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1. Introduction

The subject of this paper is a homogenization result for a composite material given by a periodic
fine mixture of an unbreakable material and a very brittle one. We consider the case in which the
unbreakable material is arranged in a connected grid (reinforced fibers), while the brittle material
forms a disconnected set of inclusions. An example of such a composite in the two-dimensional
case is illustrated in Figure 1. One of the most interesting points of our analysis is the requirement
that a non-interpenetration constraint be satisfied between the lips of the microfractures.

Figure 1. Fine periodic mixture at scale ε.

More precisely, let Ω ⊂ Rn, with n ≥ 2, be the region occupied by the composite material
and let ε > 0 be a small parameter representing the size of the periodic mixture. Let εQ be the
periodicity cell, where Q := (0, 1)n. We denote by εI ⊂ εQ the brittle inclusion in the periodicity
cell εQ.

A displacement of Ω will be a vector valued function u ∈ SBD0(Ω), the space of special
functions of bounded deformation satisfying homogeneous Dirichlet boundary conditions on ∂Ω.
An admissible displacement has to fulfill also the infinitesimal non-interpenetration condition
[u] ·νu ≥ 0 on the jump set Ju, where [u] is the jump of u and νu is the normal to the jump set (see
e.g. [12]). Physically, this constraint means that the two lips of a fracture cannot interpenetrate.
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2 LINEARIZED ELASTICITY UNDER NON-INTERPENETRATION

The energy associated to a given displacement u will be a Mumford-Shah-like functional Fε
consisting of a volume term, representing the elastic energy, and a surface term, penalizing the
opening of a fracture in the material. More precisely

Fε(u) :=
∫

Ω

CEu : Eu dx+
∫
Ju

gαε

(x
ε
, [u], νu

)
dHn−1(x), (1.1)

where gαε : Rn × Rn × Sn−1 → [0,+∞] is a Q-periodic function in the first variable, defined for
y ∈ Q, z ∈ Rn, and ν ∈ Sn−1 by

gαε(y, z, ν) :=

{
αε if y ∈ I and z · ν ≥ 0,
+∞ otherwise,

(1.2)

and αε is a positive parameter depending on ε (see Section 3 for more details).
We remark that the density gαε prevents interpenetration of the fracture lips and ensures that

the discontinuity set of u can only be in the brittle part of the material. When u satisfies these
constraints, then the surface term in the energy reduces to αεHn−1(Ju), i.e., our model describes
a brittle fracture according to the Griffith criteria (see [12] for a similar model).

The overall properties of the composite material described by the functional Fε can be ap-
proximated by a homogenized functional, which is given by the Γ-limit of Fε as ε goes to zero.
In our case we assume that αε → 0 as ε → 0, and we show that the limit model depends on
the behaviour of the ratio αε

ε as ε goes to zero. According to this limit, three different models
are deduced via Γ-convergence. They do have, however, a common feature: They describe an
unbreakable material. This means that, even if at scale ε the material has periodically distributed
microscopic cracks, when ε goes to zero no macroscopic crack appears. This is due to the fact that
in the periodicity cell εQ the brittle region εI is well separated from the boundary of εQ and this
prevents small cracks from glueing together into a macroscopic fracture.

We recall that the case of generalised anti-planar shear has been treated in [21]. Also in that
case the Γ-limit exhibited, in the three regimes illustrated above, a gain in regularity for the
relevant displacements. The case of brittle inclusions εI ⊂ εQ with vanishing distance δε from the
boundary of εQ and αε = 1 has been treated in the recent papers [5] and [17].

In this paper we derive three different models corresponding to the limit αε
ε being zero (sub-

critical case), finite (critical case) or +∞ (supercritical case).
In the subcritical case, αε << ε, the limit functional is given, for u ∈ H1

0 (Ω;Rn), by

F0(u) =
∫

Ω

f0(Eu)dx. (1.3)

The limit energy density f0 is defined for ξ ∈Mn×n by the cell formula

f0(ξ) := inf
{∫

Q

CE(ξx+ w) : E(ξx+ w)dx : w ∈ SBD#(Q), Jw ⊂ I, [w] · νw ≥ 0 a.e. on Jw

}
,

(1.4)
where SBD#(Q) ⊂ SBD(Q) denotes the functions with periodic boundary conditions on ∂Q. We
notice that f0 is anisotropic, even assuming that C is isotropic (see Remark 5.5).

An interesting result is that, due the non-interpenetration constraint, f0 fails to be a quadratic
form. Indeed, taking C to be

C = 2µ I+ λ Id⊗ Id,
where λ, µ > 0, (I)ijkl = δikδjl, and (Id⊗ Id)ijkl = δijδkl, it turns out that f0(Id) 6= f0(−Id) (see
Lemma 5.3). On the contrary, when the non-interpenetration constraint in not imposed, one can
prove in a similar way to [21] that the limit density is

f̂0(ξ) := inf
{∫

Q

CE(ξx+ w) : E(ξx+ w)dx : w ∈ SBD#(Q), Jw ⊂ I
}
, (1.5)

which is a quadratic form for every choice of the tensor C. An interpretation of the fact that
f0(Id) 6= f0(−Id) is the following. For ξ = Id the body is subject to a boundary displacement of
pure extension in all directions. In this case, the solutions of (1.4) have discontinuities, since the
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non-interpenetration constraint is compatible with the boundary conditions and it is energetically
convenient to have a nonempty jump set. On the contrary, when ξ = −Id, i.e., in a regime of
pure compression, the optimal w in (1.4) is w = 0. This happens because the minimisers of the
problem (1.5) corresponding to ξ = −Id are not admissible for (1.4), since they do not satisfy the
non-interpenetration constraint. Therefore the non-interpenetration constraints acts as a selection
mechanism for the minimisers in (1.5).

Another important remark is that the limit energy describes a damaged material. Indeed, for
a large class of matrices ξ ∈ Mn×n it turns out that f0(ξ) � Cξ : ξ, and this means that the
elastic moduli of the material are reduced by homogenization. Therefore the possible presence of
microfractures at scale ε translates into a damage of the material at a macroscopic scale.

In the supercritical regime, αε >> ε, the limit model, for H1
0 (Ω;Rn), is given by the functional

F∞(u) =
∫

Ω

CEu : Eu dx. (1.6)

Therefore, the (possible) presence of cracks in the approximating problems has no effect in the
limit. Indeed, in this case the ε-energy highly penalises displacements having discontinuities, so
that the limit material has the same elastic properties as the original one and no damage occurs.

We want to underline that in this regime the Γ-limit is the same as if the non-interpenetration
constraint were not imposed. The feature which makes this case mathematically different from
the corresponding one in [21] is the lack of a lower semicontinuity result in SBD when no a priori
bound on the L∞-norm of the displacements is given. Hence, in order to prove the Γ-convergence
result for this scaling, we need a modified version of the proof of lower semicontinuity in SBD
given in [6], where the assumption of the equiboundedness of the L∞-norm of the displacements
is replaced by the assumption that the measure of the jump sets of the displacements goes to zero
(see Lemma 7.2).

In the critical regime, αε = ε, the limit functional, for u ∈ H1
0 (Ω;Rn), is

Fhom(u) =
∫

Ω

fhom(Eu)dx, (1.7)

where the density fhom is defined for ξ ∈Mn×n by the asymptotic cell problem

fhom(ξ) := lim
t→+∞

1
tn

inf
{∫

(0,t)n
CE(ξx+ w) : E(ξx+ w) +Hn−1(Jw) : w ∈ SBD0

(
(0, t)n

)
,

Jw ⊂ Ĩ ∩ (0, t)n, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}
,

and the set Ĩ is the periodic set having I as periodicity cell, see (3.1). Notice that this is the
only case where the cell formula involves both volume and surface terms. This is because, when
αε = ε, the volume and the surface terms of Fε have the same order. Moreover, the limit functional
describes a damaged material, as shown in Lemma 6.4.

The fact that the critical scaling for the parameter αε is ε is supported by several results in frac-
ture mechanics (see, e.g., [23]). In particular, Braides and Truskinovsky [9] have recently proved
that, starting from a purely atomistic model where ε is the lattice spacing and the interactions
between neighbouring atoms are described by Lennard-Jones-like potentials, the limiting contin-
uous model is given by the Mumford-Shah functional, where the measure of the discontinuity set
is weighted by the parameter ε.

The plan of the paper is the following. In Sections 2 and 3 we define the mathematical setting
of the problem and introduce the energy functional. In Section 4 we show that the limit functional
obtained via Γ-convergence admits an integral representation, while Sections 5-7 are devoted to
the description of the limit functionals in the subcritical, critical and supercritical cases.

2. Preliminaries

In this section we collect some definitions and results that will be widely used throughout the
paper. In order to make precise the mathematical setting, we recall some properties of rectifiable
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sets and we include a brief presentation of the spaces SBV and SBD. We refer the reader to [3]
and to [22] for further details.

A set Γ ⊂ Rn is rectifiable if there exists N0 ⊂ Γ with Hn−1(N0) = 0, and a sequence (Mi)i∈N
of C1-submanifolds of Rn such that

Γ \N0 ⊂
⋃
i∈N

Mi.

For every x ∈ Γ \N0 we denote the normal to Γ at x by νMi
(x). It turns out that the normal is

well defined (up to the sign) for Hn−1-a.e. x ∈ Γ.

SBV functions. Let U ⊂ Rn be an open bounded set with Lipschitz boundary. We define
SBV (U) as the set of functions u ∈ L1(U) such that the distributional derivative Du is a Radon
measure which, for every open set A ⊂ U , can be represented as

Du(A) = Dau(A) +Dju(A) =
∫
A

∇u dx+
∫
Su∩A

[u](x) νu(x) dHn−1(x),

where ∇u is the approximate differential of u, Su is the jump set of u (which is a rectifiable set),
νu(x) is the normal to Su at x, and [u](x) is the jump of u at x.
For every p ∈]1,+∞[ we set

SBV p(U) =
{
u ∈ SBV (U) : ∇u ∈ Lp(U ;Rn),Hn−1(Su) < +∞

}
.

