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Abstrat

Consider the lass of losed onneted sets � � R

n

satisfying length on-

straintH

1

(�) � l with given l > 0. The paper is onerned with the properties

of minimizers of the uniform distane F

M

of � to a given ompat setM � R

n

,

F

M

(�) := max

y2M

dist (y;�);

where dist (y;�) stands for the distane between y and �. The paper deals

with the planar ase n = 2. In this ase it is proven that the minimizers

(apart trivial ases) annot ontain losed loops. Further, some mild regularity

properties as well as struture of minimizers is studied.

1 Introdution

Let M � R

n

be a given ompat set and onsider the funtional F

M

de�ned over

subsets of R

n

by the formula

F

M

(�) := max

y2M

dist (y;�);

where dist (y;�) := inf

x2�

jx� yj and j�j stands for the standard Eulidean norm in

R

n

. In this paper we fous our attention mainly on the following problem.

Problem 1. Minimize F

M

over all ompat onneted sets � � R

n

with presribed

bound on the total length H

1

(�) � l.

One of the possible motivations for this problem is as follows. Suppose that

M represent a populated area. One has to onstrut a highway � (or, generally

speaking, a transportation network) of length not exeeding l (whih is usually

determined by the budget for onstrution), so that it be equally aessible to all

the people living in M . This means that � has to be as near as possible to M in

the uniform sense, i.e. it has to minimize F

M

.

A similar problem on minimizing F

M

over sets having presribed ardinality,

rather than having presribed length, is somewhat better known. It an be in-

terpreted as the problem of �nding an optimal loation of a presribed number of

prodution sites for the populated area M . In partiular, when M onsists of a

�nite number of points, #M = m, then the problem of minimizing F

M

over sets

�
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� � M onsisting of k < m points is a well-known ombinatorial problem alled

k-enter problem (see e.g. [11, 12℄).

Another related problem has also to be mentioned. Assume the density of the

population is given by a �nite Borel measure ompatly supported in R

n

. The

problem of onstruting an optimal highway � of presribed length an be then for-

mulated with the help of another reasonable riterium, namely, that of minimizing

the average distane (or some given funtion of the distane) to �. This prob-

lem would then read as follows: minimize over all ompat onneted � satisfying

H

1

(�) � l the funtional

F

';A

(�) :=

Z

R

n

A(dist (y;�)) d'(y);

where A: R

+

! R is some given nonnegative nondereasing funtion and ' is

some ompatly supported �nite Borel measure. Suh minimization problems have

been reently studied in [2, 3, 4℄ (see also [10℄ for the losely related so alled lazy

traveling salesman problem). Usually one takes A(t) := t

p

for p � 1 (with p = 1 or

p = 2 most important ases in appliations). In this ase we will write F

';p

instead

of F

';A

. The analogue of this problem for the minimization of F

';A

in the lass of

sets onsisting of a presribed number of points (standing for prodution sites to be

loated) is alled optimal loation problem (for a survey see [6℄ as well as [9℄). The

\ombinatorial analogue" of the latter (#supp' = m, while � � supp' onsisting

of k < m points) is well-known under the name of k-median problem.

We �nd it useful to onsider another problem whih is in a ertain sense dual to

Problem 1, and reads as follows.

Problem 2. Minimize H

1

(�) over all ompat onneted sets � � R

n

with pre-

sribed bound on F

M

, F

M

(�) � r.

This problem also admits an easy interpretation. Namely, suppose that we have

to provide a gas supply pipeline to every house loated in some area M under the

ondition that the gas supply should reah eah house at distane not greater than

a given r > 0. The ompany onstruting the pipeline will naturally try to minimize

its length under the above restrition, whih redues to solving problem 2.

It is rather easy to show that both problems studied in this paper admit solu-

tions, and, further, that Problem 1 an be onsidered in a ertain sense a limiting

problem for F

';p

as p ! 1, with M = supp'. We will further study that Prob-

lems 1 and 2 in the planar ase n = 2 and show that they are naturally equivalent

in the sense they have the same set of minimizers. This will immediately follow

one we prove that apart trivial ases, every minimizer �

opt

of problem 1 must have

the maximum possible length l. We further study the minimizers to the problems

introdued and show that (again, trivial ases apart), they never not ontain losed

loops and possess some mild regularity properties.

2 Existene of minimizers and preliminaries

The �rst easy result regarding Problem 1 is the existene of minimizers.

Theorem 2.1. Problem 1 admits a solution �

opt

for any given l � 0.

The proof of the above theorem is elementary, but we will omit it sine this

result an be also viewed as an immediate onsequene of Proposition 2.3 below.

We introdue now the following notation: let OPT

1

(M) stand for the set of

ompat onneted � � R

n

with H

1

(�) < +1 suh that � 6�M (note that this is

always true, e.g., when H

1

(M) = +1) and for every ompat onneted �

0

� R

n

2
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M

Figure 1: Possible nonloal modi�ation of  to derease the energy.

withH

1

(�

0

) � H

1

(�) one has F

M

(�

0

) � F

M

(�). In other words, the set OPT

1

(M)

onsists of all the minimizers to Problem 1 for all the possible values of l > 0 exept

trivial ones (namely � 6�M whih are the only minimizers providing F

M

(�) = 0).

Theorem 2.1 shows therefore that OPT

1

(M) 6= ;.

Analogously, we introdue the set OPT

�

1

(M) onsisting of all ompat on-

neted � � R

n

with H

1

(�) < +1 suh that � 6� M and for every ompat

onneted �

0

� R

n

with F

M

(�

0

) � F

M

(�) one has H

1

(�

0

) � H

1

(�). This lass is

related to Problem 2 similarly to how OPT

1

(M) is related to Problem 1. Namely,

OPT

�

1

(M) onsists of all the minimizers to Problem 2 for all the possible values of

r > 0 (the minimizers to Problem 2 with r = 0 are all losed onneted � �M).

It is rather easy to prove that OPT

�

1

(M) � OPT

1

(M) (see Proposition 3.1).

We will show that the reverse inlusion is still true, though its proof is muh more

triky and is based on showing that every solution of Problem 1 must have maximum

possible length l (see Theorem 3.7). Though this fat might seem natural, its proof

is not quite obvious. To understand the diÆulty, onsider the following situation.

Let  stand for the trae of an injetive smooth urve in R

2

onneting two given

points a and b, let r < H

1

(), and let M stand for the r-neighborhood of . For

eah l > 0 let �

l

� R

2

stand for a solution to Problem 1. One is tempted to

onjeture that (at least for reasonable ) for l := H

1

() one has �

l

=  (so that

F

M

(�

l

) = r). But if it is so, then how should �

l

look like for l just slightly greater

than H

1

()? It is lear that hanging loally  (e.g. attahing to  somewhere

a piee of small length Æ := l � H

1

()) would not derease the energy F

M

. The

reasonable way of dereasing the energy is that of attahing piees of small length

(say, small segments) to  in many points, so that the those piees be distributed

more or less everywhere along  (see �gure 1). Reasoning in this way, one observes

however, that the attahed segments should be denser where the urvature of 

is high, and that the length of the segments learly dereases one their density

inreases. It is thus not lear whether a similar proedure an be ful�lled even in

rather simple situations.

