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Chapter 1

Introduction

In this Ph.D. Thesis we shall be concerned with some aspects of the central problem of the Calculus
of Variations which is to find the minimum points of functionals. In our study we will consider, in
particular, the integral functional

I(u, Ω) =
∫

Ω

f(x, u(x),∇u(x))dx, (1.1)

and the supremal functional

S(u, Ω) = ess sup
x∈Ω

g(x, u(x),∇u(x)), (1.2)

where Ω ⊆ Rn is an open set, f, g are two Borel functions from Ω× R× Rn with values in [0,∞]
and u belongs to a suitable space of functions. In the following we will always denote by x, s and
ξ the three variables of f and g, called geometric, function and gradient variable respectively.

Some of the most powerful tools to prove the existence of minimum points for such functionals
are the so called Direct Methods. These methods move by the fact that, given a topological space
(X, τ), we have that a function F : X → [0,∞] admits a minimum point every time F is lower
semicontinuous (briefly l.s.c.)1, that is,

xh, x ∈ X,xh → x in τ =⇒ F (x) ≤ lim inf
h→∞

F (xh),

and there exists a compact2 minimizing sequence, that is a sequence {yh}∞h=1 ⊆ X which admits a
converging subsequence and such that

inf
x∈X

F (x) = lim
h→∞

F (yh).

Indeed, in these hypotheses, we have that every limit point y0 of {yh}∞h=1 satisfies the inequality

F (y0) ≤ lim inf
h→∞

F (yh) = inf
x∈X

F (x),

so that y0 is just a minimum point of F .
Clearly the two conditions considered above work in opposite directions: indeed, roughly speak-

ing, the lower semicontinuity of F is simpler to prove when the topology τ has many open sets,
1Actually this definition is the one of sequential lower semicontinuity: however, since we will always deal with

this notion, which may be different from the topological notion of lower semicontinuity given by means of open
sets, we simplify our notations with this little abuse. Note also that when the space (X, τ) is a metric space, as for
instance Rn endowed with the Euclidean distance, the two notions agree.

2Even in this case, since we will always deal with the notion of sequential compactness, we can simplify our
notations.

1



2 CHAPTER 1. INTRODUCTION

while, on the contrary, we have more opportunities to prove the compactness of some minimizing
sequence when τ has few open sets.

Now, if we consider the functionals I and S given by (1.1) and (1.2), in order to apply the
Direct Methods, we have to find a suitable topological space on which they can be defined and
such that it allows to prove the lower semicontinuity and the compactness. It is worth noting
that the notion of lower semicontinuity was introduced for the first time in the framework of the
Calculus of Variations by Tonelli in 1913 just to treat functionals like (1.1) (see the monographs
[70] and [71]; for further details see also [62]).

Since our aim is to find regular minimum points of I and S, certainly the first attempt to
try is to define them on C1(Ω), that is, the set of the derivable functions on Ω with continuous
first derivatives, endowed with its natural topology. However, it is easy to see that this space is
not suitable to apply the Direct Methods since its topology, even if it makes easy the proof of
the lower semicontinuity of the considered functionals, requires too much conditions to prove the
compactness of the minimizing sequences. Thus, since we want I and S to be defined at least on
C1(Ω), we need to find more proper larger functional spaces on which they can be defined and in
which, this time, some minimum points can be found by more powerful compactness theorems.

The Sobolev spaces, whose theory has been developed to solve this particular kind of problems,
provide a suitable domain of definition for I and S, because, by the properties of their weak
(weak∗) topologies, the compactness of the minimizing sequences can be obtained by requiring
simple conditions on the functionals, even if the lower semicontinuity could be more difficult to
prove.

The lower semicontinuity of I and S defined on Sobolev spaces has been deeply studied and
necessary and sufficient conditions on f and g to obtain it have been found (see for instance De
Giorgi [35], Ioffe [56] and Olech [65] for the integral setting and Barron and Jensen [14], Barron,
Jensen and Wang [15] and Barron and Liu [16] for the supremal setting). In particular, the
fundamental role of the convexity of f and of the level convexity of g in the gradient variable has
been understood3.

Assuming now that f and g guarantee the lower semicontinuity of I : W 1,p
loc (Ω) → [0,∞] (with

1 < p < ∞) and S : W 1,∞
loc (Ω) → [0,∞], we can simply prove the existence of a minimum by

letting, for instance,
f(x, s, ξ) ≥ c(|s|p + |ξ|p), (1.3)

where c > 0, and
g(x, s, ξ) ≥ θ∞(|s|+ |ξ|), (1.4)

where θ∞ : [0,∞) → [0,∞) and limt→∞ θ∞(t) = ∞. Indeed, (1.3) and (1.4) guarantee that every
minimizing sequence of I and S is locally bounded in W 1,p

loc (Ω) and W 1,∞
loc (Ω) respectively and then

compact with respect to their weak (weak∗) topologies.
Obviously, the minimum points found in this way can be considered only as generalized min-

imum points of the starting problem; the question of knowing if they really belong to C1(Ω) is
proper to the so called regularity theory4.

Nevertheless a large class of remarkable functionals, as the class of integral functionals in which
the integrand grows only linearly, does not satisfy the coercivity conditions (1.3) and (1.4) so that

3As far as possible, from now on, f will denote a convex (in the gradient variable) function and g will denote
a level convex (in the gradient variable) one. However, we will always state all the properties of every function
considered in the statements and proofs.

4We point out that, at least in the integral setting, it may happen that not only such a generalized minimum
point does not belong to C1(Ω) but also

inf
n

I(u, Ω) : u ∈ W 1,p
loc (Ω)

o
< inf

�
I(u, Ω) : u ∈ C1(Ω)

	
.

When this particular situation occurs we say we have a Lavrentiev (or Gap) phenomenon (see [57], [60] and [73]).
Nevertheless the Sobolev spaces have such an important role that often a minimum point in these spaces is already
considered satisfactory.
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the compactness theorems on the Sobolev spaces cannot be used anymore. Therefore, we would
like to extend again the domain of definition of our functionals on larger topological spaces as, for
instance, L1

loc(Ω), C(Ω) or BVloc(Ω), endowed with their natural topologies, in order to look for
the minimum points in these new spaces: clearly this strategy requires to prove more difficult lower
semicontinuity theorems, but it allows to have better compactness theorems (we will consider in
particular the case of BVloc(Ω) endowed with the w∗-BVloc(Ω) topology).

However, functions in the spaces quoted above don’t have a gradient representable as a function,
contrarily to the ones in Sobolev spaces. Thus, it is not clear what could be the meaning of I and
S when computed, for instance, on a function belonging to BVloc(Ω). As a consequence, it must
be understood how we can build up extensions of I and S on these spaces in such a way that they
are l.s.c. with respect to their own topologies.

Before presenting one of the possible answers to this question, let us give a short background
on the area of the nonparametric surfaces. We follow Serrin [68].

Let Ω ⊆ R2 be a bounded open set with Lipschitz boundary. If u ∈ Aff(Ω), the set of the
piecewise affine functions on Ω (that is, the functions such that their graph is a polyhedral surface;
see Chapter 2) the notion of area is elementary:

A(u, Ω) = Area(graph(u)) =
∑

area of the plane faces =
∫

Ω

√
1 + |∇u(x)|2dx.

However, it might be of interest a definition of the area that can be meaningful even for a continuous
curved surface. To this purpose, we could use the integral expression defined above but it is not so
clear which class of functions it can be really applied to. Then, as for the definition of the arc length,
we could define the area of a continuous surface as the supremum of the areas of the approximating
polyhedra, but, as Schwartz’s counterexample shows, this method leads to contradictions (see for
instance [27] page 540).

Lebesgue had the brilliant idea to define the area of a continuous surface obtained as the graph
of u ∈ C(Ω), as

A(u, Ω) = inf
{

lim inf
h→∞

A(uh, Ω) : uh ∈ Aff(Ω), uh → u in L∞(Ω)
}

.

Subsequently Serrin proved that not only, as obvious, A is l.s.c. on C(Ω) with respect to the
uniform convergence, but also that, for every u ∈ Aff(Ω), A(u, Ω) = A(u, Ω), that is A is really an
extension of A (see [68] Theorem 1): these ideas are the basis of the modern concept of relaxation.

For our purposes, since we focus our attention on the problem of the extension of functionals,
we introduce the notion of relaxation as follows5.

Let us consider a topological space (X, τ), Y ⊆ X be a dense subset with respect to τ and
F : Y → [0,∞]. We can always define the following trivial extension of F on X, given by

F̃ (x) =
{

F (x) if x ∈ Y,
∞ if x 6∈ X \ Y,

but in general this functional is not l.s.c. on X with respect to τ . Nevertheless, by means of F̃ ,
we can define the functional R[τ ](F ) : X → [0,∞], called the relaxed functional of F on X with
respect to τ , as

R[τ ](F )(x) = sup
{

G(x) : G ≤ F̃ , G is l.s.c. with respect to τ
}

;

note that the supremum of any family of l.s.c. functionals is l.s.c. too. Clearly, R[τ ](F ) is the
greatest functional less or equal to F̃ which is l.s.c. on X with respect to τ and it can be easily

5As for the notion of lower semicontinuity, even in this case the definition that follows is the one of sequential
relaxation.
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proved that it can be characterized, for every x ∈ X, as

R[τ ](F )(x) = inf
{

lim inf
h→∞

F (xh) : xh ∈ Y, xh → x in τ

}
. (1.5)

It also satisfies the equality
inf

x∈X
R[τ ](F )(x) = inf

y∈Y
F (y), (1.6)

that provides important information on the original minimum problem on Y .
However, even if the lower semicontinuity is now satisfied, it may happen that the functional

R[τ ](F ) just built up is not an extension of F on X since it could exist x ∈ Y such that R[τ ](F )(x) <
F (x). In order to really have an extension we must have R[τ ](F ) = F on Y and this happens if
and only if F is l.s.c. on Y with respect to τ , that is

xh, x ∈ Y, xh → x in τ =⇒ F (x) ≤ lim inf
h→∞

F (xh),

For these reasons, in order to obtain further extensions via relaxation of I and S on certain
topological spaces larger than the Sobolev ones, first of all we have to understand the lower semicon-
tinuity properties of these functionals defined on Sobolev spaces with respect to the new considered
topologies. This argument is developed in Chapters 4 and 5.

In Chapter 4 we look for conditions on f in order to obtain the lower semicontinuity of I on
W 1,1

loc (Ω) with respect to the L1
loc(Ω) convergence. This is a classical problem in the Calculus of

Variations, first studied by Serrin in [69]. Here we propose slightly different versions of the results
contained in the papers of Gori and Marcellini [55], Gori, Maggi and Marcellini [54] and Gori and
Maggi [53], in which new and very mild conditions on f that guarantee the lower semicontinuity
of I are given.

The proofs of the main results of Chapter 4 are based on certain approximation theorems for
convex functions (depending continuously on a parameter), collected in Chapter 3. In particular,
we propose the proofs of two very recent theorems contained in [53] which provide new methods
of approximations by means of convex cones and of strictly convex functions.

In Chapter 5 we consider the functional S defined on W 1,∞
loc (Ω) and we study its lower semicon-

tinuity with respect to the L∞loc(Ω) topology. Some conditions on g in this contest have been found
first by Gori and Maggi [52]: in this chapter we improve these results, considering the problem of
the necessary conditions too.

As already stated, the theorems of Chapters 4 and 5 can be read as results that provide
hypotheses on f and g, that guarantee the equalities R

[
L1

loc

]
(I) = I and R [L∞loc] (S) = S on

W 1,1
loc (Ω) and W 1,∞

loc (Ω) respectively. Nevertheless these results give no information about the
possibility to represent (and to easily compute) R

[
L1

loc

]
(I) on L1

loc(Ω) \ W 1,1
loc (Ω) as an integral

either R [L∞loc] (S) on C(Ω) \W 1,∞
loc (Ω) as a supremal6.

Moving from these remarks, in Chapter 7 we consider I and S defined on W 1,1
loc (Ω) and we

approach the particular problem to understand if it is possible to find one of their extensions on
BVloc(Ω) that is l.s.c. with respect to the w∗-BVloc(Ω) topology and such that could be explicitly
represented on this space as an integral and as a supremal respectively.

We stress that the relaxation is not the unique strategy to extend the functionals I and S
on BVloc(Ω) in a lower semicontinuous way: indeed, another appropriate way to extend I and S,
different from the relaxation, is suggested by Serrin in [68] and [69] and described below.

First of all let us consider the following notion of convergence: given an open set Ω and a
function u ∈ BVloc(Ω), we say that a sequence {uh}∞h=1 converges to u in w∗-BVloc(l Ω) if there
exists a sequence {Ωh}∞h=1 of open sets such that uh ∈ BVloc(Ωh) and, for every open set Ω′ ⊂⊂ Ω,

6For what concerns the integral setting, the problem of the representation of R
�
L1

loc

�
(I) has been deeply studied,

and several general integral formulas to represent R
�
L1

loc

�
(I) at least on BVloc(Ω) have been found (see for instance

Dal Maso [30]).
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we have Ω′ ⊂⊂ Ωh if h is large enough and uh → u in w∗-BV (Ω′) as h → ∞. Then, for every
u ∈ BVloc(Ω), we define

I∗(u, Ω) = inf
{

lim inf
h→∞

I(uh,Ωh) : uh ∈ W 1,1
loc (Ωh), uh → u in w∗-BVloc(l Ω)

}
, (1.7)

and

S∗(u, Ω) = inf
{

lim inf
h→∞

S(uh,Ωh) : uh ∈ W 1,1
loc (Ωh), uh → u in w∗-BVloc(l Ω)

}
. (1.8)

The analogy between I∗ and S∗ and the functionals R [w∗-BVloc] (I) and R [w∗-BVloc] (S) is clear.
Moreover, for every u ∈ BVloc(Ω), it holds

I∗(u, Ω) ≤ R [w∗-BVloc] (I)(u,Ω) and S∗(u, Ω) ≤ R [w∗-BVloc] (S)(u, Ω),

and, as we will see, in some cases even the equality holds.
In Chapter 7 we present the main results of the theory involving I∗, developed by Serrin in

[69] and by Goffman and Serrin in [49], and of the one about S∗, developed by Gori in [51]. In
particular, when f and g depend only on the gradient variable (and of course they are convex and
level convex respectively), we prove not only that I∗ and S∗ extend I and S on BVloc(Ω) and
that they are l.s.c. with respect to the w∗-BVloc(Ω) convergence, but also, that they can be also
represented on BVloc(Ω) as an integral and a supremal given by 7

∫

Ω

f(∇u(x))dx +
∫

Ω

f∞
(

dDsu

d|Dsu| (x)
)

d|Dsu|(x),

and [
ess sup

x∈Ω
g(∇u(x))

]
∨

[
|Dsu|-ess sup

x∈Ω
g\

(
dDsu

d|Dsu| (x)
)]

.

In the same chapter, by means of the representation formula found for S∗ and following the
analogous theory developed for the integral functionals by Anzellotti, Buttazzo and Dal Maso [8],
we define also a generalized Dirichlet problem for supremal functionals defined on BV (Ω) and we
prove the existence of a minimum on BV (Ω) even if g is not coercive (that is, (1.4) does not hold):
in some sense, this existence result justifies the extension of S on BV (Ω).

It is worth noting that the lower semicontinuity theorems and the representations formulas on
BVloc(Ω) about the functionals (1.7) and (1.8), presented in Chapter 7, are obtained as corollaries
of more general results proved for analogous functionals defined on Radon measures: in fact in
Chapter 6 the well known theory for the integral functional (see [49], [69]) is presented together
with several new results about the supremal setting, which generalize the paper of Gori [51].

We stress that, even if these results about the integral functionals are classical, we present their
proofs together with the ones for the supremal functionals just to show the complete analogy that
there exists, even under a technical point of view, between integral and supremal settings.

Moreover in the same chapter, starting by the lower semicontinuity results obtained by Bou-
chitté and Buttazzo for non convex integral functionals defined on Radon measures (see [18]), we
approach the analogous problem for the non level convex supremal ones, finding necessary and
sufficient conditions. When these results are applied to the setting of the functions of bounded
variation, they lead to the existence of a minimum point for a particular non level convex and one
dimensional problem, stated and solved in Chapter 7, which presents some similar aspects to the
celebrated Mumford-Shah image segmentation problem (see also Alicandro, Braides and Cicalese
[3]).

We conclude saying that Chapter 2 contains some brief notes on measure theory, functions of
bounded variation and convex analysis, in which the main definitions and theorems on these topics

7See Chapter 2 for notations.
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are recalled. However, in this chapter, we prove also a certain number of new propositions, most
of them about the fine properties of level convex functions, that are fundamental for the proofs of
the remaining chapters.



Chapter 2

Preliminary results

In this chapter we introduce most of the definitions and notations we will need, and we collect
several propositions and theorems that will be useful tools to prove the main results presented in
this thesis. In the following we will implicitly refer to this chapter for every (non trivial) symbol
used.

2.1 Notes on measure theory

Let us consider the measurable space (Ω,B(Ω)) where Ω ⊆ Rn is an open set and B(Ω) is the
σ-algebra of the Borel subsets of Ω.

We say that K is well contained in Ω (briefly K ⊂⊂ Ω) if cl(K) ⊆ Ω, that is, the closure of K
is a subset of Ω. Moreover, for every x ∈ Rn and ρ > 0, we set

B(x, ρ) = {y ∈ Rn : |x− y| < ρ} and B(x, ρ) = cl (B(x, ρ)) .

We set also Sn−1 = {x ∈ Rn : |x| = 1}.
If µ : B(Ω) → [0,∞] is a positive measure then it is called a positive Borel measure on Ω.

Moreover µ is called a positive Radon measure (resp. finite positive Radon measure) on Ω, if, for
every K ∈ B(Ω), K ⊂⊂ Ω, it is also µ(K) < ∞ (resp. µ(Ω) < ∞): the set of the positive Radon
measures on Ω is denoted by M+(Ω). Obviously the Lebesgue measure on Rn, denoted with Ln,
belongs to M+(Rn) so as the standard Dirac measure centered on x ∈ Rn denoted with δx.

Let us fix m ∈ N: if λ : B(Ω) → Rm is a vector measure then it is called a finite Radon measure
on Ω while if λ : {K ∈ B(Ω) : K ⊂⊂ Ω} → Rm and, for every K ∈ B(Ω), K ⊂⊂ Ω, λ is a vector
measure on B(K) then it is called a Radon measure on Ω. We denote the set of Radon measures
(resp. finite Radon measures) with Mloc(Ω,Rm) (resp. M(Ω,Rm))1.

Let us consider now λ ∈Mloc(Ω,Rm) ∪M+(Ω). For every B ∈ B(Ω) the total variation2 of λ
on B is defined by3

|λ|(B) = sup





r∑

j=1

|λ(Bj)| : Bj ∈ B(Ω), Bj ⊂⊂ Ω,

r⋃

j=1

Bj ⊆ B,Bi ∩Bj = ∅,∀i 6= j



 . (2.1)

It can be proved that |λ| ∈ M+(Ω), that λ ∈M(Ω,Rm) implies |λ|(Ω) < ∞ and that if λ ∈M+(Ω)
then |λ| = λ.

1Clearly M+(Ω) ⊆Mloc(Ω,R),
�
µ ∈M+(Ω) : µ(Ω) < ∞	 ⊆M(Ω,R) and M(Ω,Rm) ⊆Mloc(Ω,Rm).

2We present here the definition of total variation directly for Radon measures: it is simple to verify that, when
λ is a finite Radon measure, it is equivalent to the usual one (see for instance [7] page 3).

3When x ∈ Rn, |x| means ‖x‖Rn the standard Euclidean norm on Rn.

7
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Given now λ ∈ Mloc(Ω,Rm) ∪ M+(Ω) we say that λ is concentrated on a set B ∈ B(Ω) if
|λ|(Ω \ B) = 0. If λ1, λ2 ∈ Mloc(Ω,Rm) ∪M+(Ω) we say that λ1 is singular with respect to λ2

(briefly λ1 ⊥ λ2) if there exist B1, B2 ∈ B(Ω) such that λ1 is concentrated in B1, λ2 is concentrated
in B2 and B1 ∩B2 = ∅.

If now we consider λ ∈ Mloc(Ω,Rm) ∪M+(Ω) and µ ∈ M+(Ω) we say that λ is absolutely
continuous with respect to µ (briefly λ << µ) if µ(B) = 0 implies |λ|(B) = 0. Moreover, fixed
E ∈ B(Ω), we denote with λxE the restriction of λ to E, that is, the element of Mloc(Ω,Rm) ∪
M+(Ω) defined, for every B ∈ B(Ω) (when λ 6∈ M(Ω,Rm) ∪M+(Ω), we need B ⊂⊂ Ω too), as
(λxE) (B) = λ(E ∩B). For every E ∈ B(Rn) we will always denote with Ln the measure LnxE.

We write for short λ(x) instead of λ({x}) and we denote

Aλ = {x ∈ Ω : λ(x) 6= 0} ,

the set of the atoms of λ. Finally, if µ ∈M+(Ω), we define the support of µ as the set

spt(µ) = cl
({

x ∈ Ω : ∀ρ > 0, µ(B(x, ρ)) > 0
})

,

while, if λ ∈Mloc(Ω,Rm), we set spt(λ) = spt(|λ|): note that λ is concentrated on spt(λ).

Let us consider now a Borel function u : Ω → R, that is a function which is measurable with
respect to the σ-algebra B(Ω) (the same definition holds even if u : Ω → Rm), and µ ∈M+(Ω). It
is surely well known the notion of integral on B ∈ B(Ω) of u with respect to µ. We prefer instead
to remember that the essential supremum on B ∈ B(Ω) of u with respect to µ is defined as

µ-ess sup
x∈B

u(x) =





inf

{
sup

x∈B\A
u(x) : A ∈ B(Ω), A ⊆ B, µ(A) = 0

}
if µ(B) 6= 0,

−∞ if µ(B) = 0,

pointing out that, if µ << Ln, then4

µ-ess sup
x∈B

u(x) ≤ ess sup
x∈B

u(x). (2.2)

We set also, for every a, b ∈ R, the notations a ∨ b = sup{a, b} and a ∧ b = inf{a, b}.
Let µ ∈ M+(Ω), m ≥ 1 and u : Ω → Rm be a Borel function: we say u ∈ L1

µ(Ω,Rm) (resp.
L∞µ (Ω,Rm)) if it is

∫

Ω

|u(x)|dµ(x) < ∞,

(
resp. µ-ess sup

x∈Ω
|u(x)| < ∞

)
,

and, in this case, we set
∫

Ω

u(x)dµ(x) =
(∫

Ω

u1(x)dµ(x), . . . ,
∫

Ω

um(x)dµ(x)
)
∈ Rm,

where u = (u1, . . . , um). When, for every K ∈ B(Ω), K ⊂⊂ Ω and µ(K) > 05, u ∈ L1
µ(K,Rm)

(resp. L∞µ (K,Rm)), we say u ∈ L1
loc,µ(Ω,Rm) (resp. L∞loc,µ(Ω,Rm))6.

Fixed λ ∈Mloc(Ω,Rm), we say that a scalar valued (resp. Rm-valued) Borel function u belongs
to L1

λ(Ω) (resp. L1
λ(Ω,Rm)) if ∫

Ω

|u(x)|d|λ|(x) < ∞,

4When the Lebesgue’s measure is considered, we write for short ess sup instead of Ln-ess sup.

5This last condition on K is clearly relevant only to define L∞loc,µ(Ω,Rm).
6When m = 1 we write for short L1

µ(Ω), L∞µ (Ω), L1
loc,µ(Ω) and L∞loc,µ(Ω) and when µ = Ln, µ is omitted.
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and, in this case, we set
∫

Ω

u(x)dλ(x) =
(∫

Ω

u(x)dλi(x), . . . ,
∫

Ω

u(x)dλm(x)
)
∈ Rm,

(
resp.

∫

Ω

u(x)dλ(x) =
m∑

i=1

∫

Ω

ui(x)dλi(x) ∈ R
)

,

where λ = (λ1, . . . , λm) and, for every i ∈ {1, . . . ,m},
∫

Ω

u(x)dλi(x) =
∫

Ω

u(x)dλ+
i (x)−

∫

Ω

u(x)dλ−i (x),

(
resp.

∫

Ω

ui(x)dλi(x) =
∫

Ω

ui(x)dλ+
i (x)−

∫

Ω

ui(x)dλ−i (x)
)

,

where λ+
i = |λi|+λi

2 and λ−i = |λi|−λi

2 belong to M+(Ω). When, for every K ∈ B(Ω), K ⊂⊂ Ω,
u ∈ L1

λ(K) (resp. L1
λ(K,Rm)), we say u ∈ L1

loc,λ(Ω) (resp. L1
loc,λ(Ω,Rm)).

If we consider now µ ∈M+(Ω) and a function u ∈ L1
µ(Ω,Rm) (resp. L1

loc,µ(Ω,Rm)) we denote
with u · µ the element of M(Ω,Rm) (resp. Mloc(Ω,Rm)) defined, for every B ∈ B(Ω) (resp.
B ∈ B(Ω), B ⊂⊂ Ω), as

(u · µ)(B) =
∫

B

u(x)dµ(x);

it is well known that |u · µ| = |u| · µ and u · µ << µ. A quite standard result of measure theory is
that, given µ ∈M+(Ω), we can decompose in a unique way7 a measure λ ∈Mloc(Ω,Rm) as

λ = λa · µ + λs, (2.3)

where λa ∈ L1
loc,µ(Ω,Rm) and λs ∈ Mloc(Ω,Rm) with λs ⊥ µ: we call λa · µ the absolutely

continuous part of λ while λs its singular part. With the notation quoted above, we can also write

λ = λa · µ + λc + λ#, (2.4)

where λc = λsx(Ω \ Aλ) is said the Cantor part of λ while λ# = λsxAλ is said its atomic part.
These decompositions of λ obviously depend on µ even if in the notations λa, λs, λc and λ# the
measure µ is not expressly named: however, every time one of these decompositions is used, the
measure µ will be clear by the context. Finally note that, if λ ∈M(Ω,Rm), then λa ∈ L1

µ(Ω,Rm)
and λs, λc, λ# ∈M(Ω,Rm).

The linear space M(Ω,Rm), endowed with the norm ‖λ‖M = |λ|(Ω), is a Banach space iden-
tifiable with the dual of the linear space C0(Ω,Rm), (that is, the set of the continuous functions
ϕ defined on Ω with values on Rm with the property that, for every ε > 0, there exists Kε ⊂⊂ Ω
such that, for every x ∈ Ω \Kε, |ϕ(x)| < ε), by the duality

〈λ, ϕ〉 =
∫

Ω

ϕ(x)dλ(x) =
m∑

i=1

∫

Ω

ϕi(x)dλi(x),

while the linear spaceMloc(Ω,Rm) can be identified with the dual of the locally convex linear space
Cc(Ω,Rm), (that is, the set of the continuous functions on Ω with values on Rm such that every
component has compact support), with the same duality. We remember that, given a function

7This is the Radon-Nikodým Theorem (see for instance [7] Theorem 1.28). The uniqueness of the decomposition
has to be interpreted in this way: if λ = λa

1 · µ + λs
1 = λa

2 · µ + λs
2, then, for µ-a.e. x ∈ Ω, λa

1(x) = λa
2(x) and, for

every B ∈ B(Ω), B ⊂⊂ Ω, λs
1(B) = λs

2(B).
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ϕ ∈ C(Ω,Rm) (that is, the set of the continuous functions on Ω with values on Rm)8, its support
is defined as

spt(ϕ) = cl ({x ∈ Ω : ϕ(x) 6= 0}) .

For this, given λh, λ ∈ Mloc(Ω,Rm) (resp. M(Ω,Rm)), we say λh → λ in w∗-Mloc(Ω,Rm) (resp.
w∗-M(Ω,Rm)) if, for every ϕ ∈ Cc(Ω) (resp. C0(Ω)), we have

lim
h→∞

∫

Ω

ϕ(x)dλh(x) =
∫

Ω

ϕ(x)dλ(x).

Let us note that, for technical reasons, in the previous definition we have considered scalar valued
test functions ϕ: however, the definitions given agree with the ones obtained considering vector
value test functions and the duality before described.

It is suitable at this point to introduce also the following notion of convergence. Let {Ωh}∞h=1

be a family of open sets and let λh ∈ Mloc(Ωh,Rm), λ ∈ Mloc(Ω,Rm): we say λh → λ in
w∗-Mloc(l Ω,Rm) if, for every K ⊂⊂ Ω, we have K ⊆ Ωh if h is large enough and, for every
ϕ ∈ Cc(Ω),

lim
h→∞

∫

Ωh

ϕ(x)dλh(x) =
∫

Ω

ϕ(x)dλ(x).

The following compactness theorem for Radon measures holds (see for instance [7] Theorem
1.59 and Corollary 1.60).

Theorem 2.1. Let {λh}∞h=1 ⊆Mloc(Ω,Rm) (resp. M(Ω,Rm)) be a sequence such that, for every
K ⊂⊂ Ω,

sup
{
|λh|(K) : h ∈ N

}
< ∞

(
resp. sup

{
|λh|(Ω) : h ∈ N

}
< ∞

)
.

Then there exists a subsequence {λhk
}∞k=1 and λ ∈ Mloc(Ω,Rm) (resp. M(Ω,Rm)) such that

λhk
→ λ in w∗-Mloc(Ω,Rm) (resp. w∗-M(Ω,Rm)).

Given a measure λ ∈Mloc(Ω,Rm) and ρ > 0, we define the convolution of λ with step ρ as

λρ(x) =
∫

B(x,ρ)

ρ−nk

(
x− y

ρ

)
dλ(y) : Ωρ → Rm. (2.5)

In the previous definition k : Rn → [0, 1] is a convolution kernel, that is k ∈ C∞c (Rn), for every
x ∈ Rn, k(x) = k(−x), spt(k) ⊆ B(0, 1) and

∫
Rn k(x)dx = 1 (we require also that k(0) 6= 0), and

Ωρ = {x ∈ Ω : d(x, ∂Ω) > ρ} ,

where d(x, ∂Ω) = inf{|x− y| : y ∈ ∂Ω} and ∂Ω is the topological boundary of Ω.
It is well known that λρ ∈ C∞(Ωρ,Rm) and it can be simply proved using Fubini’s Theorem

that λρ · Ln → λ in w∗-Mloc(l Ω,Rm) as ρ → 0 (see [7] Theorem 2.2). In the following, referring
to a convolution kernel k, we will set kρ(x) = ρ−nk

(
ρ−1x

)
.

Now we propose a theorem on measures that describes the point-wise behavior of the convolu-
tions of a measure and that will be fundamental in proving some results of the following chapters.
The principal tools used in its proof are the Besicovich’s Derivation Theorem for Radon measures
and the Lebesgue’s points Theorem (see for instance [7] Theorem 2.22 and Corollary 2.23). This
theorem generalizes Theorem 3 in [51].

Theorem 2.2. Let λ ∈ Mloc(Ω,Rm). Then, referring to the decomposition (2.3) with respect to
Ln, we have

(i) for Ln-a.e. x ∈ Ω, lim
ρ→0

|λρ(x)− λa(x)| = 0;

8When m = 1 we write for short C(Ω), C0(Ω) and Cc(Ω).
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(ii) for |λs|-a.e. x ∈ spt(λs), there exists a sequence of positive numbers {ρh}∞h=1, depending on
x and decreasing to zero, such that9

lim
h→∞

∣∣∣∣∣
dλs

d|λs| (x)− λρh
(x)∫

B(x,ρh)
kρh

(x− y)d|λs|(y)

∣∣∣∣∣ = 0. (2.6)

For simplicity we prove Theorem 2.2 by means of two lemmas that, in our opinion, are inter-
esting on their own. The first lemma is a simple fact from the measure theory and, in this form,
can be found in [6], Theorem 2.3.

Lemma 2.3. Let µ ∈ M+(Ω) such that µ⊥Ln. Then, for µ-a.e. x ∈ spt(µ) and, for every
σ ∈ (0, 1), we have

σn ≤ lim sup
ρ→0

µ(B(x, σρ))
µ(B(x, ρ))

≤ 1.

Proof. Let us set

Ω(µ) =
{

x ∈ spt(µ) : lim
ρ→0

µ(B(x, ρ))
ρn

= ∞
}

: (2.7)

since µ(Ω \Ω(µ)) = 0 and Ln(Ω(µ)) = 0 (see [7] Theorem 2.22), we achieve the proof showing the
wanted relation for every x ∈ Ω(µ). Let us suppose, by contradiction, there exist x0 ∈ Ω(µ) and
σ0 ∈ (0, 1) such that

σn
0 > lim sup

ρ→0

µ(B(x0, σ0ρ))
µ(B(x0, ρ))

.

Then there exists ρ0 such that, for every 0 < ρ ≤ ρ0, µ(B(x0, σ0ρ)) ≤ σn
0 µ(B(x0, ρ)). If we call

ω(ρ) = µ(B(x0, ρ)) we have that, for every 0 < ρ ≤ ρ0, ω(σ0ρ) ≤ σn
0 ω(ρ). Then, for every h ∈ N,

σ−nh
0 ω(σh

0 ρ0) ≤ ω(ρ0), thus

µ(B(x0, σ
h
0 ρ0))

(σh
0 ρ0)

n ρn
0 ≤ ω(ρ0) = µ(B(x0, ρ0)) < ∞.

If now h → ∞, then σh
0 ρ0 → 0 and the left hand side of the previous inequality tends to infinity:

thus the contradiction is found.

In particular, fixed σ ∈ (0, 1), for µ-a.e. x ∈ spt(µ), there exists a sequence {ρh}∞h=1, depending
on x and decreasing to zero, such that, for every h ∈ N,

µ(B(x, σρh)) ≥ σn+1µ(B(x, ρh)). (2.8)

Lemma 2.4. Let λs ∈ Mloc(Ω,Rm), µ ∈ M+(Ω) such that λs⊥Ln and µ << Ln. Then, for
|λs|-a.e. x ∈ spt(λs), there exists a sequence of positive numbers {ρh}∞h=1, depending on x and
decreasing to zero, such that

lim
h→∞

∫
B(x,ρh)

kρh
(x− y)dµ(y)∫

B(x,ρh)
kρh

(x− y)d|λs|(y)
= 0 (2.9)

and

lim
h→∞

∫
B(x,ρh)

kρh
(x− y)

∣∣∣ dλs

d|λs| (y)− dλs

d|λs| (x)
∣∣∣ d|λs|(y)

∫
B(x,ρh)

kρh
(x− y)d|λs|(y)

= 0. (2.10)

9We point out that, for |λs|-a.e. x ∈ spt(λs), dλs

d|λs| (x) ∈ Sm−1 and
R

B(x,ρh) kρh (x− y)d|λs|(y) 6= 0.



12 CHAPTER 2. PRELIMINARY RESULTS

Proof. Obviously λs⊥µ. Thus, let us consider Ω(|λs|) defined as in (2.7), and the set

Ω0 = Ω(|λs|) ∩
{

x ∈ spt(λs) : lim
ρ→0

µ(B(x, ρ))
|λs|(B(x, ρ))

= 0, x is a Lebesgue’s point for
dλs

d|λs|
}

.

Clearly |λs|(Ω \ Ω0) = 0: then the proof is achieved if, for every x ∈ Ω0, (2.9) and (2.10) hold.
By the properties of the convolution kernel k, we can find σ ∈ (0, 1) and c, M > 0 such that, for
every x ∈ Rn, k(x) ≤ M and, for every x ∈ B(0, σ), k(x) ≥ c (remember that k(0) 6= 0). Thus, let
us fix x ∈ Ω0 and, since Ω0 ⊆ Ω(|λs|), let us consider, with respect to |λs|, the sequence {ρh}∞h=1

(ρh < σ) given by (2.8). Then we have

0 ≤ lim
h→∞

∫
B(x,ρh)

kρh
(x− y)dµ(y)∫

B(x,ρh)
kρh

(x− y)d|λs|(y)
= lim

h→∞

∫
B(x,ρh)

k
(

x−y
ρh

)
dµ(y)

∫
B(x,ρh)

k
(

x−y
ρh

)
d|λs|(y)

≤ lim
h→∞

M

c

µ(B(x, ρh))
|λs|(B(x, σρh))

= lim
h→∞

M

c

µ(B(x, ρh))
|λs|(B(x, ρh))

· |λ
s|(B(x, ρh))

|λs|(B(x, σρh))
≤ lim

h→∞
M

cσn+1

µ(B(x, ρh))
|λs|(B(x, ρh))

= 0,

and

0 ≤ lim
h→∞

∫
B(x,ρh)

kρh
(x− y)

∣∣∣ dλs

d|λs| (y)− dλs

d|λs| (x)
∣∣∣ d|λs|(y)

∫
B(x,ρh)

kρh
(x− y)d|λs|(y)

= lim
h→∞

∫
B(x,ρh)

k
(

x−y
ρh

)∣∣∣ dλs

d|λs| (y)− dλs

d|λs| (x)
∣∣∣ d|λs|(y)

∫
B(x,ρh)

k
(

x−y
ρh

)
d|λs|(y)

≤ lim
h→∞

M

c

∫
B(x,ρh)

∣∣∣ dλs

d|λs| (y)− dλs

d|λs| (x)
∣∣∣ d|λs|(y)

|λs|(B(x, σρh))

= lim
h→∞

M

c

∫
B(x,ρh)

∣∣∣ dλs

d|λs| (y)− dλs

d|λs| (x)
∣∣∣ d|λs|(y)

|λs|(B(x, ρh))
· |λ

s|(B(x, ρh))
|λs|(B(x, σρh))

≤ lim
h→∞

M

cσn+1

∫
B(x,ρh)

∣∣∣ dλs

d|λs| (y)− dλs

d|λs| (x)
∣∣∣ d|λs|(y)

|λs|(B(x, ρh))
= 0,

that prove (2.9) and (2.10).

Proof of Theorem 2.2. (i). Let us fix λ ∈ Mloc(Ω,Rm) and M > 0 such that, for every x ∈ Rn,
k(x) ≤ M , then

|λρ(x)− λa(x)| =
∣∣∣∣∣
∫

B(x,ρ)

kρ(x− y)dλ(y)− λa(x)

∣∣∣∣∣

≤
∫

B(x,ρ)

kρ(x− y)|λa(y)− λa(x)|dy +
∫

B(x,ρ)

kρ(x− y)d|λs|(y)

≤ Mρ−n

∫

B(x,ρ)

|λa(y)− λa(x)|dy + Mρ−n

∫

B(x,ρ)

d|λs|(y)

= Mρ−n

∫

B(x,ρ)

|λa(y)− λa(x)|dy + M
|λs|(B(x, ρ))

ρn
,

that, for Ln-a.e. x ∈ Ω, goes to zero when ρ → 0.

(ii). Let us fix λ ∈ Mloc(Ω,Rm) and consider λs and µ = |λa(x)| · Ln: since λs⊥Ln and
µ << Ln we can apply Lemma 2.4 to λs and µ. Thus, we can find M ⊆ Ω with |λs|(M) = 0
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such that, for every x ∈ Ω \M , there exists a sequence {ρh}∞h=1 satisfying the conditions (2.9) and
(2.10) of Lemma 2.4. Then we simply end since, for every x ∈ Ω \M ,

∣∣∣∣∣
λρh

(x)∫
B(x,ρh)

kρh
(x− y)d|λs|(y)

− dλs

d|λs| (x)

∣∣∣∣∣

≤
∫

B(x,ρh)
kρh

(x− y)|λa(y)|dy∫
B(x,ρh)

kρh
(x− y)d|λs|(y)

+

∫
B(x,ρh)

kρh
(x− y)

∣∣∣ dλs

d|λs| (y)− dλs

d|λs| (x)
∣∣∣ d|λs|(y)

∫
B(x,ρh)

kρh
(x− y)d|λs|(y)

,

that goes to zero as h →∞ by the conditions (2.9) and (2.10).