If u ∈ SBV (U) and Γ ⊂ U is rectifiable and oriented by a normal vector field ν, then we can
define the traces u+ and u− of u on Γ, which are characterized by the relations

lim
r→0

1
rn

∫
Ω∩B±r (x)

|u(y)− u±(x)| dy = 0 for Hn−1-a.e. x ∈ Γ,

where B±r (x) := {y ∈ Br(x) : (y−x) ·ν ≷ 0} and Br(x) is the open ball with radius r and center x.

BD functions. Let U ⊂ Rn be an open bounded set with Lipschitz boundary. We define BD(U)
as the set of functions u ∈ L1(U ;Rn) such that the symmetric part of the distributional derivative
Du is a bounded Radon measure. We denote with Eu the symmetric part of Du, i.e.,

Eu := {(Eu)ij}, (Eu)ij :=
1
2

(Diuj +Djui).

We can split the symmetric gradient into its absolutely continuous, jump and Cantor parts with
respect to the Lebesgue measure, as

Eu = Eau+ Eju+ Ecu = Eu dx+ Eju+ Ecu.

Sections of BD functions. Let U ⊂ Rn be an open bounded set with Lipschitz boundary,
u ∈ BD(U), and let ξ ∈ Sn−1. We denote by πξ the hyperplane orthogonal to ξ passing through
the origin and by Uξ the orthogonal projection of U on πξ. Let y ∈ Rn; the section of U
corresponding to y is denoted by Uξy , that is, Uξy := {t ∈ R : y + t ξ ∈ U}. We can define the
section uξy : Uξy → R as uξy(t) := u(y + t ξ) · ξ, for every t ∈ Uξy . Then, it holds:

(i) for Hn−1-a.e. y ∈ Uξ the function uξy belongs to BV (Uξy );

(ii) (Eu(y + t ξ)ξ, ξ) = ∇uξy(t);

(iii) (Euξ, ξ) =
∫
Uξ
∇uξydHn−1(y), |(Euξ, ξ)| =

∫
Uξ
|∇uξy| dHn−1(y);

(iv) (Ejuξ, ξ) =
∫
Uξ
DjuξydHn−1(y), |(Ejuξ, ξ)| =

∫
Uξ
|Djuξy| dHn−1(y);

(v) (Ecuξ, ξ) =
∫
Uξ
DcuξydHn−1(y), |(Ecuξ, ξ)| =

∫
Uξ
|Dcuξy| dHn−1(y).

SBD(U) functions. We say that a function u ∈ BD(U) belongs to SBD(U) if Eu is a Radon
measure that for every open set A ⊂ U can be represented as

Eu(A) = Eau(A) + Eju(A) =
∫
A

Eu dx+
∫
Ju∩A

[u](x)� νu(x)dHn−1(x),
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where Ju is the jump set of u (which is a rectifiable set), νu(x) is the normal to Ju at x, and [u](x)
is the jump of u at x. We have that if u ∈ SBD(U), then its sections are in SBV (Uξy ) for every
ξ 6= 0 and for Hn−1-a.e. y ∈ Uξ. We set, for every p ∈]1,+∞[,

SBDp(U) =
{
u ∈ SBD(U) : Eu ∈ Lp(U ;Mn×n

sym ),Hn−1(Ju) < +∞
}
.

Finally, we denote by SBDp
0(U) the space

SBDp
0(U) =

{
u ∈ SBDp(U) : tr(u) = 0 on ∂U

}
.

3. Formulation of the problem

Let n ≥ 2 and let Ω ⊂ Rn be a bounded open set. We assume for simplicity that ∂Ω is C2,
although this condition may be weakened. Let ε > 0; we consider the periodic structure in Rn
generated by an ε-homothetic of the basic cell Q := (0, 1)n. For notational brevity we will use
the superscript ε to denote the ε-homothetic of any domain so that, in particular, Qε := εQ.
For every 0 < % < 1

2 we denote with Q% the cube concentric with Q and with side 1 − 2%, i.e.,
Q% := (%, 1 − %)n. Let 0 < δ < 1

2 be fixed; we assume that every periodicity cell Qε has a brittle
inclusion of the form εI, where I ⊆ Qδ is a finite union of disjoint sets given by the closure of
domains with Lipschitz boundary. To make the computations more explicit, in some of the results
presented in the paper we will choose I = Qδ. We define the periodic set Ĩ generated by the
inclusion I, i.e.,

Ĩ :=
⋃
h∈Zn

(I + h), (3.1)

and the subsets I(ε),Ω(ε) ⊂ Ω, representing the brittle inclusions in Ω and the unbreakable part
of the material, respectively, i.e.,

I(ε) := Ω ∩ εĨ, Ω(ε) := Ω \ I(ε). (3.2)

Notice that we can split the boundary of Ω(ε) as ∂Ω(ε) = Γ(ε) ∪ S(ε), where

Γ(ε) := ∂Ω(ε) ∩ ∂Ω and S(ε) := ∂Ω(ε) ∩ Ω. (3.3)

Let C = (Cijkl) be the elasticity tensor, considered as a symmetric positive definite linear operator
from Mn×n

sym into itself. It turns out that there exists two constants 0 < ϑm ≤ ϑM such that for
any ξ ∈Mn×n

sym , it holds
ϑm |ξ|2 ≤ Cξ : ξ ≤ ϑM |ξ|2, (3.4)

where ξ : η = trace(ξηT ) =
∑
ij ξijηij and |ξ|2 = ξ : ξ is the standard Euclidean norm. Clearly,

the tensor C is symmetric with respect to any interchange of indices, that is,

Cijkl = Cklij = Cjikl. (3.5)

The analysis developed in the present paper can be extended to more general measurable and
Q-periodic functions C. Therefore, in particular, it covers the case of C being constant in I and
in Q \ I, but with different constant values.

To every displacement u ∈ SBD2
0(Ω) we associate the energy

Fε(u) =
∫

Ω

CEu : Eu dx+
∫
Ju

gα

(x
ε
, [u], νu

)
dHn−1(x),

where gα : Rn × Rn × Sn−1 → [0,+∞] is defined as

gα(y, z, ν) =

{
α if y ∈ Ĩ and z · ν ≥ 0,
+∞ otherwise,

and α is a positive parameter. Owing to the Q-periodicity of gα in the first variable, the function

x 7→ gα

(x
ε
, z, ν

)
is Qε-periodic. The volume term in the expression of Fε represents the elastic energy, while the
surface integral describes the energy needed to open a crack. More precisely, the density gα forces
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the deformation u to have a jump set contained in the fragile part of the material and the lips of
the fracture to avoid interpenetration.

We assume as in [21] that α = αε depends on ε and goes to zero as ε → 0 and we analyse
the asymptotic behaviour of the functional Fε in the cases αε � ε (subcritical regime), αε ≈ ε
(critical regime), and αε � ε (supercritical regime).

For the purposes of our analysis, it is convenient to rewrite the functional as follows

Fε(u) =


∫

Ω

CEu : Eu dx+ αεHn−1(Ju) if u ∈ SBD2
0(Ω), Ju ⊂ I(ε),

[u] · νu ≥ 0 Hn−1-a.e. on Ju,

+∞ otherwise in L2(Ω;Rn).

(3.6)

Before treating the different cases we have just described, we state a Korn Inequality for perforated
domains, together with an extension result that will be often used in the following. For the proof
we refer to [20, Theorem 4.5, Theorem 4.2], respectively.

Definition 3.1. Let ω be an unbounded domain of Rn with a Q-periodic structure, where Q :=
(0, 1)n. Assume that the cell of periodicity ω ∩Q is a domain with a Lipschitz boundary. Given a
bounded open set Ω ⊂ Rn and a positive parameter ε > 0, we set Ω(ε) := Ω ∩ ε ω. Moreover, we
set Γ(ε) := ∂Ω ∩ ε ω. We define the space H1(Ω(ε),Γ(ε);Rn) as

H1(Ω(ε),Γ(ε);Rn) := {v ∈ H1(Ω(ε);Rn) : tr(v) = 0 on Γ(ε)}.

Theorem 3.2. For any vector-valued function u ∈ H1(Ω(ε),Γ(ε);Rn) the inequality

||u||(H1(Ω(ε)))n ≤ k||Eu||(L2(Ω(ε)))n×n

is valid, where k > 0 is a constant independent of u and ε.

Theorem 3.3. Let Ω0 be a bounded domain such that Ω ⊂ Ω0 and dist (∂Ω0,Ω) > 1. Then
for every sufficiently small ε there exists a linear extension operator T ε : H1(Ω(ε),Γ(ε);Rn) →
H1

0 (Ω0;Rn) and three constants k0, k1, k2 > 0 such that

||T εu||(H1(Ω0))n ≤ k1||u||(H1(Ω(ε)))n ,

||D(T εu)||(L2(Ω0))n×n ≤ k2||Du||(L2(Ω(ε)))n×n ,

||E(T εu)||(L2(Ω0))n×n ≤ k3||Eu||(L2(Ω(ε)))n×n ,

for any u ∈ H1(Ω(ε),Γ(ε);Rn), where the constants k0, k1, k2 do not depend on ε.
Moreover, (T εu)|A = 0 for any open set A such that Ā ⊂ Ω0 \ Ω, if ε is sufficiently small.

