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Note added in proof. In the context of Subsection 1.2 below, the definition of a geometrically admissible mul-

tiphase domain has to be completed with the following definition: the domain is a C2-geometrically admissible

multiphase domain if the interface Γ \ S is a C2-hypersurface, and not simply a C1-hypersurface. Then, the as-

sumption that the domain is a geometrically admissible multiphase domain should be replaced by the assumption

that the domain is a C2-geometrically admissible multiphase domain in all Theorems, Lemmata and Propositions

of Sections 3, 4, except for Lemma 3.8 which stands as is. This is so that, in Theorem 3.5, the trace (σDν)τ (x)

at a point x on the interface Γ \ S, be defined independently of the approximation sequence {σn}n of σ (see the

proof of that theorem). With this modification at hand, all other proofs remain unchanged.

1 Introduction

1.1 Introductory remarks
Small strain elasto-plasticity is an old and respectable theory in solid mechanics

and it has been the topic of many scholarly books. Two landmark books are those of
R. Hill [6] and of J. Lubliner [9]. It is a central theme in many fields of engineering
and its offspring, limit analysis, is the bread and butter of the structural and soil
engineers.

The modern mathematical treatment of plasticity finds its roots in the work P.-
M. Suquet (see e.g. [15],[16]). This was completed by various works of R. Temam
(see e.g. [18]) and of R.V. Kohn and R. Temam (see [8]). That last paper focusses
on the duality, or apparent lack thereof, between stress fields (denoted by σ ), or,
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more precisely, at least in perfect elasto-plasticity, between the deviatoric part σD
of σ , and plastic strains (denoted by p). The (time derivative of the) plastic strain
p is merely a measure, while the stress field σD is typically not continuous, so that
their product is not a priori meaningful. But that product plays an important role in
the analysis of the problem; it also represents the mechanical dissipation.

In any case, the interest of the mathematical community then subsided for about
twenty years until G. Dal Maso, A. De Simone and M. G. Mora [3] revisited the
existence of a quasi-static evolution, originally established by P.-M. Suquet, within
the framework of the rapidly expanding variational theory of rate independent evo-
lutions (see e.g. [11]).

That paper took the view that, in the absence of inertia, homogeneous elasto-
plastic evolutions could be seen as a time-parameterized set of minimization prob-
lems for the sum of the elastic energy and of the add-dissipation; see Section 2 for
details. The minimizing triplet(s) in displacement u(t), elastic strain e(t), and plas-
tic strain p(t) should also be such that an energy conservation statement, amounting
to a kind of first principle in thermodynamics, is satisfied throughout the evolution.
The existence argument uses a mix of purely variational techniques and of weak
convergence methods applied to the corresponding Euler-Lagrange equations, that
is the equilibrium equations together with the stress admissibility constraint which
forces the deviatoric part of the stress field σD(t) to remain in the (compact) set K
of admissible stresses.

In that paper and its sequels, one of the difficulties consists in showing that the
obtained evolutions satisfy the more classical evolution laws envisioned in earlier
works. In particular, the so-called flow rule states that, whenever the stress reaches
the boundary of its admissible set, the plastic strain should flow in the direction
normal to that set. For this, as well as for parts of the existence proof, the duality
evoked earlier plays an essential role.

Following in the footstep of [3], F. Solombrino proposed in [13] an extension of
the analysis to the case of heterogeneous materials. There, duality becomes even
more cumbersome because of the spatial dependence of the dissipation functional.
In particular, if the multi-function x( K(x), where K(x) is the set of admissible
stresses at x, is not continuous, then it becomes difficult to come up with a set
of satisfactory conditions that will ensure the success of the method developed in
[3]. In that paper, the case of a multi-phase material is discussed; the necessary
assumptions on the map x( K(x) (see [13, Relations (3.2)-(3.9)]) are somewhat
unnatural, except in very special cases like that where each phase exhibits a Von-
Mises type behavior (see e.g. [9, Section 3.1]).

In this paper, we propose to revisit the heterogeneous case under more general,
and perhaps natural assumptions. We pay close attention to duality and attempt to
circumscribe its impact to those steps where it is truly needed. To do so, we revisit
duality in Section 6 and show that all needed results can be derived for a Lipschitz
domain, and not only for C2-domains, the required regularity if one follows [8].
Actually, in all fairness, we do need further assumptions on the relative boundary
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of the “Dirichlet” part of the boundary, whenever a “Neumann” part is also present
(see (6.20)). But this is to be expected, because it is the case even for the simplest
elliptic problem in a similar setting. In Section 6 duality is defined globally, in
contrast to what has been done up till now. Indeed, we do not need to define
separately the duality in the interior of the domain and on its Dirichlet boundary.
We include this as a last, rather than as a first section, because a reader familiar
with the “classical” duality expounded in [8] and [3] could skip Section 6 without
prejudice, provided that she is willing to replace the assumption of a Lipschitz
boundary by that of a C2-boundary.

Besides Section 6, the paper is organised as follows.
Section 2 is devoted to the derivation of the existence of a quasi-static evolution

for a multi-phase composite (see Theorem 2.7). To that effect, we carefully dissect
the correct stress admissibility assumptions for a multi-phase composite at the on-
set of the section. Essentially, besides smooth enough interfaces (piecewise C1),
we also require the following: at each point of the interface between two phases,
say phases 1 and 2, and for each value of the plastic strain, the dissipation potential
is the pointwise in space inf-convolution of that in either phase, but this for devia-
toric matrices of the form a�ν only, where ν is the normal to the interface. This
corresponds to choosing as admissibility set for the tangential part (σν)τ of the
normal stresses σν to the interface the intersection of the admissibility sets (K1ν)τ

and (K2ν)τ , where Ki is the admissibility set for phase i. Such a condition seems
to be known in limit analysis, although the only reference that we could locate is
[17, Paragraph 5.4, Page 334]. To our knowledge, it has never been reconciled with
elasto-plastic evolution. In particular, that condition is not akin to taking the inter-
section of the sets Ki on the boundary, which would produce a dissipation which
is not maximal in the sense of Hill (see below). Also, there is no need to impose
some kind of ordering of the admissible sets of the various phases. In the latter
case the interface can be much rougher (e.g. Lipschitz) and we recover the result
of [13] established for C2-interfaces; see Remark 5.2.

The existence result is then contingent upon a lower semi-continuity result
(Proposition 2.3) for the dissipation which is proved in Section 5. The required
lower semi-continuity is carefully tailored to the kinematic structure of elasto-
plasticity and not a blanket lower semi-continuity à la Reshetnyak. No reference
is made to duality in Section 2, and this is to be contrasted with all prior existence
results known to us.

In Section 3, we strive to recover a more classical evolution from that derived
in the previous section. It is easily shown that the quasi-static evolution obtained
in Section 2 satisfies equilibrium, the natural boundary conditions, as well as the
admissibility constraint of a classical evolution (see Theorem 3.6). Note that the
situation will be different in the case of homogenization as discussed in [5]. In
the course of that investigation, we uncover an admissibility constraint on the in-
terfaces (as well as on the Dirichlet boundary of the domain) which seems to be
lacking in the existing literature; see Theorem 3.5.



4 G.A. FRANCFORT AND A. GIACOMINI

Subsection 3.2 demonstrates that we can recover the classical flow rule (see
Theorem 3.13). Once again, we also derive a flow rule at the interfaces and on the
Dirichlet part of the boundary which seems to be a missing ingredient in the me-
chanics literature on elasto-plasticity (see Theorem 3.13 again). We also recover in
Theorem 3.12 the maximality of the plastic work during the evolution. This, which
is often called Hill’s principle [6], is a usual statement in plasticity theory and it is
a direct consequence of the flow rule once one agrees on the correct definition of
plastic work; but that is in turn what the duality between stresses and plastic strains
is about.

Note that Hill’s principle actually contains more information than the derived
flow rules. This is so because the latter only activate the Lebesgue-absolutely con-
tinuous part of the plastic strain rate, or the interfacial/boundary plastic strain rate.
In any case, Theorem 3.13 is the best one can hope for in the absence of spatial
regularity of the stress field; see Remark 3.15.

Section 4 demonstrates that our assumptions on the dissipation potential at the
interfaces are the natural ones from the standpoint of small hardening. Indeed,
introduce a vanishingly small amount of linear isotropic hardening in the model.
The resulting evolution is smoothed out by the hardening, resulting in a plastic
strain that cannot concentrate, so that the value of the dissipation potential along
the interfaces is irrelevant. Yet, the zero-hardening limit is proved in Theorem 4.5
to coincide with the elasto-plastic evolution established in the previous sections.
But the proof strongly uses Proposition 3.9 which in turn does not hold true unless
the dissipation potential is exactly of the announced form as emphasized in Remark
3.10.

As alluded to before, Section 5 is devoted to the proof of the lower semi-
continuity of the dissipation potential; see Proposition 2.3.

Finally, the present work provides what we believe to be a sound foundation
for a study of the periodic homogenization of elasto-plastic evolutions. This is the
topic of [5].

1.2 Preliminaries
Here, we detail the mathematical notation, as well as a few mathematical re-

marks that will be of relevance. We also detail the geometry of the multi-phase
material and the loads that are applied.

Throughout the paper, we refer to [2] for background material, especially con-
cerning finer measure theoretical points. We do so because of our familiarity with
that reference, which is not to say that those results cannot be found elsewhere. In
particular, [4, Chapter 6] contains many of the needed results with simpler proofs
at times.
General notation. For A ⊆ RN , χA denotes the characteristic function of A, i.e.,
χA(x) = 1 for x ∈ A and χA(x) = 0 for x 6∈ A. The indicator function of A, denoted
by IA, is defined as IA(x) = 0 for x ∈ A, and IA(x) =+∞ for x 6∈ A. For B⊆RN , the
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symbol A⊂⊂ B means that the closure of A is compact and contained in B. Finally
the symbol bA stands for “restricted to A”.
Matrices. We denote by MN

sym the set of N×N-symmetric matrices and by MN
D

the set of trace-free elements of MN
sym. The identity matrix in MN

sym is denoted by i.
If M is an element of MN

sym, then MD denotes its deviatoric part, i.e., its projection
onto the subspace MN

D of MN
sym orthogonal to i for the Frobenius inner product. The

symbol · denotes that inner product. We denote by Ls(MN
D) the set of symmetric

endomorphisms on MN
D. For a,b ∈ RN , a�b stands for the symmetric matrix such

that (a�b)i j := (aib j +a jbi)/2.
Depending on the context, we will denote by B(x,r) the open ball of center x

and radius r in RN , or that in MN
D.

Measures. If E ⊆RN is locally compact and Y a finite dimensional normed space,
Mb(E;Y ) will denote the space of finite Radon measures with values in Y . For
µ ∈Mb(E;Y ), we denote by |µ| its total variation. The space Mb(E;Y ) is the
topological dual of C0

c (E;Y ∗), the set of continuous functions u from E to the
vector dual Y ∗ of Y which “vanish at the boundary”, i.e., such that for every ε > 0
there exists a compact set K ⊆ E with |u(x)|< ε for x 6∈ E. Besides the associated
weak* convergence, we also use strict convergence. We say that

µn
s→ µ strictly in Mb(E;Y )

iff
µn

∗
⇀ µ weakly∗ in Mb(E;Y ) and |µn|(E)→ |µ|(E).

Functional spaces. Given E ⊆ RN measurable, 1 ≤ p < +∞, and Y a finite di-
mensional normed space, Lp(E;Y ) stands for the space of p-summable functions
on E with values in Y , with associated norm denoted by ‖ · ‖p. Given A ⊆ RN

open, H1(A;Y ) is the Sobolev space of functions in L2(A;Y ) with distributional
derivatives in L2.

Finally, let X be a normed space. We denote by BV (a,b;X) and AC(a,b;X) the
space of functions with bounded variation and the space of absolutely continuous
functions from [a,b] to X , respectively. We recall that the total variation of f ∈
BV (a,b;X) is defined as

VX( f ;a,b) := sup

{
k

∑
j=1
‖ f (t j)− f (t j−1)‖X : a = t0 < t1 < · · ·< tk = b

}
.

Without detailing at this point the geometry of our problem, we note that, through-
out the paper, Ω ⊂ RN will refer to an open bounded domain with (at least) Lips-
chitz boundary. The following two spaces will play an essential role.
The (kinematic) space BD. In this paper as in previous works on elasto-plasticity
the displacement field u lies in BD(Ω), the space of functions of bounded deforma-
tions. We refer the reader to e.g. [18, Chapter 2], and [1] for background material.
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Besides elementary properties of BD(Ω), we will only appeal to two “finer” re-
sults. Firstly, Poincaré-Korn’s inequality states in particular that, given Γd ⊆ ∂Ω

with H N−1(Γd)> 0, there exists C > 0, such that

‖u‖BD(Ω) ≤C
(∫

Γd

|u| dH N−1 +‖Eu‖Mb(Ω ;MN
sym)

)
,

where Eu denotes the symmetrized gradient of u, and the integral on Γd involves
the trace of u on ∂Ω which is well defined as an element of L1(∂Ω ;RN); see [18,
Chapter 2, Remark 2.5(ii)]. Secondly, the measure Eu does not charge H N−1-
negligible sets; see [1, Remark 3.3].

We say that
un
∗
⇀ u weakly∗ in BD(Ω)

iff

un→ u, strongly in L1(Ω ;RN) and Eun
∗
⇀ Eu weakly∗ in Mb(Ω ;MN

sym).

Bounded sequences in BD(Ω) always admit a weakly∗ converging subsequence.
Finally, we will use the fact that if un

∗
⇀ u weakly∗ in BD(Ω), and Eun

s→ Eu
strictly in Mb(Ω ;MN

sym), then strong convergence of the traces holds, i.e., un→ u
strongly in L1(∂Ω ;RN); see [18, Chapter 2, Theorem 3.1].
The (static) space Σ. It is defined as

Σ :=
{

σ ∈ L2(Ω ;MN
sym) : div σ ∈ L2(Ω ;RN) and σD ∈ L∞(Ω ;RN)

}
.

It is classical that, if σ ∈ L2(Ω ;MN
sym) with div σ ∈ L2(Ω ;RN), σν is well

defined as an element of H−1/2(∂Ω ;RN), ν being the outer normal to ∂Ω .
More generally, consider an arbitrary Lipschitz subdomain A ⊂ Ω with outer

normal ν , and ∆⊂ ∂A open in the relative topology. We can define the restriction
of σν “on ∆” by testing against functions in H1/2(∂A;RN) with compact support
in ∆. This amounts to viewing σν as an element of the dual to H1/2

00 (∆;RN).
If σ ∈ Σ, then, in the spirit of [8, Lemma 2.4], we can define a tangential com-

ponent (σν)τ of σν on ∆ such that

(σν)τ ∈ L∞(∆;RN) with ‖(σν)τ‖∞ ≤ ‖σD‖∞.

Indeed, consider any regularization σn ∈C∞(Ā;MN
sym) of σ on Ā such that

(1.1)


σn→ σ strongly in L2(A;MN

sym)

divσn→ divσ strongly in L2(A;RN)

‖(σn)D‖∞ ≤ ‖σD‖∞.

Define the tangential component (σnν)τ := (σn)ν − ((σn)ν · ν)ν . It is readily
seen that (σnν)τ = ((σn)Dν)τ (the tangential component of (σn)D is defined anal-
ogously). Since x 7→ ν(x) is an L∞(∆;RN)-mapping, there exists an L∞(∆;RN)-
function (σν)τ such that, up to a subsequence,

(1.2) (σnν)τ

∗
⇀(σν)τ weakly∗ in L∞(∆;RN).
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If σD ≡ 0 then, clearly, (σν)τ ≡ 0, so that (σν)τ is only a function of (σn)D which
we will denote henceforth by (σDν)τ . Notice that (σDν)τ may depend upon the
approximation sequence σn (or at least upon (σn)D).

If ∆ is a C2-hypersurface, then (σDν)τ is uniquely determined as an element of
L∞(∆;RN). Indeed, for every ϕ ∈H1/2(∂A;RN) with support compactly contained
in ∆ (that is by density ϕ ∈ H1/2

00 (∆;RN)),∫
∆

(σν)τ ·ϕ dH N−1 = 〈σν ,ϕ〉−〈(σν)ν ,ϕ〉,

where
〈(σν)ν ,ϕ〉 := 〈σν ,(ϕ ·ν)ν〉.

