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Abstra
t

Consider the 
lass of 
losed 
onne
ted sets � � R

n

satisfying length 
on-

straintH

1

(�) � l with given l > 0. The paper is 
on
erned with the properties

of minimizers of the uniform distan
e F

M

of � to a given 
ompa
t setM � R

n

,

F

M

(�) := max

y2M

dist (y;�);

where dist (y;�) stands for the distan
e between y and �. The paper deals

with the planar 
ase n = 2. In this 
ase it is proven that the minimizers

(apart trivial 
ases) 
annot 
ontain 
losed loops. Further, some mild regularity

properties as well as stru
ture of minimizers is studied.

1 Introdu
tion

Let M � R

n

be a given 
ompa
t set and 
onsider the fun
tional F

M

de�ned over

subsets of R

n

by the formula

F

M

(�) := max

y2M

dist (y;�);

where dist (y;�) := inf

x2�

jx� yj and j�j stands for the standard Eu
lidean norm in

R

n

. In this paper we fo
us our attention mainly on the following problem.

Problem 1. Minimize F

M

over all 
ompa
t 
onne
ted sets � � R

n

with pres
ribed

bound on the total length H

1

(�) � l.

One of the possible motivations for this problem is as follows. Suppose that

M represent a populated area. One has to 
onstru
t a highway � (or, generally

speaking, a transportation network) of length not ex
eeding l (whi
h is usually

determined by the budget for 
onstru
tion), so that it be equally a

essible to all

the people living in M . This means that � has to be as near as possible to M in

the uniform sense, i.e. it has to minimize F

M

.

A similar problem on minimizing F

M

over sets having pres
ribed 
ardinality,

rather than having pres
ribed length, is somewhat better known. It 
an be in-

terpreted as the problem of �nding an optimal lo
ation of a pres
ribed number of

produ
tion sites for the populated area M . In parti
ular, when M 
onsists of a

�nite number of points, #M = m, then the problem of minimizing F

M

over sets

�

Dipartimento di Matemati
a \E. De Giorgi", Universit�a di Le

e, C.P. 193, 73100 Le

e, Italy

y

Dipartimento di Matemati
a \U. Dini", Universit�a di Firenze, viale Morgagni 67/A, 50134

Firenze, Italy

z

Dipartimento di Matemati
a \L. Tonelli", Universit�a di Pisa, via Buonarroti 2, 56127 Pisa,

Italy

1



� � M 
onsisting of k < m points is a well-known 
ombinatorial problem 
alled

k-
enter problem (see e.g. [11, 12℄).

Another related problem has also to be mentioned. Assume the density of the

population is given by a �nite Borel measure 
ompa
tly supported in R

n

. The

problem of 
onstru
ting an optimal highway � of pres
ribed length 
an be then for-

mulated with the help of another reasonable 
riterium, namely, that of minimizing

the average distan
e (or some given fun
tion of the distan
e) to �. This prob-

lem would then read as follows: minimize over all 
ompa
t 
onne
ted � satisfying

H

1

(�) � l the fun
tional

F

';A

(�) :=

Z

R

n

A(dist (y;�)) d'(y);

where A: R

+

! R is some given nonnegative nonde
reasing fun
tion and ' is

some 
ompa
tly supported �nite Borel measure. Su
h minimization problems have

been re
ently studied in [2, 3, 4℄ (see also [10℄ for the 
losely related so 
alled lazy

traveling salesman problem). Usually one takes A(t) := t

p

for p � 1 (with p = 1 or

p = 2 most important 
ases in appli
ations). In this 
ase we will write F

';p

instead

of F

';A

. The analogue of this problem for the minimization of F

';A

in the 
lass of

sets 
onsisting of a pres
ribed number of points (standing for produ
tion sites to be

lo
ated) is 
alled optimal lo
ation problem (for a survey see [6℄ as well as [9℄). The

\
ombinatorial analogue" of the latter (#supp' = m, while � � supp' 
onsisting

of k < m points) is well-known under the name of k-median problem.

We �nd it useful to 
onsider another problem whi
h is in a 
ertain sense dual to

Problem 1, and reads as follows.

Problem 2. Minimize H

1

(�) over all 
ompa
t 
onne
ted sets � � R

n

with pre-

s
ribed bound on F

M

, F

M

(�) � r.

This problem also admits an easy interpretation. Namely, suppose that we have

to provide a gas supply pipeline to every house lo
ated in some area M under the


ondition that the gas supply should rea
h ea
h house at distan
e not greater than

a given r > 0. The 
ompany 
onstru
ting the pipeline will naturally try to minimize

its length under the above restri
tion, whi
h redu
es to solving problem 2.

It is rather easy to show that both problems studied in this paper admit solu-

tions, and, further, that Problem 1 
an be 
onsidered in a 
ertain sense a limiting

problem for F

';p

as p ! 1, with M = supp'. We will further study that Prob-

lems 1 and 2 in the planar 
ase n = 2 and show that they are naturally equivalent

in the sense they have the same set of minimizers. This will immediately follow

on
e we prove that apart trivial 
ases, every minimizer �

opt

of problem 1 must have

the maximum possible length l. We further study the minimizers to the problems

introdu
ed and show that (again, trivial 
ases apart), they never not 
ontain 
losed

loops and possess some mild regularity properties.

2 Existen
e of minimizers and preliminaries

The �rst easy result regarding Problem 1 is the existen
e of minimizers.

Theorem 2.1. Problem 1 admits a solution �

opt

for any given l � 0.

The proof of the above theorem is elementary, but we will omit it sin
e this

result 
an be also viewed as an immediate 
onsequen
e of Proposition 2.3 below.

We introdu
e now the following notation: let OPT

1

(M) stand for the set of


ompa
t 
onne
ted � � R

n

with H

1

(�) < +1 su
h that � 6�M (note that this is

always true, e.g., when H

1

(M) = +1) and for every 
ompa
t 
onne
ted �

0

� R

n
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Figure 1: Possible nonlo
al modi�
ation of 
 to de
rease the energy.

withH

1

(�

0

) � H

1

(�) one has F

M

(�

0

) � F

M

(�). In other words, the set OPT

1

(M)


onsists of all the minimizers to Problem 1 for all the possible values of l > 0 ex
ept

trivial ones (namely � 6�M whi
h are the only minimizers providing F

M

(�) = 0).

Theorem 2.1 shows therefore that OPT

1

(M) 6= ;.

Analogously, we introdu
e the set OPT

�

1

(M) 
onsisting of all 
ompa
t 
on-

ne
ted � � R

n

with H

1

(�) < +1 su
h that � 6� M and for every 
ompa
t


onne
ted �

0

� R

n

with F

M

(�

0

) � F

M

(�) one has H

1

(�

0

) � H

1

(�). This 
lass is

related to Problem 2 similarly to how OPT

1

(M) is related to Problem 1. Namely,

OPT

�

1

(M) 
onsists of all the minimizers to Problem 2 for all the possible values of

r > 0 (the minimizers to Problem 2 with r = 0 are all 
losed 
onne
ted � �M).

It is rather easy to prove that OPT

�

1

(M) � OPT

1

(M) (see Proposition 3.1).

We will show that the reverse in
lusion is still true, though its proof is mu
h more

tri
ky and is based on showing that every solution of Problem 1 must have maximum

possible length l (see Theorem 3.7). Though this fa
t might seem natural, its proof

is not quite obvious. To understand the diÆ
ulty, 
onsider the following situation.