4. Integral representation of the Γ-limit

In this section we will prove a Γ-convergence result for the functionals Fε, together with a
characterisation of the Γ-limit via an integral representation. The arguments used in the proof
are independent of the rate of convergence to zero of αε with respect to ε, so in this section we
do not need to treat the three cases separately. Moreover, we prove that the limit energy is finite
only on the space of H1-functions, meaning that in the limit discontinuous displacements are no
longer admissible. Nevertheless, a careful analysis of the limit energy density will show that, in
some regimes, the material is damaged (see Sections 5-7).

We first show that the functional F ′ := Γ− lim infε Fε is finite only on H1
0 (Ω;Rn).

Theorem 4.1. Let G : L2(Ω;Rn)→ [0,+∞] be the functional defined as

G(u) =


∫

Ω

A0Eu : Eu dx if u ∈ H1
0 (Ω;Rn),

+∞ otherwise in L2(Ω;Rn),
(4.1)

where A0 = (A0
ijkh) is the fourth order tensor with constant coefficients given by the solution of

the cell problem

A0ξ : ξ = min
{∫

Q\I
CE : Ew dy : w − ξ y ∈ H1

#(Q;Rn)
}
,
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for ξ ∈Mn×n
sym . Then it holds

F ′(u) := Γ− lim inf
ε→0

Fε(u) ≥ G(u) for every u ∈ L2(Ω;Rn). (4.2)

Proof. Let u ∈ L2(Ω;Rn) and let (uε) be a sequence converging to u strongly in L2 and such that
Fε(uε) ≤ c < +∞. Let us define the auxiliary functional Gε : L2(Ω;Rn)→ [0,+∞] as

Gε(v) =


∫

Ω

a
(x
ε

)
CEv : Evdx if v ∈ H1(Ω(ε),Γ(ε);Rn),

+∞ otherwise in L2(Ω;Rn),
(4.3)

where Ω(ε) is defined as in (3.2), and a is a Q-periodic function given by

a(y) =

{
0 for y ∈ I,
1 for y ∈ Q \ I.

It is well known that the sequence (Gε) Γ-converges (with respect to the strong topology of L2)
to the functional G defined in (4.1). For further details we refer to [13] and [20]. We are going
to prove that Gε evaluated on a suitable extension of uε provides a lower bound for Fε(uε), from
which the claim follows.

As Fε(uε) ≤ +∞ we have that the sequence (Euε) is equibounded in L2(Ω(ε);Mn×n). More-
over, as Juε ∩Ω(ε) = ∅, by Theorem 3.2 uε ∈ H1(Ω(ε);Rn. Now, let Ω0 ⊃ Ω with dist(Ω, ∂Ω0) > 1
and let us denote with ûε ∈ H1

0 (Ω0;Rn) the extension of uε, whose existence is guaranteed
by Theorem 3.3. The quoted theorem also ensures that the sequence (E ûε) is equibounded in
L2(Ω0;Mn×n). Hence, by the Korn Inequality we deduce that ûε is equibounded in H1

0 (Ω0;Rn).
We denote by û its weak limit in H1. We claim that u = û a.e. in Ω. This follows by the
Riemann-Lebesgue Lemma, as

0 = lim
ε→0

∫
Ω

a
(x
ε

)
|uε − ûε|2dx = ϑ

∫
Ω

|u− û|2dx,

where ϑ > 0 is the ∗-weak limit of a( ·ε ) in L∞(Ω). Therefore, from the previous expression we
conclude immediately that u = û a.e. on Ω. Moreover, since by the properties of the extension
ûε ∈ H1

0 (Ω′;Rn) for every Ω ⊂ Ω′ ⊂ Ω0 (at least for small ε), then u ∈ H1
0 (Ω;Rn). Finally we

have
Fε(uε) ≥ Gε(ûε),

from which we deduce the bound (4.2). �

We now prove that the sequence (Fε) admits a Γ-convergence subsequence. This will be done
by proving that the functionals Fε satisfy a technical estimate (see 4.7). We first need to introduce
some definitions and results that will be used in the following. For further references see [14].

Definition 4.2. Let (Gε) : L2(Ω;Rn)→ R be a sequence of functionals, where the space L2(Ω;Rn)
is endowed with the distance induced by the norm. Define the functionals G′ and G′′ as follows:

G′ := Γ− lim inf
ε→0

Gε and G′′ := Γ− lim sup
ε→0

Gε.

Definition 4.3. Let A(Ω) denote the family of the open subsets of Ω. We say that a functional
G : L2(Ω;Rn)×A(Ω)→ [0,+∞] is increasing (on A(Ω)) if for every u ∈ L2(Ω;Rn) the set function
G(u, ·) is increasing on A(Ω).

Definition 4.4. Given a functional G : L2(Ω;Rn)×A(Ω)→ [0,+∞], we define its inner regular-
isation as

G−(u,A) := sup
{
G(u,B) : B ∈ A(Ω), B ⊂⊂ A

}
.

Observe that if G is increasing, then also G− is increasing.

Definition 4.5. We say that a sequence (Gε) is Γ-convergent to a functional G whenever

G = (G′)− = (G′′)−.

We have the following general compactness theorem.
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Theorem 4.6. Every sequence of increasing functionals has a Γ-convergent subsequence.

Since for every ε > 0 the functional Fε is increasing, we deduce by Theorem 4.6 that there
exists a Γ-convergent subsequence in L2. In order to pass from Γ- to Γ-convergence a crucial step
is to show that the functionals Fε satisfy the so-called fundamental estimate. The latter can be
seen as an approximated subadditivity of Fε, and it is essential in proving that the limit functional
is a measure. As a first step, we localise the sequence (Fε); that is, for every u ∈ L2(Ω;Rn) and
for every open set A ∈ A(Ω) we define

Fε(u,A) =


∫
A

CEu : Eu dx+ αεHn−1(Ju ∩A) if u ∈ SBD2(A), Ju ⊂ I(ε) ∩A,
[u] · νu ≥ 0 Hn−1-a.e. on Ju,

+∞ otherwise in L2(Ω;Rn).

(4.4)

For a fixed u ∈ L2(Ω;Rn) we can extend (Fε)(u, ·) to a measure (Fε)∗(u, ·) on the class of Borel
sets B(Ω) in the usual way:

(Fε)∗(u,B) := inf
{
Fε(u,A) : A ∈ A(Ω), B ⊆ A

}
.

Next theorem provides an extension of the fundamental estimate to the space SBD2. The proof
ca be simply obtained by adapting the proof of [8, Proposition 3.1], valid for SBV functions, to
the present case.

Theorem 4.7 (Fundamental estimate in SBD2). For every η > 0 and for every A′, A′′ and B
∈ A(Ω), with A′ ⊂⊂ A′′, there exists a constant M > 0 with the following property: for every
ε > 0 and for every u ∈ SBD2(A′′) such that Ju ⊂ I(ε) ∩ A′′ and [u] · νu ≥ 0 Hn−1-a.e. on Ju,
and for every v ∈ SBD2(B) such that Jv ⊂ I(ε) ∩ B and [v] · νv ≥ 0 Hn−1-a.e. on Jv, there
exists a function ϕ ∈ C∞0 (Ω) with ϕ = 1 in a neighborhood of Ā′, spt ϕ ⊂ A′′ and 0 ≤ ϕ ≤ 1 such
that

Fε(ϕu+ (1− ϕ) v,A′ ∪B) ≤ (1 + η)Fε(u,A′′) + (1 + η)Fε(v,B) +M

∫
T

|u− v|2dx,

where T := (A′′ \A′) ∩B.

We can finally state our Γ-convergence result for a subsequence of (Fε).

Theorem 4.8. Let ε be a sequence converging to zero. Then there exists a subsequence (σ(ε))
and a functional Fσ : L2(Ω;Rn)×A(Ω)→ [0,+∞] such that, for every A ∈ A(Ω),

Fσ(·, A) = Γ− lim
ε→0
Fσ(ε)(·, A)

in the strong L2-topology. Moreover, for every u ∈ L2(Ω;Rn), the set function Fσ(u, ·) is the
restriction to A(Ω) of a Borel measure on Ω.

Proof. Since for every ε > 0 the functional Fε is increasing, we deduce by Theorem 4.6 that there
exists a subsequence (σ(ε)) and a functional Fσ : L2(Ω;Rn) × A(Ω) → [0,+∞] such that Fσ =
Γ(L2)− limε→0 Fσ(ε). We put a superscipt σ in order to underline that the limit functional may
depend on the subsequence. Now we define the nonnegative increasing functional K : L2(Ω;Rn)×
A(Ω)→ [0,+∞] as

K(u,A) :=


∫
A

|Eu|2dx if u|A ∈ H1(A;Rn),

+∞ otherwise.

Clearly, K is a measure with respect to A. Moreover, by (3.4) we have that 0 ≤ Fσ(ε) ≤ ϑM K for
every ε > 0 and by Theorem 4.7 the fundamental estimate holds uniformly for the subsequence(
Fσ(ε)

)
. Therefore, we can proceed as in [14, Proposition 18.6] and we obtain that

Fσ(u,A) = (Fσ)′(u,A) = (Fσ)′′(u,A)

for every u ∈ L2(Ω;Rn) and for every A ∈ A(Ω) such that K(u,A) < +∞.
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Fix A ∈ A(Ω). We observe that from Theorem 4.1 we have the bound F ′(·, A) ≥ ϑmG(·, A),
where we have localised the functional G defined in (4.1) as in (4.4). Notice that, by definition,

Fσ(·, A) = (Fσ)′(·, A) ≥ F ′(·, A).

Hence we deduce that Fσ(·, A) ≥ ϑmG(·, A). This entails in particular that the Γ-limit of
Fσ(ε)(·, A) is finite only on H1(A;Rn), which is the same domain where K(·, A) is finite, and
is given by Fσ(·, A). This proves the stated convergence for the subsequence

(
Fσ(ε)

)
.