Another way of looking at similar diÆulties is observing that in the absene

of the mentioned result, i.e. when some solutions to Problem 1 an have length

stritly less than that allowed by the problem statement, then there is no hope to

obtain any regularity result on solutions to this problem. In fat, if �

opt

solves

Problem 1 but H

1

(�

opt

) < l, then any losed onneted � ontaining �

opt

and

satisfying H

1

(�) � l solves the same problem.

It is worth mentioning that OPT

1

(M) ontains in fat minimizers for the muh

larger lass of funtionals of the type

G(�) := �(F

M

(�)) +H(H

1

(�));

where � and H are nondereasing funtions. Realling our interpretation of � as

a highway or a general publi transportation network, the ost G(�) is naturally
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interpreted as a sum of the ost �(F

M

(�)) on getting to the network (whih there-

fore reveals the soial bene�t of the network) and the ost of onstrution of �

represented by H(H

1

(�)). We may laim the following easy result.

Proposition 2.2. The minimizers �

opt

of G (if exist) among all ompat onneted

sets belong to OPT

1

(M), if � 6�M and either of the funtions � or H is stritly

inreasing.

Proof. If � is stritly inreasing and H is non dereasing then the minimizers of G

among all ompat onneted sets belong to OPT

1

(M). On the other hand, if H

is stritly inreasing then the minimizers of G all belong to OPT

�

1

(M). It remains

to mention that OPT

�

1

(M) = OPT

1

(M) as it will be shown in the sequel.

Finally, we mention the following remarkable result.

Proposition 2.3. Consider a sequene f�

p

g

1

p=1

, where eah �

p

is a minimizer to

F

';p

among ompat onneted sets � � R

n

satisfying the length onstraint H

1

(�) �

l. Then, up to a subsequene (not relabeled), �

p

! �

1

in Hausdor� distane as

p!1, where �

1

minimizes F

M

with M = supp' over the same set of admissible

�.

Proof. Let 
 stand for the onvex hull of M and observe that all sets �

p

, being

minimizers of F

';p

, are ontained in the onvex hull ofM as proven in [4℄. Therefore

in view of the Blashke theorem [1℄ there exists a subsequene of �

p

(not relabeled)

whih onverges to some ompat set �

1

. Sine all �

p

are onneted, then so is

also �

1

and besides we have

H

1

(�

1

) � lim inf

p

H

1

(�

p

) � l

due to the Golab theorem. Thus �

1

is an admissible set and we have only to prove

that F

M

(�

1

) � F

M

(�) for all ompat onneted � with H

1

(�) � l.

De�ne

F

p

(�) := F

';p

(�)

1=p

=

�

Z

M

d(y;�)

p

d'(y)

�

1=p

:

We denote with d

H

(�;�

0

) the Hausdor� distane between ompat sets � and �

0

,

so that d

H

(�

p

;�

1

) ! 0 as p ! 1. Also we notie that given any two ompat

sets � and �

0

one has

jF

p

(�)� F

p

(�

0

)j �

�

Z

M

jd(y;�)� d(y;�

0

)j

p

d'(y)

�

1=p

� d

H

(�;�

0

)'(M)

1=p

:

Reall that for a �xed ompat � we have F

p

(�)! F

M

(�) as p!1. Hene,

lim inf

p!1

jF

p

(�

p

)� F

M

(�

1

)j

� lim inf

p!1

jF

p

(�

p

)� F

p

(�

1

)j+ lim inf

p!1

jF

p

(�

1

)� F

M

(�

1

)j

� lim inf

p!1

d

H

(�

p

;�

1

)'(M) = 0;

i.e. lim inf

p

F

p

(�

p

) = F

M

(�

1

).

We now argue by ontradition supposing the existene of an admissible �

0

with

F

M

(�

0

) � F

M

(�

1

)� " for some " > 0. Then we would have

lim inf

p

F

p

(�

p

) = F

M

(�

1

) > F

M

(�

0

) = lim

p

F

p

(�

0

):

Thus there would exist some large p suh that F

p

(�

p

) > F

p

(�

0

) or, equivalently,

F

';p

(�

p

) > F

';p

(�

0

). The latter ontradition with the minimality of �

p

onludes

the proof.
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3 Fundamental properties of minimizers

We start with the following easy result stating that OPT

�

1

(M) � OPT

1

(M).

The idea of the proof is to show that every minimizer � of Problem 2 must have

maximum possible energy F

M

(�) = r.

Proposition 3.1 (maximal energy). Let � 2 OPT

�

1

(M). Then � 2 OPT

1

(M).

Proof. Let �

0

be a ompat onneted set suh that H

1

(�

0

) � H

1

(�) and suppose

by ontradition that F

M

(�

0

) < F

M

(�). Let R > 0 be suh that �

0

� B

R

(0). If

��

0

is the �-resaling of �

0

we notie that

F

M

(��

0

) � F

M

(�

0

) + dist (�

0

; ��

0

) � F

M

(�

0

) +Rj1� �j

and

H

1

(��

0

) = �H

1

(�

0

) = H

1

(�

0

)� (1� �)H

1

(�

0

):

Hene, if we hoose � < 1 suh that R(1 � �) � F

M

(�) � F

M

(�

0

) we have found

that F

M

(��

0

) � F

M

(�) and H

1

(��

0

) < H

1

(�). So we have a ontradition with

the assumption � 2 OPT

�

1

(M).

Given an x 2 �, a straight line � � R

n

suh that x 2 �, and a number � > 0,

we de�ne

�

�;�

(x; �) := sup

y2�\B

�

(x)

dist (y;�)

�

:

De�ne then the atness �

�

of a set � by the formula

�

�

(x; �) = inf

�

�

�;�

(x; �)

where � varies among all straight lines of R

n

passing through x. We are able to

announe now the following auxiliary tehnial result.

Lemma 3.2. Let I

0

� R be a ompat neighborhood of t

0

and let  : I ! R

n

,

I

0

� I, be a ontinuous urve suh that there is a 

0

(t

0

) 6= 0 and #

�1

(x

0

) = 1,

where x

0

:= (t

0

). Let v = 

0

(t

0

), � := fx

0

+ vs : s 2 Rg and �

0

:= (I

0

). Then

lim

�!0

+

�

�

0

;�

(x

0

; �) = 0:

Proof. Step 1. We �rst laim that

d

�

:= diam 

�1

(B

�

(x

0

))! 0 as �! 0

+

:

In fat, otherwise there is an " > 0 and a sequene ft

�

g � I

0

suh that (t

�

)! (t

0

)

as � ! 1 and jt

�

� t

0

j > ". Then, up to a subsequene (not relabeled), we have

t

�

! t 2 I and in view of ontinuity of  one has (t

�

) ! (t) as � ! 1. Then

t 6= t

0

but (t) = (t

0

) whih ontradits the assumption #

�1

(x

0

) = 1.

