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1. Introduction

In the last few years there has been an increasing interest in the analysis in
metric spaces: a short list far from being exhaustive includes the papers [12],
[14], [15], [35], [6], [38], [28], [30], [29], [31] and the books [37], [36], [7], with
quite succesful attempts to understand the fine properties of Lipschitz, Sobolev
and BV functions and the theory of sets of finite perimeter.

In this paper we consider a metric measure space (X, d, µ) with µ doubling
and we assume that a Poincaré inequality with upper gradients is valid in this
space. This framework is quite general and includes for instance all compact
Riemannian manifolds and all Carnot–Carathéodory spaces. In this setting,
the theory of BV functions and the study of the fine properties of sets of finite
perimeter have been studied in the papers [3], [4], [41].

Here we extend to this setting the theory of SBV functions, the so-called
special functions of bounded variation, whose derivative is made by a “volume”
energy and a “surface” energy, see [5] as a reference book on this topic. In the
Euclidean case, one of the most succesful applications of the SBV theory has
been the rigorous analysis of the Mumford–Shah functional; here we prove the
basic compactness theorem of SBV functions and we investigate some natural
extensions of the Mumford–Shah functional to a metric setting.

The plan of the paper is the following. Section 2 has mostly an expository
nature and contains all basic examples of metric measure spaces with a Poincaré
inequality (among them CC spaces and groups and the weighted BV spaces of
[8]). Section 3 has the same nature as well and deals with basic facts of the
Euclidean theory of special functions of bounded variation and the Mumford–
Shah functional.

In Section 4 we recall the basic facts of the theory of BV functions and
the fine properties of sets of finite perimeter: in particular, following [4], we
identify a codimension 1 or “surface” measure Sh by applying the Carathédory
construction to the function

h(B%(x)) :=
µ(B%(x))

%
.

It turns out that the perimeter measure P (E, ·) is representable in terms of Sh

and it is concentrated on ∂∗E, the essential boundary of E. Denoting by θE
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the function such that

P (E,B) =
∫
B∩∂∗E

θE dSh

we improve some results of [4] by showing that θE is bounded not only from
below, but also from above, by universal constants (actually the bound from
above involves the doubling constant only).

In Section 5 we define SBV functions in the same spirit of the original paper
[23], by requiring that the total variation is the sum of a measure absolutely
continuous with respect to µ and a measure absolutely continuous with respect
to Sh and concentrated on a set σ-finite with respect to Sh. Moreover, using
the coarea formula of [41] we estabilish a chain rule for the computation of
|D(ψ ◦ u)|, with ψ of class C1, strictly increasing and Lipschitz, and we use
this chain rule to show adapting the argument in [2] (see also [1]) that, as in
the Euclidean theory, u ∈ SBV (X) and Sh(Su) is finite if and only if

|D(ψ ◦ u)| ≤ ψ′(u)aµ+ oscψν ∀ψ

for some a ∈ L1(µ) and some finite measure ν in X. This immediately leads
to the closure property of SBV functions, as in the Euclidean theory.

Regarding possible definitions of a “Mumford–Shah” energy in this setting,
the basic difficulty is that at this level of generality no lower semicontinuous
surface energy is known, besides the perimeter. Therefore, since the jump set
can be represented through unions of intersections of essential boundaries, see
Proposition 5.2, it is natural to define a surface energy of the jump set by
glueing all perimeter measures, i.e., defining a measure σ concentrated on Su

such that

σ(B) = P ({u < t}, B) for any Borel set B ⊂ Su ∩ ∂∗{u < t}.

However this construction seems to work only under an additional technical
“isotropy” condition on the space: whenever E ⊂ F are sets of finite perimeter,
it should happen that

θE = θF Sh-a.e. on ∂∗E ∩ ∂∗F.
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Under this isotropy condition we are able in Section 6 to define σ and to prove
the lower semicontinuity of the Mumford–Shah type energy∫

X

|Gu|p dµ+ α

∫
X

|u− g|q dµ+ βσ(Su)

(here |Gu| is the density of |Du| with respect to µ, g ∈ L∞(X), p > 1, q > 0).
This, in conjunction with the closure of SBV functions, leads to the existence
of minimisers for the functional.

In Section 7 we show that our class of “isotropic” spaces includes all Carnot
groups of step 2 (thanks to the rectifiability result proved in [31]) and all spaces
induced by a continuous and strong A∞ weight. In this way we recover previous
results by Song and Yang [45], Citti, Manfredini and Sarti [17] in the Heisenberg
group and by Franchi and Baldi [10] in weighted spaces.

Notation Given a metric space (X, d), we denote by B%(x) the open ball
and by B%(x) the closed ball centred at x ∈ X with radius % > 0. With the
notation B(X) we mean the collection of all closed balls of X, and with B(X)
the collection of all Borel sets. If B = B%(x) is any ball, we denote with 2B the
ball with the same centre x as B and with the double radius, i.e., 2B = B2%(x).
Given F ⊂ X µ-measurable, the symbol µ F denotes the restriction measure,
i.e., µ F (E) = µ(E ∩ F ) for any µ-measurable set E. The N -dimensional
Lebesgue and the k-dimensional Hausdorff and spherical Hausdorff measures
in RN are denoted by LN , Hk, Sk, respectively. In the metric space (X, d) the
k-dimensional Hausdorff and spherical Hausdorff measures are denoted by Hk

d ,
Skd .

2. Doubling metric spaces with a Poincaré inequality

In this section we give the basic definitions we use in this article, together
with the main consequences. The framework is given by a complete metric
space (X, d) with a given positive measure µ defined on the Borel sets B(X) of
X which we assume for simplicity to be finite. The main assumptions we make
on the metric measure space (X, d, µ) are:
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1. the measure µ is doubling;

2. the space (X, d, µ) supports a Poincaré inequality.

Let us comment these assumptions and present some examples.

Definition 2.1. The measure µ is said to be doubling if there exists a constant

c > 0 such that the following condition holds for every closed ball B%(x) ∈
B(X)

(2.1) µ(B2%(x)) ≤ cµ(B%(x)).

We say that µ is asymptotically doubling if

lim sup
%↓0

µ(B2%(x))
µ(B%(x))

< +∞ ∀ x ∈ X.

We shall denote by CD the least constant that satisfies condition (2.1), i.e.,
we define

(2.2) CD = sup
B∈B(X)

µ(2B)
µ(B)

.

Let us see some examples of doubling measures in metric spaces (X, d, µ),
starting from the simplest ones.

Example 2.2 -

1. If we take X = RN , d(x, y) = |x − y| the Euclidean metric and µ = LN

the Lebesgue measure, then it is easy to verify that (RN , | · |,LN ) is a
doubling metric measure space with CD = 2N .

2. Let X = (M, g) be a complete Riemannian manifolds of dimension N

and µ is the canonical measure associated to the metric tensor g. Then,
if the Ricci curvature is nonnegative, from [16, Proposition 4.1] it follows
that µ is doubling with CD = 2N .

3. In this example we show that the dimension of the doubling metric
measure space (X, d, µ) is not necessarily constant; in fact, if we take
X = [−1, 0] × [−1, 1] ∪ [0, 1] × {0}, d the Euclidean metric and µ =
L2 X +H1 [0, 1]× {0}, then µ is doubling with CD = 4. Spaces with
constant dimensions are briefly discussed in Example 5 below.
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4. We give here an abstract construction of Cantor sets taken from [19] and
[43]; this construction shows that any Cantor-type set has a structure of
doubling metric measure space. Fix a finite set F of at least two elements
and consider the set of sequences of elements of F

F∞ = {x = (xi)i∈N : xi ∈ F}.

Fixed a ∈ (0, 1), let us define the distance

da(x, y) =

{
0 if x = y

aj if xi = yi for i < j and xj 6= yj .

The measure is constructed as follows. Take the uniformly distributed
probability measure ν on F , and define the measure µ on F∞ as the
product measure of ν infinitely many times; it turns out that

µ(Baj (x)) =
1
kj

where k is the cardinality of F . With this construction we have that
(F∞, da, µ) is a doubling metric measure space with dimension s given
by the equation

as =
1
k
.

The case a = 1 still gives a metric measure space, but it is not doubling;
moreover, it is possible to prove that if F has exactly two elements and
a = 1/3, then the previous contruction defines a space that is bilipschitz
equivalent to the standard Cantor set.

5. Let us discuss an example that falls into the class discussed in the pre-
ceding item, the Sierpinski carpet, using its classical construction, rather
than the previous one. Let Q = [0, 1] × [0, 1] ⊂ R2 be the unit square,
divide Q in nine equal squares of sidelength 1/3 and remove the central
one. In this way we obtain a set Q1 which is the union of 8 squares of
sidelength 1/3; repeating this procedure in each square we get a sequence
of sets Qj consisting of 8j squares of sidelength 1/3j . Finally, we define
the Sierpinski carpet to be S =

⋂
Qj ; we notice that if d is the distance

on R2 given by

d((x, y), (x0, y0)) = |x− x0|+ |y − y0|,



8

then (S, d) is a complete geodesic metric space. The measure µ on this
space is given by the weak∗ limit of the uniform probability measures
µj concentrated on Qj . This measure is nothing but that the Hausdorff
measure of dimension s, where s is defined by the equation

3s = 8;

it is not difficult to prove that µ is a doubling measure (it is the weak∗

limit of uniformly doubling measures).