Finally, Fε(u, ·) is the restriction to A(Ω) of a Borel measure on Ω. Then, by Theorem 4.7 and
[14, Theorem 18.5] we have that for every u ∈ L2(Ω;Rn) the set function Fσ(u, ·) is the restriction
to A(Ω) of a Borel measure on Ω. �

We now show general properties for the Γ-limit of Fε, even if, so far, we have only proved
the convergence of a subsequence. The fact that the whole sequence (Fε) converges will follow
from the characterization of the Γ-limit, which will depend only on the symmetric gradient of
the deformation and not on the subsequence σ(ε). This will be done separately for the different
regimes in Theorems 5.1, 6.2, 7.5, respectively. In the remaining part of this section we therefore
assume that the whole sequence (Fε) Γ-converges to a functional that we call F , and we omit the
superscript σ.

Lemma 4.9. The restriction of the functional F : L2(Ω;Rn)×A(Ω)→ [0,+∞] to H1
0 (Ω;Rn)×

A(Ω) satisfies the following properties: for every u, v ∈ H1
0 (Ω;Rn) and for every A ∈ A(Ω)

(a) F is local, i.e., F(u,A) = F(v,A) whenever u|A = v|A;

(b) the set function F(u, ·) is the restriction to A(Ω) of a Borel measure on Ω;

(c) F(·, A) is sequentially weakly lower semicontinuous on H1
0 (Ω;Rn);

(d) for every a ∈ Rn we have F(u,A) = F(u+ a,A);

(e) F satisfies the bound

0 ≤ F(u,A) ≤ ϑM
∫
A

|Eu|2dx.

Proof. Properties (a) and (c) follow from the fact that F(·, A) is the Γ-limit of the sequence
Fε(·, A), while (b) comes from Theorem 4.8. For property (d) we can proceed as follows. Let
u ∈ H1

0 (Ω;Rn), A ∈ A(Ω) and consider a recovery sequence (uε) ⊂ L2(Ω;Rn)∩SBD2(A) satisfying
the usual constraints for the jump set, converging to u strongly in L2(Ω;Rn) and such that(
Fε(uε, A)

)
converges to F(u,A). Then (uε + a) converges to u+ a in L2(Ω;Rn) and

F(u+ a,A) ≤ lim inf
ε→0

Fε(uε + a,A) = lim inf
ε→0

Fε(uε, A) = F(u,A).

On the other hand, F(u,A) = F((u+ a) + (−a), A) ≤ F(u+ a,A), hence (d) is proved. Property
(e) follows by the uniform bound (3.4) and by the lim inf-inequality, since

F(u,A) ≤ lim inf
ε→0

Fε(u,A) ≤ ϑM
∫
A

|Eu|2dx.

�

Next theorem shows that the functional F admits an integral representation.

Theorem 4.10. There exists a unique quasi-convex function f : Mn×n → [0,+∞[ with the
following properties:

(i) 0 ≤ f(ξ) ≤ ϑM |ξ|2 for every ξ ∈Mn×n;

(ii) F(u,A) =
∫
A

f(∇u)dx for every A ∈ A(Ω) and for every u ∈ H1(A;Rn).

Proof. Notice that the functional F satisfies all the assumptions of [14, Theorem 20.1], so by
Lemma 4.9 the Carathéodory function f : Ω×Mn×n → R defined as

f(y, ξ) := lim sup
%→0

F(ξ x,B%(y))
Ln(B%(y))
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provides the integral representation

F(u,A) =
∫
A

f(x,∇u)dx

for every A ∈ A(Ω) and for every u ∈ L2(Ω;Rn) such that u|A ∈ H1(A;Rn). Moreover the same
theorem ensures that for a.e. x ∈ Ω the function f(x, ·) is quasi-convex on Mn×n and that

0 ≤ f(x, ξ) ≤ ϑM |ξ|2 for a.e. x ∈ Rn and for every ξ ∈Mn×n.

The fact that f is independent of the first variable can be proved in the usual way (see for instance
[21, Theorem 5.4]). �

In the next sections we will use a slightly different notation for the Γ-limit of the sequence (Fε).
More precisely, it will be denoted by F0 in the subcritical case, by Fhom in the critical regime,
and by F∞ in the supercritical case.

5. Subcritical regime: very brittle inclusions

In this section we shall analyse the subcritical case, where the fragility coefficient of the brittle
inclusions in the material is much smaller than the size ε of the periodic structure, i.e., αεε → 0.

5.1. Cell formula. We localise the sequence (Fε) given in (3.6) as in (4.4). Theorem 4.10 ensures
that it admits a Γ-convergence subsequence to a limit functional F0. We shall prove that the limit
density can be characterized in terms of an asymptotic cell problem and that it is independent of
the subsequence. More precisely, the limit energy density is the function f0 : Mn×n → [0,+∞)
defined as follows:

f0(ξ) := inf
{∫

Q

CE(ξ x+ w) : E(ξ x+ w)dx : w ∈ SBD2
#(Q), Jw ⊂ I, [w] · νw ≥ 0 a.e. on Jw

}
.

(5.1)
Next theorem shows that the Γ-limit of the sequence (Fε) can be expressed in terms of the

homogenization formula (5.1). The proof is a simple adaptation of the proof of [21][Theorem 5.6]
and therefore will be omitted.

Theorem 5.1. The density f of the limit functional F (see Theorem 4.10) coincides with the
function f0 defined by the cell formula (5.1), i.e., for every ξ ∈Mn×n

f(ξ) = f0(ξ).

Remark 5.2. The previous theorem implies in particular that in the subcritical regime the whole
sequence (Fε) Γ-converges, since the formula for the limit energy density does not depend on the
subsequence. Moreover, from the cell formula we deduce that the limit density function depends
only on the symmetric part of its argument.

When the elasticity tensor C is isotropic and I = Qδ := [δ, 1 − δ]n, 0 < δ < 1
2 , we can give a

more explicit description of the density f0, as shown in the following lemma.

Lemma 5.3. Let C be of the special form C = 2µ I + λ Id ⊗ Id, µ, λ > 0, and let f0 be the
corresponding limit density defined as in (5.1). Then it turns out that f0(Id) 6= f0(−Id).

Proof. By the assumption on C we have that, for every w ∈ SBD2(Q)

CEu = 2µ Ew + λ(Ew : Id) Id = 2µ Ew + λ(divw) Id ∈Mn×n
sym .

First step: f0(Id) � 2µn+ λn2.
First of all, we can notice that f0(Id) can be rewritten as

f0(Id) := inf
{∫

Q

CEw : Ew dx : w − x ∈ SBD2
#(Q), Jw ⊂ Qδ, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}
.

(5.2)
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For i = 1, . . . , n, let us denote with {∂Qi+δ, ∂Qi−δ} the opposite hyperfaces of ∂Qδ which are
orthogonal to the vector ei. More precisely,

∂Qi±δ :=
{
x ∈ ∂Qδ : x · ei ≷ 0

}
.

We claim that the function w defined as

w(x) =

{
x if x ∈ Q \Qδ,

0 if x ∈ Qδ,

is a competitor for the minimisation problem in (5.2). Indeed, w − x ∈ SBD2
0(Q) ⊂ SBD2

#(Q)
and Jw ⊂ ∂Qδ. It remains to check the non-interpenetration condition for almost every x ∈ Jw.
Notice that if x̂ ∈ Jw ∩ ∂Qi+δ for some i, then

[w](x̂) · νw(x̂) = x̂ · ei ≥ min
x∈∂Qi+δ

(x · ei) > 0.

On the other hand, if x̂ ∈ Jw ∩ ∂Qi−δ for some i, then

[w](x̂) · νw(x̂) = x̂ · (−ei) ≥ − max
x∈∂Qi−δ

(x · ei) > 0.

Therefore w is a competitor in (5.2), and we obtain by comparison that

f0(Id) ≤
∫
Q

CEw : Ew dx = Ln(Q \Qδ)(2µn+ λn2) � 2µn+ λn2.

Second step: f0(−Id) = 2µn+ λn2.
In order to prove this relation it is more convenient to use the characterization of the density

f0 in the form (5.1). We are going to prove that w = 0 is a minimiser of (5.1), for ξ = −Id. To
this aim, let v ∈ SBD2

#(Q) be such that Jv ⊂ Qδ and [v] · νv ≥ 0 Hn−1- a.e. on Jv. For η ≥ 0 we
define the function

I(η) :=
1
2

∫
Q

CE(−x+ η v) : E(−x+ η v)dx.

We claim that (
d

dη
I(η)

)
|η=0

≥ 0 (5.3)

for every admissible v. By convexity, (5.3) is a necessary and sufficient condition for the minimality
of w = 0 in (5.1), for ξ = −Id. We notice that condition (5.3) is equivalent to∫

Q

(2µ+ λn)Id : Ev dx ≤ 0 (5.4)

for every admissible v. Let now v be an admissible competitor in the minimisation problem.
Integrating by parts and using the periodicity assumption on v, we have∫

Q

(2µ+ λn)Id : Ev dx = −(2µ+ λn)
n∑
i=1

∫
Jv

[vi] νvidHn−1. (5.5)

As v satisfies the non-interpenetration condition
n∑
i=1

[vi](x) νvi(x) ≥ 0 for Hn−1-a.e. x ∈ Jv,

and is arbitrary, from (5.5) follows (5.4), and the claim. �

Remark 5.4. As immediate corollary from the previous lemma we deduce that, in general, the
limit density f0 is not a quadratic form.
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Remark 5.5 (Anisotropy of the limit energy). We are going to show that the limit energy is not
isotropic, in the case of an isotropic elasticity tensor C. Therefore the isotropy of the elastic energy
is not preserved by homogenization. We recall that for the energy density f0 being isotropic means
that, for every ξ ∈Mn×n

f0(ξ) = f0(ξR) for every R ∈ SO(n). (5.6)

We will prove that, for the choice ξ = −Id, there exists a rotation R0 ∈ SO(n) such that the
equality (5.6) is violated, i.e., such that

f0(−Id) 6= f0(−R0). (5.7)

A fundamental step in this direction is the explicit expression of f0(−Id) provided by Lemma 5.3.
We will prove (5.7) by showing that f0(−R0) � C(−R0) : (−R0) = f0(−Id).