Step 2. One has

dist ((t);�) � j(t)� (x

0

+ v(t� t

0

))j

for all t 2 I . Therefore,

dist ((t);�)

t� t

0

�

j(t)� (x

0

+ v(t� t

0

))j

t� t

0

;

and hene, minding the de�nition of a derivative of  in t

0

, one gets

lim

t!t

0

dist ((t);�)

t� t

0

= 0: (1)
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Observe now that

�

�

0

;�

(x

0

; �) = sup

(t)2B

�

(x

0

)

dist ((t);�)

�

= sup

(t)2B

�

(x

0

)

dist ((t);�)

jt� t

0

j

jt� t

0

j

�

:

Now, if � ! 0

+

, then for t 2 

�1

(B

�

(x

0

)) one has t ! t

0

. But, for t suÆiently

lose to t

0

one has

(t)� x

0

= v(t� t

0

) + o(t� t

0

);

and hene

j(t)� x

0

j �

1

2

jvj � jt� t

0

j:

Minding that v 6= 0 aording to our assumption, we get

jt� t

0

j � 2

j(t)� x

0

j

jvj

� 2

�

jvj

:

Therefore, for all suÆiently small � > 0 one has

�

�;�

(x

0

; �) = sup

(t)2B

�

(x

0

)

dist ((t);�)

�

�

2

jvj

sup

jt�t

0

j<d

�

dist ((t);�)

jt� t

0

j

! 0

when �! 0

+

in view of (1).

We need also the following lemma from [5℄.

Lemma 3.3. Let � � R

n

be a losed onneted set satisfying H

1

(�) < +1. Then

there is a surjetive (but not neessarily injetive) Lipshitz ar-length parameteri-

zation : [0; L℄! � with j

0

j = 1 a.e. over [0; L℄, where L � 2H

1

(�).

In the sequel we will extensively use the result below whih in a ertain sense

provides the existene of \lassial" (rather than approximate) tangent lines to a

one-dimensional ontinuum �.

Proposition 3.4 (existene of tangent lines). Let � � R

n

be a losed onneted

set suh that H

1

(�) < +1. Then in H

1

-a.e x 2 � there exists a \tangent" line �

to � at x in the sense that x 2 � and

lim

�!0

+

�

�;�

(x; �) = 0:

Proof. In view of Lemma 3.3 there is a surjetive Lipshitz parameterization :

[0; L℄! � with j

0

j = 1 a.e. over [0; L℄, where L < +1. Let

�

0

= fx 2 � : t 2 (0; L), 

0

(t) exists and j

0

(t)j = 1 whenever (t) = xg;

�

1

= fx 2 �

0

: 

�1

(x) is �niteg;

�

2

= fx 2 �

1

: if (t) = (s) = x then 

0

(t) = �

0

(s)g:

Clearly H

1

(�n�

0

) = 0 by the de�nition of . Also H

1

(�

0

n�

1

) = 0 sine otherwise

we would have

Z

L

0

j

0

(t)j dt =

Z

�

#

�1

(x) dH

1

(x) �

Z

�

0

n�

1

#

�1

(x) dH

1

(x) =1:

6



Finally, we laim that H

1

(�

1

n�

2

) = 0. In fat, given x 2 �

1

n�

2

we note that in

a suÆiently small neighborhood of x there are two di�erent ars �

1

and �

2

suh

that �

1

\ �

2

= fxg and x is an internal point both of �

1

and of �

2

. Thus one has

for the upper density

�

�

(�; x) := lim sup

�!0

+

H

1

(� \B

�

(x))

2�

� 2:

On the other hand, �

�

(�; x) = 1 for H

1

-a.e. x 2 � in view of Besiovith-

Marstrand-Mattila Theorem [1, Theorem 2.63℄.

Let now x 2 �

2

be given and let ft

1

; : : : ; t

N

g = 

�1

(x). We de�ne

� := fx+ �

0

(t

i

) : � 2 Rg

whih, by the de�nition of �

2

, does not depend on i 2 f1; : : : ; Ng. Let I

1

; : : : ; I

N

be ompat neighborhoods of the points t

1

; : : : ; t

N

, suh that I

1

[ : : : [ I

N

= [0; L℄

and suh that t

i

2 I

j

, if and only if i = j. Set �

i

:= (I

i

) and de�ne

�

�;�

(x; �) := max

i2f1;:::;Ng

�

�

i

;�

(x; �)

and hene, applying Lemma 3.2, we �nd that �

�;�

(x; �) ! 0 as � ! 0

+

. This is

true for all x 2 �

2

and hene for H

1

-a.e. x 2 �.

The following tehnial lemma will be ruial for our onstrutions in the sequel.

Lemma 3.5. Let R = [�a; a℄� [�b; b℄, �x = (0; 0) and suppose r � maxf8a; 32bg.

Then there exist two ompat onneted sets X

+

, X

�

suh that X

�

� f�ag�[�b; b℄

(see Figure 2), and denoting X := X

+

[X

�

one has that

H

1

(X) � C

1

(b+ a

2

=r)

(one an take C

1

= 48), while given an arbitrary y 2 R

2

suh that jy � �xj � r=2

one has

dist (y;X) � dist (y;R)� b:

Proof. Let

L := 4

�

b+ a

2

=r

�

:

We remark that

L � r=4: (2)

In fat, minding that r � 8a and r � 32b, we have L = 4b+ 4a

2

=r � r=8 + r=16 <

r=4. De�ne now

z

�

:= (�a; 0); X

�

:= f�ag � [�L;L℄ [ �B

2b

(z

�

):

Clearly, H

1

(X) = 4L + 8�b � 48(b + a

2

=r) = C

1

(b + a

2

=r). Let y = (�; �) be a

point suh that jy � �xj � r=2. We onsider two ases.

Case A: j�j � a. Suppose �rst that � � a. Sine jy � �xj � r=2, then

jy � z

+

j � jy � xj � jz

+

� xj � r=2� a = r=4 + r=4� a � a+ 2b� a = 2b:

Hene we have y 62 B

2b

(z

+

) and therefore

dist (y; �B

2b

(z

+

)) � dist (y;R)� b:

The analogous laim holds for � � �a, namely, in this ase

dist (y; �B

2b

(z

�

)) � dist (y;R)� b:

7



z

+

2b

2b

X

+

2a

X

�

L

z

�

R�x

Figure 2: The retangle R and the orresponding set X = X

�

[X

+

in strong lines.