As we can deduce from the previous examples, the doubling condition gives
only an upper bound on the dimension of the space X; moreover, if (X, d, µ)
is a doubling metric measure space with a given doubling constant CD, we can
add to the space X other sets with lower Hausdorff dimension. This can be
clarified with the following consequences of the doubling condition.

Remark 2.3 -

1. There exists a lower bound for the density of the space X; more precisely,
if we set s = log2 CD, then

(2.3)
µ(B%(x))
µ(BR(y))

≥ 1
C2
D

( %
R

)s
, ∀ 0 < % ≤ R < +∞, x, y ∈ X.

This means that in some sense the number s = log2 CD defines a dimen-
sion on X; it is called the homogeneus dimension of X. We point out
that this is not the topological dimension of X (it can be greater), and
it depends on µ and on the metric d. As we shall see, if we change the
metric d, then the homogeneus dimensions may change as well.

2. The balls are totally bounded, hence closed balls are compact. Then, the
notion of doubling metric measure space is intrinsically finite-dimensional;
this implies that it is not possible to put doubling measures on infinite
dimensional spaces. In particular Hilbert spaces with Gaussian measures
cannot be doubling, not even locally.

3. The measure µ is finite if and only if the diameter of X is finite. In fact,
if d = diam(X) is finite, then trivially, taking an arbitrary ball B% with
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% > 0, for n > d/% we get

µ(X) ≤ µ(Bn%) ≤ CnDµ(B%).

Conversely, assume that diam(X) = +∞. Then, fix a point y ∈ X and
two radii %,R with 0 < % < R/2. Then, for infinitely many n ∈ N there
is a ball B%(xn) contained in the annulus B2nR(y) \ B2n−1R(y) with the
property that any point x ∈ X lies at most in two of such balls. From
(2.3) we know that µ(B%(xn)) ≥ C−2

D (%/R)sµ(BR(y)) for every n, whence
µ(X) ≥ 1/2

∑
n µ(B%(xn)) = +∞. As a consequence, even in a finite-

dimensional space, probability measures with strictly positive densities
are never doubling.

4. The doubling condition implies the Lebesgue differentiation Theorem and
the Maximal Theorem; then, for a given function u ∈ L1

loc(X,µ), it is pos-
sible to talk about Lebesgue points, and it is possible to define the max-
imal operator and obtain the same continuity properties from Lp(X,µ)
to Lp(X,µ) as in the Euclidean case (see [37, Theorem 2.2]).

More generally, the Lebesgue differentation Theorem allows to compute
the density of the absolutely continuous part of a measure ν with respect
to a doubling (or asymptotically doubling) measure µ, even when a Besi-
covich type Theorem doesn’t hold. In fact, writing ν = fµ+ νs, with νs

singular with respect to µ, it is possible to compute

f(x) =
dν

dµ
(x) = lim

%↓0

ν(B%(x))
µ(B%(x))

for µ-almost every x ∈ X (see for instance [37, Theorem 1.8]).

We give now the definition of Poincaré inequality; in order to do that, we
introduce a notion of gradient of a function defined on a metric space. This
is strictly related to the problem of the definition of Sobolev spaces on metric
spaces. Haj lasz defined the Sobolev space W 1,p(X,µ), p > 1, as the set of the
functions u ∈ Lp(X,µ) such that there exists a function g ∈ Lp(X,µ), g ≥ 0,
such that

(2.4) |u(x)− u(y)| ≤ d(x, y)(g(x) + g(y)).
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In the Euclidean setting, i.e., in the case (X, d, µ) = (RN , | · |,LN ), relation
(2.4) is satisfied if u ∈ W 1,p(RN ) with g = c(N)M(|∇u|), where M(|∇u|) is
the maximal function of the gradient of u and c(N) is a constant depending
only upon the dimension N . Clearly, the continuity of the maximal operator
implies the equivalence of the definitions of Sobolev spaces, but (2.4) gives a
notion of gradient that is not pointwise; to overcome this problem, Haj lasz and
Koskela gave another definition of gradient for a function, the upper gradient.

Definition 2.4 (Upper Gradient). Given a continuous function u : X → R,

we say that g : X → [0,+∞] is an upper gradient for u if for every x, y ∈ X

and for every rectifiable curve γ joining x to y the inequality

|u(x)− u(y)| ≤
∫
γ

g

holds.

To be sure that the notion of upper gradient is consistent, we note that, for
every Lipschitz continuous function u : X → R, the function

(2.5) |∇u|(x) = lim inf
%↓0

sup
y∈B%(x)

|u(x)− u(y)|
%

is an upper gradient for u (see [15]).
Let us come to discuss the (weak) Poincaré Inequality.

Definition 2.5. We say that the space (X, d, µ) supports a weak Poincaré
inequality if there exist constants cP > 0, λ > 1, such that for every continuous

function u : X → R and for every upper gradient g the inequality

(2.6)
∫
B

|u− uB | dµ ≤ % · cP
∫
λB

g dµ

holds for every ball B ∈ B(X) of radius %, where uB indicates the average of

u over B and λB is the ball with the same centre as B and radius λ%.

In the paper [39] it is shown that if a weak Poincaré inequality holds for
every Lipschitz continuous function u and with g = |∇u|, then the space X
supports a weak Poincaré inequality. This means that in order to prove that
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X supports a weak Poincaré inequality it suffices to verify (2.6) for u Lipschitz
continuous and g = |∇u|.

Let us notice that not every doubling metric space supports a Poincaré
inequality. In fact, if X = A ∪ B with A,B ⊂ RN bounded open sets with
dist(A,B) > 0 and µ(A), µ(B) > 0, d = | · | and µ = LN , then u = χA is
Lipschitz continuous on X, |∇u| = 0 but∫

X

|u− uX | dµ = µ(A) > 0.

Then in some sense the Poincaré inequality implies some kind of connectedness
and even something more, i.e., the so-called quasi-convexity of the space X.
In fact, if the space (X, d, µ) is a doubling space and supports a Poincaré
inequality, then (see [43]) the space is quasi-convex, in the sense that there
exists a constant c > 0 such that if δ is the geodesic distance induced by d on
X, then

d(x, y) ≤ δ(x, y) ≤ cd(x, y), ∀x, y ∈ X.

We recall that the geodesic distance is defined as

δ(x, y) = inf {length(γ) : γ is a rectifiable curve joining x and y} .

It is possible to prove (see e.g. [37, Theorem 4.18]) that if a doubling metric
satisfies a weak Poincaré inequality, then Poincaré inequality (2.6) holds with
λ = 1 and with the geodesic metric.

Inequality (2.6) can be stated in an equivalent way as follows:

min
c∈R

∫
B

|u− c| dµ ≤ % · cP
∫
λB

g dµ,

which has the advantage of being invariant under bilipschitz mapping.
It is also possible to prove (see [15]) that in a doubling metric space support-

ing a Poincaré inequality, a µ-almost everywhere differentiability result holds
for Lipschitz continuous functions. Indeed, if u is Lipschitz continuous, then
for µ-a.e. x ∈ X we have

lim inf
%↓0

sup
y∈B%(x)

|u(x)− u(y)|
%

= lim sup
%↓0

sup
y∈B%(x)

|u(x)− u(y)|
%

= lim
%↓0

sup
y∈B%(x)

|u(x)− u(y)|
%

.



12

We give now a short list of examples of doubling metric spaces supporting a
Poincaré inequality, and also an example of a quasi-convex doubling metric
space which doesn’t support a Poincaré inequality.

Example 2.6 -

1. As we have seen, finite-dimensional complete Riemannian manifolds with
positive Ricci curvature are doubling; moreover, Buser’s inequality (see
[13, Theorem 1.2]) implies Poincaré inequality.

2. Let us consider the Euclidean space RN endowed with the measure µ =
ωLN , with a strongly A∞ (in the sense of [18]) nonnegative weight ω ∈
L1
loc(RN ) Recall that ω is an A∞ weight if for every ε > 0 there is δ > 0

such that for any ball B ⊂ RN and E ⊂ B the implication

LN (E) ≤ δLN (B) =⇒ µ(E) ≤ εµ(B)

holds. Then, the measure µ is a doubling measure. Moreover, it is pos-
sible to define the quasi-distance

δ(x, y) := µ (Bx,y)1/N ,

where Bx,y is the (Euclidean) ball with diameter |x − y| containing x

and y, and ω is a strong-A∞ weight if the distance δ is equivalent to
the geodesic distance dω associated with the Riemannian metric ω1/Nds.
In this case the functions that are Lipschitz continuous in the Euclidean
metric are also Lipschitz continuous with respect to the distance dω and
if we compute the gradient |∇ωu| of a Lipschitz function u using (2.5),
we obtain

(2.7) |∇ωu|(x) = ω(x)−1/N |∇u|(x).

It is also known that the doubling metric measure space (RN , dω, µ) sup-
ports a Poincaré inequality (see [18], [27], [28]).

3. In RN , given the vector fields X = (X1, . . . , Xk), k < N , X verifies
Hörmander’s condition if there is an integer p such that the family of
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commutators of the Xi up to the length p span RN at every point. More-
over, we say that a Lipschitz path γ : [0, T ] → RN is admissible for X, or
also horizontal, if there exist measurable functions a1, . . . , ak : [0, T ] → R,
with a2

1(t) + . . .+ a2
k(t) ≤ 1 and

(2.8) γ′(t) =
k∑
i=1

ai(t)Xi(γ(t)) for a.e. t ∈ [0, T ].