We end this section with two useful propositions.

Proposition 2.5. Let λ1, λ2 ∈ Mloc(Ω,Rm) such that λ1 ⊥ λ2. Then, for |λ1|-a.e. x ∈ Ω,
dλ1

d|λ1| (x) = d(λ1+λ2)
d|λ1+λ2| (x).

Proof. Let A ∈ B(Ω) such that |λ1|(Ω\A) = |λ2|(A) = 0: clearly we can prove the wanted equality
only for |λ1|-a.e. x ∈ A. Since |λ1 + λ2| = |λ1| + |λ2| (see for instance Lemma 6.10), λ1 << |λ1|
and λ1, λ2 << |λ1 + λ2|, we have that, for every B ∈ B(A),

λ1(B) =
∫

B

dλ1

d|λ1| (x)d|λ1|(x),

and
λ1(B) =

∫

B

dλ1

d|λ1 + λ2| (x)d|λ1 + λ2|(x) =
∫

B

dλ1

d|λ1 + λ2| (x)d|λ1|(x).

Thus, for |λ1|-a.e. x ∈ A, dλ1
d|λ1| (x) = dλ1

d|λ1+λ2| (x)10. We end noting that, with a similar argument,
for |λ1|-a.e. x ∈ A, dλ2

d|λ1+λ2| (x) = 0.

Proposition 2.6. Let λ1, λ2 ∈ Mloc(Ω,Rm) such that λ1 ⊥ λ2 and let ϕ : Ω → [0,∞] be a Borel
function. Then

∫

Ω

ϕ(x)d|λ1 + λ2|(x) =
∫

Ω

ϕ(x)d|λ1|(x) +
∫

Ω

ϕ(x)d|λ2|(x),

and

|λ1 + λ2|-ess sup
x∈Ω

ϕ(x) =
[
|λ1|-ess sup

x∈Ω
ϕ(x)

]
∨

[
|λ2|-ess sup

x∈Ω
ϕ(x)

]
.

Proof. Let A ∈ B(Ω) such that |λ1|(Ω \A) = |λ2|(A) = 0. Since |λ1 + λ2| = |λ1|+ |λ2|, we have
∫

Ω

ϕ(x)d|λ1 + λ2|(x) =
∫

A

ϕ(x)d|λ1 + λ2|(x) +
∫

Ω\A
ϕ(x)d|λ1 + λ2|(x)

=
∫

A

ϕ(x)d|λ1|(x) +
∫

Ω\A
ϕ(x)d|λ2|(x) =

∫

Ω

ϕ(x)d|λ1|(x) +
∫

Ω

ϕ(x)d|λ2|(x),

and

|λ1 + λ2|-ess sup
x∈Ω

ϕ(x) =
[
|λ1 + λ2|-ess sup

x∈A
ϕ(x)

]
∨

[
|λ1 + λ2|-ess sup

x∈Ω\A
ϕ(x)

]

=
[
|λ1|-ess sup

x∈A
ϕ(x)

]
∨

[
|λ2|-ess sup

x∈Ω\A
ϕ(x)

]
=

[
|λ1|-ess sup

x∈Ω
ϕ(x)

]
∨

[
|λ2|-ess sup

x∈Ω
ϕ(x)

]
.

10Note that if µ ∈ M+(Ω), ϕ : Ω → Rm is a Borel function such that, for every B ∈ B(Ω),
R

B ϕ(x)dµ = 0 then,
for µ-a.e. x ∈ Ω, ϕ(x) = 0.
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2.2 Notes on BV , Sobolev and Lipschitz functions

Let us introduce now the notion of function of (locally) bounded variation (for more details see
[7] Chapter 3 or [40] Chapter 5). A Borel function u : Ω → R is said to have bounded variation
on Ω, or briefly u ∈ BV (Ω), if u ∈ L1(Ω) and there exists Du ∈ M(Ω,Rn) such that, for every
ϕ ∈ C∞c (Ω), ∫

Ω

ϕ(x)dDu(x) = −
∫

Ω

u(x)∇ϕ(x)dx,

or, in other words, if u has a distributional gradient belonging to M(Ω,Rn).
Since Du ∈M(Ω,Rn), following (2.3), it can be decomposed with respect to Ln as

Du = ∇u · Ln + Dsu,

where ∇u ∈ L1(Ω,Rn), Dsu ∈M(Ω,Rn) and Dsu ⊥ Ln. When Dsu = 0 we say u ∈ W 1,1(Ω) and
if u ∈ L∞(Ω) and ∇u ∈ L∞(Ω,Rn) too, we say u ∈ W 1,∞(Ω).

When, for every open set Ω′ ⊂⊂ Ω, u ∈ BV (Ω′) (resp. u ∈ W 1,1(Ω′), u ∈ W 1,∞(Ω′)), we say
u ∈ BVloc(Ω) (resp. u ∈ W 1,1

loc (Ω), u ∈ W 1,∞
loc (Ω)): in this case u ∈ L1

loc(Ω) (resp. u ∈ L1
loc(Ω),

u ∈ L∞loc(Ω)) and Du ∈ Mloc(Ω,Rn) (resp. Du = ∇u · Ln with ∇u ∈ L1
loc(Ω,Rn), Du = ∇u · Ln

with ∇u ∈ L∞loc(Ω,Rn)). Finally we will consider sometimes functions belonging to W 1,1(Ω,Rm)
or W 1,∞(Ω,Rm): the definitions of these spaces are clear and then omitted.

Given m ∈ N and uh, u ∈ L1
loc(Ω,Rm) (resp. L∞loc(Ω,Rm)), we say uh → u in L1

loc(Ω,Rm) (resp.
L∞loc(Ω,Rm)) if, for every K ∈ B(Ω), K ⊂⊂ Ω and Ln(K) > 0,

lim
h→∞

∫

K

|uh(x)− u(x)|dx = 0,

(
lim

h→∞
ess sup

x∈K
|uh(x)− u(x)| = 0

)
,

while considering uh, u ∈ L∞loc(Ω,Rm), we say uh → u in w∗-L∞loc(Ω,Rm) if, for every K ∈ B(Ω),
K ⊂⊂ Ω and v ∈ L1(K),

lim
h→∞

∫

K

v(x)uh(x)dx =
∫

K

v(x)u(x)dx.

The definitions of convergence in L1(Ω,Rm), L∞(Ω,Rm) and w∗-L∞(Ω,Rm) are obvious.
It is well known the validity of the proposition below.

Proposition 2.7. Let {uh}∞h=1 ⊆ L∞loc(Ω,Rm) (resp. L∞(Ω,Rm)) be a sequence such that, for
every K ∈ B(Ω), K ⊂⊂ Ω,

sup
{

ess sup
x∈K

|uh(x)| : h ∈ N
}

< ∞
(

resp. sup
{

ess sup
x∈Ω

|uh(x)| : h ∈ N
}

< ∞
)

.

Then there exists a subsequence {uhk
}∞k=1 and u ∈ L∞loc(Ω,Rm) (resp. u ∈ L∞(Ω,Rm)) such that

uhk
→ u in w∗-L∞loc(Ω,Rm) (resp. w∗-L∞(Ω,Rm)).

If now uh, u ∈ BVloc(Ω) (resp. W 1,1
loc (Ω)), we say uh → u in w∗-BVloc(Ω) (resp. W 1,1

loc (Ω)) if
uh → u in L1

loc(Ω) and Duh → Du in w∗-Mloc(Ω,Rn) (resp. ∇uh → ∇u in L1
loc(Ω,Rn)). Also in

this case it is clear what we mean for convergence in w∗-BV (Ω) and W 1,1(Ω).
The following compactness theorem for BVloc(Ω) functions holds (see [7] Theorem 3.23). For

the notion of set with Lipschitz boundary see [40] page 127.

Theorem 2.8. Let {uh}∞h=1 ⊆ BVloc(Ω) be a sequence such that, for every K ⊂⊂ Ω,

sup
{∫

K

|u(x)|dx + |Duh|(K) : h ∈ N
}

< ∞.
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Then there exists a subsequence {uhk
}∞k=1 and u ∈ BVloc(Ω) such that uhk

→ u in w∗-BVloc(Ω).
Moreover if Ω is a bounded open set with Lipschitz boundary and

sup
{∫

Ω

|u(x)|dx + |Duh|(Ω) : h ∈ N
}

< ∞,

then {uh}∞h=1 ⊆ BV (Ω), u ∈ BV (Ω) and uhk
→ u in w∗-BV (Ω).

When Ω = (a, b) ⊆ R and u ∈ BV (a, b) it is meaningful, following (2.4), to decompose Du ∈
M(a, b) with respect to L1 as Du = u′ ·L1 +Dcu+D#u where the notations are clear. If Dcu = 0
we say u ∈ SBV (a, b). For this space the following simple compactness theorem holds (see [7]
Theorem 4.8: here we present a very special case).

Theorem 2.9. Let (a, b) ⊆ R be an open bounded interval and let {uh}∞h=1 ⊆ SBV (a, b)∩L∞(a, b)
be a sequence such that11

sup
h∈N

{
ess sup
x∈(a,b)

|uh(x)|+ ess sup
x∈(a,b)

|u′h(x)|+ #(ADu)

}
< ∞.

Then there exists a subsequence {uhk
}∞k=1 and u ∈ SBV (a, b) ∩ L∞(a, b) such that uhk

→ u in
w∗-BV (a, b) and uhk

→ u in w∗-L∞(a, b).

As for Radon measures, let {Ωh}∞h=1 be a family of open sets and let uh∈L1
loc(Ωh,Rm), u ∈

L1
loc(Ω,Rm): we say uh → u in L1

loc(l Ω,Rm) if, for every K ⊂⊂ Ω, we have K ⊆ Ωh if h is large
enough and

lim
h→∞

∫

K

|uh(x)− u(x)|dx = 0.

If instead uh ∈ BVloc(Ωh) (resp. W 1,1
loc (Ωh)), u ∈ BVloc(Ω) (resp. W 1,1

loc (Ω)), we say uh → u in
w∗-BVloc(l Ω) (resp. W 1,1

loc (l Ω)) if uh → u in L1
loc(l Ω) and Duh → Du in w∗-Mloc(l Ω,Rn)

(resp. ∇uh → ∇u in L1
loc(l Ω,Rn)).

Also in this case we suppose known the fundamental properties of the convolutions of a function
u belonging to L1

loc(Ω), BVloc(Ω) or W 1,1
loc (Ω), and in particular the fact that, using the same

notations than for the measures,

uρ(x) =
∫

B(x,ρ)

ρ−nk

(
x− y

ρ

)
u(y)dy : Ωρ → R,

belongs to C∞(Ωρ) and uρ → u in L1
loc(l Ω).

Moreover, when u ∈ BVloc(Ω), ∇uρ = (Du)ρ and (Du)ρ · Ln → Du in w∗-Mloc(l Ω,Rn), that
is, by definition, uρ → u in w∗-BVloc(l Ω), while if u ∈ W 1,1

loc (Ω), ∇uρ = (∇u)ρ and (∇u)ρ → ∇u

in L1
loc(l Ω,Rn), that is, by definition, uρ → u in W 1,1

loc (l Ω).

Let now Ω be a bounded open set in Rn. We say that a function v ∈ W 1,∞(Ω) is piecewise
affine in Ω if there exists a family {Ωj}N

j=1 of open disjoint subsets of Ω such that

Ln


Ω \

N⋃

j=1

Ωj


 = 0,

and such that, for every j ∈ {1, ..., N}, x ∈ Ωj ,

v(x) = 〈ξj , x〉+ qj ,

where ξj ∈ Rn and qj ∈ R. We shall denote the space of such functions with Aff(Ω).
The next theorem is a particular case of Theorem 1.8, Chapter 2 in [29].

11With #(A) we mean the number of element of A. Remember that ADu is the set of the atoms of Du.
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Theorem 2.10. Let Ω be a bounded open set with Lipschitz boundary and let u ∈ W 1,1(Ω). Then,
for every ε > 0, there exists vε ∈ Aff(Ω) such that

∫

Ω

|∇u(x)−∇vε(x)|dx < ε.

It is known that Liploc(Ω) that is the space of the locally Lipschitz functions defined on Ω, can
be identified with W 1,∞

loc (Ω) (see [40] Theorem 5, page 131), thus, in our arguments, we will always
identify these two spaces. The following celebrated theorem due to Rademacher holds (see [40]
Theorem 2, page 81).

Theorem 2.11. Let u ∈ W 1,∞
loc (Ω) and let Ωd ⊆ Ω be the set of the points in which u is differen-

tiable. Then Ln(Ω \ Ωd) = 0. In particular Ωd is dense in Ω.

Let u ∈ W 1,∞
loc (Ω) and let Ωd be the set of the points in which u is differentiable: for every

x ∈ Ω, we set12,
∇u(x) = {ξ : ∃xk → x, xk ∈ Ωd,∇u(xk) → ξ}, (2.11)

and
∂cu(x) = co

(∇u(x)
)
, (2.12)

and we call ∂cu(x) the Clarke’s gradient of u in x.
Some results about Clarke’s gradient are presented here: the proof of Proposition 2.12 can

be found in Clarke [26] (see also Lebourg [58]) while Theorem 2.13 follows from Corollary 8.47,
Proposition 7.15 and Theorem 9.61 in [67].

Proposition 2.12. Let u ∈ W 1,∞
loc (Ω). Then the following properties hold for ∂cu:

(i) ∂cu does not change if, in its definition, we consider any Ω1 ⊆ Ωd such that Ln(Ωd \Ω1) = 0;

(ii) for every x ∈ Ω, ∂cu(x) is nonempty, convex and compact;

(iii) the multi-valued map ∂cu from Ω to the nonempty, convex and compact subsets of Rn is outer
semicontinuous, that is, if xk → x, ξk ∈ ∂cu(xk) and ξk → ξ then ξ ∈ ∂cu(x);

(iv) if u ∈ C1(Ω) then, for every x ∈ Ω, ∂cu(x) = ∇u(x).

Theorem 2.13. Let u, uh ∈ W 1,∞
loc (Ω) such that uh → u with respect to the L∞loc(Ω) convergence

and let x0 ∈ Ω be such that ∇u(x0) exists. Then there exists a subsequence {uhk
}∞k=1 and two

sequences {xk}∞k=1, {ξk}∞k=1 such that, for every k ∈ N, ξk ∈ ∂cuhk
(xk) and it holds xk → x0,

uhk
(xk) → u(x0) and ξk → ∇u(x0).

2.3 Some tools from convex analysis

2.3.1 Principal definitions and properties

A set C ⊂ Rm is said convex if, for every ξ, η ∈ C, t ∈ (0, 1), we have tξ + (1− t)η ∈ C while C is
said a cone if 0 ∈ C and, for every ξ ∈ C, t > 0, it is tξ ∈ C.

If we consider any family of convex sets (resp. cones) {Ci}i∈I then
⋂

i∈I Ci is convex (resp. a
cone) too. Thus, given a set A ⊂ Rm, it is well defined the convex envelope of A as the set

co(A) =
⋂{

C ⊆ Rm : A ⊂ C,C is convex
}

,

12See the next section for the definition of convex set and for the notation co(A), that means the convex envelope
of the set A.
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so as the positive conic envelope of A given by the set

pos(A) = {0} ∪
⋂ {

C ⊆ Rm : A ⊂ C, C is a cone
}

.

The next important theorem about the convex envelopes is due to Carathéodory (see [67]
Theorem 2.27).

Theorem 2.14. Let A ⊆ Rm, A 6= ∅. Then

co(A) =





m+1∑

j=1

λjξj : ξj ∈ A, λj ≥ 0,

m+1∑

j=1

λj = 1



 .

Given now A ⊆ Rm and ξ0 ∈ Rm it is possible to define also the positive conic envelope of A
with respect to ξ0 as

posξ0
(A) = ξ0 + pos(A− ξ0),

and this set can be easily characterized as

posξ0
(A) = {ξ0} ∪ {λ(ξ − ξ0) + ξ0 : λ > 0, ξ ∈ A} .

Let us note that if A is convex, then posξ0
(A) is convex too and that in general posξ0

(A) may fail
to be closed even if A it is (see for example [67] Chapter 3, Section G).

Let us give now some fundamental definitions: for our purposes we can confine ourselves to
consider only non negative functions defined on the whole space Rm. We remember that a ∨ b =
sup{a, b} and a ∧ b = inf{a, b}.

Let φ : Rm → [0,∞]:

• φ is convex if, for every ξ, η ∈ Rm, t ∈ (0, 1), φ(tξ + (1 − t)η) ≤ tφ(ξ) + (1 − t)φ(η). If,
whenever ξ 6= η, the previous inequality is strict we say that φ is strictly convex;

• φ is level convex if, for every ξ, η ∈ Rm, t ∈ (0, 1), φ(tξ + (1− t)η) ≤ φ(ξ) ∨ φ(η);

• φ is sub-linear if, for every ξ, η ∈ Rm, φ(ξ + η) ≤ φ(ξ) + φ(η)13;

• φ is sub-maximal if, for every ξ, η ∈ Rm, φ(ξ + η) ≤ φ(ξ) ∨ φ(η);

• φ is positively homogeneous of degree r ∈ [0,∞) if, for every ξ ∈ Rm, t > 0, it is φ(tξ) = trφ(ξ);

• φ is demi-coercive if there exist a > 0, b ≥ 0 and η ∈ Rm such that, for every ξ ∈ Rm,
a|ξ| ≤ φ(ξ) + 〈η, ξ〉+ b;

• φ is non constant on straight lines, briefly n.c.s.l., if its restriction to any straight line is a
non constant function.

We remember that a convex and finite function is locally Lipschitzian (see De Giorgi [35]
Theorem 3, Section 2 or [40] Theorem 1, page 236), while this is trivially false for a level convex
function. However, it can be proved that both convex and level convex functions are differentiable
Ln almost everywhere (see Theorem 2.11 above for the convex case and Crouzeix [28] Theorem 1
for the level convex case).

Given a function φ : Rm → [0,∞] we define the domain of φ the set

dom(φ) = {ξ ∈ Rm : φ(ξ) < ∞},
13Note that some authors (see for instance [49] or [67]) call sub-linear a function that satisfies the inequality just

introduced together with the positively homogeneity of degree 1 (see the definition below).
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and when dom(φ) 6= ∅ we say that φ is proper: we will always consider such functions in order to
avoid triviality. The epigraph of φ is the set

epi(φ) = {(ξ, r) ∈ Rm × [0,∞) : r ≥ φ(ξ)} ⊆ Rm+1,

while the sub-level set of φ to level r ∈ [0,∞) is the set

Eφ(r) = {ξ ∈ Rm : φ(ξ) ≤ r} ⊆ Rm.

The following three propositions will be used in several situations even if sometimes they will
not be expressly quoted. The proofs of Propositions 2.15 and 2.16 are trivial and then omitted
(for the first part of Proposition 2.15 see Proposition 2.4 in [67]).

Proposition 2.15. A function f : Rm → [0,∞] is convex if and only if epi(f) ⊆ Rm+1 is convex.
A function g : Rm → [0,∞] is level convex if and only if, for every r ∈ [0,∞), Eg(r) ⊆ Rm is
convex.

Proposition 2.16. Let fh : Rm → [0,∞] be a sequence functions and f = sup{fh : h ∈ N}. Then

(i) f is l.s.c. if, for every h ∈ N, fh is l.s.c.;

(ii) f is convex if, for every h ∈ N, fh is convex;

(iii) f is level convex if, for every h ∈ N, fh is level convex;

(iv) f is sub-linear if, for every h ∈ N, fh is sub-linear;

(v) f is sub-maximal if, for every h ∈ N, fh is sub-maximal.

Proposition 2.17. Let f : Rm → [0, +∞] be a proper and positively homogeneous of degree 1
function: then f is convex if and only if f is sub-linear. Let g : Rm → [0, +∞] be a proper and
positively homogeneous of degree 0 function: then g is level convex if and only if g is sub-maximal.

Proof. In order to prove the if part, let ξ, η ∈ Rm and t ∈ (0, 1). We have

f(tξ + (1− t)η) ≤ f(tξ) + f((1− t)η) = tf(ξ) + (1− t)f(η),

and
g(tξ + (1− t)η) ≤ g(tξ) ∨ g((1− t)η) = g(ξ) ∨ g(η).

In order to prove the only if part, let ξ, η ∈ Rm. Then

f(ξ + η) = 2f

(
ξ + η

2

)
≤ f(ξ) + f(η) and g(ξ + η) = g

(
ξ + η

2

)
≤ g(ξ) ∨ g(η),

and we end the proof.

We state now the celebrated Jensen’s inequality for convex functions and another Jensen’s type
inequality involving level convex functions whose simple proof can be found for instance in [15]
Theorem 1.2.

Theorem 2.18. Let f : Rm → [0, +∞] be proper, l.s.c and convex function, µ ∈ M+(Ω) with
µ(Ω) = 1 and ϕ ∈ L1

µ(Ω,Rm). Then

f

(∫

Ω

ϕ(x)dµ(x)
)
≤

∫

Ω

f(ϕ(x))dµ(x).
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Theorem 2.19. Let g : Rm → [0, +∞] be a proper, l.s.c. and level convex function, µ ∈ M+(Ω)
with µ(Ω) = 1 and ϕ ∈ L1

µ(Ω,Rm). Then

g

(∫

Ω

ϕ(x)dµ(x)
)
≤ µ-ess sup

x∈Ω
g(ϕ(x)).

Finally let f : Rm → [0,∞) be a convex function and ξ0 ∈ Rm: the set

∂f(ξ0) =
{
v ∈ Rm : 〈v, ξ − ξ0〉+ f(ξ0) ≤ f(ξ), ∀ξ ∈ Rm

}
,

is called the sub-differential of f at ξ0 and it is always a non empty, closed and convex set (see
[66] Section 23). The sub-differential of f can be seen also as a multi-valued map from Rm to
the class of non empty, closed and convex subset of Rm and, from this point of view, ∂f is outer
semicontinuous, that is, if ξh → ξ and vh ∈ ∂f(ξh) is such that vh → v then v ∈ ∂f(ξ) (see [66]
Theorem 24.5).

2.3.2 Recession functions and related topics

Given a function φ : Rm → [0,∞], the recession function of φ is the function defined, for every
ξ ∈ Rm, as14

φ∞(ξ) = inf
{

lim inf
h→∞

φ(thξh)
th

: ξh → ξ, th ↑ ∞
}

,

and similarly, we define also, for every ξ ∈ Rm,

φ\(ξ) = inf
{

lim inf
h→∞

φ(thξh) : ξh → ξ, th ↑ ∞
}

.

Strictly related to φ∞ and φ\ respectively are the functions defined, for every ξ ∈ Rm, as15

φ0(ξ) = sup
{

lim sup
h→∞

φ(thξ)
th

: th ↓ 0
}

,

and

φ[(ξ) = sup
{

lim sup
h→∞

φ(thξ) : th ↓ 0
}

.

We underline that the definition of φ\ has been already proposed in the work of Gori [51], while
the one of φ[ appears here for the first time.

Note also that, for every ξ ∈ Rm, we can find suitable sequences ξh → ξ and th ↑ ∞ (resp.
th ↓ 0) such that t−1

h φ(thξh) → φ∞(ξ) and φ(thξh) → φ\(ξ) (resp. t−1
h φ(thξ) → φ0(ξ) and

φ(thξ) → φ[(ξ)).

We list now several propositions, involving the functions just introduced, which will be very
useful to prove, in particular, the theorems of Chapters 6 and 7. We remark that most of them
are new.

Proposition 2.20. Let f : Rm → [0,∞] be a proper function. Then f∞ is l.s.c., positively
homogeneous of degree 1 and f∞(0) = 0. Moreover, if f is convex then f∞ is convex too.

Let g : Rn → [0,∞] be a proper function. Then g\ is l.s.c., positively homogeneous of degree 0
but not necessarily proper. Moreover, if g is level convex then g\ is level convex too.

14Note that the definition of recession function here presented agrees with the standard one given, for instance,
in [67] (see [67] Definition 3.17 and Theorem 3.21).

15The definition of φ0 follows [18] equation (2.7).
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Proof. The proof of the part involving f∞ can be found in [67] Theorem 3.21.
Thus let us study g\. Let us fix ξh, ξ0 ∈ Rm such that ξh → ξ0. Then, for every h ∈ N, there exist

two sequences {tjh}∞j=1 ⊆ R, and {ξj
h}∞j=1 ⊆ Rm such that tjh ↑ ∞, ξj

h → ξh and g(tjhξj
h) → g\(ξh)

as j → ∞. Thus, for every h ∈ N, there exists jh such that, tjh

h ≥ h,
∣∣∣ξjh

h − ξh

∣∣∣ ≤ 1
h and

g
(
tjh

h ξjh

h

)
≤ g\(ξh) + 1

h and, unless to extract a subsequence, we can suppose that tjh

h ↑ ∞ and

ξjh

h → ξ0 as h →∞. Then

g\(ξ0) ≤ lim inf
h→∞

g
(
tjh

h ξjh

h

)
≤ lim inf

h→∞

(
g\(ξh) +

1
h

)
= lim inf

h→∞
g\(ξh),

and the lower semicontinuity is proved.
The proof of the positive homogeneity of degree 0 is very simple and it can be omitted.
Let us prove now the level convexity, that is, that for every r ∈ [0,∞) the set {ξ : g\(ξ) ≤ r}

is convex. If r < inf{g(ξ) : ξ ∈ Rm} there is nothing to prove. Thus, fixed r ≥ inf{g(ξ) : ξ ∈ Rm}
and Eg(r) = {ξ : g(ξ) ≤ r} we have

{ξ : g\(ξ) ≤ r} =
{

ξ : ∃th ↑ ∞, ξh → ξ, such that lim
h→∞

g(thξh) ≤ r

}

=
⋂
ε>0

{
ξ : ∃th ↑ ∞, ξh → ξ such that ∀h ∈ N, g(thξh) ≤ r + ε

}

=
⋂
ε>0

{
ξ : ∃τh ↓ 0, ζh ∈ Eg(r + ε) such that τhζh → ξ

}
=

⋂
ε>0

E∞
g (r + ε).

For every ε > 0, Eg(r + ε) 6= ∅ and by definition we have that E∞
g (r + ε) is the so called horizon

cone of Eg(r + ε) (see [67] Definition 3.3): since the horizon cone of a convex set is convex (see [67]
Theorem 3.6) we end the proof.

Proposition 2.21. Let f : Rm → [0,∞] be a proper, l.s.c. and positively homogeneous of degree
1 function. Then f = f∞. Let g : Rm → [0,∞] be a proper, l.s.c. and positively homogeneous of
degree 0 function. Then g = g\.

Proof. We make the proof only for g and g\ since the other case is completely analogous. Let
ξ ∈ Rm: considering ξh = ξ and th ↑ ∞ we obtain g\(ξ) ≤ g(ξ). In order to prove the converse
inequality we use the lower semicontinuity of g: indeed, if we consider ξh → ξ and th ↑ ∞ such
that g(thξh) → g\(ξ), then

g(ξ) ≤ lim inf
h→∞

g(ξh) = lim inf
h→∞

g(thξh) = g\(ξ),

and we achieve the proof.

Proposition 2.22. Let f : Rm → [0,∞] be a proper, l.s.c. and sub-linear function. Then f0 is
l.s.c., positively homogeneous of degree 1, convex and, for every ξ ∈ Rm,

f0(ξ) = sup
t>0

f(tξ)
t

.

Let g : Rm → [0,∞] be a proper, l.s.c. and sub-maximal function. Then g[ is l.s.c., positively
homogeneous of degree 0, level convex and, for every ξ ∈ Rm,

g[(ξ) = sup
t>0

g(tξ).
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Proof. Following Proposition 2.2 in [18], which proves the part of the proposition involving f , we
can easily prove the part about g.

Indeed, g[ is clearly positively homogeneous of degree 0. Fixed now ξ ∈ Rm, for every r > 0,
we set

α(r) = sup{g(tξ) : 0 < t ≤ r}.
We have that α is increasing and g[(ξ) = limr→0 α(r). However, by the sub-maximality of g we
have, for every r > 0,

α(2r) = sup
0<t≤2r

g(tξ) = sup
0<t≤r

g(2tξ) ≤ sup
0<t≤r

g(tξ) = α(r),

that implies that α is constant on (0,∞). Therefore

g[(ξ) = sup
t>0

g(tξ),

thus, in particular, being g[ the supremum of a family of l.s.c. and sub-maximal functions, it is also
l.s.c. and sub-maximal. Finally, using Proposition 2.17, the level convexity of g[ follows too.

Proposition 2.23. Let g : Rm → [0,∞] be a proper, l.s.c. and level convex function such that,
for every ξ ∈ Rm \ {0}, g\(ξ) = ∞. Then there exists a function θ∞ : [0,∞) → [0,∞) such that,
for every ξ ∈ Rm,

g(ξ) ≥ θ∞(|ξ|) and lim
t→∞

θ∞(t) = ∞. (2.13)

Proof. It is sufficient to prove that, for every h ∈ N, there exists rh > 0 such that, for every
ξ ∈ Rm \ {0}, |ξ| > rh, we have g(ξ) > h. Let us suppose by contradiction that there exists h0 ∈ N
such that, for every k ∈ N, we can find ξk ∈ Rm, |ξk| > k, with f(ξk) ≤ h0. Then |ξk| → ∞ and,
unless to extract a (not relabelled) subsequence, ξk

|ξk| → ν ∈ Sm−1. Moreover, for every M ∈ N,
there exists kM such that, for every k ≥ kM , we have |ξk| > M . Then, considered η0 ∈ Rm such
that g(η0) < ∞,

g

(
η0 − M

|ξk|η0 + M
ξk

|ξk|
)

= g

((
1− M

|ξk|
)

η0 +
M

|ξk|ξk

)
≤ g(η0) ∨ g(ξk) ≤ g(η0) ∨ h0 < ∞,

and, by the lower semicontinuity of g, we find, for every M ∈ N, the relation

g(η0 + Mν) ≤ lim inf
k→∞

g

(
η0 − M

|ξk|η0 + M
ξk

|ξk|
)
≤ g(η0) ∨ h0 < ∞.

However
∞ > g(η0) ∨ h0 ≥ lim inf

M→∞
g

(
M

( η0

M
+ ν

))
≥ g\(ν) = ∞,

and the contradiction is found.

Proposition 2.24. Let γ : Rm → [0,∞] be a proper, l.s.c. and sub-maximal function16 such that,
for every ξ ∈ Rm \ {0}, γ[(ξ) = ∞. Then there exists a function θ0 : (0,∞) → [0,∞) such that,
for every ξ ∈ Rm \ {0},

γ(ξ) ≥ θ0(|ξ|) and lim
t→0

θ0(t) = ∞. (2.14)

Proof. It suffices to prove that, for every h ∈ N, there exists εh > 0 such that, for every ξ ∈ Rm\{0},
|ξ| < εh, we have γ(ξ) > h. Let us suppose by contradiction that there exists h0 ∈ N such that,
for every k ∈ N, we can find ξk ∈ Rm \ {0}, |ξk| ≤ 1

k , with γ(ξk) ≤ h0. Then |ξk| → 0 and unless

16In the following we will call γ every function that is sub-maximal but not level convex.
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to extract a (not relabelled) subsequence, ξk

|ξk| → ν ∈ Sm−1. Let {th}∞h=1 ⊆ (0,∞) such that th ↓ 0
and

lim
h→∞

γ(thν) = ∞.

For every h, k ∈ N, there exists jh,k ∈ N such that th

|ξk| ≤ jh,k < th

|ξk| + 1 and since th
ξk

|ξk| → thν as
k → ∞, then also jh,kξk → thν as k → ∞. By the lower semicontinuity and the sub-maximality
of γ, we have

γ(thν) ≤ lim inf
k→∞

γ(jh,kξk) = lim inf
k→∞

γ




jh,k∑

i=1

ξk


 ≤ lim inf

k→∞
γ(ξk).

Then, for every h ∈ N,
γ(thν) ≤ lim inf

k→∞
γ(ξk) ≤ h0 < ∞.

Taking the limit as h →∞, we find a contradiction and the proof is achieved.

Proposition 2.25. Let f : Rm → [0,∞] be a proper, l.s.c. and convex function. Let us define the
function f̂ : Rm × R→ [0,∞] in this way:

f̂(ξ, τ) =





τf( ξ
τ ) if τ > 0,

f∞(ξ) if τ = 0,
∞ if τ < 0.

Then f̂ is proper, l.s.c., positively homogeneous of degree 1 and convex (in particular sub-linear)
on Rm+1.

Proof. See [30] Theorem 3.1.

Proposition 2.26. Let g : Rm → [0,∞] be a proper, l.s.c. and level convex function. Let us define
the function ĝ : Rm × R→ [0,∞] in this way:

ĝ(ξ, τ) =





g( ξ
τ ) if τ > 0,

g\(ξ) if τ = 0,
∞ if τ < 0.

(2.15)

Then ĝ is proper, l.s.c., positively homogeneous of degree 0 and level convex (in particular sub-
maximal) on Rm+1.

Proof. The functional ĝ is clearly proper and positive homogeneous of degree 0. In order to prove
the lower semicontinuity we work in the following way. Let us fix (ξh, τh) → (ξ0, τ0): since ĝ
is lower semicontinuous both on Rm × (0,∞) (because of the lower semicontinuity of g) and on
Rm × (−∞, 0), the lower semicontinuity inequality has to be proved only in the case in which
τ0 = 0. If this is the case, we can find I1, I2, I3 disjoint subsets of N such that I1 ∪ I2 ∪ I3 = N and
such that, if h ∈ I1 then τh > 0, if h ∈ I2 then τh = 0 and if h ∈ I3 then τh < 0. Since

lim inf
h→∞

ĝ(ξh, τh) = inf
{

lim inf
h→∞,h∈Ii

ĝ(ξh, τh) : i ∈ {1, 2, 3},#(I1) = ∞
}

,

it suffices to prove the lower semicontinuity inequality of ĝ only in the three cases in which Ii = N,
i ∈ {1, 2, 3}. However if, for every h ∈ N, τh > 0, by the definition of g\,

ĝ(ξ0, 0) = g\(ξ0) ≤ lim inf
h→∞

g

(
ξh

τh

)
= lim inf

h→∞
ĝ (ξh, τh) ,

if, for every h ∈ N, τh = 0, by the lower semicontinuity of g\ (see Proposition 2.20),

ĝ(ξ0, 0) = g\(ξ0) ≤ lim inf
h→∞

g\(ξh) = lim inf
h→∞

ĝ (ξh, τh) ,
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and finally if, for every h ∈ N, τh < 0 the inequality is trivially satisfied: thus the lower semiconti-
nuity of ĝ is achieved.

Let us show now that ĝ is level convex, that is, for every r ∈ [0,∞), the set
{

(ξ, τ) : ĝ(ξ, τ) ≤ r
}

=
{

(ξ, τ) : τ > 0, g(ξτ−1) ≤ r
}
∪

{
(ξ, 0) : g\(ξ) ≤ r

}
= A ∪B

is convex. We know that A∪B is closed and, since g\ is l.s.c. and level convex, that B is a convex
and closed set. We note also that A is convex since A = ∅ or, if A 6= ∅, we have that the convex
set Eg(r) = {ξ : g(ξ) ≤ r} 6= ∅ and A = {(tξ, t) : ξ ∈ Eg(r), t > 0} that is convex17.

If A = ∅ then A ∪ B = B that is convex. If A 6= ∅ we are going to prove that A ∪ B = cl(A)
that is convex since A is convex. Clearly cl(A) ⊆ A ∪ B: to prove the converse we only need to
prove that B ⊆ cl(A).

In order to prove this let us fix (ξ0, 0) ∈ B and show that there exist two sequences ζh → ξ0

and τh ↓ 0 such that, for every h ∈ N, (ζh, τh) ∈ A, that is, g(ζhτ−1
h ) ≤ r. Since A 6= ∅ there exists

ξ1 ∈ Rm such that g(ξ1) ≤ r: we claim that {ξ1 + tξ0 : t ≥ 0} ⊆ Eg(r).
If ξ0 = 0 there is nothing to prove; instead, supposing ξ0 6= 0, let fix t ≥ 0 and consider ξh → ξ0

(ξh 6= 0), th ↑ ∞ (|thξh| > t|ξ0|) such that g(thξh) → g\(ξ0): then, for every h ∈ N, by the level
convexity of g,

g

(
ξ1 + t|ξ0| thξh

|thξh|
)
≤ g(thξh) ∨ g(ξ1),

since the point ξ1 + t|ξ0| thξh

|thξh| belongs to the segment joining ξ1 and thξh. However

lim
h→∞

(
ξ1 + t|ξ0| thξh

|thξh|
)

= ξ1 + tξ0,

and then, by the lower semicontinuity of g,

g(ξ1 + tξ0) ≤ lim inf
h→∞

(g(thξh) ∨ g(ξ1)) ≤ r,

that proves the claim.
At last setting, for every h ∈ N, ζh = ξ1+hξ0

h and τh = 1
h , we have ĝ(ζh, τh) = g(ζhτ−1

h ) ≤ r,
that is (ζh, τh) ∈ A, and moreover

lim
h→∞

(ζh, τh) = (ξ0, 0) ∈ cl(A),

that ends the proof.

Proposition 2.27. Let γ : R → [0,∞] be a continuous and sub-maximal function and let m =
sup{γ(ξ) : ξ ∈ R}. Then, for every ξ ∈ [0,∞), γ(ξ) = m or, for every ξ ∈ (−∞, 0], γ(ξ) = m.

Proof. First of all we prove that γ(0) = m. Indeed, if this is not true then γ(0) is finite, there
exists ε > 0 such that γ(0)+2ε ≤ m and ξ0 ∈ R such that γ(ξ0) ≥ γ(0)+ε. Then, for every h ∈ N,
by the sub-maximality of γ, also γ

(
ξ0
h

)
≥ γ(0) + ε. But ξ0

h → 0 as h →∞ thus, by continuity of

γ, γ(0) = lim
h→∞

γ
(

ξ0
h

)
≥ γ(0) + ε that is a contradiction.

Let us suppose now, again by contradiction, that there exist ξ1, ξ2 > 0 such that γ(ξ1)∨γ(−ξ2) <
m: by continuity of γ, we can suppose also that ξ1, ξ2 ∈ Q. Writing ξ1

ξ2
= k

h , where h, k ∈ N, we
have hξ1 − kξ2 = 0 and

m = γ(0) = γ(hξ1 − kξ2) ≤ γ(ξ1) ∨ γ(−ξ2) < m :

having found a contradiction, we achieve the proof.
17Indeed, since A = pos (Eg(r)× {1}) \ {(0, 0)} ⊆ Rm × R and (ξ, τ) ∈ A implies τ > 0, the convexity simply

follows.
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Let us point out that if γ is only l.s.c. and sub-maximal on R, then the thesis of Proposition
2.27 is false: to verify this fact one can consider for instance the function γ defined, for every
ξ ∈ R \ Z, as γ(ξ) = M > 0 and, for every ξ ∈ Z, as γ(ξ) = 0.

The proofs of the following two propositions are simple and for this reason they are omitted
(Proposition 2.29 can be find also in [28]).