Let 
 stand for the tra
e of an inje
tive smooth 
urve in R

2


onne
ting two given

points a and b, let r < H

1

(
), and let M stand for the r-neighborhood of 
. For

ea
h l > 0 let �

l

� R

2

stand for a solution to Problem 1. One is tempted to


onje
ture that (at least for reasonable 
) for l := H

1

(
) one has �

l

= 
 (so that

F

M

(�

l

) = r). But if it is so, then how should �

l

look like for l just slightly greater

than H

1

(
)? It is 
lear that 
hanging lo
ally 
 (e.g. atta
hing to 
 somewhere

a pie
e of small length Æ := l � H

1

(
)) would not de
rease the energy F

M

. The

reasonable way of de
reasing the energy is that of atta
hing pie
es of small length

(say, small segments) to 
 in many points, so that the those pie
es be distributed

more or less everywhere along 
 (see �gure 1). Reasoning in this way, one observes

however, that the atta
hed segments should be denser where the 
urvature of 


is high, and that the length of the segments 
learly de
reases on
e their density

in
reases. It is thus not 
lear whether a similar pro
edure 
an be ful�lled even in

rather simple situations.

Another way of looking at similar diÆ
ulties is observing that in the absen
e

of the mentioned result, i.e. when some solutions to Problem 1 
an have length

stri
tly less than that allowed by the problem statement, then there is no hope to

obtain any regularity result on solutions to this problem. In fa
t, if �

opt

solves

Problem 1 but H

1

(�

opt

) < l, then any 
losed 
onne
ted � 
ontaining �

opt

and

satisfying H

1

(�) � l solves the same problem.

It is worth mentioning that OPT

1

(M) 
ontains in fa
t minimizers for the mu
h

larger 
lass of fun
tionals of the type

G(�) := �(F

M

(�)) +H(H

1

(�));

where � and H are nonde
reasing fun
tions. Re
alling our interpretation of � as

a highway or a general publi
 transportation network, the 
ost G(�) is naturally

3



interpreted as a sum of the 
ost �(F

M

(�)) on getting to the network (whi
h there-

fore reveals the so
ial bene�t of the network) and the 
ost of 
onstru
tion of �

represented by H(H

1

(�)). We may 
laim the following easy result.

Proposition 2.2. The minimizers �

opt

of G (if exist) among all 
ompa
t 
onne
ted

sets belong to OPT

1

(M), if � 6�M and either of the fun
tions � or H is stri
tly

in
reasing.

Proof. If � is stri
tly in
reasing and H is non de
reasing then the minimizers of G

among all 
ompa
t 
onne
ted sets belong to OPT

1

(M). On the other hand, if H

is stri
tly in
reasing then the minimizers of G all belong to OPT

�

1

(M). It remains

to mention that OPT

�

1

(M) = OPT

1

(M) as it will be shown in the sequel.

Finally, we mention the following remarkable result.

Proposition 2.3. Consider a sequen
e f�

p

g

1

p=1

, where ea
h �

p

is a minimizer to

F

';p

among 
ompa
t 
onne
ted sets � � R

n

satisfying the length 
onstraint H

1

(�) �

l. Then, up to a subsequen
e (not relabeled), �

p

! �

1

in Hausdor� distan
e as

p!1, where �

1

minimizes F

M

with M = supp' over the same set of admissible

�.

Proof. Let 
 stand for the 
onvex hull of M and observe that all sets �

p

, being

minimizers of F

';p

, are 
ontained in the 
onvex hull ofM as proven in [4℄. Therefore

in view of the Blas
hke theorem [1℄ there exists a subsequen
e of �

p

(not relabeled)

whi
h 
onverges to some 
ompa
t set �

1

. Sin
e all �

p

are 
onne
ted, then so is

also �

1

and besides we have

H

1

(�

1

) � lim inf

p

H

1

(�

p

) � l

due to the Golab theorem. Thus �

1

is an admissible set and we have only to prove

that F

M

(�

1

) � F

M

(�) for all 
ompa
t 
onne
ted � with H

1

(�) � l.

De�ne

F

p

(�) := F

';p

(�)

1=p

=

�

Z

M

d(y;�)

p

d'(y)

�

1=p

:

We denote with d

H

(�;�

0

) the Hausdor� distan
e between 
ompa
t sets � and �

0

,

so that d

H

(�

p

;�

1

) ! 0 as p ! 1. Also we noti
e that given any two 
ompa
t

sets � and �

0

one has

jF

p

(�)� F

p

(�

0

)j �

�

Z

M

jd(y;�)� d(y;�

0

)j

p

d'(y)

�

1=p

� d

H

(�;�

0

)'(M)

1=p

:

Re
all that for a �xed 
ompa
t � we have F

p

(�)! F

M

(�) as p!1. Hen
e,

lim inf

p!1

jF

p

(�

p

)� F

M

(�

1

)j

� lim inf

p!1

jF

p

(�

p

)� F

p

(�

1

)j+ lim inf

p!1

jF

p

(�

1

)� F

M

(�

1

)j

� lim inf

p!1

d

H

(�

p

;�

1

)'(M) = 0;

i.e. lim inf

p

F

p

(�

p

) = F

M

(�

1

).

We now argue by 
ontradi
tion supposing the existen
e of an admissible �

0

with

F

M

(�

0

) � F

M

(�

1

)� " for some " > 0. Then we would have

lim inf

p

F

p

(�

p

) = F

M

(�

1

) > F

M

(�

0

) = lim

p

F

p

(�

0

):

Thus there would exist some large p su
h that F

p

(�

p

) > F

p

(�

0

) or, equivalently,

F

';p

(�

p

) > F

';p

(�

0

). The latter 
ontradi
tion with the minimality of �

p


on
ludes

the proof.
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3 Fundamental properties of minimizers

We start with the following easy result stating that OPT

�

1

(M) � OPT

1

(M).

The idea of the proof is to show that every minimizer � of Problem 2 must have

maximum possible energy F

M

(�) = r.

Proposition 3.1 (maximal energy). Let � 2 OPT

�

1

(M). Then � 2 OPT

1

(M).

Proof. Let �

0

be a 
ompa
t 
onne
ted set su
h that H

1

(�

0

) � H

1

(�) and suppose

by 
ontradi
tion that F

M

(�

0

) < F

M

(�). Let R > 0 be su
h that �

0

� B

R

(0). If

��

0

is the �-res
aling of �

0

we noti
e that

F

M

(��

0

) � F

M

(�

0

) + dist (�

0

; ��

0

) � F

M

(�

0

) +Rj1� �j

and

H

1

(��

0

) = �H

1

(�

0

) = H

1

(�

0

)� (1� �)H

1

(�

0

):

Hen
e, if we 
hoose � < 1 su
h that R(1 � �) � F

M

(�) � F

M

(�

0

) we have found

that F

M

(��

0

) � F

M

(�) and H

1

(��

0

) < H

1

(�). So we have a 
ontradi
tion with

the assumption � 2 OPT

�

1

(M).

Given an x 2 �, a straight line � � R

n

su
h that x 2 �, and a number � > 0,

we de�ne

�

�;�

(x; �) := sup

y2�\B

�

(x)

dist (y;�)

�

:

De�ne then the 
atness �

�

of a set � by the formula

�

�

(x; �) = inf

�

�

�;�

(x; �)

where � varies among all straight lines of R

n

passing through x. We are able to

announ
e now the following auxiliary te
hni
al result.

