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Abstract

In this paper we study the relaxation with respect to the L1 norm of integral
functionals of the type

F (u) =

∫

Ω

f(x, u,∇u) dx u ∈ W 1,1(Ω; Sd−1),

where Ω is a bounded open set of RN , Sd−1 denotes the unite sphere in Rd,
N and d being any positive integers, and f satisfies linear growth conditions in
the gradient variable. In analogy with the unconstrained case, we show that, if,
in addition, f is quasiconvex in the gradient variable and satisfies some technical
continuity hypotheses, then the relaxed functional F has an integral representation
on BV (Ω; Sd−1) of the type

F (u) =

∫

Ω

f(x, u,∇u) dx +

∫

S(u)

K(x, u−, u+, νu) dHN−1

+

∫

Ω

f∞(x, u, dC(u)),

where the suface energy density K is defined by a suitable Dirichlet-type problem.
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1 Introduction

In this paper we study the relaxation with respect to the L1 norm of integral
functionals of the type

F (u) =
∫

Ω

f(x, u,∇u) dx u ∈ W 1,1(Ω;Sd−1), (1.1)

where Ω is a bounded open set of RN , Sd−1 denotes the unite sphere in Rd, N
and d being any positive integers, and f satisfies linear growth conditions in the
gradient variable. The relaxed functional F is defined by

F (u) := inf{lim inf
n→+∞

F (un) : un ∈ W 1,1(Ω;Sd−1), un → u in L1}. (1.2)

The main motivation for this analysis is the use of constrained energy functionals
of this kind in variational models for the study of equilibria of magnetostrictive
materials (see [7]).

A wide literature is available for analogous relaxation problems in the non
constrained case. In particular, we refer to the work by Fonseca and Müller [12],
where they study the relaxation with respect to the L1 norm of integral functional
of the type (1.1) but defined for u ∈ W 1,1(Ω;Rd), under the same growth conditions
on f . They prove that, if, in addition, f is quasiconvex in the gradient variable and
satisfies some technical continuity hypotheses (see Theorem 2.8), then the relaxed
functional F has an integral representation on BV (Ω;Rd) of the type

F (u) =
∫

Ω

f(x, u,∇u) dx +
∫

S(u)

K(x, u−, u+, νu) dHN−1

+
∫

Ω

f∞(x, u, dC(u)), (1.3)

(see Section 2.2 for the definition of BV function and all the quantities above),
where f∞ is the recession function of f (see (2.9)) and the surface energy density
K(x, a, b, ν) is defined by a Dirichlet-type problem on a unit cell in the direction
ν (see (2.14)).

In the case the admissible functions are constrained to take values on a man-
ifold, the problem of relaxation with respect to stronger topologies of functional
of the type (1.1) has been faced by Dacorogna, Fonseca, Malý and Trivisa in [9].
More precisely, they study the relaxation with respect to the weak topology in
W 1,p(Ω), p ≥ 1, of functional of the form

F(u) =
∫

Ω

f(∇u) dx, u ∈ W 1,p(Ω;M),

where f is a positive continuous function, M is any C1 manifold in Rd, including
in particular the case M = Sd−1. It turns out that the relaxed functional F is of

2



the form

F(u) =
∫

Ω

QT f(u,∇u) dx, u ∈ W 1,p(Ω;M), (1.4)

where QT f is the so called tangential quasiconvexification of f , defined by

QT f(y, ξ) := inf

{∫

(0,1)N

f(∇ϕ) dx, ϕ ∈ W 1,∞
0 ((0, 1)N ; Ty(M))

}
,

for y ∈ M and ξ ∈ [Ty(M)]N , where Ty(M) denotes the tangent space to M at
y.

In [2] it was shown that, if F is of the form

F (u) =
∫

Ω

f(u,∇u) dx, u ∈ W 1,1(Ω; Sd−1),

with f satisfying some technical continuity conditions and having linear growth in
the gradient variable, then the relaxation of F with respect to the L1 norm is still
of the form (1.4) on W 1,1(Ω; Sd−1). In particular, if f is tangentially quasiconvex,
that is f = QT f , then F is lower semicontinuous with respect to the L1 norm on
W 1,1(Ω; Sd−1). Anyway, this result is not satisfactory as far as we are concerned
with minimum problems involving functionals of this kind, since sequences with
bounded energies are not compact in W 1,1(Ω;Sd−1).

In the case d = 2 and under convexity hypotheses in the gradient variable,
the problem of relaxation in BV (Ω;S1) of integral functionals with linear growth
defined on C1(Ω;S1) has been faced by Giaquinta, Modica and Souček in [14] (see
also Demengel and Hadiji [11]).

In this paper, we consider an integral functional of the type (1.1) and we give
an integral representation in BV (Ω; Sd−1) of the relaxed functional F defined by
(1.2). More precisely, we prove that, under hypotheses on f and f∞ analogous with
those given in [12] (see (H1)-(H5) in Section 3) and if in addition f is tangentially
quasiconvex, then F is still of the form (1.3) on BV (Ω;Sd−1) (see Theorem 3.1).
The main difference with respect to the result proved in [12] is that in the Dirichlet
problem defining the surface energy density K the test functions take values on
Sd−1 instead of all the space Rd (see definition (3.18)). It turns out, for example,
that if we consider the isotropic case f(x, y, z) = |z|, we obtain K(x, a, b, ν) =
dg(a, b), dg denoting the geodetic distance on the unit sphere, while K(x, a, b, ν) =
|a− b| in the non constrained case considered in [12] (see Remark 4.3).

It is worth noting that, thanks to a strong density result of smooth functions
between manifolds in Sobolev Spaces proved by Bethuel and Zheng in [6] and in a
more general version by Bethuel in [5], in (1.2) we can restrict to approximating
sequences un belonging to a class of Sd−1-valued smooth functions. This class is
C∞(Ω;Sd−1) if d 6= 2, while, if N > 1 and d = 2 is given by all the S1-valued
functions which are C∞ except at most on sets of codimension 2 (see Theorem 2.2
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and Remark 3.3). On the other hand, in [14] it was shown that, in the case d = 2,
if one restricts to approximating sequences in C1(Ω;S1), nonlocal terms appear in
the relaxed functional.

The proof of our result closely follows the outline of the proof of the inte-
gral representation result in [12], based on blow-up techniques and a localization
argument. The main difficulty to adapt the proof of [12] to our setting is that
convolution and cut-off arguments cannot be applied in a standard way, due to
the fact that the admissible functions are constrained to take values on the non
convex set Sd−1. We overcome this difficulty by using a construction analogous
with that used in the proof of the density results in [6] (see also [16] and [15]).
It consists in suitably projecting a smooth function taking values on the unit ball
onto Sd−1, without increasing too much its energy (see the proof of Lemmas 5.2
and 6.4 and Proposition 6.2).

We eventually derive a relaxation result for functionals of the type

G(u) =
∫

Ω

f(x, u,∇u) +
∫

RN

|hu|2 dx−
∫

Ω

〈hext, u〉 dx, u ∈ W 1,1(Ω;SN−1),

subject to the constraint
{

curl hu = 0
div (hu + uχΩ) = 0,

(1.5)

with f satisfying the hypotheses described above. Functionals of this kind gener-
alize those involved in variational models for micromagnetics, where u represents
the magnetization of a ferromagnetic material subject to an external magnetic
field hext and hu is the induced magnetic field related to u through the Maxwell’s
equations (1.5) (see [7], [17] for a detailed explanation of the model). We note
that the additional terms are continuous and so they do not affect the form of the
relaxed functional G, which is given by

G(u) = F (u) +
∫

RN

|hu|2 dx−
∫

Ω

〈hext, u〉 dx, u ∈ BV (Ω;SN−1),

with hu satisfying (1.5) and F given by (1.3) (see Theorem 7.2).

2 Preliminaries and notation

We denote by 〈·, ·〉 the scalar product in RN and with | · | the usual euclidean
norm, without specifying the dimension N when there is no risk of confusion. For
every t ∈ R, [t] denotes its integer part. Given ν ∈ SN−1, Qν is an open unit cube
centered at the origin with two of its faces normal to ν.

If Ω is a bounded open subset of RN , A(Ω) and B(Ω) are the families of open
and Borel subsets of Ω, respectively. We denote by XB the characteristic function
of the set B ∈ B(Ω).
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If µ is a Borel measure and B is a Borel set, then the measure µ B is defined
as µ B(A) = µ(A∩B). We denote by LN the Lebesgue measure in RN and byHk

the k-dimensional Hausdorff measure, k ≥ 0. The notation a.e. stands for almost
everywhere with respect to the Lebesgue measure, unless otherwise specified. We
use standard notations for Lebesgue and Sobolev spaces.

2.1 Strong density result in W 1,1(Ω; Sd−1)

In this section we recall a result about the density of Sd−1-valued smooth functions
in W 1,1(Ω;Sd−1), which has been proved in [6] and, in a more general version, in
[5]. We write it in a form which is suitable to our purposes.

Definition 2.1 Given N ∈ N, N > 1, we will denote by G the family of all closed
subsets of C∞ (N − 2)-dimensional manifolds of RN .

Theorem 2.2 Let N, d ∈ N, Ω ⊂ RN be an open set and let D(Ω;Sd−1) ⊂
W 1,1(Ω; Sd−1) be defined by

D(Ω;Sd−1) := C∞(Ω;Sd−1) ∩W 1,1(Ω;Sd−1), (2.6)

for d 6= 2, if N > 1, and for any d ∈ N, if N = 1,

D(Ω;S1) :=

{u ∈ W 1,1(Ω; S1) : ∃k ∈ N,Γi ∈ G, i = 1, . . . , k : u ∈ C∞(Ω \
k⋃

i=1

Γi; S1)}, (2.7)

for N > 1. Then D(Ω;Sd−1) is dense in W 1,1(Ω;Sd−1) for the W 1,1 norm.

