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Abstract. The purpose of this paper is to study the lower semicontinuity with re-
spect to the strong L1-convergence, of some integral functionals defined in the space
SBD of special functions with bounded deformation. Precisely, we prove that, if
u ∈ SBD(Ω), (uh) ⊂ SBD(Ω) converges to u strongly in L1(Ω,Rn) and the mea-
sures |Ejuh| converge weakly ∗ to a measure ν singular with respect to the Lebesgue
measure, then ∫

Ω

f(x, Eu) dx ≤ lim inf
h→∞

∫

Ω

f(x, Euh) dx

provided the integrand f satisfies a weak convexity property and standard growth
assumptions of order p > 1.
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1. Introduction

Our goal in this paper is to extend in the framework of functions with bounded defor-
mation, the following theorem by Ambrosio [2] for integral functionals defined in the space
SBV of special functions of bounded variation.

Theorem 1.1. Let Ω ⊂ Rn be an open set and let f : Ω × Rk × Rn×k be a Carathédory
function satisfying:

(i) for a.e. every x ∈ Ω, for every (u, ξ) ∈ Rk × Rn×k,

|ξ|p ≤ f(x, u, ξ) ≤ a(x) + Ψ(|u|)(1 + |ξ|p),
where p > 1, a ∈ L1(Ω) and the function Ψ : [0,∞) → [0,∞) is continuous;
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(ii) for a.e. every x ∈ Ω and every u ∈ Rk, f(x, u, ·) is quasi-convex.

Then for every u ∈ SBV (Ω,Rk) and any sequence (uh) ⊂ SBV (Ω,Rk) converging to u in
L1

loc(Ω,Rk) and such that

(1.1) sup
h
Hn−1(Suh

) < ∞

we have ∫

Ω
f(x, u,∇u) dx ≤ lim inf

h→∞

∫

Ω
f(x, uh,∇uh) dx.

Theorem 1.1 extends in the SBV setting a classical lower semicontinuity result by Acerbi-
Fusco [1] in the Sobolev space W 1,p(Ω).

Later Kristensen in [19] extended Theorem 1.1 under the weaker assumptions

(1.2) sup
h

∫

Suh

θ(|u+
h − u−h |)dHn−1 < ∞

for some function θ such that θ(r)/r → ∞ as r → 0+, and f is a normal integrand, i.e., for
a.e. x ∈ Ω, f(x, ·, ·) is lower semicontinuous in Rk × Rn×k and there exists a Borel function
f̃ : Ω× Rk × Rn×k → [0,∞] such that f(x, ·, ·) = f̃(x, ·, ·).

In the proof of Theorem 1.1 as well as in the Acerbi-Fusco result, the use of Lusin type
approximation of functions in the given space (BV or Sobolev spaces) by Lipschitz continuous
functions is crucial.

Recently, Theorem 1.1 has been extended by Fonseca-Leoni-Paroni [16] to functionals
depending also on the hessian matrices.

In this paper we deal with first order variational problem, but with integral functionals
depending explicitly on the symmetrized derivative Eu := (Du + DuT )/2 and defined in the
space SBD of special functions with bounded deformation.

The main result of the paper is the following lower semicontinuity theorem:

Theorem 1.2. Let p > 1 and let f : Ω × Mn×n
sym → [0,∞) be a Carathéodory function

satisfying:

(i) for a.e. every x ∈ Ω, for every ξ ∈ Mn×n
sym ,

1
C
|ξ|p ≤ f(x, ξ) ≤ φ(x) + C(1 + |ξ|p),

for some constant C > 0 and a function φ ∈ L1(Ω);
(ii) for a.e. every x0 ∈ Ω, f(x0, ·) is symmetric quasi-convex i.e.,

(1.3) f(x0, ξ) ≤ −
∫

A
f(x0, ξ + Eϕ(x))dx

for every bounded open subset A of Rn, for every ϕ ∈ W 1,∞
0 (A,Rn) and ξ ∈ Mn×n

sym .

Then for every u ∈ SBD(Ω), for any sequence (uh) ⊂ SBD(Ω) converging to u strongly in
L1(Ω,Rn) with |Ejuh| converging weakly ∗ to a positive measure ν singular with respect to
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the Lebesgue measure, we have
∫

Ω
f(x, Eu) dx ≤ lim inf

h→∞

∫

Ω
f(x, Euh) dx.

In the literature there are various results (see [5, 22, 23, 9]) on lower semicontinuity and
relaxation of convex integral functionals in BD with linear growth in the strain tensor, in
connection with mathematical problems in elasto-plasticity. Concerning non convex func-
tionals with linear growth we mention the papers [12, 6, 13]. As far as the author knows,
there is no result on lower semicontinuity of non convex volume energies with superlinear
growth in the strain tensor. So, Theorem 1.2 is the first lower semicontinuity result for this
class of functionals.

The proof of Theorem 1.2 follows the lines of Theorem 1.1. We use the blow-up method
introduced in [17] and described as a two-steps process whose first step here is the proof
of the lower semicontinuity result whenever Ω is the unit ball B(0, 1), the limit function is
linear and |Ejuh|(B(0, 1)) converges to zero (see Proposition 3.1). In a second step, we use
a blow-up argument through the approximate differentiability of BD functions to reduce the
problem into the first step.

The use of Lusin type approximation for BD functions is crucial in the proof of Proposition
3.1. This result established in [11] and refined here in Proposition 2.8 is obtained using a
”Poincaré type” inequality for BD functions (see Theorems 2.2 and 2.3) together with the
maximal function of Radon measures.