Therefore, we have

dist (y;X) � dist (y;R)� b:

Case B: j�j � a. Minding that �

2

+�

2

� r

2

=4 and �

2

� a

2

� r

2

=64, we learly

have � � r=4 and hene � � 2b. Also we have L = 4b+ 4a

2

=r � r=8 + r=8 � r=4.

We laim that

(� � L)

2

+ a

2

� (� � 2b)

2

: (3)

In fat,

(� � L)

2

+ a

2

� (� � 2b)

2

= �

2

� 2�L+ L

2

+ a

2

� �

2

� 4b

2

+ 4b�

� �2�(L� 2b) + L

2

+ a

2

� �

r

2

(L� 2b) + L

2

+ a

2

(beause � � r=4)

= �

�

r

2

� L

�

L+ br + a

2

� �

r

4

L+ br + a

2

= 0 (due to (2)).

By (3) we onlude that

dist (y;X) �

p

(� � L)

2

+ (� � a)

2

�

p

(� � L)

2

+ a

2

� � � 2b = (� � b)� b � dist (y;R)� b:

We will also use the following easy overing result.

Lemma 3.6 (overing). Let � � R

n

be a bounded set. Then, given � > 0, there

is a �nite set of points (alled further �-lattie of �) fx

1

; : : : ; x

N

g � � suh that

N

[

j=1

B

�

(x

j

) � �;

while B

�=2

(x

j

), j = 1; : : : ; N , are pairwise disjoint.

Proof. Take an R > 0 suh that � � B

R

(0). Consider the family F of all sets X � �

suh that for all di�erent x

1

; x

2

2 X one has B

�=2

(x

1

) \ B

�=2

(x

2

) = ;. Clearly for

eah set X 2 F one has

X

x2X

jB

�=2

(x)j � jB

R+�=2

(0)j;

8



whih implies that #X � (2R + �)

n

=�

n

, i.e. the number of elements in eah X is

estimated from above by a unique onstant independent of X . Therefore there is

an X

0

2 F whih has the maximum ardinality among all elements of F. Then for

some N 2 N one has X

0

= fx

1

; : : : ; x

N

g, and

N

[

j=1

B

�

(x

j

) � �;

sine otherwise there is a x

0

2 � suh that jx

j

� x

0

j � � for all j = 1; : : : ; N , and

hene X

0

[ fx

0

g 2 F while having ardinality stritly greater than #X

0

.

Now we are able to prove that every minimizer �

opt

to Problem 1 must have

maximum available length H

1

(�

opt

) = l.

Theorem 3.7 (maximal length). Let � � R

2

be a ompat onneted set with

H

1

(�) < 1 and with F

M

(�) > 0. Then for eah � > 0 there exists a ompat

onneted �

0

suh that H

1

(�

0

) � H

1

(�) + � and F

M

(�

0

) < F

M

(�). In partiular,

if �

opt

solves Problem 1, then H

1

(�

opt

) = l.

Proof. In view of Proposition 3.4 one has lim

k!1

�

�

(x; 1=k) = 0 for H

1

-a.e. x 2 �.

Choose " = �=4� and let r = F

M

(�). By Egorov Theorem there exists a set �

"

� �

suh that H

1

(�

"

) � " and

lim

k!1

sup

x2�n�

"

�

�

(x; 1=k) = 0:

Choose

� := min

�

�=(8C

1

H

1

(�)); 1=8

	

(4)

where C

1

is the onstant introdued in Lemma 3.5. Choose also � = 1=k > 0 suh

that

� � �r; � � diam�=2 and sup

x2�n�

"

�

�

(x; �) � �=2: (5)

Consider now a �-lattie fx

1

; : : : ; x

N

g of � n �

"

as provided by Lemma 3.6 so

that the balls of radius �=2 entered in these points are all disjoint while the balls

of radius � over the whole set � n�

"

.

Note that sine � is onneted, we have H

1

(� \B

�=2

(x

i

)) � �=2 and hene

N�

2

�

N

X

i=1

H

1

�

� \ B

�=2

(x

i

)

�

� H

1

(�) (6)

i.e.

� � 2H

1

(�)=N: (7)

Let now i 2 f1; : : : ; Ng be �xed and onsider the line � through x

i

suh that

dist (x;�) � ��

�

(x

i

; �) � ��=2 for all x 2 �\B

�

(x

i

). Consider now an orthonormal

system of oordinates suh that x

i

= (0; 0) and suh that the line � is horizontal.

We have � \ B

�

(x

i

) � [��; �℄� [���; ��℄ (see Figure 3).

Then de�ne R

i

:= [�s

i

; t

i

℄ � [���; ��℄ where 0 � s

i

; t

i

� � are suh that � \

B

�

(x

i

) � R

i

but also suh that both the sides f�s

i

g�[���; ��℄ and ft

i

g�[���; ��℄

interset �. Then let X

i

be the set onstruted in Lemma 3.5 with respet to R

i

(by (5) both a := (t

i

+ s

i

)=2 � � � r=8 and b := �� � r=32 verify the onditions of

the lemma). Sine the two omponents of X

i

ontain the left and right sides of R

i

9



��

�

�

R

i

R

0

i

x

i

~x

i

Figure 3: The onstrution of Theorem 3.7. We know that �\B

�

(x

i

) is ontained

in the shaded region.

we know that � [X

i

is onneted. Moreover, X

i

has been onstruted so that (by

means of (4), (5) and (7))

H

1

(X

i

) � C

1

 

��+

((t

i

+ s

i

)=2)

2

r

!

� C

1

(��+

�

2

r

)

� 2C

1

�� by (5)

�

4C

1

�H

1

(�)

N

by (7)

�

�

2N

by (4)

(8)

We denote by ~x

i

the enter of the retangle R

i

. We know from Lemma 3.5 that

if jy � ~x

i

j � r=2 then dist (y;X

i

) � dist (y;R

i

)� ��.

Let now

R

0

i

:= fx 2 R

2

: dist (x;R

i

) < ��=2g

stand for the open ��=2-neighborhood of R

i

. Sine

N

[

i=1

B

�

(x

i

) � � n�

"

and � \ B

�

(x

i

) � R

i

� R

0

i

;

then one has

N

[

i=1

R

0

i

�

N

[

i=1

(� \ B

�

(x

i

)) � � n�

"

:

Further, if jy � ~x

i

j � r=2 we onlude that dist (y;X

i

) � dist (y;R

0

i

)� ��=2.

Consider the set

Z := � n

N

[

i=1

R

0

i

� �

"

:

Sine all R

0

i

are open sets and � is ompat, then Z is a ompat set.

Choose

Æ := min f(diam�)=2; r=4g : (9)

Sine the spherial Hausdor� measure of the reti�able set is equal to the usual

Hausdor� measure, then there exists an at most ountable number of balls B

Æ

i

(z

i

)

10



with z

i

2 Z and Æ

i

< Æ suh that

[

i

B

Æ

i

(z

i

) � Z and

X

i

2Æ

i

� H

1

(Z) � H

1

(�

"

) � " �

�

4�

(10)

The ompatness of Z permits us to assume that there is only a �nite number M

of suh balls.