Since the normal component (ϕ ·ν)ν of ϕ with respect to ∆ belongs to H1/2(∂A;RN)
in view of the regularity of ν on ∆, the definition of (σν)ν is meaningful.
Geometrically admissible multiphase domains. We now detail the minimal geo-
metric assumptions that will hold throughout the paper. As already stated, Ω ⊆RN

is an open, bounded set with (at least) Lipschitz boundary.
The Dirichlet part of the boundary Γd ⊆ ∂Ω is assumed to be a non empty open

set in the relative topology of ∂Ω with boundary ∂b∂ΩΓd in ∂Ω . We mostly refer
to the complement of Γ̄d in ∂Ω as Γt .

We further assume that Ω is made up of finitely many phases Ωi, together
with their interfaces. Those phases are pairwise disjoint open sets with Lipschitz
boundary. We have Ω = ∪Ω i and denote by Γ the inner interfaces, i.e.,

Γ :=
⋃
i, j

∂Ωi∩∂Ω j ∩Ω .

We finally assume the existence of a compact set S ⊂ Γ with H N−1(S) = 0 and
such that

Γ \S is a C1-hypersurface,

i.e., Γ \S is a C1-submanifold of RN of dimension N−1.
Finally, setting

S′ := {x ∈ ∂Ω : x ∈ ∂Ωi∩∂Ω j for some i, j},

S′ is taken to be compact and such that

H N−1(S′) = 0.

We will write
Γ =

⋃
i6= j

Γi j,

where Γi j stands for the inner interface between Ωi and Ω j.
A domain Ω that satisfies the collection of those (minimal) assumptions will be

referred to henceforth as a geometrically admissible multiphase domain.
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Also, for notational convenience, we set V (0, t; f ) := VMb(Ω∪Γd ;MN
D)
(0, t; f ) (the

total variation of f on [0, t] as a function with values in Mb(Ω ∪Γd ;MN
D); see the

paragraph “Functional spaces” above).

Loads. Throughout this paper, we assume that the body is only submitted to a hard
device on Γd , that is that the only solicitation is a displacement field w applied to
Γd . Specifically, we are given a field w ∈H1(RN ;RN). Its trace on Γd , still denoted
by w, is in particular in L1(Γd ;RN).

The remainder of the boundary Γt is traction free, and no body forces are
present. This is of course a great simplification because the issue of safe loads, a
somewhat delicate problem in elasto-plasticity is completely eschewed. We chose
to do so not out of laziness, but because it is our belief that the essential features
(and difficulties) of elasto-plasticity are preserved in the absence of loads. Doing
so has additionally the arguable merit of greatly streamlining the mathematical ar-
guments without major prejudice to the mathematical generality of the obtained
results. The concerned reader is invited to heed Remark 2.9 below which briefly
addresses the issue of safe loads.

However, note that both body forces and surface tractions are present, with
appropriate regularity, in Section 6 which deals with the duality between stress and
plastic strain. This is because there is no need there to refer to any kind of safe
load condition and also because we wish to treat the duality in its full generality
for future use.

2 Quasi-static evolution for multiphase composites

In this section, we propose to revisit and expand upon [13] where the existence
of a quasi-static evolution for an elasto-plastic material, originally considered in
[3], is extended to the case of a heterogeneous material, provided that certain re-
strictions are met by the admissible yield surfaces; see [13, Theorem 3.14]. The
arguments presented in [13] are considerably simplified and lead to an existence
result for a much larger class of yield surfaces and domains.

As already briefly mentioned in the introduction, by quasi-static evolution, we
mean a globally minimizing conservative energetic path in the sense of [11]. The
extent to which that notion of evolution amounts to a more classical elasto-plastic
evolution will be the topic of Section 3. Also note that, as further elaborated upon
in Remark 2.8, our proof of the existence of a quasi-static evolution is somewhat
different from the usual proof found in e.g. [3] because it is purely variational.

Throughout this section, we consider a geometrically admissible multiphase
domain and adopt the following



HETEROGENEOUS ELASTO-PLASTICITY 9

Definition 2.1 (Admissible configurations). A (w), the family of admissible con-
figurations relative to w ∈ H1(RN ;RN), is defined as

A (w) :=
{
(u,e, p) ∈ BD(Ω)×L2(Ω ;MN

sym)×Mb(Ω ∪Γd ;MN
D) :

Eu = e+ p in Ω , p = (w−u)�ν H N−1 on Γd
}
,

where ν denotes the outer normal to ∂Ω and u denotes the trace of u on ∂Ω . We
also define

P := {p ∈Mb(Ω ∪Γd ;MN
D) : ∃(u,e,w) with (u,e, p) ∈A (w)}

and

(2.1) P(w) := {p ∈Mb(Ω ∪Γd ;MN
D) : ∃(u,e) with (u,e, p) ∈A (w)}.

Given (u,e, p) ∈A (w), we have, for every i 6= j,

(2.2) pbΓi j = (ui−u j)�ν H N−1bΓi j,

where ui,u j are the traces of u on Γi j from Ωi and Ω j respectively, ν pointing from
Ω j to Ωi. Since p takes its values in the space of deviatoric matrices, this implies
that only plastic strains of the form a� ν with a ⊥ ν are activated along Γ by
admissible configurations.

The constitutive properties of the material occupying Ω are as follows.
The elasticity tensor: At a.e. x ∈ Ω , the elasticity tensor (the Hooke’s law) is of
the form

C(x)M := CD(x)MD + k(x)tr(M)i,

with CD ∈ L∞(Ω ;Ls(MN
D)) and k ∈ L∞(Ω) such that

(2.3)

{
c1|M|2 ≤ CD(x)M ·M ≤ c2|M|2 for every M ∈MN

D,

c1 ≤ k(x)≤ c2,

for some c1,c2 > 0.
For every e ∈ L2(Ω ;MN

sym) we set

Q(e) :=
1
2

∫
Ω

C(x)e · edx.

The set of admissible stresses: In elasto-plasticity, the deviatoric part of the stress
σ is assumed to be restricted by the yield condition. For heterogeneous materials,
this means that, at a.e. x ∈ Ω , there exists a convex compact set K(x) ⊂MN

D such
that σD(x) ∈ K(x). We further assume that those sets cannot be too small or too
large, i.e., there exist c3,c4 > 0 such that

(2.4) B(0,c3)⊂ K(x)⊂ B(0,c4) for a.e. x ∈Ω .

Our formulation of the problem uses the Legendre transform of IK(x), which is
often referred to as the dissipation potential.
The dissipation potential: For a.e. x ∈Ω , we define the dissipation to be

(2.5) H(x,ξ ) := sup{τ ·ξ : τ ∈ K(x)}.
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Definition (2.5) produces, for a.e. x ∈ Ω , a convex, one-homogeneous function in
ξ which further satisfies

c3|ξ | ≤ H(x,ξ )≤ c4|ξ | for a.e. x ∈Ω .

This is not however sufficient for our purpose because we need the dissipation
potential to act upon the plastic strain (or plastic strain rate) which, being a mea-
sure, may concentrate on Lebesgue-negligible sets. Moreover, plastic strains can
concentrate on the inner interfaces, activating only particular strain-directions. We
thus have to extend H to (Ω ∪Γd)×MN

D. In doing so, we will avoid the imposi-
tion of any ordering between the admissible yield surfaces of the various phases,
carefully defining H on the inner interfaces.

The dissipation potential H : (Ω ∪Γd)×MN
D 7→ [0,+∞] of a geometrically ad-

missible multiphase domain is constructed as follows.

(a) The dissipation potential in the phases: We take

H(x,ξ ) = Hi(x,ξ ) for x ∈Ωi

with Hi continuous on Ω i×MN
D and also such that

(2.6) ξ 7→ Hi(x,ξ ) is convex and positively one-homogeneous in ξ

with

(2.7) c3|ξ | ≤ Hi(x,ξ )≤ c4|ξ |,
where c3,c4 > 0 are independent of the phase i.

(b) The dissipation potential on the inner interfaces: At a point x ∈ Γ \ S
on the interface between Ωi and Ω j such that the associated normal ν(x)
points from Ω j to Ωi, we set, for every ξ = a�ν(x) ∈MN

D, a⊥ ν(x),

(2.8) H(x,a�ν(x)) := inf{Hi(x,ai�ν(x))+H j(x,−a j�ν(x)) :

a = ai−a j, ai,a j ∈ RN , ai ⊥ ν(x),a j ⊥ ν(x)}
and

H(x,ξ ) = +∞ otherwise on MN
D.

Remark that ξ 7→ H(x,ξ ) is convex and positively one-homogeneous and
that, for every a�ν(x) ∈MN

D,

(2.9) c3|a�ν(x)| ≤ H(x,a�ν(x))≤ c4|a�ν(x)|.
Also, since Hi, H j and ν are continuous functions of x and ξ , while, by co-
ercivity, the infimum in the inf-convolution is actually a minimum, H(x,ξ )
is actually lower semicontinuous on (Γ \S)×MN

D.
(c) The dissipation potential on the Dirichlet part of the boundary: All

points on Γd \S′ belong to the boundary of a single Ωi and we take H = Hi.
(d) Finally, we define H arbitrarily on S∪S′ for example as c3|ξ |, since those

points will not be activated by admissible plastic strains because H N−1(S∪
S′) = 0.
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Remark that the dissipation potential H : (Ω ∪Γd)×MN
D → [0,+∞] is a Borel

function. Indeed, H is continuous in the phases and on Γd \ S′, lower semicontin-
uous on Γ \ S; moreover S,S′ are closed sets, and H is continuous on S∪ S′. We
will call admissible dissipation potential for a geometrically admissible multiphase
domain any dissipation potential that satisfies conditions (a)-(d) above.

Remark 2.2. The assumptions above can be rephrased in terms of the multifunction
x( K(x). Denote by Ki(x) the admissible set at x ∈Ωi. The multimap x( Ki(x)
is continuous on Ω i: it satisfies the lower semi-continuity condition

(2.10) ∀ε > 0,∃Ux open s.t. x∈Ux and Ki(x)⊂Ki(y)+εB(0,1) for every y∈Ux,

together with the upper semi-continuity condition

(2.11) ∀ε > 0,∃Ux open s.t. x∈Ux and Ki(y)⊂Ki(x)+εB(0,1) for every y∈Ux.

At a point x at the interface between Ωi and Ω j, admissible plastic strains only
activate directions of the form a�ν(x) ∈MN

D. The dissipation potential is defined
in (2.8) only for those matrices (it is +∞ elsewhere), and it has the form of an inf-
convolution between Hi(x, ·) and H j(x, ·). By convex conjugation, we can associate
to the dissipation at x a set K(x)⊆MN

D. It is readily seen that K(x) is

K(x) = {σD ∈MN
D : (σDν(x))τ ∈ (Ki(x)ν(x))τ ∩ (K j(x)ν(x))τ},

where (·)τ denotes the orthogonal projection to the hyperplane tangent to Γ at x.
Notice that K(x) is a cylinder in MN

D. We take the view that this is a constraint on
the vector (σDν(x))τ , rather than on the matrix σD. Set

(2.12) KΓ (x) := (Ki(x)ν(x))τ ∩ (K j(x)ν(x))τ ⊆ RN .

That way, IKΓ (x) is the Legendre transform of the map a 7→ H(x,a� ν(x)) with
a⊥ ν(x), and conversely. ¶

The dissipation functional: For every admissible plastic strain p ∈P , we define
the dissipation functional as

H (p) :=
∫

Ω∪Γd

H
(

x,
p
|p|

)
d|p|,

where p/|p| denotes the Radon-Nikodym derivative of p with respect to its total
variation |p|.

For every p ∈P ,

(2.13) c3|p|(Ω ∪Γd)≤H (p)≤ c4|p|(Ω ∪Γd).

This is a consequence of the bounds (2.7) and (2.9), taking into account the form
(2.2) of p along Γ and also the fact that H N−1(S∪S′) = 0.

The existence of a quasi-static evolution for a multiphase material will be based
on the following lower semi-continuity result for H , the proof of which will be
given in Section 5.
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Proposition 2.3 (Lower semi-continuity of H ). For every (un,en, pn) ∈A (wn)
and (u,e, p) ∈A (w),

(2.14)

un
∗
⇀ u weakly∗ in BD(Ω)

en ⇀ e weakly in L1(Ω ;MN
sym)

pn
∗
⇀ p weakly∗ in Mb(Ω ∪Γd ;MN

D)

⇒ H (p)≤ liminf
n

H (pn).

Remark 2.4. If H(x,ξ ) is lower semicontinuous and ξ 7→ H(x,ξ ) is convex and
positively one-homogeneous, the lower semi-continuity of H is a consequence of
Reshetnyak’s theorem (see e.g. [2, Theorem 2.38], or [14, Theorem 1.7]).

In terms of admissible sets for the stresses, this entails the lower semi-continuity
property (2.10) for the multi-function x ∈Ω ∪Γd ( K(x). This condition is rather
restrictive, at least as far as the behavior near the interface of the two phases is
concerned. Take the case of a two-phase material. It then amounts to requiring that
the yield surface of one phase be included in that of the other phase.

Our conditions on H encompass much more general situations, and conse-
quently H is not lower semicontinuous in (x,ξ ). The ensuing lower semi-continuity
of the dissipation functional H does not hold for any sequence of measures, but
Proposition 2.3 ensures that it does hold for those that are plastic strains corre-
sponding to admissible configurations in the sense of Definition 2.1. ¶

The total dissipation: If t 7→ p(t) is a map from [0,T ] to Mb(Ω ∪Γd ;MN
D), we

define, for every [a,b]⊆ [0,T ],

(2.15) D(a,b; p) := sup

{
k

∑
j=1

H (p(t j)− p(t j−1)) : a = t0 < t1 < · · ·< tk = b

}
to be the total dissipation over the time interval [a,b]. Thanks to (2.13), the total
dissipation satisfies for every t ∈ [0,T ]

(2.16) c3V (0, t; p)≤D(0, t; p)≤ c4V (0, t; p).

In what follows, the energetic formulation of the quasi-static evolution is de-
tailed. To that aim, we prescribe a boundary displacement w on Γd for the time
interval [0,T ] as the trace on Γd of some

(2.17) w ∈ AC(0,T ;H1(RN ;RN)).

There is by now a large body of literature on quasi-static evolution and the reader
is referred to e.g. [11] for a general overview of the topic, or still to [3] for the case
of interest to us here, i.e., that of elasto-plasticity: the two ingredients of such evo-
lutions are a stability statement at each time, together with an energy conservation
statement that relates the total energy of the system to the work of the loads applied
to that system.
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Definition 2.5 (Quasi-static evolution). The mapping

t 7→ (u(t),e(t), p(t)) ∈A (w(t))

is a quasi-static evolution relative to w iff the following conditions hold for every
t ∈ [0,T ]:

(a) Global stability: for every (v,η ,q) ∈A (w(t))

(2.18) Q(e(t))≤Q(η)+H (q− p(t)).

(b) Energy equality: p ∈ BV
(
0,T ;Mb(Ω ∪Γd ;MN

D)
)

and

Q(e(t))+D(0, t; p) = Q(e(0))+
∫ t

0

∫
Ω

σ(τ) ·Eẇ(τ)dxdτ,

where σ(t) := Ce(t).

Remark 2.6. The time integral appearing on the right hand-side of energy equality
is well defined under the BV -regularity assumption on p.

Indeed, the global stability of (u,e, p) ∈A (w) is equivalent, thanks to the one-
homogeneous character of H , to the following set of inequalities

−H (q)≤
∫

Ω

C(x)e ·η dx≤H (−q) for every (v,η ,q) ∈A (0).

One implication is proved in [3, Theorem 3.4] while the other is immediate by
convexity of the quadratic form Q(e). Then, if (u′,e′, p′) ∈ A (w′) is an other
globally stable configuration, we obtain

−H (p′− p)≤
∫

Ω

C(x)e ·
(
(e′− e)− (Ew′−Ew)

)
dx

and ∫
Ω

C(x)e′ ·
(
(e′− e)− (Ew′−Ew)

)
dx≤H (p− p′).