This paper is organized as follows. In section 2 we collect and prove some fine properties
of BD functions that will be used in the proof of our main result. Section 3 is devoted to
the proof of Theorem 1.2. In section 4, we discuss the assumption (in Theorem 1.2) that
the measures |Ejuh| converge weakly ∗ to a positive measure ν singular with respect to the
Lebesgue measure. In Example 4.7 we consider a minimization problem in SBD with a
unilateral constraint on the jump sets and we show that minimizing sequences (uh) satisfy
the assumption on |Ejuh|. However, as shown in Example 4.4, this assumption is not always
compatible with the SBD compactness criterion (Theorem 4.1). Precisely, we construct a
sequence of functions (uh) in SBD that satisfies the assumptions of Theorem 4.1, while the
sequence of measures |Ejuh| converges weakly ∗ to a measure proportional to the Lebesgue
measure.

2. Notation and Preliminary results

Let n ≥ 1 be an integer. We denote by Mn×n the space of n×n matrices and by Mn×n
sym the

subspace of symmetric matrices in Mn×n. For any ξ ∈ Mn×n, ξT is the transpose of ξ. Given
u, v ∈ Rn, u ⊗ v and u ¯ v := (u ⊗ v + v ⊗ u)/2 denote the tensor and symmetric products
of u and v, respectively. Sn−1 is the unit sphere in Rn. We use the standard notation, Ln

and Hn−1 to denote respectively the Lebesgue outer measure and the (n − 1)-dimensional
Hausdorff measure. For every set E ⊂ Rn, E and |E| stand respectively for the closure
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and the Lebesgue outer measure of E, while χE denotes the charateristic function of E, i.e.,
χE(x) = 1 if x ∈ E and χE(x) = 0 if x /∈ E. For 1 ≤ p ≤ ∞, ‖·‖p will denote the norm in
the Lp space.

Let Ω be an open subset of Rn. We denote by B(Ω) the family of Borel subsets of Ω. For
any x ∈ Ω and ρ > 0, B(x, ρ) stands for the open ball of Rn centered at x with radius ρ and
whenever x = 0 and ρ = 1 we simply write B1. We will use the notation wn for the Lebesgue
measure of the ball B1. If µ is a Radon measure, we denote by |µ| its total variation.

Let u ∈ L1
loc(Ω,Rm). We recall that a point x ∈ Ω is a Lebesgue point of u if there exists

ũ(x) ∈ Rm such that

lim
r→0+

−
∫

B(x,r)
|u(y)− ũ(x)|dx = 0;

the vector ũ(x) is called the approximate limit of u at x. Ωu denotes the set of of Lebesgue
points of u and Su := Ω \ Ωu is called the approximate discontinuity set of u. By Lebesgue’s
differentiation theorem, the set Su is Ln-negligible and the function ũ : Ωu → Rm called
Lebesgue representative of u coincides with u Ln-almost everywhere in Ωu.
We recall also that a point x ∈ Su is an approximate jump point of u if there exists
(u+(x), u−(x), νu(x)) ∈ Rm × Rm × Sn−1 with u+(x) 6= u−(x) such that

lim
r→0+

−
∫

B±(x,r,νu(x))
|u(y)− u±(x)|dx = 0

where B±(x, r, νu(x)) := {y ∈ B(x, r): 〈y−x,±νu(x)〉 > 0} and u±(x) are called the one-sided
Lebesgue limits of u at x with respect to the direction νu(x). The triplet (u+(x), u−(x), νu(x))
is uniquely determined up to a change of orientation of νu(x) and a simultaneously permu-
tation of u+(x) and u−(x). The Borel subset Ju ⊂ Su called Jump set of u is the set of
approximate jump points of u.

Definition 2.1. We say that u : Ω → Rn is a function with bounded deformation in Ω if
u ∈ L1(Ω,Rn) and Eu := (Du + DuT )/2 ∈ Mb

(
Ω,Mn×n

sym

)
, where Du is the distributional

gradient of u and Mb

(
Ω, Mn×n

sym

)
is the space of Mn×n

sym -valued Radon measures with finite total
variation in Ω.

The space BD(Ω) of functions with bounded deformation in Ω was introduced in [20] and
studied, for instance in [5], [18], [22], [23] in relation with the static model of Hencky in
perfect plasticity. BD(Ω) is a Banach space when equipped with the norm

‖u‖BD(Ω) := ‖u‖L1(Ω,Rn) + |Eu|(Ω)

where |Eu|(Ω) is the total variation of the measure Eu in Ω.
It is well known (see Temam [23]) that the trace operator Tr : BD(Ω) → L1(∂Ω,Rn) is

continuous.
Whenever the open set Ω is assumed to be connected, the kernel of the operator E is the

class of infinitesimal rigid motions denoted here by R, and composed of affine maps of the
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form Mx + b, where M is a skew-symmetric n × n matrix and b ∈ Rn. Therefore R is a
finite-dimensional subspace.

Fine properties of BD functions were studied, for instance, in [4], [8] and [18]. The following
“Poincaré type” inequality for BD functions has been proved by Kohn [18] (see also [4]).

Theorem 2.2. Let Ω be a bounded connected open subset of Rn with Lipschitz boundary. Let
R : BD(Ω) → R be a continuous linear map which leaves R fixed.
Then there exists a positive constant C(Ω, R) such that:

(2.1)
∫

Ω
|u−R(u)|dx ≤ C(Ω, R)|Eu|(Ω) for any u ∈ BD(Ω).

When Ω is an open ball of Rn there is a precise representation of the rigid motion R(u),
given in the following theorem.

Theorem 2.3. Let u ∈ BD(Rn), x ∈ Rn and ρ > 0. Then there exists a vector dρ(u)(x) ∈ Rn

and an n× n skew-symmetric matrix Aρ(u)(x) such that:

(2.2)
∫

B(x,ρ)
|u(y)− dρ(u)(x)−Aρ(u)(x)(y − x)|dy ≤ C(n)ρ|Eu|(B(x, ρ))

where C(n) is a positive constant depending only on the dimension n.
Moreover, dρ(u)(x) and Aρ(u)(x) are expressed as singular integrals in the following ways:

(2.3) di
ρ(u)(x) :=

n∑

l,m=1

∫

|y−x|≥ρ

∧i
lm(y − x)

nwn|y − x|n dEulm(y);

(2.4) Aij
ρ (u)(x) :=

n∑

l,m=1

∫

|y−x|≥ρ
− Γlm

ij (y − x)
2wn|y − x|n+2

dEulm(y),

where
∧

and Γ, respectively third and fourth-order tensor valued functions, are defined and
studied in [18], [4].