2.2 Functions of bounded variation

We recall some definitions and basic results on functions with bounded variation.
Our main reference is the book [3].

Definition 2.3 Let u ∈ L1
(
Ω;Rd

)
, we say that u is a function with Bounded

Variation in Ω, we write u ∈ BV
(
Ω;Rd

)
, if the distributional derivative Du of u

is representable by a d×N matrix valued measure on Ω with finite total variation
|Du| (Ω) whose entries are denoted by Djui, i.e., if ϕ ∈ C1

c (Ω) then
∫

Ω

ui∂jϕdx = −
∫

Ω

ϕdDjui.

Define the approximate upper and lower limit of each component ui, i = 1, . . . , d,
by

u+
i (x) := inf

{
t ∈ R : lim

ε→0+

1
εN
LN ({ui > t} ∩B(x, ε)) = 0

}
,
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u−i (x) := sup
{

t ∈ R : lim
ε→0+

1
εN
LN ({ui < t} ∩B(x, ε)) = 0

}
.

Then the jump set of u , denoted by S(u), is defined by

S(u) := ∪d
i=1{x ∈ Ω : u−i < u+

i }.

If u ∈ BV
(
Ω;Rd

)
, then S(u) turns out to be countably

(HN−1, N − 1
)

rectifiable,
i.e.,

S(u) = N ∪
⋃

i≥1

Ki,

where HN−1 (N) = 0 and each Ki is a compact subset of a C1 manifold. If
x ∈ Ω \ S(u), then u(x) is understood as the common value of (u+

1 , . . . , u+
d ) and

(u−1 , . . . , u−d ) with u±i (x) ∈ [−∞,+∞] for i = 1, . . . , d. It can be shown that
u(x) ∈ Rd for HN−1-a.e. x ∈ Ω \ S(u).

Theorem 2.4 If u ∈ BV (Ω;Rd), then (i) for LN -a.e. x ∈ Ω

lim
ε→0+

1
εN

∫

B(x,ε)

|u(y)− u(x)− 〈∇u(x), x− y〉| dy = 0,

where ∇u is the density of the absolutely continuous part of Du with respect to
the Lebesgue measure LN ; (ii) for HN−1 a.e. x ∈ S(u) there exists a unit vector
ν(x) ∈ SN−1 and there exist u−(x), u+(x) ∈ Rd such that

lim
ε→0+

1
εN

∫

{y∈B(x,ε):〈y−x,ν(x)〉>0}

|u(y)− u+(x)| dx = 0,

lim
ε→0+

1
εN

∫

{y∈B(x,ε):〈y−x,ν(x)〉<0}

|u(y)− u−(x)| dx = 0;

(iii) for HN−1 a.e. x ∈ Ω \ S(u),

lim
ε→0+

1
εN

∫

B(x,ε)

|u(y)− u(x)| dx = 0.

In what follows u+ and u− will denote the vectors introduced in (ii) above.
The next result will be used in Section 5.2.

Lemma 2.5 For HN−1 a.e. x0 ∈ S(u),

lim
ε→0+

1
εN−1

∫

S(u)∩(x0+εQν(x0 )

|u+(x)− u−(x)| dHN−1(x) = |u+(x0)− u−(x0)|.

6



If u ∈ BV (Ω;Rd), then Du can be decomposed into three orthogonal measure as

Du = ∇u dx + (u+ − u−)⊗ νudHN−1 S(u) + C(u).

Here C(u) is the so called Cantor part of Du and satisfies the property that
|C(u)|(B) = 0 for any B ∈ B(Ω) such that HN−1(B) < +∞. We recall that, by a
result of Alberti in [1], the density of the Cantor part C(u) defined by

A(x) := lim
ε→B(x,ε)

C(u)(B(x, ε))
|C(u)|(B(x, ε))

,

is a rank-one matrix for |C(u)| a.e. x ∈ Ω.
We denote by BV (Ω; Sd−1) the space of functions u ∈ BV (Ω;Rd) such that

u(x) ∈ Sd−1 for a.e. x ∈ Ω.

Remark 2.6 It is easy to prove that, if u ∈ BV (Ω;Sd−1), then, for a.e x ∈ Ω,
∇u(x) ∈ [Tu(x)(Sd−1)]N and, for |C(u)| a.e. x ∈ Ω, A(x) ∈ [Tu(x)(Sd−1)]N , where,
given y ∈ Sd−1, Ty(Sd−1) denotes the tangent space to Sd−1 at y.

The next lemma (see [4], Lemma 4.5) will be used in Section 6.

Lemma 2.7 Let u ∈ BV (Ω : Rd), let ρ be a convolution kernel, and let

un(x) := (u ∗ ρn)(x),

where ρn(x) := nNρ(nx). Then
∫

B(x0,ε)

h(x)|∇un(x)| dx ≤
∫

B(x0,ε+ 1
n )

(h ∗ ρn)(x)|Du(x)|,

whenever dist (x0, ∂Ω) > ε + 1
n and h is a nonnegative Borel function;

lim
n→+∞

∫

B(x0,ε)

θ(∇un(x)) dx =
∫

B(x0,ε)

θ(Du(x)),

for every function θ positively homogeneous of degree one and for every ε ∈
(0, dist (x0, ∂Ω)) such that |Du|(∂B(x0, ε)) = 0; if, in addition, u ∈ L∞(Ω;Rd),
then for every x0 ∈ Ω \ S(u),

lim
n→+∞

un(x0) = u(x0), lim
n→+∞

(|un − u| ∗ ρn)(x0) = 0.

2.3 Quasiconvexity and relaxation results

A function f : Rd×N 7→ R is said to be quasiconvex if

f(ξ) ≤
∫

(0,1)N

f(ξ +∇ϕ) dx
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for all ξ ∈ Rd×N and for all ϕ ∈ W 1,∞
0 ((0, 1)N ;Rd). We recall that if f is quasi-

convex and
|f(ξ)| ≤ C(1 + |ξ|), (2.8)

then f is Lipschitz continuous (see [8]). We define the recession function of f by

f∞(ξ) := lim sup
t→+∞

f(tξ)
t

. (2.9)

Note that f∞ is positively homogeneous of degree one and it can be proved that
if f is quasiconvex and satisfies (2.8), then also f∞ is quasiconvex (see [12]).

Let f : Ω× Rd × Rd×N 7→ [0, +∞) and F : L1(Ω;Rd) 7→ [0, +∞] defined by

F (u) :=





∫
Ω

f(x, u,∇u) dx if u ∈ W 1,1(Ω;Rd)

+∞ otherwise.
(2.10)

Let F : L1(Ω;Rd) → [0, +∞] the relaxation of F with respect to the L1 topology,
namely,

F (u) = inf{lim inf
n

F (un) : un → u in L1(Ω)}. (2.11)

If (a, b, ν) ∈ Rd × Rd × SN−1, let {ν1, . . . νN−1, ν} form an orthonormal basis of
RN and define

A(a, b, ν) :=
{
ϕ ∈ W 1,1(Qν ;Rd) : ϕ(x) = a if x · ν = − 1

2 , ϕ(x) = b if x · ν = 1
2 ,

ϕ is periodic with period 1 in the ν1, . . . , νN−1 directions
}
. (2.12)

In [12] the following theorem was proved.

Theorem 2.8 Let f satisfy the following hypotheses:
(F1) f is continuous;
(F2) f(x, u, ·) is quasiconvex;
(F3) There exist two positive constant c, C such that

c|ξ| ≤ f(x, u, ξ) ≤ C(1 + |ξ|)

for all (x, u, ξ) ∈ Ω× Rd × Rd×N ;
(F4) For every compact J ⊂⊂ Ω × Rd there exist a continuous function ω with
ω(0) = 0 such that

|f(x, u, ξ)− f(x′, u′, ξ)| ≤ ω(|x− x′|+ |u− u′|)(1 + |ξ|)

for all (x, u, ξ), (x′, u′, ξ) ∈ J × Rd×N . In addition, for every x0 ∈ Ω and for all
δ > 0 there exists ε > 0 such that if |x− x0| ≤ ε, then

f(x, u, ξ)− f(x0, u, ξ) ≥ −δ(1 + |ξ|)
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for every (u, ξ) ∈ Rd × Rd×N ;
(F5) there exist C ′ > 0, 0 < m < 1 such that

|f∞(x, u, ξ)− f(x, u, ξ)| ≤ C(1 + |ξ|1−m)

for every (x, u, ξ) ∈ Ω× Rd × Rd×N . Then

F (u) =





∫
Ω

f(x, u,∇u) dx +
∫

S(u)
H(x, u−, u+, νu) dHN−1 +

∫
Ω

f∞(x, u, dC(u))

if u ∈ BV (Ω;Rd)

+∞ otherwise,

(2.13)

where H : Ω× Rd × Rd × SN−1 → R is defined by

H(x, a, b, ν) := inf
{∫

Qν

f∞(x, ϕ,∇ϕ) dx : ϕ ∈ A(a, b, ν)
}

. (2.14)

Let, now, M ⊆ Rd be a C1 manifold and, given y ∈ M, denote by Ty(M) the
tangent space to M at y.

