γ∈X

Lϕ(γ) = d(x, y).

(iii) By monotonicity we get d(x, y) ≤ infn dn(x, y). To show the reverse inequal-
ity, take a curve γ ∈ X. By the monotone convergence theorem and by the definition
of dn(x, y) we have

Lϕ(γ) = inf
n
Lϕn(γ) ≥ inf

n
dn(x, y),

and the claim easily follows by taking the infimum over all curves in Lipx,y. ¤

Remark 3.3. Notice that Proposition 3.2 (iii) holds for α = 0 too.

We end this brief section with two results which will be needed in the sequel. The
first one is just a restatement of Theorem 1 in [19, Section 6.6].

Theorem 3.4. Suppose γ : I → RN is a Lipschitz continuous curve. Then for each
ε > 0, there exists a C1 curve γ : I → RN such that:

L1
({t ∈ I | γ(t) 6= γ(t) or γ̇(t) 6= γ̇(t) }) ≤ ε.

In addition ∥∥γ̇
∥∥
∞ ≤ c ‖γ̇‖∞

for some constant c depending only on N .

The second result is an easy application of Severini-Egoroff’s theorem. A proof is
provided in [15].
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Lemma 3.5. Let γ be an injective Lipschitz continuous curve, Γ := γ((0, 1)) ⊂ Ω
and a : Ω → [α, β] a Borel function. Then there exists a sequence of continuous
functions ak : Γ → [α, β] such that ak(x) converge to a(x) for H1-a.e. x ∈ Γ.
Moreover, for every ε > 0 there exists a Borel subset Bε ⊂ Γ such that H1(Γ\Bε) < ε
and ak converge uniformly to a on Bε.

4. The density results for non-degenerate distances

Throughout this section, α is always assumed to be strictly positive. Our first
density result is then stated as follows:

Theorem 4.1. Let d ∈ Dα. Then there exists a sequence (ϕn)n of continuous
and convex Finsler metrics in Mα such that dϕn

Dα−→ d, where dϕn is the distance
associated to ϕn through (4).

When d is symmetric, Theorem 4.1 has been already proved in [15]. In this case,
the approximating metrics ϕn(x, ξ) can be chosen of the form an(x)|ξ|. This accounts
to saying that, for any x ∈ Ω, each metric ϕn(x, ·) is the support function of the
closed convex set Cn(x) := {p ∈ RN : |p| ≤ an(x) }. This remark suggests how to
generalize the proof to non-symmetric distances: for each n ∈ N, we set

ϕn(x, ξ) := σCn(x)(ξ) for every (x, ξ) ∈ Ω× RN ,

where σK denotes the support function of the set K ⊂ RN , and Cn : Ω → P(RN )
is a set-valued map which has to be suitably defined. Of course, since we want
to approximate a non-symmetric distance d, the sets Cn(x) will be chosen non-
symmetric with respect to 0, in general. The proof of Theorem 4.1 then proceeds by
following the same idea used in [15]: we define the approximating sequence of set-
valued maps Cn(·) in such a way to control the convergence of the induced distances
dϕn to d pointwise on a dense subset of Ω×Ω (in view of Lemma 3.1). To this aim,
we set S := QN ∩ Ω. Obviously S × S is countable and dense in Ω×Ω, so we write

S × S := {(xi, yi) | i ∈ N}.
This notation is adopted in the remainder of the paper with no further mention.

Instead of providing a direct proof to Theorem 4.1, we prefer to break it into
intermediate propositions, which will be proved separately. The first one can be
read as a ”dual” formulation of [15, Theorem 4.7].

Theorem 4.2. Let d ∈ Dα. Then there exists a decreasing sequence of convex
metrics ψn ∈Mα such that

dψn(xi, yi) = d(xi, yi) for each i ≤ n. (9)

Moreover, if we set ψ(x, ξ) := infn ψn(x, ξ) for every (x, ξ) ∈ Ω× RN , then d = dψ,
that is every Finsler distance is induced by a convex Finsler metric.