Consider now the irles Y

i

:= �B

2Æ

i

(z

i

). It is lear that eah �[Y

i

is onneted:

in fat, z

i

2 � and diam� > 2Æ

i

, hene � \ Y

i

6= ;.

We �nally de�ne

�

0

:= � [

N

[

i=1

X

i

[

M

[

i=1

Y

i

:

By the properties of X

i

and Y

i

we know that �

0

is ompat and onneted.

Let us prove that F

M

(�

0

) < r = F

M

(�). Let y 2 M be given. If dist (y;�) <

3r=4, we obviously have dist (y;�

0

) � dist (y;�) < r � r=4. So suppose instead

that dist (y;�) � 3r=4. Clearly we also know dist (y;�) � r (sine r = F

M

(�)).

Consider a point x 2 � suh that jx� yj = dist (y;�). Only two ases may happen:

either x 2 R

0

i

for some i 2 f1; : : : ; Ng or x 2 B

Æ

i

(z

i

) for some i 2 f1; : : : ;Mg.

In the �rst ase (x 2 R

0

i

) we have (reall (4) and (5))

jy � ~x

i

j � jy � xj�jx� ~x

i

j � 3r=4�

p

(��)

2

+ �

2

� ��=2 � r=2:

Therefore

dist (y;X

i

) � dist (y;R

0

i

)� ��=2 � jy � xj � ��=2 � r � ��=2:

In the seond ase (x 2 B

Æ

i

(z

i

)) we know that y 62 B

2Æ

i

(z

i

) sine, by (9)

jy � x

i

j � jy � xj � jx� z

i

j � 3r=4� Æ � 2Æ:

Thus

dist (y; Y

i

) � jy � xj � Æ

i

� r � ;

where  is the minimum of Æ

i

for i = 1; : : : ;M .

So in either ase dist (y;�

0

) � r�minfr=4; ��=2; g and hene F

M

(�

0

) < F

M

(�).

Finally, by (8) and (10) we have

H

1

(�

0

)�H

1

(�) �

N

X

i=1

H

1

(X

i

) +

M

X

i=1

H

1

(Y

i

) �

�

2

+

M

X

i=1

4�Æ

i

� �;

onluding the proof.

An immediate onsequene of the above proven Theorem 3.7 is the equivalene

of problems 1 and 2.

Corollary 3.8. One has OPT

1

(M) = OPT

�

1

(M).

4 Topologial properties

In this setion we show that the optimal sets ontain no loop (homeomorphi image

of S

1

).

Theorem 4.1. Let � 2 OPT

�

1

(M). Then � ontains no simple losed urve

(homeomorphi image of S

1

). Therefore, R

2

n� is onneted.
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2�

4��

2�

z

�x

R

�

Figure 4: The onstrution of Theorem 4.1: the set � in strong lines.

Proof. Suppose by ontradition that there is a ontinuous urve  : [0; 1℄ ! �

suh that (0) = (1) and  : [0; 1) ! � is injetive. We set z := (0). Take a

point

�

t 2 (0; 1) suh that there exists a \tangent" line � to � at �x = (

�

t) (in the

sense of Proposition 3.4), � := fx+ �

0

(

�

t) : � 2 Rg, so that

lim

�!0

+

�

�;�

(�x; �) = 0:

The existene of suh a point is guaranteed by Proposition 3.4. Consider a system

of orthonormal oordinates suh that �x = (0; 0), 

0

(

�

t) = (j

0

(

�

t)j; 0) (i.e. 

0

(

�

t) is

direted along the �rst oordinate axis and onsequently � = R �f0g). Let (t) =

(

1

(t); 

2

(t)) be the two omponents of  with respet to our system of oordinates.

Sine 

0

1

(

�

t) > 0, then there exists an h > 0 suh that for all t 2 (

�

t;

�

t + h℄ we have



1

(t) > 0 and for all t 2 [

�

t� h;

�

t) we have 

1

(t) < 0. Let

�

0

:= ([0;

�

t� h℄) [ ([

�

t+ h; 1℄)

and de�ne �

0

:= dist (�x;�

0

). Observe that �

0

> 0 sine �x 62 �

0

.

Choose a � > 0 suh that

� < �

0

=2; � < r=C

1

; � < r=96 and � := �

�;�

(�x; 2�) <

1

3C

1

; (11)

where C

1

is the onstant de�ned in Lemma 3.5 and r := F

M

(�). Consider the

retangle R

�

:= [��; �℄ � [�3��; 3��℄ and let Y := Y

+

[ Y

�

, Y

�

:= f��g �

[�3��; 3��℄ be the two short edges of R

�

.

By de�nition of � we know that dist (y;�) � 2�� < 3�� for all y 2 � \ B

2�

(�x)

and hene � \ �R

�

� Y . De�ne

t

0

= minft 2 [

�

t� h;

�

t℄ : (t) 2 R

�

g; t

1

= maxft 2 [

�

t;

�

t+ h℄ : (t) 2 R

�

g:

Clearly t

0

>

�

t� h (beause (

�

t� h) 2 �

0

, while �

0

\ R

�

= ; by onstrution) and

analogously t

1

<

�

t+ h. We thus onlude that both (t

0

) 2 �R

�

and (t

1

) 2 �R

�

and hene, minding that 

1

(t

0

) < 0 and 

1

(t

1

) > 0, we get

(t

0

) 2 Y

�

and (t

1

) 2 Y

+

:

12



Let X := X

+

[ X

�

be the set onstruted in Lemma 3.5 with respet to the

retangle R

�

and de�ne

�

0

:= (� nR

�

) [X:

Clearly �

0

is ompat (reall that X is ompat and that � \ �R

�

� Y � X).

We laim that �

0

is also onneted. Observe to this end that the urves ([0; t

0

℄)

and ([t

1

; 1℄) onnet respetively Y

�

(hene X

�

) and Y

+

(hene X

+

) to the point

z and that both urves stay in �

0

. In fat, ([0;

�

t � h℄) and ([

�

t + h; 1℄) do not

interset B

�

0

(�x) by the de�nition of �

0

, while ([

�

t � h; t

0

℄) and ([t

1

;

�

t + h℄) do

not interset the interior of R

�

by the de�nition of t

0

and t

1

. Therefore, every

x 2 X � �

0

is onneted to z by a urve ontained in �

0

. To onlude the proof of

the laim, it remains to onsider the ase of an x 2 � n R

�

� �

0

. We know in this

ase that, in view of arwise onnetedness of �, there exists a ontinuous urve

' : [0; 1℄ ! � suh that '(0) = x and '(1) = z. If this urve is not ompletely

ontained in �

0

, onsider the s 2 [0; 1℄ suh that

s := minft 2 [0; 1℄ : '(t) 2 �R

�

g:

We have then '(s) 2 Y � X � �

0

, and hene the urve '([0; s℄) onnets x to X

staying in �

0

. But sine as shown above both X

+

and X

�

are onneted to z in �

0

,

then x is onneted to z in �

0

and thus we �nally onlude that �

0

is onneted.