Lemma 3.2. Let I

0

� R be a 
ompa
t neighborhood of t

0

and let 
 : I ! R

n

,

I

0

� I, be a 
ontinuous 
urve su
h that there is a 


0

(t

0

) 6= 0 and #


�1

(x

0

) = 1,

where x

0

:= 
(t

0

). Let v = 


0

(t

0

), � := fx

0

+ vs : s 2 Rg and �

0

:= 
(I

0

). Then

lim

�!0

+

�

�

0

;�

(x

0

; �) = 0:

Proof. Step 1. We �rst 
laim that

d

�

:= diam 


�1

(B

�

(x

0

))! 0 as �! 0

+

:

In fa
t, otherwise there is an " > 0 and a sequen
e ft

�

g � I

0

su
h that 
(t

�

)! 
(t

0

)

as � ! 1 and jt

�

� t

0

j > ". Then, up to a subsequen
e (not relabeled), we have

t

�

! t 2 I and in view of 
ontinuity of 
 one has 
(t

�

) ! 
(t) as � ! 1. Then

t 6= t

0

but 
(t) = 
(t

0

) whi
h 
ontradi
ts the assumption #


�1

(x

0

) = 1.

Step 2. One has

dist (
(t);�) � j
(t)� (x

0

+ v(t� t

0

))j

for all t 2 I . Therefore,

dist (
(t);�)

t� t

0

�

j
(t)� (x

0

+ v(t� t

0

))j

t� t

0

;

and hen
e, minding the de�nition of a derivative of 
 in t

0

, one gets

lim

t!t

0

dist (
(t);�)

t� t

0

= 0: (1)
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Observe now that

�

�

0

;�

(x

0

; �) = sup


(t)2B

�

(x

0

)

dist (
(t);�)

�

= sup


(t)2B

�

(x

0

)

dist (
(t);�)

jt� t

0

j

jt� t

0

j

�

:

Now, if � ! 0

+

, then for t 2 


�1

(B

�

(x

0

)) one has t ! t

0

. But, for t suÆ
iently


lose to t

0

one has


(t)� x

0

= v(t� t

0

) + o(t� t

0

);

and hen
e

j
(t)� x

0

j �

1

2

jvj � jt� t

0

j:

Minding that v 6= 0 a

ording to our assumption, we get

jt� t

0

j � 2

j
(t)� x

0

j

jvj

� 2

�

jvj

:

Therefore, for all suÆ
iently small � > 0 one has

�

�;�

(x

0

; �) = sup


(t)2B

�

(x

0

)

dist (
(t);�)

�

�

2

jvj

sup

jt�t

0

j<d

�

dist (
(t);�)

jt� t

0

j

! 0

when �! 0

+

in view of (1).

We need also the following lemma from [5℄.

Lemma 3.3. Let � � R

n

be a 
losed 
onne
ted set satisfying H

1

(�) < +1. Then

there is a surje
tive (but not ne
essarily inje
tive) Lips
hitz ar
-length parameteri-

zation 
: [0; L℄! � with j


0

j = 1 a.e. over [0; L℄, where L � 2H

1

(�).

In the sequel we will extensively use the result below whi
h in a 
ertain sense

provides the existen
e of \
lassi
al" (rather than approximate) tangent lines to a

one-dimensional 
ontinuum �.

Proposition 3.4 (existen
e of tangent lines). Let � � R

n

be a 
losed 
onne
ted

set su
h that H

1

(�) < +1. Then in H

1

-a.e x 2 � there exists a \tangent" line �

to � at x in the sense that x 2 � and

lim

�!0

+

�

�;�

(x; �) = 0:

Proof. In view of Lemma 3.3 there is a surje
tive Lips
hitz parameterization 
:

[0; L℄! � with j


0

j = 1 a.e. over [0; L℄, where L < +1. Let

�

0

= fx 2 � : t 2 (0; L), 


0

(t) exists and j


0

(t)j = 1 whenever 
(t) = xg;

�

1

= fx 2 �

0

: 


�1

(x) is �niteg;

�

2

= fx 2 �

1

: if 
(t) = 
(s) = x then 


0

(t) = �


0

(s)g:

Clearly H

1

(�n�

0

) = 0 by the de�nition of 
. Also H

1

(�

0

n�

1

) = 0 sin
e otherwise

we would have

Z

L

0

j


0

(t)j dt =

Z

�

#


�1

(x) dH

1

(x) �

Z

�

0

n�

1

#


�1

(x) dH

1

(x) =1:
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Finally, we 
laim that H

1

(�

1

n�

2

) = 0. In fa
t, given x 2 �

1

n�

2

we note that in

a suÆ
iently small neighborhood of x there are two di�erent ar
s �

1

and �

2

su
h

that �

1

\ �

2

= fxg and x is an internal point both of �

1

and of �

2

. Thus one has

for the upper density

�

�

(�; x) := lim sup

�!0

+

H

1

(� \B

�

(x))

2�

� 2:

On the other hand, �

�

(�; x) = 1 for H

1

-a.e. x 2 � in view of Besi
ovit
h-

Marstrand-Mattila Theorem [1, Theorem 2.63℄.

Let now x 2 �

2

be given and let ft

1

; : : : ; t

N

g = 


�1

(x). We de�ne

� := fx+ �


0

(t

i

) : � 2 Rg

whi
h, by the de�nition of �

2

, does not depend on i 2 f1; : : : ; Ng. Let I

1

; : : : ; I

N

be 
ompa
t neighborhoods of the points t

1

; : : : ; t

N

, su
h that I

1

[ : : : [ I

N

= [0; L℄

and su
h that t

i

2 I

j

, if and only if i = j. Set �

i

:= 
(I

i

) and de�ne

�

�;�

(x; �) := max

i2f1;:::;Ng

�

�

i

;�

(x; �)

and hen
e, applying Lemma 3.2, we �nd that �

�;�

(x; �) ! 0 as � ! 0

+

. This is

true for all x 2 �

2

and hen
e for H

1

-a.e. x 2 �.

The following te
hni
al lemma will be 
ru
ial for our 
onstru
tions in the sequel.

Lemma 3.5. Let R = [�a; a℄� [�b; b℄, �x = (0; 0) and suppose r � maxf8a; 32bg.

Then there exist two 
ompa
t 
onne
ted sets X

+

, X

�

su
h that X

�

� f�ag�[�b; b℄

(see Figure 2), and denoting X := X

+

[X

�

one has that

H

1

(X) � C

1

(b+ a

2

=r)

(one 
an take C

1

= 48), while given an arbitrary y 2 R

2

su
h that jy � �xj � r=2

one has

dist (y;X) � dist (y;R)� b:

Proof. Let

L := 4

�

b+ a

2

=r

�

:

We remark that

L � r=4: (2)

In fa
t, minding that r � 8a and r � 32b, we have L = 4b+ 4a

2

=r � r=8 + r=16 <

r=4. De�ne now

z

�

:= (�a; 0); X

�

:= f�ag � [�L;L℄ [ �B

2b

(z

�

):

Clearly, H

1

(X) = 4L + 8�b � 48(b + a

2

=r) = C

1

(b + a

2

=r). Let y = (�; �) be a

point su
h that jy � �xj � r=2. We 
onsider two 
ases.