Proof. For each (xi, yi) ∈ S × S, let γi ∈ Lipxi,yi
be a path of minimal d-length,

i.e. Ld(γi) = d(xi, yi), and set Γi := γi ((0, 1)).
For every x ∈ Γi, let {ξi

1(x), ξi
2(x), . . . , ξi

N (x)} be an orthonormal basis of RN such
that ξi

1(γi(t)) = γ̇i(t)/‖γ̇i‖∞ for L1-a.e t ∈ I (the curves γi are assumed to be
parametrized by constant speed), and set ai(x) := ϕd(x, ξi

1(x)). Such vectors can
9



be chosen in such a way that the map x → ξi
j(x) is Borel-measurable on Γi for each

1 ≤ j ≤ N . For every x ∈ Γi, we denote by Qi(x) the rectangle in RN defined by

Qi(x) :=
{
µ1ξ

i
1(x) + · · ·+ µNξi

N (x) | µ1 ∈ [−β, ai(x)], µ2, . . . , µN ∈ [−β, β]
}

.

We define the set-valued map Ki(·) on Ω as follows:

Ki(x) :=





Qi(x) ∩Bβ if x ∈ Γi

Bα if x ∈ {xi, yi}
Bβ otherwise,

and set Cn(x) := ∩n
i=1K

i(x) for every x ∈ Ω. Clearly, Cn(x) is a closed, convex set
satisfying Bα ⊂ Cn(x) ⊂ Bβ for every x ∈ Ω. Moreover the set-valued map Cn(·) is
Borel measurable on Ω, as can be checked. The required metrics ψn are then defined
as follows:

ψn(x, ξ) := σCn(x)(ξ) for every (x, ξ) ∈ Ω× RN ,
for each n ∈ N. Such functions ψn are convex Finsler metrics belonging to Mα, as
easily seen. In order to conclude, we need to show that (9) holds. This will be proved
by showing that the curves γi are still optimal for dψn(xi, yi) for each 1 ≤ i ≤ n.

To this end, first recall that the tangent spaces of two 1-rectifiable sets M1,M2

coincide at H1-a.e. point belonging to their intersection (cf. [21]). In particular, we
get

ξ1
i (x) = ±ξ1

h(x) for H1-a.e. x ∈ Γi ∩ Γh,
for every 1 ≤ i < h ≤ n. This in turn implies that, for any fixed 1 ≤ i ≤ n, the
vector ai(x)ξi

1(x) belongs to ∂Cn(x) forH1-a.e. x ∈ Γi, and so that ψn(γi(t), γ̇i(t)) =
ϕd(γi(t), γ̇i(t)) for L1-a.e. t ∈ I. Consequently we get

dψn(xi, yi) ≤
∫ 1

0
ψn(γi, γ̇i) dt =

∫ 1

0
ϕd(γi, γ̇i) dt = d(xi, yi).

To prove the reverse inequality, choose a curve γ ∈ Lipxi,yi
and, for every 1 ≤ j < n,

set Ij+1 := {t ∈ I \ ∪h≤j Ih | γ(t) ∈ γj+1(I)}, I1 := {t ∈ I | γ(t) ∈ γ1(I)} and
I0 := I \ ∪j≤nIj . By arguing as above, we deduce that, for each 1 ≤ j ≤ n, the
vector γ̇(t) is parallel to ξj

1(γ(t)) for L1-a.e. t ∈ Ij , hence ψn(γ, γ̇) ≥ ϕd(γ, γ̇) L1-a.e.
on Ij (depending on whether the two vectors are equally oriented or not). Note that
this trivially holds for j = 0 too. Therefore we have

Lψn(γ) =
∫ 1

0
ψn(γ, γ̇) dt =

n∑

j=0

∫

Ij

ψn(γ, γ̇) dt ≥
n∑

j=0

∫

Ij

ϕd(γ, γ̇) dt ≥ d(xi, yi).

By passing to the infimum over all possible curves γ ∈ Lipxi,yi
we get the claim.

To conclude the proof of the statement, set ψ(x, ξ) := infn ψn(x, ξ) for every (x, ξ) ∈
Ω× RN . By applying Proposition 3.2 (iii), we obtain

dψ(xi, yi) = lim
n→+∞ dψn(xi, yi) = d(xi, yi) for every i ∈ N,

namely dψ coincide with d on S × S, hence everywhere in Ω× Ω by density. ¤

Next, we prove the following

Proposition 4.3. Let d ∈ Dα. Then, for every n ∈ N and every ε > 0, there exists
a lower semicontinuous, convex metric φε ∈Mα such that