We recall that if u ∈ BD(Ω), then the jump set Ju of u is a countably (Hn−1, n − 1)-
rectifiable Borel set and the following decomposition of the measure Eu holds

(2.5) Eu = EuLn + Esu = EuLn + Eju + Ecu ,

where Eju := ([u] ¯ νu)Hn−1 Ju, [u] := u+ − u−, Eu is the density of the absolutely
continuous part of Eu with respect to Ln, Esu is the singular part, and Ecu is the Cantor
part and vanishes on Borel subsets that are σ-finite with respect to Hn−1 (see [4]).

Hereinafter we will use the following proposition proved in [4, Proposition 7.8 and Remark
7.9]

Proposition 2.4. Let K : Rn\{0} → R be a 0-homogeneous function, smooth and with mean
value zero on the unit sphere Sn−1. For any Radon measure µ with finite total variation in
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Rn, let us define the functions

hρ(x) :=
∫

|y−x|≥ρ

K(y − x)
|y − x|n dµ(y) ρ > 0.

Then the function h(x) := sup
ρ>0

|hρ(x)| satisfies the following weak L1 estimate

(2.6)
∣∣{x ∈ Rn: h(x) > t}∣∣ ≤ C(n,K)

t
|µ|(Rn).

Moreover, if µ = fLn with f ∈ Lp(Rn), then the following strong Lp estimate holds

(2.7) ‖h‖p ≤ C(n,K) ‖f‖p .

Let us recall also the theorem by Ambrosio-Coscia-Dal Maso [4] on the approximate dif-
ferentiability of BD functions.

Theorem 2.5. Let Ω be a bounded open set in Rn with Lipschitz boundary. Let u ∈ BD(Ω).
Then for Ln-almost every x ∈ Ω there exists an n× n matrix ∇u(x) such that

(2.8) lim
ρ→0

1
ρn

∫

B(x,ρ)

|u(y)− u(x)−∇u(x)(y − x)|
ρ

dy = 0 ,

and

(2.9) lim
ρ→0

1
ρn

∫

B(x,ρ)

|(u(y)− u(x)− Eu(x)(y − x), y − x)|
|y − x|2 dy = 0

for Ln-almost every x ∈ Ω.

In particular, by (2.8) u is approximately differentiable Ln-almost everywhere in Ω and the
function ∇u satisfies the weak L1 estimate

Ln({x ∈ Ω : |∇u(x)| > t}) ≤ C(n, Ω)
t

‖u‖BD(Ω) ∀t > 0,

where C(n, Ω) is a positive constant depending only on n and Ω.
From (2.9) and (2.8) one can easily see that

(2.10) Eu(x) = (∇u(x) +∇u(x)T )/2 for Ln-a.e. x ∈ Ω.

Analogously to the space SBV introduced by De Giorgi and Ambrosio (see for instance
[3]), the space SBD was introduced by Bellettini and Coscia in [7] and studied in [8].

Definition 2.6. The space SBD(Ω) of special functions with bounded deformation, is the
space of functions u ∈ BD(Ω) such that the measure Ecu in (2.5) is zero.

We set
A(u)(x) := sup

ρ>0
|Aρ(u)(x)|

with Aρ(u) the anti-symmetric matrix defined in (2.4). Note that for every u ∈ SBD(Ω),

Aρ(u) = Lρ(u) + Jρ(u)



A LOWER SEMICONTINUITY RESULT FOR SOME INTEGRAL FUNCTIONALS IN SBD 7

with

(2.11) Lij
ρ (u)(x) :=

n∑

l,m=1

∫

|y−x|≥ρ
− Γlm

ij (y − x)
2wn|y − x|n+2

Eulm(y)dy

and

(2.12) J ij
ρ (u)(x) :=

n∑

l,m=1

∫

|y−x|≥ρ
− Γlm

ij (y − x)
2wn|y − x|n+2

dEjulm(y).

We set also

(2.13) L(u)(x) := sup
ρ>0

|Lρ(u)(x)| and J(u)(x) := sup
ρ>0

|Jρ(u)(x)|.

Let us recall that, given a Rm-valued Radon Measure µ in Rn, the maximal function of µ is
defined by

M(µ)(x) := sup
ρ>0

|µ|(B(x, ρ))
|B(x, ρ)| ∀x ∈ Rn.

Whenever µ = gLn, we recover the maximal function of the function g (see [21]).

The following theorem on Lusin type approximation of BD functions is proved in [11].

Theorem 2.7. Let Ω be either Rn or a Lipschitz bounded open subset of Rn and u ∈ BD(Ω).
Then for any λ > 0, there exists a Lipschitz continuous function vλ : Ω → Rn with lip(vλ) ≤
Cλ such that:

(2.14)
∣∣{x ∈ Ω : vλ(x) 6= u(x)}∣∣ ≤ C

λ
‖u‖BD(Ω) ,

where C is a positive constant only depending on n and Ω.

In the following proposition we further refine the estimate (2.14) when the function u ∈
SBD(Ω) with Eu ∈ Lp(Ω, Mn×n

sym ).