Case A: j�j � a. Suppose �rst that � � a. Sin
e jy � �xj � r=2, then

jy � z

+

j � jy � xj � jz

+

� xj � r=2� a = r=4 + r=4� a � a+ 2b� a = 2b:

Hen
e we have y 62 B

2b

(z

+

) and therefore

dist (y; �B

2b

(z

+

)) � dist (y;R)� b:

The analogous 
laim holds for � � �a, namely, in this 
ase

dist (y; �B

2b

(z

�

)) � dist (y;R)� b:

7



z

+

2b

2b

X

+

2a

X

�

L

z

�

R�x

Figure 2: The re
tangle R and the 
orresponding set X = X

�

[X

+

in strong lines.

Therefore, we have

dist (y;X) � dist (y;R)� b:

Case B: j�j � a. Minding that �

2

+�

2

� r

2

=4 and �

2

� a

2

� r

2

=64, we 
learly

have � � r=4 and hen
e � � 2b. Also we have L = 4b+ 4a

2

=r � r=8 + r=8 � r=4.

We 
laim that

(� � L)

2

+ a

2

� (� � 2b)

2

: (3)

In fa
t,

(� � L)

2

+ a

2

� (� � 2b)

2

= �

2

� 2�L+ L

2

+ a

2

� �

2

� 4b

2

+ 4b�

� �2�(L� 2b) + L

2

+ a

2

� �

r

2

(L� 2b) + L

2

+ a

2

(be
ause � � r=4)

= �

�

r

2

� L

�

L+ br + a

2

� �

r

4

L+ br + a

2

= 0 (due to (2)).

By (3) we 
on
lude that

dist (y;X) �

p

(� � L)

2

+ (� � a)

2

�

p

(� � L)

2

+ a

2

� � � 2b = (� � b)� b � dist (y;R)� b:

We will also use the following easy 
overing result.

Lemma 3.6 (
overing). Let � � R

n

be a bounded set. Then, given � > 0, there

is a �nite set of points (
alled further �-latti
e of �) fx

1

; : : : ; x

N

g � � su
h that

N

[

j=1

B

�

(x

j

) � �;

while B

�=2

(x

j

), j = 1; : : : ; N , are pairwise disjoint.

Proof. Take an R > 0 su
h that � � B

R

(0). Consider the family F of all sets X � �

su
h that for all di�erent x

1

; x

2

2 X one has B

�=2

(x

1

) \ B

�=2

(x

2

) = ;. Clearly for

ea
h set X 2 F one has

X

x2X

jB

�=2

(x)j � jB

R+�=2

(0)j;

8



whi
h implies that #X � (2R + �)

n

=�

n

, i.e. the number of elements in ea
h X is

estimated from above by a unique 
onstant independent of X . Therefore there is

an X

0

2 F whi
h has the maximum 
ardinality among all elements of F. Then for

some N 2 N one has X

0

= fx

1

; : : : ; x

N

g, and

N

[

j=1

B

�

(x

j

) � �;

sin
e otherwise there is a x

0

2 � su
h that jx

j

� x

0

j � � for all j = 1; : : : ; N , and

hen
e X

0

[ fx

0

g 2 F while having 
ardinality stri
tly greater than #X

0

.

Now we are able to prove that every minimizer �

opt

to Problem 1 must have

maximum available length H

1

(�

opt

) = l.

Theorem 3.7 (maximal length). Let � � R

2

be a 
ompa
t 
onne
ted set with

H

1

(�) < 1 and with F

M

(�) > 0. Then for ea
h � > 0 there exists a 
ompa
t


onne
ted �

0

su
h that H

1

(�

0

) � H

1

(�) + � and F

M

(�

0

) < F

M

(�). In parti
ular,

if �

opt

solves Problem 1, then H

1

(�

opt

) = l.

Proof. In view of Proposition 3.4 one has lim

k!1

�

�

(x; 1=k) = 0 for H

1

-a.e. x 2 �.

Choose " = �=4� and let r = F

M

(�). By Egorov Theorem there exists a set �

"

� �

su
h that H

1

(�

"

) � " and

lim

k!1

sup

x2�n�

"

�

�

(x; 1=k) = 0:

Choose

� := min

�

�=(8C

1

H

1

(�)); 1=8

	

(4)

where C

1

is the 
onstant introdu
ed in Lemma 3.5. Choose also � = 1=k > 0 su
h

that

� � �r; � � diam�=2 and sup

x2�n�

"

�

�

(x; �) � �=2: (5)

Consider now a �-latti
e fx

1

; : : : ; x

N

g of � n �

"

as provided by Lemma 3.6 so

that the balls of radius �=2 
entered in these points are all disjoint while the balls

of radius � 
over the whole set � n�

"

.

Note that sin
e � is 
onne
ted, we have H

1

(� \B

�=2

(x

i

)) � �=2 and hen
e

N�

2

�

N

X

i=1

H

1

�

� \ B

�=2

(x

i

)

�

� H

1

(�) (6)

i.e.

� � 2H

1

(�)=N: (7)

Let now i 2 f1; : : : ; Ng be �xed and 
onsider the line � through x

i

su
h that

dist (x;�) � ��

�

(x

i

; �) � ��=2 for all x 2 �\B

�

(x

i

). Consider now an orthonormal

system of 
oordinates su
h that x

i

= (0; 0) and su
h that the line � is horizontal.

We have � \ B

�

(x

i

) � [��; �℄� [���; ��℄ (see Figure 3).

Then de�ne R

i

:= [�s

i

; t

i

℄ � [���; ��℄ where 0 � s

i

; t

i

� � are su
h that � \

B

�

(x

i

) � R

i

but also su
h that both the sides f�s

i

g�[���; ��℄ and ft

i

g�[���; ��℄

interse
t �. Then let X

i

be the set 
onstru
ted in Lemma 3.5 with respe
t to R

i

(by (5) both a := (t

i

+ s

i

)=2 � � � r=8 and b := �� � r=32 verify the 
onditions of

the lemma). Sin
e the two 
omponents of X

i


ontain the left and right sides of R

i

9



��

�

�

R

i

R

0

i

x

i

~x

i

Figure 3: The 
onstru
tion of Theorem 3.7. We know that �\B

�

(x

i

) is 
ontained

in the shaded region.

we know that � [X

i

is 
onne
ted. Moreover, X

i

has been 
onstru
ted so that (by

means of (4), (5) and (7))

H

1

(X

i

) � C

1

 

��+

((t

i

+ s

i

)=2)

2

r

!

� C

1

(��+

�

2

r

)

� 2C

1

�� by (5)

�

4C

1

�H

1

(�)

N

by (7)

�

�

2N

by (4)

(8)

We denote by ~x

i

the 
enter of the re
tangle R

i

. We know from Lemma 3.5 that

if jy � ~x

i

j � r=2 then dist (y;X

i

) � dist (y;R

i

)� ��.

Let now

R

0

i

:= fx 2 R

2

: dist (x;R

i

) < ��=2g

stand for the open ��=2-neighborhood of R

i

. Sin
e

N

[

i=1

B

�

(x

i

) � � n�

"

and � \ B

�

(x

i

) � R

i

� R

0

i

;

then one has

N

[

i=1

R

0

i

�

N

[

i=1

(� \ B

�

(x

i

)) � � n�

"

:

Further, if jy � ~x

i

j � r=2 we 
on
lude that dist (y;X

i

) � dist (y;R

0

i

)� ��=2.

Consider the set

Z := � n

N

[

i=1

R

0

i

� �

"

:

Sin
e all R

0

i

are open sets and � is 
ompa
t, then Z is a 
ompa
t set.