The following definition has been introduced in [9].

Definition 2.9 Given a function f : Rd×N 7→ R, the tangential quasiconvexifica-
tion of f is defined by

QT f(y, ξ) := inf{
∫

(0,1)N

f(y, ξ +∇ϕ) dx : ϕ ∈ W 1,∞
0 ((0, 1)N ; Ty(M))}

for all y ∈M and ξ ∈ [Ty(M)]N .

In [9] the following relaxation result was proved.

Theorem 2.10 If f : Rd×N → [0, +∞) is a continuous function satisfying

0 ≤ f(ξ) ≤ C(1 + |ξ|p)
for some p ≥ 1, C > 0, and all ξ ∈ Rd×N , then

F(u) =
∫

Ω

QT f(u,∇u) dx, u ∈ W 1,p(Ω;M),

where

F(u) := inf{lim inf
n→+∞

∫

Ω

f(∇un) dx : un ∈ W 1,p(Ω;M), un ⇀ u in W 1,p}.

Definition 2.11 A function f : M× Rd×N 7→ R, is said to be tangentially qua-
siconvex if

f(y, ξ) :=
∫

(0,1)N

f(y, ξ +∇ϕ) dx

for all y ∈M and ξ ∈ [Ty(M)]N and ϕ ∈ W 1,∞
0 ((0, 1)N ;Ty(M).
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Remark 2.12 In [2], it was observed that the result given by Theorem 2.10 still
holds true if f depends continuously also on u. In particular, we infer that if f is
tangentially quasiconvex, then the functional

F(u) :=
∫

Ω

f(u,∇u) dx, u ∈ W 1,p(Ω;M)

is W 1,p-sequentially weakly lower semicontinuous.

Let Py the orthogonal projection of Rd onto the tangent space Ty(M) and consider
the function f : M× Rd×N 7→ R defined by

f(y, ξ) := f(y, Pyξ),

with Pyξ := (Pyξ1, . . . , PyξN ) and ξi the ith columns of ξ ∈ Rd×N . In [9] it was
proved that for any y ∈M and ξ ∈ [Ty(M)]N

QT f(y, ξ) = Qf(y, ξ),

where Qf is the quasiconvex envelope of f defined by

Qf(y, ξ) := inf{
∫

(0,1)N

f(y, ξ +∇ϕ) dx : ϕ ∈ W 1,∞
0 ((0, 1)N ;Rd)}.

In particular, if f is tangentially quasiconvex, then f is quasiconvex.
In the rest of the paper a tangentially quasiconvex function f will be identified

by the function f defined above. So we may think a tangentially quasiconvex
function as the restriction of a quasiconvex function on the set T (M) ⊆M×Rd×N

defined by
T (M) := {(y, ξ) : y ∈M, ξ ∈ [Ty(M)]N}. (2.15)

3 Statement of the main result

Let N, d ∈ N, with d ≥ 2. Given a bounded open subset Ω of RN and a function
f : Ω× Rd × Rd×N → [0, +∞), define the functional F : L1(Ω;Rd) → [0,+∞] as

F (u) :=





∫
Ω

f(x, u,∇u) dx if u ∈ W 1,1(Ω;Sd−1)

+∞ otherwise.
(3.16)

Note that, in order that the definition of F is well posed, it suffices that the
integrand f is defined only on Ω×T (Sd−1), where T (Sd−1) is given by (2.15) with
M = Sd−1.

On f we will consider the following set of hypotheses:
(H1) f is continuous;
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(H2) f(x, ·, ·) is a tangentially quasiconvex function according to Definition 2.11
with M = Sd−1;
(H3) there exist two positive constants c1, c2 such that

c1|ξ| ≤ f(x, y, ξ) ≤ c2(|ξ|+ 1)

for every x ∈ Ω, y ∈ Sd−1, ξ ∈ [Ty(Sd−1)]N ;
(H4) For every compact J ⊂ Ω, there exist a continuous function ω with ω(0) = 0
such that

|f(x, y, ξ)− f(x′, y′, ξ)| ≤ ω(|x− x′|+ |y − y′|)(1 + |ξ|)
for every (x, y, ξ), (x′, y′, ξ) ∈ J × Sd−1 × Rd×N ;
(H5) there exist C > 0, 0 ≤ m < 1 such that

|f∞(x, y, ξ)− f(x, y, ξ)| ≤ C(1 + |ξ|1−m)

for every x ∈ Ω, y ∈ Sd−1, ξ ∈ [Ty(Sd−1)]N .
The main result of the paper is the integral representation for the relaxation

F : L1(Ω;Rd) → [0, +∞) of F with respect to the L1 topology (see (2.11)).
Define

P(a, b, ν) :=
{
ϕ ∈ W 1,1(Qν ; Sd−1) : ϕ(x) = a if x · ν = − 1

2 , ϕ(x) = b if x · ν = 1
2 ,

ϕ is periodic with period 1 in the ν1, ν2, . . . , νN−1 directions
}
.

Theorem 3.1 If (H1)–(H5) hold, then

F (u) =





∫
Ω

f(x, u,∇u) dx +
∫

S(u)
K(x, u−, u+, νu) dHN−1 +

∫
Ω

f∞(x, u, dC(u))

if u ∈ BV (Ω;Sd−1)

+∞ otherwise,

(3.17)

where K : Ω× Sd−1 × Sd−1 × SN−1 → R is defined by

K(x, a, b, ν) := inf
{∫

Qν

f∞(x, ϕ,∇ϕ) dx : ϕ ∈ P(a, b, ν)
}

(3.18)

Remark 3.2 If f satisfies (H2)–(H4), then, using the definition of recession func-
tion, one can easily prove that:
(H2’) f∞(x, ·, ·) is tangentially quasiconvex;
(H3’) c1|ξ| ≤ f∞(x, y, ξ) ≤ c2|ξ| for every x ∈ Ω, y ∈ Sd−1, ξ ∈ [Ty(Sd−1)]N ;
(H4’) For every compact J ⊂ Ω, there exist a continuous function ω with ω(0) = 0
such that

|f∞(x, y, ξ)− f∞(x′, y′, ξ)| ≤ ω(|x− x′|+ |y − y′|)|ξ|
for every (x, y, ξ), (x′, y′, ξ) ∈ J × Sd−1 × Rd×N .
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Remark 3.3 By Theorem 2.2 and by (H1) and (H3), we can restrict to sequences
of smooth approximating functions in the definition of F , that is

F (u) = inf{lim inf
n

∫

Ω

f(x, un,∇un) dx : un → u in L1(Ω;Rd), un ∈ D(Ω;Sd−1)},

where D(Ω;Sd−1) is defined in (2.6) and (2.7).

4 Properties of the surface density function

Before proving Theorem 3.1 we state some properties of the surface energy density
K, we will need in the sequel, and we show a more explicit characterization of it
under isotropy assumption on f∞.

The following lemma is the analogue of [12] Lemma 2.15 .

Lemma 4.1 Let (H1)–(H4) hold and let K : Ω×Sd−1×Sd−1×SN−1 → [0,+∞)
be defined by (3.18). Then

(a) |K (x, a, b, ν)−K (x, a′, b′, ν)| ≤ c (|a− a′|+ |b− b′|) for every (x, a, b, ν),
(x, a′, b′, ν) ∈ Ω× Sd−1 × Sd−1 × SN−1;

(b) (x, ν) 7→ K(x, a, b, ν) is upper semicontinuous for every (a, b) ∈ Sd−1×Sd−1;

(c) K is upper semicontinuous in Ω× Sd−1 × Sd−1 × SN−1;

(d) K (x, a, b, ν) ≤ C|b− a| for every (x, a, b, ν) ∈ Ω× Sd−1 × Sd−1 × SN−1;

(e) for all x ∈ Ω, ε > 0, there exists δ > 0 such that if |x′ − x| < δ, then
|K(x′, a, b, ν)−K(x, a, b, ν)| ≤ εC|b− a|.

Proof. (a) Let ϕ ∈ P(a, b, ν) and let γ1, γ2 : [1/4, 1/2] → Sd−1 be smooth and
such that

γ1(1/4) = b, γ1(1/2) = b′, γ2(1/4) = a, γ2(1/2) = a′,

∫ 1/2

1/4

|γ′1(t)| dt ≤ C|b− b′|,
∫ 1/2

1/4

|γ′2(t)| dt ≤ C|a− a′|. (4.19)

Then define ϕ∗ ∈ P(a′, b′, ν) by

ϕ∗(y) =





ϕ(2y) if |〈y, ν〉| < 1/4
γ1(〈y, ν〉) if 1/4 < 〈y, ν〉 < 1/2
γ2(−〈y, ν〉) if −1/2 < 〈y, ν〉 < −1/4.

So far, arguing as in the proof of [12] Lemma 2.15 (a), by using the periodicity of
ϕ, the growth condition (H3’) on f∞ and (4.19), we get

K(x, a′, b′, ν) ≤
∫

Qν

f∞(x, ϕ∗(y),∇ϕ∗(y) dy
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≤
∫

Qν

f∞(x, ϕ(y),∇ϕ(y) dy + C(|a− a′|+ |b− b′|).

Then, by the arbitrariness of ϕ ∈ P(a, b, ν), we conclude that

K(x, a′, b′, ν) ≤ K(x, a, b, ν) + C(|a− a′|+ |b− b′|).
The proof of (b) is exactly analogous to that of [12] Lemma 2.15 (b) and hypotheses
(H3’) and (H4’) on f∞ are needed. Note that (c) is an immediate consequence of
(a) and (b).
(d) Use the growth condition (H3’) and consider the characterization of K given
by Lemma 4.2 and Remark 4.3 below when f∞(x, u, ξ) = |ξ|.