We deduce∫
Ω

C(x)(e′− e) · (e′− e) dx≤
∫

Ω

C(x)(e′− e) · (Ew′−Ew) dx

+H (p− p′)+H (p′− p),

and, appealing to (2.3), (2.13), we conclude that

(2.19) ‖e′− e‖2 ≤C
(
‖Ew′−Ew‖2 + |p′− p|1/2(Ω ∪Γd)

)
,

for some C > 0. The above inequality implies in particular the uniqueness of e ∈
L2(Ω ;MN

sym) and, by application of Poincaré-Korn’s inequality, of u ∈ BD(Ω) for
a globally stable configuration (u,e, p) ∈A (w) once p is fixed.

The summability in time of

(2.20) t 7→
∫

Ω

σ(t) ·Eẇ(t)dx
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is then a consequence of the following considerations. If t 7→ p(t) has bounded
variation, then p is bounded, and global stability implies that supt∈[0,T ] ‖e(t)‖2 <

+∞, hence supt∈[0,T ] ‖σ(t)‖2 <+∞ (choose (w(t),Ew(t),0) as a comparison con-
figuration). Moreover, since p has at most a countable number of discontinuity
points, relation (2.19), together with the absolute continuity of t 7→ w(t), entails
that t 7→ e(t), hence also t 7→ σ(t), is continuous, up to a countable set, as a map
with values in L2(Ω ;MN

sym). We conclude that the map (2.20) is measurable and
bounded, hence summable on [0,T ]. ¶

The following theorem is a generalization of [13, Theorem 3.14]. It provides
an existence result for a general multiphase material. Actually, it is more general
to the extent that, for the theorem to hold true, it suffices that the heterogeneous
material be such that its dissipation potential H defines in turn a functional H for
which the lower semi-continuity property (2.14) holds true.

Theorem 2.7 (Existence of quasi-static evolutions). Consider a geometrically
admissible multiphase domain Ω . Assume that (2.3) and (2.17) are satisfied, and
that H is an admissible dissipation potential. Let (u0,e0, p0) ∈ A (w(0)) satisfy
the global stability condition (2.18). Then there exists a quasi-static evolution
{t 7→ (u(t),e(t), p(t)), t ∈ [0,T ]} relative to the boundary displacement w such that
(u(0),e(0), p(0)) = (u0,e0, p0).

Proof. We quickly sketch the proof of the above theorem.
As a first step, we note that, if, for some wk → w strongly in H1(RN ;RN),

(uk,ek, pk) ∈A (wk) minimizes Q(η)+H (q− pk) among all (v,η ,q) ∈A (wk),
and if, further,

uk
∗
⇀ u weakly∗ in BD(Ω)

ek ⇀ e weakly in L2(Ω ;MN
sym)

pk
∗
⇀ p weakly∗ in Mb(Ω ∪Γd ;MN

D),

then (u,e, p) ∈ A (w) minimizes Q(η)+H (q− p) among all (v,η ,q) ∈ A (w).
Indeed, compare (uk,ek, pk) with (uk + v−u,ek +η− e, pk +q− p) ∈A (wk). We
obtain

Q(ek)≤Q(ek +η− e)+H (q− p).

Then, factoring out the elastic energy on the right hand-side,

0≤Q(η− e)+
∫

Ω

C(x)ek · (η− e) dx+H (q− p),

so that, in the limit,

0≤Q(η− e)+
∫

Ω

C(x)e · (η− e) dx+H (q− p).

Adding Q(e) to both sides, we conclude to the global stability

Q(e)≤Q(η)+H (q− p).
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Now, as in [3], we use an incremental process in time, defining, for i = 0, ....,n,
the times tn

i := iT/n and a triplet (un
i ,e

n
i , pn

i ) ∈A (w(tn
i )) such that, for i > 0,

(2.21) (un
i ,e

n
i , pn

i ) ∈ Argmin {Q(η)+H (q− pn
i−1) : (v,η ,q) ∈A (w(tn

i ))}.

The existence of such a minimizer is immediately obtained thanks to the co-
ercivity and lower semi-continuity in (η ,q) of the functional. This in turn is a
consequence of the quadratic character of Q and of the the lower semi-continuity
property (2.14) for H . Coercivity in the displacement v comes from the Poincaré-
Korn’s inequality in BD(Ω).

For i = 0, we choose (un
0,e

n
0, pn

0)≡ (u0,e0, p0). Upon testing the minimality of
(un

i ,e
n
i , pn

i ) in (2.21) with (un
i−1+w(tn

i )−w(tn
i−1),e

n
i−1+Ew(tn

i )−Ew(tn
i−1), pn

i−1)∈
A (w(tn

i )) and upon iterating, we easily get

(2.22) Q(en
i )+ ∑

1≤k≤i
H (pn

k− pn
k−1)

≤Q(e0)+ ∑
1≤k≤i

∫ tn
k

tn
k−1

∫
Ω

C(x)en
k−1 ·Eẇ(s)dx ds+δn,

for some δn→ 0.
Define (un(t),en(t), pn(t)) to be the right-continuous and piecewise in time con-

stant interpolation of the (un
i ,e

n
i , pn

i )’s. Then (2.22) can be rewritten as

(2.23) Q(en(t))+D(0, t; pn)≤Q(e0)+
∫ tn

in(t)

0

∫
Ω

C(x)en(s) ·Eẇ(s)dx ds+δn,

where in(t) is the largest index i such that t ∈ [tn
i , t

n
i+1). We deduce that there exists

C > 0 independent of n such that

(2.24) sup
t∈[0,T ]

‖en(t)‖2 +D(0,T ; pn)≤C.

In view of (2.16), a generalized version of Helly’s theorem (see [10, Theorem 3.2])
implies the existence of a subsequence of {pn}n∈N, still indexed by n, such that,
for all t ∈ [0,T ],

pn(t) ∗⇀ p(t) weakly∗ in Mb(Ω ∪Γd ;MN
D)

for a suitable p ∈ BV (0,T ;Mb(Ω ∪Γd ;MN
D)). By (2.24) and by Poincaré-Korn’s

inequality in BD(Ω), there exists a t-dependent subsequence {(unt (t),ent (t))}nt∈N
such that

(2.25) unt (t) ∗⇀ u(t) weakly∗ in BD(Ω),

(2.26) ent (t)⇀ e(t) weakly in L2(Ω ;MN
sym),

with (u(t),e(t), p(t)) ∈A (w(t)). Further,

(2.27) Cent (t)⇀ Ce(t) =: σ(t) weakly in L2(Ω ;MN
sym).
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It remains to show that the obtained evolution satisfies items (a) and (b) of Defini-
tion 2.5.

The global stability (item (a)) is a direct application of the first step of this
proof, upon remarking that, by sub-additivity of H ,

(unt (t),ent (t), pnt (t))∈Argmin{Q(η)+H (q− pnt (t)) : (v,η ,q)∈A (w(tnt
int (t)

))}.

As already noticed in Remark 2.6, the pair (u(t),e(t)) is uniquely defined, once
p(t) is known; thus, there is no need to extract t-dependent subsequences and nt
can be replaced by n in (2.25), (2.26) and (2.27) above.

Concerning the energy equality (item (b)), the lower semi-continuity of H ,
together with the very definition of the dissipation on [0, t], yields

(2.28) D(0, t; p)≤ liminf
n

D(0, t; pn)

Now, for a.e. s ∈ [0,T ],∫
Ω

C(x)en(s) ·Eẇ(s)dx→
∫

Ω

σ(s) ·Eẇ(s)dx

and is dominated by a constant, independently of s in view of the L∞-bound (2.24)

on ‖en(t)‖2. Since w ∈ AC(0,T ;H1(RN ;RN)) and t− tn
in(t)

n
↘ 0, Lebesgue’s domi-

nated convergence theorem implies that∫
Ω

σ(s) ·Eẇ(s)dx ∈ L1(0,T ),

and, for t ∈ [0,T ],∫ tn
in(t)

0

∫
Ω

C(x)en(s) ·Eẇ(s)dx ds−→
∫ t

0

∫
Ω

σ(s) ·Eẇ(s)dx ds.

The weak-L2-lower semicontinuous character of Q, together with (2.23) and
(2.28), implies the energy inequality

(2.29) Q(e(t))+D(0, t; p)≤Q(e(0))+
∫ t

0

∫
Ω

σ(τ) ·Eẇ(τ)dxdτ.

The opposite inequality is then deduced from the global minimality (item (a)).
Let us set si

n := it/n for i = 0, . . . ,n. Testing the minimality of (u(si),e(si), p(si))∈
A (w(si)) by (u(si+1) +w(si)−w(si+1),e(si+1) + Ew(si)− Ew(si+1), p(si+1)) ∈
A (w(si)) yields

Q(e(si+1))+H (p(si+1)− p(si))

≥Q(e(si))+
∫

Ω

σ(si+1) · (Ew(si+1)−Ew(si)) dx−Q(Ew(si+1)−Ew(si))

≥Q(e(si))+
∫ si+1

si

∫
Ω

σ(si+1) ·Eẇ(s) dxds−Q(Ew(si+1)−Ew(si)).
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Summing over i and using the definition of the dissipation, we arrive at

(2.30) Q(e(t))+D(0, t; p)≥Q(e(0))+
∫ t

0

∫
Ω

σ̄
n(s) ·Eẇ(s) dxds−δn

where σ̄n denotes the left continuous piecewise constant interpolation of the σ(si
n)’s,

and δn→ 0. From Remark 2.6 we know that the BV regularity in time for p entails
that t 7→ σ(t) has at most a countable number of discontinuity points. We deduce
that, for every s ∈ [0, t] up to a countable set,

σ̄
n(s)→ σ(s) strongly in L2(Ω ;MN

sym).

Taking into account the uniform bound on ‖σ(s)‖2 coming from (2.24), we can
pass to the limit in (2.30) obtaining

Q(e(t))+D(0, t; p)≥Q(e(0))+
∫ t

0

∫
Ω

σ(s) ·Eẇ(s) dxds,

which, together with (2.29), yields the energy equality. �

Remark 2.8. Our proof is quite different from that in [13] because we do not seek to
interpret the global minimality condition in terms of its associated Euler-Lagrange
equations and, consequently, do not attempt to prove global minimality by passing
to the limit in those. In refraining from doing so, we bypass the delicate notions
of duality between σD and p that must be accounted for if using the latter. In turn,
this allows us to prove a more general existence theorem. Duality will make a
comeback in a later part of this paper when attempting to recover the flow rule
described in item (3) of Definition 3.1. ¶

Remark 2.9 (Safe load conditions). The reader familiar with [3] may rightfully ob-
ject that our derivation of the existence of a quasi-static evolution, which does not
use any kind of duality between stress and plastic strain, is somewhat deceiving be-
cause, if we were in the presence of body loads of the form f ∈AC(0,T ;LN(Ω ;RN))
and/or surface tractions of the form g ∈ AC(0,T ;L∞(Γt ;RN)), then an additional
term

L (u) :=
∫

Ω

f ·u dx−
∫

Γt

g ·u dH N−1

that represents the work of the loads would have to be added to both sides of (2.18)
(and an additional term would also appear in the energy equality). In order to obtain
the existence of a minimizer as in (2.21), one would then have to impose uniform
safe load conditions (see [3, Equations (2.17), (2.18)]), that is the existence of a
stress field π ∈ AC(0,T ;L2(Ω ;MN

sym)) with πD ∈ AC(0,T ;L∞(Ω ;MN
D)) and

(2.31) πD(t,x)+B(0,α)⊂ K(x)

for some α > 0, which is such that, for every t ∈ [0,T ],

div π(t) = f (t) in Ω and π(t)ν = g(t) on Γt .
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In [3], the coercivity of the functional to minimize is then obtained through a rewrit-
ing of L (u) as −

∫
Ω

π · (e−Ew) dx−〈πD, p〉+L (w) (see (6.3) with ϕ ≡ 1). The
meaning of the term 〈πD, p〉 uses the duality; see [3, Lemmata 3.1, 3.2].

However, note that the absence of spatial regularity of π is the only reason
for appealing to the duality in that argument because the product of πD with p
is not meaningful under the assumed regularity of πD. But, in all fairness, the
regularity assumptions on π are a somewhat collateral issue. Assuming e.g. that
πD ∈ AC(0,T ;C0(Ω ;MN

D)) completely alleviates the need for a duality argument
and would easily be seen to allow one to recover the existence result in the presence
of loads.

The true difficulty in imposing loads lies elsewhere, namely in the feasibility,
for a given pair ( f ,g) of loads, of finding a stress tensor π that satisfies (2.31). This,
which is the purpose of limit analysis, cannot be argued for or against on duality
grounds. ¶

In order to address the issue of the flow rule in Section 3, we need some regu-
larity in time of the triplet (u(t),e(t), p(t)) which can be established with a proof
identical – modulo the absence of force loads – to that of [3, Theorem 5.2]. The
existence of the limits of the difference quotients follows from [3, Remark 5.1],
while the relation (u̇(t), ė(t), ṗ(t)) ∈ A (ẇ(t)) is proved in [3, Lemma 5.5]. We
thus have the following

Proposition 2.10 (Regularity in time). Let {t 7→ (u(t),e(t), p(t)) : t ∈ [0,T ]} be
a quasi-static evolution relative to the boundary displacement w according to Def-
inition 2.5. Then

(u,e, p) ∈ AC
(
0,T ;BD(Ω)×L2(Ω ;MN

sym)×Mb(Ω ∪Γd ;MN
D)
)

and for a.e. t ∈ [0,T ] the following limits exist

u̇(t) := lim
s→t

u(s)−u(t)
s− t

weakly∗ in BD(Ω),

ė(t) := lim
s→t

e(s)− e(t)
s− t

strongly in L2(Ω ;MN
sym),

ṗ(t) := lim
s→t

p(s)− p(t)
s− t

strictly in Mb(Ω ∪Γd ;MN
D),

with (u̇(t), ė(t), ṗ(t)) ∈ A (ẇ(t)). Finally D(0, t; p) ∈ AC(0,T ) and, for a.e. t ∈
[0,T ],

(2.32) Ḋ(0, t; p) =−
∫

Ω

σ(t) · (ė(t)−Eẇ(t))dx.

3 Energetic solutions vs. classical evolutions

We consider throughout this section a geometrically admissible multiphase do-
main, unless otherwise specified.
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In the absence of force loads, quasi-static evolutions in elasto-plasticity are
written more classically in terms of (u(t),e(t), p(t),σ(t)) as the following set of
conditions:

Definition 3.1 (Classical evolutions). The triplet (u(t),e(t), p(t)) is a classical
evolution relative to w iff, for every t ∈ [0,T ],

(1) Compatibility: (u(t),e(t), p(t)) ∈A (w(t));
(2) Balance equations and stress admissibility: σ(t) ∈ K , where σ(t) :=

Ce(t) and

(3.1) K :=
{

σ ∈ L2(Ω ;MN
sym) : divσ = 0 in Ω ; σν = 0 on ∂Ω \Γ d ;

σD(x) ∈ K(x) for a.e. x ∈Ω} .
(3) Flow rule: ṗ(t,x) ∈ NK(x)(σD(t,x)) a.e. in Ω , where NK(x)(σD(t,x)) de-

notes the normal cone to K(x) at σD(t,x).

Remark 3.2. As far as item (2) is concerned, the last condition in the definition of
K implies that σ(t) satisfies the admissibility condition in each of the phases Ωi,
that is

σD(t,x) ∈ Ki(x) for a.e. x ∈Ωi.

We show in Theorem 3.5 that this actually entails an admissibility condition for the
stress along the inner interfaces and on the Dirichlet boundary Γd .

The first two conditions in the definition of K are precisely the balance equa-
tions for σ(t).

In view of (2.4), if σ ∈K , then σD ∈ L∞(Ω ;MN
D). As a consequence,

K ⊂ Lr(Ω ;MN
sym), for all 1≤ r < ∞.