Then, it is possible to define the Carnot-Carathéodory metric by setting

d(x, y) = inf
{
T : ∃ γ : [0, T ] → RN as in (2.8), γ(0) = x, γ(T ) = y

}
;

if no such curve exists, then we set d(x, y) = +∞. It is possible to
prove (Chow Theorem, see [33, Theorem 0.4]) that if the vector fields X
satisfy Hórmander’s condition, then every two points can be joined with
an admissible curve of finite length. With the definition of the Carnot-
Carathéodory distance, it is possible to prove that if u is a Lipschitz
function with respect to d, then the function

|Xu| =
√
|X1u|2 + . . . |Xku|2

is the minimal upper gradient for u (see [36, Section 11.2]). An example
of Carnot–Carathéodory space is given by the Grušin plane; it is R2 with
the vector fields X1(x, y) = (1, 0) and X2(x, y) = (0, x). It is easily seen
that [X1, X2] = (0, 1), and then Hörmander’s condition is satisfied and
the Carnot-Carathéodory distance is a metric (the admissible curves are
those which are vertical when passing through the y-axis). Carnot groups
are a special case of Carnot-Carathéodory spaces. In fact, the underlying
space is endowed with a group structure, the measure is invariant under
the translation group (Haar measure) and the vector fields X are obtained
by fixing k tangent vectors at 0 (the identity of the group) that satisfy
Hörmander’s condition and extending them to all other points in such a
way to be left invariant under the group action.

4. Important particular examples of Carnot groups are Heisenberg groups
HN , given by HN = CN ×R, whose points are denoted by P = [z, t], with
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the group operation

(2.9) [z1, t1] · [z2, t2] = [z1 + z2, t1 + t2 + 2Im(z1z2)],

where z1, z2 ∈ CN , t1, t2 ∈ R and we also write z = (x, y) with x, y ∈ RN .
The inverse element is P−1 = [−z,−t]. The distance dC on HN is given
by the Carnot-Carathéodory metric induced by the left-invariant vector
fields {

Xj(z, t) = Xj(x, y, t) = ∂xj
+ 2yj∂t

Yj(z, t) = Yj(x, y, t) = ∂yj
− 2xj∂t,

j = 1, . . . , N , which satisfy Hörmander’s condition, the only non-trivial
commutator relation being [Xj , Yj ] = −4∂t, j = 1, . . . , N , and the mea-
sure is the Lebesgue measure L2N+1. Then, the space (HN , dC ,L2N+1) is
a doubling metric measure space supporting a Poincaré inequality. Notice
that the distance dC is globally equivalent to that induced by the homo-
geneous norm ‖Q‖ = ‖[z, t]‖∞ = max{|z|, |t|1/2} through d(P1, P2) =
‖P−1

2 · P1‖∞.

5. Let us recall that a Borel regular measure µ in (X, d) is called s-regular
if there exist two constant c, C > 0 such that for every B%(x) ∈ B(X),
c%s ≤ µ(B%(x)) ≤ C%s. If µ is s-regular then X is called an s-regular or
Ahlfors regular space. These spaces are particular examples of doubling
metric measure spaces in which there is also an upper bound for the
density of the measure; this implies that there is also a control from below
on the dimension, and then there is a well defined notion of dimension that
is constant on the whole space. In particular, the measure is equivalent to
the s-dimensional Hausdorff measure; we have seen examples of regular
spaces in Examples 2.2 (1), (4), (5) and Examples 2.6 (3), (4). It is worth
noticing that Laakso ([40]) constructed for every real number s ≥ 1 an
example of a metric measure space (X, d, µ) with µ an s-regular measure
supporting a Poincaré inequality.

6. It is not true that every doubling metric space which is quasi-convex sup-
ports a Poincaré inequality; the counterexample is given by the Sierpinski
carpet in S defined in Example 2.2 (5). To see that it doesn’t support



15

a Poincaré inequality, it suffices to consider the sequence of Lipschitz
functions

un(x, y) =



1 x ≤ 1
2 −

1
n

−n
2x+ n

4 + 1
2 |x− 1

2 | ≤
1
n

0 x ≥ 1
2 + 1

n .

Clearly un → χS∩[0,1/2]×[0,1], but∫
S

|∇un| dµ→ 0.

Using the terminology of perimeter that we shall see in the sequel, this
example shows that in this case the set A = S ∩ [0, 1/2] × [0, 1] has null
perimeter in S, but µ(A) = µ(S \A) = 1/2.

There is a wide literature regarding Sobolev functions in doubling metric mea-
sure spaces supporting a weak Poincaré inequality. We recall that these def-
initions can be given also without the requirement of doubling condition and
Poincaré inequality, but with these two conditions a large number of properties
true in the Euclidean case are still valid. We recall in particular the following.

1. The Sobolev embedding, i.e., the continuous embedding of W 1,p(X,µ) in
Lp

∗
(X,µ) if p < s, with p∗ = sp

s−p .

2. The Hölder continuity of Sobolev functions with high summability: if
p > s then functions of W 1,p(X,µ) are Hölder continuous.

3. The Rellich-Kondrachov compact embedding theorem, i.e., the compact
embedding of W 1,p(X,µ) in Lq(X,µ) when X is bounded (or, equiva-
lently, µ(X) < +∞), for every p ≥ 1, 1 ≤ q < p∗.

3. Free discontinuity problems

Free discontinuity problems are variational problems where the functional
to be minimised consists of terms describing a volume energy, in general repre-
sented by an integral with respect to the volume measure, and terms describing
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a surface energy, which is concentrated on a lower dimensional set. Typically,
competitors are pairs (K,u), where K is closed and the admissible function
u is required to be regular outside K and the volume terms depend upon the
derivatives of the competitor functions. The term that indicates this class of
problems was introduced by E. De Giorgi in [22], with emphasis on the fact
that the two involved variables can in some sense be coupled. In fact, the
basic idea to embody this class of problems in the well-established stream of
direct methods of the calculus of variations has been to relax the problem by
introducing a suitable enlarged class of functions that are admissible for the
volume energy, but such that the lower dimensional unknown set that carries
the surface energy could be interpreted as the set of the discontinuities of the
competitor function. With the above notation, we may think of u as a (pos-
sibly) discontinuous function defined on the whole space, denoting by K the
set where u is discontinuous. If we fix an open set Ω ⊂ RN , and we think of
K as a surface (i.e., a (N − 1)-dimensional set) in Ω, we are quickly led to the
space of functions of bounded variation BV , which can be discontinuous (in
the measure theoretic sense) precisely along (N − 1)-dimensional sets. Indeed,
starting from [23], the class that has proved to be suitable to deal with these
problems has been the class of special BV functions (and its variants), whose
gradient can be split in a volume term and a (N − 1)-dimensional term. Let
us recall that, given an open set Ω ⊂ RN , a function u belongs to SBV (Ω) if
u ∈ L1(Ω) and its distributional gradient Du is a measure such that

|Du|(B) =
∫
B

|∇u| dx+
∫
B∩Su

|u∨(x)− u∧(x)| dHN−1

for any Borel set B. Here, ∇u denotes now the density of the absolutely con-
tinuous part of the distributional derivative of u with respect to the Lebesgue
measure, or, equivalently, the approximate gradient of u, and u∨, u∧, Su are
defined in the present more general setting in Definition 5.1 below.

In general doubling metric measure spaces, as we have seen, there are some
generalisations of the notion of gradient that can naturally enter in a volume
energy term, but there is nothing similar concerning higher order derivatives,
hence of course only first order problems can be considered (see, however, [6]
for higher order problems in some special cases). On the other hand, there is
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no natural notion of “surface” or even of “measure of codimension 1” to be
used in place of Hausdorff measure, used in the classical contexts. Let us recall
the prototype of free discontinuity problem, i.e., the Mumford-Shah functional;
given an open set Ω ⊂ RN and a function g ∈ L∞(Ω), for p > 1 and q > 0 it
can be defined as follows

F(K,u) =
∫

Ω

|∇u|p dx+ α

∫
Ω

|u− g|q dx+ βHN−1(K ∩ Ω)

for every closed set K ⊂ RN and u ∈ C1(Ω\K), and can be relaxed in SBV (Ω)
by setting

F (u) =
∫

Ω

|∇u|p dx+
∫

Ω

|u− g|q dx+HN−1(Su).

The existence of a minimising pair for F has been proved starting form the
minimisation of F in SBV (Ω); after that, the regularity theory for the SBV
minimisers started, and a number of properties of minimisers has been found.
We refer to [5] for a detailed (even though not up-to-date, by now) account of
the treatment of Mumford-Shah problem and for a description of the general
framework of free discontinuity problems in RN .

Mumford–Shah functional has been recently studied in some generalised
settings, precisely weighted spaces as in Example 2.6 (2), see [10], and the
Heisenberg groups, see [17]. In both cases, generalisations of the classical com-
pactness and lower semicontinuity results are in fact available (see also [44],
[45]), relying upon arguments that closely follow the Euclidean techniques. We
shall come back to these examples in Section 7.