Finally the proof of (e) can be carried out exactly as in Proposition 2.4 (ii)
of [13].

The following lemma is the analogue of [13] Proposition 2.6 (iii) and show
that, if f∞ satisfies an isotropy assumption, then the surface density K can be
calculated by restricting the infimum to functions with one-dimensional profile.
We omit the proof since it is exactly the same of that of [13] Proposition 2.6. (iii).

Lemma 4.2 Let K : Ω × Sd−1 × Sd−1 × SN−1 → [0,+∞) be defined by (3.18)
and let f∞ isotropic, i.e., for every (x, u, z) ∈ Ω × Sd−1 × Rd×N and ν ∈ Sn−1

there holds

f∞ (x, u, zν ⊗ ν) ≤ f∞ (x, u, z) . (4.20)

Then

K(x, a, b, ν)

= inf
{∫ 1

0

f∞(x, γ(t), γ′(t)⊗ ν) dt : γ ∈ W 1,1((0, 1); Sd−1), γ(0) = a, γ(1) = b

}
.

Remark 4.3 In the particular case f(x, u, ξ) = h(|ξ|) with lim
t→+∞

h(t)
t = 1, then

f∞(x, u, ξ) := |ξ| and so condition (4.20) is satisfied. Thus, by Lemma 4.2, we get

K(x, a, b, ν) = inf
{∫ 1

0

|γ′(t)| dt : γ ∈ W 1,1((0, 1); Sd−1), γ(0) = a, γ(1) = b

}

=: dg(a, b),

where dg denotes the geodesic distance on Sd−1.

5 Estimate from below

Set, for u ∈ BV (Ω;Sd−1), B ∈ B(Ω)

G(u,B) :=
∫

B

f(x, u,∇u) dx +
∫

S(u)∩B

K(x, u−, u+, νu) dHN−1
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+
∫

B

f∞(x, u, dC(u)).

By simplicity, we denote G(u) = G(u, Ω).

Proposition 5.1 Let (H1)–(H5) hold and let un ∈ W 1,1(Ω;Sd−1) such that un →
u in L1(Ω;Rd) and lim infn F (un) < +∞. Then u ∈ BV (Ω;Sd−1) and

lim inf
n

F (un) ≥ G(u) (5.21)

Proof. We may assume without loss of generality that

lim inf
n

F (un) = lim
n

F (un) < +∞.

Then by the growth hypothesis (H3), we get

sup
n
‖un‖W 1,1(Ω;Sd−1) < +∞,

from which we immediately derive that u ∈ BV (Ω;Sd−1).
Since f ≥ 0, up to passing to a subsequence, we may assume that there exists

a non-negative finite Radon measure µ on Ω such that

f(·, (un(·),∇un(·))LN Ω → µ

weakly* in the sense of measures. Using the Radon-Nykodim’s Theorem we de-
compose µ in the sum of four mutually orthogonal measures

µ = µaLN + µc|Dcu|+ µS |u+ − u−|HN−1 S(u) + µo,

we claim that
µa(x0) ≥ f (x0, u(x0),∇u(x0)) (5.22)

for a.e. x0 ∈ Ω;

µc(x0) ≥ f∞
(

x0, ũ(x0),
dC(u)

d‖C(u)‖ (x0)
)

(5.23)

for ‖C(u)‖ a.e. x0 ∈ Ω;

µS(x0) ≥ 1
|u+(x0)− u−(x0)|K

(
x0, u

+(x0), u−(x0), νu(x0)
)

(5.24)

for |u+ − u−|HN−1 S(u) a.e. x0 ∈ Ω.
Assuming the previous inequalities shown, to conclude consider an increasing

sequence of smooth cut-off functions (ϕi) ⊂ C∞0 (Ω) such that 0 ≤ ϕi ≤ 1 and
supi ϕi(x) = 1 on Ω, then for every i ∈ N we have

lim
n

F (un) ≥ lim inf
n

∫

Ω

f (x, un,∇un) ϕi dx

=
∫

Ω

ϕidµ ≥
∫

Ω

f (x, u,∇u)ϕi dx +
∫

Ω

f∞
(

x, ũ,
dC(u)

d‖C(u)‖
)

ϕid‖C(u)‖

+
∫

S(u)

K
(
x, u+, u−, νu

)
ϕi dHN−1.
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Eventually, by letting i → +∞ and applying the Monotone Convergence Theorem,
we get (5.21).

In the following subsections we prove (5.22), (5.23) and (5.24).

5.1 The density of the diffuse part

Let ϕ : [0, +∞) → [0, 1] a Lipschitz function such that ϕ ≡ 0 on [0, 1/2] and ϕ ≡ 1
on [1, +∞), and consider the function f̃ : Ω× Rd × Rd×N → [0, +∞) defined by

f̃(x, u, ξ) := ϕ(|u|)f(x,
u

|u| , Puξ).

Then f̃ is an extension of f and, for any ε > 0, it can be easily verified that
hypotheses (H1)–(H5) on f imply that the function

fε(x, u, ξ) := f̃(x, u, ξ) + ε|ξ|

satisfies hypotheses (F1)–(F5) of Theorem 2.8. Hence, given un as in Proposition
5.1, for every A ∈ A(Ω) there holds, by Theorem 2.8,

lim inf
n

∫

A

f(x, un,∇un) dx ≥
∫

A

fε(x, un,∇un) dx− ε sup
n
‖∇un‖L1(Ω;Rd×N )

≥
∫

A

fε(x, u,∇u) dx +
∫

A

f∞ε (x, u, dC(u))− ε sup
n
‖∇un‖L1(Ω;Rd×N )

Then, letting ε tend to 0, we get

lim inf
n

∫

A

f(x, un,∇un) dx ≥
∫

A

f(x, u,∇u) dx +
∫

A

f∞(x, u, dC(u))

for every A ∈ A(Ω). From this, it is easy to infer (5.22) and (5.23).

5.2 The density of the jump part

To prove (5.24) we apply the same blow-up argument of [12] Section 3. Recall that
Lemma 2.5, Theorem 3.77 [3] and Radon-Nykodym’s Theorem yield for HN−1 a.e.
x0 ∈ Ju

lim
t→0+

1
tn−1

∫

S(u)∩(x0+tQν(x0))

∣∣u+(x)− u−(x)
∣∣ dHN−1 =

∣∣u+(x0)− u−(x0)
∣∣ ,

(5.25)

lim
t→0+

1
tn

∫

x0+tQ±
ν(x0)

∣∣u(x)− u±(x0)
∣∣ dx = 0, (5.26)

µS(x0) = lim
t→0+

µ
(
x0 + tQν(x0)

)

|u+ − u−|HN−1
(
S(u) ∩ (

x0 + tQν(x0)

)) , (5.27)
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exists and is finite.
By (5.25) and (5.27), and since the function Xx0+tQν(x0) is upper semicontin-

uous and with compact support in Ω if t is sufficiently small, we get

|u+(x0)− u−(x0)|µS(x0) = lim
t→0+

1
tn−1

∫

x0+tQν(x0)

dµ(x)

≥ lim sup
t→0+

lim sup
n

1
tn−1

∫

x0+tQν(x0)

f(x, un,∇un) dx

= lim sup
t→0+

lim sup
n

∫

Qν(x0)

tf(x0 + ty, un(x0 + ty),∇un(x0 + ty) dy

= lim sup
t→0+

lim sup
n

∫

Qν(x0)

tf(x0 + ty, un,t(y),
1
t
∇un,t(y) dy, (5.28)

where
un,t(y) := un(x0 + ty).

Note that, by (5.26), we get that, set

u0(y) :=





u+(x0) if 〈y, νu(x0)〉 ≥ 0

u−(x0) if 〈y, νu(x0)〉 < 0
,

then

lim
t→0+

lim
n

∫

Qν(x0)

|un,t(y)− u0(y)| dx = 0. (5.29)

So far, from (5.28), by using hypotheses (H3)–(H5) and following the same steps
of the proof in [12] Section 3, we get

|u+(x0)− u−(x0)|µS(x0) ≥ lim sup
t→0+

lim sup
n

∫

Qν(x0)

f∞(x0, un,t(y),∇un,t(y)) dy.

(5.30)

Then, by (5.29) and (5.30), using a standard diagonalization procedure we con-
struct a sequence (vk) such that vk → u0 in L1(Qν(x0);Rd) and

|u+(x0)− u−(x0)|µS(x0) ≥ lim
k→+∞

∫

Qν(x0)

f∞(x0, vk(y),∇vk(y)) dy.

In order to establish (5.24), by the definition of K, it suffices to replace (vk) by a
sequence in P(u−(x0), u+(x0), νu(x0)) whithout increasing the energy in the limit.
Assuming Lemma 5.2 below proved, we are done.
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Lemma 5.2 Let f : Ω× Sd−1Rd×N be a Carathéodory function such that

0 ≤ f(x, u, ξ) ≤ c(1 + |ξ|)

for some C > 0 and for all (x, u) ∈ Ω×Sd−1 and ξ ∈ [Tu(Sd−1)]N . Let a, b ∈ Sd−1

and let vn ∈ W 1,1(Qν ; Sd−1) converge in L1(Qν ;Rd) to the function u0 defined by

u0(x) :=





b if 〈x, ν〉 ≥ 0

a if 〈x, ν〉 < 0
.