Choose

Æ := min f(diam�)=2; r=4g : (9)

Sin
e the spheri
al Hausdor� measure of the re
ti�able set is equal to the usual

Hausdor� measure, then there exists an at most 
ountable number of balls B

Æ

i

(z

i

)

10



with z

i

2 Z and Æ

i

< Æ su
h that

[

i

B

Æ

i

(z

i

) � Z and

X

i

2Æ

i

� H

1

(Z) � H

1

(�

"

) � " �

�

4�

(10)

The 
ompa
tness of Z permits us to assume that there is only a �nite number M

of su
h balls.

Consider now the 
ir
les Y

i

:= �B

2Æ

i

(z

i

). It is 
lear that ea
h �[Y

i

is 
onne
ted:

in fa
t, z

i

2 � and diam� > 2Æ

i

, hen
e � \ Y

i

6= ;.

We �nally de�ne

�

0

:= � [

N

[

i=1

X

i

[

M

[

i=1

Y

i

:

By the properties of X

i

and Y

i

we know that �

0

is 
ompa
t and 
onne
ted.

Let us prove that F

M

(�

0

) < r = F

M

(�). Let y 2 M be given. If dist (y;�) <

3r=4, we obviously have dist (y;�

0

) � dist (y;�) < r � r=4. So suppose instead

that dist (y;�) � 3r=4. Clearly we also know dist (y;�) � r (sin
e r = F

M

(�)).

Consider a point x 2 � su
h that jx� yj = dist (y;�). Only two 
ases may happen:

either x 2 R

0

i

for some i 2 f1; : : : ; Ng or x 2 B

Æ

i

(z

i

) for some i 2 f1; : : : ;Mg.

In the �rst 
ase (x 2 R

0

i

) we have (re
all (4) and (5))

jy � ~x

i

j � jy � xj�jx� ~x

i

j � 3r=4�

p

(��)

2

+ �

2

� ��=2 � r=2:

Therefore

dist (y;X

i

) � dist (y;R

0

i

)� ��=2 � jy � xj � ��=2 � r � ��=2:

In the se
ond 
ase (x 2 B

Æ

i

(z

i

)) we know that y 62 B

2Æ

i

(z

i

) sin
e, by (9)

jy � x

i

j � jy � xj � jx� z

i

j � 3r=4� Æ � 2Æ:

Thus

dist (y; Y

i

) � jy � xj � Æ

i

� r � 
;

where 
 is the minimum of Æ

i

for i = 1; : : : ;M .

So in either 
ase dist (y;�

0

) � r�minfr=4; ��=2; 
g and hen
e F

M

(�

0

) < F

M

(�).

Finally, by (8) and (10) we have

H

1

(�

0

)�H

1

(�) �

N

X

i=1

H

1

(X

i

) +

M

X

i=1

H

1

(Y

i

) �

�

2

+

M

X

i=1

4�Æ

i

� �;


on
luding the proof.

An immediate 
onsequen
e of the above proven Theorem 3.7 is the equivalen
e

of problems 1 and 2.

Corollary 3.8. One has OPT

1

(M) = OPT

�

1

(M).

4 Topologi
al properties

In this se
tion we show that the optimal sets 
ontain no loop (homeomorphi
 image

of S

1

).

Theorem 4.1. Let � 2 OPT

�

1

(M). Then � 
ontains no simple 
losed 
urve

(homeomorphi
 image of S

1

). Therefore, R

2

n� is 
onne
ted.
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2�

4��

2�

z

�x

R

�

Figure 4: The 
onstru
tion of Theorem 4.1: the set � in strong lines.

Proof. Suppose by 
ontradi
tion that there is a 
ontinuous 
urve 
 : [0; 1℄ ! �

su
h that 
(0) = 
(1) and 
 : [0; 1) ! � is inje
tive. We set z := 
(0). Take a

point

�

t 2 (0; 1) su
h that there exists a \tangent" line � to � at �x = 
(

�

t) (in the

sense of Proposition 3.4), � := fx+ �


0

(

�

t) : � 2 Rg, so that

lim

�!0

+

�

�;�

(�x; �) = 0:

The existen
e of su
h a point is guaranteed by Proposition 3.4. Consider a system

of orthonormal 
oordinates su
h that �x = (0; 0), 


0

(

�

t) = (j


0

(

�

t)j; 0) (i.e. 


0

(

�

t) is

dire
ted along the �rst 
oordinate axis and 
onsequently � = R �f0g). Let 
(t) =

(


1

(t); 


2

(t)) be the two 
omponents of 
 with respe
t to our system of 
oordinates.

Sin
e 


0

1

(

�

t) > 0, then there exists an h > 0 su
h that for all t 2 (

�

t;

�

t + h℄ we have




1

(t) > 0 and for all t 2 [

�

t� h;

�

t) we have 


1

(t) < 0. Let

�

0

:= 
([0;

�

t� h℄) [ 
([

�

t+ h; 1℄)

and de�ne �

0

:= dist (�x;�

0

). Observe that �

0

> 0 sin
e �x 62 �

0

.

Choose a � > 0 su
h that

� < �

0

=2; � < r=C

1

; � < r=96 and � := �

�;�

(�x; 2�) <

1

3C

1

; (11)

where C

1

is the 
onstant de�ned in Lemma 3.5 and r := F

M

(�). Consider the

re
tangle R

�

:= [��; �℄ � [�3��; 3��℄ and let Y := Y

+

[ Y

�

, Y

�

:= f��g �

[�3��; 3��℄ be the two short edges of R

�

.

By de�nition of � we know that dist (y;�) � 2�� < 3�� for all y 2 � \ B

2�

(�x)

and hen
e � \ �R

�

� Y . De�ne

t

0

= minft 2 [

�

t� h;

�

t℄ : 
(t) 2 R

�

g; t

1

= maxft 2 [

�

t;

�

t+ h℄ : 
(t) 2 R

�

g:

Clearly t

0

>

�

t� h (be
ause 
(

�

t� h) 2 �

0

, while �

0

\ R

�

= ; by 
onstru
tion) and

analogously t

1

<

�

t+ h. We thus 
on
lude that both 
(t

0

) 2 �R

�

and 
(t

1

) 2 �R

�

and hen
e, minding that 


1

(t

0

) < 0 and 


1

(t

1

) > 0, we get


(t

0

) 2 Y

�

and 
(t

1

) 2 Y

+

:
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Let X := X

+

[ X

�

be the set 
onstru
ted in Lemma 3.5 with respe
t to the

re
tangle R

�

and de�ne

�

0

:= (� nR

�

) [X:

Clearly �

0

is 
ompa
t (re
all that X is 
ompa
t and that � \ �R

�

� Y � X).

We 
laim that �

0

is also 
onne
ted. Observe to this end that the 
urves 
([0; t

0

℄)

and 
([t

1

; 1℄) 
onne
t respe
tively Y

�

(hen
e X

�

) and Y

+

(hen
e X

+

) to the point

z and that both 
urves stay in �

0

. In fa
t, 
([0;

�

t � h℄) and 
([

�

t + h; 1℄) do not

interse
t B

�

0

(�x) by the de�nition of �

0

, while 
([

�

t � h; t

0

℄) and 
([t

1

;

�

t + h℄) do

not interse
t the interior of R

�

by the de�nition of t

0

and t

1

. Therefore, every

x 2 X � �

0

is 
onne
ted to z by a 
urve 
ontained in �

0

. To 
on
lude the proof of

the 
laim, it remains to 
onsider the 
ase of an x 2 � n R

�

� �

0

. We know in this


ase that, in view of ar
wise 
onne
tedness of �, there exists a 
ontinuous 
urve

' : [0; 1℄ ! � su
h that '(0) = x and '(1) = z. If this 
urve is not 
ompletely


ontained in �

0

, 
onsider the s 2 [0; 1℄ su
h that

s := minft 2 [0; 1℄ : '(t) 2 �R

�

g:

We have then '(s) 2 Y � X � �

0

, and hen
e the 
urve '([0; s℄) 
onne
ts x to X

staying in �

0

. But sin
e as shown above both X

+

and X

�

are 
onne
ted to z in �

0

,

then x is 
onne
ted to z in �

0

and thus we �nally 
on
lude that �

0

is 
onne
ted.

