Hamiltonian ODE’s in the Wasserstein space
of probability measures

L. Ambrosio *
Scuola Normale Superiore di Pisa
ITtaly
l.ambrosio@sns.it

Wilfrid Gangbo
School of Mathematics, Georgia Institute of Technology
Atlanta, GA 30332, USA
gangbo@math.gatech.edu

November 2005

Abstract

In this paper we consider a Hamiltonian H on ’Pz(R2d), the set of probability measures
with finite quadratic moments on the phase space R?? = R? x R%, which is a metric space
when endowed with the Wasserstein distance W». We study the initial value problem dy; /dt+
V- (Javepr) = 0, where J 4 is the canonical symplectic matrix, pg is prescribed, v is a tangent
vector to Py(R??) at i, and belongs to OH (u;), the subdifferential of H at ;. Two methods
for constructing solutions of the evolutive system are provided. The first one concerns only
the case where g is absolutely continuous. It ensures that u; remains absolutely continuous
and v; = VH (u;) is the element of minimal norm in 0H (y;). The second method handles
any initial measure po. If we furthermore assume that H is A—convex, proper and lower
semicontinuous on P5(R2?), we prove that the Hamiltonian is preserved along any solution
of our evolutive system: H(u¢) = H(uo)-

1 Introduction

In the last few years there has been a considerable interest in the theory of gradient flows in
the Wasserstein space P2(RP) of probability measures with finite quadratic moments in R,
starting from the fundamental papers [35], [43], with several applications ranging from rates of

*LA gratefully acknowledges the support provided by the MIUR PRIN04 project “Calcolo delle Variazioni”

WG gratefully acknowledges the support provided by NSF grants DMS-02-00267 and DMS-03-754729. He
also acknowledges the hospitality of the Mathematical Sciences Research Institute, Berkeley, CA 94720. Key
words: mass transfer, Wasserstein metric. AMS code: 49J40, 82C40 and 47J25.



convergence to equilibrium to the proof of functional and geometric inequalities. In particular,
in [4] (see also [13]), a systematic theory of these gradient flows is built, providing existence and
uniqueness results, contraction estimates and error estimates for the implicit Euler scheme.

In this paper, motivated by a work in progress by Gangbo & Pacini [31], we propose a rigorous
theory concerning evolution problems in Py(RP”) of Hamiltonian type. Here typically D = 2d
and the measures we are dealing with are defined in the phase space. As shown in Section 8, our
study covers a large class of systems which have recently generated a lot of interest, including
the Vlasov-Poisson in one space dimension [9] [47], the Vlasov-Monge-Ampere [12] [18] and the
semigeostrophic systems [10] [16] [17] [19] [18] [23] [20] [21] [22] [40].

We note that a general theory of Hamiltonian ODE’s for non-smooth Hamiltonian H, in
particular when H is only convex, seems to be completely understood only in finite-dimensional
spaces, and even in these spaces the uniqueness question has been settled only in very recent
times, see Remark 6.5. In infinite-dimensional Hilbert spaces very little appears to be known at
the level of existence of solutions, and nothing is known at the level of uniqueness.

Besides its comprehensive character, another nice feature of our theory is its ability to handle
singular initial data and singular solutions. This class of solutions is natural, for instance, to
include solutions (e.g. those generated by classical non-kinetic solutions) with one or finitely
many velocities, see [47] for a first result in this direction. At the same time, there is the
possibility to handle discrete and continuous models with the same formalism, and to show
stability results (the first one in this direction, for two specific models, is [18]).

We recall that P(RP) is canonically endowed with the Wasserstein distance W, defined as
follows:
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Here T'(u,v) is the set of Borel probabilty measures on R” x R” which have p and v as their
marginals. The Riemannian structure of Po(RP”), introduced at a formal level in [43] and later
fully developed in [4], will be intensively exploited in this work. Notice that, as soon as P(R.P)
is endowed with a differentiable structure, the theory of ODFE’s in the finite-dimensional space
RP naturally extends to a theory of ODE’s in the infinite-dimensional space Py (RP"): it suffices
to consider the isometry I : z — §,, where J, stands for the Dirac mass at z.

In particular, we consider the case when D = 2d and we are given a lower semicontinuous
Hamiltonian H : P2(R?¢) — R. As we will be mostly considering semiconvex Hamiltonians, in
the sense of displacement convexity [38], mimicking some classical concepts of convex analysis
we introduce in Definition 3.2 the subdifferential 0H (1) and denote by VH (p) its element with
minimal L?(u; R??) norm (well defined whenever 0 H (1) # 0).

The problem we study in Section 6 is: given an initial measure i € P2(R??), find a path
t — py € Po(R??) such that

d
%Mt + V- (JVH (pue)pe) = 0, te€(0,7) (2)
Ho = 14

and [|[VH (ut)| 2y, € L'(0,T). Here, J is a (2d) x (2d) symplectic matrix.



Using a suitable “chain rule” in the Wasserstein space first introduced in [4], we prove in
Theorem 5.2 that H is constant among all solutions y; of (2), provided H is A—convex (or A—
concave) for some real number A. The proof of this fact requires neither regularity assumptions
on the velocity field JV H (u;) nor the absolute continuity of s;.

Existence of solutions can be established in (2) if one imposes a growth condition on the
gradient, as

(H1) the ezistence of constants C, € (0,+00), R, € (0,+00] that for all u € P2(R??) with
Wa(p, i) < R, we have i € D(H), 0H () # 0 and |[VH (u)(2)| < Co(1+ |2|) for p—almost every
z € RM

and a “continuity property” of the gradient as

(H2) If p = pL? py = ppL2? € PS(R2), sup, Walpin, i) < Ry and pn, — p narrowly, then
there exist a subsequence n(k) and functions wy, w : R?¢ — R?? such that wy, = VH (o))
Pn(k)-a-€., W = VH(u) p-a.e. and wy — w L% q.e. in R* as k — +o0.

Here we are denoting by P¢(R2?) the elements of Py(R??) that are absolutely continuous
with respect to £2?. The requirements of bounds and continuity on the gradient naturally appear
also in the finite dimensional theory, in order to obtain bounds on the discrete solutions of the
ODE and to pass to the limit.

In Theorem 6.6 we show that a minor variant of the algorithms used in [10], [12], [17] in
connection with specific models, establishes existence of a solution y; in (2) up to some time
T =T(C,,R,) (T = +00 whenever R, = +00), when pg = poL?¢ is absolutely continuous with
respect to £2¢ and (H1) and (H2) hold. A good feature of this algorithm is that it preserves the
absolute continuity condition, so that pu; = p:£?¢, and provides the “entropy” inequalities

S(pe) dz < / S(po) dz t € [0,T], with S convex.
R2d R2d

Unlike the theory of gradient flows, where the selection of the gradient among all subdiffer-
entials is ensured on any solution by energy reasons (see [4]), in our case it is not clear why in
general this selection should be the natural one, even though it provides the tangency condi-
tion and it is more likely to provide bounds, by the minimality of the gradient. Therefore, we
consider also a weaker version of (2), which works for arbitrary initial measures j: find a path
t = py € P2(R??) and vector fields v; € L?(uy; R??) such that

d
PTL V- (Jvip) =0, po = M, t€(0,T)

3
vi € T, Po(R*) N OH () for ae. t. ©
Here T}, P2(R2?) is the tangent space to P>(R??) at u, according to Otto’s calculus [4], defined
as the L2(u; R??) closure of the gradients of C2°(R2?¢) maps. Even in this case we are able to
show that H is constant along solutions of (3), provided H is A-convex (or A-concave) for some
AER.
For the system in (3), we weaken (H1) and (H2) and only assume that



(H1’) the ezistence of constants C, € [0,+00), R, € (0,400] such that for all u € Py(R>?) with
W i) < Ry we have € D(H), OH (i) # 0 and IVH(u) |2 < Co

and

(H2’) If sup,, Wa(un, t) < R, and py, — pu narrowly, then the limit points of convex combinations
of {VH (tun)un}2 for the weak*-topology are representable as wu for some w € OH(u) N
TH’PQ(RQd).

In Section 7 a second algorithm, based on linear interpolation of transport maps, provides
existence of solutions to (3). We refer to Theorem 7.4 for a complete statement of the results we
obtain. In particular, when ji = d(z 5, defining h on R% by h(z,v) = H(6(z,s)), the algorithm
used in this section coincides with a natural finite-dimensional algorithm yielding in the limit the
volume-preserving flow associated to the ODE (see Remark 6.5 for a more precise discussion):

{Jd(i(t)ﬂ')(t)) € Oh(z(t),v(t), te(0,7)
(z(0),0(0)) = (z,9).

Note that proving existence of (3) is harder, compared to proving existence for the symplified
system

(4)

d _
dtut +V- (Jvt,ut) - 07 Ko = K, te (OaT) (5)

v € OH(u:) for ae. t,

where we drop the constraint that v; € T}, P2 (R2?4), and so v; may be not tangent to Po(R2).
The system in (5) does not make geometrical sense, except in special cases such as when p; is
concentrated on finitely many points (in this case L%(us; R??) = T),, Po(R??)). On the technical
side, the lack of the tangency condition seems to prevent the possibility of proving constancy of
the Hamiltonian along solutions of (5).