4. BV functions and perimeters

In this section we give the definition of BV functions and recall their main
properties. Among all the characterisations of BV functions available in the
Euclidean case, the one which has proved to be the most suitable in the present
general setting is based upon a relaxation procedure starting from W 1,1(X,µ)
functions. We recall that, due to a work of Cheeger, this method gives an
alternative definition of the Sobolev spaces W 1,p(X,µ) for p > 1.
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Given a function u ∈ L1
loc(X,µ), we define

|Du|(X) = inf
(un)n∈Au(X)

{
lim inf
n→+∞

∫
X

|∇un| dµ
}
,

where

Au(X) =
{

(un) : (un) ⊂ Liploc(X), un
L1

loc(X,µ)−→ u

}
.

Then we say that a function u ∈ L1(X,µ) has bounded variation, u ∈ BV (X),
if |Du|(X) < +∞. Moreover given a set E ⊂ X, we say that E has finite
perimeter if |DχE | < +∞.

In a similar way, given any open subset A ⊂ X, we may define |Du|(A)
(just substitute X with A in the previous definition), and obtain that |Du| is
the restriction to the open subsets of a Borel regular measure (see [41, Theorem
3.4]). If u = χE then we set P (E,A) = |DχE |(A).

If u ∈ Lip(X), then u ∈ BVloc(X), and then its total variation measure
is well defined. Of course, since |Du| << µ, we have |Du| = |Gu|µ for some
function |Gu|, and it is possible to see that there is c ≥ 1 such that

|Gu| ≤ |∇u| ≤ c|Gu|,

but, to our knowledge, it is not known whether the following equality

|Du|(A) =
∫
A

|∇u|(x) dµ(x)

is true for every Lipschitz continuous function.

Remark 4.1 - Since the space X supports a Poincaré inequality, then there are
cP > 0, λ > 1 such that for every function u ∈ BV (X) and for every ball
B%(x) ⊂ X, we have∫

B%(x)

|u(y)− uB%(x)| dµ(y) ≤ % · cP |Du|(Bλ%(x)).

Moreover, u ∈ BV (X) if and only if there exist λ > 1 and a finite positive
measure ν on X such that∫

B%(x)

|u(y)− uB%(x)| dµ(y) ≤ %ν(Bλ%(x)), ∀x, %.
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Let us also recall the following isoperimetric inequalities. The first one is

(4.1)

min {µ(B%(x) ∩ E), µ(B%(x) \ E)}

≤ cI

(
%s

µ(B%(x))

) 1
s−1

P (E,Bλ%(x))
s

s−1

and is a direct consequence the Sobolev embedding. The second one requires
an estimate on the measure of B%(x) \ E and can be easily deduced from the
first one. If γ ∈]0, 1/2] and

min
{
µ(B%(x) ∩ E)), µ(B%(x) \ E)

}
≥ γµ(B%(x))

then

(4.2)

max {µ(B%(x) ∩ E), µ(B%(x) \ E)}

≤ cγ

(
%s

µ(B%(x))

) 1
s−1

P (E,Bλ%(x))
s

s−1 ,

where cγ = cI
1−γ
γ . Indeed, if µ(B%(x) ∩ E) ≥ µ(B%(x) \ E), then

µ(B%(x) ∩ E) = µ(B%(x))− µ(B%(x) \ E) ≤
(

1− γ

γ

)
µ(B%(x) \ E)

≤
(

1− γ

γ

)
cI

(
%s

µ(B%(x))

) 1
s−1

P (E,Bλ%(x))
s

s−1

by (4.1), and so (4.2) is proved. If µ(B%(x) \E) ≥ µ(B%(x) \E) the argument
is similar.

We note that there is a strict relationship between function of bounded variation
and sets of finite perimeter; in fact, as in the classical case, the hypograph of
a BV function is a set with (locally) finite perimeter. In X × R we use the
distance d̃((x, t), (y, s)) = max{d(x, y), |t− s|}.

Proposition 4.2. Let u ∈ L1(X) be a nonnegative function and define

H(u) = {(x, t) ∈ X × R : 0 ≤ t ≤ u(x)} ;
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then, u ∈ BV (X) if and only if H(u) is a set of locally finite perimeter in

X × R; moreover, if µ(X) < +∞, the following inequalities hold

|Du|(X) ≤ P (H(u), X × R) ≤ |Du|(X) + µ(X).

Proof – Let us suppose that u belongs to BV (X); then by definition there
exists a sequence (un)n ⊂ Liploc(X) such that

un
L1

loc−→ u,

∫
X

|∇un(x)| dµ(x) → |Du|(X).

We define a new sequence of Lipschitz functions ψn : X × R → R by setting

ψn(x, t) =



1 t < un(x)

h(t− un(x)) u(x) ≤ t ≤ un(x) + 1/n

0 t > u(x) + 1/n.

Then we have that ψn is a sequence of Lipschitz functions converging to χH(u)

and with
|∇ψn(x, t)| ≤ n(1 + |∇un(x)|)

where un(x) ≤ t ≤ un(x) + 1/n and

|∇ψn(x, t)| = 0

elsewhere. Then, if ν = µ× L1 is the product measure,∫
X×R

|∇ψn(x, t)| dν(x, t) ≤ µ(X) +
∫
X

|∇un(x)| dµ(x),

and then we get
P (H(u), X × R) ≤ µ(X) + |Du|(X).

On the other hand, if ψn is a sequence of Lipschitz functions converging to the
characteristic function of the set H(u), then defining

un(x) =
∫ +∞

0

ψn(x, t) dt
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we obtain a sequence of Lipschitz functions converging to u in L1 and such that∫
X

|∇un|(x) dµ ≤
∫
X×R

|∇ψn(x, t)| dν(x, t).

A much more precise relationship between sets of finite perimeter and func-
tion of bounded variation is given by the following Theorem, which relates the
total variation of a function u with the perimeters of the sublevels of u.

Theorem 4.3 (Coarea Formula). For every u ∈ BV (X) and every Borel

set A ⊂ X, we have

|Du|(A) =
∫ +∞

−∞
P ({u > t}, A) dt.

We point out that, by taking u(x) = d(x, x0), the coarea formula shows
that almost every ball B%(x) in X has finite perimeter, but a priori this is not
true for every ball.

In the classical case, it is well known that the perimeter measure can be
concentrated on a small subset of the topological boundary; this leads to define
first the essential or measure theoretic boundary

∂∗E = {x ∈ X : Θ∗(E, x) > 0, Θ∗(X \ E, x) > 0} ,

where Θ∗(E, x) and Θ∗(E, x) are the upper and lower densities of E at x:

Θ∗(E, x) := lim sup
%↓0

µ(E ∩B%(x))
µ(B%(x))

, Θ∗(E, x) := lim inf
%↓0

µ(E ∩B%(x))
µ(B%(x))

,

and, in the Euclidean case only, the generalised inner normal to a set of finite
perimeter E at |DχE |-a.e. x, given by

νE(x) := lim
%↓0

DχE(B%(x))
|DχE |(B%(x))

and the reduced boundary of E:

FE =
{
x ∈ RN : ∃ νE(x) and |νE(x)| = 1

}
.



22

Then (see e.g. [5, Theorems 3.59, 3.61]) it turns out that the set FE is count-
ably HN−1-rectifiable and the following equalities holds

P (E,B) = HN−1(B ∩ FE),(4.3)

HN−1(∂∗E \ FE) = 0.

In a metric setting, it is not possible to define the normal direction and the
reduced boundary, and only the essential boundary of E makes a sense; more-
over, since the metric space has only a homogeneus dimension, and in general
the Hausdorff dimension may change locally, we cannot use the Hausdorff mea-
sure HN−1. Hence, we proceed by defining another Hausdorff-like measure, as
in [4].

Let us define the function h : B(X) → [0,+∞] as (see also [32], where the
same function appears in a similar context)

(4.4) h(B%(x)) =
µ(B%(x))

%
;

due to the doubling condition of the measure µ, the function h turns out to be
a doubling function, i.e., h(B2%(x)) ≤ (CD/2)h(B%(x)) for every x ∈ X, % > 0
(where CD is the constant in (2.2)). Then, using the Carathéodory construc-
tion, we may define the generalised Hausdorff spherical measure Sh as

Sh(A) = lim
%↓0

inf

{ ∞∑
i=0

h(Bi) : Bi ∈ B(X), A ⊂
∞⋃
i=0

Bi, diam (Bi) ≤ %

}
,

which was introduced in [4]. As a consequence of the doubling property of
h, a Vitali-type covering theorem holds and this in turn implies the following
density estimate (see [4, Theorem 2.1], [26, 2.10.19]):

(4.5) lim sup
%↓0

ν(B%(x))
h(B%(x))

≥ t ∀ x ∈ B =⇒ ν(B) ≥ tSh(B)

for any locally finite measure ν in X and any B ∈ B(X). Notice that the
estimate from above

(4.6) lim sup
%↓0

ν(B%(x))
h(B%(x))

≤ t ∀ x ∈ B =⇒ ν(B) ≤ tSh(B)
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is always true for Hausdorff spherical measures.
Let us show that the measure P (E, ·) is absolutely continuous with respect

to the measure Sh. More precisely, the following representation formula holds
(see [4, Theorems 5.3, 5.4]).