Proposition 2.28. Let f : Rm → [0,∞] be a proper, l.s.c. and demi-coercive function, that is,
there exist a > 0, b ≥ 0 and η ∈ Rm such that, for every ξ ∈ Rm, f(ξ) ≥ a|ξ| − 〈η, ξ〉 − b. Then,
for every ξ ∈ Rm, the following properties hold:

(i) f∞(ξ) ≤ f \(ξ);

(ii) if f \(ξ) < ∞ then f∞(ξ) = 0;

(iii) f∞(ξ) ≥ a|ξ| − 〈η, ξ〉.
Proposition 2.29. Let g : R → [0,∞] be a proper and l.s.c. function. Then g is level convex if
and only if g belongs to one of the three following classes:

(i) g is not decreasing on R;

(ii) g is not increasing on R;

(iii) there exists x0 ∈ R such that g is not increasing on (−∞, x0] and not decreasing on [x0,∞).

In particular if g : Rm → [0,∞] is a proper, l.s.c. and level convex function, then g(0) = inf{g(ξ) :
ξ ∈ Rm} if and only if, for every ν ∈ Sm−1, the function t 7→ g(νt) is not decreasing on (0,∞).

The two propositions below describe some properties of the composition of a level convex
function with a strictly increasing one.

Proposition 2.30. Let g : Rm → [0,∞] be a proper, l.s.c and level convex function, s = sup{g(ξ) :
ξ ∈ Rm} ∈ [0,∞] and Θ : [0, s] → [0, s̄] be a continuous, strictly increasing function with s̄ =
sup{Θ(t) : t ∈ [0, s]} ∈ [0,∞]. Then the composition Θ ◦ g : Rm → [0, s̄] is proper, l.s.c. and level
convex. Moreover (Θ ◦ g)\ = Θ ◦ g\.

Proof. Clearly Θ ◦ g is proper and l.s.c.. Let ξ, η ∈ Rm and t ∈ (0, 1), then

(Θ ◦ g)(tξ + (1− t)η) = Θ(g(tξ + (1− t)η)) ≤ Θ(g(ξ) ∨ g(η)) = Θ(g(ξ)) ∨Θ(g(η)),

that is Θ ◦ g is level convex too. In order to prove that (Θ ◦ g)\ = Θ ◦ g\, we point out that Θ is
bijective and Θ−1 : [0, s̄] → [0, s] is still continuous and strictly increasing. Let us fix ξ0 ∈ Rm and
let th ↑ ∞, ξh → ξ0 such that (Θ ◦ g)(thξh) → (Θ ◦ g)\(ξ0). Then, using the continuity of Θ−1,

(Θ ◦ g)\(ξ0) = lim
h→∞

Θ(g(thξh)) = Θ ◦Θ−1

(
lim

h→∞
Θ(g(thξh))

)
= Θ

(
lim

h→∞
g(thξh)

)
≥ Θ ◦ g\(ξ0).

Conversely let t̄h ↑ ∞, ξ̄h → ξ0 such that g
(
t̄hξ̄h

) → g\(ξ0). Then, using the continuity of Θ,

(Θ ◦ g\)(ξ0) = Θ
(
g\(ξ0)

)
= Θ

(
lim

h→∞
g

(
t̄hξ̄h

))
= lim

h→∞
Θ

(
g

(
t̄hξ̄h

)) ≥ (Θ ◦ g)\(ξ0)

and the equality is finally achieved.

Proposition 2.31. Let g : Rm → [0,∞] be a proper, l.s.c and level convex function, s = sup{g(ξ) :
ξ ∈ Rm} ∈ [0,∞] and Kg = {ξ ∈ Rm : g\(ξ) < s}. Let us suppose that cl(Kg) doesn’t contains any
straight line. Then there exists a continuous and strictly increasing function Θ : [0, s] → [0,∞]
such that the composition Θ ◦ g : Rm → [0,∞] is demi-coercive.
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Proof. First of all let us note that, by the properties of g\, cl(Kg) is a closed cone of Rm. Moreover,
it is quite simple to prove that there exists a closed and convex cone C with non empty interior
such that it does not contain any straight line and cl(Kf ) ⊆ C.

We claim that there exists η0 ∈ Rm, such that

cl(Kf ) \ {0} ⊆ C \ {0} ⊆ {ξ ∈ Rm : 〈η0, ξ〉 > 0}. (2.16)

Following Proposition 1 in [53], let us define C ∩Bm(0, 1) = Cm and

η0 =
∫

Cm

ξdξ.

Moreover, for every ζ ∈ Sm−1, let us define the transformation rζ as the reflection of Rm with
respect to the hyperplane18 ζ⊥, that is in formulas, for every ξ ∈ Rm,

rζ(ξ) = ξ − 2〈ξ, ζ〉ζ.

Now let us suppose by contradiction that there exists ζ ∈ Sm−1 ∩ Cm ∩ η⊥0 . This implies that19

0 = 〈η0, ζ〉 =
∫

Cm

〈ξ, ζ〉dξ =
∫

Rm

1Cm(ξ)〈ξ, ζ〉dξ.

Setting H+
ζ = {ξ : 〈ξ, ζ〉 > 0} and H−

ζ = {ξ : 〈ξ, ζ〉 < 0} it follows,

0 =
∫

H+
ζ

1Cm(ξ)〈ξ, ζ〉dξ +
∫

H−
ζ

1Cm(ξ)〈ξ, ζ〉dξ.

We apply the change of variables ξ = rζ(η) to the second integral (note that rζ(H+
ζ ) = H−

ζ ,
that rζ preserves m-dimensional volumes, so that its Jacobian is equal to 1, and that rζ is norm
preserving). We have,

∫

H−
ζ

1Cm(ξ)〈ξ, ζ〉dξ =
∫

H+
ζ

1Cm(rζ(η))〈rζ(η), ζ〉dη.

Since, for every η ∈ Rm, 〈rζ(η), ζ〉 = −〈η, ζ〉 we conclude

0 =
∫

H+
ζ

{
1Cm(ξ)− 1Cm(rζ(ξ))

}
〈ξ, ζ〉dξ. (2.17)

Let us remark that, for every ξ ∈ H+
ζ ,

1Cm(ξ)− 1Cm(rζ(ξ)) ≥ 0. (2.18)

Indeed, this is trivial if ξ ∈ Cm or |ξ| > 1 (since rζ is norm preserving). If ξ ∈ (H+
ζ ∩Bm(0, 1))\Cm

then rζ(ξ) ∈ Rm \ Cm, since, if otherwise rζ(ξ) ∈ Cm, from ζ ∈ Cm and ξ = 2〈ζ, ξ〉ζ + rζ(ξ),
it would be ξ ∈ C (note that the convex cones are closed under summation with non negative
coefficients) and then in particular, by |ξ| ≤ 1, ξ ∈ Cm.

From (2.17), (2.18) and the definition of H+
ζ , for Lm-a.e. ξ ∈ H+

ζ , it is

1Cm(ξ)− 1Cm(rζ(ξ)) = 0.

Now ζ ∈ H+
ζ ∩ Cm and then, for the properties of the convex set with non empty interior, there

exists a sequence {ζk}∞k=1 ⊆ Cm, converging to ζ and such that rζ(ζk) ∈ Cm. By the continuity of

18Given a vector ζ ∈ Rm, then ζ⊥ = {ξ ∈ Rm : 〈ζ, ξ〉 = 0}.
19In the following 1K denotes the characteristic function of the set K that is the function defined as 1K(x) = 1

if x ∈ K, 1K(x) = 0 if x 6∈ K.
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rζ and since Cm is closed, it is rζ(ζ) = −ζ ∈ Cm. Then ζ,−ζ ∈ Cm that is {tζ : t ∈ R} ⊆ C: thus
a contradiction is found and (2.16) is proved. Clearly (2.16) implies that there exists ε > 0 such
that

cl(Kf ) \ {0} ⊆
{

ξ ∈ Rm \ {0} :
〈

ξ

|ξ| , η0

〉
> ε

}
,

where, without loss of generality, we can also assume |η0| = 1.
Let us suppose at first s < ∞. For every h ∈ N, we set

Ch =
{

ξ : g(ξ) ≤ s

(
1− 1

h

)}
and Dh = Ch ∩

{
ξ ∈ Rm \ {0} :

〈
ξ

|ξ| , η0

〉
≤ ε

}
.

Obviously {Ch}∞h=1 and {Dh}∞h=1 are two increasing sequences of sets. Moreover we have that
every Dh is bounded. Indeed, if by contradiction there exists h0 ∈ N such that Dh0 is unbounded,
we can find a sequence {ξj}∞j=1 ⊆ Dh0 such that |ξj | → ∞ and ξj

|ξj | → ξ0 ∈ Sm−1. Then

s

(
1− 1

h0

)
≥ lim inf

j→∞
g

(
|ξj | ξj

|ξj |
)
≥ g\(ξ0),

but since ξ0 ∈
{

ξ ∈ Rm \ {0} :
〈

ξ
|ξ| , η0

〉
≤ ε

}
it should be g\(ξ0) = s and the contradiction is

found.
Let us define now

θ(0) = 2 sup{|ξ| : ξ ∈ D1}, (θ(t) = 0 if D1 = ∅),
and, for every h ∈ N, t ∈

(
s
(
1− 1

h

)
, s

(
1− 1

h+1

)]
,

θ(t) = 2 sup{|ξ| : ξ ∈ Dh+1}, (θ(t) = 0 if Dh+1 = ∅).
Then θ : [0, s) → [0,∞) is clearly increasing and sup{θ(t) : t ∈ [0, s)} = ∞: thus we can define
also θ(s) = ∞.

Let us fix now ξ0 ∈
{

ξ ∈ Rm \ {0} :
〈

ξ
|ξ| , η0

〉
≤ ε

}
: if g(ξ0) = 0 then ξ0 ∈ D1 and

(θ ◦ g)(ξ0) = θ(0) = 2 sup{|ξ| : ξ ∈ D1} ≥ 2|ξ0|;
if 0 < g(ξ0) < s then there exists h0 ∈ N such that g(ξ0) ∈

(
s
(
1− 1

h0

)
, s

(
1− 1

h0+1

)]
and then

ξ0 ∈ Dh0+1 and
(θ ◦ g)(ξ0) = 2 sup{|ξ| : ξ ∈ Dh0+1} ≥ 2|ξ0|;

if at last g(ξ0) = s then
(θ ◦ g)(ξ0) = ∞ ≥ 2|ξ0|.

Now we can easily prove that (θ ◦ g) is demi-coercive. Indeed, fixed ξ ∈ Rm \ {0}, if
〈

ξ
|ξ| , η0

〉
≤ ε

then
(θ ◦ g)(ξ) + 〈ξ, η0〉 ≥ 2|ξ| − |ξ| = |ξ|,

while, if
〈

ξ
|ξ| , η0

〉
> ε, then

(θ ◦ g)(ξ) + 〈ξ, η0〉 ≥
〈

ξ

|ξ| , η0

〉
|ξ| > ε|ξ|.

Thus, since trivially (θ ◦ g)(0) ≥ 0, it holds that, for every ξ ∈ Rm, (θ ◦ g)(ξ) + 〈ξ, η0〉 ≥ ε|ξ|.
We achieve the proof of the case s < ∞ choosing any function Θ : [0, s] → [0,∞] which is

continuous, strictly increasing and such that, for every t ∈ [0, s], θ(t) ≤ Θ(t): in this way Θ ◦ g
is proper, l.s.c. and demi-coercive. The construction of the function Θ is simple and it can be
omitted.

In order to treat the case s = ∞, we can use the same argument once s
(
1− 1

h

)
is changed with

h and the definition given for θ(0) is used to define θ on [0, 1].
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The two propositions below are based on the following simple equalities: if th, l ∈ R, then

lim inf
h→∞

(th ∨ l) =
(

lim inf
h→∞

th

)
∨ l and lim sup

h→∞
(th ∨ l) =

(
lim sup

h→∞
th

)
∨ l.

Proposition 2.32. Let γ : Rm → [0,∞] be a proper and Borel function and let lj , l ∈ R such that
lj ↓ l. If, for every j ∈ N, γ ∨ lj is l.s.c. then γ ∨ l is l.s.c. too.

Proof. Let ξh, ξ0 ∈ Rm such that ξh → ξ0. Then, for every j ∈ N,

(γ ∨ l)(ξ0) ≤ (γ ∨ lj)(ξ0) ≤ lim inf
h→∞

(γ ∨ lj)(ξh) =
(

lim inf
h→∞

γ(ξh)
)
∨ lj ,

and, letting j →∞, we obtain

(γ ∨ l)(ξ0) ≤
(

lim inf
h→∞

γ(ξh)
)
∨ l = lim inf

h→∞
(γ(ξh) ∨ l),

that completes the proof.

Proposition 2.33. Let γ : Rm → [0,∞] be a proper and Borel function and let l ∈ R. Then
(γ ∨ l)[ = γ[ ∨ l.

Proof. Let us fix ξ0 ∈ Rm. If we consider th ↓ 0 such that γ(thξ0) → γ[(ξ0), then

(γ ∨ l)[(ξ0) ≥ lim sup
h→∞

(γ ∨ l)(thξ0) =
(

lim sup
h→∞

γ(thξ0)
)
∨ l = γ[(ξ0) ∨ l.

Conversely let t̄h ↓ 0 such that (γ ∨ l) (t̄hξ0) → (γ ∨ l)[(ξ0). Then

γ[(ξ0) ∨ l ≥
(

lim sup
h→∞

γ (t̄hξ0)
)
∨ l = lim sup

h→∞
(γ ∨ l) (t̄hξ0) = (γ ∨ l)[(ξ0),

and the proof is achieved.

Finally we state the following theorem involving demi-coercive and convex functions (see Anzel-
lotti, Buttazzo and Dal Maso [8] Theorem 2.4) in which, in particular, the equivalence between
demi-coercivity and the property to be n.c.s.l. is proved.

Theorem 2.34. Let f : Rm → [0,∞] be a proper, l.s.c. and convex function and let ξ0 ∈ Rm.
Then the following conditions are equivalent:

(a) f is demi-coercive;

(b) f is n.c.s.l.;

(c) there are no straight line containing ξ0 along which f is constant;

(d) the set {ξ ∈ Rm : f∞(ξ) = 0} contains no straight line;

(e) the set {ξ ∈ Rm : 2f(ξ0) = f(ξ0 + ξ) + f(ξ0 − ξ)} is bounded;

(f) for every ξ ∈ Rm, ξ 6= 0, there exists t > 0 such that 2f(ξ0) < f(ξ0 + tξ) + f(ξ0 − tξ);

(g) for every ξ ∈ Rm, ξ 6= 0, we have f∞(ξ) + f∞(−ξ) > 0;

(h) there exist a, b ∈ R, a > 0, such that, for every ξ ∈ Rm, f(ξ0 + ξ) + f(ξ0 − ξ) ≥ a|ξ| − b;

(i) there exists η ∈ Rm such that, for every ξ ∈ Rm, ξ 6= 0, f∞(ξ)− 〈η, ξ〉 > 0.
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Chapter 3

Approximation of convex functions

In order to study the lower semicontinuity of the integral functional I given by (1.1) it is funda-
mental to be able to approximate from below the integrand f with more regular functions. For
this purpose many efforts has been spent to find different strategies to build such approximation.
In this chapter we present several theorems on this topic: while in the first part we state only the
classical results by De Giorgi and Serrin, the second part contains some recent theorems obtained
by Gori and Maggi in [53].

3.1 De Giorgi’s and Serrin’s approximation methods

Let Σ ⊆ Rd be an open set and let f : Σ× Rn → [0,∞]: we say that f has compact support on Σ
if there exists Σ′ ⊂⊂ Σ such that, for every (t, ξ) ∈ (Σ \ Σ′)× Rn, we have f(t, ξ) = 0.

The following approximation result was proved by De Giorgi (see [35] Theorem 3, Section 3).

Theorem 3.1. Let Σ ⊆ Rd be an open set and f : Σ × Rn → [0,∞) be a continuous function
with compact support in Σ such that, for every t ∈ Σ, f(t, ·) is convex on Rn. Then there exists a
sequence {αq}∞q=1 ⊆ C∞c (Rn), αq ≥ 0 such that, setting

aq,0(t) =
∫

Rn

f(t, η)

{
(n + 1)αq(η) +

n∑

h=1

ηh
∂αq

∂ξh
(η)

}
dη, (3.1)

and, for every h ∈ {1, . . . , n},

aq,h(t) = −
∫

Rn

f(t, η)
∂αq

∂ξh
(η)dη, (3.2)

the sequence of functions given, for every j ∈ N, by

fj(t, ξ) = max
1≤j≤q

{
0, aq,0(t) +

n∑

h=1

aq,h(t)ξh

}
,

satisfies the following conditions:

(i) for every j ∈ N, fj : Σ × Rn → [0,∞) is a continuous function with compact support in Σ
such that, for every t ∈ Σ, fj(t, ·) is convex on Rn. Moreover, for every (t, ξ) ∈ Σ × Rn,
fj(t, ξ) ≤ fj+1(t, ξ) and

f(t, ξ) = sup
j∈N

fj(t, ξ);

29
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(ii) for every j ∈ N, there exists a constant Mj > 0 such that, for every (t, ξ) ∈ Σ× Rn,

|fj(t, ξ)| ≤ Mj (1 + |ξ|) , (3.3)

and, for every t ∈ Σ, ξ1, ξ2 ∈ Rn,

|fj(t, ξ1)− fj(t, ξ2)| ≤ Mj |ξ1 − ξ2| . (3.4)

The next theorem is instead due to Serrin (see [69] Lemmas 5 and 8).

Theorem 3.2. Let Σ ⊆ Rd be an open set and f : Σ×Rn → [0,∞) be a continuous function such
that, for every t ∈ Σ, f(t, ·) strictly convex on Rn. Then, for every ε > 0 and Σ′ ⊂⊂ Σ, there
exists a continuous function f̄ : Σ× Rn → [0,∞) with compact support on Σ′ such that1:

(i) for every t ∈ Σ, f̄(t, ·) is convex;

(ii) for every (t, ξ) ∈ Σ× Rn, f̄(t, ξ) ≤ f(t, ξ) + ε;

(iii) for every t ∈ Σ′, ξ ∈ B
(
0, 1

ε

)
, |f̄(t, ξ)− f(t, ξ)| ≤ ε;

(iv) ∇ξ f̄ : Σ × Rn → Rn exists, is continuous and there exists a constant M > 0 such that, for
every (t, ξ) ∈ Σ× Rn, ∣∣∇ξ f̄(t, ξ)

∣∣ ≤ M,

and, for every t1, t2 ∈ Σ, ξ ∈ Rn,
∣∣∇ξ f̄(t1, ξ)−∇ξ f̄(t2, ξ)

∣∣ ≤ M |t1 − t2|(1 + |ξ|).

3.2 Approximation of convex and demi-coercive functions

Let us introduce now two approximation results that will be instrumental in the future and that
can be found in [53] Theorem 4 and Theorem 5 respectively.

3.2.1 Approximation by means of convex cones

The following theorem says that a convex, demi-coercive function can be approximated by demi-
coercive cones. The advantage of this approximation is given by the fact that these cones, under
a certain point of view, behave better than the supporting hyper-planes.

Theorem 3.3. Let Σ ⊆ Rd be an open set and f : Σ×Rn → [0,∞) be a l.s.c. (resp. continuous)
function such that, for every t ∈ Σ, f(t, ·) is convex and demi-coercive on Rn. For every ξ0 ∈ Rn,
let us define Pξ0 f : Σ× Rn → [−1,∞) as

Pξ0 f(t, ξ) = inf
{

α : (ξ, α) ∈ pos(ξ0,−1) (epi f(t, ·))
}

.

Then we have that:

(i) Pξ0 f is l.s.c. (resp. continuous) and, for every t ∈ Σ, Pξ0 f(t, ·) is convex, demi-coercive
and can be characterized as the greatest function less than or equal to f such that, for every
t ∈ Σ, the map

ξ 7→ (1 + Pξ0 f(t, ξ + ξ0))

is positively homogeneous of degree 1;

1With ∇ξf(x, s, ξ) we mean the gradient of f(x, s, ·).



3.2. APPROXIMATION OF CONVEX AND DEMI-COERCIVE FUNCTIONS 31

(ii) there exists a sequence {ξk}∞k=1 ⊆ Rn such that, for every (t, ξ) ∈ Σ× Rn,

f(t, ξ) = sup
k∈N

Pξk
f(t, ξ).

Proof. Let us prove (i). By the definition of Pξ0 f we have, for every t ∈ Σ,

epi
(

Pξ0 f(t, ·)
)

= cl
(
pos(ξ0,−1) (epi f(t, ·))

)
.

Since, for every t ∈ Σ, epi (f(t, ·)) ⊆ epi (Pξ0 f(t, ·)) we obtain Pξ0 f ≤ f on Σ×Rn and, since the
positive conic envelope of a convex set is convex too2, we have also that, for every t ∈ Σ, Pξ0 f(t, ·)
is convex. The map ξ 7→ (1 + Pξ0 f(t, ξ + ξ0)) clearly is positively homogeneous of degree 1.

In order to show that Pξ0 f is the greatest function less than or equal to f such that it satisfies
the property about the positive homogeneity of degree 1 asked in (i), we note that, if g is such that
g ≤ f and, for every t ∈ Σ, ξ 7→ (1 + g(t, ξ + ξ0)) is positively homogeneous of degree 1, then, for
every t ∈ Σ,

epi(g(t, ·)) ⊇ cl
(
pos(ξ0,−1) (epi f(t, ·))

)
= epi

(
Pξ0 f(t, ·)

)
,

so that g ≤ Pξ0 f .
It worth noting also that, for every (t, ξ) ∈ Σ×Rn, 1 + Pξ0 f(t, ξ + ξ0) ≤ f∞(t, ξ)3. Indeed, by

means of Definitions 3.3 and 3.17 and Theorem 3.21 in [67], for every t ∈ Σ, it holds

epi
(
f∞(t, ·)

)
=

{
(ξ, α) : ∃(ξh, αh) ∈ epi(f(t, ·)), th →∞ such that

(ξh, αh)
th

→ (ξ, α)
}

.

Thus let (ξ, α), (ξh, αh) and th as above: since (ξh, αh) ∈ epi(f(t, ·)) we have

(ξh − ξ0, αh + 1)
th

+ (ξ0,−1) ∈ pos(ξ0,−1) (epi f(t, ·))

and then, passing to the limit as h →∞, we obtain

(ξ + ξ0, α− 1) ∈ cl
(
pos(ξ0,−1) (epi f(t, ·))

)
= epi

(
Pξ0 f(t, ·)

)

if and only if

(ξ, α) ∈ epi
(
1 + Pξ0 f(t, ·+ ξ0)

)
,

that proves the wanted inequality.
Now let us point out that, by definition, we have

Pξ0 f(t, ξ) = inf
{

α : (ξ, α) ∈ pos(ξ0,−1) (epi f(t, ·))
}

= inf
{
− 1 + τ(β + 1) : τ ≥ 0, β ≥ f(t, η), ξ = ξ0 + τ(η − ξ0)

}

= −1 + inf
{

τ + τf

(
t, ξ0 +

ξ − ξ0

τ

)
: τ > 0

}
. (3.5)

Using this formula, by a simple computation, we can prove that, for every t ∈ Σ, Pξ0 f(t, ·) is
demi-coercive.

2See [67] Chapter 3, Section G.
3With f∞(t, ξ) we mean (f(t, ·))∞ (ξ).
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Moreover (3.5) allows to achieve also the lower semicontinuity (resp. continuity) of Pξ0 f .
Indeed, let us consider the function f̂ : Σ× Rn × R→ [0,∞) given, as in Proposition 2.25, by

f̂(t, ξ, τ) =





τf
(
t, ξ

τ

)
if τ > 0,

f∞(t, ξ) if τ = 0,
+∞ if τ < 0.

(3.6)

By Theorem 3.1 of [30], f̂ is l.s.c. on Σ × Rn × R and then the same property is had also by
f(t, ξ, τ) = τ + f̂(t, ξ − ξ0, τ). By (3.5), the definition of f and the remark made above about f∞

we have
Pξ0 f(t, ξ) = −1 + inf

{
f(t, ξ, τ) : τ ≥ 0

}
,

but, since τ ≤ f(t, ξ, τ) and f(t, ξ, 1) = 1 + f(t, ξ), it is in fact

Pξ0 f(t, ξ) = −1 + inf
{

f(t, ξ, τ) : 0 ≤ τ ≤ 1 + f(t, ξ)
}

.

In particular, by the lower semicontinuity of f , for every (t, ξ) there exists 0 ≤ τ(t,ξ) ≤ 1 + f(t, ξ)
such that

Pξ0 f(t, ξ) = −1 + f
(
t, ξ, τ(t,ξ)

)
.

Let us verify now the lower semicontinuity of Pξ0 f . Let (th, ξh), (t1, ξ1) ∈ Σ × Rn such that
(th, ξh) → (t1, ξ1) and suppose, without loss of generality, that

lim inf
h→∞

Pξ0 f(th, ξh) = lim
h→∞

Pξ0 f(th, ξh).

Let us define also τh = τ(th,ξh), τ1 = τ(t1,ξ1). If it is τh →∞, since

τh ≤ f(th, ξh, τh) = 1 + Pξ0 f(th, ξh),

the lower semicontinuity inequality is trivially verified. If otherwise τh is bounded we can suppose
τh → τ0 and then

1 + Pξ0 f(t1, ξ1) = f(t1, ξ1, τ1) ≤ f(t1, ξ1, τ0) ≤ lim inf
h→∞

f(th, ξh, τh) = lim inf
h→∞

(1 + Pξ0 f(th, ξh)) ,

that completes the proof of the lower semicontinuity of Pξ0 f .
Finally, again by (3.5), we have also that the continuity of f implies the upper semicontinuity

(and then continuity) of Pξ0 f .

In order to prove (ii) we show at first that

f(t, ξ) = sup
ξ0∈Rn

Pξ0 f(t, ξ). (3.7)

Without loss of generality, we can drop the dependence on t. Moreover we can reduce us to consider
the one dimensional case, as we can see by the following argument. Fixed ν ∈ Sn−1, we can define,
for every ρ ∈ R,

fν(ρ) = f(ρν),

then, by the maximality property of Pξ0 f , we have that, for every ρ0, ρ ∈ R,

Pρ0ν f(ρν) = Pρ0 fν(ρ).

If the approximation holds in dimension one we have, for every ν ∈ Sn−1 and ρ ∈ R,

fν(ρ) = sup
ρ0∈R

Pρ0 fν(ρ)
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so that,

f(ρν) = fν(ρ) = sup
ρ0∈R

Pρ0 fν(ρ) = sup
ρ0∈R

Pρ0ν f(ρν) ≤ sup
ξ0∈Rn

Pξ0 f(ρν) ≤ f(ρν),

that implies (3.7).
Therefore we prove (3.7) for n = 1. For this we consider a function f : R → [0,∞) which is

convex (and then continuous) and non constant (that is demi-coercive) and ξ0 ∈ R, and define the
following set

Λf (ξ0) =
{

v ∈ R : v(ξ − ξ0)− 1 ≤ f(ξ), ∀ξ ∈ R
}

.

Let us note that, for every ξ0 ∈ R, 0 ∈ Λf (ξ0). Moreover, for every ξ, ξ0, v ∈ R, v 6= 0,

v(ξ − ξ0) + f(ξ0) = v

(
ξ − ξ0 − 1 + f(ξ0)

v

)
− 1, (3.8)

and then

v ∈ ∂f(ξ0) if and only if v ∈ Λf

(
ξ0 − 1 + f(ξ0)

v

)
.

Let us define ξ∗(ξ0, v) = ξ0 − 1+f(ξ0)
v . For every ξ0 ∈ R, we set αf (ξ0) = inf Λf (ξ0) ≤ 0 and

βf (ξ0) = sup Λf (ξ0) ≥ 0. By the maximality property of Pξ0 f , we have

Pξ0 f(ξ) = max
{

αf (ξ0)(ξ − ξ0)− 1, βf (ξ0)(ξ − ξ0)− 1
}

. (3.9)

Since f is not constant and convex it is either limξ→∞ f(ξ) = ∞ or limξ→−∞ f(ξ) = ∞: we
consider the case in which only limξ→∞ f(ξ) = ∞ proving in this hypothesis that, for every ξ ∈ R,

f(ξ) = sup
ξ0∈R

{
βf (ξ0)(ξ − ξ0)− 1

}
: (3.10)

the other two cases (limξ→−∞ f(ξ) = ∞ and lim|ξ|→∞ f(ξ) = ∞) follow immediately.
Let us consider the following (possibly empty) set,

A = {ξ ∈ R : ∂f(ξ) = {0}} ,

and claim that if A is not empty then it is connected and f is constant on A. If A = {ξ0} the
claim is obvious. If instead there are ξ1, ξ2 ∈ A, ξ1 < ξ2, let us consider ξ1 < η < ξ2: by definition
of sub-differential, f(ξ1) = f(ξ2) = m and f(η) ≥ m. However, by the convexity of f , f(η) ≤ m
too. Then, for every ξ1 < η < ξ2, we have f(η) = m and this implies ∂f(η) = {0}, that is η ∈ A:
thus the claim is proved.

By (3.8) we immediately see that (3.10) holds on every ξ ∈ R\A with the supremum attained
on ξ0 = ξ∗(ξ, v), for every choice of v 6= 0, v ∈ ∂f(ξ): if A = ∅ the proof is achieved.

Thus, let us suppose that A is non empty. Since f(ξ) →∞ as ξ →∞, we have that A is bounded
from above, so that we can consider ξA = sup A < ∞. By continuity of f , it is f(ξA) = m. By
choosing ξh ∈ A with ξh → ξA, we have also

{0} = lim sup
h→∞

∂f(ξh) ⊆ ∂f(ξA).

Therefore 0 ∈ ∂f(ξA) and, for every ξ ∈ A, we have ξ ≤ ξA and f(ξ) = f(ξA) = m. Let us fix
ξ ∈ A, and show the validity of (3.10). If ξA ∈ R\A, there exists vA ∈ ∂f(ξA) with vA > 0, such
that [0, vA] ⊆ ∂f(ξA) (remember that ∂f(ξA) is convex). Then, considering vh = h−1vA ∈ ∂f(ξA),
we have

vh(ξ − ξA) + f(ξA) = vh(ξ − ξ∗(ξA, vh))− 1 ≤ βf (ξ∗(ξA, vh))(ξ − ξ∗(ξA, vh))− 1 ≤ f(ξ) = m,
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and since the left hand side tends to f(ξA) = m as h →∞, we conclude. If otherwise ξA ∈ A, let
us consider ξh → ξA, with ξh > ξA. We know that

lim sup
h→∞

∂f(ξh) ⊆ ∂f(ξA) = {0},

then we can choose vh ↓ 0 with vh ∈ ∂f(ξh). In particular it is

vh(ξ − ξh) + f(ξh) ≤ βf (ξ∗(ξh, vh))(ξ − ξ∗(ξh, vh))− 1 ≤ f(ξ) = m,

and since the left hand side tends to f(ξA) = m as h →∞, we complete the proof of (3.7).
It remains to show the validity of (ii) once it is known (3.7). This can be simply proved by

means of the following lemma.

Lemma 3.4. Let A ⊆ Rn and let G be a set of l.s.c. functions from A to R. Let us define, for
every x ∈ A, f(x) = supg∈G g(x). Then there exists a sequence {gh}∞h=1 ⊆ G, such that, for every
x ∈ A, f(x) = suph∈N gh(x).

Since its proof consists only in a slight modification of the argument used in the proof of Lemma
9.2 in [43], we omit the details.

3.2.2 Approximation by means of strictly convex functions

As a consequence of Theorem 3.3 we show that the class of functions that can be represented as a
countable supremum of strictly convex ones is characterized by the demi-coercivity.

Theorem 3.5. Let Σ ⊆ Rd be an open set and let f : Σ× Rn → [0,∞) be a continuous function.
Then the two following conditions are equivalent:

(i) for every t ∈ Σ, f(t, ·) is convex and demi-coercive.

(ii) there exists a sequence {fj}∞j=1 such that, for every (t, ξ) ∈ Σ× Rn,

f(t, ξ) = sup
j∈N

fj(t, ξ), (3.11)

where, for every j ∈ N, fj : Σ × Rn → [−2,∞) is a continuous function such that, for
every t ∈ Σ, fj(t, ·) is strictly convex in Rn and, for every Σ′ ⊂⊂ Σ, there exists a constant
Cj,Σ′ > 0 such that, for every (t, ξ) ∈ Σ′ × Rn,

fj(t, ξ) ≤ Cj,Σ′(1 + |ξ|). (3.12)

Proof. The proof of (ii) ⇒ (i) is obvious and can be omitted.
In order to prove the converse it is sufficient to show that every conic type function given

in Theorem 3.3 can be approximated from below by a sequence of continuous functions, strictly
convex in the variable ξ. Thus, we can suppose also that f(t, ·) is positively homogeneous of degree
1.

We start proving that there exists a continuous function N : Σ → Rn+1, such that, for every
t ∈ Σ,

epi(f(t, ·))\{0} ⊂ {M ∈ Rn+1 : 〈M,N(t)〉 > 0}. (3.13)

Following exactly the first part of Proposition 2.31, we can prove that the vector valued function

N(t) =
∫

K(t)

NdN,

where K(t) = epi (f(t, ·)) ∩Bn+1(0, 1), satisfies just the above condition.
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Then we only have to show that N(t) is continuous on Σ. To this end let us fix th, t0 ∈ Σ,
th → t0, and consider

C = sup
{

f(t, ξ) : t ∈ {t0} ∪ {th}∞h=1, |ξ| ≤ 1
}
∨ 1 < ∞,

since it is the supremum of a continuous function on a compact set. For

S(t) =
{

(ξ, α) ∈ Rn+1 : |ξ| ≤ 1, α ∈ [0, C]
}
∩ epi (f(t, ·)) ,

we have
|N(th)−N(t0)| ≤ Ln+1(K(th)4K(t0))

≤ Ln+1(S(th)4S(t0)) =
∫

Bn(0,1)

|f(th, ξ)− f(t0, ξ)|dξ → 0,

as h → ∞, where we used the notation A4B = (A \ B) ∪ (B \ A). Thus also the continuity of
N(t) is proved.

Since it must be N(t) = (ν(t), a(t)) with ν(t) ∈ Rn, a(t) > 0, then the inclusion (2.16) implies
that, for every ξ ∈ Rn \ {0},

g(t, ξ) = f(t, ξ) +
〈ν(t), ξ〉

a(t)
> 0. (3.14)

The function c(t) = min{g(t, v) : v ∈ Sn−1} > 0 is continuous on Σ and c(t)|ξ| ≤ g(t, ξ).
For every δ ∈ (0, 1), let us consider

hδ(t, ξ) =
√

δ2 + c(t)2|ξ|2 − δ, (t, ξ) ∈ Σ× Rn.

Obviously, for every δ ∈ (0, 1), 0 ≤ hδ(t, ξ) ≤ c(t)|ξ| and hδ(t, ξ) → c(t)|ξ| as δ ↓ 0. Moreover for
every (t, ξ) ∈ Σ× Rn, δ ∈ (0, 1),

dhδ

dδ
(t, ξ) = −1 +

δ√
δ2 + c2(t)|ξ|2 ≤ 0,

so that it follows hδ(t, ξ) ↑ c(t)|ξ| as δ ↓ 0. Let us note also that, for every t ∈ Σ, δ ∈ (0, 1) fixed,
hδ(t, ·) is strictly convex. In order to prove this, we consider ξ, η ∈ Rn, ξ 6= η, λ ∈ (0, 1); if |ξ| 6= |η|
then √

δ2 + c(t)2|λξ + (1− λ)η|2 ≤
√

δ2 + c(t)2(λ|ξ|+ (1− λ)|η|)2

< λ
√

δ2 + c(t)2|ξ|2 + (1− λ)
√

δ2 + c(t)2|η|2;
if |ξ| = |η| then |λξ + (1− λ)η| < λ|ξ|+ (1− λ)|η|, thus

√
δ2 + c(t)2|λξ + (1− λ)η|2 <

√
δ2 + c(t)2(λ|ξ|+ (1− λ)|η|)2

≤ λ
√

δ2 + c(t)2|ξ|2 + (1− λ)
√

δ2 + c(t)2|η|2.
Now we define, for every δ ∈ (0, 1), fδ : Σ× Rn → R as

fδ(t, ξ) = (1− δ)g(t, ξ) + δhδ(t, ξ)− 〈ν(t), ξ〉
a(t)

, (t, ξ) ∈ Σ× Rn.

This is a continuous function, strictly convex in the variable ξ (as it is a sum of a convex function
and a strictly convex one). Clearly fδ(t, ξ) → f(t, ξ) as δ ↓ 0. Since hδ(t, ξ) ≤ c(t)|ξ| ≤ g(t, ξ) we
have also

fδ(t, ξ) ≤ g(t, ξ)− 〈ν(t), ξ〉
a(t)

= f(t, ξ).
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For every (t, ξ) ∈ Σ× Rn, δ ∈ (0, 1),

dfδ

dδ
(t, ξ) = −g(t, ξ) + hδ(t, ξ) + δ

dhδ

dδ
(t, ξ) ≤ 0,

then fδ(t, ξ) ↑ f(t, ξ) as δ ↓ 0. However, note that fδ is not necessarily bounded from below, as
required in the statement: indeed, defining the open set Σ+ = {t ∈ Σ : ν(t) 6= 0}, we have that,
for every t ∈ Σ \Σ+, surely fδ(t, ·) ≥ 0, while, when t ∈ Σ+, fδ(t, ·) could tend to −∞ as |ξ| → ∞.

In order to solve this problem is sufficient to prove the existence of a continuous function
g∗ : Σ×Rn → [−1,∞) such that, for every t ∈ Σ+, g∗(t, ·) is strictly convex, for every t ∈ Σ \Σ+,
g∗(t, ·) = 0, and g∗ ≤ f . Indeed, in this case, we can define, for every (t, ξ) ∈ Σ×Rn, the function

f∗δ (t, ξ) = fδ(t, ξ) ∨ g∗(t, ξ),

that is continuous, as the maximum between two continuous functions, f ≥ f∗δ ≥ g∗ ≥ −1, and for
every t ∈ Σ, f∗δ (t, ·) is strictly convex, since, for every t ∈ Σ+, it is the maximum of two strictly
convex functions while, for every t ∈ Σ \ Σ+, f∗δ (t, ·) = fδ(t, ·) that is strictly convex. Moreover
f∗δ (t, ξ) ↑ f(t, ξ) as δ ↓ 0 since fδ(t, ξ) ↑ f(t, ξ) as δ ↓ 0 and g∗ ≤ f .

For what concerns the existence of g∗ we can argue as follows. Let us define, for every s ∈ R,

ϕ(s) = (s ∨ 0)− 1 + exp
(
−|s|

2

)
,

which is strictly convex, belongs to C2(R) and −1 ≤ ϕ(s) ≤ (s ∨ 0). Moreover, for every t ∈ Σ+,
let us define also b(t) =

∣∣∣ ν(t)
a(t)

∣∣∣ > 0 and µ(t) = − ν(t)
a(t)b(t) . Clearly

f(t, ξ) ≥ c(t)|ξ|+ b(t)〈µ(t), ξ〉

and, setting d(t) = (b(t) ∧ 1)(c(t) ∧ 1) > 0, we have, for every v ∈ Sn−1,

f(t, ξ) ≥ d(t)|ξ|+ b(t)〈µ(t), ξ〉 ≥ d(t)〈v, ξ〉+ b(t)〈µ(t), ξ〉.