Let ξ ∈Mn×n
sym be a diagonal matrix. We denote with (ν1, . . . , νn) its eigenvalues. We will prove

that the minimality of w = 0 in (5.1) forces ν1 = · · · = νn < 0.
Let v ∈ SBD2

#(Q) such that Jv ⊂ Qδ and [v] · νv ≥ 0 Hn−1- a.e. on Jv, and let η ≥ 0. We
define

I(η) :=
1
2

∫
Q

CE(ξ x+ η v) : E(ξ x+ η v)dx.

Let us suppose that w = 0 is a minimiser in (5.1). Since the functional in (5.1) is convex, the
minimality of w = 0 is equivalent to(

d

dη
I(η)

)
|η=0

=
1
2

(
d

dη

∫
Q

CE(ξ x+ η v) : E(ξ x+ η v)dx
)
|η=0

≥ 0 (5.8)

for every admissible v, which is in turn equivalent to∫
Q

Cξ : Ev dx ≥ 0 (5.9)

for every admissible v. Integrating by parts, the left hand side in the previous expression becomes∫
Q

Cξ : Ev dx = −
n∑

i,j=1

∫
Jv

(Cξ)ij [vj ] νvidHn−1.

Therefore, as (Cξ)ij = (2µνi + λ
∑n
k=1 νk)δij , (5.4) reduces to

−
n∑
i=1

∫
Jv

(2µνi + λ

n∑
k=1

νk) [vi] νvidHn−1 ≥ 0 (5.10)

for every admissible v. As v satisfies the non-interpenetration condition
n∑
i=1

[vi](x) νvi(x) ≥ 0 for Hn−1-a.e. x ∈ Jv, (5.11)

and is arbitrary, we conclude that the quantities (2µνi + λ
∑n
k=1 νk) are forced to be equal for

every i and negative. This clearly implies that alle the eigenvalues νi of ξ are equal and negative,
i.e., ξ is a negative multiple of the identity.

Therefore, choosing R0 to be a diagonal matrix with eigenvalues νi = ±1 (with at least a
positive eigenvalue) and detR0 = 1, (5.7) follows.

Remark 5.6. Another important consequence of Lemma 5.3 is that the limit functional F0

describes a material where damage occurs. Indeed, at least in the isotropic case and for I = Qδ,
we proved that f0(Id) � 2µn + λn2 = CId : Id. More in general, similar computations show
that f0(ξ) � Cξ : ξ for all the tensors ξ with the property that there exists a constant cξ =
(c1, . . . , cn) ∈ Rn such that

max
x∈∂Qi−δ

(
(ξ x) · ei

)
< ci < min

x∈∂Qi+δ

(
(ξ x) · ei

)
for every i = 1, . . . , n. (5.12)
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6. Critical regime: αε ≈ ε.

In this section we shall analyse the case in which the fragility coefficient of the inclusions in the
material αε is of the same order of the size ε of the periodic structure. We can assume, without
loss of generality, that αε = ε. The energy of the material is thus given by

Fε(u) =


∫

Ω

CEu : Eu dx+ εHn−1(Ju) if u ∈ SBD2
0(Ω), Ju ⊂ I(ε),

[u] · νu ≥ 0 Hn−1-a.e. on Ju,

+∞ otherwise in L2(Ω;Rn).

6.1. Homogenization formula. We localise the sequence (Fε) as in (4.4). Theorem 4.10 ensures
that it admits a Γ-convergence subsequence to a limit functional Fhom. We shall prove that the
limit density can be characterized in terms of an asymptotic cell problem and that it is independent
of the subsequence. More precisely, the limit energy density is the function fhom : Mn×n → [0,+∞)
defined as

fhom(ξ) := lim
t→+∞

1
tn

inf
{∫

(0,t)n
CE(ξ x+ w) : E(ξ x+ w)dx+Hn−1(Jw) :

w ∈ SBD2
0

(
(0, t)n

)
, Jw ⊂ Ĩ ∩ (0, t)n, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}
,

(6.1)
where Ĩ is defined as in (3.1). We state rigorously this results in the next two theorems, whose
proofs follow easily from the proofs of [21][Theorem 5.5, Theorem 5.6], respectively.

Theorem 6.1. The function fhom in (6.1) is well defined, that is the function

g(t) :=
1
tn

inf
{∫

(0,t)n
CE(ξ x+ w) : E(ξ x+ w)dx+Hn−1(Jw) :

w ∈ SBD2
0

(
(0, t)n

)
, Jw ⊂ Ĩ ∩ (0, t)n, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}
,

admits a limit as t→ +∞.

Theorem 6.2. The density f of the limit functional Fhom (see Theorem 4.10) coincides with the
function fhom defined by the cell formula (6.1), i.e., for every ξ ∈Mn×n

f(ξ) = fhom(ξ).

Remark 6.3. Notice that from this theorem we deduce that also in the critical case the whole
sequence (Fε) Γ-converges, since the formula for the limit energy density does not depend on the
subsequence. Moreover, we deduce that the limit density function depends only on the symmetric
part of its argument.

Next lemma shows that the limit functional in the critical regime describes a damaged material.
We restrict our attention to the isotropic case, i.e., C = 2µ I + λ Id ⊗ Id with µ, λ > 0 and to
I = Qδ = [δ, 1− δ]n.

Lemma 6.4. There exists ξ ∈Mn×n such that fhom(ξ) � Cξ : ξ.

Proof. Let us rewrite the limit energy density in the following way:

fhom(ξ) := lim
t→+∞

1
tn

inf
{∫

(0,t)n
CEw : Ewdx+Hn−1(Jw) : w − ξx ∈ SBD2

#

(
(0, t)n

)
,

Jw ⊂ Qδ, [w] · νw ≥ 0 Hn−1-a.e. on Jw

}
,

(6.2)

for every ξ ∈Mn×n. Let ξ ∈Mn×n and assume that there exists a constant cξ = (c1, . . . , cn) ∈ Rn
with the property (5.12) as in Lemma 5.3. Let us restrict our attention to the case when in (6.2)
t ∈ N. The general case can be deduced in the same way. Then, it is easy to check that the
function wξ defined as

wξ(x) =

{
ξ x if x ∈ Q \Qδ,

cξ if x ∈ Qδ,
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and extended by periodicity in (0, t)n is a competitor in (6.2). Therefore, for the class of matrices
ξ defined by the condition (5.12) we have

fhom(ξ) ≤ lim
t→+∞

1
tn

{∫
(0,t)n

CEwξ : Ewξdx+Hn−1(Jwξ)
}
≤ Ln(Qδ)Cξ : ξ + P (Qδ, Q).

Then, in order to prove the theorem it is sufficient to choose a matrix ξ ∈ Mn×n satisfying the
property (5.12) and such that

Ln(Qδ)Cξ : ξ + P (Qδ, Q) � Cξ : ξ.

In particular ξ = κId with κ >> 1 provides a possible choice. �

7. Supercritical regime: stiffer inclusions

In this section we shall analyse the supercritical case, where the fragility coefficient αε of the
inclusions in the material is bigger than the size ε of the periodic structure.

Before studying this case, we state a technical lemma which will be used in the following. For
the proof we refer to [21].

Lemma 7.1. Let ah : Ω→ R+ be a sequence of measurable functions such that

ah → a in measure.

Then, for every v ∈ L2(Ω;Rm) and for every sequence (vh) ⊂ L2(Ω;Rm) such that

vh ⇀ v weakly in L2(Ω;Rm),

it turns out that ∫
Ω

a|v|2dx ≤ lim inf
h→+∞

∫
Ω

ah|vh|2dx.

In the following we present a proper modification of the argument used in [2] and in [6] to prove
compactness and lower semicontinuity in SBD. We refer also to [10, Lemma 5.1] for a similar
result.

Lemma 7.2. Let U ⊂ Rn be an open set, let w ∈ L2(U ;Rn) and let (wh) be a sequence converging
to w strongly in L2. Assume that ||Ewh||L2(U ;Mn×n) ≤ c and that Hn−1(Jwh) → 0 as h → +∞.
Then w ∈ H1(U ;Rn) and

Ewh ⇀ Ew weakly in L2(U ;Mn×n).

Proof. We can assume up to a subsequence that

Hn−1(Jwh) ≤ 1
h2
.

First step: w ∈ H1(U ;Rn).
Let ξ ∈ Sn−1, y ∈ Πξ and let us define for every h ∈ N the sections (wh)ξy(t) := wh(y + t ξ) · ξ. It
is well known that (wh)ξy ∈ SBV 2

(
Uξy
)

for Hn−1-almost every y ∈ Πξ. Moreover, since wh → w

strongly in L2, it follows that, up to subsequences,

(wh)ξy → wξy strongly in L2
(
Uξy
)

for Hn−1-a.e. y ∈ Πξ.

Let us denote with N1 the set such that (wh)ξy ∈ SBV 2
(
Uξy
)

and (wh)ξy → wξy strongly in L2 for
every y ∈ Πξ \N1. As we already noticed, Hn−1(N1) = 0. Let us define the set Eh as

Eh :=
⋃
j≥h

Jwj .