By Lemma 3.5 we know that

H

1

(�

0

) � H

1

(�)�H

1

(� \ R

�

) +H

1

(X)

� H

1

(�)� 2�+ C

1

(3��+ �

2

=r) < H

1

(�);

the latter estimate being valid in view of (11).

We 
laim that F

M

(�

0

) � r = F

M

(�). In fa
t, 
onsider an arbitrary y 2M . Let

x 2 � be su
h that dist (y;�) = jy � xj. Then, if x 2 �

0

, we have automati
ally

dist (y;�

0

) � jy � xj = dist (y;�):

Otherwise, x 2 R

�

. Consider �rst the 
ase jy � xj > r=2. Then jx � �xj > r=2

sin
e �x 2 �. By Lemma 3.5 we get therefore that dist (y;X) < dist (y;R

�

). We

observe now that dist (y;R

�

) � jy�xj = dist (y;�), whi
h still implies dist (y;�

0

) �

dist (y;�). At last, it remains to 
onsider the 
ase jy � xj � r=2. Observe that

dist (y;�

0

) � jy � xj+ 2� � r=2 + 2� � r sin
e � n�

0

� R

�

� B

2�

(x

0

).

Finally, we 
on
lude that H

1

(�

0

) < H

1

(�), while F

M

(�

0

) � F

M

(�), whi
h


ontradi
ts the assumption � 2 OPT

�

1

(M). This 
ontradi
tion proves the absen
e

of simple 
losed 
urves in �. This also implies that R

2

n� is 
onne
ted (see [4℄).

5 Ahlfors regularity

We show now that minimizers of Problem 2 (hen
e also of Problem 1 in view of

Corollary 3.8) possess some mild regularity properties. In parti
ular, we show that

every � 2 OPT

�

1

(M) is Ahlfors regular in the sense that there exist two 
onstants


 > 0 and C > 0 su
h that for every positive � < diam� and for every x 2 � one

has


� � H

1

(� \ B

�

(x)) � C�

(while a singleton is 
onsidered to be Ahlfors regular by de�nition). It is worth

mentioning that Ahlfors regularity of a 
losed 
onne
ted set � implies the so-
alled

uniform re
ti�ability on �, whi
h, as it has been shown in [5℄, provides several ni
e

analyti
al properties of �. This 
ondition 
an be 
onsidered a kind of \quantitative

re
ti�ability" whi
h is somewhat stronger than the 
lassi
al re
ti�ability used in

geometri
 measure theory.
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Theorem 5.1. Given � 2 OPT

�

1

(M), there exists su
h a �

0

> 0 that for all x 2 �

and all � < �

0

one has

� � H

1

(� \ B

�

(x)) � 2��:

In parti
ular, � is Ahlfors regular.

Proof. Let �

0

:= minfdiam�=2; F

M

(�)g. Given � < diam�=2 and x 2 � we have

� \ �B

�

(x) 6= ;. Thus there exists a 
urve � � � \

�

B

�

(x) whi
h joins x to �B

�

(x)

and hen
e

H

1

(� \B

�

(x)) � H

1

(� \ B

�

(x)) � �:

On the other hand, setting

�

0

:= � nB

�

(x) [ �B

�

(x)

for � < diam�, we observe that the 
ompa
t set �

0

is 
onne
ted. If also � < F

M

(�),

we have F

M

(�

0

) � F

M

(�), while

H

1

(�

0

) � H

1

(�)�H

1

(� \ B

�

(x)) + 2��

But sin
e � 2 OPT

�

1

(M), we have H

1

(�) � H

1

(�

0

), and hen
e H

1

(� \ B

�

(x)) �

2��.

6 Stru
ture of minimizers

Let us 
onsider a minimizer � 2 OPT

�

1

(M) with energy r = F

M

(�). In this

se
tion we show that the set � 
an be split in three parts whi
h turn out to have

very di�erent properties. We need for this purpose the following notions.

De�nition 6.1. A point x 2 � is 
alled energeti
, if for all � > 0 one has

F

M

(� nB

�

(x)) > F

M

(�):

Let G

�

stand for the set of energeti
 points of �. Given a point x 2 G

�

we say that

x is an isolated energeti
 point, if there exists su
h a � > 0 that B

�

(x)\G

�

= fxg.

Further, we de�ne X

�

� G

�

to be the set of isolated energeti
 points of � and let

E

�

:= G

�

n X

�

to be the set of non isolated energeti
 points. The remaining set

S

�

:= � nG

�

is the set of non energeti
 points of �.

In this way a set � 
an be split into three disjoint sets:

� = E

�

[X

�

[ S

�

; G

�

= E

�

[X

�

:

In the theorem below we 
olle
t the results whi
h will be proved later in Propo-

sitions 6.3, 6.6 and 6.7.

Theorem 6.2 (stru
ture of minimizers). Let � 2 OPT

�

1

(M), r := F

M

(�) and

E := E

�

, X = X

�

and S := S

�

be de�ned as above. Then the sets E, X and S

have the following properties.

1. X is a dis
rete set (i.e. all the points of X are isolated, or, in other words, the

topologi
al dimension dimX = 0). For any point x 2 X there exists y 2 M

su
h that jx� yj = r and B

r

(y)\� = ;. If X is not �nite, the limit points of

X are always points of E.

2. E is a 
ompa
t set with distan
e r from M in the following sense: for ea
h

x 2 E there exists an y 2M with jx� yj = r, B

r

(y) \ � = ; and there exists

a sequen
e y

k

! y, y

k

6= y, y

k

2M su
h that

lim

k!1

hy � x; y

k

� yi

jy

k

� yj

= 0:
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3. For all x 2 S there exists " > 0 su
h that S \ B

"

(x) is either a segment or a

triple point i.e. the union of three segments with an endpoint in x and relative

angles of 120 degrees.

In the next se
tion we will give some 
omments on the above stru
ture theorem.

The rest of the se
tion is devoted to its proof. We start from the following easy

statement.

Proposition 6.3. Let G

�

, E

�

, X

�

and S

�

be de�ned as before. Then G

�

is


ompa
t, E

�

is 
ompa
t, X

�

is dis
rete and relatively open in G

�

with

�

X

�

nX

�

�

E

�

, and S

�

is relatively open in �.

Proof. Let fx

k

g � G

�

be a sequen
e of points x

k

6= x whi
h 
onverges to a point

x 2 �. Given " > 0 we 
hoose a k su
h that jx

k

� xj < "=2. Minding B

"=2

(x

k

) �

B

"

(x), we get

F

M

(� nB

"

(x)) � F

M

(� nB

"=2

(x

k

) > F

M

(�)

whi
h means that x 2 G

�

. Thus G

�

is a 
losed set and, sin
e � is 
ompa
t, then

so is G

�

.