Then it follows that4, for every t ∈ Σ+ and v ∈ Sn−1,

f(t, ξ) ≥ 1
ωn−1

∫

Sn−1

(
〈e(t, v), ξ〉 ∨ 0

)
dHn−1(v)

≥ 1
ωn−1

∫

Sn−1
ϕ
(
〈e(t, v), ξ〉

)
dHn−1(v) =: g∗(t, ξ),

where e(t, v) = d(t)v + b(t)µ(t). Thus, let us define g∗ : Σ× Rn → R as

g∗(t, ξ) =





1
ωn−1

∫
Sn−1 ϕ

(
〈e(t, v), ξ〉

)
dHn−1(v) if t ∈ Σ+,

0 if t ∈ Σ \ Σ+.
(3.15)

Clearly −1 ≤ g∗ ≤ f on Σ × Rn and, by Lebesgue dominated convergence Theorem, it can be
verified that g∗ is continuous on Σ+ × Rn. If now (t0, ξ0) ∈ (Σ \ Σ+) × Rn then limt→t0 b(t) =
limt→t0 d(t) = 0 (we remark that a(t) is locally uniformly positive on Σ), thus limt→t0 e(t, v) = 0
uniformly as v ∈ Sn−1. As a consequence lim

(t,ξ)→(t0,ξ0)
g∗(t, ξ) = 0 that implies that g∗ is continuous

on Σ× Rn.

4Here and in the following Hn denotes the usual n-dimensional Haussdorf measure and ωn = Hn(Sn).
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It remains to check that, for every t ∈ Σ+, g∗(t, ·) is strictly convex. By the fact that ϕ ∈ C2(R)
and by Lebesgue dominated convergence Theorem, we have, for every t ∈ Σ+, g∗(t, ·) ∈ C2(Rn)
and5

∇2
ξg
∗(t, ξ) =

1
ωn−1

∫

Sn−1
ϕ′′

(
〈e(t, v), ξ〉

)
e(t, v)⊗ e(t, v)dHn−1(v).

Let us fix (t, ξ) ∈ Σ+ × Rn and w ∈ Sn−1: to achieve the proof it suffices to show that
〈∇2

ξg
∗(t, ξ)w,w

〉
> 0.

Since 〈∇2
ξg
∗(t, ξ)w, w

〉
=

1
ωn−1

∫

Sn−1
ϕ′′

(
〈e(t, v), ξ〉

)
〈e(t, v), w〉2dHn−1(v),

we only have to prove that, for Hn−1-a.e. v ∈ Sn−1, it cannot be

〈e(t, v), w〉 = 〈d(t)v + b(t)µ(t), w〉 = 0.

But if this holds, by continuity of e(t, ·), for every v ∈ Sn−1, we also have

〈d(t)v + b(t)µ(t), w〉 = 0.

For v ∈ w⊥ we deduce that w ∈ µ(t)⊥ and then, for v = w, we get w = 0 6∈ Sn−1.
The proof of the last property stated in (ii) is simple and can be omitted.

5With ∇2
ξg(t, ξ) we mean the hessian matrix of g(t, ·). Moreover ⊗ denotes the standard tensorial product

between two vectors of Rn.



38 CHAPTER 3. APPROXIMATION OF CONVEX FUNCTIONS



Chapter 4

Lower semicontinuity for integral
functionals

4.1 A brief historical background

As announced in the introduction, this chapter is devoted to the problem of determining some new
conditions sufficient to guarantee the lower semicontinuity, with respect to the L1

loc(Ω) convergence,
of functionals of the type

I(u, Ω) =
∫

Ω

f(x, u(x),∇u(x))dx,

defined on the Sobolev space W 1,1
loc (Ω). This means to find out conditions on f such that, for every

uh, u ∈ W 1,1
loc (Ω), uh → u in L1

loc(Ω), it follows

I(u, Ω) ≤ lim inf
h→∞

I(uh,Ω).

In the following the function f will satisfy the usual conditions
{

f : Ω× R× Rn → [0,∞],

for every (x, s) ∈ Ω× R, f(x, s, ·) is convex in Rn.
(4.1)

One of the first results on this argument is an example due to Aronszajn (see [64] page 54)
which shows that conditions (4.1), together with the continuity of f , are not sufficient for the
lower semicontinuity of I. Several years later, Serrin was able to prove the following fundamental
theorem in which some sufficient conditions for the lower semicontinuity are presented (see [69]
Theorem 12).

Theorem 4.1. Let f be a continuous function satisfying (4.1) and one of the following conditions:

(a) for every (x, s) ∈ Ω× R, lim
|ξ|→∞

f(x, s, ξ) = ∞;

(b) for every (x, s) ∈ Ω× R, f(x, s, ·) is strictly convex in Rn;

(c) for every i, j ∈ {1, . . . , n}, the derivatives ∂f
∂xi

, ∂f
∂ξj

and ∂2f
∂xi∂ξj

exist and are continuous.

Then the functional I is l.s.c. on W 1,1
loc (Ω) with respect to the L1

loc(Ω) convergence.

The conditions (a), (b) and (c) quoted above are clearly independent, in the sense that we can
find a continuous function f satisfying just one of them, but none of the other ones. However, the

39
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proof of Theorem 4.1 is essentially the same for every condition considered; indeed, the proof is
based on an approximation theorem for convex functions depending continuously on parameters
(see [69] Lemma 5) that can be applied, in particular, when f satisfies (a), (b) or (c). This fact
suggests the possibility to find a suitable condition, implied independently by (a), (b) and (c),
which is still sufficient for the lower semicontinuity of I. This problem, that is still open and seems
to be very difficult, is the argument of this chapter.

The program to unify in a unique condition (a), (b) and (c) has to start, first of all, from the
analysis of the lower semicontinuity theorems and counterexamples we can find in literature: in
this way it could be understood what kind of difficulties we should expect.

The next theorem, again due to Serrin (see [69] Theorem 11), is relevant also because many
authors tried to improve it, dealing, in particular, with condition (i).

Theorem 4.2. Let f be a continuous function satisfying (4.1) and one of the following conditions:

(i) there exists a modulus of continuity1 ω such that, for every (x1, s1), (x2, s2) ∈ Ω×R, ξ ∈ Rn,

|f(x1, s1, ξ)− f(x2, s2, ξ)| ≤ ω (|x1 − x2|+ |s1 − s2|) (1 + f(x1, s1, ξ)) ; (4.2)

(ii) there exist two moduli of continuity ω and σ and a constant C > 0 such that, for every t > t0
big enough, we have σ(t) ≤ Ct and, for every (x1, s1), (x2, s2) ∈ Ω× R, ξ ∈ Rn,

|f(x1, s1, ξ)− f(x2, s2, ξ)| ≤ ω (|x1 − x2|) (1 + f(x1, s1, ξ)) + σ(|s1 − s2|). (4.3)

Then, for every uh, u ∈ W 1,1
loc (Ω) such that uh → u in L1

loc (Ω), we have

I (u,Ω) ≤ lim inf
h→∞

I (uh,Ω) ,

assuming in addition, when the case (i) is considered, that u ∈ C(Ω).

The following lower semicontinuity result was proved by Dal Maso (see [30] Theorem 3.2)
and just moves in the direction described above: note that the assumption of continuity on the
limit function u of Theorem 4.2 is removed2, while some coercivity and growth conditions are now
introduced.

Theorem 4.3. Let Ω be a bounded open set and f be a Borel function satisfying (4.1) such that,
for Hn-a.e. (x0, s0) ∈ Ω × Rn, f(x0, s0, ·) is continuous on Rn and, for every ε > 0, there exists
δ > 0 such that, for every (x, s) ∈ B(x0, δ)×B(s0, δ), ξ ∈ Rn,

|f(x, s, ξ)− f(x0, s0, ξ)| < ε(1 + |ξ|). (4.4)

Let us suppose that, for every r > 0, there exist M > 0, m, A ∈ C0(Ω), with, for every x ∈ Ω,
m(x) > 0, A(x) ≥ 0, and a ∈ L1(Ω), such that, for every (x, s, ξ) ∈ Ω× [−r, r]× Rn,

m(x) |ξ| − a(x) ≤ f(x, s, ξ) ≤ M |ξ|+ A(x).

Then, for every uh, u ∈ W 1,1
loc (Ω) such that uh → u in L1

loc (Ω),

I (u,Ω) ≤ lim inf
h→∞

I (uh,Ω) ,

assuming in addition that u ∈ L∞(Ω).

1A function ω is said a modulus of continuity if ω : (0,∞) → (0,∞) and limt→0 ω(t) = 0
2In fact Dal Maso was able to extend his analysis to u ∈ BVloc(Ω), also considering sequences of integral

functionals which Γ-converge
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In the same paper, Dal Maso proposed also a revisited form of the example by Aronszajn quoted
above.

A recent extension of Theorems 4.2(i) and 4.3 is due to Fonseca and Leoni (see [43] Theorem
1.1)3:

Theorem 4.4. Let f be a Borel function satisfying (4.1) and such that, for every (x0, s0) ∈ Ω×R
and for every ε > 0, there exists δ > 0 such that, for every (x, s) ∈ B(x0, δ)×B(s0, δ) and ξ ∈ Rn,

f(x0, s0, ξ)− f(x, s, ξ) ≤ ε (1 + f(x, s, ξ)) . (4.5)

Then the functional I is l.s.c. on W 1,1
loc (Ω) with respect to the L1

loc(Ω) convergence.

Note that the assumption (4.5) is a kind of lower semicontinuity of f with respect to (x, s) ∈
Ω × R, uniform with respect to ξ ∈ Rn. This condition seems more natural than the continuity
conditions (4.2) and (4.4) required in Theorems 4.2(i) and 4.3, because of the following theorem
due to Fusco (see [45] Proposition 3.1) in which, dealing with the case f(x, s, ξ) = a(x) |ξ|, the
author points out that a necessary condition for the lower semicontinuity of the functional I is the
lower semicontinuity of the function a.

Theorem 4.5. Let Ω = (0, 1). Let f : Ω × R → [0,∞) defined, for every (x, ξ) ∈ Ω × R, as
f(x, ξ) = a(x) |ξ|, where a : Ω → [0,∞) is a bounded Borel function. Then, for every u ∈ W 1,1

loc (Ω),

R
[
L1

loc

]
(I) (u, Ω) =

∫

Ω

a(x) |u′(x)| dx , (4.6)

where a(x) = sup
{

b(x) : b(x) ≤ a(x) for L1-a.e. x ∈ Ω, b is l.s.c. on Ω
}
. Thus in particular

I (u,Ω) =
∫

Ω

a(x) |u′(x)| dx

is l.s.c on W 1,1
loc (Ω) with respect to the L1

loc(Ω) convergence if and only if a is l.s.c. on Ω (that is,
there exists a l.s.c. function ā : Ω → [0,∞) such that, for L1-a.e. x ∈ Ω, a(x) = ā(x)).

Some researches had the aim to weaken the assumptions on f related to the dependence on s.
The next result, due to De Giorgi, Buttazzo and Dal Maso (see [37] Theorem 1), was the starting
point of this kind of results: here, roughly speaking, it is proved that, when the dependence on x
is dropped, the lower semicontinuity of I is always verified every time f is convex on the gradient
variable and it is regular enough to allow the composition f(u(x),∇u(x)) to be measurable.

Theorem 4.6. Let f : R × Rn → [0,∞] be a Borel function such that, for every s ∈ R, f(s, ·) is
convex on Rn, for every ξ ∈ Rn, f(·, ξ) is measurable on R and, in particular, f(·, 0) is l.s.c. on
R. If

lim sup
|ξ|→0

(f(s, 0)− f(s, ξ))+

|ξ| ∈ L1
loc(R), (4.7)

then the functional I is l.s.c. on W 1,1
loc (Ω) with respect to the L1

loc(Ω) convergence.

Theorem 4.6 was generalized by Ambrosio [4], and subsequently by De Cicco [31], [32] to the
BV setting. In 1999 Fonseca and Leoni (see [43] Theorem 1.5) obtained the same conclusion of
Theorem 4.6 for integrands f , depending explicitly on the x variable too, under an assumption of
continuity of f on x ∈ Ω uniform with respect to (s, ξ) ∈ R× Rn (similar to (4.5)), together with
a condition like (4.7) in which the variable x is also considered.

3Also in this case the authors are able to consider u ∈ BVloc(Ω): we quoted again the particular case when

uh, u ∈ W 1,1
loc (Ω), for a better comparison with the other results presented.
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At this point it should be clear that the dependence of f on x must be treated carefully
in studying the lower semicontinuity of I with respect to the L1

loc(Ω) convergence. Of course
the dependence on x gives difficulties not only technical because of the existence of Aronszajn’s
counterexample (in which f just depends on x). In particular, measurability of f with respect to
x is not appropriate thanks to Theorem 4.5.

In the paper of Gori and Marcellini [55] (see also Gori [50]) it was specifically considered the
dependence of f with respect to x ∈ Ω. In the results quoted above some qualified assumptions of
continuity, or lower semicontinuity, of f with respect to x uniformly on ξ ∈ Rn were supposed: in
[55] (see Theorem 1.6) it was proposed a new local condition that, in addition to the continuity of
f and (4.1), it is sufficient for the lower semicontinuity.

Theorem 4.7. Let f be a continuous function satisfying (4.1) and such that, for every open set
Ω′×H ×K ⊂⊂ Ω×R×Rn there exists a constant L = LΩ′×H×K such that, for every x1, x2 ∈ Ω′,
s ∈ H and ξ ∈ K,

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2| . (4.8)

Then the functional I is l.s.c. on W 1,1
loc (Ω) with respect to the L1

loc(Ω) convergence.

Condition (4.8) means that f is locally Lipschitz continuous with respect to x, locally with
respect to (s, ξ) and not necessarily globally, that is, the Lipschitz constant is not uniform for
(s, ξ) ∈ R× Rn. This allows us to obtain, as a corollary, an improvement of Serrin’s Theorem
4.1(c) since, when only the gradient4 ∇xf exists and is continuous, this implies the Lipschitz
continuity of f with respect to x on the compact subsets of Ω × R × Rn (even if not necessarily
Lipschitz continuity of f on the full set Ω×R× Rn): Theorem 4.7 can be considered the first strict
generalization of Theorem 4.1.

Moreover Theorem 4.7 underlines that hypothesis (c) in Theorem 4.1 seems to have a different
nature than hypotheses (a) and (b): indeed, roughly speaking, what assumption (c) really contains
is a regularity requirement in the geometric variable x, while (a) and (b) carry on some geometric
constraints on the convexity of f in the gradient variable ξ.

Thus, in order to unify all the conditions (a), (b) and (c), we could try to understand if condition
(4.8) of Theorem 4.7 can be further improved and if hypotheses (a) and (b) come from the same
source: we give an answer to these questions in the following section.

4.2 Statement of the main theorem

Before stating the main result of this chapter, it is suitable to make some remarks. Let us note
that the condition (4.8) of Theorem 4.7 can be formulated in the following equivalent way: for
every (s, ξ) ∈ R× Rn,

f(·, s, ξ) ∈ W 1,∞
loc (Ω),

and, for every Ω′ ×H ×K ⊂⊂ Ω × R × Rn there exists a constant L = LΩ′×H×K such that, for
every (s, ξ) ∈ H ×K,

ess sup
x∈Ω′

|∇xf(x, s, ξ)| ≤ L.

This way to read the condition (4.8) provides the right point of view to find a generalization of
Theorem 4.7. Indeed, a new sufficient condition can be found looking for a suitable summability
condition on the weak derivatives ∇xf , rather than a qualified continuity assumption as, for
instance, Hölder continuity in the x variable, that, as we will see in the following, it is not a
sufficient condition for the lower semicontinuity (see Theorem 4.13).

Always referring to Theorem 4.1, it is worth noting that one of the main advantages of (c) (and
its generalizations) with respect to (a) and (b) is that this condition allows also to treat integrands

4With ∇xf(x, s, ξ) we mean the (in case weak) gradient of f(·, s, ξ). As already said, an analogous definition
holds for ∇ξf(x, s, ξ) too.
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f that are constant in the gradient variable for some pair (x, s). The common root of (a) and
(b) is just this one: they are hypotheses assumed to exclude the cases in which f(x, s, ·) can be
constant on straight lines, that is (a) and (b) assure that f(x, s, ·) satisfies what we called the
n.c.s.l. property in the gradient variable, condition that we know to be equivalent to the notion of
demi-coercivity (see Theorem 2.34).

Theorem 4.8, that of course generalizes Theorems 4.1 and 4.7, is the main result of this chapter
and it follows by the researches carried on by Gori, Maggi and Marcellini (see [54] Theorem 1.2)
and Gori and Maggi (see [53] Theorem 6): here the remarks just made take the form of a precise
statement.

Theorem 4.8. Let f be a continuous function satisfying (4.1) and one of the following conditions:

(1) for every (s, ξ), f(·, s, ξ) ∈ W 1,1
loc (Ω), and, for every open set Ω′ ×H ×K ⊂⊂ Ω × R × Rn,

there exists a constant L = LΩ′×H×K such that, for every (s, ξ) ∈ H ×K,
∫

Ω′
|∇xf(x, s, ξ)|dx ≤ L;

(2) for every (x0, s0) ∈ Ω× R, it is that either, for every ξ ∈ Rn,

f(x0, s0, ξ) ≡ inf {f(x, s, ξ) : (x, s, ξ) ∈ Ω× R× Rn} ,

or there exists δ > 0 such that, for every (x, s) ∈ B(x0, δ)×B(s0, δ),

f(x, s, ·) is demi-coercive on Rn.

Then the functional I is l.s.c. on W 1,1
loc (Ω) with respect to the L1

loc(Ω) convergence.

We point out that Theorem 4.8(1) is a less general version of Theorem 1.2 proved in [54]: we
prefer to present here this simplified result since, assuming f continuous instead of Carathéodory
and locally bounded function, many technical difficulties can be avoided and the fundamental ideas
of the proof can be easier understood. Clearly we refer to the original paper [54] for further details.

Finally, the following simple and useful corollary holds.

Corollary 4.9. Let f be a continuous function satisfying (4.1) and one of the following conditions:

(1) ∇xf exists and is continuous,

(2) for every (x, s) ∈ Ω× R, f(x, s, ·) is demi-coercive on Rn.

Then the functional I is l.s.c. on W 1,1
loc (Ω) with respect to the L1

loc(Ω) convergence.

4.3 Proof of the main theorem

We start presenting a simple proposition that is useful to treat lower semicontinuity problems for
integral functionals. We state it in a very particular form that can be easily generalized to different
contests.

Proposition 4.10. Let Ω ⊆ Rn be an open set and f : Ω× R× Rn → [0,∞] be a Borel function.
Let us consider, for every B ∈ B(Ω), u ∈ W 1,1

loc (Ω), the functional

I(u,B) =
∫

B

f(x, u(x),∇u(x))dx,

and suppose that, for every B ⊂⊂ Ω open ball, I(·, B) is l.s.c. on W 1,1(B) with respect to the
L1(B) convergence. Then I(·, Ω) is l.s.c. on W 1,1

loc (Ω) with respect to the L1
loc(Ω) convergence.
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Proof. By a simple modification of Corollary 2 page 28 in [40] we can find a sequence {Bi}∞i=1 of
disjoint open balls well contained in Ω, such that

Ln

(
Ω \

∞⋃

i=1

Bi

)
= 0.

Let us consider now uh, u ∈ W 1,1
loc (Ω), uh → u in L1

loc(Ω). Clearly, for every i ∈ N, we have also
uh, u ∈ W 1,1(Bi), uh → u in L1(Bi), and then, fixed k ∈ N,

I

(
u,

k⋃

i=1

Bi

)
=

k∑

i=1

I(u,Bi) ≤
k∑

i=1

lim inf
h→∞

I(uh, Bi)

≤ lim inf
h→∞

k∑

i=1

I(uh, Bi) ≤ lim inf
h→∞

∞∑

i=1

I(uh, Bi) = lim inf
h→∞

I(uh, Ω),

where we have used the fact that f is non negative. Letting now k →∞ the lower semicontinuity
inequality is achieved.

In particular this proposition shows that, without loss of generality, in the following it will be
always allowed to consider Ω bounded with Lipschitz boundary and prove the lower semicontinuity
of I on W 1,1(Ω) with respect to the L1(Ω) convergence.

4.3.1 The condition on the geometric variable

The proof of Theorem 4.8(1) is structured as follows. We first prove a lower semicontinuity result,
namely Lemma 4.11, under certain technical hypotheses: in particular we show the validity of a
chain rule involving Sobolev functions (see equation (4.18)) that represents the core of the lemma.
Subsequently, combining Lemma 4.11 and Theorem 3.1, we achieve the proof of Theorem 4.8(1).
As already stated, the proofs provided here are a slightly different and simplified version of the
original ones presented in [54].

Before proving the theorem, in order to complete the description of the lower semicontinuity
results involving conditions on the geometric variable, we have to remember that recently Fusco,
Giannetti and Verde [46], De Cicco, Fusco and Verde [33] and De Cicco and Leoni [34] proposed
several generalizations of Theorem 4.8(1) (or, better, of the more general Theorem 1.2 in [54]).

In [46] and [33] the authors proved in particular that the same set of hypotheses on f given in
Theorem 4.8(1) is still sufficient to prove also the lower semicontinuity, with respect to the L1

loc(Ω)
convergence, of the standard integral functional, proposed by Dal Maso [30], that extends I on
BVloc(Ω). In [34] instead, by means of a very sophisticated chain rule that is the main result of
the paper, more general conditions are found in order to obtain the lower semicontinuity of I on
W 1,1

loc (Ω).
However, it is worth noting that all these results, as Theorem 4.7 and of course Theorem 4.8(1)

too, are proved by using, as a crucial step, the possibility to approximate f with the affine functions
built up by means of Theorem 3.1.

This fact underlines the power of Theorem 3.1 in studying the lower semicontinuity with re-
spect to the L1

loc(Ω) convergence of functionals in which the integrand f satisfies some regularity
conditions on the geometric variable.

Let us prove now the first step of the proof of Theorem 4.8(1) (compare it with Lemma 4.1 in
[54]).

Lemma 4.11. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary and f : Ω× R× Rn →
[0,∞) be a continuous function satisfying (4.1) and such that:
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(i) there exists an open set Ω′×H ⊂⊂ Ω×R such that, for every (x, s, ξ) ∈ (Ω\Ω′)×(R\H)×Rn,
f(x, s, ξ) = 0,

(ii) ∇ξf : Ω × R × Rn → Rn exists and is continuous. Moreover, for every (s, ξ) ∈ R × Rn,
∇ξf(·, s, ξ) ∈ W 1,1(Ω,Rn) and, for every K ⊂⊂ Rn, there exists L = LK such that, for
every (s, ξ) ∈ R×K,

n∑

i=1

∫

Ω

∣∣∣∣
∂∇ξf

∂xi
(x, s, ξ)

∣∣∣∣ dx ≤ L, (4.9)

(iii) there exists a constant M such that, for every (x, s, ξ) ∈ Ω× R× Rn,

|∇ξf(x, s, ξ)| ≤ M, (4.10)

and, for every (x, s) ∈ Ω× R, ξ1, ξ2 ∈ Rn,

|∇ξf(x, s, ξ1)−∇ξf(x, s, ξ2)| ≤ M |ξ1 − ξ2| . (4.11)

Then the functional I is l.s.c. on W 1,1(Ω) with respect to the L1(Ω) convergence.

Proof. Let uh, u ∈ W 1,1(Ω) such that uh → u in L1(Ω). We will prove that

lim inf
h→∞

I(uh,Ω) ≥ I(u, Ω). (4.12)

Without loss of generality, we can assume that

lim inf
h→∞

I(uh,Ω) = lim
h→∞

I(uh,Ω) < ∞,

and that uh converges almost everywhere to u in Ω. Moreover, by (4.10) and (4.11), there exists
a constant M ′ such that, for every (x, s, ξ) ∈ Ω× R× Rn,

|f(x, s, ξ)| ≤ M ′(1 + |ξ|),

thus, in particular, we have I(u, Ω) < ∞.
Since u ∈ W 1,1(Ω) and since ∂Ω is supposed Lipschitz, fixed ε > 0, by Theorem 2.10, there

exists vε ∈ Aff(Ω) such that ∫

Ω

|∇u(x)−∇vε(x)|dx ≤ ε, (4.13)

and by Fatou’s Lemma and the finiteness of I(u, Ω), we can also choose vε such that
∫

Ω

f(x, u(x),∇vε(x))dx ≥
∫

Ω

f(x, u(x),∇u(x))dx− ε. (4.14)

Since vε ∈ Aff(Ω), we can find {Ωj}N
j=1 disjoint open subsets of Ω such that Ln

(
Ω \⋃N

j=1 Ωj

)
= 0

and {ξj}N
j=1 ⊆ Rn such that ∇vε(x) = ξj when x ∈ Ωj .

Now let us take a sequence of non negative functions {βε
k}∞k=1 ⊆ C∞c (Ω) such that, for every

k ∈ N, j ∈ {1, . . . , N}, βε
k ∈ C∞c (Ωj) and, for Ln-a.e. x ∈ Ω, βε

k(x) ↑ 1. By Beppo Levi’s Theorem,
there exists an index kε such that, for every k ≥ kε, we have

∫

Ω

βε
k(x)f(x, u(x),∇vε(x))dx ≥

∫

Ω

βε
k(x)f(x, u(x),∇u(x))dx− 2ε. (4.15)

We write the difference of the integrands in (4.12) in this way

f(x, uh(x),∇uh(x))− f(x, u(x),∇u(x)) = f(x, uh(x),∇uh(x))− f(x, uh(x),∇vε(x)) (4.16)
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+f(x, uh(x),∇vε(x))− f(x, u(x),∇vε(x)) + f(x, u(x),∇vε(x))− f(x, u(x),∇u(x)).

By the convexity of f(x, s, ξ) with respect to ξ we have

f(x, uh(x),∇uh(x))− f(x, uh(x),∇vε(x)) ≥ 〈∇ξf(x, uh(x),∇vε(x)),∇uh(x)−∇vε(x)〉

= 〈∇ξf(x, uh(x),∇vε(x)),∇uh(x)〉 − 〈∇ξf(x, u(x),∇vε(x)),∇u(x)〉
+〈∇ξf(x, u(x),∇vε(x)),∇u(x)−∇vε(x)〉+〈∇ξf(x, u(x),∇vε(x))−∇ξf(x, uh(x),∇vε(x)),∇vε(x)〉.
Using the inequality just found together with (4.16), multiplying for βε

k and integrating over Ω, we
obtain ∫

Ω

βε
k(x)

{
f(x, uh(x),∇uh(x))− f(x, u(x),∇u(x))

}
dx

≥
∫

Ω

βε
k(x)

{
〈∇ξf(x, uh(x),∇vε(x)),∇uh(x)〉 − 〈∇ξf(x, u(x),∇vε(x)),∇u(x)〉

}
dx

+
∫

Ω

βε
k(x)〈∇ξf(x, u(x),∇vε(x)),∇u(x)−∇vε(x)〉dx

+
∫

Ω

βε
k(x)〈∇ξf(x, u(x),∇vε(x))−∇ξf(x, uh(x),∇vε(x)),∇vε(x)〉dx

+
∫

Ω

βε
k(x)

{
f(x, uh(x),∇vε(x))− f(x, u(x),∇vε(x))

}
dx

+
∫

Ω

βε
k(x)

{
f(x, u(x),∇vε(x))− f(x, u(x),∇u(x))

}
dx.

We remember that, by (4.10), for every (x, s) ∈ Ω× R and for every vε,

|∇ξf(x, s,∇vε(x))| ≤ M ;

then, by (4.13), we have
∫

Ω

βε
k(x)〈∇ξf(x, u(x),∇vε(x)),∇u(x)−∇vε(x)〉dx ≥ −M

∫

Ω

|∇u(x)−∇vε(x)| dx ≥ −Mε.

Moreover, being (x, s) → βε
k(x)f(x, s,∇vε(x)) and (x, s) → βε

k(x)∇ξf(x, s,∇vε(x)) continuous and
bounded functions, by the Lebesgue’s dominated convergence theorem we have,

lim
h→∞

∫

Ω

βε
k(x)

{
f(x, uh,∇vε)− f(x, u,∇vε)

}
dx = 0,

lim
h→∞

∫

Ω

βε
k(x)〈∇ξf(x, u,∇vε)−∇ξf(x, uh,∇vε),∇vε〉dx = 0,

and in conclusion, by means of (4.15), we obtain that, for every ε > 0 and for every vε, k ≥ kε,

lim inf
h→∞

∫

Ω

βε
k(x)

{
f(x, uh(x),∇uh(x))− f(x, u(x),∇u(x))

}
dx

≥ lim inf
h→∞

∫

Ω

βε
k(x)

{
〈∇ξf(x, uh(x),∇vε(x)),∇uh(x)〉−〈∇ξf(x, u(x),∇vε(x)),∇u(x)〉

}
dx−Mε−2ε.

Then we claim that the proof is complete if we show that, for every fixed vε and k ≥ kε, we have

lim
h→∞

∫

Ω

βε
k(x)

{
〈∇ξf(x, uh(x),∇vε(x)),∇uh(x)〉 − 〈∇ξf(x, u(x),∇vε(x)),∇u(x)〉

}
dx = 0. (4.17)
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Indeed, since 0 ≤ βε
k(x) ≤ 1, we shall have that, for every k ≥ kε,

lim inf
h→∞

∫

Ω

f(x, uh(x),∇uh(x))dx ≥
∫

Ω

βε
k(x)f(x, u(x),∇u(x))dx−Mε− 2ε,

and letting k →∞, by Beppo Levi’s Theorem, we obtain

lim inf
h→∞

∫

Ω

f(x, uh(x),∇uh(x))dx ≥
∫

Ω

f(x, u(x),∇u(x))dx−Mε− 2ε.

Now the dependence from vε is vanished so that letting ε → 0 we gain (4.12).
Thus it remains to prove (4.17): we stress that it suffices to prove this relation when vε and k

are fixed. In order to achieve this we prove that5

∫

Ω

βε
k(x)

{
〈∇ξf(x, uh(x),∇vε(x)),∇uh(x)〉 − 〈∇ξf(x, u(x),∇vε(x)),∇u(x)〉

}
dx

= −
∫

Ω

n∑

i=1

{∫ uh(x)

u(x)

∂

∂xi

(
βε

k(x)∇ξf(x, s,∇vε(x))
)(i)

ds

}
dx. (4.18)

In order to prove this, fixed j ∈ {1, . . . , N}, let us consider the continuous function

gj(x, s) = βε
k(x)∇ξf(x, s, ξj) : Ωj × R→ Rn,

with spt(gj) ⊆ Ωj ×H, that we can considered defined on the whole space Rn × R (extending gj

to zero out of Ωj ×H). For ρ > 0 we define6

gj,ρ(x, s) =
∫

B(x,ρ)

kρ(x− y)gj(y, s)dy : Rn × R→ Rn.

Clearly, for every ρ > 0, gj,ρ ∈ Cc(Rn×R,Rn) and, if ρ < ρj small enough, then spt(gj,ρ) ⊆ Ωj×H
too. Moreover, by the properties of convolutions we have also that, for every s ∈ R, gj,ρ(·, s) ∈
C∞c (Rn,Rn).

We claim now that there exists Cj,ρ > 0 such that, for every x, y ∈ Rn, s ∈ R,

|gj,ρ(x, s)− gj,ρ(y, s)| ≤ Cj,ρ|x− y|. (4.19)

Indeed, for every i ∈ {1, . . . , n}, (x, s) ∈ Rn × R, we have

∣∣∣∣
∂gj,ρ

∂xi
(x, s)

∣∣∣∣ =

∣∣∣∣∣
∫

B(x,ρ)

kρ(x− y)
∂gj

∂xi
(y, s)dy

∣∣∣∣∣ ≤ ρ−n

∫

Rn

∣∣∣∣
∂gj

∂xi
(x, s)

∣∣∣∣ dx

≤ ρ−n

(
sup
x∈Ω

|∇βε
k(x)|

) ∫

Rn

|∇ξf(x, s, ξj)| dx + ρ−n

∫

Rn

∣∣∣∣
∂∇ξf

∂xi
(x, s, ξj)

∣∣∣∣ dx

≤ ρ−nM

(
sup
x∈Ω

|∇βε
k(x)|

)
Ln(Ω′j) + ρ−nLKj = ρ−nLj , (4.20)

where we have used the properties (i), (4.9) with constant LKj where Kj = {ξj} and (4.10): this
obviously implies (4.19).

It is worth noting that by the previous inequality we can deduce that, for every s ∈ R,
∫

Rn

∣∣∣∣
∂gj

∂xi
(x, s)

∣∣∣∣ dx ≤ Lj , (4.21)

5Till the end of the proof with the notation ξ(i) we will denote the i-th component of the vector ξ ∈ Rn.
6We refer to the notations for the convolutions introduced in Chapter 2.
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and then, by means of the properties of the convolutions with respect to the L1 norm, for every
ρ > 0, s ∈ R, we have also ∫

Rn

∣∣∣∣
∂gj,ρ

∂xi
(x, s)

∣∣∣∣ dx ≤ Lj . (4.22)

The validity of (4.19) implies, by standard arguments7, for every ρ < ρj , u, v ∈ W 1,1(Ωj), the
equality

∫

Ωj

〈gj,ρ(x, v(x)),∇v(x)〉 − 〈gj,ρ(x, u(x)),∇u(x)〉dx = −
∫

Ωj

{
n∑

i=1

∫ v(x)

u(x)

∂g
(i)
j,ρ

∂xi
(x, s)ds

}
dx.

Now we prove that, passing to the limit as ρ → 0 in the previous formula we can obtain the same
relation for gj too. In order to prove the equality

lim
ρ→0

∫

Ωj

〈gj,ρ(x, v(x)),∇v(x)〉dx =
∫

Ωj

〈gj(x, v(x)),∇v(x)〉dx,

since the boundedness of g and the summability of ∇v, we only need to prove that

lim
ρ→0

gj,ρ(x, v(x)) = gj(x, v(x)), (4.23)

for Ln-a.e. x ∈ Ωj : but this easily follows by the property of the convolutions together with the
continuity of gj . Thus it remains to prove that, for every i ∈ {1, . . . , n},

lim
ρ→0

∫

Ωj

{∫ v(x)

u(x)

∂g
(i)
j,ρ

∂xi
(x, s)ds

}
dx =

∫

Ωj

{∫ v(x)

u(x)

∂g
(i)
j

∂xi
(x, s)ds

}
dx.

Indeed
∫

Ωj

∣∣∣∣∣
∫ v(x)

u(x)

∂g
(i)
j,ρ

∂xi
(x, s)ds−

∫ v(x)

u(x)

∂g
(i)
j

∂xi
(x, s)ds

∣∣∣∣∣ dx ≤
∫

Ωj

{∫

H

∣∣∣∣∣
∂g

(i)
j,ρ

∂xi
(x, s)− ∂g

(i)
j

∂xi
(x, s)

∣∣∣∣∣ ds

}
dx

=
∫

H

{∫

Ωj

∣∣∣∣∣
∂g

(i)
j,ρ

∂xi
(x, s)− ∂g

(i)
j

∂xi
(x, s)

∣∣∣∣∣ dx

}
ds,

that goes to zero as ρ → 0 since, by (ii) and the standard properties of the convolutions, we have,
for every fixed s ∈ H,

lim
ρ→0

∫

Ωj

∣∣∣∣∣
∂g

(i)
j,ρ

∂xi
(x, s)− ∂g

(i)
j

∂xi
(x, s)

∣∣∣∣∣ dx = 0,

and moreover, using (4.21) and (4.22), it is, for every ρ > 0, s ∈ H,

∫

Ωj

∣∣∣∣∣
∂g

(i)
j,ρ

∂xi
(x, s)− ∂g

(i)
j

∂xi
(x, s)

∣∣∣∣∣ dx ≤
∫

Ωj

∣∣∣∣∣
∂g

(i)
j,ρ

∂xi
(x, s)

∣∣∣∣∣ dx +
∫

Ωj

∣∣∣∣∣
∂g

(i)
j

∂xi
(x, s)

∣∣∣∣∣ dx ≤ 2Lj ,

that is, it is bounded on H uniformly on ρ: then we are in the position to apply the Lebesgue’s
dominated convergence Theorem. We conclude that, for every j ∈ {1, . . . , N}, u, v ∈ W 1,1(Ωj),
also

∫

Ωj

〈gj(x, v(x)),∇v(x)〉 − 〈gj(x, u(x)),∇u(x)〉dx = −
∫

Ωj

{
n∑

i=1

∫ v(x)

u(x)

∂g
(i)
j

∂xi
(x, s)ds

}
dx.

7The following relation can be proved considering at first u, v ∈ C∞(Ωj) ∩ W 1,1(Ωj) and then arguing by
approximation.
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Hence (4.18) immediately follows since
∫

Ω

βε
k(x)

{
〈∇ξf(x, uh(x),∇vε(x)),∇uh(x)〉 − 〈∇ξf(x, u(x),∇vε(x)),∇u(x)〉

}
dx

=
N∑

j=1

∫

Ωj

〈gj(x, v(x)),∇v(x)〉 − 〈gj(x, u(x)),∇u(x)〉dx = −
N∑

j=1

∫

Ωj

{
n∑

i=1

∫ v(x)

u(x)

∂g
(i)
j

∂xi
(x, s)ds

}
dx

= −
∫

Ω

n∑

i=1

{∫ uh(x)

u(x)

∂

∂xi

(
βε

k(x)∇ξf(x, s,∇vε(x))
)(i)

ds

}
dx.

Now by (4.18) we have can prove (4.17): indeed
∣∣∣∣
∫

Ω

βε
k(x)

{
〈∇ξf(x, uh(x),∇vε(x)),∇uh(x)〉 − 〈∇ξf(x, u(x),∇vε(x)),∇u(x)〉

}
dx

∣∣∣∣

≤
n∑

i=1

N∑

j=1

∫

Ωj

∣∣∣∣∣
∫ uh(x)

u(x)

∣∣∣∣
∂βε

k

∂xi
(x)

∣∣∣∣ |∇ξf(x, s, ξj)| ds

∣∣∣∣∣ dx +
n∑

i=1

N∑

j=1

∫

Ωj

∣∣∣∣∣
∫ uh(x)

u(x)

∣∣∣∣
∂∇ξf

∂xi
(x, s, ξj)

∣∣∣∣ ds

∣∣∣∣∣ dx.

Using (4.10), we have

n∑

i=1

N∑

j=1

∫

Ωj

∣∣∣∣∣
∫ uh(x)

u(x)

∣∣∣∣
∂βε

k

∂xi
(x)

∣∣∣∣ |∇ξf(x, s, ξj)| ds

∣∣∣∣∣ dx ≤ nM

(
sup
x∈Ω

|∇βε
k(x)|

) ∫

Ω

|uh(x)− u(x)| dx,

which goes to zero as h →∞. On the other hand,

n∑

i=1

N∑

j=1

∫

Ωj

∣∣∣∣∣
∫ uh(x)

u(x)

∣∣∣∣
∂∇ξf

∂xi
(x, s, ξj)

∣∣∣∣ ds

∣∣∣∣∣ dx ≤
n∑

i=1

N∑

j=1

∫

Dj,h

∣∣∣∣
∂∇ξf

∂xi
(x, s, ξj)

∣∣∣∣ dxds,

where
Dj,h =

{
(x, s) ∈ Ωj ×H : min{uh(x), u(x)} ≤ s ≤ max{uh(x), u(x)}

}
.

But now
lim

h→∞
|Dj,h| ≤ lim

h→∞

∫

Ωj

|uh(x)− u(x)| dx = 0,

and, if we define K = {ξj}N
j=1 and consider LK as in hypothesis (4.9) we obtain, for every j ∈

{1, . . . , N}, i ∈ {1, . . . , n},
∫

Ωj×R

∣∣∣∣
∂∇ξf

∂xi
(x, s, ξj)

∣∣∣∣ dxds =
∫

H

(∫

Ωj

∣∣∣∣
∂∇ξf

∂xi
(x, s, ξj)

∣∣∣∣ dx

)
ds ≤ |H|LK .