Finally, we add more motivations for the terminology “Hamiltonian” adopted for the systems
(2) and (3) (particularly when J is the canonical symplectic matrix). A first justification is given
in [31], where J4V H (1) is shown to be the “symplectic gradient” induced by a suitable skew-
symmetric 2-form (see the more detailed discussion made right after Definition 5.1). Moreover,
in the recent work [18] the authors consider Hamiltonians on R?"? of the form

n

1 1
(55'1,7)1;"' ;a:n,lun) — Hn(wlavl;"' ;xna'un) = _§W22 (;Z (zi,v;) 25 YN )

i=1
where (a},b}),--- ,(a?,b?) € R?? are prescribed. They study the classical finite-dimensional
Hamiltonian systems
i (t) = nVy, Hy (27 (1), 07 (t); - - 5 27 (2), 0 (1) t€(0,7)
0 = -V GO0 OAO) L€ 07 6)
z7'(0),v*(0)) prescribed =
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it is readily checked that the paths t — u? € Po(R2?) satisfy (3) with H,, in place of H.
In [18], it is proven that if the initial conditions (z7(0),v}*(0)) are suitably chosen and v" =
1/nd" 6(%@ 4n) tends to v as n tends to +o0o, then up to a subsequence which is independent of
the time variable ¢, the measures {u };°; narrowly converge as n — +oo to measures {us }4c(o,1]

satisfying (2) for the Hamiltonian H (u) = —1/2W2(u,v).

Acknowledgment It is a pleasure to express our gratitude to Y. Brenier for the many interesting
and instructive discussions we had. Criticisms were also provided by T. Nguyen.

2 Basic notation and terminology

In this section we fix our basic notation and terminology on measure theory and Hamiltonian
systems.

- The effective domain of a function H : A — (—o00,+00] is the set D(H) of all a € A such
that H(a) < +00. We say that H is proper if D(H) # (.

- Let d, D be integers. We denote by I p the identity matrix on R” and we denote by J4 the

sympletic (2d) x (2d) matrix
_ (0 Ta
Ja= (_Hd O) .

When d = 1, this is the clockwise rotation of angle w/2. We denote by id the identity map on
RP or R%.

-Ifr > 0 and z € R”, B,(2) denotes the ball in R” of center z and radius ». If B ¢ RP
we denote by B¢ the complement of B.

- Assume that y is a nonnegative Borel measure on a topological space X and that v is
a nonnegative Borel measure on a topological space Y. We say that a Borel mapt: X — Y
transports y onto v, and we write tyu = v, if v[B] = u[t~!(B)] for all Borel sets B C Y. We
sometimes say that t pushes p to v. We denote by T (u,v) the set of all t such that txp = v.

If v is a nonnegative Borel measure on X x Y then its projection projx+y is a nonnegative
Borel measure on X and its projection projy-y is a nonnegative Borel measure on Y; they are
defined by

projxv[A] =9[Ax Y],  projyy[B] =~[X x B].

A measure vy on X x Y is said to have y and v as its marginals if 4 = proj yy and v = projy7.
We write that v € T'(u, ) and call y a transport plan between p and v.

- When X =Y = M, any minimizer 7, in (1) is called an optimal transport plan between u
and v. We write v, € Ty (u, v).

- We denote by P(RP) the set of Borel probability measures on R”. The D-dimensional
Lebesgue measure on R is denoted by £P. The 2-moment of x € P(RP) with respect to the



origin is defined by
M) = [ laP(a).
RDP
Notice that W2 (u,dg) = Ma(p). We will be dealing in particular with
P2(RP) = {p e PRP): Ma(n) < +o0}

and its subspace P$(RP”), made of absolutely continuous measures with respect to £P.

- If € Po(RP) and vy,...,v; € L2(RP, ), we write v = (vy,...,v) € L2(RP, u; RF) or
simply v € L?(u; R¥).

- Assume that u, v are Borel probability measures on M = R with Ma(u), Ma(v) < +o0
and p absolutely continuous with respect to £”. Then there exists a unique minimizer v, in (1),
characterized by the fact that v, = (id X t};)xu for some map t}; : RP — RP which coincides
p—a.e. with the gradient of a convex function. Therefore, the map t, is the unique minimizer of

b5 [ o —t(2)2du(2)
RD
over T (u,v).
- If h € C'(R?9), the Hamiltonian vector field associated to h is X, = JVh. When X €
C'(R?4,R?%), the flow of X is the map ® : [a,b] x R?? — R?¢ defined by

(7)

®(t,z) = X(t,B(t,2) telab], zc R
®(0,2) = 2z, z€R¥M,

The flow @ is unique, and the growth condition
X (t,2)| <C{t)(1+]2]) with  C € L'(a,b)

ensures its existence.
- If 1o = 0, and we set g = ®(t,-) 10 = da(1,7), then py satisfy the continuity equation

%Mt-I—V'(XMt) =0 (8)
in the sense of distributions. When X = X}, for a Hamiltonian h, (7) is called a Hamiltonian
system.

In this work, we consider the infinite-dimensional version of (7 —8), where 4, is replaced
by a measure u € Po(R% x R?) and X}, is replaced by the Hamiltonian vector field Xp of a
Hamiltonian H : Py(R¢ x R?%) — (—00, +0c]. When d = 1, that vector field is defined to be the
clockwise “rotation” by the angle /2, on the tangent space at i of Py(R??) of the the gradient
of H.



3 The differentiable structure of the Wasserstein space P,(RP)

In this section we introduce the differentiable an Riemannian structure of Pa(RP) following
essentially the approach developed in [4] (see also [11] [43], two seminal papers on this subject).

We recall first that (PQ(RD )s Wg) is a complete and separable space, not locally compact. We
refer to Proposition 7.1.5 and Remark 7.1.9 in [4] for more comments . However, bounded sets in
Po(RP) are (sequentially) relatively compact with respect to the so-called narrow convergence,
i.e. weak convergence in the duality with C(R"), the space of continuous and bounded functions
in RP. Actually a sequence {u,}32; converges to p in Po(RP) if and only if y, narrowly
converge to pu and Ma(un) — Ma(u) as n — +oo. The lack of compactness in Po(RP) is
precisely due to the fact that narrow convergence does not always imply convergence of second
moments.

To derive the differentiable structure from the metric structure, we start from the following
fact, proved in Theorem 8.3.1 of [4]: if y; € Po(RP) solve the continuity equation

d

it V- (wip) =0 9)
in the sense of distributions in (a,b) x RP, for some time-dependent velocity field w; with
Wl z2u,) € L'(a,b), then

t
Walpis, ) < / [Willsa moydr  Va<s<t<b (10)
S

As a consequence we obtain that #+ p; is absolutely continuous from [a,b] to Py(RP). Con-
versely, it was proved in the same theorem in [4] that for any absolutely continuous curve
t+ Uy, there is always a unique, up to negligible sets in time, velocity field v; for which both

the continuity equation and, asymptotically, equality holds in (10):

) 1
lim mW2(Nt+h>Ht) = |Ivellp2(u,) for ae. t. (11)
In Proposition 8.4.5 of [4], this minimality property of v; is proved to be equivalent to the fact
that v; belongs to the L2(us;; RP) closure of {Vy : ¢ € C®(RP)}. Hence, we may view v, as
the “tangent” velocity field to u; and define the tangent space to Po(RP) at p, as follows:

L*(u;RP)

T.P2(R”) ={Vy: ¢ € CE(RP)} (12)
Notice also that a simple duality argument gives (see Lemma 8.4.2 of [4])
L
[T’UPQ(RD)] ={we L*(u;RP): V- (wp) = 0}. (13)

In the following we shall denote by m, : L?(u; RP) — T,P2(RP) the canonical orthogonal
projection.
Summing up, the previous results can be rephrased as follows:



Theorem 3.1 (Due to [4]). The class of absolutely continuous curves uy : [a,b] — Po(RP)
coincides with the class of solutions of the continuity equation for some velocity field wy with
Wl 12 (usm0) € L'(a,b).

For any absolutely continuous curve py : [a,b] — Po(RP) there exist vy € L?(uy; RP) for which
both the continuity equation and (11) hold. Given a solution of the continuity equation (9),
equality holds in (10) if and only if wy € T, Po(RP) for a.e. t.

Finally, the map t — vy € L?(ug; RP) is uniquely determined up to L' -—negligible sets.

It is proven in (8.4.6) in [4] that the above tangent velocity vector vy, is identified for almost
every t by the following property :

lim (x LA ‘”) b = (id,vi)gp  in Py(RP x RP) (14)
h—0 h #

for any choice of vy, € T'y(ut, pie+n). Essentially this property says that optimal plans between
p+n and p; asymptotically behave as the plans induced by the transport maps (id + hvy)x .
In the case when y; € Po(RP), where optimal plans are unique and induced by maps, (14)

reduces to )
th —id

—vy in L*(u; RP) as h — 0, (15)

where tj are the optimal transport maps between p; and pyyp.

Several notions of differential can be defined, according to this differentiable structure. We
state here the one more relevant for our purposes, motivated by the fact that we will be dealing
with convex Hamiltonians (for concave ones, one should instead use a superdifferential).

Definition 3.2 (Fréchet subdifferential). Let H : Po(RP) — (—o0, +o0] be a proper, lower
semicontinuous function and let u € D(H). We say that w € L?(u, RP) belongs to the Fréchet
subdifferential OH (u) if

H(v)>H(u)+ sup / (w(z),y — 2)dy(, 1) + o(Wa(s, )
v€lo(p,v) JRP xRP

as v — p.
Definition 3.2 is a particular case of Definition 10.3.1 [4] (with the replacement of a sup with
an inf, see also Proposition 4.2), where the elements of the subdifferential are plans, and so,

are measures in the product RP” x R” instead of maps on R”. If 4 € T',(u, ), recall that its
barycentric projection 7 is characterized by yu = (m1)4(y7y) or, equivalently, by

|, elern@dua) = [ pladri@y) Ve e GRD). (16)
RP RP xRP
Hence, we can rephrase the condition w € 0H (i) as

H(v) > H(p) + sup / (w(z),7(z) — x)du(z) + o(Wa(u,v)). (17)
Y€l o (u,v) J RP xRP



Notice that, whenever . € P$(RP), there is only an optimal plan induced by t,, and 7 = t].
It has been proved in Theorem 12.4.4 of [4] that

3 —id € T,P2(RP) Vv e Py(RP), ¥y € Ty(u,v). (18)

By (17) and (18) we infer that w € 0H (p) iff m,w € 0H(u1). Notice that 0H (i) is a closed and
convex subset of L?(u; RP). Therefore, as it is customary in subdifferential analysis, we shall
denote by VH (i) the element of 9H (11), of minimal L?(u; RP)-norm. The previous comments
show in particular that, by the minimality of its norm, VH (u) = 7, VH (u) belongs to 0H (u) N
TN'PQ(RD )

In the following lemma we state a well-known continuity property of optimal plans or maps.
Its proof, which is by now standard in the Monge-Kantorovich theory, can be found for instance
in Proposition 7.1.3 [4]. We reproduce part of it for the reader’s convenience.