Proposition 2.8. Let p ∈ (1,∞), λ > 0 and u ∈ SBDp(Rn). Then there exists a function
vλ : Rn → Rn Lipschitz continuous with lip(vλ) ≤ Cλ, |vλ(x)| ≤ Cλ for every x ∈ Rn, and
for any Borel subset E of Rn we have the following estimate

∣∣E ∩ {x ∈ Rn : vλ(x) 6= u(x)}∣∣ ≤ C

λ
[||u||L1(Rn,Rn) + |Eju|(E)] +(2.15)

+
1
λp

∫

E∩{L(u)(x)>λ}
|L(u)(x)|pdx +

1
λp

∫

E∩{M(|Eu|)>λ}
[M(|Eu|)]pdx.

where C is a positive constant only depending on n.

Proof. For λ > 0, we set

Eλ := {x ∈ Rn: M(|u|Ln + |Eu|)(x) ≤ 3λ and A(u)(x) ≤ 2λ}.
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It has been proved in Theorem 2.7 that u|Eλ\Su
is Lipschitz continuous with Lipschitz con-

stant less or equal to a positive constant proportional to λ. Moreover, from the Lebesgue
differentiation theorem we have also

|u(x)| ≤ 3λ ∀x ∈ Eλ \ Su.

The function vλ is then obtained from u|Eλ\Su
by Kirszbraun’s Theorem (see Federer [15,

Theorem 2.10.43]).
Now given E ∈ B(Rn), since E ∩ {x ∈ Rn : vλ(x) 6= u(x)} ⊂ E \ Eλ, it is sufficient to
estimate the measure of E \ Eλ.
Note that

∣∣E ∩ {x ∈ Rn: A(u)(x) > 2λ}∣∣ ≤ ∣∣E ∩ {x ∈ Rn: L(u)(x) > λ}∣∣

+
∣∣E ∩ {x ∈ Rn: J(u)(x) > λ}∣∣

where L and J are defined in (2.11) and (2.12). From Proposition 2.4 and Chebychev’s
inequality we get respectively

∣∣E ∩ {x ∈ Rn: J(u)(x) > λ}∣∣ ≤ C(n)
λ

|Eju|(E)

and ∣∣E ∩ {x ∈ Rn: L(u)(x) > λ}∣∣ ≤ 1
λp

∫

E∩{L(u)(x)>λ}
|L(u)(x)|pdx.

Hence,

(2.16)
∣∣E ∩ {x ∈ Rn: A(u)(x) > 2λ}∣∣ ≤ C(n)

λ
|Eju|(E) +

1
λp

∫

E∩{L(u)(x)>λ}
|L(u)(x)|pdx.

On the other hand, using covering theorems (see [3], [15]) and the properties of maximal
functions of Lp functions, we obtain the estimates

∣∣E ∩ {x ∈ Rn: M(|u|Ln + |Eu|)(x) > 3λ}∣∣ ≤ ∣∣E ∩ {x ∈ Rn: M(|u|Ln)(x) > λ}∣∣(2.17)

+
∣∣E ∩ {x ∈ Rn: M(|Eju|)(x) > λ}∣∣ +

∣∣E ∩ {x ∈ Rn: M(|Eu|)(x) > λ}∣∣

≤ C(n)
λ

[||u||L1(Rn,Rn) + |Eju|(E)] +
1
λp

∫

E∩{M(|Eu|)>λ}
[M(|Eu|)]p dx.

The estimate (2.15) is then obtained by adding (2.16) to (2.17). ¤

Remark 2.9. Let Ω be a bounded connected open subset of Rn with Lipschitz continuous
boundary ∂Ω and u ∈ SBD(Ω) with Eu ∈ Lp(Ω,Mn×n

sym ). Let u be the extension of u by 0
outiside Ω. It is easy to see that

Eu := EuLn Ω + Eju Ω− tr(u)¯ νHn−1 ∂Ω

where tr(u) and ν are respectively the trace of u on ∂Ω and the outer unit normal vector to
∂Ω. Therefore from the continuity of the trace operator for BD functions, we get

u ∈ SBD(Rn) with Eu ∈ Lp(Rn, Mn×n
sym ).
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Applying then Proposition 2.8 to u, we obtain the following estimate for every E ∈ B(Rn)
∣∣E ∩ {x ∈ Rn : vλ(x) 6= u(x)}∣∣

≤ C(n,Ω)
λ

[
||u||L1(Ω,Rn) + |Eju|(Ω ∩ E) +

∫

∂Ω∩E
|tr(u)|dHn−1

]

+
1
λp

∫

E∩{L(u)(x) > λ}
|L(u)(x)|pdx +

1
λp

∫

E∩{M(|Eu|)>λ}
[M(|Eu|)]pdx.

In particular for any E ∈ B(Ω) we get
∣∣E ∩ {x ∈ Ω : vλ(x) 6= u(x)}∣∣ ≤ C(n,Ω)

λ
[||u||L1(Ω,Rn) + |Eju|(Ω)](2.18)

+
1
λp

∫

E∩{L(u)(x) > λ}
|L(u)(x)|pdx +

1
λp

∫

E∩{M(|Eu|)>λ}
[M(|Eu|)]p dx.

3. The proof of our main result

This section is essentially devoted to the proof of Theorem 1.2. The following proposition
will be crucial.

Proposition 3.1. Let fh : Ω × Mn×n
sym → [0,∞) be a sequence of Carathéodory functions

satisfying for a.e. every x ∈ Ω, for every ξ ∈ Mn×n
sym ,

1
C
|ξ|p ≤ fh(x, ξ) ≤ φh(x) + C(1 + |ξ|p),

for some constant C > 0 and a sequence (φh) uniformly bounded in L1(B1). Assume that
there exist an Ln-negligible set N ⊂ B1 and a symmetric quasi-convex function f : Mn×n

sym →
[0,∞) such that limh→∞ fh(y, ξ) = f(ξ) uniformly on compact subsets of Mn×n

sym and for any
y ∈ B1 \N . Then, for any sequence (uh) in SBD(B1) converging strongly in L1(B1,Rn) to a
linear function u, with limh→∞ |Ejuh|(B1) → 0, we have∫

B1

f(Eu) dx ≤ lim inf
h→∞

∫

B1

fh(x, Euh) dx.