|dφε(xi, yi)− d(xi, yi)| < ε for all i ≤ n.
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Proof. First, note that, if the set-valued map Ki(·) defined in the proof of Theorem
4.2 were continuous on Γi, the set-valued map Cn(·) would be lower semicontinuous
on Ω and a possible choice for φε would simply be ψn. Hence, the idea is that of
modifying the definition of Ki(·) in order to get a continuous map on Γi for each i.
We adopt the notation used in the proof of Theorem 4.2.
Let n ∈ N be fixed, let γi, Γi and ai(x) be defined as above for each i ∈ N, and
set Nn = ∪n

i=1Γi. Let us choose λ > 0 and let 1 ≤ i ≤ n. Note that γi is injective
by minimality, hence we can apply Lemma 3.5 to obtain a sequence of continuous
functions ai

k : Γi → [α, β], k ∈ N, converging pointwise to ai H1-a.e. on Γi as k
goes to infinity. Let γi be the C1-continuous curve obtained by applying Theorem
3.4 with γ := γi and ε := λ. For every x ∈ Γi, let {ξi

1(x), ξi
2(x), . . . , ξi

N (x)} be an
orthogonal basis of RN such that:

(i) ξ
i
1(γi(t)) = γ̇i(t)/‖γ̇i‖∞ for L1-a.e t ∈ I;

(ii) |ξi
j(x)| = 1 for every 2 ≤ j ≤ N .

Such vectors can be chosen in such a way that the map x → ξ
i
j(x) is continuous on

Γi for each 1 ≤ j ≤ N . For each k ∈ N and every x ∈ Γi, we denote by Q
i
k(x) the

rectangle in RN defined by

Q
i
k(x) :=

{
µ1ξ

i
1(x) + · · ·+ µNξ

i
N (x) | µ1 ∈ [−β, ai

k(x)], µ2, . . . , µN ∈ [−β, β]
}

.

We define the set-valued map K
i
k(·) on Ω as follows:

K
i
k(x) :=





Q
i
k(x) ∩Bβ if x ∈ Γi

Bα if x ∈ {xi, yi}
Bβ otherwise.

It is easy to check by definition that K
i
k(·) is lower semicontinuous for each 1 ≤

i ≤ n, so the same is true for the set-valued map C
n
k(·) defined by setting C

n
k(x) :=

∩n
i=1K

i
k(x) for every x ∈ Ω. For each k ∈ N, a convex, lower semicontinuous Finsler

metric φk belonging to Mα may be then defined as follows:

φk(x, ξ) := σC
n
k (x)(ξ) ∨ α|ξ| for every (x, ξ) ∈ Ω× RN .

We claim that

lim sup
k→+∞

|dφk
(xi, yi)− d(xi, yi)| ≤ (nβL) λ for all 1 ≤ i ≤ n, (10)

where L := sup1≤i≤n ‖γ̇i‖∞ This will be enough to conclude: indeed, it is sufficient
to take λ < ε/(nβL) and φε := φk with k suitably large.

Let us then prove (10). For 1 ≤ i ≤ n we have by definition

dφk
(xi, yi) ≤ Lφk

(γi) =
∫ 1

0
φk(γi, γ̇i) dt.

Let Ji := { t ∈ I | γ̇i(t) = γ̇i(t) } and recall that, by Theorem 3.4, L1(I \ Ji) ≤ λ.
An argument analogous to the one used in the proof of Theorem 4.2 shows that
φk(γi, γ̇i) = ai

k(γi)|γ̇i| L1-a.e. on Ji. By the dominated convergence theorem we
11



then have

lim sup
k→+∞

dφk
(xi, yi) ≤ lim sup

k→+∞

(∫

Ji

ai
k(γi)|γ̇i| dt +

∫

I\Ji

β |γ̇i(t)| dt

)

≤
∫ 1

0
ai(γi)|γ̇i| dt + βLλ = d(xi, yi) + βLλ. (11)

Now, set Γ0 := ∪n
i=1γi(I \ Ji), and remark that H1(Γ0) ≤ nLλ. Fix an index

1 ≤ i ≤ n. For each k ∈ N, pick up a curve γ̃k ∈ Lipxi,yi
such that

Lφk
(γ̃k) = dφk

(xi, yi). (12)