The set X

�

is relatively open in G

�

and is dis
rete by de�nition. Also, possible

a

umulation points of X

�

belong to G

�

and hen
e to E

�

, sin
e X

�

is dis
rete. As

a 
onsequen
e, E

�

is 
losed and hen
e 
ompa
t. Sin
e G

�


losed, we also dedu
e

that S

�

is relatively open in �.

The two te
hni
al lemmata below will be used in the proof of Proposition 6.6.

Lemma 6.4. Let M and � be given 
ompa
t subsets of R

2

, and � is 
onne
ted.

Let G

�

be de�ned as above. Then there exists a map � : G

�

! M su
h that for

ea
h x 2 G

�

one has

jx� �(x)j = dist (�(x);�) = F

M

(�); (12)

and #�

�1

(�(x)) � 4. In parti
ular, B

r

(�(x)) \ � = ; with r := F

M

(�).

Proof. Step 1. Let x 2 G

�

and r := F

M

(�). Consider a sequen
e of positive

numbers "

k

! 0 and "

k

< diam�=2. Sin
e � is 
onne
ted, x 2 � and diam� > 2"

k

,

then � \ �B

"

k

6= ;. Therefore we 
an 
hoose a sequen
e x

k

2 � \ �B

"

k

(x).

Sin
e x 2 G

�

, we know that F

M

(� n B

"

k

(x)) > r for all k. In parti
ular, there

exists an y

k

2M su
h that

dist (y

k

;� nB

"

k

(x)) = F

M

(� nB

"

k

(x)) > r: (13)

But dist (y

k

;� nB

"

k

(x)) � jy

k

� x

k

j sin
e x

k

2 � nB

"

k

(x). Thus

jy

k

� xj � jy

k

� x

k

j � jx

k

� xj > r � "

k

: (14)

On the other hand, we know that dist (y

k

;�) � F

M

(�) = r. Hen
e there exists

an ~x

k

2 � su
h that jy

k

� ~x

k

j = dist (y

k

;�) � r. Moreover we have ~x

k

2 B

"

k

(x),

sin
e otherwise we would have dist (y

k

;� n B

"

k

(x)) � jy

k

� ~x

k

j � r whi
h would


ontradi
t the 
hoi
e of y

k

. We 
on
lude therefore that

jy

k

� xj � jy

k

� ~x

k

j+ j~x

k

� xj � r + "

k

: (15)

Up to a subsequen
e, not relabeled, y

k

! y 2 M as k ! 1 and hen
e passing

to the limit as k !1 in equations (14) and (15), we get jy � xj = r. We then set

�(x) := y. Noti
e that

dist (y

k

;�) = jy

k

� ~x

k

j � jy

k

� xj � jx� ~x

k

j � jy

k

� xj � "

k

15



whi
h, after passing to the limit k ! 1, gives dist (y;�) � jy � xj = r. The

property (12) is therefore proven.

Step 2. We now prove that #�

�1

(y) � 4. By (13), we have

�

B

r

(y

k

) \ � � B

"

k

(x): (16)

If y

k

= y for in�nitely many indi
es k we dedu
e that

�

B

r

(y) \ � = fxg and hen
e

ne
essarily �

�1

(y) = fxg. Therefore we will suppose without loss of generality that

y

k

6= y for all k. Thus, up to a subsequen
e (not relabeled), there exists at least

one unit ve
tor v

x

su
h that

y

k

� y

jy

k

� yj

! v

x

:

In the next step we will prove that for all x

0

2 �

�1

(y), x

0

6= x one has

hv

x

; x� yi � 0;

hv

x

; x

0

� yi � 0:

(17)

On
e (17) is proven we are able to prove the remaining 
laim. In fa
t, suppose by


ontradi
tion that #�

�1

(y) � 5. Set in this 
ase v

i

:= v

x

i

, w

i

:= x

i

�y, i = 1; : : : ; 5,

where x

i

2 �

�1

(y). Then (17) provides

hv

i

; w

i

i � 0; hv

i

; w

j

i � 0; i; j = 1; : : : ; 6; i 6= j:

We 
laim now that there exists a � 2 R

2

and at least three indi
es fi

1

; i

2

; i

3

g �

f1; : : : ; 5g su
h that h�; v

i

j

i > 0. In fa
t, let �

0

be any ve
tor satisfying h�

0

; v

i

i 6= 0

for all i = 1; : : : ; 5. If among the produ
ts h�

0

; v

i

i there are three positive ones, then


hoose � := �

0

, otherwise 
hoose � := ��

0

.

Without loss of generality we may now suppose (up to renumbering) that i

1

= 1,

i

2

= 2, i

3

= 3 and the ve
tor v

2

is between v

1

and v

3

(this assumption makes sense

in view of the 
laim just proven). Then hw

2

; v

1

i � 0 and hw

2

; v

3

i � 0, whi
h means

that both v

1

and v

3

belong to a half-plane fv : hw

2

; vi � 0g. Then v

1

must belong

to the same half-spa
e, whi
h 
ontradi
ts the 
ondition hw

2

; v

2

i > 0.

Step 3. It remains to prove (17). Sin
e j~x

k

�yj � dist (y;�) = r and j~x

k

�y

k

j � r,

we have

2hy

k

� y; ~x

k

� y

k

i = j~x

k

� yj

2

� jy

k

� yj

2

� j~x

k

� y

k

j

2

� r

2

� jy

k

� yj

2

� r

2

= �jy

k

� yj

2

and hen
e

hy

k

� y; x� yi = hy

k

� y; ~x

k

� y

k

i+ jy

k

� yj

2

+ hy

k

� y; x� ~x

k

i

� �

jy

k

� yj

2

2

+ jy

k

� yj

2

� jy

k

� yj � jx� ~x

k

j

� �jy

k

� yj � jx� ~x

k

j:

Dividing by jy

k

� yj and passing to the limit we obtain the �rst part of (17).

Similarly, given x

0

6= x, x

0

2 �

�1

(y) we have jy�x

0

j = r in view of (12). On the

other hand, for all suÆ
iently large k 2 N one has x

0

62 B

"

k

(x) and hen
e by (13)

we get jy

k

� x

0

j > r. Therefore,

2hy

k

� y; x

0

� yi = jy � x

0

j

2

+ jy

k

� yj

2

� jy

k

� x

0

j

2

< r

2

+ jy

k

� yj

2

� r

2

= jy

k

� yj

2

:

Again we divide by jy

k

� yj and pass to the limit k ! 1 to 
omplete the proof

of (17).

16



��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

������������������������
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�x

�

�y

x

1

x

2

r

x

x

0

y

0

y

Figure 5: The point y lies in the shaded region.

Lemma 6.5. Let r > " > 0 be given and let x; �x; y; �y 2 R

2

be su
h that

j�x� �yj = jx� yj = r; j�x� yj � r; jx� �yj � r; j�x� xj � "; j�y � yj � ":

Then

jh�y � y; �x� �yij �

"

r

j�y � yj j�x� �yj:

Proof. Let x

1

and x

2

be the two interse
tions of the 
ir
le �B

r

(�y) with the boundary

of the 
onvex hull of B

"

(�x) [ B

"

(�y) (so that x

1

and x

2

have distan
e " from the

segment [�x; �y℄, see Figure 5).