In the case of a C2-boundary, this fact is a well-known result to be found in e.g. [8,
Proposition 2.5 and Corollary 2.6]. Here, we contend that such is also the case for
a Lipschitz domain and quickly derive the result in Section 6 (see Proposition 6.1).
We do not claim paternity of that result, but have merely been unable to locate a
similar result in our perusal of the existing literature on elasto-plasticity. ¶

Remark 3.3. If body loads of the form f ∈ AC(0,T ;LN(Ω ;RN)) and/or surface
tractions of the form g ∈ AC(0,T ;L∞(∂Ω \Γ d ;RN)) were present, the definition
of the set K would be altered. We would replace K by

K f ,g(t) :=
{

σ ∈ L2(Ω ;MN
sym) : divσ = f (t) in Ω ; σν = g(t) on ∂Ω \Γ d ;

σD(x) ∈ K(x) for a.e. x ∈Ω} ,
the remainder of Definition 3.1 being unchanged. ¶

Remark 3.4. As far as item (3) is concerned, the meaning of the flow rule is to
be further elaborated upon since ṗ(t) is only a measure. In any case, the sense in
which the quasi-static evolution described in Definition 2.5 satisfies the flow rule
in Definition 3.1 will be the focus of Subsection 3.2 below. ¶
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As announced in Remark 3.2, we show that the admissibility for the stress in
the phases entails an admissibility condition for the associated trace on the inner
interfaces Γ that involves the set KΓ defined in (2.12); there is also an admissibility
condition on the Dirichlet boundary Γd . More precisely, the admissibility condition
involves the tangential trace (σDν)τ of σν introduced in (1.2). Recall that this trace
may depend upon the approximation, but that it is uniquely determined if Γ and Γd
are of class C2.

Theorem 3.5 (Stress admissibility; interfaces and Dirichlet boundary). Con-
sider a geometrically admissible multiphase domain. For every σ ∈K ,

(3.2)
(σDν)τ(x) ∈ KΓ (x) for H N−1-a.e. x ∈ Γ

(σDν)τ ∈ [Ki(x)ν(x)]τ for H N−1-a.e. x ∈ Γd ∩Ω i,

with KΓ (x) defined in (2.12).

Proof. Let x ∈ Γi j \ S be a Lebesgue point for (σD(t)ν)τ , and let ε > 0. Let us
choose r > 0 such that B(x,r)⊂⊂Ω , Γi j ∩B(x,r) is a C1-graph and

(3.3) ‖ν(y)−ν(x)‖∞ ≤ ε for every y ∈ B(x,r).

In view of the upper semi-continuity condition (2.11), we can assume, at the pos-
sible expense of shrinking r, that

(3.4) Ki(y)⊂ Ki(x)+ εB(0,1) for every y ∈ B(x,r)∩Ω i.

Similar inclusions hold for K j and Ω j in place of Ki and Ω i.
Translating infinitesimally σ(t) on B(x,r) in the direction−ν(x) (ν(x) pointing

from Ω j to Ωi), and regularizing by convolution, we obtain a smooth approxima-
tion σn of σ satisfying (1.1) with the choice A := B(x,r/2)∩Ω i. Since

(σn)D(y) ∈ Ki(x)+ εB(0,1) for every y ∈ B(x,r/2)∩Γi j,

passing to the tangent components of (σn)Dν on Γi j we obtain, in view of (1.2),
(3.4), (3.3) and (2.4),

(σDν)τ(y) ∈ [Ki(x)ν(x)]τ + cεB(0,1) for a.e. y ∈ B(x,r/2)∩Γi j,

where cε → 0 as ε → 0.
Since x is a Lebesgue point for (σν)τ , the arbitrariness of ε yields

(σDν)τ(x) ∈ [Ki(x)ν(x)]τ .

By the same construction, but translating this time in the direction ν(x) instead of
−ν(x), we conclude that

(σDν)τ(x) ∈ [K j(x)ν(x)]τ .

In view of the very definition of KΓ , and since Lebesgue points have full measure
in Γ while H N−1(S) = 0, we conclude that the first inclusion in (3.2) holds true.

The proof of the admissibility on Γd is identical, upon replacing (3.3) by the
condition that x should also be a Lebesgue point for ν . �



HETEROGENEOUS ELASTO-PLASTICITY 21

We should point out that an admittedly cursory review of the mechanics litera-
ture has failed to evidence any awareness of the fact that interface admissibility is
a necessary byproduct of the classical formulation of elasto-plasticity.

Fix a quasi-static evolution

{t 7→ (u(t),e(t), p(t)) : t ∈ [0,T ]}
relative to the boundary displacement w (see Definition 2.5). We set, as before,
σ(t) := Ce(t). We wish to investigate the extent to which such an evolution can
be considered a classical evolution in the sense of Definition 3.1. This will be the
focus of the following two subsections.

3.1 Equilibrium and stress admissibility
A first link between quasi-static evolutions in the sense of Definition 2.5 and

classical evolutions is an easy consequence of global stability.

Theorem 3.6 (Equilibrium and stress admissibility). Consider a geometrically
admissible multiphase domain and an evolution t 7→ (u(t),e(t), p(t)) in the sense
of Definition 2.5. Then, for every t ∈ [0,T ], σ(t) = Ce(t) ∈K , i.e., σ(t) satisfies
the balance equations and the admissibility constraint in the phases

σD(t,x) ∈ K(x) for a.e. x ∈Ω .

Along the inner interfaces Γ and on the Dirichlet boundary Γd , the following holds:

(3.5)
(σD(t)ν)τ(x) ∈ KΓ (x) for H N−1-a.e. x ∈ Γ

(σD(t)ν)τ ∈ [Ki(x)ν(x)]τ for H N−1-a.e. x ∈ Γd ∩Ω i,

where KΓ (x) is defined in (2.12).

Proof. As noted in Remark 2.6, global stability entails that for every (v,η ,q) ∈
A (0)

−H (q)≤
∫

Ω

σ(t) ·η dx≤H (−q).

Choose (v,η ,q) to be (ϕ,Eϕ,0) with ϕ ∈C∞
c (Ω ;RN), then with ϕ ∈C∞(Ω ;RN)

s.t. ϕ ≡ 0 on Γ d . We obtain

divσ(t) = 0 in Ω , σ(t)ν = 0 on ∂Ω \Γ d .

Finally, choose (v,η ,q) to be (0,χBξ ,−χBξ ) with ξ ∈MN
D and χB the characteristic

function of an arbitrary Borel subset B of Ω . Letting ξ vary first in a countable and
dense set in MN

D, and then using the continuity of ξ 7→ H(x,ξ ) for a.e. x ∈ Ω , we
obtain that

−H(x,−ξ )≤ σD(t,x) ·ξ ≤ H(x,ξ ), a.e. in Ω ,

so that, in view of (2.5),

σD(t,x) ∈ K(x), a.e. in Ω .

We conclude that σ(t) ∈K . Relations (3.5) follow in view of Theorem 3.5. �
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Remark 3.7. The admissibility constraints (3.5) hold for any tangential trace (σDν)τ

of σDν along Γ and Γd : as shown in Subsection 1.2, such a trace is uniquely deter-
mined if Γ and Γd are of class C2. ¶

3.2 Hill’s principle of maximum plastic work and the flow rule
In this subsection we propose to investigate the validity of the flow rule, i.e., of

item (3) in Definition 3.1. In view of Theorem 3.6, this is the missing item if we
are to establish that the quasi-static evolutions whose existence has been secured
through Theorem 2.7 are also classical evolutions in the sense of Definition 3.1.
We also show that an energetic quasi-static evolution satisfies Hill’s principle of
maximum plastic work.

We will make use of the duality pairing between admissible stresses σ and
admissible plastic strains p which allows one to view their product 〈σD, p〉 as a
measure on Ω ∪Γd . This was one of the main issues addressed in [8] and the
results in [3, Subsection 2.3] are direct consequences of those in that earlier paper.

We revisit that duality in Section 6 in the case where the boundary is merely
Lipschitz and re-derive the needed results in that case. As seen there, 〈σD, p〉 is a
finite Radon measure on Ω ∪Γd . However, in order to compute the mass of 〈σD, p〉
explicitly in terms of u, e and w, we need to further assume a condition on the
relative boundary ∂b∂ΩΓd of Γd in ∂Ω , namely (6.20).

The following result deals with the behavior of 〈σD, p〉 on the inner interfaces
Γ , as well as on Γd (see also a related result [13, Proposition 2.6]).

Lemma 3.8. Consider a geometrically admissible multiphase domain. For every
σ ∈K , every p ∈P with associated u,e,w, and for every i 6= j,

〈σD, p〉bΓi j = (σDν)τ · (ui−u j)H N−1bΓi j,

where ui and u j are the traces on Γi j of the restrictions of u on Ωi and Ω j respec-
tively, assuming that ν points from Ω j to Ωi.

Similarly,
〈σD, p〉bΓd = (σDν)τ · (w−u)H N−1bΓd ,

where u is the trace on Γd of u, assuming that ν is the outer normal to Ω .

Proof. Let ϕ ∈C1
c (Ω) be such that its support is contained in Ωi∪Ω j ∪Γi j. Con-

sider a smooth regularization σn of σ(t) satisfying (1.1) with A ⊂⊂ Ω containing
supp(ϕ), but with the convergences taking place in LN rather than in L2. This is
possible, thanks to the summability properties of σ(t) (see Remark 3.2) and to its
divergence free character. In view of (6.3), and since ϕu ∈ BD(Ω),

〈σD, p〉(ϕ)=− limn
∫

Ω
{σn·(e−Ew)ϕ +σn·[(u−w)�∇ϕ]+ϕ divσn·(u−w)}dx

=− limn
∫

Ωi∪Ω j
{σn · e ϕ dx+σn · [u�∇ϕ]+ϕ divσn ·u} dx

= limn

[∫
Ωi∪Ω j

−σn dE(ϕu)+
∫

Ωi∪Ω j
ϕσn d p−

∫
Ωi∪Ω j

divσn·ϕu dx
]

= limn

[∫
Γi j

σnν · (ui−u j)ϕ dH N−1 +
∫

Ωi∪Ω j
ϕ(σn)D d p

]
.



HETEROGENEOUS ELASTO-PLASTICITY 23

Since pbΓi j = (ui−u j)�ν H N−1bΓi j has values in MN
D, (ui−u j)⊥ ν a.e. on Γi j,

so that, recalling (1.2)

(3.6) 〈σD, p〉(ϕ) =
∫

Γi j

(σDν)τ · (ui−u j)ϕ dH N−1 + lim
n

∫
Ωi∪Ω j

ϕ(σn)D d p.

Notice that λn ∈M (Ωi∪Ω j ∪Γi j) defined as

λn(ϕ) :=
∫

Ωi∪Ω j

ϕ(σn)D d p

satisfies |λn| ≤ ‖σD‖∞|p|b(Ωi∪Ω j). In view of (3.6) we infer that λn
∗
⇀ λ weakly∗ in

M (Ωi∪Ω j ∪Γi j) with

|λ | ≤ ‖σD‖∞|p|b(Ωi∪Ω j)

and
〈σD, p〉(ϕ) =

∫
Γi j

(σDν)τ · (ui−u j)ϕ dH N−1 +λ (ϕ).

The result follows by restricting the previous equality to Γi j since λbΓi j = 0.
The representation formula for 〈σD, p〉bΓd follows with similar arguments. �

The next result involves the dissipation functional and the duality between ad-
missible stresses and plastic strains.

Proposition 3.9. Consider a geometrically admissible multiphase domain. For
every σ ∈K and p ∈P ,

(3.7) H
(

x,
p
|p|

)
|p| ≥ 〈σD, p〉 as measures on Ω ∪Γd .

Proof. We can establish the inequality considering the behavior of the measures on
Ωi, Γ and Γd successively.

Consider an open set A such that Ā ⊂ Ωi for some i. Let us regularize σ by
convolution: we obtain σn ∈C∞(Ā;MN

sym) such that

σn→ σ strongly in LN(A;MN
sym)

with
div σn→ 0 strongly in LN(A;MN

sym).

In view of the continuity of the multimap x( Ki(x) on Ωi, one easily gets that, for
every ε > 0 and x ∈ Ā,

(σn)D(x) ∈ Ki(x)+ εB(0,1)

for n large enough. As a consequence, for |p|-a.e. x ∈ A we have

H
(

x,
p
|p|

(x)
)
= Hi

(
x,

p
|p|

(x)
)
≥ (σn)D(x) ·

p
|p|

(x)− ε.

Recalling that, since σn is smooth, (6.3) implies that

〈(σn)D, p〉= (σn)D · p
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and that, using (6.3) again,

〈(σn)D, p〉 ∗⇀ 〈σD, p〉 weakly∗ in Mb(A),

for every ϕ ∈C1
c (A) with ϕ ≥ 0 we obtain∫

A
ϕH

(
x,

p
|p|

)
|p| ≥ lim

n

∫
A

ϕ(σn)D · p−ε

∫
A

ϕ dx= lim
n
〈(σn)D, p〉(ϕ)−ε

∫
A

ϕ dx

= 〈σD, p〉(ϕ)− ε

∫
A

ϕ dx.

Inequality (3.7) on the phase Ωi follows upon letting ε → 0.
For every i 6= j,

H
(

x,
p
|p|

(x)
)
|p|bΓi j = H(x,(ui−u j)�ν)H N−1bΓi j,

and, in view of Lemma 3.8,

〈σD, p〉bΓi j = (σDν)τ · (ui−u j)H N−1bΓi j.

Above, ui and u j are the traces on Γi j of the restrictions of u on Ωi and Ω j re-
spectively, assuming that ν points from Ω j to Ωi. Since p has values in MN

D,
(ui(x)− u j(x)) ⊥ ν(x) for H N−1-a.e. x ∈ Γi j. Inequality (3.7) on Γi j then fol-
lows since (σDν)τ(x) ∈ KΓ (x) for H N−1-a.e. x ∈ Γ in view of Theorem 3.5, and
since IKΓ (x) is the convex conjugate of a 7→ H(x,a�ν(x)), a⊥ ν(x), so that

(3.8) H(x,a�ν(x)) = sup{b ∈ KΓ (x) : b ·a}.
The inequality (3.7) on Γd can be established in an identical manner. �

Remark 3.10. Note that it is precisely here that we are forced to choose the correct
H, lest Proposition 3.9 not hold; think for example of replacing H by 1/2H along
the interfaces, which would then prevent (3.8) from holding true. ¶

The reinterpretation of the energy equality in terms of more classical dissipation
statements is based on the following result.

Proposition 3.11. Consider a geometrically admissible multiphase domain. Also
assume that ∂b∂ΩΓd is admissible (see (6.20)). For a.e. t ∈ [0,T ],

(3.9) H
(

x,
ṗ(t)
|ṗ(t)|

)
|ṗ(t)|= 〈σD(t), ṗ(t)〉 as measures on Ω ∪Γd .

Proof. Differentiating the energy equality in time and recalling (2.32) we get, for
a.e. t ∈ [0,T ],

Ḋ(0, t; p) =−
∫

Ω

σ(t) · (ė(t)−Eẇ(t))dx = 〈σD(t), ṗ(t)〉(Ω ∪Γd),

the last equality coming from (6.3) with the choice ϕ ∈Cc(RN), ϕ ≡ 1 on Ω .
Take t to be a point where u,e, p,w and D(0, ·; p) are differentiable (see Proposi-

tion 2.10), and also where the derivative of D(0, t; p) is given by 〈σD(t), ṗ(t)〉(Ω ∪
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Γd). Since D(0, tn; p) is a total variation, and thanks to the positive one-homogeneous
character of H we get that, for tn > t,

H

(
p(tn)− p(t)

tn− t

)
≤ D(0, tn; p)−D(0, t; p)

tn− t
.

Now,
pn(t)− p(t)

tn− t
∈P

(
w(tn)−w(t)

tn− t

)
, while (w(tn)−w(t))/(tn− t) converges

strongly in H1(RN ;RN) to ẇ(t), so that the lower semi-continuity property (2.14)
implies that

H (ṗ(t))≤ Ḋ(0, t; p) = 〈σD(t), ṗ(t)〉(Ω ∪Γd).

Since (u̇(t), ė(t), ṗ(t)) ∈A (ẇ(t)) and σ(t) ∈K , Proposition 3.9 implies that

H
(

x,
ṗ(t)
|ṗ(t)|

)
|ṗ(t)| ≥ 〈σD(t), ṗ(t)〉 as measures on Ω ∪Γd ,

so that the result easily follows. �

Hill’s principle is an immediate consequence of (3.9), (3.7).