Note that such curves are injective by minimality. Since α
∫
I | ˙̃γk| dt ≤ Lφk

(γ̃k), by
(12) and (11) we get that lim supk

∫
I | ˙̃γk| dt < +∞. Let us choose an ε̃ > 0. By

applying Lemma 3.5 to each open arc Γi, we can find a Borel set Bε̃ ⊂ Nn and
an infinitesimal sequence of positive numbers (δk)k∈N such that H1(Nn \ Bε̃) < ε̃
and |ai

k(x) − ai(x)| < δk for every x ∈ Bε̃, 1 ≤ i ≤ n and k ∈ N. Let us set
Ik := {t ∈ I | γ̃k(t) ∈ Γ0 ∪ (Nn \Bε̃)}. Then we have

φk(γ̃k, ˙̃γk) ≥ ψn(γ̃k, ˙̃γk)− δk| ˙̃γk| L1-a.e. on I \ Ik. (13)

Let us write
Lφk

(γ̃k) =
∫

Ik

φk(γ̃k, ˙̃γk) dt +
∫

I\Ik

φk(γ̃k, ˙̃γk) dt.

As γ̃k(Ik) ⊂ Γ0 ∪ (Nn \Bε̃) for every k ∈ N, by the Area-formula we have∫

Ik

| ˙̃γk| dt = H1(γ̃k(Ik)) ≤ H1(Nn \Bε̃) +H1(Γ0) < ε̃ + nLλ.

Taking this remark into account we get∫

Ik

φk(γ̃k, ˙̃γk)dt =
∫

Ik

ψn(γ̃k, ˙̃γk) dt +
∫

Ik

(
φk(γ̃k, ˙̃γk)− ψn(γ̃k, ˙̃γk)

)
dt

≥
∫

Ik

ψn(γ̃k, ˙̃γk) dt− β (ε̃ + nLλ) . (14)

Inequalities (13) and (14) then yields

Lφk
(γ̃k) ≥

∫ 1

0
ψn(γ̃k, ˙̃γk) dt− δk

∫

I\Ik

| ˙̃γk| dt− β (ε̃ + nLλ)

≥ dψn(xi, yi)− δk

∫ 1

0
| ˙̃γk| dt− β (ε̃ + nLλ)

and therefore, as δk

∫ 1
0 | ˙̃γk|dt goes to zero when k → +∞, we obtain

lim inf
k→+∞

dφk
(xi, yi) = lim inf

k→+∞
Lφk

(γ̃k) ≥ dψn(xi, yi)− β (ε̃ + nLλ) .

Since ε̃ was arbitrary and dψn(xi, yi) = d(xi, yi), the above inequality coupled with
(11) gives (10), as claimed. ¤

We are now ready to give the

Proof of Theorem 4.1. First, we claim that, for every ε > 0, there exists a
continuous, convex metric ϕε ∈Mα such that

|dϕε(xi, yi)− d(xi, yi)| < ε for all i ≤ n. (15)
12



Indeed, Proposition 4.3 provides a convex, lower semicontinuous metric φε satisfying
(15). By setting φε(x, ξ) := β|ξ| when x ∈ RN \Ω, φε can be extended to RN ×RN .
Then Lemma 2.2.3 of [6] easily implies the existence of an increasing sequence (Φn)n

of continuous, convex Finsler metrics on RN such that Φn|Ω×RN ∈ Mα for each
n ∈ N and φε(x, ξ) = supn∈NΦn(x, ξ) in Ω×RN (cf. Proof of [5, Theorem 3.1]). By
Proposition 3.2 (ii), the sequence of distances (dΦn)n converges to dφε in Dα, hence
(15) is proved by setting ϕε := Φn for n sufficiently large.
It is now clear how to conclude: for each n ∈ N, define ϕn := ϕεn with εn := 1/n.
The distances dϕn converge to d pointwise on S×S, which is dense in Ω×Ω, so the
statement follows in view of Lemma 3.1. ¤

Remark 4.4. Note that the metrics φn obtained in the previous proof are actually
defined and continuous in all RN × RN .

The result established in Theorem 4.1 can now be easily improved by requiring
the approximating metrics to be smooth.

Theorem 4.5. Let d ∈ Dα. Then there exists a sequence (ϕ̃n)n of smooth and
convex Finlser metrics in Mα such that dϕ̃n

Dα−→ d.