We 
laim that

y 2 (

�

B

"

(�y) nB

r

(�x)) \ (B

r

(x

1

) [ B

r

(x

2

)) (18)

(i.e. y belongs to the shaded region of Figure 5). In fa
t, the hypotheses of the

lemma being proven mean y 2

�

B

"

(�y) nB

r

(�x) and x 2

�

B

"

(�x) nB

r

(�y). Also we know

that jx � yj = r. Let x

0

be the interse
tion of the segment [x; y℄ with the 
ir
le

�B

r

(�y). Suppose that x

0

is 
loser to x

1

than x

2

(the other 
ase is symmetri
),

whi
h means that x

0

and x

1

belong to the same half-plane �

+

bounded by the line

(�x�y) (for de�niteness, we 
onsider it to be the half-plane \above" this line). It is

easy to observe that also y must belong to the same half-plane, be
ause the set

�B

r

(x) \ (

�

B

"

(�y) nB

r

(�x)) 
ontaining y, is 
ontained in this half-plane.

Clearly jx

0

� yj � r so we know that y 2

�

B

r

(x

0

). Moreover, we observe that

jy � x

1

j � jy � x

0

j. In fa
t, both x

1

and x

0

belong to �B

r

(�y) by 
onstru
tion,

hen
e the triangle with verti
es x

1

, x

0

and �y is isos
eles, whi
h implies that the

axis of symmetry of the segment [x

0

; x

1

℄ passes through �y (being both the median

and the height of the mentioned triangle). Hen
e y stays \above" this axis, sin
e

otherwise, minding y 2 �

+

we would have that ne
essarily y 2 B

r

(�x) 
ontrary to

our assumptions.

We have therefore jy � x

1

j � jy � x

0

j � r whi
h means that y 2

�

B

r

(x

1

). If we

also 
onsider the symmetri
 
ase (namely, x and hen
e also y below the line (�x; �y)

we �nd that y 2 B

r

(x

1

) [ B

r

(x

2

). This 
ompletes the proof of the 
laim (18).

To 
on
lude the proof of the lemma, one 
an easily 
he
k that the region R =

�

B

r

(x

1

) \

�

B

"

(�y) nB

r

(�x) is 
ontained in a 
one with aperture angle 2"=r 
entered in
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�y and perpendi
ular to [�x; �y℄. Therefore, if � stays for the angle between �x� �y and

y � �y, then j�� �=2j � "=r. Therefore,

j 
os�j = j sin(� � �=2)j � "=r;

whi
h proves the lemma.

Proposition 6.6. Let r := F

M

(�) > 0. Given x 2 E

�

there exists a sequen
e

y

k

2M whi
h 
onverges to y 2M su
h that y

k

6= y, jx� yj = r, B

r

(y)\� = ; and

hy

k

� y; y � xi=jy

k

� yj ! 0.

Proof. Let r = F

M

(�). Sin
e x is not isolated in E

�

, there exists a sequen
e

fx

k

g � E

�

, x

k

! x. In view of Lemma 6.4, setting y

k

:= �(x

k

) 2 M , we get

jx

k

� y

k

j = r and B

r

(y

k

) \ � = ;. By extra
ting a subsequen
e we may suppose

that y

k


onverges to some y 2 M . Again a

ording to Lemma 6.4 we have that

y

k

6= y for all suÆ
iently large k (otherwise �

�1

(y) would not be a �nite set).

Hen
e, we have jy � xj = r, jy

k

� x

k

j = r, jy

k

� xj � r, jy � x

k

j � r. Letting

"

k

= maxfjy

k

� yj; jx

k

� xjg we 
an apply Lemma 6.5 to dedu
e that

jhy

k

� y; x� yij

jy

k

� yjjx� yj

�

"

k

r

! 0 as k !1

whi
h 
on
ludes the proof.

Proposition 6.7. Let � 2 OPT

�

1

(M). Then given an arbitrary point x 2 S, there

exists an " > 0 su
h that B

"

(x) \ S is either a diameter of B

"

(x) or the union of

three radii with relative angles of 120 degrees.

Proof. Note that � is a 
ontinuous (even Lips
hitz 
ontinuous) image of a unit

interval by lemma 3.3, hen
e is lo
ally 
onne
ted by Hahn-Mazurkiewi
z-Sierpi�nski

theorem II.2 from [8, x 50℄. Sin
e S � � is an open set, then it 
ontains a 
onne
ted

open subset S

0


ontaining x. We may 
hoose therefore an " > 0 small enough so

that B

"

(x) \ S = B

"

(x) \ S

0

.

Further, 
onsider a � > 0 su
h that F

M

(� nB

�

(x)) = F

M

(�). We may 
onsider

" < � to be small enough so that � \ �B

"

(x) has only a �nite number of points.

Su
h an " 
an be found, sin
e otherwise, by the 
oarea formula, we would �nd that

H

1

(� \ B

�

(x)) =1.

We 
laim that H

1

(S

0

) is minimal with respe
t to all 
ompa
t 
onne
ted sets S

whi
h 
ontain S

0

\�B

"

(x). In fa
t let S be su
h a set, and 
onsider �

0

= �nS

0

[S.

Then �

0

� � n B

�

(x) and hen
e F

M

(�

0

) � F

M

(� n B

�

(x)) = F

M

(�). Being � 2

OPT

�

1

(M) we dedu
e that H

1

(�) � H

1

(�

0

) whi
h means that H

1

(S

0

) � H

1

(S).

The above proven 
laim means that S

0

is a lo
ally minimal network in the

sense of [7℄, and hen
e theorem 2.1 from [7, Chapter III℄ immediately gives the


on
lusion.

7 Final 
onsiderations

We point out that Theorem 6.2 is useful mainly when M is a 1-dimensional set.

However we will show by means of the example below, that in some 
ases one 
an

redu
e the problem with a given datum M to the problem with datum �M .

Example 1. Let M := �B

R

(0) and 
onsider a minimizer � 2 OPT

1

(M) with

F

M

(�) = r. Clearly, if r � 1, we have a trivial solution � = f0g. Otherwise we


onsider the partitioning � = E[X[S de�ned in the previous se
tion. Theorem 6.2

then says that the set E is 
ontained in the 
ir
le �B

r

(0). Also � 
ontains no 
losed

loop, hen
e not all the 
ir
le �B

r

is 
ontained in �. It is easy to see that to every
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r

R

�

M

Figure 6: The 
onje
tured minimizer � when M is a 
ir
le.


onne
ted 
omponent of �B

r

(0) nE at least two points of X must 
orrespond. We

expe
t the minimizer to be the one represented in Figure 6. In this example the

set E is an ar
 of 
ir
le with distan
e r from M , the dis
rete set X is the union of

the two endpoints and the minimal network S is the union of the two line segments


onne
ting X to E.

Noti
e also that if this is the solution when M = �B

R

(0), then for r � R=2 this

is also the solution when M =

�

B

R

(0). In fa
t, for this parti
ular set � we have

F

�

B

R

(0)

(�) = maxfr; R � rg, while in general one obviously has F

�

B

R

(0)

� F

�B

R

(0)

being �B

R

(0) �

�

B

R

(0).

It seems also worth mentioning that when M is a regular 1-dimensional set,

Theorem 6.2 seems to be not so far from a regularity theorem for minimizers �. In

fa
t, we noti
e that the set S

�

is the union of segments and a negligible number of

triple points, while the regularity of E

�

is strongly related to that of M , and X

�

is a negligible set. However, there is a gap in proving the generi
 regularity result

for the whole �. The problem is to understand how the set S

�

tou
hes the set E

�

and what happens when the points of X

�

a

umulate near a point of E

�

.
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