Lemma 3.3 (Continuity of optimal plans and maps). Assume that {pn}>2,, {vn}52; are
bounded sequences in Po(RP) narrowly converging respectively to u and v. Assume that T ,(u, v)
contains a unique plan . Then (i)

lim 9(z,y)dyn(z,y) = / gdry (19)

n—=+00 JROxRPD RDxRP
for any choice of v € To(tin, vn) and for any continuous function g : RP x RP — R satisfying

b lsl@)

— 20
(@y)|—+oo 2|2 + y/|? (20)

(ii) Assume furthermore that un, p € P$(RP) and that there ezists a closed ball B, of finite
radius, containing the supports of v, and v. Then there exist Lipschitz, convex functions uy, u :
RP — RU {400} such that Vu,, = tr pn-a.e. in RP and Vu = t), p-a.e. in RP. In addition,
there exists a subsequence {ng}p>, of integers such that

Vaun, — Vu LP-ae in RP. (21)

Proof: An argument which is by now standard and can be found in [30] characterizes the ele-
ments I'y(un, ) to be the elements of T'(uy, v,) whose supports, suppy,, are cyclically mono-
tone. More precisely, v, € I'o(tn, ) if and only if vy, € I'(un, v,) and there exist convex, lower
semicontinuous functions, u, : R — R U {+o0}, such that

suppyn C Oup. (22)

If v, = u;, is the Legendre transform of u, and B is any closed set containing the support of
4n, then

unl@) = it {5 (@i9) ~ va(y)} @ €RP. (23)
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Using the fact that v, € To(pin, vn) and {1, } 1, {vn}32, are bounded in P2(R”), we obtain

that

Sup/ (|21 + lyI*)dyn(z,y) = sup{Mz(un) + M2(va)} < +o0. (24)
RPxRP n

n

By (24), {vn}2, is precompact for the narrow topology. Assume {7y, }?°, is a narrowly conver-
gent subsequence whose limit is 4. Using again (24), it is clear that 4 € I'(u, v) and (19) holds if
we substitute {7, }52; by {7V, }3>;. By Proposition 7.1.3 of [4], every point in supp? is a limit of
points in suppyy,, and so, suppy is cyclically monotone. This implies 4 € I',(u,v) = {}. Since
the limit 7 is independent of the subsequence {y,, }7, we have proven that {y,};2, narrowly
converges to v and (19) holds. This proves (i).

Let id be the identity map on R” and assume now that pu,, u € P$¢(RP), so that

Yo € Lo(pn,vn) ={id x t;»} and v € Lp(p,v) = {id x t;}. (25)

Since convex functions are differentiable £P-almost everywhere, (22) and the first equality in
(25) imply that t;» = Vu, pp-a.e. in RP. Let us furthermore assume that there exists a
closed ball B, of finite radius, containing the supports of v, and v. Enlarging B if necessary, we
may without loss of generality that B contains the origin and so, by (23), u,, is Lipschitz with a
Lipschitz constant bounded above by the radius of B. We may substitute u,, by u, —u,(0) without
altering the validity of the above reasonings. Therefore, in the sequel, we may assume without
loss of generality that u,(0) = 0. Ascoli-Arzela lemma ensures the existence of a subsequence
{tn, }32 | which is locally uniformly convergent. Its limit u is necessary convex, with a Lipschitz
constant bounded above by the diameter of B.

Now, let us show the convergence of the transport maps. Passing to the limit as n — oo in
the suddifferential inequality

Un(wl) > up () + <Vun(.’E);$’ — )

we immediately obtain that, at any differentiability point of all maps u,, any limit point of
{Vup(z)}52, belongs to the subdifferential du(z). It follows that Vu, converge to Vu wherever
all gradients (including Vu) are defined, hence £LP-a.e. in RP. In particular, recalling (22) and
the fact that every point in suppry is a limit of points in suppyy,, we conclude that suppy C du.
This, together with the second inequality in (25) implies that t,, = Vu p-almost everywhere on
RP. QED.

4 Convex analysis on Py(RP)

Let po, 1 € Po(RP) and let v € T'y(ug, £1) be an optimal transport plan. Let m; : RP x R :
(z,w) — z and 7 : RY x RY : (2,w) — w be the first and second projections of RP x RP
onto RP. As suggested in [38], the interpolation (1 — t)m; + ¢y between maps can be used to
interpolate between the measures g and p1 as follows:

1y = ((1 — t)m + t7r2) R (26)
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The proof of the well known fact that ¢ — p; is a geodesic in Po(RP) of constant speed,
ie. Wolps, ) = |t — s|Wa(po, 1) for all s, t € [0,1], can be found in Theorem 7.2.2 of [4];
furthermore, any constant speed geodesic has this representation for a suitable optimal y. As
it is customary in Riemannian geometry, the identification of constant speed geodesics with
segments allows the introduction of various notions of convexity for functions (see Chapter 9 of
[4] and [34]).

Definition 4.1 (A—convexity). Let H : Po(R”) — (—o0, +00] be proper and let A € R. We say
that H is A—convez if for every po, p1 € Po(RP) and every optimal transport plan v € To(po, f11)
we have

A
H(p) < (1= ) H(po) + tH (1) = St(1 = )Wy (o, p1) vt € [0, 1].
Here iy = ((1 — t)my + tmo) 4y, where w1 and wy are the above projections.

For a real-valued map, A-convexity means that the second distributional derivative of ¢ —
H () is larger than AL!. In general, the inequality above is equivalent to saying that ¢ — H (1)
is AWZ(uo, 11)—convex. In particular, O—convexity corresponds to the notion of displacement
convexity introduced in [38]. Finally, notice that this notion of convexity is slightly stronger
than the one introduced in [4], where the inequality above is imposed only on some optimal
transport plan.

Proposition 4.2 (Characterization of subdifferentials of A-convex functions). Let H :
Pao(RP) — (=00, +00] be lower semicontinous and A—convez for some A € R and let y € D(H).
Then, any of the following two conditions is equivalent to w € 0H (u):

a
H@) > A+ inf [ (w(@)i3(a) - s)du(@) +oWa(wr)) (20)

(ii) for all v € Py(R2?) we have

H(v) > Hu) +  sup /<ﬂmwm—wwmngwﬁmn (28)
YET o (u,v) J RP

Proof: It is clear that w € OH (i) implies (i), and that (ii) implies w € 0H (u). So, it remains
to show that (i) implies (ii). To this aim, fix v € Po(R?%), v € Ty(,v) and define the constant
speed geodesic {u}e0,1), between p and v as in (26). Then, we know that for ¢ < 1 there is a
unique optimal plan between p and p;, induced by vy = (71, (1 — )7 +tm2) 4y (see Lemma 7.2.1
of [4]), so that (27) and the identity 4; — id = t(y — id) give

i L (00) = H ()
10 t

> [ w(@)iata) =~ hdu(o)

Then, the monotonicity of the difference quotients of H give

HM—MMZ/

(w(z):7(@) — a)du(a) + AW ()
RD
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QED.

It is not difficult to show that the infima in (i) and (ii) are achieved. As shown in Chapter 10
of [4], the “inf” definition of subdifferential in (i) ensures the weak closure properties of the
graph of the subdifferential. Again, in the case when u € P¢(RP), the previous formula reduces
to

H) > Hp)+ [ w@)sti(s) — o)+ W (np) W € PoRD).

RD

The typical Hamiltonian we consider in this paper is the negative squared Wasserstein dis-
tance. Some of its properties, established in Proposition 9.3.12 and Theorem 10.4.12 of [4], are
summarized in the following proposition.

Proposition 4.3 (Convexity of the negative Wasserstein distance). Let v € Po(RP)
and define

1
H(p) = —5Wi(wv)  p€Py(RP). (29)
Then H is (—1)-convez. Furthermore, if u € Po(RP),
OH(p) NT,P2(R7) = {7 —id : v € To(p,v)} (30)

and therefore VH (i) is the minimizer in

min {/ |y —id|*dp : v € To(u, V)} . (31)
RD
Here 7 is the barycentric projection of 7y, as defined in (16). In particular,
OH(p) NT,P,(R") = {t!, —id}  VueP§RP). (32)

Notice that W2(-,v) is, on the other hand, trivially convex with respect to the conventional
linear structure of Po(RP), as ty; + (1 — t)y2 € T(tu1 + (1 — t)pu2,v) whenever v, € T'(u1,v)
and pg € T'(ug,v). Also, as shown in Example 9.1.5 of [4], for each A\ € R, W2(-,v) fails to be
A-convex along geodesics.

5 Basic properties of solutions of Hamiltonian ODE’s

We now have all the necessary ingredients for the definition of Hamiltonian flow in Py(R24). In
order to cover more examples (see Section 8) we consider also the case when the space is Po(RP)
and J : RP? — RP” is a linear map satisfying Jv L v for all v € RP (this framework includes
the canonical case D = 2d and J = J).