Then there exists a sequence wn ∈ P(a, b, ν) such that wn → u0 in L1(Qν ;Rd) and

lim inf
n→+∞

∫

Qν

f(x, vn,∇vn) dx ≥ lim sup
n→+∞

∫

Qν

f(x,wn,∇wn) dx.

Proof. For simplicity of notations, assume ν = eN and set Q := QeN . Without
loss of generality, we may suppose that

lim inf
n→+∞

∫

Q

f(x, vn,∇vn) dx = lim
n→+∞

∫

Q

f(x, vn,∇vn) dx < +∞.

Moreover, by Theorem 2.2, we may assume vn ∈ D(Ω;Sd−1), defined by (2.6) and
(2.7). Let ρ be a mollifier and set ρn := nNρ(nx). Then define

ψ̃n(x) := (ρn ∗ u0)(x) =
∫

B(x,1/n)

ρn(x− y)u0(y) dy.

Note that for all x ∈ RN , ψ̃n(x) ∈ ab := {ta + (1 − t)b : t ∈ [0, 1]}. Let π : ab →
Sd−1 a C1 function such that π(a) = a and π(b) = b and set

ψn := π ◦ ψ̃n.

It can be easily seen that ψn ∈ P(a, b, eN ). Moreover

ψn(x) =
{

b if xN > 1/n
a if xN < 1/n, ‖∇ψn‖∞ = O(n).

So far, we argue as in the proof of [12] Lemma 3.1. Let

αn :=
√
‖vn − ψn‖L1(Q), kn := n[1 + ‖vn‖1,1 + ‖ψn‖1,1], sn :=

αn

kn

where [k] denotes the largest integer less than or equal to k. Since αn → 0+ we
may assume 0 ≤ αn < 1 and we set

Q0 := (1− αn)Q, Qi := (1− αn + isn), i = 1, . . . , kn.
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Then, let ϕi be a cut-off function between Qi−1 and Qi, with ‖∇ϕi‖∞ = O( 1
sn

)
for i = 1, . . . , kn, and define

wi
n := ϕivn + (1− ϕi)ψn.

Note that wi
n ∈ W 1,1(Q;Bd(0, 1)), and wi

n ≡ vn on Qi−1, wi
n ≡ ψn on Q \ Qi.

Moreover, since

∇wi
n = ϕi∇vn + (1− ϕi)∇ψn + (vn − ψn)⊗∇ϕi,

we get
∫

Qi\Qi−1

|∇wi
n| dx ≤ C

∫

Qi\Qi−1

(|∇vn|+ |∇ψn|+ 1
sn
|vn − ψn|) dx. (5.31)

We now need to suitably project the functions wi
n on Sd−1. First of all observe

that if N = 1, the sets wi
n(Q) are embedded curves so that you can find a sequence

of points in the ball Bd(0, 1) from which the projection of wi
n into the sphere Sd−1

is in W 1,1(Q,Sd−1) and its W 1,1-norm is uniformly controlled by ‖wi
n‖W 1,1 .

Let us deal now with N > 1. To this purpose, given y ∈ Bd(0, 1/2), let
πy : Bd(0, 1) \ {y} → Sd−1 the function projecting x ∈ Bd(0, 1) on Sd−1 along the
direction x− y. An easy computation shows that πy is given by

πy(x) = y +
−〈y, x− y〉+

√
(〈y, x− y〉)2 + |x− y|2(1− |y|2)

|x− y|2 (x− y). (5.32)

Note that
πy|Sd−1 = IdSd−1 . (5.33)

Moreover, it is easy to show that

|∇πy(x)| ≤ C

|x− y| , ∀x ∈ Bd(0, 1), (5.34)

with C independent on y ∈ Bd(0, 1/2). Let Gi
n the set of critical values in Bd(0, 1/2)

of wi
n, that is

Gi
n := {y ∈ Bd(0, 1/2) : ∃x ∈ Q with wi

n(x) = y and rank (∇wi
n(x)) < N ∧ d},

and set
G := ∪n,iG

i
n.

By Sard’s Lemma, Hd(G) = 0. Then, for y ∈ Bd(0, 1/2) \G, the function πy ◦wn,i

is smooth except on a submanifold of RN of codimension greater than 2. Moreover,
by Fubini’s Theorem and by (5.34), we get

∫

Bd(0,1/2)

∫

Qi\Qi−1

|∇πy ◦ wi
n| dx dy

18



≤ C

∫

Qi\Qi−1

|∇wi
n(x)|

( ∫

Bd(0,1/2)

|wi
n(x)− y|−1 dy

)
dx

≤ C

( ∫

Bd(0,3/2)

|z|−1 dz

) ∫

Qi\Qi−1

|∇wi
n(x)| dx (5.35)

Then, we may find yi
n ∈ Bd(0, 1/2) \G such that

∫

Qi\Qi−1

|∇πyi
n
◦ wn,i| dx ≤ C

∫

Qi\Qi−1

|∇wn,i| dx. (5.36)

Set, then,
w̃i

n := πyi
n
◦ wi

n.

Observe that, by (5.33), w̃i
n → u0 in L1(Q,Rd) and

w̃i
n ≡ vn on Qi−1,

w̃i
n ≡ ψn on Q \Qi.

Moreover, by (5.36) w̃i
n ∈ W 1,1(Q;Sd−1) and so w̃i

n ∈ P(a, b, eN ). Hence, by the
growth condition on f , (5.31) and (5.36), we get

∫

Q

f(x, w̃i
n,∇w̃i

n) dx ≤
∫

Q

f(x, vn,∇vn) dx

+C

∫

Qi\Qi−1

(1 + |∇vn|+ |∇ψn|+ 1
sn
|vn − ψn|) dx

+C

∫

Q\Qi

(1 + |∇ψn|) dx.

So far, proceeding exactly as in the proof of Lemma 3.1 [12], one proves that for
any n ∈ N there exists an index i(n) ∈ {1, . . . , kn} such that

∫

Q

f(x, w̃i(n)
n ,∇w̃i(n)

n ) dx ≤
∫

Q

f(x, vn,∇vn) dx + O(1).

To conclude, it suffices to set
wn := w̃i(n)

n .

6 Estimate from above

In this section we conclude the proof of Theorem 3.1, by showing that

F (u) ≤ G(u). (6.37)
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To do this, we follow the same argument of [12] Section 5.
As a first step, we localize the functional F by setting, for any u ∈ BV (Ω;Sd−1)

and A ∈ A(Ω),

F (u,A) :=

inf{lim inf
n

∫

A

f(x, un,∇un) dx : un ∈ W 1,1(A; Sd−1), un → u in L1(A;Rd)}.

We claim that

F (u, A) ≤ C(|A|+ |Du|(A)) ∀(u,A) ∈ BV (Ω; Sd−1)×A(Ω), (6.38)

and that F (u,A) is a variational functional with respect to the L1 topology, that
is (i) F (·, A) is local, i.e., ,

F (u,A) = F (v, A) if u = v a.e. in A;

(ii) for every A ∈ A(Ω), F (·, A) is lower semicontinuous with respect to the
L1(A;Rd) topology; (iii) for every u ∈ BV (Ω;Sd−1), the set function F (u, ·) is
the restriction of a Borel measure to A(Ω).

Inequality (6.38) follows by the growth hypothesis (H3) and by the following
Lemma.

Lemma 6.1 For every u ∈ BV (Ω; Sd−1) and A ∈ A(Ω), there exists a sequence
(un) ⊂ W 1,1(A;Sd−1) such that un → u in L1(A;Rd) and

lim sup
n

|Dun|(A) ≤ C|Du|(A),

where C > 0 is a constant independent on u and A.

Proof. By a standard density result in BV theory, there exists vn ∈ C∞(A;Bd(0, 1))
such that vn → u in L1(A;Rd) and

lim
n
|Dvn|(A) = |Du|(A).

For y ∈ Bd(0, 1/2), let πy : Bd(0, 1) \ {y} → Sd−1 defined by (5.32). Then, as
in the proof of Lemma 5.2, we may find yn ∈ Bd(0, 1/2) such that πyn ◦ vn ∈
W 1,1(A;Sd−1) and

∫

A

|∇πyn ◦ vn| dx ≤ C

∫

A

|∇vn| dx.

Then, it suffices to set
un := πyn ◦ vn.
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Properties (i) and (ii) are direct consequence of the definition of F (u,A). To
prove (iii), thanks to De Giorgi-Letta criterion (see [10]), we have to show that
the set function F (u, ·) is superadditive, subadditive and inner regular. The proof
of the superadditivity property is straightforward. By (6.38) and using a standard
argument (see for example the proof of Theorem 4.3 in [4]), the proof of the last
two properties follows by the following Proposition, in which we establish the so
called weak subbaditivity for F (u, ·).
Proposition 6.2 Let u ∈ BV (Ω;Sd−1). Then, for any A′, A,B ∈ A(Ω) such that
A′ ⊂⊂ A, there holds

F (u,A′ ∪B) ≤ F (u,A) + F (u, B). (6.39)

Proof. Let un ∈ W 1,1(A; Sd−1), vn ∈ W 1,1(B; Sd−1) be such that un → u in
L1(A;Rd), vn → u in L1(B;Rd) and

lim
n

∫

A

f(x, un,∇un) dx = F (u,A),

lim
n

∫

B

f(x, vn,∇un) dx = F (u,B).

