
             

ON THE OPTIMAL REINFORCEMENT OF AN ELASTIC
MEMBRANE
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Abstract. We consider an elastic membrane occupying a domain Ω of
RN under the action of a given exterior load f . The membrane can be
reinforced by the addition of a suitable potential term in the energy; this
is usually a boundary term but also other situations can be considered.
We study the optimal configuration of the stiffeners which provide the
best reinforcement of the membrane.
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1. Introduction

Reinforcing an elastic structure subjected to a given load is a problem
which arises in several applications. The literature on the topic is very
wide; for a clear description of the problem from a mechanical point of view
and a related bibliography we refer for instance to the beautiful recent paper
by Villaggio [6].

We consider here the simple case of an elastic membrane occupying a
domain Ω and subjected to a given exterior load f ∈ L2(Ω). The shape u of
the membrane in the equilibrium configuration is then characterized as the
solution of the partial differential equation

−∆u = f in Ω(1.1)

together with the corresponding boundary conditions of Neumann or Dirich-
let type on ∂Ω (or on a part of it).

The reinforcement of the membrane is usually performed at its boundary,
by the addition of suitable stiffeners, whose total amount is prescribed.
Mathematically, this is described by a nonnegative coefficient a(x) which
acts on the Neumann part of the boundary ∂Ω and modifies the boundary
conditions into the new ones:

∂u

∂ν
+ a(x)u = 0 on ∂Ω.(1.2)

The problem of finding an optimal reinforcement for the membrane then
consists in the determination of a coefficient a(x) which optimizes a given
cost functional. The optimization criterion we consider in this paper is
the so called elastic compliance, which has to be minimized in order to
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provide a membrane as stiff as possible. More precisely, for every coefficient
a ∈ L1(∂Ω) we consider the related energy

E(a) = inf
{∫

Ω

|Du|2 dx+

∫

∂Ω

a(x)u2 dHN−1

−2

∫

Ω

f(x)u dx : u ∈ H1(Ω)
}(1.3)

and the compliance

C(a) = −E(a),(1.4)

so that the optimal reinforcement problem can be written as

min
{
C(a) : a ∈ L1(∂Ω),

∫

∂Ω

a dHN−1 ≤ m
}
.(1.5)

When some part Γ0 of the boundary is fixed, that is Dirichlet conditions are
imposed on Γ0, in (1.3) the space H1(Ω) has to be replaced by the space
{u ∈ H1(Ω) : u = 0 on Γ0} and correspondingly in (1.5) the coefficient
a(x) will be searched among the ones which vanish on Γ0.

More generally, in this paper we allow the reinforcement to take place
in some prescribed compact set K ⊂ Ω so that in (1.5) the constraint
supp a ⊂ K has to be added. We will show that the constraint above is
variationally closed; in other words, a minimizing sequence {an}n∈N may
converge to a measure µ with nonzero singular part, as it happens in several
shape optimization problems (see for instance [1]). However, due to the
particular form of the reinforcement problems, we will show that this does
not occur and that an optimal coefficient aopt actually exists in L1(K) with
possibly a boundary part in L1(∂K).

We end the paper by some numerical computations on some two dimen-
sional examples.

2. The Mathematical Setting

Let us now precise the optimization problem we study and the notation
used throughout this paper.

The capacity of a subset A is defined by

Cap(A) = inf
{∫

RN

[
|∇u|2 + u2

]
dx : u ∈ UA

}
.

where UA is the set of all functions u of the Sobolev space H1(RN) such that
u ≥ 1 almost everywhere in a neighborhood of A.

If a property P (x) holds for all x ∈ E except for the elements of a set
Z ⊂ E with Cap(Z) = 0, we say that P (x) holds quasi-everywhere on E
(shortly q.e. on E). The expression almost everywhere (shortly a.e.) refers,
as usual, to the Lebesgue measure.

We denote by L the N−dimensional Lebesgue measure and by Hd the
d−dimensional Hausdorff measure. Let B(x, r) be the ball of center x and
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radius r. The average of a function u in the ball B(x, r) is defined by

ūr(x) =
1

ωNrN

∫

B(x,r)

u dL .(2.1)

We recall the classical result about Sobolev functions: if u ∈ H1(Ω), then
there exists a Borel set E ⊂ Ω such that Cap(E) = 0 and for all x ∈ Ω \E,
the following limit exists

ũ(x) = lim
r→0+

ūr(x);

the function ũ is called the quasi-continuous representative of u.
Let µ and ν be two Borel measures in RN ; following the notation con-

cerning the differentiation of measures (see [4]), we define for each point x
in RN

Dνµ(x) = lim inf
r→0

µ(B(x, r))

ν(B(x, r))
.(2.2)

The following result can be easily deduced from [4] (Lemma 1, page 36).