Definition 5.1. Let H : Po(RP) — (—o0,+00] be a proper, lower semicontinuous function.
We say that an absolutely continuous curve py : [0,T] — D(H) is a Hamiltonian ODE relative
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to H, starting from i € Po(RP), if there exist vy € L?(uy; RP) with Ivillz2 () € LY(0,T), such

that p
%Mt +V. (Jvtut) = O, Ko = K, te (O,T)
(33)

vi € T, Po(RP)NOH () for a.e. t.

The terminology “Hamiltonian ODE” is fully justified in the case D = 2d, J = J; in a work
in progress by Gangbo and Pacini [31]. There, they prove that J; induces a nondegenerate
bilinear skew-symmetric closed 2-form € as follows. Denoting by 7*P3(R??) the subbundle
defined by

T:,P2(R2d) = {’/TN(JdV) P VE TN,P2(R2d)},

they define Q,, : T Py(R?%) x T;Py(R?)) — R as follows: if V1 = m,(Tqv1), V2 = mu(Jav2) €
Ty Pa(R?Y), with vi, vy € T, Po(R?), they set

Qu(V1,v2) = /de<JdV1;V2)du [ € Po(R?).

It is easy to check that €, is well defined (i.e. it does not depend on the choice of the vectors
v; such that v; = m,(Jv;)), skew-symmetric and nondegenerate.

For any u € P2(R??) where VH exists, the Hamiltonian vector field Xp € T;’PQ(RZd) is
classically defined by the identity

Qu (X (1), ¥) = /R (VH(u)v)) = dH(®) V¥ € TiPy(R¥).

In other words, Q,(Xg(u),-) = dH(:). The system (33) with v; = VH(u;) is then easily seen
to be equivalent to the condition that the tangent velocity vector 7, (Jqv¢) to py is Xa(pe) or
equivalently, iy = X g (u¢). More generally, one could define a “Hamiltonian subdifferential” by
considering the vectors 7(J4v) with v € 0H (u) N T, P2(R??).

The integrability condition |[v¢|[z2(,,) € L'(0,T) ensures that the continuity equation makes
sense in the sense of distributions; furthermore (see for instance Lemma 8.1.2 in [4]), possibly
redefining u; in a negligible set of times, we can assume that ¢ — p; is narrowly continuous in
[0,T]. We shall always make tacitly this continuity assumption in the sequel.

In the construction of solutions to Hamiltonian ODE’s by approximation, one finds that the
subdifferential inclusion v; € OH (u;) (and therefore the continuity equation with velocity field
Jv¢) has good stability properties (see for instance Lemma 10.1.3 and Lemma 10.3.8 of [4], or
Remark 6.5). The tangency condition, on the other hand, is not stable in general; however this
condition is crucial to show that ¢ — H(u¢) is constant for Hamiltonian ODE’s. In the proof of
this fact we follow the “Wasserstein chain rule” in §10.1.2 and Proposition 10.3.18 of [4], whose
proof (based on a subdifferentiability argument) we reproduce for the reader’s convenience.

Theorem 5.2. Let H be as in Definition 5.1, and let ji; be a Hamiltonian ODE, with || vi||12(,,) €
L>(0,T). If H is A—convex for some X\ € R then t — H(u;) is constant.
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Proof: We first prove that ¢ — H(u;) is a Lipschitz function. Let C be the L norm of
llvtllz2(u,) and notice that (10) gives that the Lipschitz constant of ¢ — u; is less than C. We
denote by w; the tangent velocity field to u; and notice that, as Jv; is an admissible velocity
field for p;, we have that w; — Jv; is orthogonal to T}, P2(RP) for a.e. t.

Let now D C (0,T') be the set of points where both v; € 0H (i) and |vi|[z2(,,) < C hold.
Let t € D, s € [0,7] and notice that by Proposition 4.2

) A
H(u)— Hus) < inf / (ve(@)sy — ) dy — 2W2(n, 1)
YET o (1tsts) JRD xRD 2

2A7
< C?t— s+ ¢

(t —s)?

T
C?(1+ %)hﬁ — 3.

IA

As H is lower semicontinuous, by approximation the same inequality holds when s, ¢ € [0,T].
Reversing the roles of s and ¢ we obtain that the Lipschitz constant of 3 H () is less than
C2(1+TX/2).
It remains to show that the derivative of ¢ — H(u;) is equal to 0. Fix ¢ € (0,7) where this
derivative exists, (14) holds, v; € 0H (u)NT,, P2(R”) and w;— Jv; is orthogonal to T}, Po(RP).
We have then the existence of optimal plans 7, € T',(u¢, prerp) satisfying

C?\~

W2+ H(ugn) — H(n) > /R o i)y — 2l

Next, we define n, = (z, (y — x)/h)xy to obtain

Hpn) — H(u) > h /R - (v +o(h)

and use (14) to obtain'

H(pern) —H(u) > h S (vi(z);y)d(id, we) e + o(h)
= h (vi(z); wi(z))dpt + o(h)
R2d
= h R2d<Vt(~’E); Jvi(z))dus + o(h) = o(h).

Since s — H (us) is differentiable at s = ¢, this can happen only if the derivative is 0. QED.

'Even though the test function (z,y) +— (vi(z);y) is possibly discontinuous and unbounded, one can use the
boundedness of 2-moments of 7, and the fact that their first marginal does not depend on h to pass to the limit,
see for instance §5.1.1 in [4]
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6 Existence of Hamiltonian flows: regular initial data

Before stating our main existence theorem, we state a technical lemma concerning the approxi-
mation of tangent vectors by smooth gradients.

Lemma 6.1. Let u = pLP € Po(RP) be satisfying p > m, > 0 LP—a.e. on B, for any r > 0.
IfC>0,veT,P(RP) and

|v(z)| < C(1+ |z]) for p—almost every z € RP (34)
then there ezists a sequence {pn}2°; C C(RP) such that
[Ven(2)] <C2+12)  VzeR”

and

nlﬂl v — V<,0n||L2 (uRP) = 0

Proof: Let {¢,}%; C CX(RP) be such that |[v — Vo2 — 0 as n — +oo. For all 7 > 0
we have

1
llmiup lv — V¢n||L2 (B,,£P RD) < p 121345_1012) lv — V¢n||L2(“ =0.

This proves that v € L? (R??,£??) and that curlv = 0. Let Iy € C® be a nonnegative
probability density whose support is contained in the unit ball of R?? and set

1 z

vp = lh * 'V, with lh(Z) = Wll(ﬁ)

Clearly, v;, € C*°(R2?¢ R?%) and curlv, = 0. Hence, there exist A, € C*°(R??) such that
v, = VA, and Ap(0) = 0. Thanks to Jensen’s inequality, (34) implies that

@) = | [ In(w)v(z — w)duw| < c/ In(w)(1 + |7 — w])duw
R2d R2d
C(1+ |z]) + C/ w)|w|dw
C( +|2)) +h0/ W) |du!
<C(1+|z|) +hC I (w')dw'
B1(0)
< C2+ |2]), (35)

for h < 1. Since {vj, }5>0 converges £2¢-almost everywhere to v, the uniform bound in (35) and
the fact that u € P,(RP) imply, by the dominated convergence theorem,

. 2 .
lim |[v — VA7 ,m0) = 0. (36)
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Define
Ap(z) for |z| <r

37
0 for |z| > 2r. (37)

Bj(z) = {

Note that Bj is a C(2+r)-Lipschitz function and so it admits an extension to R?, that we still
denote by By, which is C(2 + r)-Lipschitz. We use (34), (35) and the fact that

VB (2)| < C2+1r) <C(2+|2]) on B£(0) (38)

to conclude that for all h <1

/ lv — VB} [2dy = / |v — VA |2dp +/ lv — VB |?du
R2d B, (0) B¢(0)

< / |v — VA, 2du + 402/ (2 + |2])dp. (39)
R2d B5(0)
We combine (36) and (39) to conclude that
: T2 _
h, }1/131—>0 v — VBhHL?(u;RD) =0. (40)
This, together with (35) and (38) yields the lemma. QED.

The following lemma provides a discrete solution of the Hamiltonian ODE in a small time
interval, whose iteration will lead to a discrete solution. To make the iteration possible, one has
to show that the flow preserves in some sense the bounds on the initial datum: this is possible
thanks to the fact that the flow is incompressible.

Lemma 6.2. Let h > 0, let p = pLP € P¢(RP) be satisfying
p>my >0 LP—a.e. on B, for anyr >0 (41)

and let v € T, Po(RP) be satisfying (34), with e“™ < 2. Then there ezists a family of measures
pt = pLP, t € [0,h], satisfying

(a) Jgp S(pt)dz < [gp S(p) dz for any convex function S : [0,400) — [0, +00);

(b) t— py € Po(RP) is absolutely continuous, ug = p and the continuity equation

etV (Jvi) =0, (t,2) € (0,h) x R” (42)

holds;
(c) pt > mu LP-a.e. on By, with r' = e“Pr + 2(e“? —1).

Finally, we have also that t — p¢ is Lipschitz continuous, with Lipschitz constant less than
L, = C+\/24(1 + M2(p)) and, in particular,

WZ(Mt, /'1’) <hL, vt € [O’ h] (43)
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Remark 6.3. Assumption (41) is used twice. First, it is used to conclude that since v is defined
p—almost everywhere, then it is defined £P-almost everywhere, hence u;—almost everywhere, if
pe < LP. More importantly, it is used to apply Lemma 6.1, to treat v as a gradient and to
obtain that Jv is divergence free with respect to £”. This leads to the conclusion that the flow
®(t,-) associated to Jv preserves L for each ¢ fixed.