By Theorem 2.2, we may suppose un ∈ C∞(A;Sd−1), vn ∈ C∞(B; Sd−1). Set

d := dist (A′, Ac)

and, given M ∈ N, for any i ∈ {1, . . . ,M} define

Ai := {x ∈ A : dist (x,A′) < i
d

M
},

Ci = (Ai+1 \Ai) ∩B.

Let ϕi be a cut-off function between Ai and Ai+1, with ‖∇ϕi‖∞ ≤ 2M
d , and set

wi
n := ϕiun + (1− ϕi)vn.

Then, for any i ∈ {1, . . . ,M}, wi
n ∈ W 1,1(A′ ∪B; Bd(0, 1))∩C∞(A′ ∪B; Bd(0, 1))

and wi
n → u in L1(A′ ∪B;Rd). Moreover, since

∇wi
n(x) = ϕi(x)∇un(x) + (1− ϕi(x))∇vn(x) +∇ϕi(x)⊗ (un(x)− vn(x)),

we get
∫

Ci

|∇wi
n| dx ≤

∫

Ci

(|∇un|+ |∇vn|+ 2
M

d
|un − vn|) dx. (6.40)

In order to find a good recovery sequence for F (u,A′ ∪ B) , we now argue as in
the proof of Lemma 5.2. For y ∈ Bd(0, 1/2), let πy : Bd(0, 1)\{y} → Sd−1 defined
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by (5.32). Then, as in the proof of Lemma 5.2, we may find yi
n ∈ Bd(0, 1/2) such

that πyi
n
◦ wi

n ∈ W 1,1(A′ ∪B; Sd−1) and
∫

Ci

|∇πyi
n
◦ wn,i| dx ≤ C

∫

Ci

|∇wn,i| dx. (6.41)

Set, then,
w̃i

n := πai
n
◦ wi

n.

Observe that wi
n → u in L1(A′ ∪B;Rd) and

w̃i
n ≡ un on Ai,

w̃i
n ≡ vn on B \Ai+1.

Hence, by (H3), (6.40) and (6.41), we get
∫

A′∪B

f(x, w̃i
n,∇w̃i

n) dx ≤
∫

A

f(x, un,∇un) dx +
∫

B

f(x, vn,∇vn) dx

+C

∫

Ci

(1 + |∇un|+ |∇vn|+ 2
M

d
|un − vn|) dx.

Thus, summing over i ∈ {1, . . . M} and averaging, we get

1
M

M∑

i=1

∫

A′∪B

f(x, w̃i
n,∇w̃i

n) dx ≤
∫

A

f(x, un,∇un) dx +
∫

B

f(x, vn,∇vn) dx(6.42)

+
C

M

∫

A∩B

(1 + |∇un|+ |∇vn|+ 2
M

d
|un − vn|) dx.

For any n ∈ N there exists i(n) ∈ {1, . . .M} such that

∫

A′∪B

f(x, w̃i(n)
n ,∇w̃i(n)

n ) dx ≤ 1
M

M∑

i=1

∫

A′∪B

f(x, w̃i
n,∇w̃i

n) dx (6.43)

Then, since w̃
i(n)
n still converges to u in L1(A′ ∪B;Rd) and, by (H3),

sup
n

∫

A∪B

|∇un|+ |∇vn| dx < +∞,

from (6.42) and (6.43) we deduce that

F (u,A′ ∪B) ≤ lim inf
n

∫

A′∪B

f(x, w̃i(n)
n ,∇w̃i(n)

n ) dx ≤ F (u,A) + F (u, B) +
C

M
.

Eventually, letting M → +∞, we obtain the thesis.
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Remark 6.3 F enjoys the following locality property on B(Ω):
let u, v ∈ BV (Ω; Sd−1) and let B ∈ B(Ω) be such that

B ⊆ S(u) ∩ S(v), (u−(x), u+(x), νu(x)) = (v−(x), v+(x), νv(x)) ∀x ∈ B,

then
F (u,B) = F (v,B).

The proof of this property can be carried out as in Step 1 of the proof of Proposition
4.4 in [4], where the same property is stated in the non constrained case.

So far, we can obtain inequality (6.37) by showing that

F (u, Ω \ S(u)) ≤
∫

Ω

f(x, u,∇u) dx +
∫

Ω

f∞(x, u, dC(u)), (6.44)

and

F (u, S(u)) ≤
∫

S(u)

K(x, u−, u+, νu) dHN−1. (6.45)

Inequality (6.44) will follow by Lemma 6.4 below, while (6.45) will be proved in
Lemma 6.5.

Lemma 6.4 If u ∈ BV (Ω, Sd−1), then for LN a.e. x0 ∈ Ω,

dF (u, ·)
dLN

(x0) ≤ f(x0, u(x0),∇u(x0)), (6.46)

and for |C(u)| a.e x0 ∈ Ω,

dF (u, ·)
d|C(u)| (x0) ≤ f∞(x0, u(x0), A(x0)). (6.47)

Proof. The proof follows the lines of Step 2 of Theorem 2.16 in [12]. We will enter
into details only when the changes are significant, otherwise reminding to [12].

Let us prove first (6.46). By Theorem 2.4, and by Theorems 2.7-2.8 in [12],
for LN a.e. x0 ∈ Ω we have

lim
ε→0

1
|B(x0, ε)|

∫

B(x0,ε)

|u(x)− u(x0)|(1 + |∇u(x)|) dx = 0, (6.48)

lim
ε→0

1
|B(x0, ε)|

∫

B(x0,ε)

|∇u(x)−∇u(x0)| dx = 0, (6.49)

lim
ε→0

|Dsu|(B(x0, ε))
|B(x0, ε)| = 0, lim

ε→0

|Du|(B(x0, ε))
|B(x0, ε)| exists and is finite, (6.50)

dF (u, ·)
dLN

(x0) exists and is finite. (6.51)
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Let {un} be the sequence defined in Lemma 2.7. Fix a sequence of numbers
ε ∈ (0, dist(x0,∂Ω)

2 ) such that |Du|(∂B(x0, ε)) = 0, and a subsequence of un, not
relabeled, such that wn := πaε

n
◦ un, defined as in the proof of Lemma 5.2 and

Proposition 6.2, is such that wn ∈ W 1,1(Ω, Sd−1) and, for some δ ∈ ( 3
4 , 1),

∫

{x∈B(x0,ε):|un(x)|≤δ}
|∇wn| dx ≤ C

∫

{x∈B(x0,ε):|un(x)|≤δ}
|∇un| dx, (6.52)

where aε
n ∈ Bd(0, 1

2 ) satisfies

lim
ε→0

lim
n→+∞

aε
n = lim

ε→0
aε = a0.

Thanks to this choice of δ we have also that

|∇wn|χ{|un|>δ} ≤ C|∇un|χ{|un|>δ}, (6.53)

so ∫

B(x0,ε)

|∇wn| dx ≤ C

∫

B(x0,ε)

|∇un| dx. (6.54)

Then

dF (u, ·)
dLN

(x0) = lim
ε→0

F (u,B(x0, ε))
|B(x0, ε)|

≤ lim inf
ε→0

lim inf
n→+∞

1
|B(x0, ε)|

∫

B(x0,ε)

f(x,wn(x),∇wn(x)) dx.

(6.55)

Introducing, as in [12], the Yosida transforms of f , given by

fλ(x, u, ξ) := sup{f(x′, u′, ξ)− λ[|x− x′|+ |u− u′|](1 + |ξ|) : (x′, u′) ∈ Ω× Rd},
we have

f(x, wn(x),∇wn(x)) ≤ f(x0, u(x0),∇wn(x)) + η(1 + |∇wn(x)|)

+ λ[|x− x0|+ C|wn(x)− u(x0)|](1 + |∇wn(x)|),

for x ∈ B
(
x0,

dist(x0,∂Ω)
2

)
and η > 0. Thus, by (6.55) and (6.54),

dF (u, ·)
dLN

(x0) ≤ lim inf
ε→0

lim inf
n→+∞

1
|B(x0, ε)|

[ ∫

B(x0,ε)

f(x0, u(x0),∇wn(x)) dx

+ C(η + λε)
∫

B(x0,ε)

|∇un| dx + (λε + η)|B(x0, ε)|

+ Cλ

∫

B(x0,ε)

|wn(x)− u(x0)|(1 + |∇wn|) dx
]
.
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Since, by (6.53) and (6.54),
∫

B(x0,ε)

|wn(x)− u(x0)||∇wn| dx

≤ C

∫

B(x0,ε)

|un(x)− u(x0)||∇wn| dx

= C

∫

{x∈B(x0,ε):|un(x)|≤δ}
|un(x)− u(x0)||∇wn| dx

+ C

∫

{x∈B(x0,ε):|un(x)|>δ}
|un(x)− u(x0)||∇wn| dx

≤ (1 + δ)C
∫

{x∈B(x0,ε):|un(x)|≤δ}
|∇un| dx

+ C

∫

{x∈B(x0,ε):|un(x)|>δ}
|un(x)− u(x0)||∇un| dx

≤ C

∫

B(x0,ε)

|un(x)− u(x0)||∇un| dx,

we deduce

dF (u, ·)
dLN

(x0) ≤ lim inf
ε→0

lim inf
n→+∞

1
|B(x0, ε)|

[ ∫

B(x0,ε)

f(x0, u(x0),∇wn(x)) dx

+ C(η + λε)
∫

B(x0,ε)

|∇un| dx + (λε + η)|B(x0, ε)|

+ Cλ

∫

B(x0,ε)

|un(x)− u(x0)|(1 + |∇un|) dx
]
.