Proof. Let (uh) ⊂ SBD(B1) be a sequence which converges strongly in L1(B1,Rn) to a linear
function u and limh→∞ |Ejuh|(B1) → 0. Up to substituting uh by uh − u and fh(x, z) by
fh(x, z + Eu) we can assume that u ≡ 0. So, we have to prove that

(3.1) |B1|f(0) ≤ lim inf
h→∞

∫

B1

fh(x, Euh) dx.

Up to a subsequence we assume that

lim inf
h→∞

∫

B1

fh(x, Euh) dx = lim
h→∞

∫

B1

fh(x, Euh) dx < ∞.

So the sequence (Euh) is uniformly bounded in Lp(B1, Mn×n
sym ). We set

(3.2) Ψh := [M(Euh)]p + |L(uh)|p + |φh|
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where M is the maximal function and L is defined in (2.13). From the assumptions and from
Proposition 2.4, we have that (Ψh) is a bounded sequence in L1(B1). So, By Chacon Bitting
Lemma (see for instance [3, Lemma 5.32]) there exist a subsequence of (Ψh) (still denoted
(Ψh)) and a decreasing sequence of sets (Ek) ⊂ B(B1) such that |Ek| → 0 as k →∞ and the
sequence (Ψh1B1\Ek

)h is equiintegrable for any k ∈ N. We introduce the following modulus
of equiintegrability for the sequence (Ψh1B1\Ek

)h

(3.3) Wk(δ) := sup





lim sup
h→∞

∫

F
Ψh dx: F ∈ B(B1),

F ⊂ B1 \Ek and |F | ≤ δ





∀δ > 0, ∀k ∈ N.

It follows that Wk(δ) → 0 as δ → 0.
Now, from Proposition 2.8 and Remark 2.9 we have for any integer m ≥ 1, a Lipschitz
continuous function vh,m : B1 → Rn and a set Eh,m ∈ B(B1) such that

(3.4) Lip(vh,m) ≤ C(n,B1)m, |vh,m(x)| ≤ C(n,B1)m ∀x ∈ B1, vh,m = uh in B1 \ Eh,m

and for any E ∈ B(B1) the following estimate holds

∣∣Eh,m \E
∣∣ ≤ C(n,B1)

m
[||uh||L1(B1,Rn) + |Ejuh|(B1)](3.5)

+
1

mp

∫

{L(uh)(x)>m}\E
|L(uh)(x)|pdx +

1
mp

∫

{M(|Euh|)>m}\E
[M(|Euh|)]pdx.

In particular for E = Ek we get from the definition of Ψh that

(3.6)
∣∣Eh,m \ Ek

∣∣ ≤ C(n,B1)
m

[||uh||L1(B1,Rn) + |Ejuh|(B1)] +
2

mp

∫

{Ψh>mp}\Ek

Ψh dx.

We set S := suph ||Ψh||1. Using the fact that
∣∣{Ψh > mp}∣∣ ≤ S

mp together with uh → 0
strongly in L1(B1,Rn) and |Ejuh|(B1) → 0 (by assumptions), we get from (3.6) that

(3.7) lim sup
h→∞

mp
∣∣Eh,m \Ek

∣∣ ≤ 2Wk

( S

mp

)
.

From the inequality (3.7), it is easy to see (for m large enough) that

lim sup
h→∞

∫

Eh,m\Ek

φh dx ≤ lim sup
h→∞

∫

Eh,m\Ek

Ψh dx ≤ 2Wk

( S

mp

)
.

Now from (3.4), it follows by Ascoli-Arzelà that the sequence (vh,m)h is relatively compact
in C(B1,Rn). Hence, using a diagonal argument, we get up to a subsequence that, for every
integer m ≥ 1, vh,m converges uniformly to a function vm ∈ C(B1,Rn) as h →∞.
Since, |Ek| → 0 as k →∞, to get (3.1), it is enough to prove that

(3.8) |B1 \ Ek|f(0) ≤ lim inf
h→∞

∫

B1

fh(x, Euh) dx ∀k ∈ N.
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We have the following estimates
∫

B1

fh(x, Euh) dx ≥
∫

B1\(Eh,m∪Ek)
fh(x, Euh) dx =

∫

B1\(Eh,m∪Ek)
fh(x, Evh,m) dx

=
∫

B1\Ek

fh(x, Evh,m) dx −
∫

Eh,m\Ek

fh(x, Evh,m) dx

≥
∫

B1\Ek

fh(x, Evh,m) dx −
∫

Eh,m\Ek

φhdx− Cmp
∣∣Eh,m \ Ek

∣∣.

So, passing to the limit as h →∞, and using (3.6) and (3.7) we get that

(3.9) lim inf
h→∞

∫

B1

fh(x, Euh) dx ≥ lim inf
h→∞

∫

B1\Ek

fh(x, Evh,m) dx − CWk

( S

mp

)
.

Now from the assumption on the convergence of fh(x, ξ) to f(ξ), we get

(3.10) lim inf
h→∞

∫

B1\Ek

fh(x, Evh,m) dx ≥ lim inf
h→∞

∫

B1\Ek

f(Evh,m) dx.

Using the symmetric quasi-convexity of the function f , we also get

(3.11) lim inf
h→∞

∫

B1\Ek

f(Evh,m) dx ≥
∫

B1\Ek

f(Evm) dx.