From the inequality Hn−1(Jwh) ≤ 1
h2 , it turns out that Hn−1(Eh) → 0 as h → +∞. Hence for

every ϑ > 0 there exists h(ϑ) such that Hn−1(Eh(ϑ)) < ϑ. Clearly, Jwh ⊂ Eh(ϑ) for every h ≥ h(ϑ).
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Let us denote with (Eh(ϑ))ξ the projection of the set Eh(ϑ) on Πξ. From the definition it follows
that (wh)ξy ∈ H1

(
Uξy
)

for every y ∈ (Πξ \ (Eh(ϑ))ξ) \N1 and for h ≥ h(ϑ). Moreover, the H1 norm
of (wh)ξy is equibounded. Indeed, using Fubini’s Theorem we can write∫

U

|Ewhξ · ξ|2dx =
∫
U

|∇whξ · ξ|2dx =
∫

Πξ

[ ∫
Uξy

|∇(wh)ξy|2 dt
]
dHn−1(y), (7.1)

and, as ξ ∈ Sn−1, we have ∫
U

|Ewhξ · ξ|2dx ≤
∫
U

|Ewh|2dx, (7.2)

where the right-hand side is equibounded by assumption. Hence from (7.1) we obtain∫
Πξ

[ ∫
Uξy

|∇(wh)ξy|2 dt
]
dHn−1(y) ≤ c. (7.3)

Now, let wk(y) be a subsequence (depending on y) of wh such that

lim inf
h→+∞

∫
Uξy

|∇(wh)ξy|2 dt = lim
k(y)→+∞

∫
Uξy

|∇(wk(y))ξy|2 dt. (7.4)

The bound (7.3) guarantees that there exists a function v such that, up to a further subsequence
wj(y) ⊂ wk(y), we have

(wj(y))ξy ⇀ v weakly in H1
(
Uξy
)
, (7.5)

for Hn−1-almost every y ∈ Πξ \ (Eh(ϑ))ξ. Since for Hn−1-almost every y ∈ Πξ the whole sequence
(wh)ξy converges to wξy strongly in L2, (7.5) implies that

(wj(y))ξy ⇀ wξy weakly in H1
(
Uξy
)
. (7.6)

By the lower semicontinuity in H1 and by (7.4) we obtain the inequality∫
Uξy

|∇(wξy)|2 dt ≤ lim inf
j(y)→+∞

∫
Uξy

|∇(wj(y))ξy|2 dt = lim inf
h→+∞

∫
Uξy

|∇(wh)ξy|2 dt, (7.7)

valid for Hn−1-almost every y ∈ (Πξ \ (Eh(ϑ))ξ). Integrating (7.7) with respect to y and using the
Fatou Lemma we get∫

Πξ\(Eh(ϑ))ξ

[ ∫
Uξy

|∇(wξy)|2 dt
]
dHn−1(y) ≤ lim inf

h→+∞

∫
Πξ\(Eh(ϑ))ξ

[ ∫
Uξy

|∇(wh)ξy|2 dt
]
dHn−1(y).

(7.8)
Hence, by (7.3) we obtain ∫

Πξ\(Eh(ϑ))ξ

[ ∫
Uξy

|∇(wξy)|2 dt
]
dHn−1(y) ≤ c, (7.9)

where the constant c is independent of ϑ. Using the estimate (7.9), that w ∈ L2(U ;Rn), and that
wξy ∈ H1

(
Uξy
)

for Hn−1-almost every y ∈ Πξ \ (Eh(ϑ))ξ, we conclude that w ∈ H1(U ;Rn). Indeed,
let us define the sets E∞ and E0 as

E∞ := ∩hEh and E0 := lim
h
Eh,

where the convergence in the definition of E0 is almost everywhere with respect to the Hausdorff
measure. From Hn−1(Eh) ≤ 1

h2 and Eh+1 ⊂ Eh, it turns out that

Hn−1(E∞) = 0 = Hn−1(E0).

Now, since Πξ \(E∞)ξ is contained in Πξ \(Eh)ξ for h large enough, we have that wξy ∈ H1
(
Uξy
)

for
Hn−1-almost every y ∈ Πξ \ (E∞)ξ. Hence, as Hn−1(E∞) = 0, we conclude that for Hn−1-almost
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every y ∈ Πξ the section wξy ∈ H1
(
Uξy
)
. On the other hand, using the Monotone Convergence

Theorem in (7.9), we have

lim
h(ϑ)→∞

∫
Πξ\(Eh(ϑ))ξ

[ ∫
Uξy

|∇(wξy)|2 dt
]
dHn−1(y) =

∫
Πξ\(E0)ξ

[ ∫
Uξy

|∇(wξy)|2 dt
]
dHn−1(y) ≤ c.

(7.10)
Again, the fact that Hn−1(E0) = 0 implies that∫

Πξ

[ ∫
Uξy

|∇(wξy)|2 dt
]
dHn−1(y) ≤ c. (7.11)

At this point we can apply [3, Proposition 3.105] to conclude that

∇(wξy) = Dt[w(y + tξ) · ξ] = Dwξ · ξ = Ewξ · ξ ∈ L2(U),

and this holds for every ξ. Using the identity

Ewξ · η =
1
2

[Ew(ξ + η) · (ξ + η)− Ewξ · ξ − Ewη · η] ∀ ξ, η,

we conclude that Ew ∈ L2(U ;Mn×n). Therefore, since w ∈ L2(U ;Rn), the Korn Inequality
ensures that w ∈ H1(U ;Rn).

Second step: convergence of the symmetric gradient. Let us define, for a given scalar function
v ∈ L2(U), the functional

Lξy(wh, v) :=
∫
Uξy

|∇(wh)ξy − v(t, y)|2 dt.

Using (7.2) and the fact that v ∈ L2(U), we obtain the bound∫
Πξ
Lξy(wh, v)dHn−1(y) ≤

∫
U

|Ewhξ · ξ − v|2dx ≤ c.

Now, let wk(y) be a subsequence (depending on y) of wh such that

lim inf
h→+∞

Lξy(wh, v) = lim
k(y)→+∞

Lξy(wk(y), v). (7.12)

The bound (7.3) guarantees that, up to a further subsequence wj(y) ⊂ wk(y),

(wj(y))ξy ⇀ wξy weakly in H1
(
Uξy
)

for Hn−1-almost every y ∈ Πξ \ (Eh(ϑ))ξ, and in particular

∇(wj(y))ξy − v ⇀ ∇wξy − v weakly in L2
(
Uξy
)
.

Hence, by the lower semicontinuity of the functional Lξy and by (7.12), we obtain

Lξy(w, v) ≤ lim inf
j(y)→+∞

Lξy(wj(y), v) = lim inf
h→+∞

Lξy(wh, v).

Integrating the previous expression with respect to y leads to∫
Πξ\(Eh(ϑ))ξ

Lξy(w, v) dHn−1(y) ≤ lim inf
h→+∞

∫
Πξ\(Eh(ϑ))ξ

Lξy(wh, v)dHn−1(y).

As w ∈ H1(U ;Rn) we can pass to the limit as ϑ→ 0 in the previous expression and we get∫
U

|Ewξ · ξ − v|2dx ≤ lim inf
h→+∞

∫
U

|Ewhξ · ξ − v|2dx. (7.13)

Since (7.13) holds true for every v ∈ L2(U) we have that, for every ξ ∈ Sn−1,

Ewhξ · ξ ⇀ Ewξ · ξ weakly in L2(U). (7.14)

Now we consider a basis {ξ1, . . . , ξn} of Rn such that ξi + ξj ∈ Sn−1 for every i 6= j, and specify
ξ = ξi + ξj in (7.14). Then we have

Ewh ⇀ Ew weakly in L2(U ;Mn×n),

and this concludes the proof. �
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In the next two lemmas we state some Γ-convergence results that will be used in the proof of
the main result of this section.

Lemma 7.3. Let us fix 0 < δ̄ < δ < 1
2 so that I ⊆ Qδ ⊂⊂ Qδ̄. For every h ∈ N, let Gh :

L2(Qδ̄;Rn)→ [0,+∞] be the functional defined as

Gh(w) :=


∫
Qδ̄

CEw : Ew dx+Hn−1(Jw) if w ∈ SBD2(Qδ̄), Jw ⊂ I,Hn−1(Jw) ≤ 1
h2 ,

[w] · νw ≥ 0 Hn−1 -a.e. on Jw,

+∞ otherwise in L2(Qδ̄;Rn).

Then the sequence (Gh) Γ-converges with respect to the strong topology of L2 to the functional
G : L2(Qδ̄;Rn)→ [0,+∞] given by

G(w) :=


∫
Qδ̄

CEw : Ew dx if w ∈ H1(Qδ̄;Rn),

+∞ otherwise in L2(Qδ̄;Rn).

Proof. The proof of the liminf inequality follows by applying the previous lemma with U = Qδ̄
and using the lower semicontinuity of the functionals, while the existence of the recovery sequence
is immediate. �

Lemma 7.4. Let (ϕh), ϕ ∈ H1/2(∂Qδ̄;Rn) be such that ϕh → ϕ strongly in H1/2(∂Qδ̄;Rn). For
every h ∈ N, let Ghϕh : L2(Qδ̄;Rn)→ [0,+∞] be the functionals defined by

Ghϕh(w) :=


∫
Qδ̄

CEw : Ew dx+Hn−1(Jw) if w ∈ SBD2(Qδ̄), Jw ⊂ Qδ,Hn−1(Jw) ≤ 1
h2 ,

[w] · νw ≥ 0 Hn−1-a.e. on Jw, tr(w) = ϕh on ∂Qδ̄,

+∞ otherwise in L2(Qδ̄;Rn).
(7.15)

Then the sequence (Ghϕh) Γ-converges with respect to the strong topology of L2 to the functional
Gϕ : L2(Qδ̄;Rn)→ [0,+∞] given by

Gϕ(w) :=


∫
Qδ̄

CEw : Ew dx if w ∈ H1(Qδ̄;Rn), tr(w) = ϕ on ∂Qδ̄,

+∞ otherwise in L2(Qδ̄;Rn).