Hence, for every j ∈ {1, . . . , N}, i ∈ {1, . . . , n},

lim
h→∞

∫

Dj,h

∣∣∣∣
∂∇ξf

∂xi
(x, s, ξj)

∣∣∣∣ dx ds = 0,

from which we conclude that (4.17) holds and this ends the proof.

Now we are ready for the proof of Theorem 4.8(1). We start modifying the integrand f in order
to satisfy the hypotheses of Theorem 3.1, then we manipulate De Giorgi’s approximating functions
in order to apply on them Lemma 4.11.
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Proof of Theorem 4.8(1). By Proposition 4.10 we can suppose Ω bounded and study the lower
semicontinuity on W 1,1(Ω) with respect to the L1(Ω) convergence. Let {γi}∞i=1 be an increasing
sequence of smooth functions with compact support in Ω×R, converging point-wise to 1 in Ω×R.
Since γi(x, s)f(x, s, ξ) is an increasing sequence of functions which point-wise converges to f(x, s, ξ),
by a standard argument, it is sufficient to prove the stated lower semicontinuity assuming directly
that there exists Ω′×H ⊂⊂ Ω×R such that, for every (x, s, ξ) ∈ (Ω\Ω′)×(R\H)×Rn, f(x, s, ξ) = 0.
In this way, by the hypotheses of Theorem 4.8(1), we have that, for every (s, ξ) ∈ R× Rn,

f(·, s, ξ) ∈ W 1,1(Ω), (4.24)

and, for every K ⊂⊂ Rn there exists a constant L = LK such that, for every (s, ξ) ∈ R×K,
∫

Ω

|∇xf(x, s, ξ)| dx ≤ L,

or, equivalently,
n∑

i=1

∫

Ω

∣∣∣∣
∂f

∂xi
(x, s, ξ)

∣∣∣∣ dx ≤ L. (4.25)

Since f has compact support in (x, s), it is possible to approximate it with an increasing sequence
{fj(x, s, ξ)}∞j=1 as in Theorem 3.1. We would like to apply Lemma 4.11 to such functions, but this
is not possible. Thus we denote by k a convolution kernel in Rn and we consider the functions

gj(x, s, ξ) =
∫

Rn

kρj (η)fj(x, s, ξ − η)dη,

where, setting Mj the constant related to fj in the statement of Theorem 3.1, we choose ρj =
(jMj)−1. By the Lipschitz continuity (3.4) of fj with respect to ξ ∈ Rn, we have that, for every
(x, s, ξ) ∈ Ω× R× Rn,

|gj(x, s, ξ)− fj(x, s, ξ)| ≤
∫

Rn

|fj(x, s, ξ − η)− fj(x, s, ξ)| kρj (η)dη

≤ Mj

∫

B(0,ρj)

|η| kρj (η)dη ≤ 1
j
,

so that

fj(x, s, ξ)− 2
j
≤ gj(x, s, ξ)− 1

j
≤ fj(x, s, ξ) ≤ f(x, s, ξ). (4.26)

By the Beppo Levi’s Theorem, for every u ∈ W 1,1(Ω) we have

lim
j→∞

∫

Ω

fj (x, u(x),∇u(x)) dx =
∫

Ω

f (x, u(x),∇u(x)) dx,

and thus, if we consider the sequence of integrals

Ij(u, Ω) =
∫

Ω

{
gj (x, u(x),∇u(x))− 1

j

}
dx, (4.27)

by (4.26) we obtain that Ij(u, Ω) converges, as j → ∞, to the main integral I(u, Ω), and that, at
the same time, Ij(u, Ω) ≤ I(u, Ω) for every j ∈ N. Therefore

I(u,Ω) = sup
j∈N

Ij(u, Ω),
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and then, since the supremum of a family of l.s.c. functionals is l.s.c. too, it suffices to show that
every Ij(u,Ω) is lower semicontinuous on W 1,1(Ω) with respect to the L1(Ω) convergence: since Ω
is bounded, this is the same to prove this property for the functional

∫

Ω

gj (x, u(x),∇u(x)) dx.

In order to achieve this we shall invoke Lemma 4.11: let us verify that, for every j ∈ N, gj satisfies
its hypotheses.

Clearly every gj is non negative, continuous, convex in the gradient variable and has compact
support in (x, s), being a convolution in ξ of fj ≤ f . Furthermore ∇ξgj exists and is continuous.

Next we verify (4.10) and (4.11). By the Lipschitz continuity (3.4) of fj , we have, for every
(x, s) ∈ Ω× R, ξ ∈ Rn

|gj(x, s, ξ1)− gj(x, s, ξ2)| ≤
∫

Rn

|fj(x, s, ξ1 − η)− fj(x, s, ξ2 − η)| kρj (η)dη ≤ Mj |ξ1 − ξ2| ,

that implies |∇ξgj(x, s, ξ)| ≤ Mj . By the definition of convolution

|∇ξgj(x, s, ξ1)−∇ξgj(x, s, ξ2)|

≤
∫

Rn

|fj(x, s, ξ1 − η)− fj(x, s, ξ2 − η)| ∣∣∇kρj (η)
∣∣ dη ≤ MjTj |ξ1 − ξ2| ,

where
Tj =

∫

Rn

∣∣∇kρj (η)
∣∣ dη.

Therefore assumptions (4.10) and (4.11) are satisfied with M ′
j = max{Mj ,MjTj}.

It remains to prove the weak derivability of gj in the x variable and to verify (4.9). We shall
start examining such properties for the coefficients aq,h in Theorem 3.1. From (3.2) we have that
aq,h is continuous. For every ψ ∈ C∞c (Ω), by (4.24) we have

∫

Ω

aq,h(x, s)
∂ψ

∂xi
(x)dx =

∫

Ω

(
−

∫

Rn

f(x, s, η)
∂αq

∂ξh
(η)dη

)
∂ψ

∂xi
(x)dx

= −
∫

Rn

(∫

Ω

f(x, s, η)
∂ψ

∂xi
(x)dx

)
∂αq

∂ξh
(η)dη =

∫

Rn

(∫

Ω

∂f

∂xi
(x, s, η)ψ(x)dx

)
∂αq

∂ξh
(η)dη

=
∫

Ω

(∫

Rn

∂f

∂xi
(x, s, η)

∂αq

∂ξh
(η)dη

)
ψ(x)dx;

furthermore, thanks to the main assumption (4.25), we obtain
∫

Ω

∣∣∣∣
∂aq,h

∂xi
(x, s)

∣∣∣∣ dx =
∫

Ω

∣∣∣∣
∫

Rn

∂f

∂xi
(x, s, η)

∂αq

∂ξh
(η)dη

∣∣∣∣ dx

≤
(

sup
ξ∈Rn

|∇αq(ξ)|
)∫

spt(α)

(∫

Ω

∣∣∣∣
∂f

∂xi
(x, s, η)

∣∣∣∣ dx

)
dη ≤

(
sup
ξ∈Rn

|∇αq(ξ)|
)
Ln (spt(αq)) Lspt(αq).

Hence aq,h(·, s) ∈ W 1,1(Ω) and there exists a constant Rq,h such that, for every s ∈ R,
∫

Ω

∣∣∣∣
∂aq,h

∂xi
(x, s)

∣∣∣∣ dx ≤ Rq,h.

The same analysis carried on for aq,h applies unchanged to aq,0, so that aq,0(x, s) is a continuous
function such that, for every s ∈ R, aq,0(·, s) ∈ W 1,1(Ω), and there exists a constant Rq,0 such that

∫

Ω

∣∣∣∣
∂aq,0

∂xi
(x, s)

∣∣∣∣ dx ≤ Rq,0.
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In particular aq,0(·, s) +
∑n

h=1 aq,h(·, s)ξh ∈ W 1,1(Ω), from which,

fj(·, s, ξ) = max
q∈{1,...,j}

{
0, aq,0(·, s) +

n∑

h=1

aq,h(·, s)ξh

}
∈ W 1,1(Ω),

and in the end we have also that ∇ξgj(·, s, ξ) ∈ W 1,1(Ω,Rn), with

∂∇ξgj

∂xi
(x, s, ξ) =

∫

Rn

∂fj

∂xi
(x, s, ξ − η)∇kρj (η)dη.

Since,
∫

Ω

∣∣∣∣
∂fj

∂xi
(x, s, ξ)

∣∣∣∣ dx ≤
j∑

q=1

{∫

Ω

∣∣∣∣∣
∂

∂xi

(
aq,0(x, s) +

n∑

h=1

aq,h(x, s)ξh

)∣∣∣∣∣ dx

}

≤
j∑

q=1

∫

Ω

∣∣∣∣
∂aq,0

∂xi
(x, s)

∣∣∣∣ dx + |ξ|
j∑

q=1

n∑

h=1

∫

Ω

∣∣∣∣
∂aq,h

∂xi
(x, s)

∣∣∣∣ dx ≤ Sj (1 + |ξ|) ,

for a suitable constant Sj (depending on Rq,0, Rq,h, j), we deduce

∫

Ω

∣∣∣∣
∂∇ξgj

∂xi
(x, s, ξ)

∣∣∣∣ dx ≤
∫

Ω

(∫

Rn

∣∣∇kρj (η)
∣∣
∣∣∣∣
∂fj

∂xi
(x, s, ξ − η)

∣∣∣∣ dη

)
dx

≤
∫

Bρj
(0)

∣∣∇kρj (η)
∣∣
(∫

Ω

∣∣∣∣
∂fj

∂xi
(x, s, ξ − η)

∣∣∣∣ dx

)
dη

≤
∫

Bρj
(0)

Sj (1 + |ξ − η|)
∣∣∇kρj (η)

∣∣ dη ≤ SjTj(1 + |ξ|+ ρj).

Hence, fixed K ⊂⊂ Rn, if Lj,K = nSjTj(1 + T + ρj), (where T is equal to the radius of a ball
centered at the origin and containing K), we have, for every (s, ξ) ∈ R×K,

n∑

i=1

∫

Ω

∣∣∣∣
∂∇ξgj

∂xi
(x, s, ξ)

∣∣∣∣ dx ≤ Lj,K ,

that is gj satisfies the condition (4.9) of Lemma 4.11 too. Thus Lemma 4.11 applies to every gj ,
providing the lower semicontinuity of each Ij . By the previous arguments this ends the proof of
Theorem 4.8(1).

4.3.2 The condition on the gradient variable

In this section we use Theorem 3.5, together with the blow up method by Fonseca and Müller [44]
and the original argument of Serrin [69], in order to prove Theorem 4.8(2): as already said the
following proof can be found in [53] Theorem 6.

It is worth noting that Theorem 4.8(2) has been recently generalized by Maggi [59] who proved
in particular that, under the same set of hypotheses of Theorem 4.8(2), the standard extension
of the integral functional I on BVloc(Ω) proposed by Dal Maso [30] is lower semicontinuous on
BVloc(Ω) with respect to the L1

loc(Ω) convergence.

Proof of Theorem 4.8(2). By Proposition 4.10 we can assume Ω bounded and then also f ≥ 2. By
the usual blow up method (see for example the first part of the proof of Theorem 1.1 of Fonseca
and Leoni [43]), the problem is reduced to the following one: given (x0, s0, ξ0) ∈ Ω×R×Rn, εh ↓ 0



4.3. PROOF OF THE MAIN THEOREM 53

and wh ∈ W 1,1(Qn) such that wh → w0 in L1(Qn), where Qn = (0, 1)n and w0(y) = 〈ξ0, y〉, we
have to prove

lim
h→∞

∫

Qn

f(x0 + εhy, s0 + εhwh(y),∇wh(y))dy ≥ f(x0, s0, ξ0). (4.28)

If it is f(x0, s0, ·) ≡ inf{f(x, s, ξ) : (x, s, ξ) ∈ Ω× R× Rn}, then (4.28) is trivially verified.
Otherwise there exists δ > 0 such that f satisfies the hypotheses of Theorem 3.5 with Σ =

B(x0, δ)×B(s0, δ): clearly we can suppose, for every h ∈ N, εh < δ and

ess sup
y∈Qn

|w0(y)| ≤ δ

εh
.

In particular we have, for every (x, s, ξ) ∈ B(x0, δ)×B(s0, δ)× Rn,

f(x, s, ξ) = sup
j∈N

fj(x, s, ξ), (4.29)

where every fj is continuous, with values in [0,∞), and such that fj(x, s, ·) is strictly convex
on Rn. We know also that, taking δ small enough, we can find Cj > 0 such that, for every
(x, s, ξ) ∈ B(x0, δ)×B(s0, δ)× Rn,

fj(x, s, ξ) ≤ Cj(1 + |ξ|). (4.30)

Let us fix now ε > 0 and δ′ ∈ (0, δ). We can apply Theorem 3.2 to each fj , with Σ′ = B(x0, δ
′)×

B(s0, δ
′), to find f̄j : B(x0, δ)×B(s0, δ)×Rn → [0,∞) continuous, convex in the gradient variable

and satisfying (i), (ii), (iii), (iv) and (v) of Theorem 3.2 with constant Mj .
We need to truncate the functions wh in order apply the described approximation. Let us

consider the sets

Eh =
{

y ∈ Qn : |wh(y)| ≤ δ

εh

}
, E+

h =
{

y ∈ Qn : wh(y) >
δ

εh

}
, E−

h =
{

y ∈ Qn : wh(y) < − δ

εh

}
,

and define the sequence

vh(y) =





wh(y), y ∈ Eh,
δ
εh

, y ∈ E+
h ,

− δ
εh

, y ∈ E−
h .

(4.31)

It is vh ∈ W 1,1(Qn), vh → w0 in L1(Qn) and limh→∞ Ln(Qn \ Eh) = 0.
By the definition of Eh and vh, by (4.29), (4.30) and property (ii) of f̄j , we have

∫

Qn

f(x0 + εhy, s0 + εhwh(y),∇wh(y))dy ≥
∫

Eh

fj(x0 + εhy, s0 + εhwh(y),∇wh(y))dy

=
∫

Eh

fj(x0 + εhy, s0 + εhvh(y),∇vh(y))dy

=
∫

Qn

fj(x0 + εhy, s0 + εhvh(y),∇vh(y))dy −
∫

Qn\Eh

fj(x0 + εhy, s0 + εhvh(y), 0)dy

≥
∫

Qn

fj(x0 + εhy, s0 + εhvh(y),∇vh(y))dy − CjLn(Qn\Eh)

≥
∫

Qn

f̄j(x0 + εhy, s0 + εhvh(y),∇vh(y))dy − CjLn(Qn\Eh)− ε. (4.32)

Let us consider the function gj,h : Qn × R→ Rn defined, for (y, s) ∈ Qn × R, as

gj,h(y, s) = ∇ξ f̄j(x0 + εhy, s0 + εhs, ξ0).
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By Theorem 3.2 it is a continuous and bounded function with compact support, and it satisfies an
uniform Lipschitz condition, that is, for every y, z ∈ Qn, s ∈ R,

|gj,h(y, s)− gj,h(z, s)| ≤ Mjεh(1 + |ξ0|)|y − z|.
Now, for every y ∈ Qn, the convexity of f̄j in the ξ variable implies

f̄j(x0 + εhy, s0 + εhvh(y),∇vh(y)) ≥ f̄j(x0 + εhy, s0 + εhvh(y), ξ0)

+〈gj,h(y, w0(y))− gj,h(y, vh(y)), ξ0〉+ 〈gj,h(y, vh(y)),∇vh(y)〉 − 〈gj,h(y, w0(y)), ξ0〉,
and then∫

Qn

f̄j(x0 + εhy, s0 + εhvh(y),∇vh(y))dy ≥
∫

Qn

f̄j(x0 + εhy, s0 + εhvh(y), ξ0)dy

+
∫

Qn

〈gj,h(y, w0(y))− gj,h(y, vh(y)), ξ0〉dy +
∫

Qn

〈gj,h(y, vh(y)),∇vh(y)〉 − 〈gj,h(y, w0(y)), ξ0〉dy.

Let us evaluate the limit as h → ∞ of the right hand side of the previous inequality. Since, for
Ln-a.e. x ∈ Qn, vh(x) → w0(x) (and then εhvh(x) → 0), by Fatou’s Lemma we have

lim inf
h→∞

∫

Qn

f̄j(x0 + εhy, s0 + εhvh(y), ξ0)dy ≥ f̄j(x0, s0, ξ0),

while, by the continuity and boundedness of gj,h, it follows

lim
h→∞

∫

Qn

〈gj,h(y, w0(y))− gj,h(y, vh(y)), ξ0〉dy = 0.

Let us show now that also

lim
h→∞

∫

Qn

〈gj,h(y, vh(y)),∇vh(y)〉 − 〈gj,h(y, w0(y)), ξ0〉dy = 0.

In order to see this let us note that, by a mollification argument similar to the one used to prove
(4.18) in the proof of Theorem 4.8(1), the following formula holds 8

∫

Qn

〈gj,h(y, vh(y)),∇vh(y)〉 − 〈gj,h(y, w0(y)), ξ0〉dy = −
∫

Qn

{
n∑

i=1

∫ vh(y)

w0(y)

∂g
(i)
j,h

∂yi
(y, s)ds

}
dy,

from which follows ∣∣∣∣
∫

Qn

〈gj,h(y, vh(y)),∇vh〉 − 〈gj,h(y, w0(y)), ξ0〉dy

∣∣∣∣

≤
n∑

i=1

∫

Qn

∣∣∣∣∣
∫ vh(y)

w0(y)

∣∣∣∣∣
∂g

(i)
j,h

∂yi
(y, s)

∣∣∣∣∣ ds

∣∣∣∣∣ dy ≤ nMjεh(1 + |ξ0|)
∫

Qn

|w0 − vh|dy,

that goes to zero as h →∞.
If now ε is so small that |ξ0| ≤ 1/ε, property (iii) of f̄j implies f̄j(x0, s0, ξ0) ≥ fj(x0, s0, ξ0)− ε,

and hence, by (4.32), it is that

lim inf
h→∞

∫

Qn

f(x0 + εhy, s0 + εhwh(y),∇wh(y))dy ≥ fj(x0, s0, ξ0)− 2ε.

Thus, it suffices to let ε tend to zero and then take the supremum on j ∈ N to conclude the
proof.

Remark 4.12. Note that the same proof allows also to consider the limit function u ∈ BVloc(Ω),
and then to give a direct lower bound of the relaxed functional R[L1

loc](I) on BVloc(Ω).
8In the following (gj,h)(i) denotes the i-th component of gj,h.
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4.4 A counterexample to the lower semicontinuity

As explained in the first section of this chapter, Aronszajn’s example shows that conditions (4.1),
together with the continuity of the integrand f , are not sufficient to guarantee the lower semicon-
tinuity on W 1,1(Ω) with respect to the L1(Ω) convergence of the integral functional I. However,
Theorem 4.7 shows that if f satisfies (4.8) too, that is f is locally Lipschitz continuous in x
uniformly for (x, ξ) belonging to a compact set, then the lower semicontinuity is achieved.

Theorem 4.8(1), in which suitable summability conditions on ∇xf are required, improves con-
dition (4.8): nevertheless it is interesting to understand what we can expect supposing, instead of
the Lipschitz continuity of f , its Hölder continuity with respect to x, that is, there exists α ∈ (0, 1)
such that, for every compact set K ⊂ Ω× R× Rn, we can find a constant L = LK such that, for
every (x1, s, ξ), (x2, s, ξ) ∈ K,

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L|x1 − x2|α. (4.33)

By modifying a one dimensional (that is n=1) version of Aronszajn’s Example proposed by Dal
Maso9, Gori, Maggi and Marcellini solved this problem showing that, for every α ∈ (0, 1), there
exists a one dimensional integral functional for which the lower semicontinuity fails and such that
its integrand satisfies (4.1) and (4.33) (see [54] Example 4.2, see also [55] Theorem 2.1 in which
this fact was proved using multiple integrals, that is n ≥ 2.).

Here we present a simplified version just of Example 4.2 in [54].

Theorem 4.13. Let ε > 0 and Ω = (−ε, 1 + ε). For every α ∈ (0, 1), there exist a sequence
{uh}∞h=1 ⊆ W 1,∞(Ω), such that uh → 0 in L∞(Ω), and a function10 b : Ω× R→ R (both of them
depending on α) such that:

(i) b is bounded and uniformly continuous in Ω× R;

(ii) there exists a constant L such that, for every x1, x2 ∈ Ω and s ∈ R,

|b(x1, s)− b(x2, s)| ≤ L |x1 − x2|α ; (4.34)

(iii) setting, for every (x, s, ξ) ∈ Ω× R× R,

f(x, s, ξ) = |b(x, s)ξ − 1| ,

we have that f(x, s, ξ) is continuous, satisfies (4.1) and the Hölder continuity property (4.33)
and

lim
h→∞

I(uh, Ω) = lim
h→∞

∫

Ω

f(x, uh(x), u′h(x))dx <

∫

Ω

f(x, 0, 0)dx = I(0, Ω). (4.35)

In particular the functional I is not lower semicontinuous on W 1,∞(Ω) with respect to the
L∞(Ω) convergence.

Proof. Let us fix α ∈ (0, 1) and choose k ∈ N such that k(1− α) ≥ 2 (then k > 2).

9Note that the original example by Aronszajn is related to a double integral, that is, n = 2, and Aronszajn’s
integrand f(x, ξ) does not explicitly depends on s. A one-dimensional version of Aronszajn’s example was known
to Dal Maso, who gave us some handwritten notes on the subject: however, in this case, the integrand f depends
on all the three variables x, s and ξ.

10In this section Ω denotes cl(Ω).



56 CHAPTER 4. LOWER SEMICONTINUITY FOR INTEGRAL FUNCTIONALS

First of all let us build up the sequence uh. Let us fix h ∈ 2N =
{
2i : i ∈ N}

with h ≥ h0,
where11 h0 ≥ 1

2
1
α 4ε

, and define uh on Ω in this way: for every r ∈ {
0, 1, ..., hk − 1

}
,

uh(x) =





4hk

h(h+1)x + 1
h+1 − 4r

h(h+1) if x ∈ [
r

hk , r
hk + 1

4hk

]
,

1
h if x ∈ [

r
hk + 1

4hk , r
hk + 2

4hk

]
,

− 4hk

h(h+1)x + 1
h + 4r+2

h(h+1) if x ∈ [
r

hk + 2
4hk , r

hk + 3
4hk

]
,

1
h+1 if x ∈ [

r
hk + 3

4hk , r+1
hk

]
,

and, for every x ∈ (−ε, 0] ∪ [1, 1 + ε), uh(x) = 1
h+1 . Trivially we have uh ∈ W 1,∞(Ω), uh → 0 in

L∞(Ω) and, since we are considering h ∈ 2N, the graphs of the functions uh are disjoint. Moreover
an easy computation gives

lim
h→∞

∫

Ω

|u′h(x)| dx = lim
h→∞

2hk

h(h + 1)
= ∞.

In order to define the function b let us consider, for every h ∈ 2N, h ≥ h0 and r ∈ {
0, 1, ..., hk − 1

}
,

the subsets of Ω× R given by

Ar
h =

{(
x,

4hk

h(h + 1)
x +

1
h + 1

− 4r

h(h + 1)

)
: x ∈

[
r

hk
,

r

hk
+

1
4hk

]}
,

Br
h =

{(
x,− 4hk

h(h + 1)
x +

1
h

+
4r + 2

h(h + 1)

)
: x ∈

[
r

hk
+

2
4hk

,
r

hk
+

3
4hk

]}
,

Ch = Ω×
{

1
2h

+
1

2(h− 1)

}
,

D1 = {−ε, 1 + ε} × R, and D2 = Ω×
[
(−∞, 0] ∪

[
1

2h0
+

1
2(h0 − 1)

, +∞
)]

,

whose geometric meaning, with respect to the sequence {uh : h ∈ 2N, h ≥ h0}, is clear. Let us
consider now the closed set

S =


⋃

h,r

Ar
h


 ∪


⋃

h,r

Br
h


 ∪

(⋃

h

Ch

)
∪D1 ∪D2,

and define the function b on S as

b (x, s) =





h(h+1)
4hk if (x, s) ∈ Ar

h,

−h(h+1)
4hk if (x, s) ∈ Br

h,

0 if (x, s) ∈
( ⋃

h Ch

)
∪D1 ∪D2.

Since lim
h→∞

h(h+1)
4hk = 0, we have that b is continuous on S; moreover note that, on Ar

h and on Br
h, b

assumes the value of the inverse of u′h on the points in which the graph of uh intersects these sets.

Now we extend b on Ω×R. Let us consider s0 ∈
⋃

h

[
1

h+1 , 1
h

]
and observe that S ∩ (

Ω× {s0}
)

contains only a finite number of points among which there are (−ε, s0) and (1 + ε, s0): thus, in
11This value is chosen only for technical reasons, in order to compute the value (4.36) in a simpler way.



4.4. A COUNTEREXAMPLE TO THE LOWER SEMICONTINUITY 57

the segment Ω× {s0}, we define b by a linear interpolation between every pair of adjacent points
in which the value of b is known.

For every h ∈ 2N, h ≥ h0, the described extension allows us to build up b continuous in the
strip Rh = Ω×

[
1

h+1 , 1
h

]
. We have, in particular, that b is defined in every set of the form Ω×

{
1
j

}
,

where j ∈ N and j ≥ h0, if h0 is even, or j ≥ h0 + 1 if h0 is odd.
Now we complete the extension of b setting, for every h ∈ 2N, h ≥ h0

b (x, s) =





b
(
x, 1

h

) [(
1
h − s

)
2h(h + 1) + 1

]
if (x, s) ∈ Eh,

b
(
x, 1

h+1

) [(
1

h+1 − s
)

2(h + 1)(h + 2) + 1
]

if (x, s) ∈ Fh,

where

Eh = Ω×
[

1
h

,
1
2h

+
1

2(h− 1)

]
and Fh = Ω×

[
1

2(h + 2)
+

1
2(h + 1)

,
1

h + 1

]
.

Since this extension makes b continuous on Ω×R and since, for every (x, s) ∈ D1∪D2, b(x, s) = 0,
we have that b is uniformly continuous on Ω×R and then condition (i) of the theorem is verified.

We want now to prove that b satisfies condition (ii). Fixed h ∈ 2N, h ≥ h0 we have that, by
construction, the value

Mh = sup
{ |b (x, s)− b (y, s)|

|x− y|α : (x, s) , (y, s) ∈ Rh ∪ Eh ∪ Fh; x 6= y

}
(4.36)

is in fact a maximum which is obtained by the pairs of points of the type
(

r

hk
+

1
4hk

,
1
h

)
,

(
r

hk
+

2
4hk

,
1
h

)
, or

(
r

hk
+

3
4hk

,
1

h + 1

)
,

(
r + 1
hk

,
1

h + 1

)
, (4.37)

for every r ∈ {
0, 1, ..., hk − 1

}
12. Computing (4.36), using any of the previous pair of points, we

have

Mh =
2h(h + 1)

4hk
· 4αhαk =

4α

2
· h(h + 1)

hk−αk
≤ 4α

2
· 2h2

hk−αk
≤ 4α · h2

hk−αk
,

and since, by definition k (1− α) ≥ 2, we have

Mh ≤ 4α · h2

hk−αk
≤ 4α

that doesn’t depend on h. Thus, since outside
⋃

h (Rh ∪ Eh ∪ Fh), that is in D1 ∪ D2, we have
b ≡ 0 we conclude that surely b satisfies (4.34) for L = 4α.

Finally let us prove that the function f(x, s, ξ) = |b(x, s)ξ − 1| satisfies condition (iii). Clearly
f is continuous and satisfies (4.1) and (4.33). Moreover

I (0, Ω) =
∫

Ω

|b (x, 0) · 0− 1| dx = 1 + 2ε

while, for every h ∈ 2N, h ≥ h0,

I (uh,Ω) =
∫

Ω

|b (x, uh(x)) · u′h(x)− 1| dx =




hk∑

j=1

2 · 1
4hk


 + 2ε =

1
2

+ 2ε.

Thus
lim

h→∞
I (uh, Ω) =

1
2

+ 2ε < 1 + 2ε = I (u,Ω)

and (4.35) is also verified.

12For the pair of points
�
−ε, 1

h+1

�
,
�
0, 1

h+1

�
and

�
1− 1

4hk , 1
h+1

�
,
�
1 + ε, 1

h+1

�
, because of the choice of h0, the

value of the ratio in (4.36) is surely less then the one of the pairs in (4.37).
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The theorem just proved provides also a useful information about Theorem 4.8(2). Indeed, it
is simple to verify that the function f of Theorem 4.13 is such that, for every (x0, s0) ∈ Ω × R,
either, for every ξ ∈ R,

f(x0, s0, ξ) ≡ 1,

or there exists δ > 0 such that, for every (x, s) ∈ B(x0, δ)×B(s0, δ),

f(x, s, ·) is demi-coercive on R.

There is no contradiction with Theorem 4.8(2) because it is inf f = 0: however, this shows how
the hypotheses of Theorem 4.8(2) are close to be sharp.

We note also that, when n = 1, the demi-coercivity reduces to ask that

f(x, s, ·) is not constant, (4.38)

for every fixed pair (x, s). However, if in the hypotheses of Theorem 4.8(2) we replace the demi-
coercivity condition with (4.38) and assume n ≥ 2, then the lower semicontinuity will fail again.
This fact can be deduced by the original Aronszajn’s counterexample [64] in which a continuous
function ν : (0, 1)2 → S1 is built up in such a way that the integral functional generated by
f(x, ξ) = |〈ν(x), ξ〉|, where (x, ξ) ∈ (0, 1)2 × R2, it is not lower semicontinuous (see also [30]
Example 4.1). Clearly f(x, ·) satisfies (4.38) but fails to be demi-coercive.

4.5 Appendix: the vectorial case

In this section we deal with a function f satisfying the conditions
{

f : Ω× Rm × Rmn → [0,∞],

for every (x, s) ∈ Ω× Rm, f(x, s, ·) is convex in Rmn,
(4.39)

where Ω is an open set of Rn, n,m ≥ 1. As in the scalar case we want to find conditions on f such
that, for every uh, u ∈ W 1,1

loc (Ω,Rm) such that uh → u in L1
loc(Ω,Rm),

I(u,Ω) ≤ lim inf
h→∞

I(uh,Ω). (4.40)

The lower semicontinuity results by Serrin [69] (see Theorems 4.1 and 4.2) were proved for the
scalar case m = 1: some efforts have been spent to understand the question of their validity in the
vectorial setting13, that is, when m ≥ 2.

4.5.1 Some counterexamples

Eisen [38] showed with an example that Theorem 4.1(c) is false in the vectorial case: obviously
the same example shows that the same holds for Theorems 4.7 and 4.8(1) and Corollary 4.9(1)
too. We propose here a simplified version of the example quoted above (see Gori and Maggi [52]
Example 2.1) that, as we will explain in the next chapter, it is meaningful even in the context of
the supremal functionals.

Example 4.14. Let f : R2×R2 → [0,∞) be a function defined, for every (s1, s2, ξ1, ξ2) = (s, ξ) ∈
R2 × R2, as

f(s1, s2, ξ1, ξ2) = (ξ1s2 − ξ2s1 − 1)2 .

13However, in studying the lower semicontinuity problems in the vectorial setting, the notion of convexity in
the gradient variable of f is replaced by the more general and natural one of quasiconvexity (see Morrey [63] and
Dacorogna [29]).
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Clearly f is non negative, smooth and convex in the gradient variable ξ = (ξ1, ξ2). Let us consider
the sequence of functions in C∞((0, 1),R2) given, for every h ∈ N, by

uh(x) =
(

1
2πh

sin(2πh2x),
1

2πh
cos(2πh2x)

)
.

An easy computation gives uh → 0 in L∞((0, 1),R2) as h → ∞. However, for every h ∈ N,
I(uh, (0, 1)) = 0, while I(0, (0, 1)) = 1 so that the lower semicontinuity fails. Note in particular
that, for every x ∈ (0, 1), f(uh(x),∇uh(x)) = 0.

Later Cerný and Malý [25] proved also that Theorem 4.1(b) (and of course Theorem 4.8(2) and
Corollary 4.9(2) too) is false in the vectorial setting.

Example 4.15. Let f : R2×R2 → [0,∞) be a function defined, for every (s1, s2, ξ1, ξ2) = (s, ξ) ∈
R2 × R2, as

f(s1, s2, ξ1, ξ2) =
ξ2
2 + exp(ξ1)

exp ((s2
1 + s2

2)2)
.

Clearly f is non negative, smooth and convex in the gradient variable ξ = (ξ1, ξ2). Let us consider
the sequence of functions in W 1,∞((0, 1),R2) given, for every h ∈ N, by uh(x) = (uh,1(x), uh,2(x)),
where, for every x ∈ [0, 1

h ],

uh,1(x) =





−h4x if x ∈ [
0, 1

h3

]
,

−h cos
(

πh3

4

(
x− 1

h3

))
if x ∈ [

1
h3 , 5

h3

]
,

h− h3
(
h− 1

h

) (
x− 5

h3

)
if x ∈ [

5
h3 , 6

h3

]
,

h2

h2−6

(
1
h − x

)
if x ∈ [

6
h3 , 1

h

]
,

and

uh,2(x) =





0 if x ∈ [
0, 1

h3

]
,

−h sin
(

πh3

4

(
x− 1

h3

))
if x ∈ [

1
h3 , 5

h3

]
,

0 if x ∈ [
5
h3 , 1

h

]
,

and extended by periodicity on (0, 1). A computation gives uh → 0 in L∞((0, 1),R2) as h → ∞
and

lim
h→∞

I(uh, (0, 1)) =
1
e
.

Since I(0, (0, 1)) = 1 the lower semicontinuity fails.

Following Theorem 4.1, it remains only to understand the situation about condition (a). The
following example given by Cerný and Malý [24] shows that, when f is lower semicontinuous (but
not continuous), even if it is coercive, the lower semicontinuity may fail. However, they are not
able to consider f continuous as in Theorem 4.1(a): as we will see this is due to the fact that in
these hypotheses a lower semicontinuity theorem can be proved (see Theorem 4.19).

Example 4.16. Let f : R2×R2 → [0,∞) be a function defined, for every (s1, s2, ξ1, ξ2) = (s, ξ) ∈
R2 × R2, as

f(s1, s2, ξ1, ξ2) =




|ξ1 − 1|+ |ξ2|+ 1

|s2| + |s1|+ |s2| if s2 6= 0,

2|ξ1 − 1|+ |ξ2|+ |s1|+ |s2| if s2 = 0.
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Clearly f is non negative, lower semicontinuous and convex in the gradient variable ξ = (ξ1, ξ2).
Moreover, for every (s1, s2, ξ1, ξ2) ∈ R2 × R2,

f(s1, s2, ξ1, ξ2) ≥ |s1|+ |s2|+ |ξ1|+ |ξ2| − 1,

that is f is coercive. Let us consider the sequence of functions in W 1,1((0, 1),R2) given, for every
h ∈ N, by uh(x) = (uh,1(x), uh,2(x)), where, for every x ∈ [0, 1

h ],

uh,1(x) =





x if x ∈ [
0, 1

h − 1
h4

]
,

(
h3 − 1

) (
1
h − x

)
if x ∈ [

1
h − 1

h4 , 1
h

]
,

and

uh,2(x) =





0 if x ∈ [
0, 1

h − 1
h4

]
,

√
h4

(
x− 1

h + 1
h4

) (
1
h − x

)
if x ∈ [

1
h − 1

h4 , 1
h

]
,

and extended by periodicity on (0, 1). We can see that uh → 0 in L∞((0, 1),R2) as h →∞ and

lim
h→∞

I(uh, (0, 1)) = 1.

Since I(0, (0, 1)) = 2 the lower semicontinuity fails.

4.5.2 Lower semicontinuity theorems

Examples 4.14 and 4.15 seem to indicate that, when the vectorial case is considered, we need a
coercivity assumption on the integrand in order to obtain the lower semicontinuity. Moreover, as
Example 4.16 says, even if this condition is verified, f must be more regular than lower semicon-
tinuous. Nevertheless under the investigation of the scalar case made in the previous sections, we
became aware of the fact that, in particular, two results without coercivity assumptions hold in the
vector-valued case too, once provided the dependence on the s variable is dropped (note that the
dependence on s is fundamental in the counterexamples proposed). The first one is a vector-valued
version of Theorem 4.7 (see Gori, Maggi and Marcellini [54] Theorem 5.1).

Theorem 4.17. Let f be a continuous function satisfying (4.39) such that f = f(x, ξ) and, for
every open set Ω′ × K ⊂⊂ Ω × Rmn there exists a constant L = LΩ′×K such that, for every
x1, x2 ∈ Ω′, ξ ∈ K,

|f(x1, s, ξ)− f(x2, s, ξ)| ≤ L |x1 − x2| . (4.41)

Then the functional I is l.s.c. on W 1,1
loc (Ω,Rm) with respect to the L1

loc(Ω,Rm) convergence.

Proof. By Proposition 4.10, that can be applied also to the vectorial setting, we can suppose Ω
bounded and with Lipschitz boundary. Moreover let us assume at first that f satisfies the following
conditions too:

(i) there exists an open set Ω′ ⊂⊂ Ω, such that, for every x ∈ Ω \ Ω′ and for every ξ ∈ Rmn,
f(x, ξ) = 0;

(ii) ∇ξf(x, ξ) exists, is continuous on Ω × Rmn and such that, for every ξ ∈ Rmn ∇ξf(·, ξ) ∈
W 1,∞ (Ω,Rmn);

(iii) there exists a constant M such that, for every (x, ξ) ∈ Ω× Rmn,

|∇ξf(x, ξ)| ≤ M, (4.42)

and, for every x ∈ Ω, ξ1, ξ2 ∈ Rmn,

|∇ξf(x, ξ1)−∇ξf(x, ξ2)| ≤ M |ξ1 − ξ2| . (4.43)
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Let uh, u ∈ W 1,1
loc (Ω,Rm) such that uh → u in L1

loc(Ω,Rm). Without loss of generality, we can
assume that

lim inf
h→∞

I(uh,Ω) = lim
h→∞

I(uh,Ω) < ∞,

and that uh converges almost everywhere to u in Ω. Moreover, from (4.42) and (4.43), we have
I(u, Ω) < ∞.

As in the proof of Lemma 4.11, for every ε > 0, there exists vε ∈ Aff(Ω,Rm) such that,
∫

Ω

|∇u(x)−∇vε(x)| dx ≤ ε, and
∫

Ω

f(x,∇vε(x)) dx ≥
∫

Ω

f(x,∇u(x))dx− ε. (4.44)

Since vε ∈ Aff(Ω,Rm), we consider {Ωj}N
j=1 such that, for every j ∈ {1, . . . , N}, x ∈ Ωj ,

∇vε(x) = ξj ∈ Rmn in Ωj . Now let us consider the sequence of functions {βε
k}∞k=1 ⊂ C∞c (Ω) as in

Lemma 4.11 and, using the same argument, we obtain the lower semicontinuity if we prove that,
for every vε and k fixed,

lim
h→∞

∫

Ω

βε
k(x)

{
∇ξf(x,∇vε(x)) · ∇uh(x)−∇ξf(x,∇vε(x)) · ∇u(x)

}
dx = 0. (4.45)

Observing that, for every j ∈ {1, . . . , N}, βε
k(x)∇ξf(x, ξj) ∈ W 1,∞ (Ωj ,Rmn) ∩ Cc (Ωj ,Rmn), we

have ∣∣∣∣
∫

Ω

βε
k(x)

{
∇ξf(x,∇vε(x)) · ∇uh(x)−∇ξf(x,∇vε(x)) · ∇u(x)

}
dx

∣∣∣∣

≤
N∑

j=1

∣∣∣∣∣
∫

Ωj

βε
k(x)∇ξf(x, ξj) · (∇uh(x)−∇u(x))dx

∣∣∣∣∣

≤
N∑

j=1

n∑

i=1

m∑
q=1

∣∣∣∣∣
∫

Ωj

βε
k(x)

∂f

∂ξq,i
(x, ξj) · ∂

∂xi

(
u

(q)
h (x)− u(q)(x)

)
dx

∣∣∣∣∣

=
N∑

j=1

n∑

i=1

m∑
q=1

∣∣∣∣∣
∫

Ωj

∂

∂xi

(
βε

k(x)
∂f

∂ξq,i
(x, ξj)

)
·
(
u

(q)
h (x)− u(q)(x)

)
dx

∣∣∣∣∣

≤
N∑

j=1

n∑

i=1

m∑
q=1

Ci,j

∫

Ωj

∣∣∣u(q)
h (x)− u(q)(x)

∣∣∣ dx,

which goes to zero as h →∞, since, for every i ∈ {1, . . . , n} and j ∈ {1, . . . , N},

Ci,j = sup
{∣∣∣∣

∂

∂xi
(βε

k(x)∇ξf(x, ξj))
∣∣∣∣ : x ∈ Ω′j

}
< ∞.