Theorem 3.12 (Hill’s maximum plastic work principle). Consider a geometri-
cally admissible multiphase domain. Also assume that ∂b∂ΩΓd is admissible (see
(6.20)). Plastic work is maximal for a.e. t ∈ [0,T ], i.e.,

〈σD(t), ṗ(t)〉(Ω ∪Γd) = max{〈τD, ṗ(t)〉(Ω ∪Γd) : τ ∈K },

where the set of admissible stresses K has been defined in (3.1).

We are now in a position to investigate the validity of the flow rule. The follow-
ing result demonstrates that the flow rule is indeed satisfied L N-a.e. on the support
{|ṗ(t)|> 0} of the measure ṗ(t); as such, it is a form of the flow rule in the phases.
Moreover, a flow rule involving the plastic slip on the inner interfaces and the set
KΓ introduced in (2.12) can be established at H N−1-a.e. point.

Theorem 3.13 (Flow rule). Consider a geometrically admissible multiphase do-
main. Also assume that ∂b∂ΩΓd is admissible (see (6.20)). For a.e. t ∈ [0,T ],

(3.10)
ṗ(t,x)
|ṗ(t,x)|

∈ NK(x)(σD(t,x)) for L N a.e. x ∈ {|ṗ(t|> 0}.

Moroever, for every i 6= j,

(3.11)
u̇i(t,x)− u̇ j(t,x)
|u̇i(t,x)− u̇ j(t,x)|

∈ ~NKΓ (x)((σD(t)ν)τ(x))

for H N−1 a.e. x ∈ {u̇i(t) 6= u̇ j(t)},

where u̇i(t) and u̇ j(t) are the traces on Γi j of the restrictions of u̇(t) to Ωi and Ω j

respectively, assuming that ν points from Ω j to Ωi, and where ~NKΓ (x)(τ) denotes
the normal cone – a cone of vectors – to KΓ (x) at a vector τ ⊥ ν(x).
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Finally, for H N−1-a.e. x ∈ Γd ∩Ω i with ẇ(t,x) 6= u̇(t,x),

(3.12)
ẇ(t,x)− u̇(t,x)
|ẇ(t,x)− u̇(t,x)|

∈ ~N(Ki(x)ν(x))τ
((σD(t)ν)τ(x)).

Proof. Concerning the flow rule in the phases, it suffices to prove that

σD(t,x) ∈ ∂H(x, ṗa(t,x)) for L N a.e. x ∈Ω ,

where ṗa(t) is the density of the L N-absolutely continuous part of p. Proposition
3.11 implies that, for a.e. t ∈ [0,T ],

(3.13) H
(

x,
ṗ(t)
|ṗ(t)|

)
|ṗ(t)|= 〈σD(t), ṗ(t)〉 as measures on Ω ∪Γd .

Taking the absolutely continuous parts and invoking Theorem 6.2, we obtain

H(x, ṗa(t,x)) = σD(t,x) · ṗa(t,x) for L N-a.e. x ∈Ω ,

which, since σD(t,x) ∈ K(x) for a.e. x ∈ Ω thanks to Theorem 3.6, yields (3.10)
by convex duality.

Concerning the flow rule on the interfaces, taking the restriction on Γi j in (3.13)
yields, in view of Lemma 3.8,

H(x,(u̇i(t)− u̇ j(t))�ν))H N−1bΓi j = (σD(t)ν)τ · (u̇i(t)− u̇ j(t))H N−1bΓi j.

Since, by Theorem 3.5,

(σD(t)ν)τ(x) ∈ KΓ (x) for H N−1-a.e. x ∈ Γ ,

and since IKΓ (x) is the convex conjugate of a 7→ H(x,a�ν(x)), a⊥ ν(x), the flow
rule (3.11) follows again by convex analysis arguments.

An identical proof would yield (3.12). �

Remark 3.14. The flow rules (3.11) and (3.12) hold for any tangential trace (σDν)τ

of σDν along Γ and Γd : as shown in Subsection 1.2, such a trace is uniquely
determined if Γ and Γd are of class C2. ¶

Once again, we should point out that an equally cursory review of the mechan-
ics literature has failed to evidence any awareness of the fact that a boundary (or
interface) flow rule should also be imposed in the classical formulation of elasto-
plasticity as demonstrated above.

Remark 3.15. Under strict convexity assumption for the set of admissible stresses
in the phases, a proof similar to that of [3, Theorem 6.6] would establish that a
precise representative of σ(t) that satisfies the flow rule L N + |ṗ(t)|-a.e. can be
defined in an intrinsic manner. In other words, a flow rule on the support of the
singular part of ṗ(t) in the phases can be established. ¶
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At the close of this section, we can unambiguously assert that, modulo adequate
smoothness assumptions on the Dirichlet boundary and/or interfaces and on the
relative boundary of the Dirichlet boundary, the quasi-static evolution evidenced in
Theorem 2.7 is also a classical evolution in the sense of Definition 3.1. In doing
so, we have also uncovered byproducts of a classical evolution which are, to our
knowledge, missing items in the mechanics literature on elasto-plasticity:

• A stress admissibility condition on any smooth enough interface and also
on any “Dirichlet boundary”, i.e., that where a hard device is applied (see
Theorem 3.5);
• A flow rule on any smooth enough interface and also on any “Dirichlet

boundary”, i.e., that where a hard device is applied (see Theorem 3.13).

It would be premature to gauge the impact of such a lapse on e.g. numerical
models for elasto-plastic evolutions.

4 Quasi-static evolution via vanishingly small linear isotropic
hardening

In this section we establish that the model of quasi-static evolution of multi-
phase materials studied in the previous sections arises naturally as limit of models
with vanishing hardening.

We thus consider, once again, a geometrically admissible multiphase domain
Ω , assume that the Hooke’s law satisfies (2.3) and that the set of admissible stresses
K(x) satisfies (2.4), while the multimap

(4.1) x( Ki(x) is continuous on each phase Ω i.

When hardening is present, the plastic strains cannot concentrate and create
plastic slips. Thus, interfacial conditions – like those that prescribe the value of the
dissipation functional or the set of admissible stresses – are no longer necessary.
Yet, by obtaining the perfect elasto-plastic evolution for a multi-phase material as
limit of a vanishingly small hardening evolution, we demonstrate that the interfa-
cial conditions that were imposed on H at the onset of Section 2 are precisely those
that are compatible with vanishingly small hardening models.

Hardening is usually modeled through an internal variable ζ ≤ 1 which quan-
tifies the increase of the yield surfaces. The dependence of the set of admissible
stresses upon ζ is as follows in the case of isotropic hardening:

σD(x) ∈ (1−ζ (x))K(x) for a.e. x ∈Ω .

This condition can be viewed as a condition on the pair (σD(x),ζ (x)) similar to
that of perfect plasticity, i.e.,

(σD(x),ζ (x)) ∈ K̂(x) for a.e. x ∈Ω ,
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where K̂(x) :=
{
(σ ,ζ ) ∈MN

D×]−∞,1] : σ ∈ (1−ζ )K(x)
}
⊆MN

D×R is a convex
set. The associated Legendre transform of its indicator function is readily shown
to be given by the following positively one-homogeneous function

(4.2) Ĥ(x, p,z) :=

{
z if H(x, p)≤ z
+∞ otherwise,

where z is the dual variable to ζ and H(x, p) := supσ∈K(x) σ · p is the support func-
tion of K(x). As one would expect, the function Ĥ plays the role of the dissipation.

The functional framework required to study evolutions in presence of isotropic
hardening is much simpler than that in the case of perfect elasto-plasticity, since
no concentration of the plastic strains will occur. As a consequence p is an L2-
function, and the displacement u acquires Sobolev regularity. More precisely,

Definition 4.1 (Admissible configurations with hardening). Given an element
w ∈ H1(RN ;RN),

(u,e, p,z) ∈ H1(Ω ;RN)×L2(Ω ;MN
sym)×L2(Ω ;MN

D)×L2(Ω)

is an admissible configuration for w iff

Eu = e+ p in Ω , u = w on Γd

and

(4.3) H(x, p(x))≤ z(x) for a.e. x ∈Ω .

We denote the set of admissible configurations for w by ˆA (w).

In order to formulate the notion of quasi-static evolutions in the presence of
linear isotropic hardening, we need to introduce the dissipation functional Ĥ . For
every (p,z) ∈ L2(Ω ;MN

D)×L2(Ω) we set

Ĥ (p,z) :=
∫

Ω

Ĥ(x, p(x),z(x))dx.

In view of (4.2) and (4.3), it is immediate that, for (u,e, p,z) ∈A (w),

(4.4) Ĥ (p,z) =
∫

Ω

zdx = ‖z‖1.

Finally, consider t 7→ (p(t),z(t)) ∈ L2(Ω ;MN
D)× L2(Ω), t ∈ [0,T ]. For [a,b] ⊆

[0,T ], we set, as usual,

D̂(a,b; p,z) := sup

{
k

∑
j=1

Ĥ (p(t j)− p(t j−1),z(t j)− z(t j−1)) :

a = t0 < t1 < · · ·< tk = b} .
Notice that t 7→ p(t) can be seen in particular as a map from [0,T ] to Mb(Ω ∪
Γd ;MN

D), and that, for every t ∈ [0,T ],

(4.5) D(0, t; p)≤ D̂(0, t; p,z),
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where D(0, t; p) is given in (2.15).
The simplest kind of isotropic hardening is that where the free energy, in general

a function of both e and z, is uncoupled as Q(e)+Qh(z), with Qh convex, and
linear hardening corresponds to taking Qh to be a quadratic functional, i.e.,

Qh(z) :=
h2

2

∫
Ω

z2 dx,

where h > 0 is a hardening parameter.
Let us assume that the boundary displacement w lies in AC(0,T ;H1(RN ;RN)).

We are now in a position to define a quasi-static evolution for linear isotropic hard-
ening.

Definition 4.2 (Quasi-static evolution for linear isotropic hardening). A map-
ping

t 7→ (u(t),e(t), p(t),z(t)) ∈ ˆA (w(t))
is a quasi-static evolution relative to w iff the following conditions hold for every
t ∈ [0,T ]:

(a) Global stability: for every (v,η ,q,β ) ∈ ˆA (w(t))

(4.6) Q(e(t))+Qh(z(t))≤Q(η)+Qh(β )+Ĥ (q− p(t),β − z(t)).

(b) Energy equality: (p,z) ∈ BV
(
0,T ;L1(Ω ;MN

D)×L1(Ω)
)

and

Q(e(t))+Qh(z(t))+D̂(0, t; p,z)=Q(e(0))+Qh(z(0))+
∫ t

0

∫
Ω

σ(τ)·Eẇ(τ)dxdτ,

where σ(t) := Ce(t).

With arguments similar to those of Remark 2.6, it is easily shown that the inte-
gral appearing in the right-hand side of the energy equality is indeed well defined.

We state the following existence result for a quasistatic evolution without proof;
see e.g [7] for an equivalent derivation in a more classical setting. The proof in our
specific setting could easily be performed along the lines of that of Theorem 2.7.

Proposition 4.3. Assume that Ω is a geometrically admissible multiphase do-
main and that assumptions (2.3), (2.4), (4.1) are satisfied. Let (u0,e0, p0,z0) ∈

ˆA (w(0)) be a globally stable configuration. Then there exists a unique qua-
sistatic evolution {t 7→ (u(t),e(t), p(t),z(t)) : t ∈ [0,T ]} relative to w such that
(u(0),e(0), p(0),z(0)) = (u0,e0, p0,z0). Moreover,

(u,e, p,z) ∈ AC
(
0,T ;H1(Ω ;RN)×L2(Ω ;MN

sym)×L2(Ω ;MN
D)×L2(Ω)

)
,

and

D̂(0, t; p,z) =
∫ t

0
Ĥ (ṗ(s), ż(s)) ds =

∫ t

0

∫
Ω

ż(s) dx ds.

Remark 4.4 (Classical conditions). The quasi-static evolution of Definition 4.2
can be reinterpreted in more classical terms. We omit the details of the derivation.
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(a) Balance equations and stress admissibility. By taking the variation with
respect to (v,η ,q,β ) ∈ ˆA (0) global stability implies that∫

Ω

(σ(t) ·η +h2z(t)β ) dx+Ĥ (q,β )≥ 0 for every (v,η ,q,β ) ∈ ˆA (0),

so that ∫
Ω

(−σ(t) ·η +ζ (t)β )dx≤ Ĥ (q,β ),

where we have set ζ (t) :=−h2z(t).
Considering q = 0 and β = 0, we obtain the balance equations

(4.7)

{
divσ(t) = 0 in Ω

σ(t)ν = 0 on ∂Ω \ Γ̄d .

Taking v = 0 and η =−q with q ∈C∞
c (Ω ;MN

D) we get∫
Ω

σD(t) ·q+ζ (t)β dx≤ Ĥ (q,β ),

from which we infer the constraint

(σD(t,x),ζ (t,x)) ∈ K̂(x) for a.e. x ∈Ω ,

i.e.,

(4.8) σD(t,x) ∈ K(t,x) for a.e. x ∈Ω ,

with K(t,x) := (1−ζ (t,x))K(x).
(b) Flow rule. Note that the flow rules derived below will not be used in the

sequel. Differentiating the energy equality and recalling (4.3) and (4.4)
eventually leads to

(4.9) ṗ(t,x) ∈ NK(t,x)(σD(t,x)) for a.e. x ∈ {ṗ(t) 6= 0},
and

z(t,x) =
∫ t

0
H(x, ṗ(τ,x))dτ for a.e. x ∈Ω .

That last equality implies that

K(t,x) =
(

1+h2
∫ t

0
H(x, ṗ(τ,x)) dτ

)
K(x),

so that the yield set increases isotropically depending linearly on the accu-
mulated plastic strain measure

∫ t
0 H(x, ṗ(τ,x))dτ . ¶

So as to prove that evolutions with vanishing hardening approach evolutions for
our elasto-plastic model, we take a hardening constant h that tends to 0.

Moreover, for simplicity sake, we also assume that

(4.10) w(0) = 0, (u0,e0, p0,z0) = (0,0,0,0),

i.e., that the initial state of the evolution is undeformed. This simplification is so
that to there be no conditions on the initial minimizing state (u0,e0, p0)∈A (w(0))
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for that state to also be the first three entries of a minimizer for the hardening
problems in the sense of (4.6).

We denote by t 7→ (uh(t),eh(t), ph(t),zh(t)) the associated quasistatic evolution
delivered by Proposition 4.3. The following result holds.

Theorem 4.5. Assume that Ω is a geometrically admissible multiphase domain
and that assumptions (2.3), (2.4), (4.1) are satisfied. Also assume (4.10) and the
admissibility of ∂b∂ΩΓd (see (6.20)).

There exists hn→ 0 and a quasistatic evolution t 7→ (u(t),e(t), p(t)) relative to
w in the sense of Definition 2.5 with

(u(0),e(0), p(0)) = (0,0,0)

such that, setting (un,en, pn) := (uhn ,ehn , phn), then

un(t)
∗
⇀ u(t) weakly∗ in BD(Ω)

en(t) → e(t) strongly in L2(Ω ;MN
sym)

pn(t)
∗
⇀ p(t) weakly∗ in Mb(Ω ∪Γd ;MN

D),

for every t ∈ [0,T ]. Finally, for every t ∈ [0,T ],

lim
n

D̂(0, t; pn,zn) = D(0, t; p).

Proof. Fix hn→ 0. We divide the proof into several steps.
Step 1. As a first step, we deduce some compactness properties of the solution-
sequences. Under our assumptions, the energy equality reads

Q(en(t))+Qhn(zn(t))+ D̂(0, t; pn,zn) =
∫ t

0

∫
Ω

σn(τ) ·Eẇ(τ)dxdτ,

where σn(τ) := Cen(τ). In view of the admissibility condition H(x, pn(t))≤ zn(t)
and of (4.5) one readily infers the existence of C > 0 such that, for every t ∈ [0,T ]
and n ∈ N,

(4.11) ‖en(t)‖2 +‖hnzn(t)‖2 +V (0, t; pn)≤C.

Let Ω ′ ⊆ RN be open, bounded and such that Ω ∪Γd = Ω ∩Ω ′. We extend
(un(t),en(t), pn(t)) to Ω ′ by setting

un(t) = w(t), en(t) = Ew(t), pn(t) = 0 on Ω
′ \Ω .