Proof. First step: proof of compactness and liminf. Let (wh), w ∈ L2(Qδ̄;Rn) be such that wh → w
strongly in L2 and Ghϕh(wh) ≤ c < +∞. From the equality Ghϕh(wh) = Gh(wh) and Lemma 7.3 we
have that w ∈ H1(Qδ̄;Rn); moreover

lim inf
h→+∞

Ghϕh(wh) = lim inf
h→+∞

Gh(wh) ≥ G(w).

It remains to show that tr(w) = ϕ on ∂Qδ̄. From the bound Ghϕh(wh) ≤ c it follows that the
sequence (wh) is equibounded in H1(Qδ̄ \Qδ;Rn), and hence

wh ⇀ w weakly in H1(Qδ̄ \Qδ;Rn).

The compactness of the trace operator gives

ϕh = (wh)|∂Qδ̄ → w|∂Qδ̄ strongly in L2(∂Qδ̄;Rn).

On the other hand, by assumption, ϕh → ϕ strongly in H1/2(∂Qδ̄;Rn). Therefore, w|∂Qδ̄ =
tr(w) = ϕ.

Second step: limsup. Let w ∈ H1(Qδ̄;Rn) be such that w|∂Qδ̄ = ϕ. Let us consider the sequence
(vh) ⊂ H1(Qδ̄;Rn) such that (vh)|∂Qδ̄ = ϕh − ϕ; it turns out that vh → 0 strongly in H1. We
claim that wh := vh + w is a recovery sequence. Indeed, (wh)|∂Qδ̄ = ϕh and wh → w strongly
in H1, hence Ewh → Ew strongly in L2. Since the functional Ghϕh gives a norm equivalent to the
standard L2-norm, we have the desired convergence. �
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Finally we are ready to state and prove the convergence result for the functional Fε in (3.6),
in the supercritical regime αε

ε →∞. We define the functional F∞ : L2(Ω;Rn)→ [0,+∞] as

F∞(u) =


∫

Ω

CEu : Eu dx in H1
0 (Ω;Rn),

+∞ otherwise in L2(Ω;Rn).

Next theorem shows that F∞ is the Γ-limit of the sequence (Fε) in the case αε � ε.

Theorem 7.5 (Γ-convergence). (i) Let u ∈ L2(Ω;Rn) and let (uε) be a sequence converging to u
strongly in L2 and having equibounded energy

(
Fε(uε)

)
. Then u ∈ H1

0 (Ω;Rn) and

lim inf
ε→0

Fε(uε) ≥ F∞(u). (7.16)

(ii) For every u ∈ H1
0 (Ω;Rn) there exists a sequence (uε) such that uε → u in L2(Ω;Rn) and

lim
ε→0
Fε(uε) = F∞(u). (7.17)

Proof. Notice that (ii) trivially follows by taking uε = u for every ε > 0, so that only (i) needs a
proof.

(i) Let us write the domain Ω as union of cubes of side ε:

Ω =
( ⋃
h∈Zn

ε(Q+ h)
)
∩ Ω.

We denote by {Qεk}k=1,...,N(ε)+Nr(ε) an enumeration of the family of cubes ε(Q + h) intersecting
Ω, so that Qεk ⊂ Ω for k ∈ {1, . . . , N(ε)}, and Qεk ∩ ∂Ω 6= ∅ for k ∈ {N(ε) + 1, . . . , N(ε) +Nr(ε)}.
In the same way we can define the sets {Iεk}k=1,...,N(ε)+Nr(ε). Notice that N(ε) is of order 1/εn,
while Nr(ε) is of order 1/εn−1.

We now classify the cubes Qεk, with k = 1, . . . , N(ε), according to the measure of the jump set
that they contain. More precisely, let β > 0 be a parameter that will be specified later; we say
that a cube Qεk is bad whenever Hn−1

(
Juε ∩ Qεk

)
> β εn−1, and good otherwise. Then, if Nb(ε)

denotes the number of bad cubes, we can assume without loss of generality that Qεk is bad for
k ∈ {1, . . . , Nb(ε)} and good for k ∈ {Nb(ε) + 1, . . . , N(ε)}.

First step: energy estimate on bad cubes. Let Ω0, Gε and (ûε) be defined as in Theorem 4.1.
Then

Fε(uε) ≥ Gε(ûε) ≥
Nb(ε)∑
k=1

∫
Qεk\I

ε
k

CE ûε : E ûεdx.

We also notice that, from the energy bound relative to the sequence (uε), since in particular
αεHn−1(Juε) ≤ c, it follows that Nb(ε) ≤ c/(αεεn−1).

Second step: energy estimate on good cubes. Let us fix k ∈ {Nb(ε) + 1, . . . , N(ε)} and let us
consider the localisation of the functional Fε, relative to the set Qεk, i.e.,

Fε
(
uε, Qεk

)
=
∫
Qεk

CEuε : Euεdx+ αεHn−1
(
Juε ∩Qεk

)
. (7.18)

Define the function vε in the unit cube Qk as uε(εy) =:
√
αεε v

ε(y). In terms of vε, the energy
(7.18) can be written as

Fε
(
uε, Qεk

)
= αεε

n−1

{∫
Qk

CEvε : Evεdx+Hn−1(Jvε ∩Qk)
}
, (7.19)

with Hn−1(Jvε ∩Qk) ≤ β. Therefore, by means of a change of variables we reduced to the study
of a Mumford-Shah like functional over a fixed domain, with some constraints on the jump set.
From now on we will omit the subscript k. Let δ̄, δ̂ be such that I ⊂⊂ Qδ̄ ⊂⊂ Qδ̂ ⊂⊂ Q.

We are going to replace the function vε with a new function v̂ε solving a suitable minimisation
problem in the inner square Qδ̄ and agreeing with vε in Q \Qδ̄.

As first step we find local minimisers of the Mumford-Shah functional in Qδ̄ under the previously
introduced constraints for the jump set, where, according to the definition given in [15], local
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minimality is intended with respect to all perturbations with compact support. More precisely,
we analyse the following problem:

(LMin) loc min
{∫

Qδ̂

CEw : Ew dx+Hn−1(Jw) : w ∈ SBD2(Qδ̂), Jw ⊂ I,H
n−1(Jw) ≤ β,

[w] · νw ≥ 0 Hn−1-a.e. on Jw

}
.

Let us denote by Mβ the class of solutions of (LMin). For a given v̂ ∈ Mβ , let us consider the
function ṽ solving

(Eul)

{
divCE ṽ = 0 in Qδ̄,

ṽ = v̂ in Qδ̂ \Qδ̄.
We want to prove that for every η > 0 there exists β > 0 such that for every v̂ ∈ Mβ and for

the corresponding ṽ we have∫
Qδ̂

CE ṽ : E ṽ dx ≤ (1 + η)
∫
Qδ̂

CE v̂ : E v̂ dx. (7.20)

We will prove (7.20) by contradiction. Suppose, for contradiction, that there exists η > 0 such
that for every β > 0 we can find v̂ ∈Mβ and a corresponding ṽ for which∫

Qδ̂

CE ṽ : E ṽ dx > (1 + η)
∫
Qδ̂

CE v̂ : E v̂ dx. (7.21)

In particular, for β = 1
h2 , (7.21) implies that for every h > 0 there exist v̂h and ṽh defined as

above for which ∫
Qδ̂

CE ṽh : E ṽhdx > (1 + η)
∫
Qδ̂

CE v̂h : E v̂hdx. (7.22)

Since Qδ̂ =
(
Qδ̂ \Qδ̄

)
∪Qδ̄, we can split the previous integrals and, using the fact that ṽh = v̂h in

Qδ̂ \Qδ̄, we obtain from (7.22)∫
Qδ̄

CE ṽh : E ṽhdx > (1 + η)
∫
Qδ̄

CE v̂h : E v̂hdx+ η

∫
Qδ̂\Qδ̄

CE v̂h : E v̂hdx. (7.23)

Since the problem defining ṽh is linear, we can normalize the left-hand side of (7.23), so that

1 =
∫
Qδ̄

CE ṽh : E ṽhdx > (1 + η)
∫
Qδ̄

CE v̂h : E v̂hdx+ η

∫
Qδ̂\Qδ̄

CE v̂h : E v̂hdx. (7.24)

This means in particular that ∫
Qδ̂

|E v̂h|2dx ≤
1
η
< +∞. (7.25)

Without loss of generality we can assume that
∫
Qδ̂\I

v̂hdx = 0; therefore, since Jv̂h ⊂ I, (7.25) and
the Korn Inequality imply that ||v̂h||H1(Qδ̂\I) ≤ c. Hence, there exists v̂ ∈ H1(Qδ̂ \ I;Rn) such
that v̂h ⇀ v̂ weakly in H1 and, in particular, strongly in L2, in Qδ̂ \ I.

Now we claim that, for every B ⊂⊂ Qδ̂ \ I, we have the following convergence result:

E v̂h → E v̂ strongly in L2(B;Mn×n
sym ). (7.26)

Indeed, the local minimality of v̂h in Qδ̂ implies that∫
Qδ̂\I

CE v̂h : Eφdx = 0 for every φ ∈ H1
0 (Qδ̂ \ I;Rn). (7.27)

Then, choosing as test function φ = ψ (v̂h − v̂), with ψ ∈ C1
0 (Qδ̂ \ I), we obtain∫

Qδ̂\I
ψCE v̂h : E v̂hdx =

∫
Qδ̂\I

ψCE v̂h : E v̂ dx−
∫
Qδ̂\I

CE v̂h :
(
(v̂h − v̂)∇ψ

)
dx.
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Since v̂h ⇀ v̂ weakly in H1(Qδ̂ \ I;Rn), if we let h→ +∞ in the previous equation we get

lim
h→+∞

∫
Qδ̂\I

ψCE v̂h : E v̂hdx =
∫
Qδ̂\I

ψCE v̂ : E v̂ dx. (7.28)

Finally, (7.28) together with the weak convergence of the sequence v̂h in H1(Qδ̂ \I;Rn) imply that
E v̂h converges strongly to E v̂ with respect to the norm induced on L2 by the tensor C introduced
in (3.4) and (3.5). The equivalence of this norm to the standard L2 norm gives (7.26).