Proof. Theorem 4.1 provides a sequence (ϕn)n of continuous, convex metrics inMα

satisfying the claim. Such metrics are actually defined and continuous in RN × RN

(cf. Remark 4.4). Take a sequence (ρk)k of convolution kernels in RN and, for
each n ∈ N, let (ρk ∗ ϕn) (x, ξ) :=

∫
RN ρk(x − y)ϕn(y, ξ) dy. Clearly (ρk ∗ ϕn)k is a

sequence of convex, smooth metrics in Mα, uniformly converging to ϕn on compact
subsets of Ω × RN . In view of Proposition 3.2 (i), the claim follows by setting
ϕ̃n := ρk ∗ ϕn for each n ∈ N, with k := k(n) suitably large. ¤

We end this section by providing an example of Finsler metric which gives rise to
a non-symmetric distance. The latter plays a central role in the study of Hamilton-
Jacobi equations of eikonal type.

Example 4.6. Let Ω be an open subset of RN and let us consider the following
problem {

H(Du) = n(x) in Ω
u = 0 on ∂Ω (16)

where n(x) is a continuous positive function defined on Ω, and H is a non-negative
convex function with H(0) = 0. Solutions and subsolutions to (16) are usually meant
in the viscosity sense, since classical ones do not exist in general, as well known (see
e.g. [23]). In particular, viscosity subsolutions of (16) are characterized by the
property of being 1-Lipschitz continuous with respect to the distance D defined by

D(x, y) := inf
{∫ 1

0
ϕ(γ(t), γ̇(t)) dt

∣∣ γ ∈ Lipx,y

(
[0, 1], Ω

) }
for all x, y ∈ Ω,

where ϕ is the Finsler metric associated to the equation as follows:

ϕ(x, ξ) := sup{〈ξ, p〉 | H(p) ≤ n(x)} for every (x, ξ) ∈ Ω× RN .

Moreover, the unique viscosity solution v to (16) is given by the following Lax
formula

v(x) := min
y∈∂Ω

D(y, x).
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Note that, when the function H is non-symmetric, the distance D is, in general,
non-symmetric as well. The distance D is called optical length function. This name
originates from geometrical optics. Indeed, we may regard the differential equation in
(16) as the equation which rules the propagation of light in a non-isotropic medium,
where u(x) represents the time at which the light reaches the location x, and n(x)
is the refractive index of the medium at x. The presence of the function H accounts
for the fact that the speed of light depends on its direction of travel. According to
Fermat’s principle, a ray of light moves from one source y to another point x along
the path which is the shortest in time, i.e. in such a way to realize D(y, x).

When n is not continuous, the metric ϕ is not continuous either. This case is of
clear interest: think, for instance, to propagation of light in a medium composed by
two materials with different indexes of refraction. This motivates the study of first
order Hamilton-Jacobi equations with measurable ingredients. A metric approach
to this problem, relying on the analysis of the properties of the Finsler metric ϕ and
of the related optical length function, can be found in [4, 11, 24].

5. The degenerate case

We want to extend the density results obtained in the previous section to the
degenerate case, namely when α = 0. In fact, the analogous of Theorem 4.5 holds.

Theorem 5.1. Let d ∈ D0. Then there exists a sequence (ϕ̃n)n of smooth and
convex Finsler metrics in M0 such that dϕ̃n

D0−→ d.

Proof. Let ϕ ∈M0 such that d = dϕ. For each k ∈ N, set ϕk(x, ξ) := ϕ(x, ξ)∨ 1
k |ξ|

in Ω × RN . As ϕk ∈ M1/k, we can apply Theorem 4.5 to dϕk
for each k ∈ N, to

obtain a smooth Finsler metric ϕ̃k ∈M1/k such that

|dϕk
(x, y)− dϕ̃k

(x, y)| ≤ 1
k

for every x, y ∈ Ω.

Now the claim easily follows, since the sequence (dϕk
)k converges to d in D0 in view

of Remark 3.3. ¤

As already remarked in Section 2, when α > 0, the space Dα is closed, that is,
if (dn)n is a sequence in Dα converging to d, then d belongs to Dα. Does the same
property hold for α = 0 too?
The point is to show that d is still of geodesic type. When α > 0, this is basically
due to the fact that the corresponding length functionals are equi-coercive, namely
Ldn(γ) ≥ α

∫ 1
0 |γ̇(t)| dt for any curve γ and for each n ∈ N, and this means that

any sequence of curves (γn)n ⊂ Lipx,y such that lim supn Ldn(γn) < +∞ admits (at
least) a cluster point γ ∈ Lipx,y. In particular, for a suitable choice of (γn)n and of
γ, that yields

Ld(γ) ≤ lim inf
n→+∞ Ldn(γn) = lim

n→+∞ dn(x, y) = d(x, y),

which obviously means that d is a geodesic distance. When α = 0, instead, it may
happen that the Euclidean lengths of the curves (γn)n diverge, and two critical
phenomena may basically occur in this case: either the curves go to infinity and
disappear in the limit, or they stay bounded and converge to a non-rectifiable curve
(hence, no longer Lipschitz continuous). In both cases, the limit distance might be
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not of geodesic type; hence, the answer to the question previously raised is no: D0

is not closed. Explicit examples of these possible situations are provided below.