Clearly
Eun(t) = en(t)+ pn(t) on Ω

′.

By a generalized version of Helly’s theorem (see [10, Theorem 3.2]), there
exists a subsequence, not relabeled, such that, for every t ∈ [0,T ],

pn(t)
∗
⇀ p(t) weakly∗ in Mb(Ω

′;MN
D),
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for some p ∈ BV (0,T ;Mb(Ω
′;MN

D)). For every t ∈ [0,T ], there exists a further
subsequence {nt} such that

ent (t)⇀ e(t) weakly in L2(Ω ′;MN
sym),

and, appealing to Korn’s inequality in BD,

unt (t)⇀ u(t) weakly∗ in BD(Ω ′),

for some u(t) ∈ BD(Ω ′) and e(t) ∈ L2(Ω ′;MN
sym) with

Eu(t) = e(t)+ p(t) on Ω
′.

Clearly u(t) = w(t), e(t) = Ew(t) and p(t) = 0 on Ω ′ \Ω , so that we deduce

p(t)bΓd = (w(t)−u(t))�ν H N−1bΓd .

As a consequence, by restricting (u(t),e(t)) to Ω and p(t) to Ω ∪Γd , we get

(u(t),e(t), p(t)) ∈A (w(t))

with

(4.12)


unt (t)

∗
⇀ u(t) weakly∗ in BD(Ω),

ent (t)⇀ e(t) weakly in L2(Ω ′;MN
sym),

pn(t)
∗
⇀ p(t) weakly∗ in Mb(Ω ∪Γd ;MN

D).

Setting
ζnt (t) :=−h2

nznt (t),
we get, in view of the bound (4.11),

(4.13) ζnt (t)→ 0 strongly in L2(Ω).

Step 2. A second step is devoted to global stability. Since

σnt (t) = Cent (t)⇀ σ(t) := Ce(t) weakly in L2(Ω ;MN
sym),

we deduce, using the balance equations (4.7), that{
divσ(t) = 0 in Ω

σ(t)ν = 0 on ∂Ω \ Γ̄d .

Concerning the stress constraint, (4.8) implies that

(σnt )D(t,x) ∈ (1−ζnt (t,x))K(x) for a.e. x ∈Ω .

Since convex combinations of elements of {(σnt )D(t)} converge to σ(t), strongly
in L2(Ω ;MN

sym), (4.13) implies in turn that

σD(t,x) ∈ K(x) for a.e. x ∈Ω .

We conclude that σ(t)∈K , so that Proposition 3.9 applies and, for every (v,η ,q)∈
A (0),

H
(

x,
q
|q|

)
d|q| ≥ 〈σD(t),q〉 as measures on Ω ∪Γd .
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Thanks to the admissibility of ∂∂ΩΓd , we can compute the masses and we obtain,
in view of (6.3) (with f ≡ g≡ 0),

H (q)≥−
∫

Ω

σ(t) ·η dx

so that

−H (q)≤
∫

Ω

σ(t) ·η dx≤H (−q).

In view of the beginning of Remark 2.6, we conclude that the triplet (u(t),e(t), p(t))
in A (w(t)) is a globally stable configuration. In particular, (u(t),e(t)) is uniquely
determined by p(t), so that the convergences in (4.12) hold without passing to a
subsequence.
Step 3. We now derive the energy equality. For every t ∈ [0,T ], using (4.5) together
with Proposition 2.3, we get

Q(e(t))+D(0, t; p) ≤ liminfn Q(en(t))+ liminfn D̂(0, t; pn,zn)

≤ liminfn

[
Q(en(t))+Qhn(zn(t))+ D̂(0, t; pn,zn)

]
≤ limsupn

[
Q(en(t))+Qhn(zn(t))+ D̂(0, t; pn,zn)

]
=

∫ t
0
∫

Ω
σ(τ) ·Eẇ(τ)dxdτ ≤Q(e(t))+D(0, t; p).

Above, the last equality is obtained by dominated convergence and the last inequal-
ity is a consequence of the global stability of (u(t),e(t), p(t)) ∈ A (w(t)) proved
in step 2; see the end of the proof of Theorem 2.7 after (2.29).

We conclude that the energy equality holds, so that t 7→ (u(t),e(t), p(t)) is
a quasistatic evolution for the multi-phase material according to Definition 2.5.
Moreover, the previous inequalities entail that

lim
n

[
Q(en(t))+Qhn(zn(t))+ D̂(0, t; pn,zn)

]
= Q(e(t))+D(0, t; p)

from which we infer

lim
n

Q(en(t)) = Q(e(t)) and lim
n

D̂(0, t; pn,zn) = D(0, t; p).

Thus in particular

en(t)→ e(t) strongly in L2(Ω ;MN
sym),

which concludes the proof. �

5 Semicontinuity of the dissipation functional of multiphase materials

This section is devoted to the proof of Proposition 2.3 on which we based the
existence of a quasi-static evolution for a multiphase material.

We will make use of the following general observation:
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Lemma 5.1. Let A ⊆ RN be open, bounded and with C1-boundary. Assume that
un ∈ BD(A) is such that

un
∗
⇀ u weakly∗ in BD(A).

Considering Eun as a measure on RN , let us assume that

Eun
∗
⇀ µ weakly∗ in Mb(RN ;MN

sym).

Then µ is supported in Ā and

(5.1) µb∂A = a�ν λ ,

where λ is a finite positive measure supported on ∂A, a : ∂A→ RN is a Borel
function, and ν is the exterior normal to ∂A.

Proof. Since Eun is supported in Ā, the support of µ is contained in Ā. Given
ϕ ∈ C1

c (RN ;MN
sym) and using the integration by parts formula for BD functions

(see [18, Chapter 2, Theorem 2.1]), we can write∫
Ā

ϕ dµ = lim
n

∫
A

ϕ dEun = lim
n

∫
∂A

ϕ · (un�ν)dH N−1−
∫

A
divϕ ·un dx.

Since {un}n∈N is bounded in BD(A), the traces of {un} are bounded in L1(∂A;RN).
Up to a subsequence,

un H N−1b∂A ∗
⇀ η weakly∗ in Mb(∂A;RN),

for a suitable η ∈Mb(∂A;RN). Since ν ∈C0(∂A;RN), we obtain∫
Ā

ϕ dµ =
∫

∂A
ϕ ·
(

η

|η |
�ν

)
d|η |−

∫
A

divϕ ·udx

=
∫

∂A
ϕ ·
(

η

|η |
�ν

)
d|η |−

∫
∂A

ϕ · (u�ν)dH N−1 +
∫

A
ϕ dEu.

We conclude that

µb∂A =
η

|η |
�ν |η |−u�ν H N−1b∂A,

so that (5.1) follows by choosing λ := |η |+H N−1b∂A, and a := η/λ −bu, where
η/λ and b are the Radon-Nikodym derivatives of η and H N−1b∂A with respect
to λ . �

We are now in a position to prove that H satisfies the required lower semi-
continuity property.

Let (un,en, pn)∈A (wn) and (u,e, p)∈A (w) satisfy the convergences in (2.14).
Setting Γ i

d := (Γd \S′)∩Ω i, we can write

pn = ∑
i

pi
n +∑

i 6= j
pi j

n
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where pi
n := pnb(Ωi∪Γ i

d ), and pi j
n := pnbΓi j. We can assume that, up to a subse-

quence,
pi

n
∗
⇀ pi weakly∗ in Mb(Ω ∪Γd ;MN

D),

and
pi j

n
∗
⇀ pi j weakly∗ in Mb(Ω ∪Γd ;MN

D).

Clearly,
p = ∑

i
pi +∑

i 6= j
pi j,

with supp(pi)⊆Ω i and supp(pi j)⊆ Γi j ∪S′.
By Reshetnyak lower semi-continuity theorem (see e.g. [2, Theorem 2.38], or

[14, Theorem 1.7]), we get

liminf
n

∫
Ω∪Γd

H
(

x,
pi

n

|pi
n|

)
d|pi

n|= liminf
n

∫
Ω i

Hi

(
x,

pi
n

|pi
n|

)
d|pi

n| ≥∫
Ω i

Hi

(
x,

pi

|pi|

)
d|pi| ≥

∫
Ωi∪Γ i

d

Hi

(
x,

pi

|pi|

)
d|pi|+

∫
Γ

Hi

(
x,

pi

|pi|

)
d|pi|

=
∫

Ωi∪Γ i
d

H
(

x,
pi

|pi|

)
d|pi|+∑

j 6=i

∫
(Γi j\S)

Hi

(
x,

pi

|pi|

)
d|pi|.

By assumption en ⇀ e weakly in L1(Ω ;MN
sym), so that

EunbΩi
∗
⇀ eL NbΩi + pi weakly∗ in Mb(Ω ;MN

sym).

For every j 6= i, Lemma 5.1 implies that, with a normal ν on Γi j pointing from Ω j
to Ωi,

(5.2) pib(Γi j \S) =−ai j�ν λ
i j,

for suitable λ i j’s finite positive measures supported on Γi j \S, and suitable ai j’s
Borel functions on Γi j \S with values in RN such that ai j(x) ⊥ ν(x) for λ i j-a.e.
x ∈ (Γi j \S) (recall that pi takes its values in MN

D). Thus,

(5.3) liminf
n

∫
Ω∪Γd

H
(

x,
pi

n

|pi
n|

)
d|pi

n|

≥
∫

Ωi∪Γ i
d

H
(

x,
pi

|pi|

)
d|pi|+∑

j 6=i

∫
Γi j\S

Hi
(
x,−ai j�ν

)
dλ

i j.

Concerning pi j
n , we have

pi j
n = (ui

n−u j
n)�ν H N−1bΓi j,

where ui
n and u j

n are the traces of un on Γi j coming from Ωi and Ω j respectively.
In view of the definition of H on Γi j (see (2.8)), and since the inf-convolution is
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indeed attained as a minimum, we get

(5.4)
∫

Γi j

H

(
x,

pi j
n

|pi j
n |

)
d|pi j

n |=
∫

Γi j\S
H(x,(ui

n−u j
n)�ν)dH N−1

=
∫

Γi j\S
Hi(x,b

i j
i,n�ν)+H j(x,−bi j

j,n�ν)dH N−1,

for suitable Borel functions bi j
i,n,b

i j
j,n : Γi j→ RN such that

bi j
i,n(x)−bi j

j,n(x) = ui
n(x)−u j

n(x) for H N−1-a.e. x ∈ Γi j

with

(5.5) bi j
i,n(x)⊥ ν(x),bi j

j,n(x)⊥ ν(x) for H N−1-a.e. x ∈ Γi j.

Note that the Borel character of the functions bi j
i,n,b

i j
j,n can be argued by approximat-

ing ui
n−u j

n along Γi j by simple functions, and upon recalling that ν is continuous.
In view of the coercivity estimate (2.7) we get∫

Γi j\S

{
|bi j

i,n�ν |+ |bi j
j,n�ν |

}
dH N−1 ≤C,

for a suitable constant C > 0. Thanks to (5.5), the bound above actually implies
that the measures

η
i j
i,n := bi j

i,n H N−1b(Γi j \S) and η
i j
j,n := bi j

j,n H N−1b(Γi j \S)

are bounded in n. Thus, we can assume that, up to a subsequence that will not be
relabeled, {

η
i j
i,n
∗
⇀ η

i j
i = bi j

i |η
i j
i | weakly∗ in Mb(Γi j \S;RN)

η
i j
j,n
∗
⇀ η

i j
j = bi j

j |η
i j
j | weakly∗ in Mb(Γi j \S;RN).

Since the normal vector field ν is continuous,{
bi j

i,n�ν H N−1b((Γi j \S) ∗⇀ bi j
i �ν |η i j

i | weakly∗ in Mb(Γi j \S;MN
D)

bi j
j,n�ν dH N−1b(Γi j \S) ∗⇀ bi j

j �ν |η i j
j | weakly∗ in Mb(Γi j \S;MN

D).

Moreover, in view of (5.4), Reshetnyak’s lower semi-continuity theorem yields

(5.6) liminf
n

∫
Γi j

H

(
x,

pi j
n

|pi j
n |

)
d|pi j

n |

≥ liminf
n

∫
Γi j\S

Hi(x,b
i j
i,n�ν)+H j(x,−bi j

j,n�ν)dH N−1

≥
∫

Γi j\S
Hi(x,b

i j
i �ν)d|η i j

i |+
∫

Γi j\S
H j(x,−bi j

j �ν)d|η i j
j |.



HETEROGENEOUS ELASTO-PLASTICITY 37

Recalling (5.2) we clearly have

(5.7) pb((Γi j \S)) =−ai j�ν λ
i j+a ji�ν λ

ji +bi j
i �ν |η i j

i |−bi j
j �ν |η i j

j |

= (ci− c j)�ν ζ
i j,

where ζ i j := λ i j + λ ji + |η i j
i |+ |η

i j
j |, and ci,c j are suitable Borel functions on

Γi j \S with values in RN such that

ci�ν ζ
i j =−ai j�ν λ

i j +bi j
i �ν |η i j

i |,

idem for c j. Further,

ci(x)⊥ ν(x), c j(x)⊥ ν(x) for ζ
i j-a.e. x ∈ Γi j \S.

Since pn does not charge S∪S′ we get

H (pn) = ∑
i

∫
Ωi∪Γ i

d

H
(

x,
pi

n

|pi
n|

)
d|pi

n|+∑
i 6= j

∫
Γi j\S

H

(
x,

pi j
n

|pi j
n |

)
d|pi j

n |,

so that, thanks to (5.3) and (5.6),

liminf
n

H (pn)

≥∑
i

liminf
n

∫
Ωi∪Γ i

d

H
(

x,
pi

n

|pi
n|

)
d|pi

n|+∑
i6= j

liminf
n

∫
Γi j\S

H

(
x,

pi j
n

|pi j
n |

)
d|pi j

n |

≥∑
i

(∫
Ωi∪Γ i

d

H
(

x,
pi

|pi|

)
d|pi|+∑

j 6=i

∫
Γi j\S

Hi
(
x,−ai j(x)�ν(x)

)
dλ

i j(x)

)

+∑
i 6= j

(∫
Γi j\S

Hi(x,b
i j
i �ν)d|η i j

i |+
∫

Γi j\S
H j(x,−bi j

j �ν)d|η i j
j |
)

=
∫
∪i(Ωi∪Γ i

d )
H
(

x,
p
|p|

)
d|p|+∑

i6= j

(∫
Γi j\S

Hi
(
x,−ai j(x)�ν(x)

)
dλ

i j(x)

+
∫

Γi j\S
H j
(
x,+a ji(x)�ν(x)

)
dλ

ji(x)

+
∫

Γi j\S
Hi(x,b

i j
i �ν)d|η i j

i |+
∫

Γi j\S
H j(x,−bi j

j �ν)d|η i j
j |
)
.
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In view of (5.7), by the definition of H on Γi j \S and the sub-additive character of
Hi and H j, and since p does not charge S∪S′, we deduce that

liminf
n

H (pn)≥
∫
∪iΩi∪(Γd\S′)

H
(

x,
p
|p|

)
d|p|

+∑
i 6= j

∫
Γi j\S

Hi
(
x,ci(x)�ν(x)

)
+H j(x,−c j(x)�ν(x))dζ

i j(x)

≥
∫
∪iΩi∪(Γd\S′)

H
(

x,
p
|p|

)
d|p|+∑

i6= j

∫
Γi j\S

H(x,(ci(x)− c j(x))�ν(x))dζ
i j(x)

=
∫
∪iΩi∪(Γd\S′)

H
(

x,
p
|p|

)
d|p|+∑

i 6= j

∫
Γi j\S

H
(

x,
p
|p|

)
d|p|= H (p),

so that the proof is concluded.