By the strong convergence of v̂h to v̂ in L2, (7.26) and the Korn Inequality, we deduce

v̂h → v̂ strongly in H1(B;Rn).

This entails the convergence of the traces of v̂h on ∂Qδ̄, that is,

ϕh := (v̂h)|∂Qδ̄ → ϕ := (v̂)|∂Qδ̄ strongly in H1/2(∂Qδ̄;Rn). (7.29)

At this point, let us consider the following problems:

(Eul)ϕh

{
divCEw = 0 in Qδ̄
w = ϕh on ∂Qδ̄,

(Eul)ϕ

{
divCEw = 0 in Qδ̄
w = ϕ on ∂Qδ̄.

Clearly, ṽh is the solution to (Eul)ϕh for every h. Let us call ṽ the solution to (Eul)ϕ. From (7.29)
it turns out that ṽh → ṽ strongly in H1(Qδ̄;Rn), hence,

1 = lim
h→+∞

∫
Qδ̄

CE ṽh : E ṽhdx =
∫
Qδ̄

CE ṽ : E ṽ dx. (7.30)

We notice that the functions v̂h are absolute minimisers for the functional Ghϕh defined in (7.15),
by definition of local minimality. Therefore Lemma 7.4 ensures the L2 convergence of (v̂h) to the
only minimiser of the functional Gϕ, that is exactly ṽ, and the convergence of the energies. Now,
if we let h→ +∞ in (7.24) we obtain

1 =
∫
Qδ̄

CE ṽ : E ṽ dx ≥ (1 + η)
∫
Qδ̄

CE ṽ : E ṽ dx,

which gives a contradiction, therefore (7.20) is proved.

Let η > 0 be fixed and let β > 0 be such that the property (7.20) is satisfied. We are going to
define a function v̂ε by means of a minimisation problem similar to (LMin). More precisely, for
every ε > 0 we consider the problem

(Min)ε min
{∫

Qδ̂

CEw : Ew dx+Hn−1(Jw) : w ∈ SBD2(Qδ̂), Jw ⊂ I,H
n−1(Jw) ≤ β,

[w] · νw ≥ 0 Hn−1-a.e. on Jw, w = vε on ∂Qδ̂

}
.

For a minimiser v̂ε in (Min)ε, let us consider the corresponding ṽε defined by (Eul), with v̂ replaced
by v̂ε. As before ∫

Qδ̂

CE ṽε : E ṽεdx ≤ (1 + η)
∫
Qδ̂

CE v̂ε : E v̂εdx. (7.31)

We extend the functions v̂ε and ṽε to the whole cube Q setting v̂ε = ṽε = vε in Q \ Qδ̂, where
vε is the function in (7.19). This procedure can be repeated for every k ∈ {Nb(ε) + 1, . . . , N(ε)}
and leads to the definition of functions (v̂εk) and (ṽεk) for k ∈ {Nb(ε) + 1, . . . , N(ε)}. Hence, for
k ∈ {Nb(ε) + 1, . . . , N(ε)}∫

Qk

CEvε : Evεdx+Hn−1(Jvε ∩Qδ̂) ≥
∫
Qk

CE v̂εk : E v̂εkdx+Hn−1(Jv̂ε ∩Qδ̂)

≥
(

1− η

1 + η

)∫
Qk

CE ṽεk : E ṽεkdx. (7.32)
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Now, for k ∈ {Nb(ε) + 1, . . . , N(ε)}, we define ũεk as ũεk(ε y) :=
√
αεε ṽ

ε
k(y). By (7.19) and (7.32)

we obtain∫
Qεk

CEuε : Euεdx+ αεHn−1
(
Juε ∩Qεk

)
≥
(

1− η

1 + η

)∫
Qεk

CE ũεk : E ũεkdx. (7.33)

Third step: estimate on boundary cubes. Let Ω0 ⊃ Ω be such that dist(Ω, ∂Ω0) > 1. To
simplify the notation we define the set BQ(ε) and BI(ε) of boundary cubes and boundary inclusions,
respectively, as follows:

BQ(ε) :=
N(ε)+Nr(ε)⋃
k=N(ε)+1

Qεk, BI(ε) :=
N(ε)+Nr(ε)⋃
k=N(ε)+1

Iεk.

We extend the sequence (uε) to Ω0 simply setting uε = 0 in Ω0 \ Ω. Notice that, since by
assumption tr(uε) = 0 on ∂Ω, this trivial extension does not introduce any additional jump set.
Let (ûε) the sequence defined in Theorem 4.1. Then we have

Fε(uε, BQ(ε)) = Fε(uε, (Ω0 \ Ω) ∪BQ(ε)) ≥
∫

(Ω0\Ω)∪(BQ(ε)\BI(ε))

CE ûε : E ûεdx. (7.34)

Fourth step: final estimate. Let us define the new sequence wε ∈ SBD2
0(Ω0) as

wε :=


ûεk in Qεk, for k ∈ {1, . . . , Nb(ε)},

ũεk in Qεk, for k ∈ {Nb(ε) + 1, . . . , N(ε)},

ǔε in (Ω0 \ Ω) ∪BQ(ε).

Notice that wε ∈ H1
0 (Ω0;Rn) and that wε ∈ H1

0 (Ω′;Rn) for every Ω ⊂ Ω′ ⊂ Ω0.
Define also the function aε : Ω0 → R as

aε(x) :=


0 in

(
Nb(ε)⋃
k=1

Iεk

)
∪BI(ε),

1 otherwise in Ω0.

From what we proved in the previous steps we can write

Fε(uε,Ω) = Fε(uε,Ω0) ≥
(

1− η

1 + η

)∫
Ω0

aε(x)CEwε : Ewεdx. (7.35)

It remains to apply Lemma 7.1 to (7.35). First of all we show the convergence of aε. We have∫
Ω

|aε − 1| dx = Ln
((

Nb(ε)⋃
k=1

Iεk

)
∪BI(ε)

)
= (Nb(ε) +NR(ε))εnLn(I) ≤ c ε

αε
,

hence aε → 1 strongly in L1(Ω0). Once we prove that wε ⇀ u weakly in H1(Ω0;Rn) and that
u|Ω ∈ H1

0 (Ω;Rn), as u = 0 in Ω0 \ Ω, it turns out that

lim inf
ε→0

Fε(uε) ≥
(

1− η

1 + η

)∫
Ω0

CEu : Eu dx =
(

1− η

1 + η

)∫
Ω

CEu : Eu dx,

and the thesis follows letting η converge to zero.

Fifth step: convergence of wε. First of all it is clear that the sequence (wε) ⊂ H1(Ω0;Rn) converges
weakly in H1, as ||Ewε||(L2(Ω0))n×n ≤ c. Let us denote by w its weak limit; the fact that u = v
a.e. on Ω follows from a similar argument to the one used in the proof of Lemma 4.1. Moreover,
since wε ∈ H1

0 (Ω′;Rn) for every Ω ⊂ Ω′ ⊂ Ω0, then u ∈ H1
0 (Ω;Rn). �

Acknowledgments



22 LINEARIZED ELASTICITY UNDER NON-INTERPENETRATION

I warmly thank Gianni Dal Maso and Maria Giovanna Mora for many interesting discussions on
the subject of this paper. I wish also to thank David Bourne and Massimiliano Morini for their
fruitful comments.

References

[1] Acerbi E., Chiadò Piat V., Dal Maso G., Percivale D.: An extension theorem from connected sets, and homog-
enization in general periodic domains. Nonlinear Anal., 18/5 (1992), 481–496.

[2] Ambrosio L., Coscia A., Dal Maso G.: Fine properties of functions with bounded deformation. Arch. Ration.

Mech. Anal., 139 (1997), 201–238.
[3] Ambrosio L., Fusco N., Pallara D.: Functions of bounded variations and Free Discontinuity Problems. Clarendon

Press, Oxford, 2000.
[4] Attouch H.: Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program,

Boston, 1984.

[5] Barchiesi M., Dal Maso G.: Homogenization of fiber reinforced brittle materials: the extremal cases. SIAM J.
Math. Anal., accepted for publication.

[6] Bellettini G., Coscia A., Dal Maso G.: Compactness and lower semicontinuity properties in SBD(Ω). Math. Z.,

228 (1998), 337–351.
[7] Braides A., Defranceschi A.: Homogenization of Multiple Integrals. Oxford University Press, New York, 1998.

[8] Braides A., Defranceschi A., Vitali E.: Homogenization of Free Discontinuity Problems. Arch. Ration. Mech.

Anal., 135 (1996), 297–356.
[9] Braides A., Truskinovsky L.: Asymptotic expansion via Γ-convergence. Cont. Mech. Therm., 20 (2008), 21–62.

[10] Chambolle A.: An approximation result for special functions with bounded deformation. J. Math. Pures Appl.,

83/7 (2004), 929–954.
[11] Chambolle A., Giacomini A., Ponsiglione M.: Crack initiation in elastic bodies. Arch. Ration. Mech. Anal.,

188/2 (2008), 309–349.
[12] Charlotte M., Laverne J., Marigo J.-J.: Initiation of cracks with cohesive force models: a variational approach.

Eur. J. Mech. A/Solids, 25 (2006), 649–669.

[13] Cioranescu D., Donato P.: An Introduction to Homogenization. Oxford University Press, New York, 1999.
[14] Dal Maso G.: An introduction to Γ-convergence. Birkhäuser, Boston, 1993.
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