Proof of lemma 6.2 We assume first that v = V¢ € C°(RP;RP) and that the weaker
condition |v(z)| < C(2+ |z|) is fulfilled. Under this assumption the autonomous vector field Jv
is smooth and divergence-free, so the flow ® : [0,h] x RP — RP associated to Jv is smooth
and measure-preserving. In this case we simply define p; = ®(¢,-)xu, so that the continuity
equation (42) is satisfied. The measure preserving property gives that u; = p; £, with

pro@(t,-) = p. (44)

Notice that (a) (with an equality, and even for nonconvex S) follows immediately by (44), and
(c) as well, provided we show that ®(¢,-)~!(B,) C B,». To show the latest inclusion, notice that
U(t,y) = ®(t,-) (y) is the flow associated to —Jv, hence

%I‘I’(t,y)\ < [ Jv[(¥(t,y) < C2+ [T y)))-

By integrating this differential inequality we immediately obtain that
2+ (L )] < 72+ Jy]).

Hence, |y| < r implies |¥(¢,y)| < 7’ for t € [0,h]. An analogous argument gives 2 + |®(¢,z)| <
e“*(2 + |2|), hence when e“" < 2 we obtain

|®(t, 2)| < 2(|2] +1).

Using this inequality we can estimate

/R vPdn < 207 /R (@1 d = 807 + 207 / (8, 2)|2 du

RD

< 8C% 4+ 16C? / D(1 + |2|%) dpu = 24C* + 16C% Mo(p) < L2.
R
Using this estimate in conjunction with (10) and (42) yields that ¢ — pu; is L,—Lipschitz .
In the general case we consider a sequence v, = V¢,, with all properties stated in Lemma 6.1.
As p > 0 LP-a.e., we can also assume with no loss of generality that v,, = v £P-a.e. in R??. Let
py be the measures built according to the previous construction relative to v, and notice that
t3 u? are equi-bounded in Po(RP), and L, Lipschitz continuous. Furthermore, u} = p?LP
with p} locally uniformly bounded from below. Hence, we may assume with no loss of generality
that pu} — p¢ narrowly for any ¢ € [0, h].
By the lower semicontinuity of moments we get u; € P3(RP) for any t, and the lower
semicontinuity of Wasserstein distance (see for instance Proposition 7.1.3 in [4]) gives that the



18

Lipschitz bound and the distance bound (43) are preserved in the limit. Also the inequality
[ S(pt)dz < [ S(p)dz with S convex and the local lower bound in (c) are easily seen to be
stable under weak convergence, and imply (choosing S = S convex, growing faster than linearly
at infinity, such that [ S(p)dz < +00) that u; = pLP € P$(RP) with p; > m,» LP-a.e. on B,
for any r > 0.

It remains to show the validity of the continuity equation in (b). To this aim, it suffices
to show that, for ¢ fixed, Jv,p} converge in the sense of distributions to Jvp;. As S grows
faster than linearly at infinity, we obtain from the inequality [ S(p})dz < [ S(p) dz, that p is
equi-integrable (see for instance Proposition 1.27 of [3]). Hence for any € > 0 we can find § > 0
such that

LP(BY<i = /ptdz—l—sup/pt"dz<e.
B n JB

We fix r > 0 and choose as B C B, an open set given by Egorov theorem, so that v,, — v
uniformly on B, \ B; let also v/ : R?* — R?? be a continuous function coinciding with v on
B, \ B, with |v'| < C(2 +r). For any ¢ € C.(B;) we have then

/ dJvppldz = d(JIvy, — IV')pl dz —I—/ dJvpydz
RD RD RD
b [V = st [ 6160 - p)d,
RD RD

so that

lim sup ‘/ ¢Ivppy dz — / dJvpidz| < 2Csup|p|(2 + 7)e.

n—-+0oo RD RD
As € is arbitrary, this proves the weak convergence. QED.

Remark 6.4 (Stability of upper bounds). By the same argument one can show that if
p < M, LP-a.e. on B, for any r > 0, then p; < M, LP-a.e. on B, with ' = e“Pr 4+ 2(e“? —1).

The main result of this section is concerned with Hamiltonians H satisfying the following
properties:
(H1) There ezist constants C, € (0,4+00), R, € (0,4+0c] such that for all up € P?(RP) with
Wa(u, ) < R, we have p € D(H), 0H(u) # 0 and w = VH(u) satisfies |w(z)| < Co(1 + |2])
for p—almost every z € RP.
(H2) If p = p[’D’ Bn = pn‘cD € ’Pg(RD): sup, Wa(pn, 8) < R, and pn, — p narrowly, then
there exist a subsequence n(k) and functions wy, w : RP — RP such that wy, = VH (o))
Pn(k)-a-€., W = VH(u) p-a.e. and wy — w LP-a.e. in RP as k — 400.

To ensure the constancy of H along the solutions of the Hamiltonian system we consider
also:
(H3) H : Po(RP) — (—o00, +00] is proper, lower semicontinuous and A-convez for some X € R.

Recalling that P$(RP) is dense in Po(RP) it would be not difficult to show, by the same
argument used at the beginning of the proof of Theorem 5.2, that (H3) and (H1) imply that H is
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Lipschitz continuous on the ball {y € Po(RP) : Wa(u, i) < R,}. Assumption (H2), instead, is a
kind of “C'-regularity” assumption on H. Thinking to the finite-dimensional theory (for instance
to Peano’s existence theorems for ODE’s with a continuous velocity field) some assumption of
this type seems to be necessary in order to get existence. In the following remark we discuss,
instead, existence in the “flat” infinite-dimensional case and uniqueness in the finite-dimensional
case.

Remark 6.5. Assume that we are given a convex (or A-convex for some A € R) Lipschitz
function H : R?¢ — R. Then, 0H (z) is not empty for all z € R?? and we may define solution of
the Hamiltonian ODE those absolutely continuous maps z : [0, +00) — R?¢ satisfying J&(t) €
O0H (z(t)) for a.e. t € [0, +00).

The same subdifferentiability argument used in the proof of Theorem 5.2 then shows that
t — H(z(t)) is constant along Hamiltonian flows. Existence of Hamiltonian flows can be achieved
by the following discrete scheme: fix a time parameter & > 0 and an initial datum z € R?9,
Then, choose py € 0H (zg) and set zx(t) = zo + Jgpot for t € [0, h], choose p1 € OH (zp(h)) and
set zp(t) = z1 + Jgp1(t — h) for t € [h,2h] and so on. In this way zp(t) solves the “delayed”
Hamiltonian equation

Jazn(t) € OH (xh(h[%])) for a.e. t > 0. (45)

Using a compactness and equi-continuity argument we can find a sequence (h;) | 0 and a
Lipschitz map z : [0,00) — R?® such that z,(t) converge to z(t) as i — oo for any ¢ > 0 and
i, weakly converge in L2 _([0,00); R??) to 7.

In order to show that Jq& € 0H(z) a.e., we use an integral version of the discrete subdiffer-
ential inclusion, namely

/ H (an, (il (e dt + / (v = onu Bl ), as ()o(0)

with p(t) nonnegative, with compact support and satisfying [ pdt = 1, and pass to the limit as
i — oo to find

/ H(z()p(t) dt + /0 Ty — o), T () p(t) dt.

Choosing properly a family p; of approximations of §;, this yields
H(y) > H(z) + (y — z(t), Jaz(t))

at any Lebesgue point ¢t of . This proves existence of Hamiltonian flows. We also refer the
reader to a work in progress by Ghoussoub and Moameni [32] on related questions.

Notice that this scheme doesn’t seem to work in the infinite-dimensional case, when R?¢
is replaced by an infinite-dimensional phase space X, due to the difficulty of handling terms
J{fn(t), gn(t))dt with f), weakly converging in L2 ([0, +00); X) and gp(t) only pointwise weakly
converging to g(t). Indeed, we are not aware of any existence result in this direction.

Coming back to the finite-dimensional case X = R2?, the results in [5] (see also [6] for special
classes of Hamiltonians) ensure a kind of “generic” uniqueness property, or uniqueness in the flow
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sense, in the same spirit of DiPerna—-Lions’ theory [25] (see §6 of [5] for a precise formulation).
In brief, among all families of solutions z(¢,z) of the ODE, the condition

z(t, )4 L% < CL*  with C independent of ¢ (46)

determines z up to L% negligible sets (i.e. if z and # fulfil (46), then z(-,z) = #(-,Z) for L%
a.e. ) and the unique z satisfying (46) is stable within the class of approximations fulfilling
(46) (in particular, one finds that z(t,-) is measure-preserving for all t). It turns out that the
scheme described here produces a discrete flow zj(t, Z) satisfying (46) with C = 1, and therefore
is a good approximation of the unique Hamiltonian flow z. See also [45] for discrete schemes
(called leap-frog schemes) that really preserve the symplectic forms and therefore the symplectic
volume.

Theorem 6.6. Assume that (H1) and (H2) hold and that T > 0 satisfies (51). Then there exists
a Hamiltonian flow p; = p;LP : [0,T] — D(H) starting from i = pLP € P$(RP), satisfying
(33), such that the wvelocity field vy coincides with VH(u;) for a.e. t € [0,T]. Furthermore,
t — ¢ is L-Lipschitz, with

I2=2C2(1+ M) and M =e®%HIT(1 4 M(g)).

Finally, there exists a function l(r) depending only on T and C, such that

p>my LP-a.e. on B, Vr >0 = p > my(r) LP-a.e. on B, Vr >0 (47)
and

p< M, LP-ge. n B, Vr>0 = p< My LP-a.e. on B, Vr > 0. (48)
If in addition (H3) holds, then t — H(u) is constant.
Proof: In the first two steps of the proof, we shall assume existence of positive numbers m,
such that the initial datum satisfies p > m, > 0 £ a.e. on B, for any r > 0. That technical
assumption will be removed only in the last step of the proof of the theorem.