In order to treat the general case, we only have to use the same (in fact simpler) argument used
in the proof of Theorem 4.8(1).

The next proposition states that Corollary 4.9(2) holds in the vectorial case if f = f(x, ξ) (see
Gori, Maggi [53] Proposition 3).

Proposition 4.18. Let f be a continuous function satisfying (4.39) such that f = f(x, ξ) and,
for every x ∈ Ω, f(x, ·) is convex and demi-coercive on Rmn. Then the functional I is l.s.c. on
W 1,1

loc (Ω,Rm) with respect to the L1
loc(Ω,Rm) convergence.
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Proof. We consider at first the case in which f(x, ·) is strictly convex. The proof of Theorem
4.1(b), valid in the scalar case, is based on Lemmas 4, 5, 7, 8 of [69]. However, Lemmas 4, 5, 8 are
also true in the vectorial setting. Thus, Lemma 7 is the only one which makes Serrin’s Theorem
4.1(b) work only in the scalar setting: however, if f does not depend on s, we can easily extend
Lemma 7 to the vectorial setting and find that Theorem 4.1(b) is true also in this more general
contest.

Once known the lower semicontinuity for the strictly convex case we end in a standard way
applying Theorem 3.5.

Clearly Examples 4.14 and 4.15 show that, if we allow the presence of the s variable, Proposition
4.18 and Theorem 4.17 are false.

The following result, proved by Fonseca and Leoni in [42] (see Theorem 1.1 therein), shows
that if f is coercive and satisfies some regularity conditions then the lower semicontinuity can be
proved. In particular this theorem implies the vectorial version of Theorem 4.1(a).

Theorem 4.19. Let f be a l.s.c. function satisfying (4.39). Let us suppose that, for every
(x0, s0) ∈ Ω × Rm either, for every ξ ∈ Rmn, f(x0, s0, ξ) = 0, or there exists c0, δ0 > 0 and a
continuous function g : B ((x0, s0), δ0) → Rmn such that the composition

f(x, s, g(x, s)) ∈ L∞ (B ((x0, s0), δ0)) , (4.46)

and, for every (x, s) ∈ B ((x0, s0), δ0),

f(x, s, ξ) ≥ c0 |ξ| − 1
c0

.

Then the functional I is l.s.c. on W 1,1
loc (Ω,Rm) with respect to the L1

loc(Ω,Rm) convergence.

A question posed in [42] is about the necessity of assumption (4.46). This hypothesis comes out
by the use of the approximation theorem by Ambrosio (see [4] Lemma 1.5, Statement A). Example
4.16 shows that such assumption in general cannot be dropped. However, it may be interesting
to note that, if we assume a local coerciveness with superlinear growth, then Theorem 4.19 holds
without (4.46), as stated in the next proposition (see Gori, Maggi and Marcellini [54] Proposition
5.4).

Proposition 4.20. Let f be a l.s.c. function satisfying (4.39). Let us suppose that, for every
(x0, s0) ∈ Ω × Rm either, for every ξ ∈ Rmn, f(x0, s0, ξ) = 0, or there exists c0, δ0 > 0, p0 > 1
such that, for every (x, s) ∈ B ((x0, s0), δ0),

f(x, s, ξ) ≥ c0 |ξ|p0 − 1
c0

. (4.47)

Then the functional I is l.s.c. on W 1,1
loc (Ω,Rm) with respect to the L1

loc(Ω,Rm) convergence.

Proof. The usual blow up method reduce the problem of the lower semicontinuity to prove the
inequality

lim inf
h→∞

∫

Qn

f(x0 + εky, s0 + εhwh(y),∇wh(y))dy ≥ f(x0, s0, ξ0),

where (x0, s0, ξ0) ∈ Ω×R×Rn, εh ↓ 0 and {wh}∞h=1 ⊆ W 1,1(Qn) is a sequence such that wh → w0

in L1(Qn), where Qn = (0, 1)n and w0(y) = 〈ξ0, y〉.
This trivially holds if, for the pair (x0, s0) it is f(x0, s0, ·) = 0. Otherwise there exist δ0, c0 > 0,

p0 > 1 such that, for every (x, s, ξ) ∈ B ((x0, s0), δ0)× Rmn,

f(x, s, ξ) ≥ c0 |ξ|p0 − 1
c0

.
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If we set M = B ((x0, s0), δ0) we are in the hypotheses of Lemma 1.5, Statement B by Ambrosio
[4] and thus there exist continuous functions ah : M → R and bh : M → Rmn such that

f(x, s, ξ) = sup
h∈N

{ah(x, s) + bh(x, s) · ξ} ,

for every (x, s, ξ) ∈ Bδ0(x0, s0)×Rmn. Now we can conclude the proof working as in Theorem 1.1
of [42] quoted above.

Finally we note that, under the assumption (4.47), if the coerciveness constant doesn’t depend
on s, we can consider the case in which f is only Borel measurable with respect to x. The following
result follows Proposition 5.6 in Gori and Marcellini [55].

Proposition 4.21. Let f : Ω × Rm × Rnm be a Borel function such that, for Ln-a.e. x ∈ Ω,
f(x, ·, ·) is l.s.c., for every s ∈ R, f(x, s, ·) is convex and, for every (s, ξ) ∈ Rm × Rmn,

f(x, s, ξ) ≥ a(x) |ξ|p , (4.48)

where p > 1 and a : Ω → [0,∞] is a Borel function such that

a−
1

p−1 ∈ L1
loc(Ω). (4.49)

Then the functional I is l.s.c. on W 1,1
loc (Ω,Rm) with respect to the L1

loc(Ω,Rm) convergence.

Proof. Let uh, u ∈ W 1,1
loc (Ω,Rm) such that uh → u in L1

loc (Ω,Rm). We have to prove that

lim inf
h→∞

I (uh,Ω) ≥ I (u, Ω) . (4.50)

To this aim we can assume that

lim inf
h→∞

I (uh,Ω) = lim
h→∞

I (uh, Ω) = C < +∞.

By Hölder inequality and by the coercivity assumption (4.48), for every B ∈ B(Ω), h ∈ N, we have
∫

B

|∇uh(x)| dx =
∫

B

a(x)
1
p |∇uh(x)| · a(x)−

1
p dx

≤
{∫

B

a(x) |∇uh(x)|p dx

} 1
p

·
{∫

B

a(x)−
1
p · p

p−1 dx

} (p−1)
p

≤
{∫

B

f (x, uh(x),∇uh(x)) dx

} 1
p

·
{∫

B

a(x)−
1

p−1 dx

} p−1
p

≤ C
1
p

(∫

B

a(x)−
1

p−1

) p−1
p

.

Then {∇uh}∞h=1 is a sequence locally equi-integrable on Ω and in fact uh → u in w-W 1,1
loc (Ω,Rm):

therefore we can apply the lower semicontinuity theorem by Ioffe (see [56]).
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Chapter 5

Lower semicontinuity for supremal
functionals

As stated in the introduction, in this chapter we consider the problem, first approached by Gori
and Maggi in [52], to understand in which cases the functional

S(u, Ω) = ess sup
x∈Ω

g(x, u(x),∇u(x)),

is l.s.c. on W 1,∞
loc (Ω) with respect to the L∞loc(Ω) convergence.

The more natural problem of the lower semicontinuity of S with respect to the w∗-W 1,∞
loc (Ω)

convergence has been deeply studied by several authors (see Barron and Jensen [14], Barron and
Liu [16] and Barron, Jensen and Wang (see [15]) and it has been immediately pointed out the
fundamental role of the level convexity of g in the gradient variable.

One of the main results on this topic is due to Barron, Jensen and Wang (see [15] Theorem
3.4), who provide for supremal functionals a result similar to the classical one of Ioffe [56] in the
integral setting.

Theorem 5.1. Let g : Ω×R×Rn → [0,∞] be a proper and Borel function such that, for Ln-a.e.
x ∈ Ω, g(x, ·, ·) is l.s.c. and, for every s ∈ R, g(x, s, ·) is level convex. Then the functional S is
l.s.c. on W 1,∞

loc (Ω) with respect to the w∗-W 1,∞
loc (Ω) convergence.

In order to prove this theorem the authors show first the fact that the lower semicontinuity
of a supremal functional can be always reduced to the lower semicontinuity of the elements of a
suitable family of integrals whose integrands can also be infinite. Then they conclude proving that
the hypotheses of Theorem 5.1 allow to apply to every functional of the considered family just
Ioffe’s theorem quoted above.

Considering now the lower semicontinuity of S with respect to the L∞loc(Ω) convergence, it is
quite simple to understand that the integral reduction approach by Barron, Jensen and Wang is
not suitable anymore. Indeed, the theory of lower semicontinuity for integrals with respect to this
kind of convergence requires the integrand to be regular enough in the lower order variables and,
in particular, to be finite (as seen in Chapter 4).

Thus the problem must be approached in a different way. Following [52], by means of suitable
tools from the convex analysis, we are able to find simple conditions on g sufficient for the lower
semicontinuity, that generalize Theorem 1.3 in [52]; moreover we carry on also an analysis on the
necessary conditions. Example 5.2, Theorem 5.5 and Theorem 5.8 below are the main results of
this approach.

Finally we stress the fact that in the whole chapter we are dealing with scalar valued functions
u : Ω → R. However, the situation in the vectorial setting, at least about the sufficient conditions,
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is clarified by Example 4.14. Indeed, it shows that Theorems 5.4 and 5.5 don’t hold in the vectorial
case, that is, when g : Ω× Rm × Rmn → [0,∞] and u ∈ W 1,∞

loc (Ω,Rm).

5.1 A counterexample

An important remark about Theorem 5.1 is that it holds even if we consider the lower semiconti-
nuity of S on W 1,1

loc (Ω) with respect to the w-W 1,1
loc (Ω) convergence.

In Example 5.2 below we consider an upper semicontinuous function g = g(x, ξ) : (0, 1)×R→
[0,∞) such that, for every x ∈ (0, 1), g(x, ·) is level convex and such that the supremal functional
S, related to g, is not l.s.c. on a suitable sequence of functions in C∞([0, 1]) converging with respect
to the w∗-BV (0, 1) convergence. This means that if in Theorem 5.1 we want to consider weaker
convergences than the w-W 1,1

loc (Ω), like the w∗-BVloc(Ω) convergence, we have to strengthen the
measurability assumption of g on the geometric variable.

This example, that can be found in [52] Example 2.2, suggests that a suitable regularity con-
dition on g, in order to obtain the lower semicontinuity of S, is its global lower semicontinuity on
Ω× R× Rn (obviously together with the level convexity on the gradient variable).

Example 5.2. Let us show that there exist a closed set K ⊂ [0, 1] of L1-positive measure, a
sequence {uh}∞h=1 ⊆ C∞([0, 1]) such that uh → 0 in L∞(0, 1) and with

sup
h∈N

{∫ 1

0

|u′h(x)|dx

}
< ∞, (5.1)

and 0 < c < d, 0 < ε < d−c
2 such that, for every x ∈ K, h ∈ N,

0 < c + ε < u′h(x) < d− ε. (5.2)

In this way, setting f(ξ) =
(
ξ − (d−c)

2

)2

and g(x, ξ) = 1K(x)f(ξ), we obtain

S(0, (0, 1)) =
(

d− c

2

)2

>

(
d− c

2
− ε

)2

≥ lim inf
h→∞

S(uh, (0, 1)).

In order to do this, let us fix t > 3 and, for every 0 < a < b < 1 with b− a > t−1, we set

Th ([a, b]) =
[
a,

b− a

2
− 1

2th

]
∪

[
b− a

2
+

1
2th

, b

]
.

Then we define, by induction on h ∈ N,

E1 = T1 ([0, 1]) =
{
I1
i

}2

i=1
, Eh =

2h−1⋃

i=1

Th

(
Ih−1
i

)
=

{
Ih
i

}2h

i=1
,

where, for every h ∈ N, the intervals Ih
i are ordered in such a way that sup Ih

i < inf Ih
i+1. Finally

we set

Kh =
2h⋃

i=1

Ih
i , and K =

∞⋂

h=1

Kh.

Clearly K is a closed set, and since

L1
(
Ih
i

)
=

1
2h

{
1− 1

t

h−1∑

k=0

(
2
t

)k
}

,
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we have L1(K) = (t− 3)/(t− 2) (K is simply one of the standard variants of the Cantor’s Set).
Fixed now h ∈ N, for every i ∈ {1, . . . , 2h}, let us define uh on Ih

i as the affine function that
takes the value 0 on the left extreme of Ih

i and the value 2−h−1 on the right extreme. Then we
extend uh on [0, 1] in a smooth way, under the constraint that, for every i ∈ {1, . . . , 2h} the total
variation of uh on the interval between Ih

i and Ih
i+1 is controlled by 3 · 2−h−1.

Clearly, for every x ∈ (0, 1), it is |uh(x)| ≤ 3 · 2−h−1, and then uh → 0 in L∞(0, 1). Moreover
the total variation can be estimated, looking carefully at the construction, by

∫ 1

0

|u′h(x)| dx ≤ (
2h + (2h − 1)

) 3
2h+1

,

that implies (5.1). Finally, for every h ∈ N and x ∈ Kh, it is

u′h(x) =
1

2h+1
· 1
L1

(
Ih
i

) =
1

2 ·
{

1− 1
t

∑h−1
k=0

(
2
t

)k
} ,

thus, in particular, since we have

lim
h→∞

{
1− 1

t

h−1∑

k=0

(
2
t

)k
}

=
t− 3
t− 2

∈ (0, 1),

we can choose c, d and ε satisfying (5.2).

Remark 5.3. Example 5.2 provides a counterexample also in the integral setting: indeed, if we
consider the integral functional I in (1.1) built up starting from the function g of Example 5.2 it
says that Ioffe’s lower semicontinuity Theorem (see [56]) doesn’t hold with respect to w∗-BV (Ω)
convergence, at least with upper semicontinuity with respect to the geometric variable x. This fact
is classically shown with a counterexample by Carbone and Sbordone [23] (see also [22]).

5.2 Sufficient conditions

As Example 5.2 suggests, we will consider the case in which g is l.s.c. on Ω×R×Rn and, of course,
level convex in the gradient variable.

By means of Theorem 2.13 we can prove our lower semicontinuity results. The first one is quite
surprising: it shows that in the scalar case we still have lower semicontinuity with respect to the
L∞loc(Ω) convergence on C1 sequences, even if level convexity is dropped (see [52] Theorem 1.1).

Theorem 5.4. Let g : Ω×R×Rn → [0,∞] be a proper and l.s.c. function and let {uh}∞h=1 ⊆ C1(Ω),
u ∈ W 1,∞

loc (Ω) such that uh → u in L∞loc(Ω). Then

S(u, Ω) ≤ lim inf
h→∞

S(uh,Ω).

Proof. Let us take t > lim infh→∞ S(uh, Ω) (we can suppose t < ∞). By the continuity of uh and
∇uh, the function g(x, uh(x),∇uh(x)) of the x variable is l.s.c. on Ω, thus the essential supremum
in the definition of S is a point-wise supremum, that is,

S(uh, Ω) = sup
x∈Ω

g(x, uh(x),∇uh(x)).

Then there exists ht ∈ N such that, for every h ≥ ht, x ∈ Ω, we have g(x, uh(x),∇uh(x)) ≤ t.
Let now Ωd ⊆ Ω the set in which u is differentiable and fix x0 ∈ Ωd: we know that Ln(Ω\Ωd) = 0

and that, applying Theorem 2.13 and Proposition 2.12(iv), there exists a subsequence {uhk
}∞k=1
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and a sequence {xk}∞k=1, such that xk → x0, uhk
(xk) → u(x0) and ∇uhk

(xk) → ∇u(x0). Hence,
by the lower semicontinuity of g, we have, for every x0 ∈ Ωd,

g(x0, u(x0),∇u(x0)) ≤ lim inf
h→∞

g(xh, uh(xh),∇uh(xh)) ≤ t,

that is S(u, Ω) ≤ t: then the thesis follows.

In order to prove a general lower semicontinuity theorem we need to assume the level convexity
of g in the gradient variable. We prove that if g is l.s.c. and level convex in ξ then S is lower
semicontinuous on W 1,∞

loc (Ω) with respect to the L∞loc(Ω) topology. Let us note that this theorem
generalizes Theorem 1.3 in [52].

Theorem 5.5. Let g : Ω × R × Rn → [0,∞] be a proper, l.s.c. function such that, for every
(x, s) ∈ Ω×R, g(x, s, ·) is level convex. Then the functional S is l.s.c. in W 1,∞

loc (Ω) with respect to
the L∞loc(Ω) convergence.

Proof. Let u, uh ∈ W 1,∞
loc (Ω) such that uh → u in L∞loc(Ω). We can suppose that

lim inf
h→∞

S(uh, Ω) = lim
h→∞

S(uh, Ω) = L < +∞.

Let now t > L: then there exists ht ∈ N such that, for every h ≥ ht, S(uh, Ω) ≤ t. In particular
we can find Ω1 ⊆ Ω, with Ln(Ω \ Ω1) = 0, such that, for every h ≥ ht, x ∈ Ω1, we have
g(x, uh(x),∇uh(x)) ≤ t and ∇u(x),∇uh(x) exist.

We claim now that the l.s.c. and the level convexity of g with respect to the gradient variable
imply that, for every h ≥ ht, x ∈ Ω, ξ ∈ ∂cuh(x), we have g(x, uh(x), ξ) ≤ t.

Indeed, let us consider h ≥ ht, x ∈ Ω and the set ∇uh(x) as in (2.12) built up with respect to
Ω1. By the l.s.c. of g we trivially have that, for every x ∈ Ω, ξ ∈ ∇uh(x), g(x, uh(x), ξ) ≤ t.

Now, by Proposition 2.12(i), we still have ∂cuh(x) = co
(∇uh(x)

)
and then, by Theorem 2.14,

for every ξ ∈ ∂cuh(x), there exist {ξj}n+1
j=1 ⊆ ∇uh(x) and {λj}n+1

j=1 , with 0 ≤ λj ≤ 1 and
∑n+1

j=1 λj =
1, such that ξ =

∑n+1
j=1 λjξj . Thus, by the definition of level convexity,

g(x, uh(x), ξ) = g


x, uh(x),

n+1∑

j=1

λjξj


 ≤

n+1∨

j=1

g(x, uh(x), ξj) ≤ t,

and the claim is proved.
Fixed now x0 ∈ Ω1 we have that, by Theorem 2.13, there exists a subsequence {uhk

}∞k=1 and
two sequences {xk}∞k=1, {ξk}∞k=1 such that, for every k ∈ N, ξk ∈ ∂cuhk

(xk) and it holds xk → x0,
uhk

(xk) → u(x0) and ξk → ∇u(x0). Then

(xk, uhk
(xk), ξk) → (x0, u(x0),∇u(x0))

and by the lower semicontinuity of g it is g(x0, u(x0),∇u(x0)) ≤ t. Thus S(u, Ω1) = S(u, Ω) ≤ t.
Since this holds for every t > L it follows S(u,Ω) ≤ L and we get the proof.

5.3 Necessary conditions

We end this chapter trying to prove that the level convexity of g in the gradient variable is a
necessary condition for the lower semicontinuity of S. What we would like it happens, in order to
find a theorem stating necessary and sufficient conditions, is that supposing g l.s.c. on Ω×R×Rn

and that, for every open set Ω′ ⊆ Ω, S(u, Ω′) is l.s.c. on W 1,∞
loc (Ω′) with respect to the L∞loc(Ω

′)
convergence, then g is level convex in the ξ variable.

However, the situation is more complicated it seems. We propose here an example that shows
a particular situation we can find.
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Example 5.6. Let Ω = (0, 1) and g : Ω×R×R→ [2,∞) be a continuous function such that, for
every (x, s) ∈ Ω×R, g(x, s, ·) is level convex. By Theorem 5.5, for every Ω′ ⊆ Ω open set, S(u, Ω′)
is l.s.c on W 1,∞

loc (Ω′) with respect to the L∞loc(Ω
′) convergence. Let us define the following closed

set
A = {(x, x, ξ) : x ∈ Ω, ξ ∈ (−∞, 0]} ⊆ Ω× R× R,

and let us consider a continuous function h : A → [0, 1] such that, for every x ∈ Ω, h(x, x, ·) is not
level convex in the ξ variable. We set now

g′(x, s, ξ) =

{
g(x, s, ξ) if (x, s, ξ) ∈ (Ω× R× R) \A,

h(x, s, ξ) if (x, s, ξ) ∈ A;

by construction we have that g′ is a l.s.c. function that doesn’t satisfy the hypotheses of Theorem
5.5 about the level convexity. Note also that g′ cannot be obtain by g by means of a trivial
modification of g on a set of the type M × R× Rn, where M ⊆ Ω and L1(M) = 0.

Let us denote with S′ the supremal functional associated to g′ and prove that, for every Ω′ ⊆ Ω
open set, S′(u, Ω′) is l.s.c. on W 1,∞

loc (Ω′) with respect to the L∞loc(Ω
′) convergence.

In order to do this we claim at first that, for every function u ∈ W 1,∞
loc (Ω), defined Ωd = {x ∈

Ω : u′(x) exists}, the set
Q(u) = {x : (x, u(x), u′(x)) ∈ A} ∩ Ωd

has L1-null measure: let us note at first that every point of Q(u) is isolated. Indeed, for every
x ∈ Q(u) we have that u′(x) exists, u(x) = x and u′(x) ≤ 0: then, in particular, we have

lim
y→x

u(y)− u(x)
y − x

≤ 0.

It follows that we can find a neighbor V (x) of x such that, for every y ∈ V (x) \ {x}, u(y) 6= y, else
there exists yn → x such that u(yn) = yn that implies

lim
n→∞

u(yn)− u(x)
yn − x

= lim
n→∞

yn − x

yn − x
= 1.

Now let us define, for every i ∈ N,

Qi(u) =
{

x ∈ Q(u) : B 1
i
(x) ∩Q(u) = {x}

}
⊆ Ω.

Trivially there are only a finite number of elements in every Qi(u) and since Q(u) =
⋃∞

i=1 Qi(u)
we have that Q(u) is countable thus, in particular, of L1-null measure and the claim is proved.

From this fact it follows that, for every open set Ω′ ⊆ Ω and for every function u ∈ W 1,∞
loc (Ω′),

S(u, Ω′) = S′(u, Ω′). Indeed, we have

S′(u, Ω′) = ess sup
x∈Ω′

g′(x, u(x), u′(x)) = ess sup
x∈(Ωd\Q(u))∩Ω′

g(x, u(x), u′(x)) =

ess sup
x∈(Ωd\Q(u))∩Ω′

g(x, u(x), u′(x)) = S(u, Ω′).

Thus S′(u, Ω′) is l.s.c. on W 1,∞
loc (Ω′) with respect to the L∞loc(Ω

′) convergence even if g′ is not level
convex in the gradient variable.

Example 5.6 show that, starting from a l.s.c. function g such that its associated supremal
functional is l.s.c., without further information on the regularity of g, we have no hope to prove
nothing about its convexity property.
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However, at the same time, the example shows that it is natural to identify two l.s.c. functions
g, g′ with the property that, for every u ∈ W 1,∞

loc (Ω) and for Ln-a.e. x ∈ Ω,

g(x, u(x),∇u(x)) = g′(x, u(x),∇u(x)),

since their supremal functionals agree. This identification clearly defines an equivalence relationship
that we denote by ∼.

From this new point of view, given for instance a l.s.c. function g, the level convexity as a
necessary condition to the lower semicontinuity have to be interpreted in the following way: there
exists a l.s.c. function g′ such that g ∼ g′ and, for every (x, s) ∈ Ω× R, g′(x, s, ·) is level convex.

In the following we will study this relationship restricted to a particular class of functions
satisfying same regularities and we try to understand the form of the equivalence classes. Our
purpose, in order to prove necessary conditions, is to find a particular class of functions in which
every equivalence class for the relationship ∼ is a singleton. Evidently, by Example 5.6, we cannot
consider only l.s.c. functions but we need much more regularity.

The following simple proposition identify suitable regularity conditions.

Proposition 5.7. Let g, g′ : Ω × R × Rn → [0,∞] be proper and l.s.c. functions such that, for
every ξ ∈ Rn, g(·, ·, ξ) and g′(·, ·, ξ) are continuous on Ω×R and let us suppose that g ∼ g′. Then
g = g′.

Proof. Let us fix (x0, s0, ξ0) ∈ Ω × R × Rn and u(x) = s0 + 〈ξ0, x − x0〉. Then, since g ∼ g′, we
have that for Ln-a.e. x ∈ Ω, g(x, u(x), ξ0) = g′(x, u(x), ξ0). In particular this holds for a dense
subset of Ω thus, by continuity, we conclude that g(x0, s0, ξ0) = g′(x0, s0, ξ0).

The following theorem shows that, considering the set of functions of the proposition above,
the level convexity is just a necessary condition for lower semicontinuity.

Theorem 5.8. Let g : Ω × R × Rn → [0,∞] be a proper and l.s.c. function such that, for every
ξ ∈ Rn, g(·, ·, ξ) is continuous on Ω × R and such that, for every Ω′ ⊆ Ω open set, S(·, Ω′) is
l.s.c. on W 1,∞

loc (Ω′) with respect to the w∗-W 1,∞
loc (Ω) convergence. Then, for every (x, s) ∈ Ω× R,

g(x, s, ·) is level convex.

Proof. We argue by contradiction. If there exists (x0, s0) ∈ Ω×R such that g(x0, s0, ·) is not level
convex, then there exists r0 ∈ R such that Eg(x0,s0,·)(r0) is not convex in Rn. Thus there are
ξ1, ξ2 ∈ Eg(x0,s0,·)(r0) and t ∈ (0, 1) such that

ξ0 = tξ1 + (1− t)ξ2 6∈ Eg(x0,s0,·)(r0).

Let us consider now the function u(x) = s0 + 〈ξ0, x − x0〉 ∈ W 1,∞
loc (Rn). It’s quite simple to find

a sequence uh ∈ W 1,∞
loc (Rn) such that uh → u in w∗-W 1,∞

loc (Rn) and such that, for every h ∈ N,
when ∇uh exists, its value is ξ1 or ξ2. Such a sequence can be built up working in this way. Let
us consider the function v : R→ Rn defined componentwise as

vi(y) =

{
ξ1,i y ∈ (x0,i, x0,i + t),

ξ2,i y ∈ (x0,i + t, x0,i + 1),

where i ∈ {1, . . . , n}, and extended on R by periodicity. Defined now vh(y) = v(hy) : R→ Rn, we
can consider the functions

uh(x) = s0 +
n∑

i=1

∫ xi

x0,i

vh,i(y)dy ∈ W 1,∞
loc (Rn).

It’s simple to verify that uh → u in w∗-W 1,∞
loc (Rn). Then, using this sequence, for every δ > 0, we

have
r0 < g(x0, s0, ξ0) ≤ S (u,B(x0, δ)) ≤ lim inf

h→∞
S (uh, B(x0, δ)) .
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Defining 2ε = g(x0, s0, ξ0)− r0 > 0, by the continuity of g(·, ·, ξ) and the hypotheses on uh, if h is
big enough and δ is small enough, we have, for every x ∈ B(x0, δ),

g(x, uh(x), ξ1) ≤ r0 +
ε

2
, g(x, uh(x), ξ2) ≤ r0 +

ε

2
.

Thus it follows
r0 + ε ≤ lim inf

h→∞
S (uh, B(x0, δ)) ≤ r0 +

ε

2
and we have found a contradiction.
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Chapter 6

Functionals defined on measures

In the first part of this chapter we study some particular integral and supremal functionals defined
on the space of Radon measures. Let f, g : Rm → [0,∞] be proper and Borel functions and let us
consider the following functionals defined, for every λ ∈Mloc(Ω,Rm), as

Im(λ, Ω) =
∫

Ω

f(λa(x))dx +
∫

Ω

f∞
(

dλs

d|λs| (x)
)

d|λs|(x), (6.1)

and

Sm(λ, Ω) =
[
ess sup

x∈Ω
g(λa(x))

]
∨

[
|λs|-ess sup

x∈Ω
g\

(
dλs

d|λs| (x)
)]

, (6.2)

where the measure λ has been decomposed as in (2.3) with respect to the Lebesgue’s measure Ln.
The main purpose of the first part of this chapter is to prove that, if we suppose f l.s.c. and

convex and g l.s.c. and level convex, then Im and Sm are l.s.c. on Mloc(Ω,Rm) with respect to
the w∗-Mloc(Ω,Rm) convergence.

The functional Im has been deeply studied by several authors and in particular by Goffman and
Serrin [49], Ambrosio and Buttazzo [5], Bouchitté [17], Bouchitté and Valadier [21] and De Giorgi,
Ambrosio and Buttazzo [36] (see also the book of Buttazzo [22]). In these papers necessary and
sufficient conditions on f for the lower semicontinuity of Im have been found even when f depends
on the geometric variable x.

On the contrary, the functional Sm defined above seems to be new.
The strategy we follow in order to prove the lower semicontinuity of Im and Sm is essentially

the same of Serrin [69] and, in particular, of Goffman and Serrin [49], where the study of the
functional Im is approached for the first time. Indeed, as already shown in [51], the arguments of
these papers can be adapted to the supremal setting too1.

Before stating the main theorem concerning Im and Sm, let us define, for every λ ∈Mloc(Ω,Rm)
and with respect to the decomposition (2.3) of λ with respect to Ln, the following functionals

Im(λ, Ω) =
∫

Ω

f(λa(x))dx, (6.3)

Sm(λ,Ω) = ess sup
x∈Ω

g(λa(x)), (6.4)

I∗m(λ,Ω) = inf
{

lim inf
h→∞

Im(λh,Ωh) : λh ∈Mloc(Ωh,Rm), λh << Ln, λh → λ w∗-Mloc(l Ω,Rm)
}

,

(6.5)

1Note that in [51] it is considered the less general case in which Sm is defined on BVloc(Ω), that is λ = Du (see
Chapter 7).
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and

S∗m(λ,Ω) = inf
{

lim inf
h→∞

Sm(λh,Ωh) : λh ∈Mloc(Ωh,Rm), λh << Ln, λh → λ w∗-Mloc(l Ω,Rm)
}

.

(6.6)
The following theorem shows the complete analogy between the functionals (6.1) and (6.2).

Theorem 6.1. Let f, g : Rm → [0,∞] be proper and Borel functions and consider the two following
pairs of conditions:

(a) f is l.s.c. and convex on Rm,

(b) for every open set Ω ⊆ Rn, the functional Im is l.s.c. on Mloc(Ω,Rm) with respect to the
w∗-Mloc(Ω,Rm) convergence,

and

(i) g is l.s.c. and level convex on Rm,

(ii) for every open set Ω ⊆ Rn, the functional Sm is l.s.c. on Mloc(Ω,Rm) with respect to the
w∗-Mloc(Ω,Rm) convergence.

Then (a) is equivalent to (b) so as (i) to (ii). Moreover when the previous conditions are satisfied,
for every λ ∈Mloc(Ω,Rm), we have

Im(λ,Ω) = I∗m(λ,Ω) = lim
ρ→0

Im(λρ · Ln, Ωρ), (6.7)

Sm(λ,Ω) = S∗m(λ,Ω) = lim
ρ→0

Sm(λρ · Ln, Ωρ), (6.8)

where λρ denotes the convolution of λ, and Im and Sm are convex and level convex respectively on
Mloc(Ω,Rm).

The second part of the chapter is devoted to the study of the lower semicontinuity of other two
classes of functionals defined, for every λ ∈Mloc(Ω,Rm), as

Im(λ, Ω) =
∫

Ω

f(λa(x))dx +
∫

Ω

f∞
(

dλc

d|λc| (x)
)

d|λc|(x) +
∑

x∈Aλ

σ(λ#(x)), (6.9)

and

Sm(λ,Ω) =
[
ess sup

x∈Ω
g(λa(x))

]
∨

[
|λc|-ess sup

x∈Ω
g\

(
dλc

d|λc| (x)
)]

∨
[ ∨

x∈Aλ

γ(λ#(x))

]
, (6.10)

where f, g, γ, σ : Rm → [0,∞] are Borel functions.
First of all we remark that Im and Sm generalize Im and Sm respectively: in fact, when σ is

positively homogeneous of degree 1 and γ is positively homogeneous of degree 0, we have

∑

x∈Aλ

σ(λ#(x)) =
∫

Aλ

σ

(
dλ#

d|λ#| (x)
)

d|λ#|(x) and
∨

x∈Aλ

γ(λ#(x)) = |λ#|-ess sup
x∈Aλ

γ

(
dλ#

d|λ#| (x)
)

.

If we consider now σ = f∞ and γ = g\, applying Propositions 2.5 and 2.6, we obtain, for every
λ ∈ Mloc(Ω,Rm), Im(λ,Ω) = Im(λ,Ω) and Sm(λ, Ω) = Sm(λ, Ω): then, when this particular case
is considered, we have that Theorem 6.1 already solves the problem of the lower semicontinuity of
Im and Sm.
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It is also clear that, even if we suppose that f and g are convex and level convex, Im and Sm

could fail to be convex and level convex on Mloc(Ω,Rm) because of the presence of the functions
σ and γ: for this reason, with a little abuse, we will call Im the non convex functional and Sm the
non level convex one, contrarily to Im and Sm.

Finally let us note also that the value of σ and γ for ξ = 0 does not enter in the computation of
Im and Sm, thus these two functions could be defined only on Rm\{0}: however, to simplify several
arguments, we prefer to define σ and γ on the whole space Rm adding the condition σ(0) = γ(0) = 0
that, as noted, doesn’t reduce the generality of the statements.

The lower semicontinuity properties of Im have been studied for the first time by Bouchitté
and Buttazzo in [18] and other aspects, as the problem of the relaxation or the one of the integral
representation, have been analyzed by the same authors in subsequent works (see [19], [20]). In the
supremal case instead, this kind of study has not been developed, even if a functional very similar
to Sm but defined on BVloc(a, b) has been recently studied by Alicandro, Braides and Cicalese in
[3] (see also Chapter 7).

Among the results proved for the functional Im it is interesting to quote the following one in
which we can find both necessary and sufficient conditions (it follows from Theorem 3.3 [18] and
Theorem 2.3 [19]).

Theorem 6.2. Let f : Rm → [0,∞] and σ : Rm → [0,∞] be proper and Borel functions with
σ(0) = 0. Then the following conditions are equivalent:

(a) f is l.s.c. and convex on Rm, σ is l.s.c and sub-linear on Rm with σ(0) = 0 and, for every
ξ ∈ Rm \ {0}, f∞(ξ) = σ0(ξ),

(b) for every open set Ω ⊆ Rn, the functional Im is l.s.c. on Mloc(Ω,Rm) with respect to the
w∗-Mloc(Ω,Rm) convergence.

Here, keeping in mind the previous theorem proved for Im, we propose some analogous results on
Sm. We are able to prove in particular the two following theorems where we give some necessary
and sufficient conditions for the lower semicontinuity: even in this case it is clear the analogy
between the integral and the supremal setting.

Theorem 6.3. Let g : Rm → [0,∞] and γ : Rm → [0,∞] be proper and Borel functions with γ(0) =
0. Let us suppose that, for every open set Ω ⊆ Rn, the functional Sm is l.s.c. on Mloc(Ω,Rm) with
respect to the w∗-Mloc(Ω,Rm) convergence. Then g is l.s.c. and level convex on Rm and, defined
l = inf{g(ξ) : ξ ∈ Rm}, γ ∨ l is l.s.c. and sub-maximal on Rm. Moreover, for every ξ ∈ Rm \ {0},
g\(ξ) = (γ ∨ l)[(ξ).

Theorem 6.4. Let g : Rm → [0,∞] be a l.s.c. and level convex function, l = inf{g(ξ) : ξ ∈ Rm}
and γ : Rm → [0,∞] such that γ ∨ l is a l.s.c and sub-maximal function with γ(0) = 0. Let us
suppose that, for every ξ ∈ Rm \ {0}, g\(ξ) = (γ ∨ l)[(ξ) = ∞. Then the functional Sm is l.s.c. on
Mloc(Ω,Rm) with respect to the w∗-Mloc(Ω,Rm) convergence.

As we can see, we are not able to find conditions on g and γ that are both necessary and
sufficient for the lower semicontinuity of Sm: our conjecture is that in Theorem 6.4 the condition
g\ = (γ ∨ l)[ = ∞ could be replaced with the weaker condition g\ = (γ ∨ l)[ that we already
know, thanks to Theorem 6.3, to be necessary and, as Alicandro, Braides and Cicalese show in [3]
Theorem 4.4, to be also sufficient at least in dimension one.

6.1 Convex and level convex functionals

This section is devoted to the proof of Theorem 6.1. Let us start considering the implications
(b) ⇒ (a) and (ii) ⇒ (i).
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Proof of Theorem 6.1 (b) ⇒ (a). Let us consider in the following Ω = Qn = (0, 1)n the unit cube
in Rn: clearly Ln(Qn) = 1. Let us fix ξh, ξ0 ∈ Rm, ξh → ξ0 and let λh = ξh · Ln, λ0 = ξ0 · Ln. We
have λh → λ0 in w∗-Mloc(Qn,Rm) and then

f(ξ0) = Im(λ0, Q
n) ≤ lim inf

h→∞
Im(λh, Qn) = lim inf

h→∞
f(ξh),

that is f is l.s.c..
Let us consider now ξ, η ∈ Rm, t ∈ (0, 1) and a sequence {Bh}∞h=1 ⊆ B(Qn) such that, for every

h ∈ N, Ln(Bh) = t and 1Bh
(x) → t1Qn(x) in w∗-L∞(Qn) (see [2] Proposition 4.2 and Remark 4.3).

If λh = ξ1Bh
(x) · Ln + η1Qn\Bh

(x) · Ln then λh → λ0 = (tξ + (1 − t)η) · Ln in w∗-Mloc(Qn,Rm)
thus

f(tξ + (1− t)η) = Im(λ0, Q
n) ≤ lim inf

h→∞
Im(λh, Qn)

= lim inf
h→∞

[
Ln(Bh)f(ξ) + Ln(Qn \Bh)f(η)

]
= tf(ξ) + (1− t)f(η),

that is f is convex.