Remark 5.2. In the case where the yield surfaces satisfy an ordering assumption
as in [13] (for example when the phases exhibit a Von Mises type behaviour), the
dissipation potential H on Γi j coincides either with Hi or H j on matrices of the
form a� ν with a ⊥ ν . As far as the values of H on admissible plastic strains
are concerned, we may thus replace H with Hi or H j on Γi j, avoiding the value
+∞ and gaining lower semi-continuity in (x,ξ ). As a consequence, even if Γ is
only Lipschitz regular, the lower semi-continuity of H turns out to be a direct
consequence of Reshetnyak lower-semi-continuity theorem. The results of Section
3 can then be established within this framework by treating the interfaces Γ like
we did the Dirichlet boundary Γd . ¶

6 Duality revisited: the case of Lipschitz boundaries

In this section, we reexamine the duality first investigated in [8] and revisited
more recently in [3] between admissible stresses and plastic strains. In both papers,
it is assumed that ∂Ω is of class C2, and that ∂b∂ΩΓd is a (N−2)-dimensional C2-
manifold. The purpose of what follows is to show that a Lipschitz regularity of
∂Ω , together with appropriate regularity assumptions on ∂b∂ΩΓd , are sufficient as
far as duality is concerned.

As in those previous works, we will consider body forces in LN(Ω ;RN) and
surface tractions in L∞(Γt ;RN), with

Γt := ∂Ω \Γ d .

Our first result in this direction implies that announced in Remark 3.2.

Proposition 6.1. The set{
σ ∈ L2(Ω ;MN

sym) : divσ ∈ LN(Ω ;RN); σD ∈ L∞(Ω ;MN
D)
}

is a subset of Lr(Ω ;MN
sym), for every 1≤r<∞, and

(6.1) ‖σ‖r ≤C{‖σD‖∞ +‖divσ‖N +‖σ‖2} .
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Proof. The proof relies on the following result – sometimes referred to as Korn’s
theorem – which holds true for all Lp,1 < p < ∞, on a Lipschitz domain (see [12]):
if u ∈W−1,p(Ω) with ∇u ∈W−1,p(Ω), then u ∈ Lp(Ω) with

‖u‖p ≤C(‖u‖W−1,p +‖∇u‖W−1,p),

for some C > 0 depending on Ω .
Decomposing σ as

σ = σ̂ i+σD

and remarking that, by Sobolev embedding, LN(Ω ;RN) ⊂W−1,r(Ω ;RN), for 1≤
r<∞, the assumption divσ ∈ LN(Ω ;RN) implies that

(6.2) ∇σ̂ ∈W−1,r(Ω)+W−1,∞(Ω) for every 1≤r<∞.

If N = 2, the regularity σ ∈ L2(Ω ;MN
sym) implies, by Sobolev embedding, that

σ̂ ∈W−1,∞(Ω). By Korn’s theorem and (6.2), σ̂ ∈ Lr(Ω) for every r ≥ 1.
If N > 2, the regularity σ ∈ L2(Ω ;MN

sym) implies that σ̂ ∈W−1,2N/(N−2)(Ω).

By Korn’s theorem and (6.2), σ̂ ∈ L2N/(N−2)(Ω).
Since 2N/(N− 2) > 2, reiteration of the argument proves that σ̂ ∈ Lr(Ω) for

every 1≤ r < ∞. The estimate (6.1) is a direct consequence of the continuity of all
mappings involved in this argument. �

Let f ∈ LN(Ω ;RN) and g ∈ L∞(Γt ;RN) be given, and introduce the set

K ( f ,g) :=
{

σ ∈ L2(Ω ;MN
sym) : divσ = f in Ω ; σν = g on Γt ; σD ∈ L∞(Ω ;MN

D)
}
.

Given w ∈ H1(RN ;RN), define A (w) and P(w) as in Definition 2.1, requir-
ing only that the associated elastic strain e belong to LN/N−1(Ω ;MN

sym) in lieu of
L2(Ω ;MN

sym). Every p ∈P(w) determines a measure p̃ on all of RN through the
relation

p̃(B) := p(B∩ (Ω ∪Γd))

for every Borel set B⊆ RN . In the following, we still write p for p̃.
For σ ∈ K ( f ,g) and p ∈P(w) with an associated pair (u,e) ∈ BD(Ω)×

LN/N−1(Ω ;MN
sym), we consider, for all ϕ ∈C∞

c (RN),

(6.3) 〈σD, p〉(ϕ) :=−
∫

Ω

ϕσ · (e−Ew) dx−
∫

Ω

ϕ f · (u−w) dx

−
∫

Ω

σ · [(u−w)�∇ϕ] dx+
∫

Γt

ϕg · (u−w)dH N−1.

The above expression defines a meaningful distribution on RN since, according
to Proposition 6.1, σ ∈ LN(Ω ;MN

sym), while u ∈ LN/N−1(Ω ;RN) in view of the
embedding of BD(Ω) into LN/N−1(Ω ;RN). Further, u has a trace on ∂Ω which
belongs to L1(∂Ω ;RN). Finally note that, if σ is the restriction to Ω of a C1-
function and if H N−1(∂b∂ΩΓd) = 0, then, performing an integration by parts in
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BD (see [18, Chapter 2, Theorem 2.1]), the right hand side of (6.3) coincides with
the integral of ϕ with respect to the (well defined) measure σD p.

The following result holds:

Theorem 6.2. The restriction of the distribution defined by (6.3) to the open set
RN \∂b∂ΩΓd is a bounded Radon measure such that

(6.4) |〈σD, p〉| ≤ ‖σD‖∞|p| on RN \∂b∂ΩΓd .

Moreover, the density of its L N-absolutely continuous part is σD · pa, where pa is
the density of the L N-absolutely continuous part of p.

Proof. Clearly, translating u by w, it is enough to prove the theorem for w ≡ 0.
We thus consider the distribution on RN \ ∂b∂ΩΓd given for every ϕ ∈ C∞

c (RN \
∂b∂ΩΓd) by

(6.5) 〈σD, p〉(ϕ) :=−
∫

Ω

ϕσ · e dx−
∫

Ω

ϕ f ·u dx

−
∫

Ω

σ · [u�∇ϕ] dx+
∫

Γt

ϕg ·udH N−1.

The first part of the theorem follows if we prove that for every ϕ ∈ C∞
c (RN \

∂b∂ΩΓd)

(6.6) 〈σD, p〉(ϕ)≤ ‖σD‖∞

∫
Ω∪Γd

|ϕ|d|p|.

In order to prove this inequality, let us consider V ⊆ RN open and bounded with
∂b∂ΩΓd ⊆V and V̄ ∩ supp(ϕ) = /0. Let W ⊆RN be an open neighborhood of Γt \V
with W ∩∂Ω ⊂⊂ Γt , and such that

|p|(∂W ) = 0.

Let ψ ∈C∞
c (RN), 0≤ ψ ≤ 1 be such that{

ψ = 1 on an open neighborhood of Γt \V,
ψ = 0 outside W,

and let us decompose σ as

σ = ψσ +(1−ψ)σ = σ
1 +σ

2.

By Proposition 6.1, div σ i ∈ LN(Ω ;RN). Further,

(6.7) σ
1
ν = ψg on ∂Ω and σ

2 = 0 on a neighborhood of Γt \V.

We can write

〈σD, p〉(ϕ) = λ
1(ϕ)+λ

2(ϕ),
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where

λ 1(ϕ) := −
∫

Ω
ϕσ1 · e dx−

∫
Ω

ϕ divσ1 ·u dx−
∫

Ω
σ1 · [u�∇ϕ] dx

+
∫

Γt
ϕg ·udH N−1,

λ 2(ϕ) := −
∫

Ω
ϕσ2 · e dx−

∫
Ω

ϕ divσ2 ·u dx−
∫

Ω
σ2 · [u�∇ϕ] dx.

We claim that

(6.8) λ
1(ϕ)≤ ‖σD‖∞‖ϕ‖∞|p|(W )

and

(6.9) λ
2(ϕ)≤ ‖σD‖∞

∫
Ω∪Γd

|ϕ|d|p|.

In view of these inequalities,

〈σD, p〉(ϕ)≤ ‖σD‖∞‖ϕ‖∞|p|(W )+‖σD‖∞

∫
Ω∪Γd

|ϕ|d|p|.

Since W is an arbitrary neighborhood of Γt \V and p does not charges Γt , we deduce
that

〈σD, p〉(ϕ)≤ ‖σD‖∞

∫
Ω∪Γd

|ϕ|d|p|,

so that (6.6) follows.
In order to conclude the proof, we need to prove claims (6.8) and (6.9), together

with the form of the absolutely continuous part of 〈σD, p〉. We divide the proof into
three steps.
Step 1. In a first step we prove claim (6.8). Let us consider (un,en, pn)∈C∞(Ω ;RN×
MN

sym×MN
D) with

(6.10) Eun = en + pn in Ω

and

(6.11)


un→ u strongly in LN/N−1(Ω ;RN)

en→ e strongly in LN/N−1(Ω ;MN
sym)

pn
s→ p strictly in Mb(Ω ;MN

D).

Then, because the trace operator is continuous under strict convergence (see e.g. [18,
Chapter 2, Theorem 3.1]), un→ u strongly in L1(∂Ω ;RN). Set

λ
1
n (ϕ) :=−

∫
Ω

ϕσ
1 · en dx−

∫
Ω

ϕdivσ
1 ·un dx−

∫
Ω

σ
1 · [un�∇ϕ] dx

+
∫

Γt

ϕg ·un dH N−1.

In view of (6.11),
lim

n
λ

1
n (ϕ) = λ

1(ϕ).
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Integrating by parts, we obtain immediately, in view of (6.7) and since ψ ≡ 1 on
supp(ϕ)∩Γt with ψ = 0 on Γd ,

λ
1
n (ϕ) =

∫
Ω

ϕσ
1
D · pn dx−〈σ1

ν ,ϕun〉+
∫

Γt

ϕg ·un dH N−1

=
∫

Ω

ϕσ
1
D · pn dx−

∫
∂Ω

ϕψg ·un dH N−1 +
∫

Γt

ϕg ·un dH N−1

=
∫

Ω

ϕσ
1
D · pn dx =

∫
Ω

ϕψσD · pn dx.

We conclude that

λ
1
n (ϕ)≤ ‖σD‖∞‖ϕ‖∞

∫
W
|pn|dx.

Passing to the limit, we get

λ
1(ϕ)≤ ‖σD‖∞‖ϕ‖∞|p|(W̄ ) = ‖σD‖∞‖ϕ‖∞|p|(W ),

so that claim (6.8) follows.
The existence of (un,en, pn) ∈ C∞(Ω ;RN ×MN

sym×MN
D) satisfying (6.10) and

(6.11) can be obtained in the following manner.
Let us consider a finite covering {Qνk(xk,rk)}k∈I of ∂Ω made of open cubes

with centers xk ∈ ∂Ω , side 2rk with rk > 0 and with a face orthogonal to νk ∈ RN ,
such that Ω ∩Qνk(xk,rk) is a Lipschitz subgraph in the direction νk. Let {φk}k∈I be
an associated partition of unity of ∂Ω . We can write

u = ∑
k∈I

φku+

(
1−∑

k∈I
φk

)
u,

the last term having a support compactly contained in Ω . Set

(6.12) ek := φke+∇φk�u and pk = φk p,

so that
E(φku) = ek + pk in Ω .

Given ah ↘ 0 with h ↗ ∞, we consider, for every k ∈ I and every x ∈ [Ω ∩
Qνk(xk,rk)]+ahνk,

uk,h(x) := φk(x−ahνk)u(x−ahνk),

and define ek,h, ph,k following (6.12). In particular pk,h is the push-forward along
the translation given by ahνk of the measure pk. We can choose ah→ 0 in such a
way that

pk,h(∂Ω ∩Qνk(xk,rk)) = 0.

Let us set

uh := ∑
k∈I

uk,h +

(
1−∑

k∈I
φk

)
u
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eh := ∑
k∈I

ek,h +

(
1−∑

k∈I
φk

)
e−∑

k∈I
∇φk�u

and

ph := ∑
k∈I

pk,h +

(
1−∑

k∈I
φk

)
p.

Notice that (uh,eh, ph) is well defined on an open neighborhood Ωh of Ω , i.e.,
(uh,eh, ph) ∈ BD(Ωh)×LN/N−1(Ωh;MN

sym)×Mb(Ω ;MN
D) with

Euh = eh + ph on Ωh.

By construction we also have

(6.13) ph(∂Ω) = 0.

Restricting to Ω , and remarking that we only used local translations,

(6.14)


uh→ u strongly in LN/N−1(Ω ;RN)

eh→ e strongly in LN/N−1(Ω ;MN
sym)

ph
∗
⇀ p weakly∗ in Mb(Ω ;MN

D),

as h→ ∞. Moreover, since translations point outside Ω , we get

limsup
h
|ph|(Ω)≤∑

k∈I
limsup

h
|pk,h|(Ω)+

∫
Ω

(
1−∑

k∈I
φk

)
d|p|

= ∑
k∈I
|pk|(Ω)+

∫
Ω

(
1−∑

k∈I
φk

)
d|p|

= ∑
k∈I

∫
Ω

φk d|p|+
∫

Ω

(
1−∑

k∈I
φk

)
d|p|= |p|(Ω),

so that indeed

(6.15) ph
s→ p strictly in Mb(Ω ;MN

D).

If we regularize by convolution, we obtain, since Ω ⊂Ωh, that

(um
h ,e

m
h , pm

h ) ∈C∞(Ω ;RN×MN
sym×MN

D),

with

(6.16) Eum
h = em

h + pm
h in Ω

and

(6.17)

{
um

h → uh strongly in LN/N−1(Ω ;RN)

em
h → eh strongly in LN/N−1(Ω ;MN

sym).

Concerning pm
h , recall that regularization by convolution of a measure entails local

weak* convergence and, in addition, strict convergence on open subsets whose



44 G.A. FRANCFORT AND A. GIACOMINI

boundaries are not charged by the measure itself (see [2, Theorem 2.2]). In view
of (6.13),

(6.18) pm
h

s→ ph strictly in Mb(Ω ;MN
D).

The desired configurations (un,en, pn)∈C∞(Ω ;RN×MN
sym×MN

D) follow by choos-
ing h = hn and m = mn and using a diagonal argument. The compatibility relation
(6.10) follows by (6.16). The convergences (6.11) are a consequence of (6.14),
(6.15), (6.17) and (6.18).
Step 2. In a second step we prove claim (6.9). Let U ⊆RN be open with Γt \V ⊆U
and

σ
2 = 0 on U ∩Ω .

We now approximate σ2 through a procedure involving local translations and con-
volutions (see e.g. [3, Lemma 2.3]). For every x ∈ ∂Ω \U , let us consider
rx > 0 such that B(x,rx)∩∂Ω is a Lipschitz graph and B(x,rx)∩ (Γt \V ) = /0. Let
{B(x j,r j)} j=1,...,m be a finite subordinated covering of ∂Ω \U , and let {ϕ j} j=1,...,m
be an associated partition of unity.

We write

σ
2 =

m

∑
j=1

ϕ jσ
2 +

(
1−

m

∑
j=1

ϕ j

)
σ

2.

We translate each ϕ jσ
2 by τ

j
n := anν(xi) with an ↘ 0, where ν(x j) is the outer

normal to Ω at x j, and then regularize by convolution, getting σ2
j,n with σ2

j,n = 0
near Γt \V . The last contribution in the above identity has its support compactly
contained in Ω ; it is simply regularized by convolution. Proceeding so produces a
sequence σ2

n ∈C∞(Ω ;MN
sym) such that, as n↗ ∞,

σ2
n → σ2 strongly in Lr(Ω ;MN

sym), for every 1≤ r < ∞

divσ2
n → divσ2 strongly in LN(Ω ;RN)

σ2
n ν = 0 on Γt \V

limsupn ‖(σ2
n )D‖∞ ≤ ‖σ2

D‖∞.

Above, the last estimate is obtained as follows. For every x ∈Ω

(σn)D(x) =
m

∑
i=1

ϕi(·− τ
i
n)σ(·− τ

i
n)?ρn(x)+

(
1−

m

∑
i=1

ϕi

)
σ ?ρn(x).

where ρn denotes the convolution kernel. Then,

|(σn)D(x)| ≤ ‖σD‖∞

[
m

∑
i=1

ϕi(·− τ
i
n)+1−

m

∑
i=1

ϕi

]
?ρn(x).

The result is the obtained upon remarking that
m

∑
i=1

ϕi(·− τ
i
n)+1−

m

∑
i=1

ϕi→ 1 uniformly on RN .
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Consider

λ
2
n (ϕ) :=−

∫
Ω

ϕσ
2
n · e dx−

∫
Ω

ϕ divσ
2
n ·u dx−

∫
Ω

σ
2
n · [u�∇ϕ] dx.