Step 1. (a time discrete scheme). Since p is integrable, standard arguments give existence
of a convex function S : [0,4+00) — [0,+00), which grows faster than linearly at infinity and
such that [S(p)dz is finite. We fix an integer N sufficiently large, so that Coh < 1/8 and
14 Coh/2 < eCh < 1+ 2C,h with h = T/N, and we divide [0,T] into N equal intervals of

length h. We shall next argue how, for any such N, Lemma 6.2 gives time discrete solutions
pl¥ = plV LP satisfying:

(a) the Lipschitz constant of ¢ — u is less than L, with L independent of N;

(b) supy; Wa(ui', i) < Ro, [S(pf)dz < [S(p)dz and p > my,y LP-ae. on B, for any
r > 0;

(c) the “delayed” Hamiltonian equation

d
T TV Vi) =0 (49)
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holds in the sense of distributions in (0,7) x RP, with v¥ = VH(u}) for 0 <i < N -1
and t € [ih, (i + 1)h).

In order to build ', we apply Lemma 6.2 N times with C = C,: we start with p = p and
v = VH(pLP) to obtain a solution u}¥ of (49) in [0,h]. Then, we apply the lemma again with
p = pl and v = VH(p) LP) to extend it continuously to a solution of (49) in [h,2h]. In N
steps we build the solution in [0, 7).

However, in order to be sure that the lemma can be applied each time, we have to check that
the inequality Wg(u%, ji) < R, is valid for ¢ = 0,..., N — 1, and this is where the restriction on
T comes from: first notice that since

Wa(k) 1y 1) < hCoy/24(1 + Ma(ui)) |
by the triangle inequality we need only to prove by induction an upper bound of the form
My (ip) < M, (50)

for some M such that C,T'\/24(1 + M) < R,. To estimate inductively the moments, we recall
that My (u) = W2(u,d0) and we use the triangle inequality to find

(Va3 + hof 20+ 05 )

1
< (L+ h)Ma(u)) +24(1 + E)hQCg(l + Mo (uiy))
< (14 (25C2 + 1)h) My (ul)) + 25C2h

VAN

M (,an-l)h)

as soon as 24(h + 1) < 25. Hence, setting for brevity P = 25C? + 1, we have the inequality
Mo (i 1yn) < (1+ Ph)Ms(ujy) + Ph.

By induction we get .
Ma(pip) < (1+ Ph)' (Ma(R) +1) — 1

and setting i = N we find that M = eP7'(1 + My(z)) is a good upper bound on all moments.
We have proved that the lemma can be iterated N times, provided

CoT\J24(1 + e DT (1 4 My(7))) < R, (51)

Finally, let us find an explicit expression for the function /(r) in (b) (the argument for (48) is
similar, and based on Remark 6.4). As the constant r’ in Lemma 6.2 is less than re®" + 4C,h,
by our choice of h, by induction on 7 we get

pl > m,, LP-ae. on B, with r; = re’“" 4 4C,h(e"NCh ... 1 1) vVt € [0,ih], 1 <i < N.

Since
NCoh _

ry =relVCoh 4 400he

C o < 48N = (r 4+ 8)eCT,
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it suffices to set I(r) = (r + 8)e®T.

Step 2. (passage to the limit). By (a), (b), t — u are equi-bounded in P2(RP), and equi-
Lipschitz continuous. Hence, we may assume with no loss of generality that u) — y; narrowly
for any t € [0, T].

By the lower semicontinuity of moments we get y; € Po(RP) for any ¢, and the narrow
lower semicontinuity of the Wasserstein distance (see for instance Proposition 7.1.3 of [4]) gives
that the L-Lipschitz bound in (a) and the distance bound in (b) are preserved in the limit.
Also the inequality [S(p)¥)dz < [S(p)dz and the local lower bounds in (b) are easily seen
to be stable under weak convergence, hence y; = p;£”, and the conclusion of (47) holds with
I(r) = (r +8)e%T (the argument for (48) is similar, and based on Remark 6.4).

It remains to show that y; is an Hamiltonian flow. To this aim, it is enough to show that,
for any ¢ fixed, V,{V uf:v converges, in the sense of distributions, to JVH (u;)p. Assume by
contradiction that this does not happen, i.e. there exist a subsequence N; and a smooth test

function ¢ such that
N; N;
/ (vi'sp)dpy " — / (vi; o) dpy
RD RD

Let us denote by [-] the greatest integer function. Notice that by assumption (H2) and the
narrow convergence of uf}]\é 11/N; to py we can assume with no loss of generality that

inf
?

> 0. (52)

vV = JVH(uf}{;t] ;) = TV H () LP-ae. in R* as i — 4.
By the same argument used at the end of the proof of Lemma 6.2, based on Egorov theorem
and the equi-integrability of piv ¢, we prove that viv i uiv ¢ converge in the sense of distributions to
JV H (1) pt, thus reaching a contradiction with (52).

Therefore, it suffices to pass to the limit as N — oo in (49) to obtain that y is an Hamiltonian

flow with velocity field v, = VH (u).

Step 3. Now we consider the general case. We strongly approximate p in L'(RP) by
functions p* such that p*LP € Po(RP) and, for any k, there exist constants mf > 0 such that
p* > mk £P-a.e. on B, for any r > 0 (for instance, convex combinations of 5 with a Gaussian).
We also notice that the equi-integrability of {p;}7°, ensures the existence of a convex function
S having a more than linear growth at infinity, and independent of k, such that [ S (P*)dz <1
for any k.

The construction performed in Step 1 and Step 2 can then be applied for each k, yielding
solutions of the Hamiltonian ODE uf = pfL£P| t € [0, T, satisfying p§ = p*, [ S(pf)dz < 1, and

d .
i +V (JVH(u)p) =0 in (0,7) x R*. (53)

As, by construction, 3 uf are L-Lipschitz, we can also assume, possibly extracting a subse-

quence, that pf — p; narrowly as k — +oo for any ¢ € [0,T]. The upper bound on [ S(pf)dz
then ensures that u; € P¢(RP) for all ¢ € [0, T).

The same argument used in Step 2, based on (H2) and the equi-integrability of pf, shows
that for any ¢t € [0,7), JVH(uf)uf converges to JVH (us)us as k — +oo in the sense of
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distributions. Therefore, passing to the limit as kK — +oc in (53) we obtain that y; is a solution
of the Hamiltonian ODE with velocity field JVH ().
Let us next give a more explicit expression for the Lipschitz constant of £ — u;. Recall that
by (50), we have
My (pfy) < M = e (1 + Ma(f)) (54)

and Wa(ur, i) < R, for 7 € [0,T]. Thus, (54) and (H1) imply that
IVH ()17, m0y < Co /RD(l + |2))2dpr (2) < 2C5(1 4+ M(ur)) < 2C5(1 4+ M).  (55)

This, together with (10), yields

t
Walpsss ) < [ IVH () 200y < (2 =), (56)

Finally, the constancy of ¢ — H(u;) follows by the (essential) boundedness of ||v¢|[;2(,,;r?)
and Theorem 5.2. QED.

We conclude this section by showing a class of Hamiltonians satisfying the assumptions of
Theorem 6.6.

Lemma 6.7. Let v € Po(RP) with a bounded support and let V : RP — R be Ay convex,
W :RP x RP = R convez and even, both differentiable and with at most quadratic growth at
infinity. Then, for a > 0 the function

H () = Holu) + Vo) + W) = =5 W) + [

1
Vdu+—/ Wdp x u (57)
R2d 2 RDP xRD

is (A\y — a)—convez, lower semicontinuous and satisfies (H1) and (H2).

Proof: Possibly rescaling V and W, we shall assume that a = 1. It is well known (see for instance
[46] or Chaper 10 of [4]) that the potential energy V is Ay—convex and lower semicontinuous,
and that the interaction energy W is convex and lower semicontinuous. As a consequence, H is
(Ay — 1)—convex and lower semicontinuous.

In order to show (H1) it suffices to notice that both VIW and VW have a growth at most
linear at infinity, and prove that

OH(u) = 0Ho(p) + VV + (VW x ) Vu € Po(RP), (58)

taking also into account that Proposition 4.3 yields, in the case when yu € P$(RP), 0Hy(u) =
{t}, — id}, and that t;; € L*(u; RP) (by the boundedness of the support of v).

The inclusion D in (58) is a direct consequence of the characterization (28) of the subdiffer-
ential and of the inequalities

V() > Vi) + / (V.7 — id) dys+ 2L W3 (11, 0)

RD
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W) > W) + /R (W)~ i)

for v € Ty(u,v) (see for instance [4]). In order to prove the inclusion C, we fix a vector
¢ € OH(p) and define, for v € T'y(y,v), the measures py = ((1 — t)m + tme)py and v =
(w1, (L = t)my + tmo)uy € Do, pt). As (3 — id)p = t(¥ — id)u, by applying the definition of
subdifferential we obtain

H(pt) — H(p)

lim inf =50 > AD<w,7—id) dys.

Now, the dominated convergence theorem gives

lim M - / (VV,5 —id) dp, lim M - / (VW) * p, 5 — id) dp,
tl0 t R2d tl0 t R2d
so that u u
Jim inf Z2000) = H (1) > / (&0,7 — id) du
10 t RD

with &g =& — VV — (VW) % u. Then, by (—1)-convexity of Hy we get

Ho(v) > Ho(n) + /RD<5m ~id) dp — W3 (1, ).