Lemma 2.1. Let 0 < α < +∞ be fixed. Suppose that Dνµ(x) ≤ α for
µ-a.e. x ∈ A. Then

µ(A) ≤ αν(A).

In particular, if there exists a constant α such that Dνµ(x) ≤ α for µ-a.e.
x ∈ RN , then the measure µ is absolutely continuous with respect to the
measure ν. In this case, Dνµ ∈ L∞ν (RN) and by the differentiation theorem
of Radon measures (see [4]), Dνµ is then the density of µ with respect to
the measure ν, that is µ = Dνµν.

We consider a smooth bounded connected open set Ω and two compact
sets Γ0 and K included in the closure of Ω; the sets above are supposed to
have a smooth boundary, the sense of “smooth” being precised later. We
denote byM0(K \Γ0) the class of all nonnegative Borel measures (possibly
+∞ valued) supported in K \ Γ0 which vanish on all sets of capacity zero.
Given f ∈ L2(Ω), for every measure µ ∈M0(K \Γ0) we consider the related
energy

E(µ) = inf
{∫

Ω

|Du|2 dx+

∫

Ω

u2 dµ

−2

∫

Ω

f(x)u dx : u ∈ H1(Ω,Γ0)
}
.

(2.3)

Here H1
0 (Ω,Γ0) is the Hilbert space of all functions u ∈ H1(Ω) which vanish

on Γ0. This last condition is intended in the sense of capacity, that is ũ = 0
q.e. on Γ0, where ũ denotes the quasi-continuous representative of u.

The compliance of a measure µ ∈M0(K \ Γ0) is defined by

C(µ) = −E(µ).
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We choose a Lagrangian formulation to take into account the total mass of
the reinforcement and consider the optimization problem

min
µ∈M0(K\Γ0)

{C(µ) + αµ(K)},(2.4)

where α is a nonnegative parameter. This formulation is equivalent to the
following

min
µ∈M0(K\Γ0)

{C(µ) : µ(K) = C},(2.5)

where C is a suitable nonnegative constant. It is well known (see for instance
[1], [3]) that every measure in M0(K \ Γ0) can be obtained as a γ-limit of
a sequence in L1(K); therefore, if K = ∂Ω, problem (2.5) is the relaxed
formulation of the initial boundary reinforcement problem (1.5).

If Γ0 is a set with positive capacity or if µ is a nonzero measure, then the
expression (∫

Ω

|∇u|2 dx+

∫

Ω

u2 dµ
)1/2

defines a norm on the Hilbert space Xµ(Ω) = H1
0 (Ω,Γ0) ∩ L2(Ω, µ). In this

case, problem (2.4) has an unique solution which is the weak solution of the
state equation (see for instance [1])

{
−∆u+ uµ = f in Ω,

u = 0 on Γ0.
(2.6)

A weak solution of (2.6) is a function in Xµ(Ω) solving the variational prob-
lem ∫

Ω

∇u∇v dx+

∫

Ω

uv dµ =

∫

Ω

fv dx ∀v ∈ Xµ(Ω).(2.7)

3. The Results

We first deal with the problem of existence of solutions.

Theorem 3.1. Problem (2.4) has at least one solution.

Proof. Let (µn)n∈N be a minimizing sequence for problem (2.4). Up to a
subsequence, we may assume that (µn)n∈N γ-converges to a measure µ which
belongs toM0(K \ Γ0). Consequently, the sequence of functionals Gn(u) =∫

Ω
|∇u|2 dx+

∫
Ω
u2 dµn Γ-converges to the functional G(u) =

∫
Ω
|∇u|2 dx+∫

Ω
u2 dµ in L2(Ω) (see [3]). We deduce that

C(µ) = lim
n→∞

C(µn)

and since the total mass µ 7→ µ(Ω) is lower semicontinuous under the γ-
convergence (see [2]), the measure µ is a solution of (2.4). To conclude the
proof, it is sufficient to show that C(µ) < +∞. Indeed, this does not occur
only if Cap(Γ0) = 0, µ ≡ 0 and

∫
Ω
f dx 6= 0; in this case it is enough to

compare C(µ) to C(ν) where ν is a nonzero admissible measure of M0(K \
Γ0).
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The next lemma gives some necessary conditions of optimality for the
solutions of the optimization problem (2.4) and has the uniqueness of the
solution as a direct consequence.