Proof of Theorem 6.1 (ii) ⇒ (i). Let ξh, ξ0 ∈ Rm, ξh → ξ0 and let λh = ξh · Ln, λ0 = ξ0 · Ln. We
have λh → λ0 in w∗-Mloc(Rn,Rm) and then

g(ξ0) = Sm(λ0,Rn) ≤ lim inf
h→∞

Sm(λh,Rn) = lim inf
h→∞

g(ξh),

that is g is l.s.c..
Let us consider now ξ, η ∈ Rm, t ∈ (0, 1) and a sequence {Bh}∞h=1 ⊆ B(Rn) such that 1Bh

(x) →
t1Rn(x) in w∗-L∞(Rn) (see [2] Proposition 4.2 and Remark 4.3). If λh = ξ1Bh

(x)·Ln+η1Rn\Bh
(x)·

Ln then λh → λ0 = (tξ + (1− t)η) · Ln in w∗-Mloc(Rn,Rm) thus

g(tξ + (1− t)η) = Sm(λ0,Rn) ≤ lim inf
h→∞

Sm(λh,Rn) = g(ξ) ∨ g(η),

that is g is level convex.

The proofs of the implications (a) ⇒ (b) and (i) ⇒ (ii) of Theorem 6.1 are more difficult and
for this reason their are developed in three steps. In the first one we prove that, for every λ ∈
Mloc(Ω,Rm), I∗m(λ, Ω) and S∗m(λ, Ω) can be computed considering only the convolutions of λ as in
(6.7) and (6.8) (see Theorem 6.6). This fact implies, in a very simple way, the second step that is the
proof that I∗m and S∗m are l.s.c. on Mloc(Ω,Rm) with respect to the w∗-Mloc(Ω,Rm) convergence
(see Proposition 6.7) and the properties of convexity and level convexity on Mloc(Ω,Rm) (see
Proposition 6.8). At last in the third step we prove the equalities Im = I∗m and Sm = S∗m (see
Theorems 6.16 and 6.17) that complete the proof of Theorem 6.1.

6.1.1 Simple results via convolutions

Let us start studying I∗m and S∗m. Lemma 6.5 and Theorem 6.6 are completely inspired to Lemma
1 and Theorem 1 of [69] (see also [51]).

Lemma 6.5. Let f : Rm → [0, +∞] be a proper, l.s.c and convex function and g : Rm → [0, +∞]
be a proper, l.s.c and level convex function. Let λ ∈Mloc(Ω,Rm), λh ∈Mloc(Ωh,Rm), λh << Ln

such that λh → λ in w∗-Mloc(l Ω,Rm). Then, for every ρ > 0, we have

Im (λρ · Ln, Ωρ) ≤ lim inf
h→∞

Im(λh, Ωh).

and
Sm (λρ · Ln, Ωρ) ≤ lim inf

h→∞
Sm(λh, Ωh).
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Proof. Let us fix ρ > 0 and K ⊂⊂ Ωρ. We have that (λh)ρ → λρ point-wise on K as h → ∞.
Indeed, if x ∈ K we have that, if h is large enough, K ⊂⊂ Ωh,ρ and

|(λh)ρ(x)− λρ(x)| =
∣∣∣∣∣
∫

B(x,ρ)

kρ(x− y)dλh(y)−
∫

B(x,ρ)

kρ(x− y)dλ(y)

∣∣∣∣∣

that converges to zero as h →∞ by definition of w∗-Mloc(l Ω,Rm) convergence.
Let us prove the relation for Im. Let us fix x ∈ K and apply Theorem 2.18 with µ = kρ(x−y)·Ln:

we have

f(λρ(x)) ≤ lim inf
h→∞

f
(
(λh)ρ(x)

)
= lim inf

h→∞
f

(∫

B(x,ρ)

λa
h(y)dµ(y)

)
≤ lim inf

h→∞

∫

B(x,ρ)

f(λa
h(y))dµ(y).

Then integrating on K and using Fubini’s and Fatou’s Theorems

∫

x∈K

f(λρ(x))dx ≤
∫

x∈K

lim inf
h→∞

(∫

B(x,ρ)

kρ(x− y)f(λa
h(y))dy

)
dx

≤ lim inf
h→∞

∫

K

(∫

B(x,ρ)

kρ(x− y)f(λa
h(y))dy

)
dx ≤ lim inf

h→∞

∫

K+B(0,ρ)

(∫

B(y,ρ)

kρ(x− y)dx

)
f(λa

h(y))dy

≤ lim inf
h→∞

∫

Ωh

f(λa
h(x))dx = lim inf

h→∞
Im(λh,Ωh),

and we conclude by taking K ↑ Ωρ.
The argument is simpler for Sm. Let us fix x ∈ K and apply Theorem 2.19 and (2.2) with

µ = kρ(x− y) · Ln << Ln, in order to get

g(λρ(x)) ≤ lim inf
h→∞

g
(
(λh)ρ(x)

)
≤ lim inf

h→∞
ess sup
y∈B(x,ρ)

g(λa
h(y)) ≤ lim inf

h→∞
Sm(λh,Ωh).

Then
sup
x∈K

g(λρ(x)) ≤ lim inf
h→∞

Sm(λh, Ωh),

and we conclude by taking K ↑ Ωρ.

By means of Lemma 6.5 we find a representation formula for I∗m and S∗m via convolutions,
proving in this way the first step of the proof of Theorem 6.1.

Theorem 6.6. Let f : Rm → [0,+∞] be a proper, l.s.c. and convex function and g : Rm → [0,+∞]
be a proper, l.s.c. and level convex function. Then, for every λ ∈Mloc(Ω,Rm), we have

I∗m(λ, Ω) = lim
ρ→0

Im(λρ · Ln,Ωρ) and S∗m(λ,Ω) = lim
ρ→0

Sm(λρ · Ln, Ωρ). (6.11)

In particular the limits in the right hand sides exist.

Proof. Let us consider Sm. For every λ ∈Mloc(Ω,Rm), λρ ·Ln → λ in w∗-Mloc(l Ω,Rm) as ρ → 0
and λρ · Ln << Ln so that, by Lemma 6.5,

lim sup
ρ→0

Sm(λρ · Ln,Ωρ) ≤ S∗m(λ,Ω) ≤ lim inf
ρ→0

Sm(λρ · Ln, Ωρ).

The same argument prove the equality also for the integral case.

By means of Theorem 6.6 we are able to prove the two following propositions that complete
the second step of the proof of Theorem 6.1.
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Proposition 6.7. Let f : Rm → [0, +∞] be a proper, l.s.c. and convex function and g : Rm →
[0,+∞] be a proper, l.s.c. and level convex function. Then I∗m and S∗m are l.s.c. on Mloc(Ω,Rm)
with respect to the w∗-Mloc(Ω,Rm) convergence.

Proof. Since the same proof works in both cases we make it for the functional S∗m. Let λ, λh ∈
Mloc(Ω,Rm) be such that λh → λ in w∗-Mloc(Ω,Rm). Then, by Theorem 6.6, there exists a
sequence ρh ↓ 0 such that, for every h ∈ N,

Sm

(
(λh)ρh

· Ln,Ωρh

)
≤ S∗m(λh, Ω) +

1
h

. (6.12)

Now we claim that (λh)ρh
· Ln → λ in w∗-Mloc(l Ω,Rm). Indeed, fixed ϕ ∈ Cc(Ω), if h is so

large that spt(ϕ) + B(0, ρh) ⊂ Ωρh
and by using the usual properties of the convolutions (see [7]

equation (2.3) page 42), we have
∣∣∣∣
∫

Ω

ϕ(x)(λh)ρh
(x)dx−

∫

Ω

ϕ(x)dλ(x)
∣∣∣∣ ≤

∣∣∣∣
∫

Ω

ϕ(x)(λh)ρh
(x)dx−

∫

Ω

ϕ(x)dλh(x)
∣∣∣∣ +

∣∣∣∣
∫

Ω

ϕ(x)dλh(x)−
∫

Ω

ϕ(x)dλ(x)
∣∣∣∣ ≤

∫

Ω

|ϕρh
(x)− ϕ(x)| dλh(x) +

∣∣∣∣
∫

Ω

ϕ(x)dλh(x)−
∫

Ω

ϕ(x)dλ(x)
∣∣∣∣ .

Now the first term goes to zero as h → ∞ since ϕρh
→ ϕ uniformly on Ω and there exists a

constant M > 0 such that, for every h ∈ N, |λh|(spt(ϕ) + B(0, ρh)) ≤ M ; the second term goes to
zero by definition of {λh}∞h=1.

Then using the definition of S∗m and (6.12) we obtain its lower semicontinuity since

S∗m(λ,Ω) ≤ lim inf
h→∞

Sm

(
(λh)ρh

· Ln, Ωρh

)
≤ lim inf

h→∞
S∗m(λh, Ω),

which ends the proof.

Proposition 6.8. Let f : Rm → [0, +∞] be a proper, l.s.c. and convex function and g : Rm →
[0,+∞] be a proper, l.s.c. and level convex function. Then, for every λ1, λ2 ∈ Mloc(Ω,Rm) and
for every t ∈ (0, 1),

I∗m
(
tλ1 + (1− t)λ2,Ω

)
≤ tI∗m(λ1,Ω) + (1− t)I∗m(λ2,Ω),

that is, I∗m is convex on the linear space Mloc(Ω,Rm), and

S∗m
(
tλ1 + (1− t)λ2, Ω

)
≤ S∗m(λ1,Ω) ∨ S∗m(λ2, Ω),

that is, S∗m is level convex on the linear space Mloc(Ω,Rm).

Proof. Fixed ρ > 0, by the convexity of f , we have, for every x ∈ Ωρ,

f
(
(tλ1 + (1− t)λ2)ρ(x)

)
= f

(
t(λ1)ρ(x) + (1− t)(λ2)ρ(x)

)
≤ tf

(
(λ1)ρ(x)

)
+ (1− t)f

(
(λ2)ρ(x)

)
,

and then

Im

(
(tλ1 + (1− t)λ2)ρ · Ln, Ωρ

)
≤ tIm

(
(λ1)ρ · Ln,Ωρ

)
+ (1− t)Im

(
(λ2)ρ · Ln,Ωρ

)
.

Analogously, fixed ρ > 0, by the level convexity of g, we have, for every x ∈ Ωρ,

g
(
(tλ1 + (1− t)λ2)ρ(x)

)
= g

(
t(λ1)ρ(x) + (1− t)(λ2)ρ(x)

)
≤ g

(
(λ1)ρ(x)

)
∨ g

(
(λ2)ρ(x)

)
,

and then

Sm

(
(tλ1 + (1− t)λ2)ρ · Ln, Ωρ

)
≤ S

(
(λ1)ρ · Ln,Ωρ

)
∨ S

(
(λ2)ρ · Ln, Ωρ

)
.

Passing to the limit as ρ → 0 we complete the proof applying Theorem 6.6.
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6.1.2 The integral functional

In this section we prove the equality I∗m = Im. The proof is based on several facts about the
relations between sub-linear functions and measures: we propose here a slight revisited form of the
results proved by Goffman and Serrin in [49].

Fixed m ∈ N, let us consider F : Rm → [0,∞] and the following sets of hypotheses:

• F is proper, l.s.c. and sub-linear; (6.13)

• F is positively homogeneous of degree 1; (6.14)

• there exists a constant C > 0 such that, for every ξ ∈ Rm,F(ξ) ≤ C|ξ|. (6.15)

Let us consider now λ ∈Mloc(Ω,Rm), and set, for every B ∈ B(Ω),

Fλ(B) = sup





r∑

j=1

F (λ(Bj)) : ∀j Bj ∈ B(Ω), Bj ⊂⊂ Ω,

r⋃

j=1

Bj ⊆ B, Bi ∩Bj = ∅ if i 6= j



 .

(6.16)
Note that if F(ξ) = |ξ| then Fλ agrees with |λ|, the total variation of λ given by (2.1).

Proposition 6.9. Let F : Rm → [0,∞] be a function satisfying (6.13). Then, for every λ ∈
Mloc(Ω,Rm), Fλ is a positive Borel measure. Moreover if F satisfies (6.15) too, Fλ ∈M+(Ω).

Proof. Let us note at first that if B1, B2 ∈ B(Ω) and B1 ⊆ B2 then 0 ≤ Fλ(B1) ≤ Fλ(B2) and that
Fλ(∅) = 0. Let us consider now a sequence {Ei}∞i=1 ⊆ B(Ω) such that, for every i 6= j, Ei∩Ej = ∅.
Then defined B =

⋃∞
i=1 Ei let us show that Fλ(B) =

∑∞
i=1 Fλ(Ei). Indeed, since F ≥ 0, for every

q ∈ N,

Fλ(B) ≥
q∑

i=1

Fλ(Ei) and then Fλ(B) ≥
∞∑

i=1

Fλ(Ei).

In order to prove the converse let {Bj}r
j=1 ⊆ B(Ω) as in (6.16). Then, for every j = {1, . . . , r},

λ(Bj) =
∑∞

i=1 λ(Ei ∩Bj) and, by the sub-linearity and the lower semicontinuity of F ,

r∑

j=1

F(λ(Bj)) =
r∑

j=1

F
(

lim
q→∞

q∑

i=1

λ(Ei ∩Bj)

)
≤

r∑

j=1

lim inf
q→∞

F
(

q∑

i=1

λ(Ei ∩Bj)

)
≤

r∑

j=1

lim inf
q→∞

q∑

i=1

F (λ(Ei ∩Bj)) =
r∑

j=1

∞∑

i=1

F(λ(Ei ∩Bj)) =
∞∑

i=1

r∑

j=1

F(λ(Ei ∩Bj)) ≤
∞∑

i=1

Fλ(Ei),

and, taking now the supremum of the left hand side with respect to the families {Bj}r
j=1 ⊆ B(Ω)

as in (6.16), we find the opposite inequality.

Lemma 6.10. Let F : Rm → [0,∞] be a function satisfying (6.13). If α, β ∈ Mloc(Ω,Rm) and
λ = α + β then Fλ ≤ Fα + Fβ, equality holding when α ⊥ β.

Proof. Let us fix B ∈ B(Ω). Let us suppose at first that Fλ(B) = ∞. Then, for every M ∈ N, we
can find {Bj}r

j=1 as in (6.16) such that

M ≤
r∑

j=1

F(λ(Bj)) ≤
r∑

j=1

F(α(Bj)) + F(β(Bj)) ≤ Fα(B) + Fβ(B),
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then Fα(B) + Fβ(B) = ∞. If instead Fλ(B) < ∞, for every ε > 0, there exists {Bj}r
j=1 as in

(6.16) such that

Fλ(B) ≤
r∑

j=1

F(λ(Bj)) + ε.

Then

Fλ(B) ≤
r∑

j=1

F(λ(Bj)) + ε ≤
r∑

j=1

F
(
α(Bj) + β(Bj)

)
+ ε

≤
r∑

j=1

F(α(Bj)) +
r∑

j=1

F(β(Bj)) + ε ≤ Fα(B) + Fβ(B) + ε,

and, letting ε → 0, we find the wanted inequality. If now α ⊥ β we know that we can find two
disjoint sets Bα, Bβ ∈ B(Ω), such that α is concentrated on Bα and β is concentrated on Bβ : thus

Fα(B) = Fλ(B ∩Bα) and Fβ(B) = Fλ(B ∩Bβ),

and then, since Fλ is a measure,

Fα(B) + Fβ(B) = Fλ(B ∩Bα) + Fλ(B ∩Bβ) = Fλ(B).

This completes the proof.

Theorem 6.11. Let F : Rm → [0,∞] be a function satisfying (6.13) and (6.14), λ ∈Mloc(Ω,Rm)
and u ∈ L1

loc,λ(Ω), u ≥ 0. Then we have, for every B ∈ B(Ω), B ⊂⊂ Ω,

F
(∫

B

u(x)dλ(x)
)
≤

∫

B

u(x)dFλ(x).

Proof. Let B ∈ B(Ω), B ⊂⊂ Ω (so that
∫

B
u(x)d|λ|(x) < ∞) and let us suppose at first that u is

a simple function on B, that is

u(x) =
r∑

j=1

cj1Bj (x),

where cj ≥ 0 and {Bj}r
j=1 is a partition of B (that obviously is admissible in (6.16)). Then by the

sub-linearity and the positively homogeneity of degree 1 of F ,

F
(∫

B

u(x)dλ(x)
)

= F



r∑

j=1

cjλ(Bj)


 ≤

r∑

j=1

cjF(λ(Bj)) ≤
r∑

j=1

cjFλ(Bj) =
∫

B

u(x)dFλ(x).

If now u is not simple then there exists an increasing sequence {uh}∞h=1 of simple positive functions
on B such that, in particular,

∫
B

uh(x)dλ(x) → ∫
B

u(x)dλ(x). Then, for every h ∈ N,

F
(∫

B

uh(x)dλ(x)
)
≤

∫

B

uh(x)dFλ(x)

and, passing to the limit for h → ∞, we end by the lower semicontinuity of F (used to treat the
left hand side) and by Beppo Levi’s Theorem (used to treat the right hand side).

Theorem 6.12. Let F : Rm → [0,∞] be a function satisfying (6.13) and (6.14) and let λh ∈
Mloc(Ωh,Rm), λ ∈Mloc(Ω,Rm) such that λh → λ in w∗-Mloc(l Ω,Rm). Then

Fλ(Ω) ≤ lim inf
h→∞

Fλh
(Ωh).
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Proof. Let us consider B ∈ B(Ω), B ⊂⊂ Ω and ε > 0 and find {Bj}r
j=1 as in (6.16) such that

Fλ(B) ≤
r∑

j=1

F(λ(Bj)) + ε.

Fixed k ∈ N we can find, for every j ∈ {1, . . . , r}, a compact set F k
j and an open set Gk

j such that

F k
j ⊆ Bj , |λ|(Bj \ F k

j ) <
1
k

, and F k
j ⊂⊂ Gk

j , |λ|(Gk
j \ F k

j ) <
1
k

.

We can also suppose that {Gk
j }r

j=1 are disjoint subsets well contained in Ω. Let us consider now,
for every j ∈ {1, . . . , r}, a function ϕk

j ∈ Cc(Gk
j ) such that 0 ≤ ϕk

j ≤ 1 and ϕk
j ≡ 1 on F k

j . Then

∣∣∣∣λ(Bj)−
∫

Ω

ϕk
j (x)dλ(x)

∣∣∣∣ ≤
∣∣λ(Bj)− λ(F k

j )
∣∣ +

∣∣∣∣λ(F k
j )−

∫

Ω

ϕk
j (x)dλ(x)

∣∣∣∣

≤ 1
k

+

∣∣∣∣∣
∫

Gk
j \F k

j

ϕk
j (x)dλ(x)

∣∣∣∣∣ ≤
2
k

.

Then, by considering the lower semicontinuity of F there exists kε ∈ N such that

F(λ(Bj)) ≤ F
(∫

Ω

ϕkε
j (x)dλ(x)

)
+

ε

r
,

and then

Fλ(B) ≤
r∑

j=1

F
(∫

Ω

ϕkε
j (x)dλ(x)

)
+ 2ε.

Now there exists hε ∈ N such that, for every h ≥ hε, by the convergence of the measures λh, the
lower semicontinuity of F and Theorem 6.11, we have

Fλ(B) ≤
r∑

j=1

F
(∫

Ωh

ϕkε
j (x)dλh(x)

)
+ 3ε ≤

r∑

j=1

∫

Ωh

ϕkε
j (x)dFλh

(x) + 3ε

=
∫

Ωh

r∑

j=1

ϕkε
j (x)dFλh

(x) + 3ε ≤ Fλh
(Ωh) + 3ε.

Then
Fλ(B) ≤ lim inf

h→∞
Fλh

(Ωh) + 3ε,

and we end the proof taking the supremum on B ⊂⊂ Ω.

Lemma 6.13. Let F : Rm → [0,∞] be a function satisfying (6.13) and (6.15). Then F is
C-Lipschitz on Rm and F(0) = 0.

Proof. Clearly (6.15) implies that F(0) = 0. In order to prove the Lipschitz inequality let us
consider ξ, η ∈ Rm: we have

F(ξ) = F(η + ξ − η) ≤ F(η) + F(ξ − η) ≤ F(η) + C|ξ − η|,

that is F(ξ) − F(η) ≤ C|ξ − η|. Since the inequality holds for every ξ, η ∈ Rm, it implies the
wanted Lipschitz inequality.
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Lemma 6.14. Let F : Rm → [0,∞] be a function satisfying (6.13) and (6.15) and let λ1, λ2 ∈
Mloc(Ω,Rm). Then, for every B ∈ B(Ω), B ⊂⊂ Ω,

|Fλ1(B)−Fλ2(B)| ≤ C|λ1 − λ2|(B).

Proof. Let us consider B ∈ B(Ω), B ⊂⊂ Ω (so that Fλ1(B),Fλ1(B) < ∞) and ε > 0. We can find
(considering suitable refinements) {Bj}r

j=1 as in (6.16) such that

Fλ1(B) ≤
r∑

j=1

F(λ1(Bj)) + ε and Fλ2(B) ≤
r∑

j=1

F(λ2(Bj)) + ε.

Then, by Lemma 6.13,

|Fλ2(B)−Fλ1(B)| ≤
∣∣∣∣∣∣

r∑

j=1

F(λ1(Bj))−
r∑

j=1

F(λ2(Bj)) + 2ε

∣∣∣∣∣∣

≤ C

r∑

j=1

|λ1(Bj)− λ2(Bj)|+ 2ε ≤ C|λ1 − λ2|(B) + 2ε,

and we end by letting ε → 0.

Theorem 6.15. Let F : Rm → [0,∞] be a function satisfying (6.13), (6.14) and (6.15), µ ∈
M+(Ω) and λ ∈Mloc(Ω,Rm). Then, for every B ∈ B(Ω),

Fλ(B) =
∫

B

F(λa(x))dµ(x) + Fλs(B),

where λ has been decomposed as in (2.3) with respect to µ.

Proof. By Lemma 6.10, Fλ = Fλa·µ + Fλs . Thus we have to prove that, for every B ∈ B(Ω),
Fλa·µ(B) =

∫
B
F(λa(x))dµ(x). Let us suppose at first that B ∈ B(Ω), B ⊂⊂ Ω (so that Fλa·µ(B) <

∞) and that λa is a simple function on B, that is

λa(x) =
k∑

i=1

ci1Ei(x),

where {Ei}k
i=1 ⊆ B(Ω) is a partition of B and {ci}k

i=1 ⊆ Rm. Let us fix ε > 0 and find {Bj}r
j=1 as

in (6.16) such that

Fλa·µ(B) ≤
r∑

j=1

F
(
(λa · µ)(Bj)

)
+ ε.

Then

r∑

j=1

k∑

i=1

F
(
(λa · µ)(Ei ∩Bj)

)
≤ Fλa·µ(B) ≤

r∑

j=1

k∑

i=1

F
(
(λa · µ)(Ei ∩Bj)

)
+ ε. (6.17)

But, by (6.14), we have also

r∑

j=1

k∑

i=1

F
(
(λa · µ)(Ei ∩Bj)

)
=

r∑

j=1

k∑

i=1

F
(
ciµ(Ei ∩Bj)

)
=

r∑

j=1

k∑

i=1

F(ci)µ(Ei ∩Bj)

=
k∑

i=1

F(ci)µ(Ei) =
∫

B

F(λa(x))dµ(x),
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and since in (6.17) ε is arbitrary we end.
If now λa is not simple let us consider a sequence {λa

h}∞h=1 of simple functions on B such that
λa

h → λa in L1
µ(B,Rm). Then, if we define λh = λa

h · µ ∈M(B,Rm), we have, by Lemma 6.13,
∣∣∣∣
∫

B

F(λa(x))−F(λa
h(x))dµ(x)

∣∣∣∣ ≤ C

∫

B

|λa(x)− λa
h(x)|dµ(x),

and, by Lemma 6.14,

|Fλa·µ(B)−Fλh
(B)| ≤ C

∫

E

|λa(x)− λa
h(x)|dµ(x).

Since the right hand side of both the inequalities go to zero as h →∞ and since, for every h ∈ N,
Fλh

(B) =
∫

B
F(λa

h(x))dµ(x), it follows that also Fλa·µ(B) =
∫

B
F(λa(x))dµ(x).

If now B is not well contained in Ω we consider an increasing sequence {Bi}∞i=1 ⊆ B(Ω) with
Bi ⊂⊂ Ω and Bi ↑ Ω and we end by approximation using the property of the integrals and of the
elements of M+(Ω).

Note that applying two times Theorem 6.15 we find in particular

Fλ(B) =
∫

B

F(λa(x))dµ(x) +
∫

B

F
(

dλs

d|λs| (x)
)

d|λs|(x).

After these preliminary results on the sub-linear functionals we have the right tools to prove
the equality between Im and I∗m. Theorem 6.16, together with Theorem 6.6 and Propositions 6.7
and 6.8, proves the part of Theorem 6.1 concerning the functionals Im, I∗m and Im.

Theorem 6.16. Let f : Rm → [0,∞] be a proper, l.s.c. and convex function. Then, for every
λ ∈Mloc(Ω,Rm), Im(λ,Ω) = I∗m(λ,Ω).

Proof. Let us fix µ ∈ M+(Ω). Given λ ∈ Mloc(Ω,Rm) let us consider (λ, µ) ∈ Mloc(Ω,Rm+1)
and define the measure f̂(λ,µ) where f̂ : Rm+1 → [0,∞] is the function given by Proposition 2.25
that satisfies (6.13) and (6.14). We claim at first that, for every λ ∈Mloc(Ω,Rm), B ∈ B(Ω),

f̂(λ,µ)(B) =
∫

B

f(λa(x))dµ + f∞λs (B), (6.18)

where f∞λs is well defined since f∞ is l.s.c. and sub-linear (see Proposition 2.20).
Clearly we can write (λ, µ) = (λa, 1) · µ + (λs, 0) and, by Lemma 6.10,

f̂(λ,µ) = f̂(λa,1)·µ + f̂(λs,0) = f̂(λa,1)·µ + f∞λs .

Thus it remains to show that,

f̂(λa,1)·µ(B) =
∫

B

f(λa(x))dµ.

It is well known that there exists an increasing sequence {fh}∞h=1 of convex functions such that
fh ↑ f , |fh(ξ)| ≤ Ch

√
1 + |ξ|2 and, for every |ξ| ≤ h, fh(ξ) = f(ξ). Then, for every τ ≥ 0,

f̂h(ξ, τ) ≤ Ch|ξ| ≤ Ch|(ξ, τ)|, that is, f̂h satisfies also (6.15) on Rm × [0,∞]: since the (m + 1)-th
component of (λa, 1) · µ is a positive measure it is simply to verify that also for these functions
Theorem 6.15 holds2, that is,

f̂h,(λa,1)·µ(B) =
∫

B

f̂h(λa(x), 1)dµ =
∫

B

fh(λa(x))dµ.

2Indeed, one could develop all the results till now proved considering F : Rm × [0,∞] → [0,∞] and λ ∈
Mloc(Ω,Rm+1) with λm+1 ∈M+(Ω).
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By Beppo Levi’s Theorem we obtain

lim
h→∞

∫

B

fh(λa(x))dµ =
∫

B

f(λa(x))dµ

We end if we prove that also

lim
h→∞

f̂h,(λa,1)·µ(B) = f̂(λa,1)·µ(B).

Suppose at first that f̂(λa,1)·µ(B) < ∞. Fixed ε > 0, there exists {Bj}r
j=1 ⊆ B(Ω), Bj ⊂⊂ B, such

that

f̂(λa,1)·µ(B) ≤
r∑

j=1

f̂
(
(λa · µ)(Bj), µ(Bj)

)
+ ε.

Since λa ·µ << µ we have that µ(Bj) = 0 implies (λa ·µ)(Bj) = 0. Thus we claim that there exists
h′ such that, for every h ≥ h′, j ∈ {1, . . . , r},

f̂
(
(λa · µ)(Bj), µ(Bj)

)
= f̂h

(
(λa · µ)(Bj), µ(Bj)

)
.

Indeed, for every |ξ| ≤ hτ , f̂h(ξ, τ) = f̂(ξ, τ) and then, if h is big enough we have, for every
j = {1, . . . , r}, |λa · µ(Bj)| ≤ h|µ(Bj)| and the claim follows. Therefore

f̂(λa,1)·µ(Ω) ≤
r∑

j=1

f̂
(
(λa · µ)(Bj), µ(Bj)

)
+ ε

≤
r∑

j=1

f̂h

(
(λa · µ)(Bj), µ(Bj)

)
+ ε ≤ f̂h,(λa,1)·µ(Ω) + ε,

that implies, as h →∞ and later ε → 0,

f̂(λa,1)·µ(Ω) ≤ lim inf
h→∞

f̂h,(λa,1)·µ(Ω).

The other inequality is obvious since, for every (ξ, τ) ∈ Rm+1, f̂h(ξ, τ) ≤ f̂(ξ, τ). The case
f̂(λa,1)·µ(E) = ∞ can be proved using a similar argument so that (6.18) is achieved.

Let us consider now λ ∈ Mloc(Ω,Rm), µ = Ln and λ = λa · Ln + λs: applying the claim just
proved both to f and to f∞ (with µ = |λs|) we obtain in particular

f̂(λ,Ln)(Ω) =
∫

Ω

f(λa(x))dx + f∞λs (Ω) =
∫

Ω

f(λa(x))dx +
∫

Ω

f∞
(

λs

|λs| (x)
)

d|λs|(x) = Im(λ,Ω).

We end, by means of Theorem 6.6, proving that also

f̂(λ,Ln)(Ω) = lim
ρ→0

∫

Ωρ

f(λρ(x))dx.

Indeed, by Theorem 6.12 (that can be applied to f̂ too) and the claim proved we have

f̂(λ,Ln)(Ω) ≤ lim inf
ρ→0

f̂(λρ,1)·Ln(Ωρ) = lim inf
ρ→0

fλρ·Ln(Ωρ) = lim inf
ρ→0

∫

Ωρ

f(λρ(x))dx.

On the other hand, using Theorem 6.11,

∫

Ωρ

f(λρ(x))dx =
∫

Ωρ

f̂(λρ(x), 1)dx =
∫

Ωρ

f̂

(∫

B(x,ρ)

kρ(x− y)d(λ,Ln)(y)

)
dx
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≤
∫

Ωρ

(∫

B(x,ρ)

kρ(x− y)df̂(λ,Ln)(y)

)
dx ≤

∫

Ω

(∫

B(y,ρ)∩Ωρ

kρ(x− y)dx

)
df̂(λ,Ln)(y) ≤ f̂(λ,Ln)(Ω),

then
lim sup

ρ→0

∫

Ωρ

f(λρ(x))dx ≤ f̂(λ,Ln)(Ω),

and the proof is finally achieved.

6.1.3 The supremal functional

We prove now the equality Sm = S∗m. As for the integral case Theorem 6.17, together with Theorem
6.6 and Propositions 6.7 and 6.8, proves the part of Theorem 6.1 involving Sm, S∗m and Sm.

Theorem 6.17. Let g : Rm → [0,∞] be a proper, l.s.c. and level convex function. Then, for every
λ ∈Mloc(Ω,Rm), Sm(λ,Ω) = S∗m(λ,Ω).

Proof. Let us suppose at first that g is positively homogeneous of degree 0.
Let us fix λ ∈ Mloc(Ω,Rm) and show at first that Sm(λ, Ω) ≤ S∗m(λ,Ω). By Theorem 2.2(i)

there exists N ⊆ Ω such that Ln(N) = 0 and for every x ∈ Ω \N , λρ(x) → λa(x) as ρ → 0. Then,
using Theorem 6.6, for every x ∈ Ω \N ,

g(λa(x)) ≤ lim inf
ρ→0

g(λρ(x)) ≤ lim inf
ρ→0

sup
x∈Ωρ

g(λρ(x)) = S∗m(λ, Ω),

and then
Sm(λ,Ω) = ess sup

x∈Ω
g(λa(x)) ≤ sup

x∈Ω\N
g(λa(x)) ≤ S∗m(λ, Ω).

Thus it remains to show that

|λs|-ess sup
x∈Ω

g\

(
dλs

d|λs| (x)
)
≤ S∗m(λ, Ω).

By Theorem 2.2(ii) there exists M ⊆ Ω with |λs|(M) = 0 and such that, for every x ∈ Ω \ M ,
there exists a sequence {ρh}∞h=1, depending on x and decreasing to zero, such that,

lim
h→∞

∣∣∣∣∣
dλs

d|λs| (x)− λρh
(x)∫

B(x,ρh)
kρh

(x− y)d|λs|(y)

∣∣∣∣∣ = 0. (6.19)

Then, using Proposition 2.21 and Theorem 6.6, for every x ∈ Ω \M ,

g\

(
dλs

d|λs| (x)
)

= g

(
dλs

d|λs| (x)
)
≤ lim inf

h→∞
g

(
λρh

(x)∫
B(x,ρh)

kρh
(x− y)d|λs|(y)

)

= lim inf
h→∞

g (λρh
(x)) ≤ lim

h→∞
Sm

(
λρh

· Ln, Ωρh

)
= S∗m(λ,Ω).

In conclusion,

|λs|-ess sup
x∈Ω

g\

(
dλs

d|λs| (x)
)
≤ sup

x∈Ω\M
g\

(
dλs

d|λs| (x)
)
≤ S∗m(λ,Ω),

and we achieve Sm(λ, Ω) ≤ S∗m(λ, Ω).
In order to prove the converse inequality let us fix ρ > 0. By Theorem 2.19 and Propositions

2.17 and 2.21 we have, for every x ∈ Ωρ,

g(λρ(x)) = g

(∫

B(x,ρ)

kρ(x− y)dλ(y)

)
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= g

(∫

B(x,ρ)

kρ(x− y)λa(y)dy +
∫

B(x,ρ)

kρ(x− y)
dλs

d|λs| (y)d|λs|(y)

)

≤ g

(∫

B(x,ρ)

kρ(x− y)λa(y)dy

)
∨ g

(∫

B(x,ρ)

kρ(x− y)
dλs

d|λs| (y)d|λs|(y)

)

≤
[

ess sup
y∈B(x,ρ)

g(λa(y))

]
∨

[
|λs|- ess sup

y∈B(x,ρ)

g

(
dλs

d|λs| (y)
∫

B(x,ρ)

kρ(x− y)d|λs|(y)

)]

≤
[
ess sup

x∈Ω
g(λa(x))

]
∨

[
|λs|-ess sup

x∈Ω
g\

(
dλs

d|λs| (x)
)]

= Sm(λ,Ω),

thus,
sup

x∈Ωρ

g(λρ(x)) ≤ Sm(λ, Ω).

The wanted inequality S∗m(λ, Ω) ≤ Sm(λ, Ω) is achieved as ρ → 0, invoking again Theorem 6.6.

In the general case, let us consider the function ĝ defined in (2.15): by Proposition 2.26 we know
that ĝ is l.s.c., positively homogeneous of degree 0 and level convex. Let now fix λ ∈Mloc(Ω,Rm)
and consider (λ,Ln) ∈M(Ω,Rm+1): its decomposition with respect to Ln is clearly given by

(λ,Ln) = (λa(x), 1) · Ln +
(

dλs

d|λs| (x), 0
)
· |λs|.

We have also that (λ,Ln)ρ : Ωρ → Rm+1 is given by (λ,Ln)ρ(x) = (λρ(x), 1). Then applying the
first step to ĝ and (λ,Ln) we have

Ŝ∗m
(
(λ,Ln),Ω

)
= Ŝm

(
(λ,Ln), Ω

)
,

where Ŝ∗m and Ŝm denotes the functionals (6.6) and (6.2) built up considering ĝ and defined on
the space Mloc(Ω,Rm+1). But now we have:

Ŝ∗m
(
(λ,Ln), Ω

)
= lim

ρ→0
sup

x∈Ωρ

ĝ
(
(λ,Ln)ρ(x)

)
= lim

ρ→0
sup

x∈Ωρ

ĝ(λρ(x), 1) = lim
ρ→0

sup
x∈Ωρ

g(λρ(x)) = S∗m(λ, Ω),

and, again by Proposition 2.21,

Ŝm

(
(λ,Ln), Ω

)
=

[
ess sup

x∈Ω
ĝ(λa(x), 1)

]
∨

[
|λs|-ess sup

x∈Ω
ĝ

(
dλs

d|λs| (x), 0
)]

=
[
ess sup

x∈Ω
g(λa(x))

]
∨

[
|λs|-ess sup

x∈Ω
g\

(
dλs

d|λs| (x)
)]

= Sm(λ,Ω).

This achieves the proof.

6.2 Non level convex functionals

In this section we propose the proof of the Theorems 6.3 and 6.4 related to the functional Sm in
(6.10).
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6.2.1 Necessary conditions

Proof of Theorem 6.3. The fact that g is l.s.c. and level convex can be proved using the same
argument of the implication (ii) ⇒ (i) of Theorem 6.1. In order to prove the other parts of the
theorem let us consider {ηj}∞j=1 ⊆ Rm such that g(ηj) ↓ l = inf{g(ξ) : ξ ∈ Rm}.

Let us study the function γ. Let x0 ∈ Rn and ξh, ξ0 ∈ Rm \ {0} such that ξh → ξ0 and, fixed
j ∈ N, let

λh = ξh · δx0 + ηj · Ln, and λ0 = ξ0 · δx0 + ηj · Ln.

Then λh → λ0 in w∗-Mloc(Rn,Rm) and

γ(ξ0) ∨ g(ηj) = Sm(λ0,Rn) ≤ lim inf
h→∞

Sm(λh,Rn) = lim inf
h→∞

(γ(ξh) ∨ g(ηj)).

This implies that, for every j ∈ N, γ ∨ g(ηj) is l.s.c. on Rm since also the lower semicontinuity in
ξ = 0 trivially follows from γ(0) = 0: by using Proposition 2.32, we obtain that the same holds for
γ ∨ l.

Let ξ, η ∈ Rm \ {0} such that ξ 6= −η and xh, x0 ∈ Rn, xh 6= x0, such that xh → x0. Moreover,
fixed j ∈ N, set

λh = ξ · δxh
+ η · δx0 + ηj · Ln, and λ0 = (ξ + η) · δx0 + ηj · Ln.

Since λh → λ0 in w∗-Mloc(Rn,Rm) we have

γ(ξ + η) ∨ g(ηj) = Sm(λ0,Rn) ≤ lim inf
h→∞

Sm(λh,Rn)

= lim inf
h→∞

γ(ξ) ∨ γ(η) ∨ g(ηj) = γ(ξ) ∨ γ(η) ∨ g(ηj).

Then, since γ(0) = 0, we have that, for every j ∈ N, γ ∨ g(ηj) is sub-maximal on Rm that implies,
once j →∞, that γ ∨ l satisfies the same property too.

Let us prove now the inequality g\ ≤ (γ ∨ l)[. Let ξ0 ∈ Rm \ {0} and let ξh → ξ0, th ↑ ∞ such
that g(thξh) → g\(ξ0). Thus we have that there exists a sequence of positive numbers {rh}∞h=1

such that, for every h ∈ N, thLn(B(0, rh)) = 1. Fixed j ∈ N and setting

λh = th

(
ξh − ηj

th

)
1B(0,rh)(x) · Ln + ηj · Ln, and λ0 = ξ0 · δ0 + ηj · Ln,

we have λh → λ0 in w∗-Mloc(Rn,Rm) and then

γ(ξ0) ∨ g(ηj) = Sm(λ0,Rn) ≤ lim inf
h→∞

Sm(λh,Rn) = lim
h→∞

g(thξh) ∨ g(ηj) = g\(ξ0) ∨ g(ηj).

This fact proves, as j →∞, that, for every ξ0 ∈ Rm \ {0}, (γ ∨ l)(ξ0) ≤ g\(ξ0). If now we consider
a sequence sh ↓ 0 such that (γ ∨ l)[(ξ0) = limh→∞(γ ∨ l)(shξ0), since g\ is positively homogeneous
of degree 0, we have

(γ ∨ l)[(ξ0) = lim
h→∞

(γ ∨ l)(shξ0) ≤ lim inf
h→∞

g\(shξ0) = g\(ξ0),

and we find the desired inequality.