Theorem 4.4. Given a set of finite perimeter E, the measure P (E, ·) is con-

centrated on the set Σγ ⊂ ∂∗E defined by

(4.7) Σγ =
{
x ∈ X : lim inf

%↓0
min

{µ(E ∩B%(x))
µ(B%(x))

,
µ((X \ E) ∩B%(x))

µ(B%(x))

}
≥ γ

}
with γ > 0 depending only upon CD and cI . Moreover, Sh(∂∗E \ Σγ) = 0,

Sh(∂∗E) < +∞ and there is α > 0, depending only upon CD and cI , and a

Borel function θE : X → [α,+∞[ such that

(4.8) P (E,B) =
∫
B∩∂∗E

θE(x) dSh(x), ∀B ∈ B(X).

Finally, the perimeter measure is asymptotically doubling, i.e., for P (E, ·)-a.e.

x ∈ X we have

lim sup
%↓0

P (E,B2%(x))
P (E,B%(x))

< +∞.

As a consequence of the asymptotic doubling property we have the following
differentiation property (see [26, 2.8.17, 2.9.7]): for ν = λP (E, ·) we have

(4.9) lim
%↓0

ν(B%(x))
P (E,B%(x))

= λ(x) for P (E, ·)-a.e. x ∈ X.

We can improve the above result by showing that in fact the density function
θE is bounded from above by a universal constant. In order to prove this result,
we need the following variant of Proposition 5.7 in [4]. We present a complete
proof for reader’s convenience.

Proposition 4.5. Let γ ∈]0, 1/2[ and M > 1 be given. Then, for P (E, ·)-a.e.

x ∈ X there exists %x > 0 such that, for a.e. % ∈]0, %x[, the volume bounds

min (µ(B%(x) ∩ E), µ(B%(x) \ E)) ≥ γµ(B%(x))

imply the estimate

(4.10) P (E,B%(x)) ≤MP (E \B%(x), ∂B%(x)).
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Proof – We can consider the family G of all closed balls of X satisfying

1. µ(∂B%(x)) = 0 and P (E, ∂B%(x)) = 0;

2. min (µ(E ∩B%(x)), µ(B%(x) \ E)) ≥ γµ(B%(x));

3. P (E,B%(x)) > MP (E \B%(x), ∂B%(x)).

Note that condition 1. is satisfied, for every fixed x ∈ X, for almost every ball.
We set B = ∩jBj , where Bj is the set of all points x ∈ X such that the set

{% ∈]0, 2−j [: B%(x) ∈ G)}

has positive measure. The set B is a Borel set (see [4, Proposition 5.7]) and
what we have to prove is that P (E,B) = 0, or equivalently P (E,K) = 0 for
every compact set K ⊂ B. Let ε > 0 be fixed and define the family

F = {B%(x) ∈ G : x ∈ K, % ∈]0, ε[}.

By construction and the relative isoperimetric inequality (4.2), we have that
for every B%(x) ∈ F

P (E,Bλ%(x)) ≥
(
γ

cγ

) s−1
s

h(B%(x)).

We may apply Vitali covering Theorem [4, Theorem 2.1] to the family F getting
a disjoint at most countable family (B%i

(xi))i∈I ⊂ F containing Sh almost all
K (by absolute continuity, the same family contains P (E, ·) almost all of K).
If we set Aε = ∪i∈IB%i

(xi), we have

µ(Aε) =
∑
i∈I

%ih(B%i
(xi))

≤ ε

(
γ

cγ

) s−1
s ∑

i∈I
P (E,Bλ%i

(xi))

≤ ε

(
γ

cγ

) s−1
s

P (E,X).
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Then, if ε→ 0, µ(Aε) → 0; in addition, Aε satisfies P (E,K \Aε) = 0. Hence,
if J ⊂ I is a finite set and AJ = ∪i∈JB%i

(xi), we get

P (E \AJ , X) = P (E \AJ , X \AJ)

= P (E \AJ , X \AJ) + P (E \AJ , ∂AJ)

≤ P (E,X \AJ) +
∑
i∈J

P (E \B%i
(xi), ∂B%i

(xi))

< P (E,X \K) +
1
M
P (E,Aε).

Then by letting J → I and ε→ 0, by the lower semicontinuity of the perimeter
we get

P (E,X) ≤ P (E,X \K) +
1
M
P (E,K),

hence P (E,K) = 0.

We are now in a position to prove the announced upper bound for the
density θE .

Theorem 4.6. Let E be a set of finite perimeter E, and let θE be the function

in Theorem 4.4. Then, θE ≤ CD, where CD is the doubling constant in (2.2).

Proof – For every x ∈ X and % > 0, let us define mE(x, %) = µ(E∩B%(x)),
denoting by m′

E(x, %) its derivative with respect to %; set further Ec = X \ E.
Applying Proposition 4.5 with M > 1 fixed and γ given by Theorem 4.4, we
can compute, for P (E, ·)-a.e. x ∈ X and for a.e. % ∈]0, %x[:

2P (E,B%(x)) = P (E,B%(x)) + P (Ec, B%(x))

≤ MP (E \B%(x), ∂B%(x)) +MP (Ec \B%(x), ∂B%(x))

≤ Mm′
E(x, %) +Mm′

Ec(x, %) = 2M
d

d%
µ(B%(x)),

whence P (E,B%(x)) ≤M d
d%µ(B%(x)) and then

P (E,B%(x)) ≤ 1
%

∫ 2%

%

P (E,Br(x)) dr ≤ M

%
µ(B2%(x))

≤ CDM
µ(B%(x))

%
= CDMh(B%(x)).



26

As a consequence,

lim sup
%↓0

P (E,B%(x))
h(B%(x))

≤ CDM.

Since this is true for any M > 1, we finally get, taking the limit M → 1,

lim sup
%↓0

P (E,B%(x))
h(B%(x))

≤ CD.

By (4.8) and (4.6) we infer that θE ≤ CD Sh-a.e. in X.

5. SBV functions and the compactness theorem

In this section we develop the fine BV theory, along the lines of the Eu-
clidean theory, and introduce the class of special BV functions, using the defini-
tion of SBV given in [23]. We prove a chain rule and a characterisation of SBV
functions through composition originally obtained in the Euclidean setting in
[2]. These results, in connection with the representation of the perimeter, will
allow us to prove the closure and the compactness theorem for SBV .

First of all, let us recall the definition of upper and lower approximate limits
and the related definition of Su.

Definition 5.1 (Upper and lower approximate limits). Let u : X → R be

a measurable function and x ∈ X; we define the upper and lower approximate
limits of u at x respectively by

u∨(x) := inf
{
t ∈ R : lim

%↓0

µ({u > t} ∩B%(x))
µ(B%(x))

= 0
}
,

u∧(x) := sup
{
t ∈ R : lim

%↓0

µ({u < t} ∩B%(x))
µ(B%(x))

= 0
}
.

If u∨(x) = u∧(x) we call their common value, denoted ũ(x), the approximate
limit of u at x. We also set Su = {x ∈ X : u∧(x) < u∨(x)}.

Notice that if u = χE , then Su = ∂∗E. If u ∈ L∞loc(X) and x 6∈ Su, then

(5.1) lim
%↓0

1
µ(B%(x))

∫
B%(x)

|u(y)− ũ(x)| dµ(y) = 0.

We have the following characterisation of Su.
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Proposition 5.2. Let u belong to L1(X,µ); then

Su =
⋃

t, s∈D, s 6=t

∂∗{u > s} ∩ ∂∗{u > t},

where D ⊂ R is any dense set. Moreover, if u ∈ BV (X), then the dense set D

can be chosen in such a way that for every s ∈ D the set {u > s} has finite

perimeter.

Proof – First of all we notice that

(5.2) x ∈ ∂∗{u > s} =⇒ s ∈ [u∧(x), u∨(x)].

Indeed, if x ∈ ∂∗{u > s}, we have 0 < Θ∗({u > s}, x) ≤ Θ∗({u > s}, x) < 1,
and then by definition of u∧ and u∨, u∧(x) ≤ s ≤ u∨(x). In addition we have

(5.3) x ∈ Su and s ∈]u∧(x), u∨(x)[ =⇒ x ∈ ∂∗{u > s}.

Indeed, the condition s > u∧(x) implies that Θ∗({u > s}, x) > 0 and the
condition s < u∨(x) implies Θ∗({u > s}, x) > 0, so that x ∈ ∂∗{u > s}.

Now, if x ∈ Su then, from (5.3), x ∈ ∂∗{u > s} ∩ ∂∗{u > t} for all
s, t ∈]u∧(x), u∨(x)[ and then

x ∈
⋃
t,s∈D
s 6=t

∂∗{u > s} ∩ ∂∗{u > t}.

Conversely, if there exist s < t ∈ R such that

x ∈ ∂∗{u > s} ∩ ∂∗{u > t}

then, from (5.2), u∧(x) ≤ s < t ≤ u∨(x), whence u∧(x) < u∨(x) and x ∈ Su.
If in addition we have that u ∈ BV (X), then by the coarea formula we get
that almost every set {u > s} has finite perimeter, and then the choice of D
can be done in such a way that, for every s ∈ D, the set {u > s} has finite
perimeter.

Let us now give a decomposition result for the total variation measure of a
function u ∈ BV (X): we split |Du| in three parts: an absolutely continuous
measure with respect to µ, the restriction to Su, which will be represented in
terms of Sh, and the so-called Cantor part. In the following statement, θE is
the function introduced in Theorem 4.4 for every E of finite perimeter.
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Theorem 5.3. Let u ∈ BV (Ω); set |Ddu| = |Du| (X \ Su) and denote by

|Gu| the density of |Du| with respect to µ. Then, |Ddu|(B) = 0 for every

B ∈ G(X) such that Sh(B) is finite, and, setting for x ∈ Su

(5.4) θu(x) =
∫ u∨(x)

u∧(x)

θ{u>t}(x) dt,

we have

(5.5) |Du| = |Ddu|+ θuSh Su = |Gu|µ+ |Dcu|+ θuSh Su,

where the Cantor part of |Du| is defined by |Dcu| = |Ddu| − |Gu|µ.