The previous inequality, together with Propositions 4.2 and 4.3, gives that & € 0Hy(u)-
Property (H2) follows directly from the identity

OH () = {(t}, —id) + VV + (VW) * u}
and from Lemma 3.3. QED.

Another important class of convex functionals in Po(R?”) is provided by the so-called internal
energy functional 4 = pLP — [ S(p) dz. However, as the subdifferential of this functional is not
empty only when Lg(p) is a W function (here Lg(y) = yS'(y) — S(y)), these functionals fail
to satisfy (H1).

The previous result can be extended to Hamiltonians generated from those of Lemma 6.7
through a sup-convolution. For simplicity we consider the case when neither potential nor
interaction energies are present, but their inclusion does not present any substantial difficulty.

Lemma 6.8. Assume that Q C RP is a bounded open set, and that

(a) K C P(Q) is a convez set, with respect to the standard linear structure of P(R2), closed
with respect to the narrow convergence;

(b) J: K — RU{+oo} is strictly convex with respect to the standard linear structure of P(Q),
bounded from below and lower semicontinuous with respect to the narrow convergence.
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Define the Hamiltonian H on P2(RP) by
| %
H(w) = Inf (W3 (n,0) + T W), (59)

Then H is (—1)—convez and lower semicontinuous, and satisfies (H1) and (H2).

Proof of Lemma 6.8. Since y — —W3(u, v) — J(v) is (—2)-convex for each v € K, we obtain
that H is (—1)-convex and so (H3) holds.

1. Notice first that W2(-,v) is lower semicontinuous with respect to the narrow convergence
(see for instance Proposition 7.1.3 of [4]). Since J is bounded from below and lower semicontin-
uous, and since bounded sets in Po(RP”) are sequentially compact with respect to the narrow
convergence, we obtain that the infimum in the definition of —H is attained. Strict convexity
of J and convexity of W2(-,v) give uniqueness of the minimizer, which we denote by v(u). A
compactness argument based on the uniqueness of v(u) then shows that p, — p in P(RP)
implies v(p,) — v(u) narrowly in P(2). As Q is bounded the map p +— v(u) is also continuous
between P2 (RP) and Py (9).

2. Let p, € P¢(RP) and u € P2(RP). Clearly,

H () ~ H{sto) > ~3 (W3 1 (1) ~ W3 (o (1)) )-

This, together with the fact that the Wasserstein gradient of yu — —%W;(u,y(uo)) at p, is
t,':(“") —id (see (32)), yields that t,’j( ) _id € OH (1,) and so OH (j,) is nonempty.

0 {e]

To characterize the elements of 0H (u1,), let ¢ € C°(RP) and set
gs = id + sV ¢, Ms = Bs# Mo, Vg = V(NS)'

If £ € OH (), the fact that H is (—1)-convex implies that

. 1
H) = H(uo) = [ (€th = idydpg + 5WF (00150 > 0

R2d

For |s| << 1, g5 is the gradient of a convex function and so, the previous inequality yields

. s’ 2
= [ €Vadn, + 5[ 190> o) - 1)

v

1

§ (WQQ(Usa Vs) - W22(/1'05 Vs))

1 1

: /RD id — 2 s, — /RD lid — ky o t Py,

1 1
= = id — t7 |°dps — = 7 — k,|*dps. 60
5 [ =P =g [ e =P, (60)

v
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Here, we have set k; = g;'. One can easily check that

ka(3) =~ S99) + 5 V26(0) Vo) + e(s.1). (61

where e is a function such that [e(s,y)| < [s|? [|¢||c3 g2y We combine (60) and (61) to conclude
that

2
-8 /RD (&;V)dpo + % /Rw V| dpo > 8/RD<id —y; Vo)dys + o(s),

where «y, is the unique optimal plan between us and v,. Recall now that pus — p, in Po(RP)
and v; — v in P2(Q) as s — 0, hence Lemma 3.3 gives

2
= [ Vadn 5 [ VoPdn s [ Gd -t Vo ol (6

We divide both sides of (62) first by s > 0 then s < 0; letting |s| — 0 we find

= [ & Vadu, = [ id= e Va)duo
RP RP
This proves that m,,{ = t,° —id. The minimality of the norm of the gradient then gives
VH (o) =t —id. (63)
(From this representation of VH (u,) and from (21) we obtain both (H1) and (H2). QED.

7 An alternative algorithm yielding existence of Hamiltonian
flows for general initial data

In this section we provide a new discrete scheme providing existence of solutions to Hamiltonian

flows for general initial data, i.e. not necessarily absolutely continuous with respect to Lebesgue

measure. Being based on a linear interpolation at the level of transports, when particularized
to Dirac masses this algorithm coincides with the one considered in Remark 6.5.

Lemma 7.1. Let f : X — Y be a Borel map, u € P(X), and let v € L?(u; RP). Then, setting
v = fuu, we have fu(vp) = wv for some w € L?(v;R”) with

||W||L2(V;RD) < ||v||L2(/J,;RD)' (64)
Proof: Let o := fy(vu) and ¢ € L®(Y;RP); denoting by 0%, @ = 1,--- , N, the components

of o we have

< ||(P ° f”L?(u;RD)Hv“LQ(/A;RD) = ||(p||L2(V;RD)||v||L2(u;RD)'

D . .
> [ o
i=17Y

Since ¢ is arbitrary this proves (64). QED.
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Lemma 7.2. Let T >0, C >0, u? : [0,T] = Po(RP) and v} € L?(us; RF) be satisfying:
(a) p} — p narrowly as n — +oo, for all t € [0,T];
() IVEllL2(umry < C for a.e. t€10,T7;
(c) the R¥-valued space-time measures v updt are weakly* converging in (0,T) x RP to o.
Then there exist vy € L?(ug; RY), with Vil p2(usmey < C for a.e. t, such that o = vyudt.

Proof: Possibly extracting a subsequence we can also assume that the scalar space-time mea-
sures |v}|ufdt weak*-converge to v, and it is well-known (see for instance Proposition 1.62(b)
of [3]) that |o| < v. Since, by Holder inequality, the projection of |v|ufdt on [0,7] is less than
Cdt, the same is true for v. Hence the disintegration theorem (see for instance Theorem 2.28 in
[3]) provides us with the representation o = odt for suitable R¥-valued measures in R” having
total variation less than C for a.e. t.

Now, for any ¢ € C(0,T), ¥ € C*(RP; RF) we have

ga(t)w;v?mdt\ <c [ 1ol VTt

T

n—-+0o0o

/ ' so(t)w;a»dt\ = {p;0)| = lim

As @ is arbitrary, this means that |(1; 0¢)| < C/(|9¥|?; ut) for a.e. t. By a density argument we
can find a Lebesgue negligible set N C (0,7") such that

(y00)| < CV(IW1%me) Vo € CP(RP;RF), Vte (0,T)\ .

Hence, for any ¢ € (0,T) \ NV we have oy = vy for some v; € L?(py; R¥) with L?(uy; RF) norm
less than C. QED.

We consider now two basic assumptions on the Hamiltonian, that are variants of those
considered in the previous section.
(H1") There exzist constants C, € [0,+00), R, € (0,+00] such that for all p € Po(RP) with
Wa(u, i) < R, we have p € D(H), 0H(p) # 0 and ||VH (u)|| g2y < Co.

(H2’) If sup,, Wao(pin, 1) < Ry and p, — pu narrowly, then
o
ﬂ ({VH(un)pn : n>m}) C{wp: we dH(u) NT,P(RP)}, (65)

where €O denotes the closed convex hull, with respect to weak*-topology.

Remark 7.3. (a) Assumption (H1’) is weaker than (H1), with the replacement of a pointwise
bound with an integral one. Also (H2) is essentially weaker than (H2), as it does not impose
any “strong” convergence property on VH (u,); however, this forces to consider a stability with
respect to closed conver hulls.

(b) A sufficient condition which ensures (H2’) is the following:
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(H2”) If sup, Wa(pn, i) < R, and p, — p narrowly, then
VH (pin) ppn, — VH(p)p

in the sense of distribution.

(c) As in the previous section, the condition (H3) ensures constancy of the Hamiltonian along
the Hamiltonian flows. We can apply the same argument used at the beginning of the proof of
Theorem 5.2, to obtain that (H3) and (H1’) imply that H is Lipschitz continuous on the ball
{1 € P2(RP) s Wa(p, i) < Ro}.

Theorem 7.4. Assume that (H1’) and (H2') hold and that C,T < R,. Then there exists a
Hamiltonian flow py : [0,T] — D(H) starting from i € Po(RP), satisfying (33), such that
t — pt is Co—Lipschitz. Furthermore, if (H3) holds, then t — H(ut) is constant.

In particular, if 0H (u) N T,P2(RP) = {VH(u)} for all p such that Wa(u, 1) < R,, then the
velocity field vy in (33) coincides with VH (p) for a.e. t € [0,T].