We end proving g\ ≥ (γ ∨ l)[. Let us consider ξ0 ∈ Rm \ {0} and let th ↓ 0, th < 1, such that
γ(thξ0) → γ[(ξ0). Let us fix Ω = Qn = (0, 1)n and define, for every k ∈ N,

Gk =
{

x ∈ Qn : xi =
q

k + 1
, q ∈ {1, . . . , k}, i ∈ {1, . . . , n}

}
:
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note that3 #(Gk) = kn. Fixed now M ∈ N, we claim that there exists an sequence {kh}∞h=1 ⊆ N,
depending on M and such that kh →∞ and, for every h ∈ N, M ≤ thkn

h < 2nM . Obviously this
happen if, for every h ∈ N, there exists kh ∈ N such that

(
Mt−1

h

) 1
n ≤ kh < 2

(
Mt−1

h

) 1
n ,

and since
(
Mt−1

h

) 1
n > 1 and

(
Mt−1

h

) 1
n →∞ as h →∞, kh can be found. Then, unless to extract

a (not relabelled) subsequence, we have thkn
h → sM ∈ [M, 2nM ].

Fixed j ∈ N, set the following elements of Mloc(Qn,Rm)

λh =
∑

x∈Gkh

thkn
h

kn
h

ξ0 · δx + ηj · Ln and λ0 = sMξ0 · Ln + ηj · Ln.

It is a quite standard result that λh → λ0 in w∗-Mloc(Qn,Rn), thus,

g(sMξ0 + ηj) = Sm(λ0, Q
n) ≤ lim inf

h→∞
Sm(λh, Qn) = lim inf

h→∞
[γ (thξ0) ∨ g(ηj)] = γ[(ξ0) ∨ g(ηj).

Then, letting j →∞ and using Proposition 2.33, we have

g

(
sM

(
ξ0 +

ηj

sM

))
= g(sMξ0 + ηj) ≤ γ[(ξ0) ∨ l = (γ ∨ l)[(ξ0),

and since this relation holds for every M ∈ N, taking the limit for M →∞ also sM →∞ and then
we obtain g\(ξ0) ≤ (γ ∨ l)[(ξ0).

6.2.2 Sufficient conditions

Here we prove a theorem in which sufficient conditions for the lower semicontinuity of Sm are
found: we treat directly the case in which g and γ depends on x too and we will deduce Theorem
6.4 as a corollary of our main result.

The following lemma is based on Lemma 3.6 in [18].

Lemma 6.18. Let k ∈ N and

Mk = {λ ∈M(Ω,Rm) : #(spt(λ)) ≤ k}.
Then Mk is sequentially closed with respect to the w∗-M(Ω,Rm) topology. Moreover if l ∈ [0,∞)
and γ : Ω × Rm → [0,∞] is a proper and Borel function such that γ ∨ l is l.s.c. on Ω × Rm and,
for every x ∈ Ω, γ(x, ·) ∨ l is sub-maximal on Rm and γ(x, 0) = 0, then the functional

Γ(λ,Ω) =
∨

x∈Aλ

(
γ(x, λ(x)) ∨ l

)
,

is l.s.c on Mk with respect to the w∗-M(Ω,Rm) topology.

Proof. Let {λh}∞h=1 ⊆ Mk, λh → λ in w∗-M(Ω,Rm). Then, for every h ∈ N, there exist two
sequences {xh

i }k
i=1 ⊆ Ω (with, for every h ∈ N, xh

i 6= xh
j if i 6= j) and {ξh

i }k
i=1 ⊆ Rm such that

λh =
k∑

i=1

ξh
i · δxh

i
.

Clearly there exists M > 0 such that, for every i ∈ {1, . . . , k}, h ∈ N, |ξh
i | ≤ M . Following

Lemma 3.6 in [18], let I ⊆ {1, . . . , k} the (possibly empty) set of the index i such that {xh
i }∞h=1

3If A is a set we denote with #(A) the cardinality of A.
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admits a convergent subsequence. Then we can find {xi}i∈I ⊆ Ω, {ξi}i∈I ⊆ Rm (note that it could
be ξi = 0) and a (not relabelled) subsequence of {λh}∞h=1 such that, for every i ∈ I, xh

i → xi

and ξh
i → ξi for h → ∞. On the other hand, if i 6∈ I it is easy to verify that ξh

i · δxh
i
→ 0 in

w∗-M(Ω,Rm). Therefore we have

λ =
∑

i∈I

ξi · δxi ∈Mk,

with λ = 0 if I = ∅. Note that, in particular, it may happen that there are i, j ∈ I such that
xi = xj . The lower semicontinuity of Γ is trivial if λ = 0 (since by definition Γ(0, Ω) = l), while if
λ 6= 0 it simply follows by using the lower semicontinuity and the sub-maximality of γ ∨ l, indeed

Γ(λ,Ω) =
∨

x∈Aλ

(
γ(x, λ(x)) ∨ l

)
≤

∨

i∈I

(
γ(xi, ξi) ∨ l

)
≤ lim inf

h→∞

∨

i∈I

(
γ(xh

i , ξh
i ) ∨ l

)

≤ lim inf
h→∞

k∨

i=1

(
γ(xh

i , ξh
i ) ∨ l

)
= lim inf

h→∞
Γ(λh, Ω),

and the proof is achieved.

Later we need a weak version of Theorem 4.1 proved by Acerbi, Buttazzo and Prinari [2].

Theorem 6.19. Let g : Ω×Rm → [0,∞] be a Borel function such that, for Ln-a.e. x ∈ Ω, g(x, ·)
is l.s.c. and level convex on Rm. Then the functional

S(u, Ω) = ess sup
x∈Ω

g(x, u(x))

is l.s.c. on L∞(Ω,Rm) with respect to the w∗-L∞(Ω,Rm) convergence.

We can now prove the main result of the section. Note that, when we are dealing with g :
Ω× Rm → [0,∞], g\(x, ξ) means (g(x, ·))\(ξ).

Theorem 6.20. Let g : Ω × Rm → [0,∞] be a proper and Borel function such that, for Ln-a.e.
x ∈ Ω, g(x, ·) is l.s.c. and level convex on Rm and there exists a function θ∞ : [0,∞) → [0,∞)
such that, for every x ∈ Ω and ξ ∈ Rm,

g(x, ξ) ≥ θ∞(|ξ|) and lim
t→∞

θ∞(t) = ∞.

Moreover, setting l = inf{g(x, ξ) : (x, ξ) ∈ Ω × Rm}, let γ : Ω × Rm → [0,∞] be a proper and
Borel function such that γ ∨ l is l.s.c. on Ω × Rm, for every x ∈ Ω, γ(x, ·) ∨ l is sub-maximal on
Rm and γ(x, 0) = 0, and there exists a function θ0 : (0,∞) → [0,∞) such that, for every x ∈ Ω,
ξ ∈ Rm \ {0},

γ(x, ξ) ∨ l ≥ θ0(|ξ|) and lim
t→0

θ0(t) = ∞.

Then the functional

Sm(λ, Ω) =
[
ess sup

x∈Ω
g(x, λa(x))

]
∨

[
|λc|-ess sup

x∈Ω
g\

(
x,

dλc

d|λc| (x)
)]

∨
[ ∨

x∈Aλ

γ(x, λ#(x))

]

is l.s.c. on Mloc(Ω,Rm) with respect to the w∗-Mloc(Ω,Rm) convergence.

Proof. Let us suppose at first that Ω ⊆ Rn is bounded and let us prove the lower semicontinuity
of Sm on M(Ω,Rm) with respect to the w∗-M(Ω,Rm) convergence. Consider λ, λh ∈ M(Ω,Rm)
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such that λh → λ in w∗-M(Ω,Rm): then there exists L > 0 such that |λh|(Ω), |λ|(Ω) ≤ L. Without
loss of generality we can suppose

lim inf
h→∞

Sm(λh,Ω) = lim
h→∞

Sm(λh,Ω),

and that there exists a constant M > 0 such that, for every h ∈ N, Sm(λh,Ω) ≤ M . This fact
implies that there exists M ′ > 0 such that, for every h ∈ N,

(i) λc
h = 0,

(ii) for Ln-a.e. x ∈ Ω, |λa
h(x)| ≤ M ′,

(iii) for every x ∈ Aλh
, |λ#

h (x)| ≥ 1
M ′ .

By (ii) we obtain {λa
h(x)}∞h=1 ⊆ L∞(Ω,Rm) and

sup
{

ess sup
x∈Ω

|λa
h(x)| : h ∈ N

}
< ∞.

Then by Proposition 2.7 there exists a subsequence (not relabelled) and a function u ∈ L∞(Ω,Rm),
such that

λa
h(x) → u(x) in w∗-L∞(Ω,Rm). (6.20)

Moreover, since, for every h ∈ N, |λh|(Ω) ≤ L, we have also |λ#
h |(Ω) ≤ L thus, writing λ#

h =∑
x∈Aλh

λ#
h (x) · δx, it follows, for every h ∈ N,

L ≥
∣∣∣λ#

h

∣∣∣ (Ω) =
∑

x∈Aλh

∣∣∣λ#
h (x)

∣∣∣ ≥ 1
M ′#(Aλh

) .

Then there exists k ∈ N such that, for every h ∈ N, #(Aλh
) ≤ k. Then, for every h ∈ N, λ#

h ∈Mk

and, as said, |λ#
h |(Ω) ≤ L. Thus, by Theorem 2.1, there exists a subsequence (not relabelled) and

a measure ν ∈M(Ω,Rm) such that

λ#
h → ν in w∗-M(Ω,Rm). (6.21)

By Lemma 6.18 we know ν ∈Mk.
We claim now that the condition λh → λ in w∗-M(Ω,Rm) together with (6.20) and (6.21) gives

that λ = u · Ln + ν, that is λa = u and λ# = ν. Indeed, for every ϕ ∈ C0(Ω),
∫

Ω

ϕ(x)dλh(x) =
∫

Ω

ϕ(x)λa
h(x)dx +

∫

Ω

ϕ(x)dλ#
h (x),

and, by (6.20) (noting that C0(Ω) ⊆ L1(Ω) since Ln(Ω) < ∞) and (6.21) we have that λh →
u · Ln + ν in w∗-M(Ω,Rm). The uniqueness of the limit allows to achieve the claim.

Now, by Theorem 6.19, we have

ess sup
x∈Ω

g(x, λa(x)) ≤ lim inf
h→∞

ess sup
x∈Ω

g(x, λa
h(x)),

while, by Lemma 6.18, we have
∨

x∈Aλ

(
γ(x, λ#(x)) ∨ l

)
≤ lim inf

h→∞

∨

x∈Aλh

(
γ(x, λ#

h (x)) ∨ l
)

.

Then

lim inf
h→∞

Sm(λh, Ω) = lim inf
h→∞

[
ess sup

x∈Ω
g(x, λa

h(x))
]
∨


 ∨

x∈Aλh

(
γ(x, λ#

h (x)) ∨ l
)
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≥
[
ess sup

x∈Ω
g(x, λa(x))

]
∨

[ ∨

x∈Aλ

(
γ(x, λ#(x)) ∨ l

)]
= Sm(λ,Ω),

and we get the lower semicontinuity.
In the general case let us consider λ, λh ∈Mloc(Ω,Rm) such that λh → λ in w∗-Mloc(Ω,Rm).

Then, for every open set Ω′ ⊂⊂ Ω, λh → λ in w∗-M(Ω′,Rm) and then

Sm(λ, Ω′) ≤ lim inf
h→∞

Sm(λh, Ω′) ≤ lim inf
h→∞

Sm(λh,Ω).

At least, since
sup {Sm(λ, Ω′) : Ω′ ⊂⊂ Ω} = Sm(λ, Ω),

the proof is finally achieved.

The proof of Theorem 6.4 stated at the beginning of this chapter easily follows from Theorem
6.20 and Propositions 2.23 and 2.24.
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Chapter 7

Applications to BV

In this chapter we present some consequences of the results proved in Chapter 6 when they are
applied to the setting of the functions of bounded variation.

7.1 Convex and level convex functionals

7.1.1 Lower semicontinuity and relaxation

The following theorem easily follows by Theorem 6.1 and it provides the precise statement of what
we announced in the introduction about the extensions of integral and supremal functionals on
BVloc(Ω). The integral part of this theorem was proved in the paper of Goffman and Serrin (see
[49] Theorem 5) while the supremal part was proved by Gori in (see [51] Theorem 5).

Theorem 7.1. Let f : Rn → [0,+∞] be a proper, l.s.c and convex function and g : Rn → [0,+∞]
be a proper, l.s.c. and level convex function. Let us consider the following functionals defined, for
every u ∈ BVloc(Ω), as

I(u, Ω) =
∫

Ω

f(∇u(x))dx +
∫

Ω

f∞
(

dDsu

d|Dsu| (x)
)

d|Dsu|(x), (7.1)

and

S(u, Ω) =
[
ess sup

x∈Ω
g(∇u(x))

]
∨

[
|Dsu|-ess sup

x∈Ω
g\

(
dDsu

d|Dsu| (x)
)]

. (7.2)

Then I and S are lower semicontinuous on BVloc(Ω) with respect to the w∗-BVloc(Ω) convergence
and, for every u ∈ BVloc(Ω),

I(u,Ω) = I∗(u, Ω) = lim
ρ→0

I(uρ,Ωρ) and S(u, Ω) = S∗(u, Ω) = lim
ρ→0

S(uρ,Ωρ), (7.3)

where the functionals I∗ and S∗ are given by (1.7) and (1.8), while uρ denotes the convolution of
u.

Proof. Since, when uh, u ∈ BVloc(Ω) and uh → u in w∗-BVloc(Ω), we have Duh → Du in w∗-
Mloc(Ω,Rn) and since, for every u ∈ BVloc(Ω), uρ → u in w∗-BVloc(l Ω) (and then ∇uρ · Ln =
(Du)ρ → Du in w∗-Mloc(l Ω,Rn)) we end applying directly Theorem 6.1.

A simple consequence of the equalities (7.3) is that, in particular, for every u ∈ BV (Ω)1,

I(u, Ω) ≤ R[w∗-BV ] (I) (u,Ω) and S(u, Ω) ≤ R[w∗-BV ] (S) (u, Ω).
1Here we refer to the notations given in the Introduction (see in particular (1.5)) and we consider I and S

defined on W 1,1(Ω) that, as known, is a subset of BV (Ω) dense with respect to the w∗-BV convergence (so as
C∞(Ω) ∩W 1,1(Ω); see [7] Theorem 3.9).

93
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The propositions below show two particular cases in which also the opposite inequalities hold, and
thus I and S are just the relaxed functionals of I and S. Compare Proposition 7.2 with Theorem
2 by Serrin [68].

In the following, by I|C∞(Ω) and S|C∞(Ω) we mean the functionals I and S restricted to the
space C∞(Ω), that is the set of the infinitely derivable functions with every derivative uniformly
continuous on Ω: this space, in the cases considered here, is dense on BV (Ω) with respect to the
w∗-BV (Ω) convergence.

Proposition 7.2. Let Ω ⊆ Rn be a bounded open set with Lipschitz boundary and f : Rn → [0,∞)
be a convex function such that, for every ξ ∈ Rn,

f(ξ) ≤ c|ξ|+ d,

where c, d > 0. Then, for every u ∈ BV (Ω),

I(u, Ω) = R[w∗-BV ]
(
I|C∞(Ω)

)
(u, Ω),

thus, in particular, I(u, Ω) = R[w∗-BV ] (I) (u, Ω).

Proof. Let us fix u ∈ BV (Ω) and Ω ⊂⊂ Ω′ ⊂⊂ Rn: then we can consider û ∈ BV (Ω′) an extension
of u on Ω′ (see [40] Theorem 1, page 183). Clearly, if 0 < ρ < ρ0 small enough, ûρ ∈ C∞(Ω),
ûρ → u in w∗-BV (Ω) (see [7] Lemma 3.24) and ûρ = uρ on Ωρ. We claim now that

lim
ρ→0

|I(ûρ, Ω)− I(uρ, Ωρ)| = 0.

Indeed

|I(ûρ, Ω)− I(uρ, Ωρ)| ≤
∫

Ω\Ωρ

f(∇ûρ(x))dx ≤ c

∫

Ω\Ωρ

|∇ûρ(x)|dx + Ln(Ω \ Ωρ).

By Theorem 2.2(b) in [7], we know that
∫

Ω\Ωρ

|∇ûρ(x)|dx ≤ |Dû|
(
(Ω \ Ωρ) + B(0, ρ)

)
, (7.4)

where (Ω\Ωρ)+B(0, ρ) = {x ∈ Ω′ : d(x, Ω \ Ωρ) < ρ}. Since |Dû|(Ω′) < ∞ and (Ω\Ωρ)+B(0, ρ) ↓
∅ as ρ → 0 then the left hand side of (7.4) tends to zero and the claim is achieved. Thus

I(u, Ω) = lim
ρ→0

I(uρ, Ωρ) = lim
ρ→0

I(ûρ, Ω) ≥ R[w∗-BV ]
(
I|C∞(Ω)

)
(u, Ω)

and we end the proof being the opposite inequality satisfied.

Proposition 7.3. Let Ω = B(0, 1) ⊆ Rn and g : Rn → [0,∞] be a proper, l.s.c. and level convex
function such that g(0) = 0. Then, for every u ∈ BV (Ω),

S(u,Ω) = R[w∗-BV ]
(
S|C∞(Ω)

)
(u, Ω),

thus, in particular, S(u, Ω) = R[w∗-BV ] (S) (u, Ω).

Proof. Let us fix u ∈ BV (Ω), consider the convolution uρ : B(0, 1−ρ) → R (with ρ < 1
4 ) and set,

for every x ∈ B(0, 1), ûρ(x) = uρ((1− 2ρ)x): clearly ûρ ∈ C∞(B(0, 1)).
We claim at first that ûρ → u in w∗-BV (B(0, 1)). Indeed, we simply have that, by means of the

properties of the convolutions and the change of variables formula, there exists a constant C > 0
such that, for every 0 < ρ < 1

4 ,
∫

B(0,1)

|ûρ(x)|dx +
∫

B(0,1)

|∇ûρ(x)|dx
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≤ 1
(1− 2ρ)n

∫

B(0,1)

|u(x)|dx +
1

(1− 2ρ)n−1
|Du| (B(0, 1)) dx ≤ C.

Thus, by Theorem 2.8 there exists v ∈ BV (B(0, 1)) such that ûρ → v in w∗-BV (B(0, 1)). We prove
that, for Ln-a.e. x ∈ B(0, 1), u(x) = v(x) showing that, for Ln-a.e. x ∈ B(0, 1), ûρ(x) → u(x).
Indeed, if M = sup{k(x) : x ∈ Rn} we have

|ûρ(x)− u(x)| =
∣∣∣∣∣
∫

B((1−2ρ)x,ρ)

kρ((1− 2ρ)x− y)u(y)dy − u(x)

∣∣∣∣∣

≤
∫

B((1−2ρ)x,ρ)

kρ((1− 2ρ)x− y)|u(y)− u(x)|dy ≤ M

ρn

∫

B(x,3ρ)∩B(0,1)

|u(y)− u(x)|dy.

Now if ρ is small enough (that is 3ρ ≤ 1− |x|), B(x, 3ρ) ∩B(0, 1) = B(x, 3ρ) and then

|ûρ(x)− u(x)| ≤ 3nM

(3ρ)n

∫

B(x,3ρ)

|u(y)− u(x)|dy,

that, for Ln-a.e. x ∈ B(0, 1), goes to zero as ρ → 0 by the Lebesgue’s points Theorem.
Once the claim is proved, applying Proposition 2.29 to g, we have, for every x ∈ B(0, 1),

g (∇ûρ(x)) = g
(
(1− 2ρ)∇uρ((1− 2ρ)x)

)
≤ g

(
∇uρ((1− 2ρ)x)

)
≤ sup

x∈B(0,1−ρ)

g (∇uρ(x)) ,

and then
sup

x∈B(0,1)

g (∇ûρ(x)) ≤ sup
x∈B(0,1−ρ)

g (∇uρ(x)) .

This allows to achieve the thesis since

S(u, Ω) = lim
ρ→0

S(uρ, Ωρ) ≥ lim inf
ρ→0

S(ûρ, Ω) ≥ R[w∗-BV ]
(
S|C∞(Ω)

)
(u, Ω)

and being the opposite inequality satisfied.

Remark 7.4. It is quite simple to understand that the proposition above holds also if we set Ω
to be a bounded convex set. We have written down the proof for the unit ball in order to simplify
many technical details.

7.1.2 Dirichlet problem for supremal functionals

Following the work of Anzellotti, Buttazzo and Dal Maso [8] in which the same problem is consid-
ered for the integral functionals, we shall introduce a generalized Dirichlet problem for a particular
class of supremal functionals defined on BV (Ω). The formulation we proposed is similar to the
one used in the nonparametric Plateau’s problem (see [47]).

We have to underline that the functional (7.5) of Theorem 7.5 does not arise from the relaxation
on BV (Ω), with respect to the w∗-BV (Ω) convergence, of the functional (7.2) defined on C1

ϕ(Ω)
(that is the space of the function belonging to C1(Ω) with fixed boundary data ϕ) but it is
simply suggested by the analogy with the integral setting. However, when the hypotheses of
Theorem 7.5 are considered, we suppose it is a good candidate to represent just the functional
R [w∗-BV (Ω)]

(
S|C1

ϕ(Ω)

)
.

In the following, given a function u ∈ BV (Ω), we will always consider the restriction of u to
∂Ω in the trace sense (see for instance [40] Theorem 1 page 177).
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Theorem 7.5. Let Ω be an open and bounded subset of Rn with Lipschitz boundary, g : Rn → [0,∞]
be a proper, l.s.c. and level convex function and ϕ ∈ L1

Hn−1(∂Ω). Let us consider, for every
u ∈ BV (Ω), the functional

Sϕ(u, Ω) = S(u, Ω) ∨
[
Hn−1-ess sup

x∈∂Ω
g\

(
(ϕ(x)− u(x))ν(x)

)]
, (7.5)

where S is given by (7.2) and ν : ∂Ω → Sn−1 is the vector field of the outer normal vectors to ∂Ω2.
Assume that there exist an open and bounded subset of Rn with Lipschitz boundary Ω′ ⊃⊃ Ω

and w ∈ W 1,1(Ω′ \ Ω) such that ϕ = w|∂Ω and

ess sup
x∈Ω′\Ω

g(∇w(x)) = inf{g(ξ) : ξ ∈ Rn}. (7.6)

Then Sϕ is l.s.c. on BV (Ω) with respect to the w∗-BV (Ω) convergence.
Moreover if s = sup{g(ξ) : ξ ∈ Rn} ∈ [0,∞] and Kg = {ξ ∈ Rn : g\(ξ) < s} is such that cl(Kg)

does not contain any straight line, then the problem

min {Sϕ(u, Ω) : u ∈ BV (Ω)} , (7.7)

admits at least a solution.

Proof. Let u, uh ∈ BV (Ω) such that uh → u in w∗-BV (Ω) and define

û(x) =

{
u(x) if x ∈ Ω,

w(x) if x ∈ Ω′ \ Ω,
and ûh(x) =

{
uh(x) if x ∈ Ω,

w(x) if x ∈ Ω′ \ Ω.

It is easy to see that û, ûh ∈ BV (Ω′) and ûh → û in w∗-BV (Ω′). Moreover, since

Dûx∂Ω = (ϕ− u)ν · Hn−1x∂Ω and Dûhx∂Ω = (ϕ− uh)ν · Hn−1x∂Ω

(see [47] and [8] Theorem 3.1), we have also

Sϕ(u, Ω) = S(û, Ω′) and Sϕ(uh, Ω) = S(ûh,Ω′).

Then, by means of Theorem 7.1, it is

Sϕ(u, Ω) = S(û, Ω′) ≤ lim inf
h→∞

S(ûh,Ω′) = lim inf
h→∞

Sϕ(uh, Ω)

and the first part of the theorem is proved.

Before proving the second part of the theorem we need a remark. Let Θ : [0, s] → [0,∞] be
a continuous and strictly increasing function: it is clear that ū ∈ BV (Ω) is a minimum point of
Sϕ(u, Ω) if and only if it is a minimum point of Θ (Sϕ(u, Ω)). However, a simple computation gives
that, for every u ∈ BV (Ω),

Θ (Sϕ(u, Ω)) =
[
ess sup

x∈Ω
(Θ ◦ g)(∇u(x))

]
∨

[
|Dsu|-ess sup

x∈Ω
(Θ ◦ g\)

(
dDsu

d|Dsu| (x)
)]

∨
[
Hn−1-ess sup

x∈∂Ω
(Θ ◦ g\)

(
(ϕ(x)− u(x))ν(x)

)]
.

Thus, by Proposition 2.30, we have that Θ (Sϕ(u, Ω)) is in fact the functional (7.5) related to
Θ ◦ g : Rn → [0,∞]. Then, invoking now Proposition 2.31, we can suppose, without loss of

2This vector field can be defined since ∂Ω is Lipschitz so that Rademacher’s theorem can be applied.
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generality, that g is demi-coercive, that is, there exist a > 0, b ≥ 0 and η ∈ Rn such that, for every
ξ ∈ Rn,

g(ξ) ≥ a|ξ| − 〈η, ξ〉 − b.

If, for every u ∈ BV (Ω), Sϕ(u, Ω) = ∞ there is nothing to prove. Thus let us consider any
u ∈ BV (Ω) such that Sϕ(u, Ω) < ∞: we claim that, setting c = 1

3Ln(Ω) ∧ 1
3Hn−1(∂Ω) ,

Sϕ(u, Ω) (7.8)

≥ c

{∫

Ω

g(∇u(x))dx +
∫

Ω

g∞
(

dDsu

d|Dsu| (x)
)

d|Dsu|(x) +
∫

∂Ω

g∞
(
(ϕ(x)− u(x))ν(x)

)
Hn−1(x)

}
.

Indeed, clearly it holds

ess sup
x∈Ω

g(∇u(x)) ≥ 1
Ln(Ω)

∫

Ω

g(∇u(x))dx. (7.9)

Moreover since

|Dsu|-ess sup
x∈Ω

g\

(
dDsu

d|Dsu| (x)
)

< ∞,

it holds, for |Dsu|-a.e. x ∈ Ω, g\
(

dDsu
d|Dsu| (x)

)
< ∞ and then, by Proposition 2.28(ii), we have also,

for |Dsu|-a.e. x ∈ Ω, g∞
(

dDsu
d|Dsu| (x)

)
= 0: then, in particular,

1
Ln(Ω)

∫

Ω

g∞
(

dDsu

d|Dsu| (x)
)

d|Dsu|(x) = 0. (7.10)

At last using Proposition 2.28(i) we have

Hn−1-ess sup
x∈∂Ω

g\
(
(ϕ(x)− u(x))ν(x)

)
≥ 1
Hn−1(∂Ω)

∫

∂Ω

g∞
(
(ϕ(x)− u(x))ν(x)

)
dHn−1(x). (7.11)

Putting together (7.9), (7.10) and (7.11) we obtain, for every u ∈ BV (Ω) such that Sϕ(u, Ω) < ∞,

Sϕ(u, Ω) ≥ 1
Ln(Ω)

∫

Ω

g(∇u(x))dx ∨ 1
Ln(Ω)

∫

Ω

g∞
(

dDsu

d|Dsu| (x)
)

d|Dsu|(x)

∨ 1
Hn−1(∂Ω)

∫

∂Ω

g∞
(
(ϕ(x)− u(x))ν(x)

)
Hn−1(x)

≥ c

{∫

Ω

g(∇u(x))dx +
∫

Ω

g∞
(

dDsu

d|Dsu| (x)
)

d|Dsu|(x) +
∫

∂Ω

g∞
(
(ϕ(x)− u(x))ν(x)

)
dHn−1(x)

}
,

and (7.8) is proved.
By means of (7.8) and Proposition 2.28(iii)3 we find

Sϕ(u,Ω) ≥ ac

∫

Ω

|∇u(x)|dx− c

∫

Ω

〈η,∇u(x)〉dx− bcLn(Ω) + ac|Dsu|(Ω)+

−c

∫

Ω

〈
η,

dDsu

d|Dsu| (x)
〉

d|Dsu|(x) + ac

∫

∂Ω

|ϕ(x)− u(x)|dHn−1(x)+

−c

∫

∂Ω

〈η, (ϕ(x)− u(x))ν(x)〉dHn−1(x),

3Compare with Theorems 2.7 and 3.2 of [8].
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and then, using the fact that4, for every u ∈ BV (Ω),
∫

Ω

〈η,∇u(x)〉dx +
∫

Ω

〈
η,

dDsu

d|Dsu| (x)
〉

d|Dsu|(x) =
∫

∂Ω

〈η, u(x)ν(x)〉dHn−1(x)

and that there exists5 a constant A = A(Ω) > 0 such that, for every u ∈ BV (Ω),
∫

Ω

|u(x)|dx ≤ A

{
|Du|(Ω) +

∫

∂Ω

|u(x)|dHn−1(x)
}

,

it follows

Sϕ(u, Ω) ≥ ac

2

(
1 ∧ 1

A

){
|Du|(Ω) +

∫

Ω

|u(x)|dx +
∫

∂Ω

|u(x)|dHn−1(x)
}
− dc, (7.12)

where
d =

∫

∂Ω

|ϕ(x)|dHn−1(x) +
∫

∂Ω

〈η, ϕ(x)ν(x)〉dHn−1(x).

If now we consider a minimizing sequence {uh}∞h=1 such that, for every h ∈ N, Sϕ(uh, Ω) < ∞
we can prove its compactness only noting that (7.12) allows just to apply Theorem 2.8: this fact,
together with the lower semicontinuity of the functional Sϕ, guarantees the existence of a minimum
for (7.7).

Remark 7.6. In the hypotheses of Theorem 7.5, if there exists u ∈ BV (Ω) such that Sϕ(u, Ω) < ∞,
then the same holds for every solution ū of (7.7) too. Then, for Hn−1-a.e. x ∈ ∂Ω,

(ϕ(x)− ū(x))ν(x) ∈ Kg = {ξ ∈ Rn : g\(ξ) < ∞}.
Since g\ is level convex and positively homogeneous of degree 0 (see Proposition 2.20), Kg is clearly
a convex cone and then it follows that, for Hn−1-a.e. x ∈ {x ∈ ∂Ω : ν(x) 6∈ Kg}, ϕ(x)− ū(x) ≤ 0
and, for Hn−1-a.e. x ∈ {x ∈ ∂Ω : −ν(x) 6∈ Kg}, ϕ(x)− ū(x) ≥ 0.

Therefore we conclude that, for Hn−1-a.e. x ∈ {x ∈ ∂Ω : ν(x) 6∈ Kg ∪ (−Kg)}, ϕ(x) = ū(x).

It is also clear that, arguing as in the proof of Theorem 7.5, we cannot avoid the presence of
the condition (7.6). Nevertheless we can easily find suitable classes of examples in which (7.6) is
satisfied.

Consider for instance the case in which Ω = B(0, 1) ⊆ R2 and g : R2 → [0,∞) is defined as
g(ξ1, ξ2) = (ξ1 ∨ 0) + (ξ2 ∨ 0). If ϕ is the restriction to S1 of a function w ∈ C1(B(0, 1 + ε)) (where
ε > 0) such that, for every x ∈ B(0, 1 + ε) \B(0, 1), ∇w(x) ∈ {(ξ1, ξ2) : ξ1 ≤ 0, ξ2 ≤ 0}, then (7.6)
holds.

7.2 Non level convex functionals

7.2.1 A minimum problem

In this section we find a simple application of Theorem 6.20 to the BV setting where obviously
only the one dimensional case is considered: the result here presented should be compared with
the work of Alicandro, Braides and Cicalese [3] in which an analogous problem is deeply analyzed.

For this let (a, b) ⊆ R, g, w, γ : (a, b) × R → [0,∞] be proper Borel functions. We want to
minimize the following functional

L(u, K) =

[
ess sup

x∈(a,b)\K
g(x, u′(x))

]
∨

[
ess sup

x∈(a,b)\K
w(x, u(x))

]
∨

[ ∨

x∈K

γ(x, u(x+)− u(x−))

]
, (7.13)

4See Theorem 1 pg 177 [40] and [47]
5See [47] and equation (3.4) of [8].
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on the class

A =
{

(u,K) : K = {a = t0 < . . . < tm = b} ⊆ (a, b),m ∈ N,∀i ∈ {1, . . . , m} u ∈ W 1,∞(ti−1, ti)
}

.

Here u(x+) and u(x−) are the right and the left limit of u in x that always exist for every x ∈ K
when (u,K) ∈ A. Let us note the analogy between this problem and the classical Mumford-Shah
image segmentation one (see [7] Chapter 6).

In order to solve this problem let us note at first that if (u, K) ∈ A then u ∈ SBV (a, b).
For this we give a relaxed formulation of the functional L extending its definition on the space
SBV (a, b) in the obvious way: for every u ∈ SBV (a, b), decomposing its distributional derivative
as Du = u′ · L1 + D#u ∈M(a, b), where u′ ∈ L1(a, b) and D#u is purely atomic, we set

L(u, (a, b)) =

[
ess sup
x∈(a,b)

g(x, u′(x))

]
∨

[
ess sup
x∈(a,b)

w(x, u(x))

]
∨

[ ∨

x∈ADu

γ(x,D#u(x))

]
. (7.14)

Clearly, when (u,K) ∈ A, L(u,K) = L(u, (a, b)), thus

inf
u∈SBV (a,b)

L(u, (a, b)) ≤ inf
(u,K)∈A

L(u,K).

The following theorem shows that, with suitable hypotheses on g, w, γ, the functional L admits
a minimum on A. Note that, in order to obtain the compactness we need a particular coercivity
hypothesis on γ, that, as Proposition 2.27 shows, is more regular than it seems.

Theorem 7.7. Let g, w, γ : (a, b)×R→ [0,∞] be proper and Borel functions. Let us suppose that,
for L1-a.e. x ∈ (a, b), g(x, ·), w(x, ·) are l.s.c. and level convex on R and there exists a function
θ∞ : [0,∞) → [0,∞) such that, for every x ∈ (a, b) and ξ ∈ R,

g(x, ξ) ∧ w(x, ξ) ≥ θ∞(|ξ|) and lim
t→∞

θ∞(t) = ∞.

Moreover, setting l = inf{g(x, ξ) : (x, ξ) ∈ (a, b)×R}, let us suppose that γ∨ l is l.s.c. on (a, b)×R,
for every x ∈ (a, b), γ(x, ·) ∨ l is sub-maximal on R and γ(x, 0) = 0, and there exists a function
θ0 : (0,∞) → [0,∞) such that,

{
γ(x, ξ) ≥ θ0(ξ) if x ∈ (a, b), ξ > 0,

γ(x, ξ) = ∞ if x ∈ (a, b), ξ < 0,
and lim

t→0
θ0(t) = ∞.

Then the problem
min {L(u,K) : (u,K) ∈ A}

admits at least a solution.

Proof. We start considering the functional L defined by (7.14) and proving, by using the Direct
Methods, that it has a minimum on SBV (a, b). For this let us consider a minimizing sequence
{uh}∞h=1 ⊆ SBV (a, b): we can suppose that there exists a constant M > 0 such that, for every
h ∈ N, L(uh, (a, b)) ≤ M (we can suppose L 6≡ ∞). We want to prove at first the compactness of
this sequence.

Using the coercivity property of g, w and γ, we can find a constant M ′ > 0 such that, for every
u ∈ SBV (a, b) such that L(u, (a, b)) ≤ M (in particular, for every uh), we have

(i) for L1-a.e. x ∈ (a, b), |u′(x)| ≤ M ′,

(ii) for L1-a.e. x ∈ (a, b), |u(x)| ≤ M ′,

(iii) for every x ∈ ADu (the set of the atoms of Du), D#u(x) ≥ 1
M ′ : this condition implies, in

particular, that on every jump point the function u increases.
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Then, considering the sequence {uh}∞h=1, we are in the position to prove the compactness of
this sequence using Theorem 2.9 if we are able to prove that there exists C > 0 such that, for
every h ∈ N, #(ADuh

) ≤ C. In order to prove this we consider the formula, referred to a good
representative of uh, given by

uh(b−)− uh(a+) =
∫ b

a

u′(x)dx +
∑

x∈ADuh

D#uh(x)

that implies, by means of (iii),

#(ADuh
)

1
M ′ ≤

∑

x∈ADuh

D#uh(x) ≤ |uh(b−)− uh(a+)|+
∫ b

a

|u′h(x)|dx ≤ 2M ′ + (b− a)M ′ = C.

Thus there exists a subsequence (not relabelled) and ū ∈ SBV (a, b) ∩ L∞(a, b) such that

uh → ū in w∗-BV (a, b), and uh → ū in w∗-L∞(a, b).

Let us show now the lower semicontinuity of L on this sequence. Obviously Duh → Dū in w∗-
M(a, b) and, by Theorem 6.20, for the functional

[
ess sup
x∈(a,b)

g(x, u′(x))

]
∨

[ ∨

x∈ADu

γ(x,D#u(x))

]
,

the lower semicontinuity holds. By Theorem 6.19 also the functional

ess sup
x∈(a,b)

w(x, u(x)),

is lower semicontinuous on the considered sequence. Then

L(ū, (a, b)) ≤ lim inf
h→∞

L(uh, (a, b)),

that is, L admits a minimum on SBV (a, b) given by ū. Let us note now that since (i), (ii) and (iii)
hold for ū too, clearly #(ADū) ≤ C and, for L1-a.e. x ∈ (a, b), |u′(x)| ≤ M ′: then (ū, ADū) ∈ A
and the thesis is achieved.



Bibliography

[1] E. Acerbi - G. Buttazzo - N. Fusco, Semicontinuity and relaxation for integrals depending
on vector valued functions, Journal Math. Pures et Appl., 62 (1983), 371–387.

[2] E. Acerbi - G. Buttazzo - N. Prinari, The class of functionals which can be represented
by a supremum, J. Convex Analysis, 9 (2002), 225-236.

[3] R. Alicandro - A. Braides - M. Cicalese, L∞ energies on discontinuous functions,
Preprint.

[4] L. Ambrosio, New lower semicontinuity results for integral functionals, Rend. Accad. Naz.
Sci. XL 11 (1987), 1-42.

[5] L. Ambrosio - G. Buttazzo, Weak lower semicontinuous envelope of functions defined on
a space of measures, Ann. Mat. pura appl., 150 (1988), 311-340.

[6] L. Ambrosio - G. Dal Maso, On the relaxation in BV (Ω,Rm) of quasi-convex integrals, J.
Func. Anal., 109 (1992), 76-97.

[7] L. Ambrosio - N. Fusco - D. Pallara, Functions of bounded variation and free disconti-
nuity problems, Oxford University Press, Inc. New York, 2000.

[8] G. Anzellotti - G. Buttazzo - G. Dal Maso, Dirichlet problem for demi-coercive func-
tionals, Nonlinear Anal., 10 (1986), 603-613.

[9] G. Aronsson, Minimization problems for the functional supx F (x, f(x), f ′(x)), Ark. Mat., 6
(1965), 33-53.

[10] G. Aronsson, Extension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967),
551-561.

[11] G. Aronsson, Minimization problems for the functional supx F (x, f(x), f ′(x)) II, Ark. Mat.,
6 (1969), 409-431.

[12] G. Aronsson, Minimization problems for the functional supx F (x, f(x), f ′(x)) III, Ark. Mat.,
7 (1969), 509-512.

[13] J.P. Aubin - H. Frankowska, Set Valued Analysis, Birkhäuser, Basel, 1990.
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I. H. Poincaré - AN 18 (2001), 495-517.

[16] E.N. Barron - W. Liu, Calculus of variations in L∞, Appl. Math. Optim., 35 (1997),
237-263.

101



102 BIBLIOGRAPHY
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