By Lemma 3.5 we know that

H

1

(�

0

) � H

1

(�)�H

1

(� \ R

�

) +H

1

(X)

� H

1

(�)� 2�+ C

1

(3��+ �

2

=r) < H

1

(�);

the latter estimate being valid in view of (11).

We laim that F

M

(�

0

) � r = F

M

(�). In fat, onsider an arbitrary y 2M . Let

x 2 � be suh that dist (y;�) = jy � xj. Then, if x 2 �

0

, we have automatially

dist (y;�

0

) � jy � xj = dist (y;�):

Otherwise, x 2 R

�

. Consider �rst the ase jy � xj > r=2. Then jx � �xj > r=2

sine �x 2 �. By Lemma 3.5 we get therefore that dist (y;X) < dist (y;R

�

). We

observe now that dist (y;R

�

) � jy�xj = dist (y;�), whih still implies dist (y;�

0

) �

dist (y;�). At last, it remains to onsider the ase jy � xj � r=2. Observe that

dist (y;�

0

) � jy � xj+ 2� � r=2 + 2� � r sine � n�

0

� R

�

� B

2�

(x

0

).

Finally, we onlude that H

1

(�

0

) < H

1

(�), while F

M

(�

0

) � F

M

(�), whih

ontradits the assumption � 2 OPT

�

1

(M). This ontradition proves the absene

of simple losed urves in �. This also implies that R

2

n� is onneted (see [4℄).

5 Ahlfors regularity

We show now that minimizers of Problem 2 (hene also of Problem 1 in view of

Corollary 3.8) possess some mild regularity properties. In partiular, we show that

every � 2 OPT

�

1

(M) is Ahlfors regular in the sense that there exist two onstants

 > 0 and C > 0 suh that for every positive � < diam� and for every x 2 � one

has

� � H

1

(� \ B

�

(x)) � C�

(while a singleton is onsidered to be Ahlfors regular by de�nition). It is worth

mentioning that Ahlfors regularity of a losed onneted set � implies the so-alled

uniform reti�ability on �, whih, as it has been shown in [5℄, provides several nie

analytial properties of �. This ondition an be onsidered a kind of \quantitative

reti�ability" whih is somewhat stronger than the lassial reti�ability used in

geometri measure theory.
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Theorem 5.1. Given � 2 OPT

�

1

(M), there exists suh a �

0

> 0 that for all x 2 �

and all � < �

0

one has

� � H

1

(� \ B

�

(x)) � 2��:

In partiular, � is Ahlfors regular.

Proof. Let �

0

:= minfdiam�=2; F

M

(�)g. Given � < diam�=2 and x 2 � we have

� \ �B

�

(x) 6= ;. Thus there exists a urve � � � \

�

B

�

(x) whih joins x to �B

�

(x)

and hene

H

1

(� \B

�

(x)) � H

1

(� \ B

�

(x)) � �:

On the other hand, setting

�

0

:= � nB

�

(x) [ �B

�

(x)

for � < diam�, we observe that the ompat set �

0

is onneted. If also � < F

M

(�),

we have F

M

(�

0

) � F

M

(�), while

H

1

(�

0

) � H

1

(�)�H

1

(� \ B

�

(x)) + 2��

But sine � 2 OPT

�

1

(M), we have H

1

(�) � H

1

(�

0

), and hene H

1

(� \ B

�

(x)) �

2��.

6 Struture of minimizers

Let us onsider a minimizer � 2 OPT

�

1

(M) with energy r = F

M

(�). In this

setion we show that the set � an be split in three parts whih turn out to have

very di�erent properties. We need for this purpose the following notions.

De�nition 6.1. A point x 2 � is alled energeti, if for all � > 0 one has

F

M

(� nB

�

(x)) > F

M

(�):

Let G

�

stand for the set of energeti points of �. Given a point x 2 G

�

we say that

x is an isolated energeti point, if there exists suh a � > 0 that B

�

(x)\G

�

= fxg.

Further, we de�ne X

�

� G

�

to be the set of isolated energeti points of � and let

E

�

:= G

�

n X

�

to be the set of non isolated energeti points. The remaining set

S

�

:= � nG

�

is the set of non energeti points of �.

In this way a set � an be split into three disjoint sets:

� = E

�

[X

�

[ S

�

; G

�

= E

�

[X

�

:

In the theorem below we ollet the results whih will be proved later in Propo-

sitions 6.3, 6.6 and 6.7.

Theorem 6.2 (struture of minimizers). Let � 2 OPT

�

1

(M), r := F

M

(�) and

E := E

�

, X = X

�

and S := S

�

be de�ned as above. Then the sets E, X and S

have the following properties.

1. X is a disrete set (i.e. all the points of X are isolated, or, in other words, the

topologial dimension dimX = 0). For any point x 2 X there exists y 2 M

suh that jx� yj = r and B

r

(y)\� = ;. If X is not �nite, the limit points of

X are always points of E.

2. E is a ompat set with distane r from M in the following sense: for eah

x 2 E there exists an y 2M with jx� yj = r, B

r

(y) \ � = ; and there exists

a sequene y

k

! y, y

k

6= y, y

k

2M suh that

lim

k!1

hy � x; y

k

� yi

jy

k

� yj

= 0:
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3. For all x 2 S there exists " > 0 suh that S \ B

"

(x) is either a segment or a

triple point i.e. the union of three segments with an endpoint in x and relative

angles of 120 degrees.

In the next setion we will give some omments on the above struture theorem.

The rest of the setion is devoted to its proof. We start from the following easy

statement.

Proposition 6.3. Let G

�

, E

�

, X

�

and S

�

be de�ned as before. Then G

�

is

ompat, E

�

is ompat, X

�

is disrete and relatively open in G

�

with

�

X

�

nX

�

�

E

�

, and S

�

is relatively open in �.

Proof. Let fx

k

g � G

�

be a sequene of points x

k

6= x whih onverges to a point

x 2 �. Given " > 0 we hoose a k suh that jx

k

� xj < "=2. Minding B

"=2

(x

k

) �

B

"

(x), we get

F

M

(� nB

"

(x)) � F

M

(� nB

"=2

(x

k

) > F

M

(�)

whih means that x 2 G

�

. Thus G

�

is a losed set and, sine � is ompat, then

so is G

�

.