Indeed, f symmetric quasi-convex means that f ◦ π is quasi-convex in the classical sense,
where π is the projection on symmetric matrices. Since lip(vh,m) ≤ C(Ω, n)m, it is easy to
see that the (vh,m)h converges weakly ? in W 1,∞(B1,Rn) to the function vm and hence (3.11)
follows from a classical lower semicontinuity theorem by Morrey (see for instance Dacorogna
[10]).
Finally putting together (3.9), (3.10) and (3.11) we get

(3.12) lim inf
h→∞

∫

B1

fh(x, Euh) dx ≥
∫

B1\Ek

f(Evm) dx− CWk

( S

mp

)
.

On the other hand, from (3.7) we have also that

(3.13) mp
∣∣{x ∈ B1 \Ek: vm(x) 6= 0}∣∣ ≤ 2Wk

( S

mp

)
.

In fact, from the L1-norm lower semicontinuity of the map

u → ∣∣{x ∈ B1 \ Ek: |u|(x) 6= 0}∣∣ =
∫

B1\Ek

χ(0,∞)(|u|(x))dx,

it follows that

mp
∣∣{x ∈ B1 \ Ek: vm(x) 6= 0}∣∣ ≤ lim inf

h→∞
mp

∣∣{x ∈ B1 \ Ek: (vh,m − uh)(x) 6= 0}∣∣

= lim inf
h→∞

mp
∣∣Eh,m \ Ek

∣∣ ≤ 2Wk

( S

mp

)
.
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Now, setting Am := {x ∈ B1 \ Ek: vm(x) 6= 0}, we obtain from (3.12) that

(3.14) lim inf
h→∞

∫

B1

fh(x, Euh) dx ≥
∫

B1\(Ek∪Am)
f(0) dx− CWk

( S

mp

)

So, passing to the limit in (3.12) as m →∞ and using (3.13) we finally obtain (3.8) and this
achieves the proof of the proposition. ¤

Remark 3.2. We recall that the terminology symmetric quasi-convexity is already available
in the literature. It has been introduced and properly used in [12] (see also [6, 13]).

Now we are in the position to prove the main result of this paper.

The proof of Theorem 1.2. Let (uh) be a sequence such that uh converges strongly to u in
L1(Ω,Rn) and |Ejuh| converges weak ∗ to the measure ν singular with respect to the Lebesgue
measure. We assume that

lim inf
h→∞

∫

Ω
f(x, Euh) dx = lim

h→∞

∫

Ω
f(x, Euh) dx < ∞.

So, up to a subsequence, the sequence of measures fh(x, Euh)Ln Ω converges weakly ∗ to a
positive measure µ. To prove (1.4), it is enough to prove that

(3.15)
dµ

dLn
(x0) ≥ f(x0, Eu(x0)) a.e. x0 ∈ Ω.

In fact, from the lower semicontinuity of the total variations of measure with respect to weak
∗ convergence and from the inequality (3.15) it follows that

lim inf
h→∞

∫

Ω
f(x, Euh) dx ≥ µ(Ω) ≥

∫

Ω

dµ

dLn
(x) dx ≥

∫

Ω
f(x, Eu(x)) dx.

So, let us prove that (3.15) holds. To this aim, we use a characterization of Carathéodory
functions by Scorza-Dragoni (see e.g. [14, Page 235]), to get for every i ∈ N a compact set
Ki ⊂ Ω such that |Ω \Ki| < 1/i and f |Ki×Mn×n

sym
is continuous in Ki ×Mn×n

sym . Let K1
i be the

set of Lebesgue points of the function χKi . We set

F :=
⋃

i∈N
(Ki ∩K1

i )

and it follows that |Ω \ F | ≤ |Ω \ (Ki ∩K1
i )| = |Ω \Ki| ≤ 1/i → 0 as i → ∞. We fix

x0 ∈ F such that:

(i) x0 is an approximate differentiability point of u and such that Eu(x0) = ∇u(x0)+∇u(x0)T

2 ;

(ii)
dν

dLn
(x0) = lim

ε→0

ν(B(x0, ε))
|B(x0, ε)| = 0;

(iii)
dµ

dLn
(x0) = lim

ε→0

µ(B(x0, ε))
|B(x0, ε)| < ∞.

We consider the sequence εk ↘ 0+ such that ν(∂B(x0, εk)) = 0 and µ(∂B(x0, εk)) = 0. Note
that such a sequence exists since the set {ε > 0: ν(∂B(x0, ε)) > 0, ν(∂B(x0, ε)) > 0} is a
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most countable set. From the fact that uh → u strongly in L1(Ω,Rn) and the approximate
differentiability of u at x0 we get that

(3.16) lim
k→∞

lim
h→∞

||uk,h − w0||L1(B1,Rn) = 0

where

uk,h :=
uh(x0 + εky)− u(x0)

εk
and w0(y) := ∇u(x0)y.

We have also that

|Ejuk,h|(B1) =
∫

B1∩Juk,h

∣∣(u+
k,h − u−k,h)¯ νuk,h

∣∣dHn−1

= ε−n
k

∫

B(x0,εk)∩Juh

∣∣(u+
h − u−h )¯ νuh

∣∣dHn−1

=
|Ejuh|(B(x0, εk))

εn
k

≤ |Ejuh|(B(x0, εk))
εn
k

.

Hence

lim sup
k→∞

lim sup
h→∞

|Ejuk,h|(B1) ≤ lim sup
k→∞

lim sup
h→∞

|Ejuh|(B(x0, εk))
εn
k

(3.17)

≤ lim sup
k→∞

ν(B(x0, εk))
εn
k

= 0.

On the other hand, setting fk(y, ξ) := f(x0 + εky, ξ) we get that

dµ

dLn
(x0) ≥ lim sup

k→∞
µ(B(x0, εk))
|B(x0, εk)|

≥ lim sup
k→∞

lim sup
h→∞

1
|B(x0, εk)|

∫

B(x0,εk)
f(x, Euh) dx

≥ lim sup
k→∞

lim sup
h→∞

1
wn

∫

B1

f(x0 + εky, Euk,h) dy

= lim sup
k→∞

lim sup
h→∞

1
wn

∫

B1

fk(y, Euk,h) dy.