Lemma 3.2. Let µ be a solution of problem (2.4) and let u be the solution
of (2.6) associated to µ. Then

|u| ≤ √α q.e. in K and |u| = √α µ-a.e.(3.1)

Moreover µ is the unique measure for which the conditions above are satis-
fied.

Proof. The proof of the first part is similar to the proof of the optimality
conditions in [2]. We only change the first family of perturbations to take
into account the fact that the admissible measures are supported in K \Γ0.
The first family of perturbations we consider is µε = µ+ εφLxK\Γ0 .

Let now (µi)i=1,2 be two measures which satisfy the optimality conditions,
and let (ui)i=1,2 be the associated solutions. Since u1 and u2 are in L∞(K),
their quasi-continuous representatives belong to Xµ1(Ω) ∩ Xµ2(Ω). Taking
the difference between the variational equations (2.7) verified respectively
by u1 and u2, and using (u2 − u1) as test function, we obtain∫

Ω

|∇(u2 − u1)|2 dx+

∫

K

u2(u2 − u1) dµ2 −
∫

K

u1(u2 − u1) dµ1 = 0.(3.2)

Introducing in (3.2) the optimality conditions (3.1) previously proved, it
is easy to obtain that u1 = u2. Let now u be the quasi-continuous repre-
sentative of u1; then by taking again the difference between the variational
equations verified by u respectively for the measure µ1 and µ2, we obtain
that for all ϕ ∈ Xµ1(Ω) ∩Xµ2(Ω)∫

Ω

uϕ dµ1 =

∫

Ω

uϕ dµ2.(3.3)

By taking ϕ = uψ as test function in (3.3), with ψ ∈ H1
0 (Ω,Γ0) we easily

obtain the uniqueness of the optimal measure, and the proof is concluded.

We now give and prove the main result of this paper.

Theorem 3.3. Let f ∈ Lp(Ω) with p > N . Suppose that the boundary of
K is C1,1. Then there exists a function a ∈ L∞(∂K) such that the solution
of the problem (2.4) verifies

µ =
1√
α

(
f+LxU++f−LxU−

)
+ aHN−1x∂K(3.4)

where

U+ = {u =
√
α} ∩K and U− = {u = −√α} ∩K(3.5)

being u the solution of the state equation (2.6) associated to µ. Moreover
there exists a constant C depending on N , Ω and K such that

‖a‖L∞(∂K) ≤ C
‖f‖Lp(Ω)√

α
.
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Proof. Without loss of generality we can suppose that K ∪ Γ0 ⊂ Ω. Indeed,
consider problem (2.4) posed in the open set Ω̃ such that Ω ⊂ Ω̃ with the
source f extended by zero outside Ω. Lemma 3.2 implies that the solution
of problem (2.4) in Ω̃ coincides with the extension by zero of the solution of
problem (2.4) in Ω.

Consider a test function ϕ ∈ D(Kint \ Γ0) where Kint is the interior of
K. For all nonnegative integers p, the function upϕ belongs to Xµ(Ω).
By introducing u2p+1ϕ as test function in the equation (2.7) and letting
p→ +∞, we obtain by the same argument used in [5], that

µxKint
=

1√
α

(
f+Lx{u=

√
α}∩K+f−Lx{u=−√α}∩K

)
.(3.6)

Consider x ∈ ∂K \ Γ0 and (ϕε)ε the family of functions defined by

ϕε(y) =

{
1− |y−x|2

ε2
if |y − x| < ε

0 otherwise.
(3.7)

Taking uϕε as test function in (2.7) we obtain
∫

Ω

ϕε|∇u|2 dx+
1

2

∫

Ω

∇u2∇ϕε dx+

∫

Ω

u2ϕε dµ =

∫

Ω

fuϕε dx.(3.8)

Using the optimality condition of Lemma 3.2, we have
∫

Ω

ϕε dµ ≤
1

α

(∫

Ω

fuϕε dx−
1

2

∫

Ω

∇u2∇ϕε dx
)
.(3.9)

Let w ∈ H1(Ω \K) be the solution of



−∆w = |f | in Ω \K,

w =
√
α on ∂K,

∂w
∂n

= 0 on ∂Ω.
(3.10)