The set X

�

is relatively open in G

�

and is disrete by de�nition. Also, possible

aumulation points of X

�

belong to G

�

and hene to E

�

, sine X

�

is disrete. As

a onsequene, E

�

is losed and hene ompat. Sine G

�

losed, we also dedue

that S

�

is relatively open in �.

The two tehnial lemmata below will be used in the proof of Proposition 6.6.

Lemma 6.4. Let M and � be given ompat subsets of R

2

, and � is onneted.

Let G

�

be de�ned as above. Then there exists a map � : G

�

! M suh that for

eah x 2 G

�

one has

jx� �(x)j = dist (�(x);�) = F

M

(�); (12)

and #�

�1

(�(x)) � 4. In partiular, B

r

(�(x)) \ � = ; with r := F

M

(�).

Proof. Step 1. Let x 2 G

�

and r := F

M

(�). Consider a sequene of positive

numbers "

k

! 0 and "

k

< diam�=2. Sine � is onneted, x 2 � and diam� > 2"

k

,

then � \ �B

"

k

6= ;. Therefore we an hoose a sequene x

k

2 � \ �B

"

k

(x).

Sine x 2 G

�

, we know that F

M

(� n B

"

k

(x)) > r for all k. In partiular, there

exists an y

k

2M suh that

dist (y

k

;� nB

"

k

(x)) = F

M

(� nB

"

k

(x)) > r: (13)

But dist (y

k

;� nB

"

k

(x)) � jy

k

� x

k

j sine x

k

2 � nB

"

k

(x). Thus

jy

k

� xj � jy

k

� x

k

j � jx

k

� xj > r � "

k

: (14)

On the other hand, we know that dist (y

k

;�) � F

M

(�) = r. Hene there exists

an ~x

k

2 � suh that jy

k

� ~x

k

j = dist (y

k

;�) � r. Moreover we have ~x

k

2 B

"

k

(x),

sine otherwise we would have dist (y

k

;� n B

"

k

(x)) � jy

k

� ~x

k

j � r whih would

ontradit the hoie of y

k

. We onlude therefore that

jy

k

� xj � jy

k

� ~x

k

j+ j~x

k

� xj � r + "

k

: (15)

Up to a subsequene, not relabeled, y

k

! y 2 M as k ! 1 and hene passing

to the limit as k !1 in equations (14) and (15), we get jy � xj = r. We then set

�(x) := y. Notie that

dist (y

k

;�) = jy

k

� ~x

k

j � jy

k

� xj � jx� ~x

k

j � jy

k

� xj � "

k

15



whih, after passing to the limit k ! 1, gives dist (y;�) � jy � xj = r. The

property (12) is therefore proven.

Step 2. We now prove that #�

�1

(y) � 4. By (13), we have

�

B

r

(y

k

) \ � � B

"

k

(x): (16)

If y

k

= y for in�nitely many indies k we dedue that

�

B

r

(y) \ � = fxg and hene

neessarily �

�1

(y) = fxg. Therefore we will suppose without loss of generality that

y

k

6= y for all k. Thus, up to a subsequene (not relabeled), there exists at least

one unit vetor v

x

suh that

y

k

� y

jy

k

� yj

! v

x

:

In the next step we will prove that for all x

0

2 �

�1

(y), x

0

6= x one has

hv

x

; x� yi � 0;

hv

x

; x

0

� yi � 0:

(17)

One (17) is proven we are able to prove the remaining laim. In fat, suppose by

ontradition that #�

�1

(y) � 5. Set in this ase v

i

:= v

x

i

, w

i

:= x

i

�y, i = 1; : : : ; 5,

where x

i

2 �

�1

(y). Then (17) provides

hv

i

; w

i

i � 0; hv

i

; w

j

i � 0; i; j = 1; : : : ; 6; i 6= j:

We laim now that there exists a � 2 R

2

and at least three indies fi

1

; i

2

; i

3

g �

f1; : : : ; 5g suh that h�; v

i

j

i > 0. In fat, let �

0

be any vetor satisfying h�

0

; v

i

i 6= 0

for all i = 1; : : : ; 5. If among the produts h�

0

; v

i

i there are three positive ones, then

hoose � := �

0

, otherwise hoose � := ��

0

.

Without loss of generality we may now suppose (up to renumbering) that i

1

= 1,

i

2

= 2, i

3

= 3 and the vetor v

2

is between v

1

and v

3

(this assumption makes sense

in view of the laim just proven). Then hw

2

; v

1

i � 0 and hw

2

; v

3

i � 0, whih means

that both v

1

and v

3

belong to a half-plane fv : hw

2

; vi � 0g. Then v

1

must belong

to the same half-spae, whih ontradits the ondition hw

2

; v

2

i > 0.

Step 3. It remains to prove (17). Sine j~x

k

�yj � dist (y;�) = r and j~x

k

�y

k

j � r,

we have

2hy

k

� y; ~x

k

� y

k

i = j~x

k

� yj

2

� jy

k

� yj

2

� j~x

k

� y

k

j

2

� r

2

� jy

k

� yj

2

� r

2

= �jy

k

� yj

2

and hene

hy

k

� y; x� yi = hy

k

� y; ~x

k

� y

k

i+ jy

k

� yj

2

+ hy

k

� y; x� ~x

k

i

� �

jy

k

� yj

2

2

+ jy

k

� yj

2

� jy

k

� yj � jx� ~x

k

j

� �jy

k

� yj � jx� ~x

k

j:

Dividing by jy

k

� yj and passing to the limit we obtain the �rst part of (17).

Similarly, given x

0

6= x, x

0

2 �

�1

(y) we have jy�x

0

j = r in view of (12). On the

other hand, for all suÆiently large k 2 N one has x

0

62 B

"

k

(x) and hene by (13)

we get jy

k

� x

0

j > r. Therefore,

2hy

k

� y; x

0

� yi = jy � x

0

j

2

+ jy

k

� yj

2

� jy

k

� x

0

j

2

< r

2

+ jy

k

� yj

2

� r

2

= jy

k

� yj

2

:

Again we divide by jy

k

� yj and pass to the limit k ! 1 to omplete the proof

of (17).
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Figure 5: The point y lies in the shaded region.

Lemma 6.5. Let r > " > 0 be given and let x; �x; y; �y 2 R

2

be suh that

j�x� �yj = jx� yj = r; j�x� yj � r; jx� �yj � r; j�x� xj � "; j�y � yj � ":

Then

jh�y � y; �x� �yij �

"

r

j�y � yj j�x� �yj:

Proof. Let x

1

and x

2

be the two intersetions of the irle �B

r

(�y) with the boundary

of the onvex hull of B

"

(�x) [ B

"

(�y) (so that x

1

and x

2

have distane " from the

segment [�x; �y℄, see Figure 5).