Proof – First of all, for every B ∈ B(X), by the coarea formula and by
the representation formula for the perimeter we get

(5.6) |Du|(B) =
∫

R
P ({u > t}, B) dt =

∫
R

∫
∂∗{u>t}∩B

θ{u>t}(x) dSh(x) dt;

if B ⊂ Su, using (5.2) and (5.3) and Fubini theorem we deduce

|Du|(B) =
∫
B∩Su

∫ u∨(x)

u∧(x)

θ{u>t}(x) dt dSh(x)

On the other hand, if B ⊂ X \Su, then the measure |Du| can be split into two
parts, one absolutely continuous with respect to the measure µ with density
|Gu|, and one singular with respect to µ; we call this last part the Cantor part
of the measure |Du|, and then we can write

|Du|(B) =
∫
B

|Gu| dµ+ |Dcu|(B).

Finally, if B ∩ Su = ∅ and Sh(B) < +∞, then by (5.2) for every x ∈ B there
is at most one t ∈ R such that x ∈ ∂∗{u > t}, namely t = ũ(x). Using again
(5.6), Fubini theorem and Theorem 4.6 we get

|Du|(B) ≤ CD

∫
B

L1({t ∈ R : x ∈ ∂∗{u > t}) dSh(x) = 0.
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Notice that in X \Su the value ũ is well-defined, hence we can easily deduce
the following corollary of the coarea formula.

Proposition 5.4. If u ∈ BV (X), A ⊂ X \Su is a Borel set and g is a bounded

Borel function, then∫
A

g(ũ) d|Du| =
∫ +∞

−∞

∫
A

g(ũ(x))dP ({u > t}, ·) dt.

In order to extend the SBV membership criterion based on the composi-
tion with regular functions which is known in the Euclidean context (see e.g.
[5, Proposition 4.12]), in the next Proposition we prove a chain rule for the
composition of a BV function with an increasing C1 function. In fact, for our
purposes it is sufficient to deal with the following class:

Λ :=
{
ψ ∈ C1(R) ∩W 1,∞(R) : ∃ I closed interval such that(5.7)

ψ′(t) = 0 ∀ t /∈ I, ψ is strictly increasing in I
}
.

Proposition 5.5 (Chain Rule). For every u ∈ BV (X) and ψ in the class Λ
above defined, the function ψ ◦ u belongs to BV (X) and the following chain

rule holds:

(5.8) |D(ψ ◦ u)| = ψ′(ũ)|Ddu|+ Ψ(u)Sh Su,

where

(5.9) Ψ(u)(x) =
∫ u∨(x)

u∧(x)

ψ′(t)θ{u>t}(x) dt.

Proof – Let B ⊂ Su, ψ ∈ Λ and I = [a, b] as in the definition of Λ. By the
coarea formula, we get, since {ψ(u) > t} = X for t < ψ(a) and {ψ(u) > t} = ∅
for t > ψ(b),

|D(ψ ◦ u)|(B) =
∫

R
P ({ψ(u) > t}, B) dt =

∫ ψ(b)

ψ(a)

P ({ψ(u) > t}, B) dt.

But then, if t ∈]ψ(a), ψ(b)] and we set t = ψ(s), we obtain {ψ(u) > t} = {u >
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s}, and thus

|D(ψ ◦ u)|(B) =
∫ b

a

ψ′(s)P ({u > s}, B)ds =
∫

R
ψ′(s)P ({u > s}, B)ds

=
∫
B

∫ u∨(x)

u∧(x)

ψ′(s)θ{u>s}(x)ds dSh(x).

If B ⊂ X \ Su, then x ∈ ∂∗{u > t} only if t = ũ(x) (x is an approximate
continuity point of u), and then arguing as before we find

|D(ψ ◦ u)|(B) =
∫

R
P ({ψ(u) > t}, B) dt =

∫
R
ψ′(s)P ({u > s}, B)ds

=
∫

R

∫
B

ψ′(ũ(x))dP ({u > s}, ·)ds =
∫
B

ψ′(ũ) d|Ddu|.

We are now in a position to define the set of special function of bounded
variation, in the same vein as [23], where SBV functions have been introduced
for the first time in the Euclidean space RN .

Definition 5.6 (SBV functions). A function u ∈ BV (X) is said to be a

special function of bounded variation, u ∈ SBV (X), if the following holds∫
X

|Gu| dµ = inf
{
|Du|(X \K) : K ⊂ X,Sh(K) < +∞

}
.

The following characterisation of SBV functions is a direct consequence of
Definition 5.6 and of the decomposition Theorem 5.3.

Proposition 5.7. Given u ∈ BV (X), u ∈ SBV (X) if and only if |Dcu| = 0.

Let us now see another, much less obvious, characterisation of SBV func-
tions. It is the announced membership criterion, based upon the chain rule,
that will be the key point of the subsequent closure theorem. Notice that for
ψ ∈ Λ we set oscψ = maxψ −minψ, where the class Λ is defined in (5.7).

Theorem 5.8. Let u ∈ BV (X); then, u belongs to SBV (X) and Sh(Su) <
+∞ if and only if there exist a function a ∈ L1(X,µ) and a finite positive

measure ν such that

(5.10) |D(ψ ◦ u)| ≤ ψ′(ũ)aµ+ oscψ ν
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for every ψ ∈ Λ.

Moreover, given any pair (a, ν), we have

(5.11) a ≥ |Gu| µ-a.e. and oscψ ν ≥ Ψ(u)Sh Su for any ψ ∈ Λ.

Proof – The “only if” part is easy. From (5.8) and Theorem 4.6, taking

a = |Gu| and ν = CDSh Su,

estimate (5.10) follows at once.
Conversely, from Lebesgue decomposition theorem we may write ν = gµ+

νs, with g ∈ L1(X,µ) and νs singular with respect to µ. Using again (5.8) and
hypothesis (5.10), we know that

|D(ψ ◦ u)| = ψ′(ũ)|Gu|µ+ ψ′(ũ)|Dcu|+ Ψ(u)Sh Su

≤ ψ′(ũ)|Gu|µ+ ψ′(ũ)|Dcu|+ oscψ θuSh Su

≤ ψ′(ũ)aµ+ oscψ (gµ+ νs),

whence, taking the part absolutely continuous with respect to µ,

ψ′(ũ)|Gu| ≤ ψ′(ũ)a+ oscψ g, µ-a.e. in X \ Su

for every ψ ∈ Λ, or, equivalently,

ψ′(ũ)
(
|Gu| − a

)
≤ oscψ g.

Let us now prove that |Gu| ≤ a µ-a.e. For, notice that in the set {|Gu| > a}
we may write

ψ′(ũ)
oscψ

≤ g

|Gu| − a

for every ψ ∈ Λ. Choosing ψn(t) = (−n) ∨ n2t ∧ n, the left-hand side goes to
+∞ µ-a.e as n goes to +∞, showing that |Gu| ≤ a µ-a.e.

A similar argument can be used to prove that |Dcu| = 0. In fact, splitting
νs = φ|Dcu|+σ, with σ singular with respect to |Dcu|, and taking into account
that µ and |Dcu| are orthogonal, we get

ψ′(ũ) ≤ oscψ φ, |Dcu|-a.e.
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whence, with ψn as above,

ψ′n(ũ)
oscψn

≤ φ |Dcu|−a.e., ∀n ∈ N.

This implies |Dcu| = 0. Finally, by (5.8) we have

Ψ(u)Sh Su ≤ (oscψ)σ.

From the above inequality, (5.9) and the lower bound θ{u>t} ≥ α given by
Theorem 4.4, we deduce αSh(Su) ≤ σ(X) < +∞ and the proof is complete.

Remark 5.9 - Let us point out a difference between the proof of Theorem 5.8
and the analogous result in RN . In the Euclidean case, the proof is based upon
a blow-up argument in the Lebesgue points of the functions a, |Gu|, g (with
the notation in the above proof). The same strategy could also be used in the
present case, but only to prove that |Gu| ≤ a. It cannot be applied to g because
it is not known whether |Dcu| is always asymptotically doubling or not.

The closure theorem for SBV is an easy consequence of Theorem 5.8.

Theorem 5.10 (Closure of SBV ). Let u∈ BV (X) and let (un) ⊂ SBV (X)
be a sequence converging to u in L1(X,µ) such that the densities |Gun| of the

absolutely continuous parts of the measures |Dun| are bounded in L1(X,µ)
and equiintegrable, and

sup
n
Sh(Sun

) < +∞.

Then, u belongs to SBV (X) as well.