Taking into account that f(x0, u(x0), ·) is a Lipschitz function we get

dF (u, ·)
dLN

(x0) ≤ lim inf
ε→0

lim inf
n→+∞

1
|B(x0, ε)|

[ ∫

B(x0,ε)

f(x0, u(x0),∇un(x)) dx

+C

∫

B(x0,ε)

|∇un −∇wn| dx + (Cη + λε)
∫

B(x0,ε)

|∇un| dx

+(λε + η)|B(x0, ε)|+ Cλ

∫

B(x0,ε)

|un(x)− u(x0)|(1 + |∇un|) dx
]
.

(6.56)

Now, the first and the third term of (6.56) can be treated as in Step 2 of Theorem
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2.16 in [12], getting

dF (u, ·)
dLN

(x0) ≤ f(x0, u(x0),∇u(x0)) + Cη

+C lim inf
ε→0

lim sup
n→+∞

1
|B(x0, ε)|

[ ∫

B(x0,ε)

|∇un −∇wn| dx

+λ

∫

B(x0,ε)

|un(x)− u(x0)|(1 + |∇un|) dx
]
.

(6.57)

Splitting B(x0, ε) into the sets where |un| ≤ δ and where |un| > δ, the term
In
ε :=

∫
B(x0,ε)

|∇un −∇wn| dx can be estimated in the following way

In
ε ≤ C

∫

{x∈B(x0,ε):|un(x)|≤δ}
|un(x)− u(x0)||∇un| dx

+
∫

{x∈B(x0,ε):|un(x)|>δ}
|∇un −∇wn| dx,

(6.58)

the firts term being of the same type of the last term of (6.57). Let us deal with
the second term. It yields

∫

{x∈B(x0,ε):|un(x)|>δ}
|∇un −∇wn| dx

≤
∫

{x∈B(x0,ε):|un(x)|>δ}
|∇πaε

n
(un)−∇πaε

n
(u(x0))||∇un| dx

+
∫

{x∈B(x0,ε):|un(x)|>δ}
|(I −∇πaε

n
(u(x0)))∇un| dx

≤ C

∫

B(x0,ε)

|un(x)− u(x0)||∇un| dx +
∫

{x∈B(x0,ε):|un(x)|>δ}
|Lε

n∇un| dx,

(6.59)

where Lε
n : Rd×d → Rd×d defined by Lε

n = I −∇πaε
n
(u(x0)) is such that

lim
ε→0

lim
n→+∞

Lε
n = lim

ε→0
Lε = L0,

with Lε = I −∇πaε(u(x0)) and L0 = I −∇πa0(u(x0)). Let us note that

Lε
n∇un = Lε

n(ρn ∗Du) = Lε
n

(∫

B(x, 1
n )

ρn(x− y)Du(y)

)

=
∫

B(x, 1
n )

ρn(x− y)Lε
nDu(y) = ρn ∗ (Lε

nDu),
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so that, by Lemma 2.7,
∫

{x∈B(x0,ε):|un(x)|>δ}
|Lε

n∇un| dx

≤
∫

B(x0,ε)

|ρn ∗ (Lε
nDu)| dx ≤ |Lε

nDu|(B(x0, ε +
1
n

)).

Taking into account that |Du|(∂B(x0, ε)) = 0, passing to the limit as n goes to
infinity in the previous inequality, we get

lim sup
n→+∞

∫

{x∈B(x0,ε):|un(x)|>δ}
|Lε

n∇un| dx ≤ |LεDu|(B(x0, ε)). (6.60)

Let us divide by |B(x0, ε)| and denote by µε the measure µε = Lε((u+ − u−) ⊗
νu)HN−1bS(u) + Lε(A(x))|C(u)|, obtaining

|LεDu|(B(x0, ε))
|B(x0, ε)| ≤ |µε|(B(x0, ε))

|B(x0, ε)| +−
∫

B(x0,ε)

|Lε∇u| dx

≤ |µε|(B(x0, ε))
|B(x0, ε)| +−

∫

B(x0,ε)

|Lε∇u− L0∇u| dx

+−
∫

B(x0,ε)

|L0∇u| dx ≤ |µε|(B(x0, ε))
|B(x0, ε)|

+|Lε − L0| −
∫

B(x0,ε)

|∇u| dx + |L0| −
∫

B(x0,ε)

|∇u(x)−∇u(x0)| dx,

(6.61)

where we have used Remark 2.6 for the last term. Putting together (6.60) and
(6.61) and using (6.49) and (6.50)1, we get

lim
ε→0

lim sup
n→+∞

1
|B(x0, ε)|

∫

{x∈B(x0,ε):|un(x)|>δ}
|Lε

n∇un| dx = 0,

so that

lim
ε→0

lim sup
n→+∞

1
|B(x0, ε)|

[ ∫

{x∈B(x0,ε):|un(x)|>δ}
|∇un −∇wn| dx

−
∫

B(x0,ε)

|un(x)− u(x0)||∇un| dx
]

= 0

.

At this point to prove (6.46) it remains to show that

lim inf
ε→0

lim sup
n→+∞

1
|B(x0, ε)|

∫

B(x0,ε)

|un(x)− u(x0)|(1 + |∇un|) dx = 0,

27



and this can be done exactly as in Step 2 of Theorem 2.16 in [12], so the proof of
(6.46) is complete.

Next we prove (6.47). Denoting by ν the measure ν = |Du| − |C(u)|, by
Theorems 2.7, 2.8 and 2.11 in [12], for |C(u)| a.e. x0 ∈ Ω we have

lim
ε→0

ν(B(x0, ε))
|C(u)|(B(x0, ε))

= 0, lim
ε→0

|Du|(B(x0, ε))
|C(u)|(B(x0, ε))

exists and is finite, (6.62)

lim
ε→0

εN

|C(u)|(B(x0, ε))
= 0, (6.63)

lim
ε→0

1
|C(u)|(B(x0, ε))

∫

B(x0,ε)

|u(x)− u(x0)| d|C(u)| = 0, (6.64)

lim
ε→0

1
|C(u)|(B(x0, ε))

∫

B(x0,ε)

|A(x)−A(x0)| d|C(u)| = 0, (6.65)

lim inf
ε→0

1
|C(u)|(B(x0, ε))

∫

B(x0,ε)

f∞(x0, u(x0), A(x)) d|C(u)|

= f∞(x0, u(x0), A(x0)),

(6.66)

dF (u, ·)
d|C(u)| (x0) exists and is finite. (6.67)

As for (6.56), we get

dF (u, ·)
d|C(u)| (x0) ≤ lim inf

ε→0
lim inf
n→+∞

1
|C(u)|(B(x0, ε))

[ ∫

B(x0,ε)

f(x0, u(x0),∇un(x)) dx

+C

∫

B(x0,ε)

|∇un −∇wn| dx + (Cη + λε)
∫

B(x0,ε)

|∇un| dx

+(λε + η)|B(x0, ε)|+ Cλ

∫

B(x0,ε)

|un(x)− u(x0)|(1 + |∇un|) dx
]
.

(6.68)
Using (6.58), (6.59), (6.60), and the fact that

lim sup
n→+∞

∫

B(x0,ε)

|un(x)− u(x0)||∇un| dx ≤
∫

B(x0,ε)\S(u)

|u(x)− u(x0)||Du|(x)

+ 4|Du|(B(x0, ε) ∩ S(u)),

which is proved in [12], since C(B(x0, ε) ∩ S(u)) = 0, we conclude that

dF (u, ·)
d|C(u)| (x0) ≤ lim inf

ε→0
lim inf
n→+∞

1
|C(u)|(B(x0, ε))

∫

B(x0,ε)

f(x0, u(x0),∇un(x)) dx
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+C lim sup
ε→0

1
|C(u)|(B(x0, ε))

|LεDu|(B(x0, ε))

+ lim sup
ε→0

1
|C(u)|(B(x0, ε))

(Cη + λε)(|Du|(B(x0, ε)) + |B(x0, ε)|)

+Cλ lim sup
ε→0

1
|C(u)|(B(x0, ε))

[ ∫

B(x0,ε)

|u(x)− u(x0)| d|C(u)|
+2|B(x0, ε)|+ 6|ν|(B(x0, ε))

]

≤ lim inf
ε→0

lim inf
n→+∞

1
|C(u)|(B(x0, ε))

∫

B(x0,ε)

f(x0, u(x0),∇un(x)) dx

+C lim sup
ε→0

1
|C(u)|(B(x0, ε))

|LεDu|(B(x0, ε))

+ lim sup
ε→0

1
|C(u)|(B(x0, ε))

(Cη + λε)(|Du|(B(x0, ε)) + |B(x0, ε)|)

+Cλ lim sup
ε→0

1
|C(u)|(B(x0, ε))

[ ∫

B(x0,ε)

|u(x)− u(x0)| d|C(u)|
+6ν(B(x0, ε)) + 2|B(x0, ε)|

]
.