We laim that

y 2 (

�

B

"

(�y) nB

r

(�x)) \ (B

r

(x

1

) [ B

r

(x

2

)) (18)

(i.e. y belongs to the shaded region of Figure 5). In fat, the hypotheses of the

lemma being proven mean y 2

�

B

"

(�y) nB

r

(�x) and x 2

�

B

"

(�x) nB

r

(�y). Also we know

that jx � yj = r. Let x

0

be the intersetion of the segment [x; y℄ with the irle

�B

r

(�y). Suppose that x

0

is loser to x

1

than x

2

(the other ase is symmetri),

whih means that x

0

and x

1

belong to the same half-plane �

+

bounded by the line

(�x�y) (for de�niteness, we onsider it to be the half-plane \above" this line). It is

easy to observe that also y must belong to the same half-plane, beause the set

�B

r

(x) \ (

�

B

"

(�y) nB

r

(�x)) ontaining y, is ontained in this half-plane.

Clearly jx

0

� yj � r so we know that y 2

�

B

r

(x

0

). Moreover, we observe that

jy � x

1

j � jy � x

0

j. In fat, both x

1

and x

0

belong to �B

r

(�y) by onstrution,

hene the triangle with verties x

1

, x

0

and �y is isoseles, whih implies that the

axis of symmetry of the segment [x

0

; x

1

℄ passes through �y (being both the median

and the height of the mentioned triangle). Hene y stays \above" this axis, sine

otherwise, minding y 2 �

+

we would have that neessarily y 2 B

r

(�x) ontrary to

our assumptions.

We have therefore jy � x

1

j � jy � x

0

j � r whih means that y 2

�

B

r

(x

1

). If we

also onsider the symmetri ase (namely, x and hene also y below the line (�x; �y)

we �nd that y 2 B

r

(x

1

) [ B

r

(x

2

). This ompletes the proof of the laim (18).

To onlude the proof of the lemma, one an easily hek that the region R =

�

B

r

(x

1

) \

�

B

"

(�y) nB

r

(�x) is ontained in a one with aperture angle 2"=r entered in
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�y and perpendiular to [�x; �y℄. Therefore, if � stays for the angle between �x� �y and

y � �y, then j�� �=2j � "=r. Therefore,

j os�j = j sin(� � �=2)j � "=r;

whih proves the lemma.

Proposition 6.6. Let r := F

M

(�) > 0. Given x 2 E

�

there exists a sequene

y

k

2M whih onverges to y 2M suh that y

k

6= y, jx� yj = r, B

r

(y)\� = ; and

hy

k

� y; y � xi=jy

k

� yj ! 0.

Proof. Let r = F

M

(�). Sine x is not isolated in E

�

, there exists a sequene

fx

k

g � E

�

, x

k

! x. In view of Lemma 6.4, setting y

k

:= �(x

k

) 2 M , we get

jx

k

� y

k

j = r and B

r

(y

k

) \ � = ;. By extrating a subsequene we may suppose

that y

k

onverges to some y 2 M . Again aording to Lemma 6.4 we have that

y

k

6= y for all suÆiently large k (otherwise �

�1

(y) would not be a �nite set).

Hene, we have jy � xj = r, jy

k

� x

k

j = r, jy

k

� xj � r, jy � x

k

j � r. Letting

"

k

= maxfjy

k

� yj; jx

k

� xjg we an apply Lemma 6.5 to dedue that

jhy

k

� y; x� yij

jy

k

� yjjx� yj

�

"

k

r

! 0 as k !1

whih onludes the proof.

Proposition 6.7. Let � 2 OPT

�

1

(M). Then given an arbitrary point x 2 S, there

exists an " > 0 suh that B

"

(x) \ S is either a diameter of B

"

(x) or the union of

three radii with relative angles of 120 degrees.

Proof. Note that � is a ontinuous (even Lipshitz ontinuous) image of a unit

interval by lemma 3.3, hene is loally onneted by Hahn-Mazurkiewiz-Sierpi�nski

theorem II.2 from [8, x 50℄. Sine S � � is an open set, then it ontains a onneted

open subset S

0

ontaining x. We may hoose therefore an " > 0 small enough so

that B

"

(x) \ S = B

"

(x) \ S

0

.

Further, onsider a � > 0 suh that F

M

(� nB

�

(x)) = F

M

(�). We may onsider

" < � to be small enough so that � \ �B

"

(x) has only a �nite number of points.

Suh an " an be found, sine otherwise, by the oarea formula, we would �nd that

H

1

(� \ B

�

(x)) =1.

We laim that H

1

(S

0

) is minimal with respet to all ompat onneted sets S

whih ontain S

0

\�B

"

(x). In fat let S be suh a set, and onsider �

0

= �nS

0

[S.

Then �

0

� � n B

�

(x) and hene F

M

(�

0

) � F

M

(� n B

�

(x)) = F

M

(�). Being � 2

OPT

�

1

(M) we dedue that H

1

(�) � H

1

(�

0

) whih means that H

1

(S

0

) � H

1

(S).

The above proven laim means that S

0

is a loally minimal network in the

sense of [7℄, and hene theorem 2.1 from [7, Chapter III℄ immediately gives the

onlusion.

7 Final onsiderations

We point out that Theorem 6.2 is useful mainly when M is a 1-dimensional set.

However we will show by means of the example below, that in some ases one an

redue the problem with a given datum M to the problem with datum �M .

Example 1. Let M := �B

R

(0) and onsider a minimizer � 2 OPT

1

(M) with

F

M

(�) = r. Clearly, if r � 1, we have a trivial solution � = f0g. Otherwise we

onsider the partitioning � = E[X[S de�ned in the previous setion. Theorem 6.2

then says that the set E is ontained in the irle �B

r

(0). Also � ontains no losed

loop, hene not all the irle �B

r

is ontained in �. It is easy to see that to every
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r

R

�

M

Figure 6: The onjetured minimizer � when M is a irle.

onneted omponent of �B

r

(0) nE at least two points of X must orrespond. We

expet the minimizer to be the one represented in Figure 6. In this example the

set E is an ar of irle with distane r from M , the disrete set X is the union of

the two endpoints and the minimal network S is the union of the two line segments

onneting X to E.

Notie also that if this is the solution when M = �B

R

(0), then for r � R=2 this

is also the solution when M =

�

B

R

(0). In fat, for this partiular set � we have

F

�

B

R

(0)

(�) = maxfr; R � rg, while in general one obviously has F

�

B

R

(0)

� F

�B

R

(0)

being �B

R

(0) �

�

B

R

(0).

It seems also worth mentioning that when M is a regular 1-dimensional set,

Theorem 6.2 seems to be not so far from a regularity theorem for minimizers �. In

fat, we notie that the set S

�

is the union of segments and a negligible number of

triple points, while the regularity of E

�

is strongly related to that of M , and X

�

is a negligible set. However, there is a gap in proving the generi regularity result

for the whole �. The problem is to understand how the set S

�

touhes the set E

�

and what happens when the points of X

�

aumulate near a point of E

�

.
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