Proof – By the equiintegrability and boundedness hypotheses, the se-
quence (|Gun|) is weakly compact in L1(X,µ), and the sequence (Sh Sun) is
weakly∗ compact, hence we can assume, possibly extracting a subsequence, that
(|Gun|) weakly converges to some function a in L1(X,µ) and that (Sh Sun

)
weakly∗ converge in X to some finite positive measure ν. In order to conclude,
it suffices to check (5.10), hence we start by fixing ψ ∈ Λ. As a first step,
from the strong convergence of ψ ◦ un to ψ ◦ u in L1(X,µ) we deduce that
ψ′(un)|Gun| converges to ψ′(u)a weakly in L1(X,µ). In fact, write

ψ′(un)|Gun| = [(ψ′(un)− ψ′(u))|Gun|] + ψ′(u)|Gun|
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and notice that by the Vitali dominated convergence theorem (see e.g. [5,
Exercise 1.18]) the terms between square brackets tend to 0 in the L1 norm.
Therefore

lim
n→+∞

∫
X

ϕψ′(un)|Gun| dµ = lim
n→+∞

∫
X

ϕψ′(u)|Gun| dµ =
∫
X

ϕψ′(u)a dµ

for any ϕ ∈ L∞(X,µ). Summarising, the right-hand side of

(5.12) |D(ψ ◦ un)| ≤ ψ′(ũn)|Gun|µ+ CD oscψ Sh Sun

weakly∗ converges to ψ′(ũn)aµ + CD oscψ ν. Fix open sets A,A′ ⊂ X with
A′ ⊂⊂ A; by the lower semicontinuity of the total variation with respect to the
strong convergence in L1(X,µ) we have

|D(ψ ◦ u)|(A′) ≤ lim inf
n→+∞

|D(ψ ◦ un)|(A′)

≤ lim
n→+∞

∫
A′
ψ′(ũn)|Gun| dµ+ oscψ

∫
A′∩Sun

θun
dSh

≤
∫
A

ψ′(ũ)a dµ+ oscψ ν(A),

Taking the supremum among all A′ ⊂⊂ A, we obtain

|D(ψ ◦ u)|(A) ≤
∫
A

ψ′(ũ)a dµ+ oscψ ν(A)

for every open set A ⊂ X, and the proof is complete since A is arbitrary.

Theorem 5.11 (Compactness in SBV (X)). Let (un)n ⊂ SBV (X) be a

sequence such that:

1. the sequence (un)n is bounded in BV ;

2. the functions |Gun| are equiintegrable;

3. there exists a constant C > 0 such that

sup
n∈N

Sh(Sun) ≤ C.

Then, up to subsequences, the sequence (un) converges in the L1
loc topology to

a function u ∈ SBV (X).
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Proof – If the sequence (un)n is bounded in BV , we already know that
up to subsequences it converges in L1

loc to a function u ∈ BV ; but then we can
apply Theorem 5.10 to conclude that u ∈ SBV (X).

Remark 5.12 - As is well-known (see e.g. [5, Proposition 1.27]), the equiin-
tegrability hypothesis on the sequence (|Gun|)n is equivalent to the following
condition, which enters when dealing with integral functionals: there is a con-
vex function φ : [0,+∞) → [0,+∞) such that

lim
t→+∞

φ(t)
t

= +∞

and supn
∫
X
φ(|Gun|) dµ < +∞.

6. Free discontinuity problems in isotropic spaces

In the Euclidean case, but also in a large set of examples such as for instance
weighted spaces and Heisenberg groups (see Section 7), the density function θE
introduced in Theorem 4.4 is in some sense universal, i.e., independent of E.
Let us introduce the class of such spaces.

Definition 6.1. We say that the metric measure space (X, d, µ) is isotropic,
or that it is a U-space, if for every pair of finite perimeter sets E and F with

E ⊂ F the equality θE = θF holds Sh-a.e. in ∂∗E ∩ ∂∗F .

Proposition 6.2. Let E and F be sets of finite perimeter. Then, for Sh-a.e.

x ∈ ∂∗E ∩ ∂∗F such that

(6.1) µ((E∆F ) ∩B%(x)) = o(µ(B%(x)))

the equality θE(x) = θF (x) holds.

Proof – Let E, F be as in the statement. Since E is a set of finite perime-
ter, we know (see [4, Proposition 5.7]) that E is an aymptotic quasiminimiser
for the perimeter, i.e., for every M > 1 and for Sh-a.e. x ∈ X there is %x > 0
such that for every % ∈ (0, %x), setting Ê% = (E \B%(x))∪ (F ∩B%(x)), we get

P (E,B%(x)) ≤MP (Ê%, B%(x)).
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Fix now a point x ∈ ∂∗E ∩ ∂∗F such that E and F are asymptotically quasi
mininisers at x and (6.1) holds. Therefore from

P (Ê%, B%(x)) = P (F,B%(x)) + P (Ê%, ∂B%(x)),

we get
P (E,B%(x)) ≤MP (F,B%(x)) +m′

E∆F (x, %).

Due to condition (6.1) and the mean value theorem we can find a sequence
%i ↓ 0 such that the ratio m′

E∆F (x, %i)/h(B%i
(x)) is infinitesimal as i→∞ and

therefore also m′
E∆F (x, %i)/P (F,B%i

(x)) is infinitesimal. Inserting % = %i in
the previous inequality we obtain

lim inf
%↓0

P (E,B%(x))
P (F,B%(x))

≤M.

By (4.9) we get θE(x) ≤MθF (x) for Sh-a.e. x ∈ ∂∗E ∩ ∂∗F . By the arbitrari-
ness of M > 1 and exchanging E and F the proof is achieved.

As a corollary, we can point out a simple sufficient condition that ensures
that X is a U-space.

Remark 6.3 - Let E1/2 ⊂ ∂∗E be the set of points where the density of E is
1/2, i.e. µ(E ∩ B%(x))/µ(B%(x)) converges to 1/2 as % ↓ 0. Assume that for
any set of finite perimeter E, the perimeter measure is concentrated not only
on ∂∗E, but also on E1/2. Then X is a U-space.

Indeed, Sh-a.e. x ∈ ∂∗E ∩ ∂∗F is of density 1/2 both for E and F , and if
E ⊂ F this means that it is of density 0 for F \E. Therefore (6.1) can be used
to obtain from Proposition 6.2 the equality θE = θF .

In U-spaces, it is possible to describe in a more convenient way the part of
the derivative of a BV function concentrated on Su.

Theorem 6.4. Let X be a U-space and let u ∈ BV (X) with Sh(Su) < +∞.

Then, there is a function Θu : Su → [α,CD] such that

Ψ(u) =
[
ψ(u∨)− ψ(u∧)

]
Θu

for every ψ ∈ Λ, where α is the constant in Theorem 4.4 and Ψ is defined in

(5.9).
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Proof – In order to simplify the notation, let us set θt = θ{u>t}. Let D
be a countable dense set in R with P ({u > s}) < +∞ for every s ∈ D, and
recall that

Su =
⋃

s1, s2∈D, s1 6=s2

∂∗{u > s1} ∩ ∂∗{u > s2}.

For every t ∈ R define the set

Nt =
⋃
s∈D

{x ∈ Su ∩ ∂∗{u > t} ∩ ∂∗{u > s} : θt(x) 6= θs(x)} ,

which is Sh-negligible for L1-a.e. t because for every s ∈ D the densities θs
and θt coincide Sh-a.e. in ∂∗{u > t} ∩ ∂∗{u > s}. In particular, setting
N = ∪t∈DNt, we may define a density function Θu on Su such that Θu = θs

in (Su ∩ ∂∗{u > s}) \N for every s ∈ D. Set

N := {(x, t) ∈ Su × R : x ∈ ∂∗{u > t}, Θu(x) 6= θt(x)}

and notice that for every t ∈ R the section Nt = {x ∈ Su : (x, t) ∈ N} coincides
(up to a Sh-negligible set) with the set Nt defined above, hence Sh(Nt) = 0.
By Fubini theorem, we have also L1(Nx) = 0 for Sh-a.e. x ∈ Su, where
Nx = {t ∈ R : (x, t) ∈ N}. Therefore,

Ψ(u)(x) =
∫ u∨(x)

u∧(x)

ψ′(t)θt(x) dt

=
∫ u∨(x)

u∧(x)

ψ′(t)Θu(x) dt

=
[
ψ(u∨)(x)− ψ(u∧)(x)

]
Θu(x)

Sh-a.e. in Su for every ψ ∈ Λ, and the thesis follows.

Remark 6.5 - Under the hypotheses of Theorem 6.4, for every u ∈ SBV (X)
and ψ ∈ Λ the chain rule can be written as follows:

|D(ψ ◦ u)| = ψ′(ũ)|Gu|µ+
[
ψ(u∨)− ψ(u∧)

]
ΘuSh Su.

As a consequence, the measure ν = ΘuSh Su satisfies (5.10). The argument
used in the proof of the next theorem, based on (5.11), shows that the mea-
sure ν above is the minimal one with this property, and this leads to a lower
semicontinuous dependence of the measure on u.
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We can now formulate the generalised Mumford-Shah functional in U-
spaces, and prove an existence theorem for SBV minimisers.

Theorem 6.6. Let X be a U-space, g ∈ L∞(X), p > 1, q > 0. Then, there is

a minimiser of the functional

(6.2) F (u) =
∫
X

|Gu|p dµ+α
∫
X

|g−u|q dµ+β
∫
Su

Θu dSh, u ∈ SBV (X).