(6.69)

Now, denoting by µ̃ε the measure µ̃ε = Lε(∇u)LN +Lε((u+−u−)⊗νu)HN−1bS(u),
as for (6.61), one sees that

|LεDu|(B(x0, ε))
|C(u)|(B(x0, ε))

≤ |µ̃ε|(B(x0, ε))
|C(u)|(B(x0, ε))

+
1

|C(u)|(B(x0, ε))

∫

B(x0,ε)

|LεA(x)||C(u)|

≤ |µ̃ε|(B(x0, ε))
|C(u)|(B(x0, ε))

+
1

|C(u)|(B(x0, ε))

∫

B(x0,ε)

|LεA(x)− L0A(x)|C(u)|

+
1

|C(u)|(B(x0, ε))

∫

B(x0,ε)

|L0A(x)||C(u)|

≤ |µ̃ε|(B(x0, ε))
|C(u)|(B(x0, ε))

+
|Lε − L0|

|C(u)|(B(x0, ε))

∫

B(x0,ε)

|A(x)||C(u)|

+
|L0|

|C(u)|(B(x0, ε))

∫

B(x0,ε)

|A(x)−A(x0)||C(u)|,

where we have used Remark 2.6 for the last term. Therefore, by (6.62)1 and (6.65),
we obtain

lim sup
ε→0

1
|C(u)|(B(x0, ε))

|LεDu|(B(x0, ε)) = 0. (6.70)

Now, applying (6.62)-(6.64) to (6.69), and using (6.70) we deduce

dF (u, ·)
d|C(u)| (x0) ≤ lim inf

ε→0
lim inf
n→+∞

1
|C(u)|(B(x0, ε))

∫

B(x0,ε)

f(x0, u(x0),∇un(x)) dx+Cη,

(6.71)
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and the same arguments of Step 2 of Theorem 2.16 in [12] lead to (6.47).

Eventually the following Lemma provides us the inequality of the surface
term that concludes the proof of Theorem 3.1.

Lemma 6.5 For any u ∈ BV (Ω; Sd−1) there holds

F (u, S(u)) ≤
∫

S(u)

K(x, u−, u+, νu) dHN−1. (6.72)

Proof. The proof closely follows that of Step 3 in Section 5 of [12]. Here we outline
the main steps and enter into details of the proof only when significant changes
occur.

Step 1. If u(x) = aχE(x) + b(1 − χE(x)) with PerΩ(E) < +∞, then (6.72)
holds. As in [12], it is enough to prove that for every A ∈ A(Ω),

F (u,A) ≤
∫

A

f(x, u, 0) dx +
∫

S(u)∩A

K(x, u−, u+, νu) dHN−1. (6.73)

(i) Suppose first E = {x ∈ RN : 〈x, ν〉 = 0} for some ν ∈ SN−1. Without loss of
generality we set ν := eN . In case f does not depend on x, by the definition of K
let ϕ ∈ P(a, b, ν) be such that

K(a, b, eN ) + η ≥
∫

Q

f∞(ϕ,∇ϕ) dx, (6.74)

for some η > 0. Then, for n ∈ N, define un ∈ W 1,1(A; Sd−1) by

un(x) :=





b if xN > 1/2n
ϕ(nx) if |xN | ≤ 1/2n
a if xN < −1/2n.

Then it is easy to see that un → u in L1(A;Rd). Moreover, set An := {x ∈ A :
|xN | ≤ 1/2n}, A′n := π(An), π denoting the orthogonal projection onto E, by
Fubini Theorem and by a change of variables, we get
∫

A

f(un,∇un) dx = |A ∩ {xN ≥ 1/2n}|f(b, 0) + |A ∩ {xN ≤ −1/2n}|f(a, 0)

+
∫

An

f(ϕ(nx), n∇ϕ(nx)) dx

≤ |A ∩ {xN ≥ 1/2n}|f(b, 0) + |A ∩ {xN ≤ −1/2n}|f(a, 0)

+
∫

A′n

dx′
∫ 1/2n

−1/2n

f(ϕ(nx′, nt), n∇ϕ(nx′, nt)) dt

= |A ∩ {xN ≥ 1/2n}|f(b, 0) + |A ∩ {xN ≤ −1/2n}|f(a, 0)

+
∫

A′n

dx′
∫ 1/2

−1/2

1
n

f(ϕ(nx′, s), n∇ϕ(nx′, s)) ds
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=: I1
n + I2

n + I3
n.

Thus, one easily gets that

lim
n

(I1
n + I2

n) =
∫

A

f(u, 0) dx,

while, by (H5) and Riemann-Lebesgue Theorem, there holds

lim
n

I3
n = HN−1(S(u) ∩A)

∫

Q

f∞(ϕ,∇ϕ) dx.

The conclusion follows by (6.74) and the arbitrariness of η.
In the general case, when f depends also on x, we can argue as in the proof

of Proposition 4.1 in [13], by using assumption (H4), property (a) of Lemma 4.1
and Lemma 5.2.

(ii) Suppose E is a polyhedral set, that is E is a bounded strongly Lipschitz
domain and ∂E = H1 ∪ . . . ∪ Hm, Hi being closed subsets of hyperplanes. Then
the proof of (6.73) can be obtained as in Step 3 (c) of Section 5 in [12], by using
the same argument of the proof of Lemma 5.2.

(iii) Finally, if E is an arbitrary set of finite perimeter in Ω, the proof of
(6.73) is exactly the same of Step 3 (f) of Section 5 in [12], where property (a) and
(b) of Lemma 4.1 are needed.

Step 2. Inequality (6.72) holds if

u(x) =
h∑

i=1

aiχEi(x), (6.75)

with h ∈ N, a1, . . . , ah ∈ Sd−1, E1, . . . , Eh mutually disjoint sets of finite perimeter
in Ω covering Ω. The proof can be done exactly as in Step 1 of the proof of
Proposition 4.8 in [4], where the property of F stated in Remark 6.3 is needed.

Step 3. Inequality (6.72) holds if u ∈ BV (Ω;Sd−1). First of all, note that the
function K can be extended to a function K̃ : Ω×Rd \ {0} ×Rd \ {0} × SN−1 →
[0,+∞) as

K̃(x, a, b, ν) := K(x,
a

|a| ,
b

|b| , ν),

so that K̃ inherites the properties of K stated in Lemma 4.1 on Ω×J×J×SN−1,
for every compact set J in Rd. Given A ∈ A(Ω), as in Step 2 of the proof of
Proposition 4.8 in [4], by using the upper semicontinuity of K̃, one constructs a
sequence (un) ⊂ BV (Ω;Rd) of the type (6.75), such that

lim
n
‖un − u‖∞ = 0 (6.76)

and

lim inf
n

∫

S(un)∩A

K̃(x, u−n , u+
n , νun) dHN−1 ≤ C|Du|(A \ S(u)
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+
∫

S(u)∩A

K(x, u−, u+, νu) dHN−1

Thus, by (6.76), for n large enough, the sequence

vn :=
un

|un|

is in BV (Ω; Sd−1) of the type (6.75) and, thanks to Lemma 4.1(a),

lim inf
n

∫

S(vn)∩A

K(x, v−n , v+
n , νvn

) dHN−1

≤ lim inf
n

∫

S(un)∩A

K̃(x, u−n , u+
n , νun) dHN−1 + o(1).

Then, by the previous Step and the lower semicontinuity of F , there holds

F (u,A) ≤ lim inf
n

F (vn, A) ≤ lim inf
n

∫

S(vn)∩A

K(x, v−n , v+
n , νvn) dHN−1

≤ C|Du|(A \ S(u) +
∫

S(u)∩A

K(x, u−, u+, νu) dHN−1.

From this and since F (u, ·) is a bounded measure, we easily infer (6.72).

7 Relaxation of energies in micromagnetics

In this section we study the relaxation of constrained functionals G : L1(Ω;RN ) →
[0,+∞] of the type

G(u) =





∫
Ω

f(x, u,∇u) +
∫
RN |hu|2 dx− ∫

Ω
〈hext, u〉 dx if u ∈ W 1,1(Ω; SN−1)

∞ otherwise,
(7.1)

where hext ∈ L1(Ω;RN ) and hu ∈ L2(RN ;RN ) is defined by
{

curl hu = 0
div (hu + uχΩ) = 0.

(7.2)

Functionals of this kind generalize those involved in variational models for mi-
cromagnetics, where u represents the magnetization of a ferromagnetic material
subject to an external magnetic field hext and hu is the induced magnetic field
related to u through the Maxwell’s equations (7.2) (see [7], [17] for a detailed
explanation of the model).
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System (7.2) is understood in the following way. Using the first equation
of (7.2) it can be introduced the potential v with hu = −∇v. Thus the second
equation can be written as

div(−∇v + u) = 0 in RN , (7.3)

where we have extended u = 0 outside Ω. The equation (7.3) means that
∫

RN

(−∇v + u)∇w dx = 0 ∀w ∈ V, (7.4)

where V = {w ∈ H1(B) : ∇w ∈ L2(RN ) and
∫

B
w dx = 0} is a Hilbert space

with inner product (v, w) =
∫
RN ∇v∇w dx +

∫
B

vw dx, B ⊂ RN a fixed ball with
Ω ⊂ B.

In [17] (see Lemma 3.1) the following lemma is proved.

Lemma 7.1 Let u ∈ L2(Ω,RN ). The equation (7.4) admits a unique solution
v ∈ V . The mapping T : L2(Ω,RN ) → V , defined by T (u) = v is linear and
continuous.

We are now in position to prove the following integral representation result for
the relaxation G : L1(Ω;RN ) → [0, +∞) of the functional G, given by (7.1), with
respect to the L1 topology.

Theorem 7.2 Let f satisfy (H1)–(H5). Then

G(u) = F (u) +
∫

RN

|hu|2 dx−
∫

Ω

〈hext, u〉 dx,

where F (u) is given by (3.17).

Proof. Observe that a sequence un ∈ W 1,1(Ω, SN−1) converging with respect to
the L1 norm is also compact in the strong topology of L2. So, thanks to Lemma
7.1, the result follows by the continuity of the last two terms of the functional G
and by Theorem 3.1.
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