By a standard diagonal argument we may extract a subsequence vk := uk,hk
such that

lim
k→∞

||vk − w0||L1(B1,Rn) = 0, lim
k→∞

|Ejvk|(B1) = 0

and
dµ

dLn
(x0) ≥ lim sup

k→∞
1

wn

∫

B1

fk(y, Evk) dy.

Now, since x0 ∈ F , there exist i0 ∈ N such that x0 ∈ Ki0 ∩K1
i0

. So, the sequence χKi0
−x0

εk

converges strongly to 1 in L1(B1) and hence, up to a subsequence χKi0
−x0

εk

(y) → 1 for a.e.

y ∈ B1. So, for k large enough we have that x0 + εky ∈ Ki0 for a.e. y ∈ B1. Hence, for every
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ξ ∈ Mn×n
sym we get that limk→∞ f(x0 +εky, ξ) = f(x0, ξ) for a.e. y ∈ B1. Therefore, we finally

obtain for a.e. y ∈ B1 that

(3.18) lim
k→∞

fk(y, ξ) = f(x0, ξ)

locally uniformly in Mn×n
sym . So, applying Proposition 3.1 to the sequence (vk), we get

dµ

dLn
(x0) ≥ lim inf

k→∞
1

wn

∫

B1

fk(y, Evk) dy ≥ 1
wn

∫

B1

f(x0, Eu(x0)) dy = f(x0, Eu(x0))

which gives (3.15) and achieves the proof of the theorem. ¤

4. Some examples and remarks

In the proof of Theorem 1.2, the assumption on |Ejuh| has played a crucial role in order
to perform the blow-up argument. Note that any sequence (uh) ⊂ W 1,p(Ω,Rn) such that
uh → u strongly in L1(Ω,Rn) satisfies trivially the assumptions of the theorem. For examples
of sequences that are not necessarily in W 1,p(Ω,Rn), we consider here a variational problem
with a uniform L∞ constraint on the admissible functions and a unilateral constraint the
jump sets.
Let us recall here the compactness criterion in SBD by Bellettini-Coscia-Dal Maso [8].

Theorem 4.1. Let φ : [0, +∞[→ [0, +∞[ be a non-decreasing function such that

(4.1) lim
t→+∞

φ(t)
t

= +∞.

Let (uh) be a sequence in SBD(Ω) such that

(4.2)
∫

Ω
|uh|dx + |Ejuh|(Ω) +

∫

Ω
φ(|Euh|)dx +Hn−1(Juh

) ≤ C

for some positive constant C independent of h. Then there exists a subsequence, still denoted
by (uh) and a function u ∈ SBD(Ω) such that

(4.3) uh → u strongly in L1
loc(Ω,Rn),

(4.4) Euh ⇀ Eu weakly in L1(Ω, Mn×n
sym ),

(4.5) Ejuh ⇀ Eju weakly ? in Mb(Ω, Mn×n
sym ),

(4.6) Hn−1(Ju) ≤ lim inf
h→+∞

Hn−1(Juh
).

In the next example we consider a variational problem for which the minimizing sequences
satisfy the assumption on the measures |Ejuh| in Theorem 1.2.
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Example 4.2. Let K 6= ∅ be a non closed subset of Ω such that 0 < Hn−1(K) < ∞ and let
{F (x)}x∈Ω be a family of uniformly bounded closed subsets of Rn. We consider the following
variational problem:

(4.7) min
u∈SBD(Ω)

Ju⊂K
u(x)∈F (x) a.e. in Ω

∫

Ω
f(x, Eu) dx

with f : Ω×Mn×n
sym → [0,∞) being a Carathéodory function that satisfies the assumptions of

Theorem 1.2 that we repeat here for the reader’s convenience:

(i) for a.e. every x ∈ Ω, for every ξ ∈ Mn×n
sym ,

1
C
|ξ|p ≤ f(x, ξ) ≤ φ(x) + C(1 + |ξ|p),

for some constant C > 0 and a function φ ∈ L1(Ω);
(ii) for a.e. every x0 ∈ Ω, f(x0, ·) is symmetric quasi-convex i.e,

(4.8) f(x0, ξ) ≤ −
∫

A
f(x0, ξ + Eϕ(x))dx

for every bounded open subset A of Rn, for every ϕ ∈ W 1,∞
0 (A,Rn) and ξ ∈ Mn×n

sym .

Let us prove that Problem (4.7) admits a solution.
First of all, By the rectifiability of jump sets of BD functions, note that the inclusion Ju ⊂ K

will be intended up to a Hn−1-negligible set.
Now let (uh) ⊂ SBD(Ω) be a minimizing sequence for Problem (4.7). By the assumptions,

there exists a constant M > 0 such that ||uh||∞ ≤ M and

(4.9) |Ejuh|(Ω) ≤ 2||uh||∞Hn−1(Juh
) ≤ 2MHn−1(K) < ∞.

Hence, by the growth assumptions (i) on f , (4.2) is satisfied with φ(t) = tp. Therefore, by
Theorem 4.1, the sequence (uh) converges (up to a subsequence) strongly in L1(Ω,Rn) to
some function u ∈ SBD(Ω). Moreover, we have also u(x) ∈ F (x) a.e. x ∈ Ω.

On the other hand |Ejuh| converge (up to a subsequence) weakly ? to some positive measure
ν. It easily follows from (4.9) that the measure ν is concentrated on the set K. Hence ν is
singular with respect to the Lebesgue measure. Therefore, by Theorem 1.2, we have that∫

Ω
f(x, Eu) dx ≤ lim inf

h→∞

∫

Ω
f(x, Euh) dx.

Now let us prove that u verifies the constraint Ju ⊂ K up to a Hn−1-negligible set. This is
obtained by slicing method.