Proof – Let (un) ⊂ SBV (X) be a minimising sequence. Possibly trun-
cating the un, we may assume that ‖un‖∞ ≤ ‖g‖∞. Since supn F (un) < +∞,
the sequence (un) is bounded in BV (X) and by a well known criterion (see
e.g. [5, Proposition 1.27]), the sequence (|Gun|) is equiintegrable. Then, we
may apply Theorem 5.11 and deduce that, up to subsequences, (un) converges
to u ∈ SBV (X) strongly in L1

loc(X), that (|Gun|) converges weakly (and also
µ-a.e.) to some function a ∈ L1(X), and that the measures νn := Θun

Hh Sun

weakly∗ converge to a measure ν. As proved in Theorem 5.10, the inequality

(6.3) |D(ψ ◦ u)| ≤ ψ′(ũ)aµ+ osc ψν

holds for every ψ ∈ Λ. Therefore, the first inequality in (5.11) gives∫
X

|Gu|p dµ ≤
∫
X

ap dµ ≤ lim inf
n→+∞

∫
X

|Gun|p dµ.

Moreover, the second inequality in (5.11) gives

ψ(u∧)− ψ(u∨)
oscψ

ΘuSh Su ≤ ν

for any ψ ∈ Λ. Choosing the countable family of functions ψa,b of the form
a ∨ t ∧ b with a < b and a, b ∈ Q, and using the fact that

sup
a, b∈Q, a<b

ψa,b(u+)− ψa,b(u−)
oscψa,b

= 1

we obtain ΘuSh Su ≤ ν, and therefore∫
Su

Θu dSh ≤ ν(X) ≤ lim inf
n→+∞

νn(X) = lim inf
n→+∞

∫
Sun

Θun
dSh.

Since trivially also the inequality∫
X

|g − u|q dµ ≤ lim inf
n→+∞

∫
X

|g − un|q dµ

holds, the proof is complete.
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7. Examples

In this last section we discuss two basic examples of isotropic spaces to
which our results apply. We point out that the same problems have been
already studied in part with different methods. We discuss weighted spaces,
for which we basically refer to [8], [9], [10], and Carnot groups of step 2. For
the latter, we refer to [30], [31]. In particular case of the Heisenberg group we
refer also to the previous papers [28], [29] and to the papers [44], [45] where
the fine properties of BV functions in this context are studied. See also [6] for
the differentiability properties of BV functions in Carnot groups and [17] for
the study of the Mumford-Shah functional in groups of Heisenberg type. Of
course, in these cases the structure of the underlying space is much richer, and
the structure of BV functions has been studied in greater detail.

Weighted spaces Let us consider the weighted spaces introduced in Exam-
ple 2.6 (2). Assuming λ ∈ L∞, we define the measure µ = λLN and notice
that in this case the function h defined in (4.4) is given by

h(B%(x)) =
1
%

∫
B%(x)

λ(y) dy;

let us compare the measure Sh with the classical spherical Hausdorff measure
SN−1. It is easily seen that Sh << SN−1. More precisely, if E ⊂ RN , x ∈ E,
and % > 0, if (B%n(xn))n∈N is a covering of E ∩B%(x) with %n < δ, then

Shδ (E ∩B%(x)) ≤
∑
n∈N

h(B%i(xn)) ≤

(
sup

B%+δ(x)

λ

)
ωN

∑
n∈N

%N−1
n .

Then, taking the infimum among all coverings we get

Shδ (E ∩B%(x)) ≤

(
sup

B%+δ(x)

λ

)
ωN
ωN−1

SN−1
δ (E ∩B%(x)).

Passing to the limit δ → 0, we obtain

lim sup
%↓0

Sh(E ∩B%(x))
SN−1(E ∩B%(x))

≤ ωN
ωN−1

λ̄(x)
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where λ is the upper semicontinuous envelope of λ. With a similar argument,
we have

lim inf
%↓0

Sh(E ∩B%(x))
SN−1(E ∩B%(x))

≥ ωN
ωN−1

λ(x)

where λ is the lower semicontinuous envelope of λ. In particular, if λ is con-
tinuous, we obtain

(7.1) Sh =
ωN
ωN−1

λSN−1.

Given a bounded open set Ω ⊂ RN and a continuous and strong A∞ function
ω, we set λ = ω1−1/N and recall that the definition of BV (Ω, ω) is given in [10]
by relaxing in the L1

loc-topology the functional

u 7→
∫

Ω

|∇u|(x)ω(x)1−1/N dx =
∫

Ω

|∇ωu|(x)ω(x) dx, u ∈ Liploc(Ω),

where in the last inequality we are using equation (2.7), i.e., by setting

|Du|ω(Ω) = inf
(un)

{
lim inf
n→+∞

∫
Ω

|∇u|(x)ω(x)1−1/N dx,

(un) ⊂ Liploc(Ω), un
L1

loc−→ u

}
and u ∈ BV (Ω, ω) if u ∈ L1(Ω) and |Du|ω(Ω) < +∞. The following inclusions
hold

BV (Ω) ⊂ BV (Ω, ω) ⊂ BVloc(Ω \ F )

where F = {ω = 0} (see [9, Theorem7], [10, Proposition 2.16]). In addition, if
u ∈ BV (Ω, ω) and A ⊂ Ω is open, we have

(7.2) |Du|ω(A) =
∫
A\F

ω(x)1−1/N d|Du|(x).

Then, if E is a set of finite ω-perimeter, from (4.8), (7.1), (7.2) and taking into
account that ∂∗E is countably rectifiable (which implies that SN−1 ∂∗E =
HN−1 ∂∗E), we get

θE(x) =
ωN−1

ωN
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and in particular it is constant on the whole space and the dependence of the
perimeter upon the weight is only into the measure Sh. Using [10, Theorem
3.5], we have also ∫

Su

Θu(x) dSh(x) = HN−1
ω (Su),

with HN−1
ω the intrinsic Hausdorff measure defined using the distance dω. As

regards the space of special functions of bounded variation, in [10] the space is
defined appealing to the inclusion of the weighted BV space in the Euclidean
BVloc space, saying that a function u ∈ BV (Ω, ω) is in SBV (Ω, ω) if it belongs
to SBVloc(Ω\F ). Using (7.2) and Definition 5.6 it is not hard to show that the
two definitions of SBV are equivalent in this context. Moreover, the functional
in (6.2) becomes

F (u) =
∫

Ω

|∇u|pω1−p/N dx+ α

∫
Ω

|u− g|qω1−1/N dx+ βHN−1
ω (Su)

and then our approach to the Mumford-Shah functional is equivalent to the
one proposed in [10].

Carnot groups of Step 2 Let X be a Carnot group, let m be the dimension
of the horizontal space, let N be the dimension of the Lie algebra and let µ be
the Haar measure of the group. Let us work in exponential coordinates (i.e.
identifying X with RN ), denoting by · the group operation in RN and by δλ

the dilations of the group. We say that H ⊂ X is a vertical halfspace if there
exists ν ∈ Rm such that

(7.3) Hν =

{
x ∈ RN :

m∑
i=1

xiνi > 0

}
.

The following classification of blow-ups is proved, among other things, in [31],
in the case when X has step 2, i.e. all commutators of length greater than 2
are identically 0.

Theorem 7.1. For any set of finite perimeter E in X the following property

holds: for Sh-a.e. x ∈ ∂∗E the sets δ1/r(x−1 ·E) converge in L1
loc as r ↓ 0 to a

vertical halfspace.
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Assume that the distance of the group is left invariant and satisfies the
symmetry property

(7.4) µ(Hν ∩B1(0)) =
1
2
µ(B1(0))

for any vertical halfspace Hν . Then, Theorem 7.1 yields

lim
r↓0

µ(Br(x) ∩ E)
µ(Br(x))

= lim
r↓0

µ(B1(0) ∩ δ1/r(x−1 · E))
µ(B1(0)

=
µ(B1(0) ∩H)
µ(B1(0))

=
1
2

for Sh-a.e. x ∈ ∂∗E. This shows that the abstract condition stated in Remark
6.3 is fulfilled and therefore the group is a U-space, according to Definition 6.1.
In particular the Mumford-Shah problem is well defined and has a solution in
this setting.

Condition (7.4) is fulfilled in many cases of interest, for instance when d

is induced by a homogeneous norm. In some special cases, as for instance
the Heisenberg groups, it can be directly checked when dC is the Carnot–
Caratheodory distance.

Regarding explicit representations of the surface measure ΘuSh Su, we
discuss this topic in the next paragraph in the case of the Heisenberg groups.

Heisenberg groups Let HN be the Heisenberg group introduced in Ex-
ample 2.6 (4), whose notation we are using here, endowed with the Carnot–
Carathéodory distance dC . In this case, functions of bounded variation can be
defined through a distributional procedure (see [31] and the references there),
beside the relaxation approach used here and in [41], where the equivalence
is proved. According to (7.3), with m = 2N in this case, let us define the
constants

αN = L2N+1(B1(0)), βN = H2N (∂Hν ∩B1(0))

and notice that βN is independent of ν (see [42] for the analytical description
of B1(0)). Moreover, taking into account the homothety properties of dC , the
function h(B%(x)) in (4.4) is given by h(B%(x)) = αN%

2N+1, so that

Sh =
αN

ω2N+1
S2N+1
dC

,
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where S2N+1
dC

is the spherical Hausdorff measure corresponding to the distance
dC , and by [31, Theorem 3.4] we obtain

P (E, ·) =
βN
αN

Sh ∂∗E

for every set of finite perimeter E. Therefore, in HN we have θE = βN/αN

and, more generally, Θu = βN/αN for every u ∈ BV (HN ).
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