Clearly
lim

n
λ

2
n (ϕ) = λ

2(ϕ).

Since σ2
n is smooth, it is immediately checked, using integration by parts in BD

(see [18, Chapter 2, Theorem 2.1]), the facts that ϕσ2
n ν = 0 on Γ t and pbΓd =

−u�νH N−1bΓd , that

λ
2
n (ϕ) =

∫
Ω∪Γd

ϕ σ
2
n ·d p =

∫
Ω∪Γd

ϕ (σ2
n )D ·d p.

In view of the L∞-bound on (σ2
n )D, taking the limit for n→ ∞ yields

λ
2(ϕ)≤ ‖σD‖∞

∫
Ω∪Γd

|ϕ|d|p|,

so that claim (6.9) follows.
Note that we cannot argue as for the proof of (6.8), that is through a regu-

larization of (u,e, p), because the integrations by part would produce a term in∫
∂Ω

σ2ν ·un dH N−1 which would not converge because we only know that σ2ν is
in H−1/2(∂Ω ;RN).
Step 3. In a third step, we compute the absolutely continuous part of 〈σD, p〉.
For every A open set with A ⊂⊂ Ω , regularization by convolution of σ yields a
sequence σn ∈C∞(Ā;MN

sym) such that

σn→ σ strongly in Lr(A;MN
sym) for every 1≤ r < ∞

divσn→ divσ strongly in LN(A;RN)

and

(σn)D
∗
⇀ σD weakly∗ in L∞(A;MN

D) with ‖(σn)D‖∞ ≤ ‖σD‖∞.

By (6.5), taking ϕ ∈C1
c (A), we infer that

〈(σn)D, p〉= (σn)D p as measures on A.

The decomposition of (σn)D p with respect to the Lebesgue measure L N is given
by

(6.19) (σn)D p = (σn)D · pa L N +(σn)D · ps,

where p = pa L N + ps is the associated decomposition of p, with pa ∈ L1(Ω ;MN
D).

But, thanks to (6.3), 〈(σn)D, p〉 ∗⇀ 〈(σ)D, p〉 weakly∗ in Mb(A), so that, since

|(σn)D ps| ≤ ‖σD‖∞|ps|,
passing to the limit in (6.19) yields

〈σD, p〉= σD · pa L N +λ
s on A,
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with λ s singular with respect to L N , since |λ s| ≤ ‖σD‖∞|ps|. By the arbitrariness
of A, we conclude that the density of the L N-absolutely continuous part of 〈σD, p〉
is given by σD · pa, which concludes the proof. �

Remark 6.3. Remark that, if Γd = ∂Ω , that is in the case of a hard device applied
to the whole boundary, then Theorem 6.2 fully characterizes the duality between
σD and p because 〈σD, p〉 is then a bounded Radon measure on RN satisfying
|〈σD, p〉| ≤ ‖σD‖∞|p| on RN . Thus, in that case, we have obtained a generalization
of the duality established in [8] to the case of a Lipschitz domain. ¶

In the following, we focus on conditions on ∂b∂ΩΓd that allow one to extend
the result of Theorem 6.2 to all of RN in lieu of RN \ ∂b∂ΩΓd . If such is the case,
we will say that

(6.20) ∂b∂ΩΓd is admissible.

Remark 6.4. Assume that (6.20) holds true, i.e., that, for every f ∈ LN(Ω ;RN),
g ∈ L∞(Γt ;RN) and for every σ ∈K ( f ,g) and p ∈P(w) with associated (u,e) ∈
BD(Ω)×LN/N−1(Ω ;MN

sym), the distribution 〈σD, p〉 is a bounded Radon measure
on RN with |〈σD, p〉| ≤ ‖σD‖∞|p| and mass given by taking ϕ = 1 in (6.3), then
we conjecture that H N−1(∂b∂ΩΓd) = 0, although we have been unable to find a
satisfactory proof of that statement. ¶

In what follows we demonstrate that (6.20) holds true, provided that the as-
sumptions of either Theorem 6.5, or Theorem 6.6 below are met.

The following condition was proposed in [8].

Theorem 6.5 (The Kohn-Temam condition). Assume the following setting: the
relative boundary ∂b∂ΩΓd is a (N− 2)-dimensional manifold, and ∂Ω is of class
C2 in a neighborhood of ∂b∂ΩΓd .

Then the distribution 〈σD, p〉 is a bounded Radon measure on RN such that

|〈σD, p〉| ≤ ‖σD‖∞|p|.

Its mass is given by taking ϕ = 1 in (6.3). Finally, the density of its L N-absolutely
continuous part is σD · pa, where pa is the density of the L N-absolutely continuous
part of p.

Proof. Translating u by w, it is enough to prove the theorem for w ≡ 0. In [8,
Lemma 3.5], it is proved that, in the setting of the theorem,

lim
δ→0

1
δ

∫
Ω∩Uδ

|σ ||u|dx = 0,

with Uδ := {x ∈ RN : d(x,∂b∂ΩΓd)< δ}.
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Introduce ψδ ∈ C∞
c (Uδ ) with 0 ≤ ψδ ≤ 1, ‖∇ψδ‖∞ ≤ 2/δ and ψδ ≡ 1 in a

neighborhood of ∂b∂ΩΓd . For every ϕ ∈C∞
c (RN),

(6.21) 〈σD, p〉((1−ψδ )ϕ) =−
∫

Ω

(1−ψδ )ϕσ · e dx−
∫

Ω

(1−ψδ )ϕ f ·u dx

−
∫

Ω

(1−ψδ )σ ·[u�∇ϕ] dx+
∫

Γt

(1−ψδ )ϕg·udH N−1+
∫

Ω

∇ψδ σ ·[u�∇ϕ] dx.

In view of the properties of ψδ , the last term can be estimated as follows:

limsup
δ→0

∣∣∣∣∫
Ω

∇ψδ σ · [u�∇ϕ] dx
∣∣∣∣≤ limsup

δ→0

2‖∇ϕ‖∞

δ

∫
Ω∩Uδ

|σ ||u|dx = 0.

Passing to the limit in (6.21) we thus obtain

lim
δ→0
〈σD, p〉((1−ψδ )ϕ) = 〈σD, p〉(ϕ).

But, in view of Theorem 6.2,

〈σD, p〉(ϕ) = lim
δ→0
〈σD, p〉((1−ψδ )ϕ)≤ ‖σD‖∞ limsup

δ→0

∫
Ω∪Γd

(1−ψδ )|ϕ|d|p|

≤ ‖σD‖∞

∫
Ω∪Γd

|ϕ|d|p|,

so that the first part of the theorem follows.
The mass of 〈σD, p〉 is clearly given by taking ϕ = 1 in (6.3). As far as its

absolutely continuous part is concerned, the result follows by Theorem 6.2. �

The following result can be used to handle a certain class of non-smooth ge-
ometries, as explained below.

Theorem 6.6. Assume that, for every (u,e, p) ∈ A (0), there exists (un,en, pn) ∈
A (0) with

(6.22) (un,en, pn)≡ 0 on a neighborhood of ∂b∂ΩΓd ,

and such that

(6.23)


un ⇀ u weakly in LN/N−1(Ω ;RN)

en ⇀ e weakly in LN/N−1(Ω ;MN
sym)

pn
s→ p strictly in Mb(Ω ∪Γd ;MN

D).

Then the distribution 〈σD, p〉 is a bounded Radon measure on RN such that

|〈σD, p〉| ≤ ‖σD‖∞|p|.

Its mass is given by taking ϕ = 1 in (6.3). Finally, the density of its L N-absolutely
continuous part is σD · pa, where pa is the density of the L N-absolutely continuous
part of p.
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Proof. Let us approximate (u−w,e−Ew, p) ∈A (0) through (un,en, pn) ∈A (0)
satisfying (6.22) and (6.23). Denote by Un the neighborhood of ∂b∂ΩΓd on which
the configuration vanishes. In view of the convergences for un and en, it is readily
shown that, for every ϕ ∈C∞

c (RN),

〈σD, p〉(ϕ) = lim
n
〈σD, pn〉(ϕ).

Consider ψn ∈C∞
c (Un) such that 0 ≤ ψn ≤ 1, with ψn ≡ 1 in a neighborhhood of

∂∂ΩΓd , and apply Theorem 6.2. Then,

〈σD, pn〉(ϕ) = 〈σD, pn〉((1−ψn)ϕ)≤ ‖σD‖∞

∫
Ω∪Γd

(1−ψn)|ϕ|d|pn|

≤ ‖σD‖∞

∫
Ω∪Γd

|ϕ|d|pn|.

By taking the limit for n→ ∞, we conclude, thanks to the strict convergence of pn
to p, that

〈σD, p〉(ϕ)≤ ‖σD‖∞

∫
Ω∪Γd

|ϕ|d|p|

so that the first part of the theorem follows.
The mass of 〈σD, p〉 is clearly given by taking ϕ = 1 in (6.3). As far as its

absolutely continuous part is concerned, the result follows by Theorem 6.2. �

The density condition of Theorem 6.6 can be established in some non-smooth
situations by approximating (u,e, p) ∈A (0) by means of a local translation tech-
nique near ∂b∂ΩΓd .

We finally discuss two examples that demonstrate the range of applicability of
Theorem 6.6.
1. A two dimensional example: Let us assume that Ω ⊆R2 is a bounded Lipschitz
domain, and that ∂∂ΩΓd is composed of a finite number of points {qi}i∈I . For every
i ∈ I, there exists a suitable orthogonal coordinate system (x1,x2) and δ > 0 such
that

Ω ∩Q(qi,δ ) = {(x1,x2) ∈]−δ ,δ [2 : x2 > fi(x1)},
where Q(qi,δ ) is an open cube of center qi and side 2δ , while fi :]−δ ,δ [→R is a
Lipschitz function with fi(0) = 0. Set

Γ
i,δ

d := Γd ∩Q(qi,δ ) = {(x1, fi(x1)) : x1 ∈]−δ ,0[}

Γ
i,δ

t := Γt ∩Q(qi,δ ) = {(x1, fi(x1)) : x1 ∈]0,δ [}.

We assume that fi ≥ 0, i.e., Ω is locally on one side of the “tangent” line in qi

fi is strictly decreasing on ]−δ ,0[ and strictly increasing on ]0,δ [.
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x1

Ω ∩Q(qi,δ )

[Γ i,δ
d ∪{qi}]− τn

Γ
i,δ

t + τn

Γ
i,δ

d + τn

x2

Γ
i,δ

t

Γ
i,δ

d

FIGURE 6.1. The boundary and its translates around a point in ∂∂Ω Γd .

If we translate in the direction τn ∈R2 given in the coordinate system by (an,0)
with an > 0 and an→ 0, we clearly have (see Figure 6.1)

(6.24) [Γ i,δ
t + τn]∩Q(qi,δ )∩ (Ω ∪Γd) = /0

and

(6.25) [(Γ i,δ
d ∪{qi})− τn]∩Q(qi,δ )∩ (Ω ∪Γd) = /0.

Moreover,

(6.26) [Γ i,δ
d + τn]∩ (Ω ∪Γd) = Γ

i,δ ,n
d + τn with Γ

i,δ ,n
d ↗ Γ

i,δ
d .

Let us fix (u,e, p) ∈ A (0). By extending (u,e) and p to RN by zero and
−u�ν H N−1bΓt outside Ω and Ω ∪Γd respectively, we obtain u ∈ BD(R2), e ∈
L2(Ω ;M2

sym) and p ∈Mb(R2;M2
sym) with

Eu = e+ p in R2.

Remark that in general p is no longer M2
dev-valued since the admissibility condition

for the zero boundary value displacement is only imposed on Γd , so that u is not
necessarily orthogonal to ν along Γt .
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Let δ be so small that the cubes Q(qi,δ ) are disjoint, and let ϕi ∈C∞
c (Q(qi,δ ))

be such that ϕi ≡ 1 in a neighborhood of qi. We can write

u = ∑
i∈I

ϕiu+

(
1−∑

i∈I
ϕi

)
u.

Set

(6.27) ei := ϕie+∇ϕi�u and pi := ϕi p.

Let us then set
ui,n := ϕi(x− τn)u(x− τn),

with associated elastic and plastic strains (ei,n, pi,n) defined following (6.27). In
particular, pi,n is the push forward along the translation τn of the measure pi. We
restrict (ui,n,ei,n) to Ω and pi,n to Ω ∪Γd . Clearly,

Eui,n = ei,n + pi,n in Ω ,

and (6.25) implies that

(6.28) (ui,n,ei,n, pi,n)≡ 0 in a neighborhood of Γd ∪{qi}.
Moreover, in view of (6.24), pi,n has values in M2

D so that

(6.29) (ui,n,ei,n, pi,n) ∈A (0).

Finally notice that

(6.30)


ui,n→ ui strongly in L2(Ω ;R2)

ei,n→ ei strongly in L2(Ω ;M2
sym)

pi,n
s→ pi strictly in Mb(Ω ∪Γd ;M2

D).

The first two convergences follow since only translations are involved. Concerning
the convergence for the plastic strains, since pi,n is the push-forward of pi along
the translation τn, the strict convergence in Ω ∪Γd results from the fact that pi,n

has a concentrated part on the intersection of Γ
i,δ

d +τn with Ω ∪Γd , which satisfies
(6.26).

In order to approximate (u,e, p) ∈A (0), we can consider the configurations

(un,en, pn) ∈ BD(Ω)×L2(Ω ;M2
sym)×Mb(Ω ∪Γd ;M2

D)

given by

un := ∑
i∈I

ui,n +

(
1−∑

i∈I
ϕi

)
u

en := ∑
i∈I

ei,n +

(
1−∑

i∈I
ϕi

)
e−∑

i∈I
∇ϕi�u

and

pn := ∑
i∈I

pi,n +

(
1−∑

i∈I
ϕi

)
u.
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In view of (6.28), (6.29) and (6.30), (un,en, pn) ∈ A (0) with (un,en, pn) ≡ 0 in a
neighborhood of ∂∂ΩΓd and

un→ u strongly in L2(Ω ;R2)

en→ e strongly in L2(Ω ;M2
sym)

pn
s→ p strictly in Mb(Ω ∪Γd ;M2

D),

so that the density result follows.
We emphasize that the previous construction is based on the geometric proper-

ties (6.24), (6.25) and (6.26) of ∂Ω near a point of ∂∂ΩΓd .
2. The case of a cube: Ω ⊆ R3 is now a cube, with Γd given by one of its
faces. We consider two opposite sides l1 and l2 of Γd , and let V1,V2 two bounded
open neighborhoods of l1, l2 such that V̄1∩V̄2 = /0. Also consider ψi ∈C∞

c (Vi) with
ψi = 1 in a neighborhood of li. Finally, for i = 1,2, let πi be a plane containing li
such that Ω ∩πi = li.

Given (u,e, p) ∈A (0), we write

u = ψ1u+ψ2u+(1−ψ1−ψ2)u = u1 +u2 +u3,

with associated elastic and plastic strains given by

e1 := ψ1e+∇ψ1�u, e2 := ψ2e+∇ψ2�u,

e3 := (1−ψ1−ψ2)e− (∇ψ1 +∇ψ2)�u

and

p1 := ψ1 p, p2 := ψ2 p, p3 := (1−ψ1−ψ2)p.

We can approximate (ui,ei, pi) ∈A (0), for i = 1,2, by translating with respect
to τ i

n→ 0 with τ i
n ∈ πi and τ i

n ⊥ li. Indeed, setting Γ i
d := Γd ∩Vi and Γ i

t := Γt ∩Vi,
a suitable choice of the direction of τ i

n produces the analogue of (6.24), (6.25) and
(6.26), i.e.,

[Γ i
t + τ

i
n]∩ (Ω ∪Γd) = /0

[(Γ i
d ∪{li})− τ

i
n]∩ (Ω ∪Γd) = /0

and

[Γ i
d + τ

i
n]∩ (Ω ∪Γd) = Γ

i,n
d + τ

i
n with Γ

i,n
d ↗ Γ

i
d .

The configuration (u3,e3, p3) ∈ A (0) is approximated by translating with re-
spect to τ3

n =−anν , where ν is the exterior normal to Ω on Γd , and an↘ 0.
The density result follows.
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