To this aim, we recall the notations for one-dimensional sections of BD functions.
Given ξ ∈ Rn with ξ 6= 0, we set

πξ := {y ∈ Rn: (y, ξ) = 0}
and for every y ∈ πξ and for every B ∈ B(Ω),

Bξ
y := {t ∈ R: y + tξ ∈ B} and Bξ := {y ∈ πξ: Bξ

y 6= ∅}.
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For every u ∈ L1(Ω,Rn) we set

uξ
y(t) := (u(y + tξ), ξ).

It has been proved in [4] that, if u ∈ SBD(Ω) then for Hn−1-a.e. y ∈ Ωξ, uξ
y ∈ SBV(Ωξ

y).
Viceversa, assume that

uξ
y ∈ SBV(Ωξ

y) for Hn−1-a.e. y ∈ Ωξ and
∫

Ωξ

|Duξ
y|(Ωξ

y)dHn−1(y) < ∞

for every ξ = ξi + ξj , i, j = 1, · · · , n with (ξi)n
i=1 being an orthonormal basis in Rn. Then

u ∈ SBD(Ω).
Setting Jξ

u := {x ∈ Ju: (u+(x)− u−(x), ξ) 6= 0}, it follows from Fubini’s theorem that

(4.10) Hn−1
(
Ju \ Jξ

u

)
= 0 for Hn−1-a.e. ξ ∈ Sn−1.

From the structure theorem for BD functions (see [4, theorem 5.1]) we have also

J
uξ

y
=

(
Jξ

u

)ξ

y
for a.e. y ∈ Ωξ.

Now we can prove that the limit u of the minimizing sequence (uh) for Problem (4.7) satifies
the constraint Ju ⊂ K up to a Hn−1-negligible set. Let ξ ∈ Sn−1 be such that (4.10) holds.
Following the proof of Theorem 4.1, we get that the sequence of one-dimensional section
(uξ

h,y) of the minimizing sequence (uh) satisfies the assumptions of the SBV compactness
theorem in [3, Theorems 4.7 and 4.8] and from Juh

⊂ K we have also

J
uξ

h,y
= (Jξ

u)ξ
y ⊂ Kξ

y with H0(Kξ
y) < ∞ for Hn−1-a.e. y ∈ Ωξ.

Therefore the limit function uξ
y has also its jump set contained in the finite set Kξ

y . In fact, it
is easy to see that the jump set J

uξ
y

is contained in the set of limits of the jump points of uξ
h,y.

Now from (Jξ
u)ξ

y = J
uξ

y
⊂ Kξ

y for Hn−1-a.e. y ∈ Ωξ, we get Jξ
u ⊂ K up to a Hn−1-negligible

set and hence also Ju ⊂ K up to a Hn−1-negligible set. ¤

Remark 4.3. Note that the set K has been taken non closed in order to avoid the easy case
where the minimizing sequences (uh) and their limit u belong to the space

LD(Ω \K) := {u ∈ L1(Ω \K,Rn): Eu ∈ L1(Ω \K, Mn×n
sym )}

for which the lower semicontinuity of the functional∫

Ω
f(x, Eu) dx =

∫

Ω\K
f(x, Eu) dx

in the strong topology of L1(Ω \K,Rn) follows from [12, Theorem 3.1].

As we have seen in the previous example, the minimizing sequences for problem (4.7)
satisfy the assumptions of both Theorems 1.2 and 4.1. However, unlike the assumptions (1.1)
in Theorem 1.1 and (1.2) in [19], which are consistent with the compactness criterion in SBV ,
the assumption of Theorem 1.2 on the measures |Ejuh| is not always compatible with the
compactness criterion in Theorem 4.1.
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In the following example, we construct a sequence (uh) ⊂ SBD(Ω) that satisfies the com-
pactness criterion in SBD while |Ejuh| converges to a measure proportional to the Lebesgue
measure.

Example 4.4. We consider in R2 the open squares

Ω :=
(
0, 2

)× (
0, 2

)
and Ωh :=

(1
h
− 1

h2
,
1
h

+
1
h2

)
×

(1
h
− 1

h2
,
1
h

+
1
h2

)
.

We set

Eh :=
⋃

(i,j)∈Ih×Ih

(
Ωh + (i, j)

)
with Ih := {0, 2/h, 4/h, · · · , 2− 2/h}.

Let (uh) be the sequence defined by uh := (χEh
, 0) and let Eh,i,j := Ωh + (i, j). By easy

computations we get

Ejuh = Euh =
∑

(i,j)∈Ih×Ih

(1, 0)¯ νEh,i,j
H1 ∂Eh,i,j

where νEh,i,j
is the unit normal vector to ∂Eh,i,j . Hence, we have

|Ejuh|(Ω) = 2
√

2 + 4 and H1(Juh
∩ Ω) = 8.

Thus, the sequence (uh) satisfies the assumptions of Theorem 4.1. However, the sequence
|Ejuh| converges weakly ∗ to the measure (

√
2 + 2)L2 Ω.

Indeed, let M i,j
h , N i,j

h be the two vertical sides of the square Eh,i,j and Li,j
h , Ki,j

h be its
horizontal sides. It is easy to see that

(4.11) |Ejuh| =
∑

(i,j)∈Ih×Ih

(
H1 M i,j

h +H1 N i,j
h +

√
2

2
H1 Li,j

h +
√

2
2
H1 Ki,j

h

)
.

Now let ϕ ∈ Cc(Ω). It is easy to see

lim
h→∞

∑

(i,j)∈Ih×Ih

∫

Si,j
h

ϕdH1 =
∫

Ω
ϕdx for Si,j

h = M i,j
h , N i,j

h ,Ki,j
h , Li,j

h .

Therefore we get from (4.11) that

lim
h→∞

∫

Ω
ϕd|Ejuh| = (

√
2 + 2)

∫

Ω
ϕdx.

¤
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