Example 5.2. Let Ω := R2, and let us set Γn := {(x, y) |x ∈ {0, 1}, y ∈ [0, n] } ∪
[0, 1]×{n} for each n ∈ N, Γ∞ := {(x, y) |x ∈ {0, 1}, y ∈ [0, +∞) }. For each n ∈ N,
we define the metric ϕn on R2 × R2 as follows:

ϕn(x, ξ) :=





1
4n2 |ξ| if x ∈ Γn and ξ ∈ R2

2|ξ| if x ∈ R2 \ Γn and ξ ∈ R2

Let x0 := (0, 0), y0 := (1, 0), and let dn := dϕn be the distance defined on R2 × R2

via (4) for each n ∈ N. Let us notice that dn(x0, y0) = (2n + 1)/4n2: in fact, the
dn-minimizing path connecting x0 to y0 is given by the polygonal arc Γn. Up to
subsequences, (dn)n converges (uniformly on compact subsets of R2 × R2) to some
distance d, by Ascoli-Arzelà Theorem. Now we have that d(x0, y0) = 0, while the
d-metric length of any curve connecting x0 to y0 is at least 2. To see this, simply
notice that ϕd(x, ξ) = 2|ξ| for every x ∈ R2 \ Γ∞. Hence d is not of geodesic type,
though uniform limit of geodesic distances.

Example 5.3. Let Ω := (0, 1) × (0, 1) and let q = (1/2, 0), q′ = (1, 1/2). Our
example relies upon the construction provided by Whitney in [27]. In this remarkable
paper, Whitney recursively defines an arc A joining q to q′ of infinite length, and a
function f , defined on Ω and of class C1, whose gradient is null on A, but f(q) = 0
and f(q′) = 1 (in particular, f is not constant on A).

Such an arc can be represented as the image of a continuous function γ : I → Ω
with γ(0) = q, γ(1) = q′, as explained by the author. Our goal is to define a
sequence of Lipschitz curves uniformly converging to γ. This can be easily done
by exploiting Whitney’s construction. Let us keep the same notation of [27] and
assume we are at the n-th step of the iterative procedure leading to the definition of
A, i.e. we have already defined squares Qi1···it , points qi1···it , q′i1···it and lines Aj1···jt

(each ik = 0, 1, 2, 3, each jk = 0, 1, 2, 3, 4) for t ≤ n. Then, an arc An of finite
length, joining q to q′, can be obtained by connecting each point q′i1···is to qi1···is+1,
if is ≤ 2, and q′i1···is−1,3 to qi1···i′s−1

by means of a segment, and by gluing all these
segments with all the lines Aj1···jt , t ≤ n. Each arc An may be represented as the
image of a Lipschitz curve γn. Up to a reparametrization (not by constant speed,
in particular), the curves γn uniformly converge to γ, as easily understood.

Let us now denote by `n the Euclidean length of the curve γn, and define the
following sequence (an)n of Riemannian metrics:

an(x) :=





1
n`n

if x ∈ An

|Df(x)| if x ∈ Ω \An.

Let dn the distances on Ω × Ω associated to an(x)|ξ| through (4). Obviously,
dn(q, q′) ≤ 1/n. Up to subsequences, (dn)n converges to some distance d, by Ascoli-
Arzelà Theorem, and obviously d(q, q′) = 0. Notice also that ϕd(x, ξ) = |Df(x)||ξ|
for every x ∈ Ω \A. Now, let us take a curve ξ ∈ Lipq,q′ . We have

Ld(ξ) =
∫ 1

0
ϕd(ξ(t), ξ̇(t)) dt ≥

∫ 1

0
|Df(ξ(t))| |ξ̇(t)|dt ≥ f(q′)− f(q) = 1,

so d is not of geodesic type.
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