By the assumptions made on f and K the function w belongs to W 1,∞(Ω \
K) and there exists a nonnegative constant C1 = C1(Ω, K) such that
‖∇w‖L∞(Ω\K) ≤ C1‖f‖Lp(Ω). Since |u| ≤ √α in K we have |u| ≤ w in
Ω \K. The function u2 and w2 belong to H1(Ω). Considering x such that
|u(x)| = √α, by Lemma 4.3 of [2] we have

lim inf
ε→0

− 1

εN−1

∫

Ω

∇(u2 − w2)∇ϕε dx ≤ 0.(3.11)

Moreover, a straightforward computation shows that there exists two con-
stants C2, C3 depending only on N such that

∣∣∣
∫

Ω

∇w2∇ϕε dx
∣∣∣ ≤ C2

√
α‖∇w‖L∞(Ω\K)ε

N−1 + C3‖∇w‖2
L∞(Ω\K)ε

N .

Then there exists C4 = C4(N,Ω, K) such that

lim sup
ε→0

1

εN−1

∣∣∣
∫

Ω

∇w2∇ϕε dx
∣∣∣ ≤ C4

√
α‖f‖Lp(Ω)(3.12)
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and since u ∈ L∞(Ω),

1

εN−1

∫

Ω

fuϕε dx ≤ C4ε
1−N/p‖u‖L∞(Ω)‖f‖Lp(Ω).(3.13)

Passing to the limit in (3.9) and using facts (3.11), (3.12) and (3.13), we
obtain that

lim
ε→0

1

εN−1

∫

Ω

ϕε dµ ≤
C4√
α
‖f‖Lp(Ω).(3.14)

Thanks to the smoothness of the boundary of K, there exists C5 = C5(K)
such that

DHN−1x∂K
µ(x) ≤ C5 lim inf

ε→0

1

εN−1

∫

Ω

ϕε dµ.(3.15)

Combining (3.14) and (3.15), we conclude that for HN−1-a.e. x ∈ ∂K \ Γ0

DHN−1x∂K
µx∂K≤

C√
α
‖f‖Lp(Ω)(3.16)

where C = C(N,Ω, K). This ends the proof.

It is possible to extend the result above to the case when the boundary
of K is piecewise smooth.

Proposition 3.4. Suppose that the boundary of K is a countable union of
C1,1 curves. Then there exists a ∈ L1(∂K) such that the characterization of
the optimal measure (3.4)-(3.5) is still valid.

In R2, the conclusion of Theorem 3.3 is still valid if all the connected
components of Ω \K which contain the support of f are convex polygons.

Proof. If the boundary of K is piecewise C1,1 the constant C1 depends on the
point x. So we can only conclude that µx∂K is absolutely continuous with
respect to the Lebesgue measure. In the particular case of convex polygons
in R2, we know that the solution w belongs to W 2,2+ε, so the constant C1

does not depend on x and the proof is still valid.

Remark 3.5. • Under an additional hypothesis of regularity, the singular
part of the optimal measure can be expressed in terms of α and u. If we
suppose that the surface density a is strictly positive in a neighborhood of
x ∈ ∂K \ Γ0, then u is a C1 function in a neighborhood of x and a direct
application of the Green formula gives that

a = −u
α

(∂u
∂n

∣∣∣
∂Kext

+
∂u

∂n

∣∣∣
∂Kint

)
(3.17)

where ∂u
∂n

∣∣∣
∂Kext

and ∂u
∂n

∣∣∣
∂Kint

are respectively the outside and inside normal

derivatives of u on the boundary of K.
• In the particular case where Γ0 is empty, and the function f is nonneg-

ative, the solution of the optimization problem is explicit. Indeed, by the
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uniqueness of the measure µ given by Lemma 3.2, the optimal measure is
given by

µ = − 1√
α

∂w

∂n

∣∣∣
∂Kint

(3.18)

where w is the solution of (3.10), which coincides with the solution of the
state equation associated to µ.

4. Some Numerical Computations

In this section we give some examples of numerical solutions. At left of
the three figures, we represent the data of the problem and at right the
density of the optimal measure in a gray scale. In the two first examples,
the design region Ω is the square. In the first one (Figure 1), the support K
is the boundary of Ω, and the function f is equal to −1 in the white part,
to 1 in the black one, and to zero elsewhere. In the second one (Figure 2),
the support K of the measure is in gray and the function f is equal to 1
in the upper half square and to zero in the other part. In the third and
last example, we consider the triangle as design region (in gray at left of
Figure 3) and two Dirichlet parts Γ0 on the boundary of the triangle (in
black). The source f is constant and the support K is the whole triangle;
the optimal measure is represented at right in black,

Figure 1. left: support and source, right: optimal measure
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