Proof: Step 1. (construction of a discrete solution). We fix an integer N sufficiently large
and we divide [0,7] in N equal intervals of length h = T/N. We build discrete solutions u¥
satisfying:

(a) the Lipschitz constant of ¢ — u}Y is less than C,;
(b) W', ) < CoT;

(c) the “delayed” Hamiltonian equation

d
T V(W) =0 (66)

holds in the sense of distributions in (0,7) x RP, with
wipf = (id + (t —ih) JVH (ufy)) . (JVH (ufp)nd) (67)
for 0 <i < N —1and t € [ih, (i + 1)h).
We build first the solution in [0, A], setting w)Y = JVH (iz). We then set

id+twl), (Wi
=)= SR
t

We claim that wi¥ is an admissible velocity field for ). Indeed, for any ¢ € C°(RP”) we have

d d _ i i
E/ pduy = %/ ¢(1d+tWéV)d#=/ (Vo(z +tw)); w) )dj
RP RPD RP

D
_ o0 (. N N _/ N\ N
= 3 [, (e, o) = [ Fewlian



29

As ¢ is arbitrary, this proves that (66) is fulfilled in [0, h]. Notice also that Lemma 7.1 gives
[ P < [ wdPdp<ct vie o,
RD RD

hence (10) gives that the Lipschitz constant of ¢ — p¥ in [0, A] is bounded by C,. In particular
Wo (i, ul¥) < C,h for t € [0,h]. We can repeat this process, setting wi = JVH(ul) and
introduce the following extensions on (h, 2h] :

(id + (t — h)w,zlv)# (Wi ul)

ufy

py = (d+ (= Rwy),pmh, W=

for t € [h,2h], with the Lipschitz constant of #% u) is bounded by C, and the continuity
equation (c) holding. By iterating this process N times we build a solution of (66), provided
NhC, < R,. In summary, we have obtained that

Waul, 1) < CoT,  [VHY)llp2grmoy < Cor W llp2uavmo) < Co (68)

for ¢t € [0,T]. The first inequality in (68) is due to our choice of T and to the fact that ¢ — p; is
C,—Lipschitz. The second inequality is a consequence of (H1’). To obtain the last inequality in
(68), we have used Lemma 7.1. By (68), we can readily conclude (a) and (b). The construction
of ul¥ and w}' is made such that (c) holds.

Step 2. (passage to the limit). By (a), (b), ¢t = uf¥ are equi-bounded in P2(RP”), and equi-
Lipschitz continuous. Hence, we may assume with no loss of generality that u) — y; narrowly
for any ¢ € [0, 7.

By the lower semicontinuity of moments we get y; € Po(RP) for any ¢, moreover, the lower
semicontinuity of Ws(+,-) under narrow convergence gives that the C,-Lipschitz bound in (a)
and the distance bound in (b) are preserved in the limit.

It remains to show that p; solves the Hamiltonian ODE. To this aim, taking into account
Lemma 7.2 and possibly extracting a subsequence (not relabelled for simplicity) we can assume
that there exist w; € L?(us;RP), with [witll12(u) < Co for ae. ¢, such that the space-time
measures wiv uiv dt weak*-converge to wyu.dt. We have to show that w; = Jv; for some v; €
T,/P>(RP). To this aim, notice that

T T
im [ () (3w, pp )dt = / o(t) (s wypdt Vo € C2(0,T), ¢ € CPRP;RP).
N—+o0 0 0
For 1 fixed, this means that the maps t +— (1; wi¥ V) weakly converge in L2(0,7T) to (1; Wyp)-
Therefore, a sequence of convex combinations of them converges a.e. to (9; wyu;) and we obtain

(s W) < Timsup(h; wi ) (69)
N—+o0
for a.e. ¢t € [0,T]. By a density argument we can find a Lebesgue negligible set ' C (0,7") such
that, for all ¢ € (0,7) \ N, (69) holds for all 9 € C,(RP;RP) (the closure, in the sup norm, of
C.(RP;RP)).
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Now, fix t € (0,7) \ N where (69) holds for all ¥ € C,(RP;R”) and apply Hahn-Banach
theorem to obtain that

o
wipy € (1) K
M=1

where Kj7; is the closed convex hull of {wi\’ u{v } N>Mm Wwith respect to the weak® topology.
Indeed, fix M and assume by contradiction that wu; does not belong to Kjs;. Then, we can
strongly separate w;u; and Ky by a continuous linear functional, induced by some function
¢ € C,(RP;RP), to obtain a contradiction with (69). As

wi'ull = (i = VN Wiy ), %)

(id+ (¢~ INO/N) TV H i), TV H oo )

we obtain also that

Wi € ﬁ o ({IVH byl : N2 M}),
M=1

hence (H2’) gives that wp; = Jviu, for some vy € 0H () N T, P2(RP).
Finally, the constancy of ¢ — H(y) follows by the (essential) boundedness of ||v¢|[;2(,,;r?)
and Theorem 5.2. QED.

Remark 7.5. One can readily check that if we assume that (H1’) and (H2”) hold and that
C,T < R,, then there exists a Hamiltonian flow py : [0,T] — D(H) starting from i € Po(RP),
satisfying (2), such that t — py is Co—Lipschitz. Furthermore, if (H3) holds, then t — H () is
constant.

We can prove now the following extension of Lemma 6.7, where we drop the boundedness
assumption on the support of v.

Lemma 7.6. Let v € Po(RP) and let V, W as in Lemma 6.7. Then the function H defined in
(57) satisfies (H1’), (H2’) and (H3).

Proof: (H3) has already been proved in Lemma 6.7, while (H1’) follows by the identity (58),
taking into account that

/ Iy — id2dp < / ly — of’dy = W2(u,v) V¥ € Tolu,v).
RD RDP xRPD

Finally, let us check property (H2’). Let wyu be the weak™ limit of the convex combinations

I(n) I(n)
Z)\?wiui with 0 < A} <1, Z)\Z" =1,

i=n i=n
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and, representing as w, = 7, — id for suitable 7, € ['y(un, V), define

i(n) Un)
fin =) Nis  An =D N € D(jin,v).
i=n

i=n

Let § be a distance in P(RP x RP) inducing the narrow convergence (see for instance Re-
mark 5.1.1 of [4]). As any limit point with respect to the narrow topology of {7,}>2, belongs to
T'y(u,v) (see for instance Proposition 7.1.3 of [4]), a compactness argument gives an infinitesimal
sequence {€,}°2; C (0,+00) and 7, € T'y(p,v) such that é(y,,7,) < €. In particular, setting
I, = Zl(n) A'n; € Ty(p,v) and noticing that § is induced by a norm, we have

1=n "\t

6('3’7” ﬁn) < supe;.

©>n

In particular, since I'y(u, ) is narrowly closed, we infer that any limit point 7, in the narrow
topology, of 4, belongs to I',(u,v). Let v be any of these limit points, along a subsequence
n(k), and notice that for any ¢ € C°(R?¢; R?¢) we have

N k) m _aay oy . .
(wisp) = Tim (3 N (% —id)uis¢) = lim oY~ T 0@ gy

- / {y — w3 0(@))dy = (7 — id)ps; o).
RP xRP

As ¢ is arbitrary, this proves that w = 4 — id, hence (18) and Proposition 4.3 yield w €
T, P2(RP) and w € 6H (u). QED.

8 Examples

In this section we briefly illustrate some PDE’s fitting in our framework.

Semigeostrophic equations.

(a) If we set d = 1 and v = xoL? in Lemma, 6.7, where Q C R? is a bounded Borel set with
L2(Q) =1, then

d oo
et Dy - (J1(T}, —id)pu) = 0

is the Hamiltonian ODE relative to —W2(u,v)/2, thanks to (30). This PDE is a variant of the
semigeostrophic equation. Notice that the (—1)—convexity of H is ensured by Proposition 4.3.
(b) When d =1 and J(p) = § [, p?dz, then the Hamiltonian ODE relative to

1 .
H{(p) := sup —5W5 (u, pL7) = J (p)
pEK
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corresponds to the semigeostrophic shallow water equation, studied in [17]. It suffices to apply
Lemma, 6.8.

(¢) Finally, if D = 3, J(z,y,2) = (-y,,0) and H(u) = —W2(u,v)/2, with v = xoL3, then the
Hamiltonian ODE is the 3-d semigeostrophic equation studied in [10] and [16].

Vlasov-Poisson and Vlasov-Monge-Ampére equations.

Suppose that d > 1, v = (xqL%) x dy, where Q C R? is a bounded Borel set with £¢(Q) = 1,
and dg is the Dirac mass in R%. Then, as shown in [18], the Hamiltonian in Lemma 6.7 decouples
into

1 1
H(/'l’) = _§M2(/j’2) - EWZQ(M17XQ£(1)7

where pu! (resp. p?) is the first (resp. second) marginal of u. This is due to the fact the optimal
transport map t;, between u € P¢(R??) and v has necessarily the form (t,0), where t is the
optimal transport map between p1 and xoL? and an analogous property holds at the level of
optimal plans, when y is a general measure in Pg(R2d).

Setting pu; = f(t,-)£* and py(z) = Jra f(t,z,v)dv (i.e. the first marginal of y, we have
then obtained the Hamiltonian for the Vlasov-Monge-Ampeére (VMA) equation studied in [12]
and more recently in [18], which is (up to a scaling argument)

{%f(t, z,v) + Dy - ('Uf(t,ac,'u)) =D, - (f(t,x,v)vmépt (:1:)) (70)
(id — V2 ®,,) 20t = xo L4, with |z|2/2 — ®,,(z) convex.

Note that when d = 1 the relation between p; and ®,, reduces to p; = 1 — 9,,®,, and so (70) is

nothing but the well-known Vlasov-Poisson equation. Our existence result Theorem 6.6 covers

the case of absolutely continuous solutions, while Theorem 7.4 covers, thanks to Lemma 7.6,

also the case of general initial data: in this case (VMA) has to be understood as follows:

g+ Dy - (vpae) = Dy - ((id — ) r) (71)
v € To(uf, xaL?)-

Indeed, any 7' € To(ut, xL?% x &) can be written as a product v x (id x 0)#u%, with v €
To(pf, xal?), so that 4' = (¥,0). Finally, it would be interesting to compare carefully, in one
space dimension, our existence result for the Vlasov-Poisson equation with the existence result
in [47]. Here we just mention that on the one hand our result allows more general initial data
(no exponential decay of the velocities is required), on the other hand the solution built in [47]
has additional space-time BV regularity properties related to velocity averaging, that are used
to define the product D, - (fV,®,,).
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